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ABSTRACT 
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Plantar fasciitis is a common lower extremity injury caused by mechanical 

overload that affects 10% of all runners. Despite its commonality, research results 

investigating the etiology of the condition and the most efficacious treatment have been 

equivocal. A potential limitation of previous research assessing the mechanical changes 

associated with plantar fasciitis may be the modeling of the foot as a single segment. To 

date no study has investigated running kinematics in individuals with plantar fasciitis 

using a multi-segment foot model. Sonography has also reported plantar fascia thickening 

and degeneration associated with plantar fasciitis in non-athletic populations; however it 

has not been used to investigate the plantar fascia in runners with plantar fasciitis. 

Therefore, the primary purpose of this study was to compare running kinematics between 

runners with plantar fasciitis and uninjured runners using a six foot segment model. The 

secondary purpose was to investigate differences in plantar fascia thickness between the 
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two groups. Fifteen runners with plantar fasciitis (age: 30 ± 8.74 yrs, mass: 67.98 ± 8.20 

kg) and 15 age, gender and mileage matched uninjured runners (age: 29.33 ± 6.53 yrs, 

height: 170.52 ± 7.78 cm, mass: 68.07 ± 9.99 kg) were recruited. Data collection included 

foot structure assessment, ultrasound imaging, and running gait analysis. Stance phase 

was separated into 4 subphases, and MANOVAs (α ≤ 0.05) were performed to assess 

between-subject ROM differences for the functional articulations (rearfoot complex, 

calcaneocuboid, and calcaneonavicular complex, medial and lateral forefoot, and 1st 

metatarsophalangeal complex). Independent t-tests (α ≤ 0.05) were conducted to 

investigate differences in plantar fascia thickness.  

Results revealed calcaneocuboid eversion ROM during phase 1 (p = 0.003) and 

plantar fascia thickness (p = 0.004) were significantly greater in the plantar fasciitis 

group. The increased eversion excursion of the calcaneocuboid in the plantar fasciitis 

group may suggest decreased lateral midfoot stability. Although the results of this study 

advance the understanding of the effect of plantar fasciitis on running gait, additional 

study of the influence of extrinsic and intrinsic foot musculature and foot strike pattern 

are warranted before conclusions regarding the effect of plantar fasciitis on running gait 

can be drawn. 
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CHAPTER 1: INTRODUCTION 

 

Background  

 

Overuse syndromes are the most frequently occurring injuries that affect runners 

(Messier & Pittala, 1988). Among them, plantar fasciitis is the third most frequently 

diagnosed injury (Taunton, Ryan, Clement, McKenzie, Lloyd-Smith, et al., 2002), 

affecting 10% of all runners. In one retrospective study on the prevalence of lower 

extremity injuries among runners, plantar fasciitis was the most common incurred injury 

(Williams, McClay, & Hamill, 2001). Plantar fasciitis is not, however, limited to runners. 

General population epidemiological studies have suggested that plantar fasciitis affects an 

estimated one in ten people at some point in their lifetime (Crawford, 2005). 

Furthermore, approximately one million patient visits to office-based physicians and to 

hospital outpatient departments per year are estimated to be for plantar fascia related 

symptoms (Riddle & Schappert, 2004). Plantar fasciitis is also one of the most common 

overuse injuries suffered by military personnel (Roy, 2011; Scher et al., 2009), and the 

most common cause of chronic heel pain (Irving, Cook, Young, & Menz, 2008). In 

addition to heel pain, plantar fasciitis also has a significant negative impact on general 

health-related quality of life (Irving et al., 2008). Specifically, patients with plantar 

fasciitis become more socially isolated, lack the energy to participate in their usual 

activities, and generally demonstrate a decreased ability to perform a broad range of 

physical tasks when compared to those without the condition (Irving et al., 2008). 

Coupled with reduced mobility leading to inactivity and weight gain, and therefore an 

increased risk for numerous chronic diseases, plantar fasciitis is a serious public health 

problem (Irving et al., 2008; Young, Rutherford, & Niedfeldt, 2001). 
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Despite the commonality of plantar fasciitis, the etiology of the injury is not well 

understood, and evidence supporting the effectiveness of current treatment options is 

limited (Cole, Seto, & Gazewood, 2005; Roos, Engstrom, & Soderberg, 2006). Most 

authors agree that plantar fasciitis is a multifactorial problem (Allen & Gross, 2003; 

Wearing, Smeathers, Urry, Hennig, & Hills, 2006) and there is general clinical consensus 

that mechanical dysfunction is the primary contributing factor. The mechanical 

dysfunction is theorized to cause repetitive microtrauma and overuse that ultimately 

progresses to plantar fasciitis (Glazer & Hosey, 2004). Anatomical pathoetiological 

factors that may lead to the mechanical dysfunction during gait and ultimately plantar 

fasciitis include: reduced ankle dorsiflexion range of motion (Cornwall & McPoil, 1999; 

Kibler, Goldberg, & Chandler, 1991; Labovitz, Yu, & Kim, 2011; Riddle, Pulisic, 

Pidcoe, & Johnson, 2003); excessive pronation (Middleton & Kolodin, 1992; Taunton, 

Clement, & McNicol, 1982; Wearing et al., 2006) leg length discrepancy (Glazer & 

Hosey, 2004; Krivickas, 1997; Subotnick, 1985); increased first metatarsophalangeal 

joint motion (Wearing et al., 2004); and weak intrinsic foot muscles (Allen & Gross, 

2003; Kibler et al., 1991; Wearing et al., 2007). Overtraining and inadequate shoewear 

have also been reported to lead to the development of plantar fasciitis (Glazer & Hosey, 

2004; Taunton et al., 1982). To date, however, results of the studies have been largely 

inconsistent. In addition to the previously mentioned factors, results of experimental 

studies aimed at identifying the dysfunction during gait, however, have been equivocal 

(Wearing et al., 2006). Specifically, several studies have observed changes in gait 

(Chang, van Emmerik, & Hamill, 2007; Wearing et al., 2007), however, a recent rearfoot 

model investigating female runners with plantar fasciitis did not report kinematic 
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differences between participants with and without plantar fasciitis (Pohl, Hamill, & 

Davis, 2009).  

Although the anatomical and biomechanical factors associated with plantar 

fasciitis are unclear, the functions of the plantar fascia are well documented (Sarrafian, 

1987; Taunton et al., 1982; Wearing et al., 2006). The plantar fascia provides support 

during the stance phase of gait, maintains the medial longitudinal arch during midstance, 

and aids in re-supination of the foot during late midstance and propulsion (Taunton et al., 

1982). Biomechanical analyses have shown that elongation of the arch during midstance 

increases tension within the plantar fascia (Sarrafian, 1987). The increased tension within 

the plantar fascia aids in locking the midtarsal joints to prepare the foot for propulsion. 

During the propulsive phase the plantar fascia functions like a windlass to aid in 

resupination of the foot and thus provide stability for the arch prior to toe-off , (Taunton 

et al., 1982). Specifically, the windlass mechanism occurs during toe extension when the 

plantar fascia is wound around the metatarsal heads, thereby shortening its effective 

length and increasing tension within the fascia (Hicks, 1954). The activation of this 

windlass mechanism, however, is thought to occur only when sufficient tension is 

produced within the plantar fascia (Hicks, 1954).  

Some authors have theorized that both dysfunction of the windlass mechanism 

during gait and decreased tension within the plantar fascia may occur as a result of 

degeneration of the fascia associated with plantar fasciitis (Wearing et al., 2004; Wu, 

Chang, Mio, Chen, & Wang, 2011). Supporting the theories, walking gait studies have 

reported compensatory changes in gait in individuals with plantar fasciitis in the first 

metatarsophalangeal joint angle (Wearing et al., 2004) and in the forefoot (Chang et al., 
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2007). Additionally, in a study examining the stiffness of the plantar fascia using 

elastography, Wu et al. (2011) reported a significant decrease in plantar fascia stiffness in 

individuals with plantar fasciitis. Several authors have also reported evidence of 

degeneration in the plantar fascia associated with plantar fasciitis using ultrasound 

imaging.  The studies have revealed a hypoechoic appearance and adaptive thickening of 

the plantar fascia, which signifies microtears and degeneration, respectively (Cardinal, 

Chhem, Beauregard, Aubin, & Pelletier, 1996; Lemont, Ammirati, & Usen, 2003; 

Wearing et al., 2006). In previous studies, the threshold for plantar fasciitis has been 

suggested to be a thickness of greater than 4.0 mm. However, these studies have used 

participants with a wide range of age and activity level, so it is unknown if the thresholds 

would apply to younger very active groups (Cardinal et al., 1996; Fabrikant & Park, 

2011; Karabay et al., 2007). Together, these studies suggest that structural changes in the 

plantar fascia that occur with plantar fasciitis may lead to decreased tension and 

compensatory changes during gait; however, these effects are unknown in runners. Due 

to the anatomical structure and function of the plantar fascia, the compensatory changes 

during gait may occur in multiple segments of the foot.   

As previously stated, mechanical dysfunction is theorized to be a primary factor 

associated with plantar fasciitis, but these mechanical changes are not well understood. A 

limitation of the majority of previous studies may be the modeling of the entire foot as a 

single rigid segment, tracking only the rearfoot complex. Increased forefoot pronation has 

been reported in patients with plantar fasciitis during walking, suggesting the single 

segment model may be an oversimplification of the foot (Chang et al., 2007). Moreover, 

Pohl et al. (2009) reported that individuals with plantar fasciitis did not have different 
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static rearfoot positions but they did have differences in the static arch position. This 

observation may further support the argument that mechanical changes associated with 

plantar fasciitis may occur in the midfoot and forefoot segments. The contribution of 

distal foot motion on foot function during gait has also been reported by Arndt et al. 

(2007) and Cobb et al. (2009), who investigated multi-segment foot kinematics during 

jogging and walking, respectively. Arndt et al. (2007) demonstrated significantly 

increased midfoot mobility with in-vivo running kinematics, while Cobb et al. (2009) 

showed significant differences in motion distal to the calcaneus between participants with 

typical and low arch structure during walking. These results and the fact that midfoot, 

forefoot, and hallux motion during gait may directly influence tension in the plantar 

fascia, emphasize the need to analyze foot function with a multi-segment model.  

With respect to treatment of plantar fasciitis, 90-95% of the reported patients 

diagnosed with plantar fasciitis receive conservative treatment (O’Malley et al., 2000; 

Wearing et al., 2006). The primary conservative treatment options include shoe inserts, 

custom molded orthotics, stretching and strengthening exercises, and custom-made night 

splits (Cole et al., 2005; P. F. Davis, Severud, & Baxter, 1994; Kogler, Solomonidis, & 

Paul, 1996; Roos et al., 2006). Even with successful conservative treatment, the median 

duration of symptoms is 12 months, with a range of 6 to 96 months (Irving et al., 2008) 

and a significant minority has ongoing debility (Davis et al., 1994). Moreover, a long-

term follow-up study on plantar fasciitis cases reported that after four years only 80% of 

the patients were completely pain-free (Wolgin, Cook, Graham, & Mauldin, 1994). 

Although the symptoms of plantar fasciitis may ultimately be resolved, the fact that 
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patients diagnosed with the condition are typically affected for a prolonged period of time 

suggests that current conservative treatment protocols are not sufficiently effective.  

In addition to conservative treatment, 5-10% of plantar fasciitis patients require 

surgical intervention (O’Malley et al., 2000). Fasciotomy, both partial and complete 

surgical sectioning of the plantar fascia, is the most common surgical intervention 

(Tweed, Barnes, & Allen, 2009). Surgical outcomes for plantar fasciitis patients however, 

are equivocal with mixed reports of activity level and disability following the surgery 

(Kitaoka et al., 1997; O’Malley et al., 2000). Short-term outcomes of fasciotomy are 

reported to be 71% successful in patients with heel pain (Kitaoka, Luo, & An, 1997; 

Leach, Seavey, & Salter, 1986), but the long-term consequences of altering the structure 

of the plantar fascia are not well understood. Although fasciotomy may temporarily 

relieve symptomatic complaints in individuals suffering from plantar fasciitis (Davies, 

Weiss, & Saxby, 1999), there is growing concern that fasciotomy may lead to 

biomechanical changes including a decrease in arch height and a reduction in the 

structural stability of the foot (Huang, Kitaoka, An, & Chao, 1993; Kitaoka et al., 1997; 

Tweed et al., 2009). These structural changes that occur following surgery have been 

hypothesized to change gait mechanics that may lead to the development of additional 

joint/soft tissue pathology over time. More recently, endoscopic plantar fascia release has 

been proposed as a better alternative to the traditional open approach because it speeds 

recovery and enables patients to return to activity faster (Boyle, Witt, & Riegger-Krugh, 

2003); however, even with this improved surgical approach, 2 - 35% of patients have 

continued symptoms (Schepsis, Leach, & Gorzyca, 1991).  
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The lack of understanding of the pathoetiological factors associated with plantar 

fasciitis could be a contributing factor to the ineffectiveness of current treatment 

protocols. Until the pathoetiological factors of plantar fasciitis are identified, it will be 

difficult to develop interventions that effectively treat the condition. Another contributing 

factor to the lack of understanding of the etiological factors associated with plantar 

fasciitis is the lack of a gold standard diagnostic test for plantar fasciitis. Currently, 

plantar fasciitis is most commonly a clinical diagnosis (Wearing et al., 2006). The 

characteristic clinical signs and symptoms used to diagnose plantar fasciitis include: 

complaint of a sharp, localized pain at the base of the heel where the plantar fascia 

attaches to the calcaneus (Cole et al., 2005; McBryde, 1984; Singh, Angel, Bentley, & 

Trevino, 1997; Tountas & Fornasier, 1996); and a gradual onset of pain that is typically 

worse with the first few steps in the morning and following periods of inactivity 

(Buchbinder, 2004; Cole et al., 2005; Kibler et al., 1991). While the signs and symptoms 

are characteristic of plantar fasciitis, they may also be present in other conditions such as 

heel spurs and tarsal tunnel syndrome. The presence of fluid collection at the origin of the 

plantar fascia has also been observed in several studies, which is attributed to repetitive 

microtears that result from the mechanical stress on the plantar fascia (Akfirat, Sen, & 

Gunes, 2003; Gibbon & Long, 1999; Sabir, Demirlenk, Yagci, Karabulut, & Cubukcu, 

2005). Results of these studies suggest that, when used in conjunction with a clinical 

exam, ultrasound imaging may be a useful clinical tool to aid in the diagnosing plantar 

fasciitis. 
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Purpose 

 

Given the lack of understanding of mechanical effects and structural changes in the 

plantar fascia in runners, the current study had two purposes. The primary purpose was to 

compare foot kinematics in runners with plantar fasciitis and injury-free runners using a 

multi-segment foot model. The secondary purpose of the study was to investigate the 

differences in plantar fascia thickness between runners with plantar fasciitis and 

uninjured runners. It was hypothesized that participants with plantar fasciitis would have 

altered kinematics during the mid and late stance phases of gait. Specifically, it was 

hypothesized that in patients with plantar fasciitis, the medial midfoot and forefoot would 

be more mobile during midstance, and the first metatarsophalangeal joint would exhibit 

increased extension in late stance due to degeneration and decreased stiffness of the 

plantar fascia. 

Delimitations 

1. Data were collected on runners and therefore any generalizations made from the 

findings are limited to this population. The results are not applicable to the 

general population diagnosed with plantar fasciitis. Specifically, plantar fasciitis 

in the sedentary population develop due to different factors. The appearance and 

structure of the plantar fascia in runners compared to that of sedentary individuals 

is also unknown.   

2. This study utilized common clinical symptoms of plantar fasciitis as inclusionary 

criteria. No specific diagnostic imaging, or physician diagnosis, was included. 

However, a Certified Athletic Trainer performed a physical exam to rule out all 

other potential causes of heel pain.  
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3. Participants ran in a flat sandal, not necessarily built for running, in order to use 

the multi-segment foot model. Although all participants were provided adequate 

time to warm-up in the sandal, it is unknown whether they altered their gait to 

adjust to running in the sandal.  

Assumptions 

1. Participants honestly answered the questions on the background and activity level 

questionnaires. 

2. All lower extremity segments are rigid bodies. 

3. The surface marker based multi-segment foot model kinematics represent the 

bone movement of each functional articulation it is representing. 

4. The motion of the foot in the sandal is not different than the motion of the foot in 

a running shoe. 

Limitations 

1. Surface marker based models are not invasive so they cannot directly measure 

bone movement. Because the markers are placed on the surface of the skin, there 

will be error due to skin and adipose tissue movement that cannot be completely 

eliminated. This soft tissue movement of the foot and leg will be reduced with the 

use of a liquid adhesive, adhesive tape, four-marker marker clusters, and a rigid 

body reconstruction optimization procedure.  

2. This is a retrospective study looking at the mechanical changes in runners with 

plantar fasciitis. The cause of any mechanical changes can only be interpreted 

from the results as potential contributing factors.  
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Significance 

  

The results of the study enhanced understanding of the mechanical effects of 

plantar fasciitis on running gait mechanics. Previous studies have only analyzed rearfoot 

or rearfoot-forefoot kinematics, both of which ignore the midfoot motion of the foot. 

However, more recently the movement and importance of these midfoot bones has been 

identified in individuals without plantar fasciitis during walking and running gait studies. 

To capture the movement of the multiple bones of the foot during running, it was 

necessary to use a multi-segment foot model. Specifically, use of a multi-segment foot 

model allowed for identification of potential mechanical dysfunction in the forefoot, 

midfoot, and hallux segments during running gait that may result from plantar fasciitis. In 

addition to understanding the kinematics of the foot, this study also investigated the 

differences in plantar fascia thickness between runners with plantar fasciitis and 

uninjured runners. Moreover, it contributed to the understanding of the etiology of plantar 

fasciitis and may contribute to the development of more effective treatment protocols.  
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CHAPTER 2: REVIEW OF LITERATURE 

 

Introduction  

 

The primary purpose of the current study was to compare foot kinematics in runners 

with plantar fasciitis and injury-free runners using a multi-segment foot model. This 

Review of Literature begins with an overview of the anatomy and functional role of the 

plantar fascia during gait. The anatomy of the plantar fascia is crucial to understanding its 

function, and knowledge of its function is critical to understanding the mechanical 

mechanisms theorized to cause plantar fasciitis. Following the overview, the 

histopathology of plantar fasciitis and the theorized relationship between the 

histopathology and mechanical function are discussed. The next two sections review the 

pathoetiological factors theorized to contribute to the development plantar fasciitis and 

the mechanical effects of plantar fasciitis on gait. Finally, the role of a multi-segment foot 

model in advancing and understanding foot function is discussed. These final sections 

will bring the Review of Literature full circle, providing the necessary background 

information to explain the importance of utilizing a multi-segment foot model to 

investigate the mechanical effects of plantar fasciitis on running gait.  

The secondary purpose of the study was to investigate differences in plantar fascia 

thickness between runners with plantar fasciitis and uninjured runners; therefore, the final 

section of this Review of Literature discusses the current clinical and diagnostic methods 

of diagnosing plantar fasciitis. 
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Structure and Function of the Plantar Fascia 

 

Anatomy of the Plantar Fascia 

 

The plantar fascia is a broad, flat, fibrous, tendon-like structure that covers the 

sole of the foot (Uden, Boesch, & Kumar, 2011) (Figure 1). It consists of non-contractile 

irregularly ordered collagen fibers with minimal elastic properties that span the transverse 

tarsal, tarsometatarsal, and metatarsophalangeal joints (Nordin & Frankel, 2001). The 

plantar fascia originates at the medial tubercle of the calcaneus then divides distally into 

superficial and deep segments at the metatarsal heads. The superficial fibers insert into 

the skin, while the deep segments attach to the transverse metatarsophalangeal ligaments 

and to the plantar surface of the proximal digits (Marieb, 2001).  

 

Figure 1. Medial, central and lateral bands of the plantar fascia (Brasile & Hedrick, 1996). 

 

The plantar fascia is a continuous structure and is often described as three 

separate components or bands (medial, lateral, central bands) (Hedrick, 1996) (Figure 1). 

The medial band is a very thin structure, forming the investing fascia of the abductor 

hallucis muscle. Although virtually nonexistent at the proximal end, it becomes larger as 
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it courses distally along the medial sole to join the dorsal fascia of the foot (Hedrick, 

1996). The lateral band is a more substantial component of the plantar fascia that 

originates at the lateral margin of the medial tubercle of the calcaneus, extends toward the 

cuboid and inserts into the base of the fifth metatarsal (Brasile & Hedrick, 1996). Its 

thickness and development, however, are variable (Brasile & Hedrick, 1996; Cralley, 

Schuberth, & Fitch, 1982; Hiramoto, 1983). In some individuals the band is thick and 

fully developed, whereas in approximately 12% of individuals, it is completely absent 

(Dylevsky, 1988). Due to this variability, the significance and importance of the lateral 

band are not well understood. Lastly, the central band originates at the plantar aspect of 

the medial process of the medial calcaneal tuberosity (Brasile & Hedrick, 1996; Mitchell, 

Meyer, & Krueger, 1991) and receives fibers from the Achilles tendon and plantaris 

tendons proximally (Brasile & Hedrick, 1996). It invests the central plantar muscles and 

resembles the palmar aponeurosis of the palm of the hand, but is tougher, denser, and 

more elongated (Maffulli, Binfield, Moore, & King, 1999). At its origin, the central band 

is approximately 1.5 to 2 cm wide. It then expands into a triangular shape as it divides 

distally into five longitudinally oriented bands along the sole of the foot (Bojsen-Møller, 

1976; Hedrick, 1996). It is this band that spans the medial longitudinal arch of the foot 

(Cornwall & McPoil, 1999; Roxas, 2005) and is considered to be the major component of 

the plantar fascia both structurally and functionally (Hiramoto, 1983; Pontious, Flanigan, 

& Hillstrom, 1996). All references to the plantar fascia in this document refer to the 

central band since it is considered to be the most structurally and functionally significant 

of the three bands (Wearing et al., 2006). 
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Functions of the Plantar Fascia 

 

The plantar fascia is a thick and tenacious structure that provides stability to the 

multiple joints of the foot, supports the medial longitudinal arch, and protects the sole of 

the foot from injury (Maffulli et al., 1999). During static stance, the weight of the body is 

supported almost entirely by the passive structures of the foot with the plantar fascia 

functioning as the primary support (Basmajian & Stecko, 1963). During gait, the plantar 

fascia functions to maintain the medial longitudinal arch and to aid in re-supination of the 

foot in the late midstance and propulsive stance subphases (Lisowski, 2004; Michaud, 

1997). Specifically, during midstance, tension in the plantar fascia increases as the arch 

elongates (Sarrafian, 1987). This increased tension in the plantar fascia provides stability 

to the mid-tarsal joints and assists in re-supination of the foot during late midstance and 

the propulsive subphase of stance so that the foot can function as a rigid lever at toe-off 

(Taunton et al., 1982). 

Weight-bearing Mechanisms/Theories 

 

It is well known that the plantar fascia contributes to arch maintenance during 

both static stance and gait (Wearing et al., 2006). However, because it is not possible to 

directly measure the plantar fascia in-vivo without invasive techniques (Kim & Voloshin, 

1995; Wright & Rennels, 1964), much of the current understanding of how the plantar 

fascia functions during stance was developed from in-vitro studies (Huang et al., 1993; 

Sarrafian, 1987; Wright & Rennels, 1964). From these studies, authors have 

demonstrated that the plantar fascia serves as a critical structure in supporting the medial 

longitudinal arch during loading conditions. Specifically, the medial longitudinal arch 

under load is typically described as functioning similar to that of a beam and a truss 
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(Hicks, 1954; Hicks, 1955; Sarrafian, 1987). Lake (1938) was the first to develop theories 

of how the foot functions under loading conditions, and Hicks (1955) experimentally 

confirmed the theories with an in-vitro cadaver study. When the foot is described as a 

beam mechanism, the structures forming the medial longitudinal arch (calcaneus, talus, 

navicular, cuneiforms, and medial three metatarsals) represent the beam. During 

weightbearing, the beam experiences bending strain, as it functions to maintain the 

structure of the arch. Specifically, the inferior surface of the medial longitudinal arch (the 

plantar ligaments of the foot) is placed under tension, while the superior surface of the 

medial longitudinal arch (the articulating bones of the arch) is under compression.  

In addition to functioning like a beam when loaded, the arch also functions as a 

truss. A truss is composed of two wooden struts that are under compression, connected by 

a rope or a tie rod that is under tension. When described as a truss, the arch represents the 

triangular structure, the heel and forefoot represent the two struts, and the plantar fascia 

functions as the tie rod (Hicks, 1955; Nordin & Frankel, 2001). It is a mechanical truss, 

with the plantar fascia providing support and allowing movement via elongation and 

shortening when the structure is loaded. As a truss, the plantar fascia functions to modify 

the stiffness of the arch in relation to the weight-bearing load (Vogler & Bojsen-Moller, 

2000). In an experimental study investigating the effect of loading during flat standing 

and toe-standing loading conditions on fresh foot amputation specimens, Hicks (1955) 

demonstrated that the arch functions similar to both a beam and truss during flat standing, 

but primarily a truss during late stance and toe off.  

 During flat standing, the foot functioned like a truss and a beam simultaneously 

(Hicks, 1955). Specifically, the medial longitudinal arch functioned like a truss, as 
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tension in the plantar fascia limited the amount of elongation of the arch that occurred 

during weight-bearing, but also prevented the arch from completely flattening (Hicks, 

1955). The heel and forefoot (the two struts) of the arch were also loaded in compression 

to resist the tensile forces of the plantar fascia. The foot also functioned like a beam 

during static stance. Under vertical loading conditions the arch flattened in relation to the 

amount of weight placed on the body (Hicks, 1955), which is similar to a beam that bends 

as it is stressed with more weight. Hicks theorized that the two mechanisms function in 

conjunction with one another to support the medial longitudinal arch during midstance of 

the gait cycle. 

During toe-off in gait, the windlass mechanism pulls the foot into a ray-flexed 

position that raises the medial longitudinal arch (Hicks, 1955). Unlike flat stance in 

which support of the arch is provided by both beam and truss mechanisms, in the toe-

standing position, Hicks (1955) noted support for the arch is solely due to the function of 

the truss mechanism. Therefore, in a toe-standing position without the support of the 

beam mechanism, the plantar fascia may play an even greater role in arch support. 

Finally, because the windlass mechanism was observed in cadaver feet, Hicks (1955) 

theorized that the raising of the arch observed in a toe-standing position was primarily the 

result of support provided by the plantar fascia via the windlass mechanism rather than 

from the action of arch-raising muscles. In another study, Hicks (1954) mimicked toe-

standing by extending the first metatarsophalangeal joint in an in-vivo radiographic 

study. Extension of the first metatarsophalangeal joint resulted in sliding of the phalanx 

on the dorsum of the metatarsal head that pulled on the plantar pads and which wrapped 

the plantar fascia around the heads of the metatarsals like a cable being wound on to a 
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windlass (Hicks, 1954). When this was performed, the plantar fascia did not shift distally 

because of its strong attachment to the calcaneum. Instead the windlass shifted and pulled 

the metatarsal heads proximally toward the calcaneus. In a subsequent in-vitro 

experiment, Hicks (1955) confirmed that the plantar fascia was strong enough to perform 

the arch-raising mechanism or the “windlass” mechanism during the toe-off phase of 

walking (Figure 2). Although the plantar fascia attaches to all of the metatarsal heads and 

each goes through extension at heel lift, the hallux is thought to be the greatest 

contributor to the windlass due to its greater range of motion compared to the lesser digits 

(Hicks, 1953).  

 

 

 

 

 

Figure 2. Demonstration of the windlass mechanism (Hicks, 1954). 
 

 

 

In-vitro Studies 

 

Following the development of the truss and beam theories to explain arch function 

and the experimental evidence of the truss and beam mechanisms during load-bearing 

conditions provided by Hicks (1955), researchers became interested in determining the 

contribution of the plantar fascia to arch maintenance during weight-bearing activities. 
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The majority of the research studies on the plantar fascia and its role in maintaining arch 

support have been in-vitro studies. Most of these studies have focused on understanding 

and quantifying the amount of load the plantar fascia can sustain (Huang et al., 1993; 

Wright & Rennels, 1964). In a significant landmark study, Wright and Rennels (1964) 

tested three cadaver feet in an apparatus that loaded each specimen and measured the 

elongation of the arch during several loading conditions up to a maximum load of 200 

pounds. The majority of the change in arch length occurred with the smaller loads of 50 

and 100 pounds, compared to the larger loads of 150 and 200 pounds. With the numerical 

data from these experiments, the authors calculated the stress-strain relationship for each 

specimen, which was an indication of the modulus of elasticity. As the load increased, the 

moduli of elasticity increased demonstrating that the specimens became stiffer with more 

load. 

Approximately 30 years later, Huang et al. (1993) performed a similar experiment 

with 12 fresh-frozen human cadaveric feet. The feet were loaded with 230, 460, and 690 

Newtons (51.6, 103.2, and 154.7 pounds respectively). Similar to Wright and Rennels 

(1964), the authors measured the horizontal displacement of the arch with each load to 

determine the stiffness of each specimen. In addition, Huang et al. (1965) also measured 

the arch displacement before and after sequential sectioning of the plantar fascia, the 

plantar ligaments, and the spring ligament. The authors reported that the greatest 

reduction in arch stiffness (25%) occurred after re-sectioning the plantar fascia compared 

to re-sectioning the spring ligament and the long and short plantar ligaments. Moreover, 

with the re-sectioning of all four tissue structures, the arch still retained 63% of its 

original stiffness. From this, they concluded that the plantar fascia is the greatest 
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contributor to arch maintenance, but also that the other supporting structures (the plantar 

ligaments and the spring ligament) contribute to the stability of the medial longitudinal 

arch. 

A limitation of the first two studies is that they only loaded the foot in a flat 

stance condition, which is not a full indication of how the plantar fascia acts during the 

entire stance phase. In a different approach to understanding the role of the plantar fascia, 

Salathe et al. (1986) developed a 12-segment two-dimensional mathematical model of the 

foot to predict the tension that occurs in the plantar fascia during terminal stance. The 

authors analyzed the foot as a statically indeterminate structure, predicting that the 

greatest tension within the fascia would occur when the heel was raised off the ground 

and the windlass mechanism was activated. According to the previously described theory 

of the truss mechanism, the plantar fascia is the primary supportive structure maintaining 

the arch during this phase. Results of the Salathe et al. (1986) study revealed large loads 

on the plantar fascia and metatarsal heads during heel off. The greater the flexibility of 

the metatarsal heads during heel off, the larger the load on the metatarsal heads, which 

was deflected from the plantar fascia (E. P. Salathe, Jr., Arangio, & Salathe, 1986). Thus, 

in a normal-functioning foot during heel off, the plantar fascia applies a large amount of 

load onto the metatarsal heads, assisting in toe-off during the terminal subphase of stance. 

Both the Wright and Rennels (1964) and Huang et al. (1993) in-vitro studies 

quantified the load bearing capacity of the plantar fascia and contributed to enhancing the 

knowledge of the role of the plantar fascia in maintaining arch support in different 

loading conditions. Although both studies provide experimental evidence of the 

importance of the plantar fascia to maintaining support of the arch, both studies have 
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several limitations that must be considered. Wright and Rennels (1964) did not include 

the contribution of arch-supporting structures other than the plantar fascia. As 

demonstrated by Huang et al. (1993), however, other passive elements contribute to arch 

maintenance. Furthermore, because of the nature of the studies, neither Wright and 

Rennels (1964) nor Huang et al. (1993) were able to determine the contribution of the 

extrinsic and intrinsic muscles of the foot. These structures may also be vital in 

supporting the arch and dissipating load, therefore the quantification of the plantar 

fascia’s contribution from both studies may be overestimations. Finally, both studies used 

static loading of cadaveric specimens so the results may not be generalizable to dynamic 

loading of in-vivo tissues. Even with these limitations, however, it is clear that the plantar 

fascia contributes significantly to the support of the arch during loading. Subsequent in-

vitro studies have also revealed that the plantar and spring ligaments, in conjunction with 

the plantar fascia, are important in storing energy and providing support to the arch (Ker 

et al., 1987; Kitaoka et al., 1997). 

  

Static and Quasi-static In-vivo Studies 

 

To address the limitation of the generalizability of results of studies performed on 

in-vitro tissues to in-vivo tissues, several researchers have performed in-vivo studies to 

quantify the contribution of the plantar fascia in maintaining the arch (Kim & Voloshin, 

1995; Wright & Rennels, 1964). In the previously discussed in-vitro study, Wright and 

Rennels (1964) also performed an in-vivo study. The authors measured the length of the 

arch using radiographs after applying increasing loads in fifty-pound increments up to 

200 pounds to a subject seated in a chair. Consistent with the in-vitro results, the authors 
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reported a significant increase in the arch length during the smaller loads and little change 

during the larger loads. Again, the limited change during the larger loads was attributed 

to stiffening of the plantar fascia. From these data, Wright and Rennels (1964) concluded 

that the resulting tension in the plantar fascia was approximately 47% of the weight 

placed on the subject's tibia. Thirty years later, Kim and Voloshin (1995) quantified the 

load bearing capacity of the plantar fascia in an in-vivo experiment that utilized a 

viscoelastic model of the foot which included additional supporting structures (the 

intrinsic muscles of the foot and the tendons of the extrinsic muscles) of the arch. They 

employed an accelerometric technique to develop a simple biomechanical model to 

analyze the load bearing mechanism of the foot during the stance phase of gait. The 

model was used to analyze change in the maximum acceleration on the ankle following 

plantar fascia release. The foot without the plantar fascia generated a higher acceleration 

than the model with the plantar fascia, emphasizing its importance in attenuating shock. 

The authors noted that surgical release of the plantar fascia modified the dynamic 

behavior of the foot due to the reduction of the dynamic load-bearing capacity of the 

ankle. The results suggested that the plantar fascia contributes approximately 14% of the 

total load on the foot, which is significantly less than the 47% suggested by Wright and 

Rennels (1964). However, both studies once again confirm that plantar fascia contributes 

a significant amount to maintaining the integrity of the arch.  

In addition to loading during midstance, authors have also investigated static 

loading during the toe-off position. The results of the studies have revealed that the 

plantar fascia is relaxed until heel lift, when digital extension initiates the previously 

mentioned windlass mechanism (Vedi et al., 1999; Williams et al., 1999). Results of 
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these studies have suggested that the windlass effect is engaged at approximately 20° of 

first metatarsophalangeal joint extension (Vedi et al., 1999; Williams et al., 1999). As 

previously stated, with the increased tension, the windlass mechanism is believed to 

contribute to the raising of the arch to increase the stability of the foot in preparation for 

the propulsive phase of gait (Bohsen-Moller, 1979; Rush et al., 2000).  

Previous in-vitro studies quantified the contribution of the plantar fascia to 

maintaining arch support, but were unable to measure the activity of the foot’s intrinsic 

muscles during gait (Huang et al., 1993; Wright & Rennels, 1964). Therefore, although 

in-vitro studies have improved the understanding of the effect of loading on the plantar 

fascia, the results may not be generalized to in-vivo tissues. The in-vivo studies more 

accurately depicted the contribution of the plantar fascia in maintaining arch support; 

however, the studies have also been limited by the inability to quantify support of 

dynamic structures such as intrinsic and extrinsic muscles of the foot.  

 

Contribution of Dynamic Structures in Maintaining Arch Stability 

 

The plantar fascia is the main static stabilizer of the arch during gait. However, in 

addition to the other static stabilizers previously mentioned there are also a number of 

dynamic stabilizers that may also contribute to the arch support. Dynamic control of the 

foot and ankle is accomplished through actions of 12 extrinsic and 19 intrinsic muscles. 

The extrinsic muscles are the strongest and most important in providing active control of 

the foot during gait (Nordin & Frankel, 2001). Moreover, the muscles of the leg also 

enable an efficient transfer of muscle force to the floor during normal gait and ensure a 

smooth progression of body weight from heel contact to toe off. The soleus and 

gastrocnemius muscles are important during midstance of gait, acting eccentrically to 
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slow the forward motion of the tibia over the foot. In addition to the gastrocnemius and 

soleus, the tibialis posterior, a strong inverter of the foot and ankle, also acts as a dynamic 

supporter of the medial longitudinal arch. The tibialis posterior primarily functions to 

invert the subtalar joint which assists in locking the midfoot joints during mid and late 

stance phases to ensure rigidity of the foot during toe-off (Nordin & Frankel, 2001). 

Several authors have attempted to measure the contribution of the extrinsic and 

intrinsic muscles during gait through in-vitro and in-vivo studies (Basmajian & Stecko, 

1963; Reeser et al., 1983; Thordarson et al., 1995). Some of the earliest studies used 

electromyography to determine the role of these supporting foot and leg muscles in 

maintaining the arch. The studies suggested that the muscles contribute very little to arch 

support (Basmajian & Bentzon, 1954; Basmajian & Stecko, 1963; Reeser et al., 1983). 

Basmajian and Stecko (1963) used indwelling electrodes to study the activity in six leg 

and foot muscles (tibialis anterior, tibialis posterior, peroneus longus, flexor hallucis 

longus, abductor hallucis, and flexor digitorum brevis) of 20 subjects. The subjects were 

placed in a seated position and EMG activity was assessed during loading conditions of 

100, 200, and 400 pounds. With the smaller loads, little muscle activity was observed, so 

the authors concluded that the posture was maintained primarily by the passive structures 

of the foot. However, the 400 pound load required an increase in muscle support. With 

these results, the authors concluded that static structures are the primary support for arch 

maintenance under normal loading conditions, while the dynamic muscles are reserved 

for excessive loads, including the take-off phase of walking (Basmajian & Stecko, 1963). 

A limitation to this study, however, was the methods employed. Although the results 

enhance understanding of the role of muscle support during various loading conditions, 
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they cannot be applied directly to gait because the subjects were in a seated position. 

Moreover, the authors reported technical difficulties with assessing the activity of the 

tibialis posterior muscle. 

Thirty years later, Thordarson et al. (1995) evaluated the role of the leg muscles in 

addition to the plantar fascia in supporting the medial longitudinal arch in 12 fresh 

cadaveric specimens. The authors investigated the contribution of the dynamic support 

provided to the longitudinal arch during the stance phase of gait, applying plantar loads 

of 0, 350, and 700 Newtons (0, 78.5, and157 pounds) to the muscles’ tendons (posterior 

tibialis, flexor digitorum longus, flexor hallucis muscle, peroneus longus, peroneus 

brevis, and Achilles tendon). Each was tensioned separately while the angular 

relationships of the first metatarsal, navicular, and talus were recorded using a 3-

dimensional motion analysis system. Thordarson et al. (1995) also evaluated the 

contribution of the plantar fascia in supporting the arch. The authors loaded the foot 

while the ankle was in neutral position and with the toes in a dorsiflexed position. They 

confirmed that the plantar fascia had the most significant arch-supporting function in the 

sagittal plane: a 3.6° improvement at 350 N and a 2.3° improvement at 700 N. Moreover, 

results also demonstrated the dynamic contribution of the tendons of the foot, particularly 

of the tibialis posterior which consistently supported the arch at the 350 and 700 N loads. 

 Although these landmark studies have advanced the knowledge about the 

contribution of dynamic structures in supporting the arch during static stance, the results 

still may not be generalizable to gait. These limitations have led to additional research 

investigating muscular support provided by the extrinsic and intrinsic foot muscles during 

toe-standing (Hamel et al., 2001; Salathe & Arangio, 2002; Salathe et al., 1986; Sharkey 
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et al., 1998; Tansey & Briggs, 2001). In the studies, authors have used toe-standing to 

simulate the propulsion phase of gait, just before toe-off. Although the intrinsic muscles 

appear to be relatively quiet during midstance, their contribution appears to be equally 

important to that of the plantar fascia as the heel is elevated from the ground during 

terminal stance (Hamel et al., 2001; Tansey & Briggs, 2001). Several authors have used 

biomechanical models to investigate the role of extrinsic muscles in support of the arch 

during terminal stance (Salathe & Arangio, 2002; Salathe et al., 1986). In one study, 

Salathe and Arangio (2002) used a biomechanical model of the foot that included the 

extrinsic muscles (tendo calcaneus, tibialis posterior, halluces longus, digitorum longus, 

peroneus brevis, and peroneus longus), tendons, and ligaments. The study modeled the 

contribution of the structures during different applied loading conditions. They reported 

that under load, the muscles change the support distribution among the metatarsal heads 

and decrease the tension within the plantar fascia, particularly the portion extending to 

the medial rays. There was an associated increase in the force exerted by the muscles 

during the toe-standing condition, which is thought to help in maintaining balance in 

addition to maintaining the medial longitudinal arch. From this model, the authors 

concluded that the muscles of the foot actively support the arch during toe-off and 

decrease the load borne by the plantar fascia (Salathe & Arangio, 2002). However, there 

are several limitations to this model that should be considered. Although it provides 

insight to the function of the muscles during gait, it cannot precisely represent the human 

foot. Specifically, there are other modifications that should be considered during terminal 

stance since the geometry of the foot changes and the windlass mechanism (Hicks, 1954) 

may result in an increase of force onto the plantar fascia. Additionally, this model 
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excluded the role of the intrinsic muscles of the foot, which are theorized to stabilize the 

longitudinal arch and support it similarly to the plantar fascia (Mann, 1992). The results 

of Salathe and Arangio (2002) have also been different from those of experimental 

studies that have investigated the distribution of support under the metatarsal heads 

(Cavanagh, 1987; Viladot, 1992). Limitations to these studies could be a lack of 

understanding of the relationship between the anatomical and physiological structures 

that comprise the foot, and their role in support distribution during gait.  

 

Mechanical Properties and Histopathology  

 

Mechanical Properties of the Plantar Fascia 

 

The plantar fascia consists of noncontractile irregularly ordered collagen fibers 

with minimal elastin properties (Uden et al., 2011) that allow it to provide support for the 

arch and passively elongate and shorten during gait (Wright & Rennels, 1964). 

Specifically, the elastin fibers have a low modulus of elasticity, which are theorized to 

allow a relatively large deformation of the arch when the fascia is initially loaded, 

(Brasile & Hedrick, 1996; Gefen, 2003; Wright & Rennels, 1964). The collagen fibers, 

however, have a higher modulus of elasticity and are theorized to contribute to the 

increased tension in the plantar fascia as deformation of the arch continues (Wright & 

Rennels, 1964). Although in-vitro studies have been successful in measuring the strain in 

the plantar fascia under different loading conditions (Kitaoka et al., 1994; Sharkey, et al., 

1998; Wright & Rennels, 1964), these experimental results, using instrumented 

mechanical apparatuses to load the foot, are not completely applicable to dynamic gait. 
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As a follow-up to these in-vitro studies, Gefen (2003) performed an in-vivo study of the 

plantar fascia during barefoot walking, using a digital radiographic fluoroscopy imaging 

system. Lateral images of the foot were assessed to evaluate the plantar fascia’s transient 

length during the latter half of walking. The plantar fascia was shown to undergo 

continuous elongation throughout the stance phase, reaching a deformation of 9-12% 

between the initial and final positions. Specifically, a rapid elongation during midstance 

was observed, followed by a slower elongation until toe-off. Furthermore, the plantar 

fascia in this study demonstrated an increased stiffness during the early stages of weight 

acceptance, contributing to the overall increase in the stability of the arch during dynamic 

loading. These results support those of the in-vitro studies described earlier (Sharkey, 

Ferris, & Donahue, 1998; Wright & Rennels, 1964). 

 

Stiffness of the Plantar Fascia 

 

Changes to stiffness of the plantar fascia are central to the theorized 

histopathology of plantar fasciitis. How the stiffness of the plantar fascia changes with 

plantar fasciitis, however, is not well understood. The traditional theory has been that 

plantar fasciitis is associated with an increase in the stiffness of the plantar fascia 

(Cardinal et al., 1996). However, this theory is based on plantar fasciitis resulting from 

chronic inflammation, which leads to inadequate healing of the structure and a 

corresponding increase in stiffness. With respect to inflammation, in a review of 

histological analysis of the plantar fascia following fifty cases of heel spur surgery for 

chronic plantar fasciitis, Lemont et al. (2003) suggested that there is no objective 
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histologic evidence to support the presence of inflammation in plantar fasciitis (Lemont 

et al., 2003).  

Recent research has provided a counter-argument to that of the chronic 

inflammation pathoetiology. Several authors have suggested that plantar fasciitis may 

instead be associated with degeneration of the plantar fascia, and that may result in a 

reduction in stiffness (Lemont et al., 2003). The recent studies suggest that plantar 

fasciitis may be primarily the result of degeneration within the structure, and that chronic 

inflammation is a possible secondary mechanism (Wearing et al., 2006). In support of 

this argument, Grasel et al. (1999) examined magnetic resonance images of the plantar 

fascia of patients clinically diagnosed as having plantar fasciitis. Inflammation was ruled 

out as a cause of the condition because of the linearity and low prevalence of signal 

intensity within the fascia. Instead, the study concluded that the changes within the 

plantar fascia were perifascial edema due to microtears in the plantar fascia at its origin. 

More recent studies utilizing ultrasound to image the plantar fascia in patients with 

plantar fasciitis have also shown evidence of degeneration within the plantar fascia. 

Karabay, Toros, and Hurel (2007) used ultrasonographic imaging to evaluate 23 cases of 

plantar fasciitis. The images depicted a thickening at the proximal portion of the fascia, 

hypoechoic changes, and presence of perifascial fluid. Plantar fascia thickness has been 

reported to be 4 mm or larger in individuals with plantar fasciitis, compared to 2-2.5 mm 

in asymptomatic individuals (Cardinal et al., 1996). Specifically, this increased thickness 

and hypoechoic appearance are likely related to the underlying fiber degeneration process 

of microtears. The repetitive movement and constant loading that occurs particularly 

during running have been theorized to contribute to the progression of degeneration. The 
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fascia may be overloaded and overused during running, leading to subsequent 

degenerative changes in the connective tissues (Cardinal et al., 1996; Karabay et al., 

2007; Ribeiro et al., 2011).  

With respect to changes in plantar fascia stiffness associated with plantar fasciitis, 

a recent study by Wu et al. (2011) that used elastography to image the plantar fascia 

demonstrated a loss of stiffness in the plantar fascia in patients with plantar fasciitis 

Specifically, the authors evaluated 13 individuals with plantar fasciitis and 40 healthy 

individuals who were divided into young (18-50 years) and old (> 50 years). Stiffness 

was indicated by the intensity of the various color components (red, green and blue) on 

the sonoelastogram. Their results demonstrated a significantly greater intensity of blue 

and green colors in the plantar fascia of those with plantar fasciitis and of the healthy 

older adults. The combination of, and increase in these colors, is indicative of a softening, 

or loss of stiffness, of the plantar fascia. Furthermore, the similarity of the color scheme 

between the older healthy adults and the individuals with plantar fasciitis is a 

demonstration of the age-related changes that occur in the structure.  

The recent evidence of degeneration and decreased stiffness within the plantar 

fascia in patients with plantar fasciitis is contrary to the traditional theory of chronic 

inflammation and an increase in stiffness of the structure (Cardinal et al., 1996; Karabay 

et al., 2007; Wearing et al., 2007; Wearing et al., 2004). This shift in theory may be very 

important to developing effective treatment programs because treatment for degenerative, 

more mobile structures may be different than for an inflamed and stiff structure. 
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Pathoetiology 

 

In order to develop effective programs and protocols to more effectively prevent 

and treat plantar fasciitis, respectively, an understanding of the pathoetiological factors 

associated with the histopathology is critical. While most authors agree that the cause of 

plantar fasciitis is multifactorial, consisting of a combination of anatomical, 

biomechanical, and environmental factors, the roles of the different factors are not well 

understood (Arangio, Chen, & Salathe, 1998; Wearing et al., 2006). This Review of 

Literature will address the anatomical and biomechanical factors associated with plantar 

fasciitis. While environmental factors such as footwear and training errors may be 

important contributing factors to plantar fasciitis, they are beyond the scope of this 

project and therefore will not be reviewed. 

 

Anatomical Factors 

 

Foot Structure   

 

Although foot structure is theorized to influence loading on the plantar fascia, 

results of experimental studies investigating the role of foot structure in the development 

of plantar fasciitis have been equivocal (Arangio et al., 1998; Pohl et al., 2009; Wearing 

et al., 2006). While most of the literature has focused on the association between low 

arches and plantar fasciitis, some authors have reported high-arch foot structures as a 

contributing factor to plantar fasciitis. Low-arched foot structures have been suggested to 

increase tensile load within the plantar fascia, thereby increasing the risk of microdamage 

and subsequent development of plantar fasciitis (Huang et al., 2004; Kwong et al., 1998; 

Rome et al., 2001; Pohl et al., 2009; Taunton et al., 1982).  Conversely, high arches are 
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believed to be associated with decreased mobility of the foot, which may increase the 

stress on the plantar fascia due to poor shock absorption, thereby increasing the risk of 

microdamage and subsequent development of plantar fasciitis (Williams et al., 2001). As 

previously stated, however, results of experimental studies have been inconsistent. For 

example, in a retrospective study of high and low arched type runners with various lower 

extremity injuries, Williams et al. (2001) reported that of the 13 runners with plantar 

fasciitis eight had high arches and 5 had low arches. Arch height in the study was 

quantified using the arch ratio (the ratio of the height of the dorsum of the foot at 50% 

foot length to the truncated foot length). Similarly, in a retrospective study on the factors 

associated with the development of plantar fasciitis in athletes, Rome et al. (2001) used 

calipers to measure navicular height during standing. Results of the study did not reveal 

significant differences in arch shape of patients with and without plantar heel pain. A 

year later, another retrospective study of running related injuries byTaunton, Ryan, 

Clement, McKenzie, Lloyd-Smith, et al. (2002) reported that only 30 of the 159 patients 

with plantar fasciitis (19%) had either high or low visually assessed arch structure.  

Conversely, other studies have shown that a lowered arch is more frequently 

associated with individuals who have plantar fasciitis (Prichasuk, 1994; Shama, 

Kominsky, & Lemont, 1983; Wearing et al., 2007). In a retrospective study, (Shama et 

al., 1983) reported that 81% of 52 patients with heel pain showed radiographic evidence 

of foot pronation. Similarly, in another retrospective study, Prichasuk (1994) observed 

significantly lower calcaneal pitch, assessed via a radiograph in 82 patients with heel pain 

compared to a non-injured group. The study concluded that pes planus, or lowered 

arches, was an important factor in the development of plantar fasciitis. Finally, (Wearing 
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et al., 2007) analyzed arch shape and plantar fascia thickness of patients with and without 

plantar fasciitis using weight-bearing radiographic during quiet bi-pedal stance and 

sonography, respectively. The authors found that arch shape was significantly correlated 

with the sonographic images of fascial thickness, accounting for approximately 80% of 

the variance in the sagittal thickness of the symptomatic fascia.  

 One major factor in the inconsistency between studies may be the way in which 

arch structure has been assessed. Authors in the previous studies have used subjective 

visual assessment (Taunton et al., 2002), navicular height (Pohl et al., 2009; Rome et al., 

2001), and radiographs (Prichasuk, 1994; Shama et al., 1983; Wearing et al., 2007) to 

quantify foot structure. One source of inconsistency may be that the varying methods 

used to quantify foot structure assessed different aspects of foot structure. If so, the 

differing aspects of foot structure may have differing effects on foot function. Another 

source of inconsistency may be the reliability and/or validity of the methods used to 

compute foot structure. The inter-tester reliability of visual observation utilized to 

classify foot posture has been reported as poor (Cowan, Robinson, Jones, Polly, & 

Berrey, 1994). Additionally, many of the other measures have good intra-tester 

reliability, but poor inter-tester reliability (Rome et al., 2001; Taunton et al., 2002). A 

third factor that may contribute to the inconsistency in the results is that static 

measurements of arch height, which most of the research studies have incorporated, may 

not be related to dynamic movement (Sahin, Ozturk, & Atici, 2010). Likewise, the results 

of the dynamic movement of the arch when studied using various surface-marker based 

techniques have also been equivocal (Messier & Pittala, 1988; Pohl et al., 2009; Warren, 

1984; Warren & Jones, 1987); however, the methodical differences between the studies 



26 

 

limit the ability to directly compare the results. Continued research investigating the 

dynamic movement of the arch is necessary in order to further understand the effect of 

foot structure on foot function. Finally, a fourth potential factor in the inconsistency of 

the results is whether the study was retrospective or prospective. The retrospective 

studies have primarily associated low arch foot structure with plantar fasciitis (Pohl et al., 

2009; Prichasuk, 1994; Shama et al., 1983; Wearing et al., 2007), so it is possible that the 

increased mobility of the plantar fascia in plantar fasciitis caused the lowering of the arch 

(Wearing et al., 2007).  

 

Leg Length Discrepancy 

 

Leg length discrepancy is often cited as a contributing factor to plantar fasciitis 

because it is theorized to cause increased pronation during gait, and therefore increased 

tension on the plantar fascia (Glazer & Hosey, 2004; Krivickas, 1997; Messier & Pittala, 

1988). In a retrospective analysis of factors associated with plantar fasciitis, a leg length 

discrepancy of 0.63 cm was found in 53% of the plantar fasciitis group compared to only 

21% of the control group (Messier & Pittala, 1988). Although leg length differences may 

be a contributing factor with plantar fasciitis, a limitation to these studies is the lack of 

methodical information regarding the way the authors measured the leg lengths. 

Furthermore, although radiographs are the gold standard to assess leg length discrepancy, 

they are not feasible in many cases due to radiation exposure and cost. Moreover, 

relevance of the clinical methods is limited due to lack of reliability (Glazer & Hosey, 

2004; Krivickas, 1997; Messier & Pittala, 1988).  
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Ankle Range of Motion 

 

Limited ankle dorsiflexion has been suggested to contribute to the development of 

plantar fasciitis. Specifically, tight gastrocnemius and soleus muscles may contribute to 

decreased motion in the ankle during gait, thereby placing additional stress on the plantar 

fascia (Labovitz et al., 2011). Limited ankle dorsiflexion during gait may force the 

forefoot to compensate with dorsiflexion and pronation, placing repetitive longitudinal 

stress on the plantar fascia (Riddle et al., 2003). Many studies investigating risk factors 

associated with plantar fasciitis have reported a strong relationship between decreased 

ankle dorsiflexion mobility and plantar fasciitis (Cornwall & McPoil, 1999; Kibler et al., 

1991; Labovitz et al., 2011; Riddle et al., 2003). The studies have shown that individuals 

with less than 10° of ankle dorsiflexion may be at a greater risk for developing plantar 

fasciitis compared to those with normal passive dorsiflexion range of motion of the ankle. 

In a retrospective study on the functional biomechanical deficits in runners with plantar 

fasciitis, Kibler et al. (1991) recruited 43 competitive or recreational athletes who were 

clinically diagnosed with unilateral plantar fasciitis. The principle athletic activity for 

these participants was running long distances or jogging. The researchers compared the 

asymptomatic limb with the symptomatic limb, reporting that the majority of runners 

with plantar fasciitis showed a lack of passive dorsiflexion with the knee extended in the 

symptomatic limb versus the asymptomatic limb. This deficiency was hypothesized to 

cause excessive pronation during gait that ultimately contributed to development of 

plantar fasciitis (Kibler et al., 1991). Over a decade later, Riddle et al. (2003) conducted a 

matched case-control study to compare fifty patients with a clinical diagnosis of 

unilateral plantar fasciitis. Passive ankle dorsiflexion range of motion was measured with 
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the knee extended while the participants were lying in the prone position. Nearly half of 

the participants with plantar fasciitis had less than 5° of motion, while the majority of the 

participants with plantar fasciitis had less than 10° of ankle range of motion (Riddle et al., 

2003). The authors suggested that the risk of plantar fasciitis increased as the range of 

ankle dorsiflexion decreased. In a recent retrospective study, Labovitz et al. (2011) 

compared passive ankle range of motion between a group of participants with plantar 

fasciitis and a control group. The authors looked at the entire range of motion, at the 

ankle, with the knee both extended and flexed. They reported a significant difference in 

the measurements between the groups. Over 96% of the plantar fasciitis group 

participants were deficient in ankle range of motion (Labovitz et al., 2011). 

Conversely, in a retrospective study on biomechanical factors associated with 

female runners with a history of plantar fasciitis, Pohl et al. (2009) demonstrated a 

significant increase in ankle dorsiflexion in the plantar fasciitis group. The authors 

suggested the reason for the differing results may be that the runners in the current study 

had a history of plantar fasciitis, but were pain-free at the time of data collection and had 

been undergoing physical therapy. Since increasing range of motion at the ankle is one of 

the most common therapeutic exercises for plantar fasciitis patients, the authors theorized 

that the results likely reflected the increase in range of motion that occurred as the result 

of receiving treatment (Pohl et al., 2009).  

 Based on the results of the current literature on ankle range of motion, it is 

suggested that at least four to 10° of dorsiflexion is required for the stance phase of a 

normal walking gait pattern. An angle that is less than 10° constitutes equines and is 

theorized to result in subtalar joint compensation during weightbearing, thus leading to 
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abnormal pronation and increased plantar fascia stress during gait (Cornwall & McPoil, 

1999). However, a limitation to these studies is the measurement of passive range of 

motion since it many not directly translate to dynamic differences during gait. Although 

most studies agree that there is an association between passive ankle dorsiflexion range 

of motion and plantar fasciitis, the relation to dynamic movement, particularly running, is 

unclear. Moreover, another limitation of these studies is comparing the ankle dorsiflexion 

range of motion of the unaffected limb to the affected limb in participants with unilateral 

plantar fasciitis. There may be compensatory changes in the asymptomatic foot that may 

result in decreased range of motion. 

 

First Metatarsophalangeal Joint Range of Motion 

 

In addition to range of motion of the ankle joint, range of motion of the first 

metatarsophalangeal joint has also been investigated as a potential contributing factor to 

the development of plantar fasciitis. As stated previously, extension of the toes and in 

particular the first metatarsophalangeal joint is important to supporting the arch during 

gait through initiation of the windlass mechanism (Allen & Gross, 2003). Several authors 

have indicated that reduced passive first metatarsophalangeal joint extension range of 

motion is associated with patients with plantar fasciitis patients (Allen & Gross, 2003; 

Creighton & Olson, 1987). A retrospective study by Creighton and Olson (1987) 

compared first-toe metatarsophalangeal joint flexion and extension range of motion in 

runners with and without plantar fasciitis. Results of the study indicated that runners with 

plantar fasciitis had a significant decrease in active and passive extension and passive 

flexion of the first-toe metatarsophalangeal joint. Contrary to this finding, a retrospective 
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study by Allen and Gross (2003) did not find a significant difference in first-toe 

metatarsophalangeal joint between the unilateral plantar fasciitis group and the control 

group. More recently, Labovitz et al. (2011) reported no significant difference in first 

metatarsophalangeal joint extension range of motion in a group of plantar fasciitis 

participants compared to a control group.  

Despite the inconsistency in these results for individuals with plantar fasciitis, the 

traditional theory is that a decrease in passive extension of the first metatarsophalangeal 

joint range of motion is associated with a corresponding increase in stiffness of the 

plantar fascia. However, recent sonography images of the plantar fascia suggest that there 

is instead a softening of the plantar fascia rather than an increase in its stiffness (Wu et 

al., 2011). Specifically, toe extension causes the plantar fascia to be wound around the 

metatarsal heads, thereby shortening its effective length and increasing tension within the 

fascia (Hicks, 1954). The function of this increased tension is to provide stability for the 

arch as the foot re-supinates and prepares for toe-off (Taunton et al., 1982). The 

activation of the windlass mechanism, however, only occurs when there is sufficient 

tension within the fascia (Hicks, 1954). Therefore, based on the recent discovery of a 

decrease in stiffness in the plantar fascia in individuals with plantar fasciitis Wu et al. 

(2011), it is likely that the windlass mechanism might not be sufficiently activated. Gait 

analysis that assessed toe extension range of motion may provide further insight to the 

effect of plantar fasciitis on first metatarsophalangeal joint function.  

Most authors agree that the cause of plantar fasciitis is multifactorial and consists 

of a combination of anatomical, biomechanical, and environmental factors; however, the 

role of these different factors is not well understood (Arangio et al., 1998; Wearing et al., 
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2006). A limitation of most studies is that they are retrospective, so the causality of 

plantar fasciitis cannot be determined. Moreover, the anatomical and biomechanical 

factors discussed have largely been static measurements that may not be directly 

applicable to function. Although these factors provide insight into the development of 

plantar fasciitis, a dynamic assessment may be necessary to fully understand their 

contribution to gait. Furthermore, this knowledge may contribute to development of more 

effective treatment protocols for plantar fasciitis. 

 

Biomechanical Factors 

 

 Extensive research has been done on the static measurements of range of motion 

and arch structure, two variables theorized to be associated with plantar fasciitis. 

However, there has been limited research on the mechanical effect of plantar fasciitis 

during gait, and how these static measurements are associated with dynamic function. In 

order to better understand the relevance of mechanical changes associated with plantar 

fasciitis, normal function of the foot during gait will be briefly reviewed. During the 

stance phase of the gait cycle, the foot the normal undergoes a supination-pronation-

supination movement cycle. At initial contact, the foot is in a supinated position to 

provide a stable base of support as the foot makes contact with the ground. This is 

followed by a period of pronation during the mid-portion of the stance phase. Pronation 

transitions the foot from a relatively rigid structure to a more mobile structure that 

functions to contribute to shock absorption and allow the foot to adapt to uneven terrain. 

Following this mid-portion of stance, the foot supinates again to provide a relatively rigid 

lever for push-off (Perry, 1992).  
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Although there is good general agreement that the plantar fascia plays an 

important role of supporting the medial longitudinal arch throughout the stance phase of 

gait, the role has largely been based on theory Wearing et al. (2004) and inferred from in-

vitro (Erdemir et al., 2004; Huang et al., 1993; Wright & Rennels, 1964) and in-vivo 

static loading studies (Kim & Voloshin, 1995; Wright & Rennels, 1964), and simulation 

studies (Arangio et al., 1998; E. P. Salathe & Arangio, 2002). Only a limited number of 

studies have investigated the mechanical effects of plantar fasciitis on gait (Messier & 

Pittala, 1988; Pohl et al., 2009; Taunton et al., 2002; Wearing et al., 2004).  

Of these studies, many have involved imaging to describe measures of arch 

movement. These studies have indicated that the plantar fascia undergoes a length change 

of approximately 6 mm through the stance phase of gait (Kayano, 1986; Wearing et al., 

2006). Other studies employing surface mounted goniometry have indicated that the arch 

alternates through periods of elongation and shortening during stance phase (Yang et al., 

1985). Collectively, the studies have reported that the plantar fascia initially lengthens 

with heel contact, shortens throughout midstance, lengthens at heel lift, and then rapidly 

shortens during late terminal stance as the arch is raised to prepare the foot for propulsion 

(Kayano et al., 1986; Yang et al., 1985). Nearly 20 years later, Wearing et al. (2004) 

measured the plantar fascia directly in-vivo with digital fluoroscopy, comparing the 

sagittal movement of the medial longitudinal arch in participants with plantar fasciitis and 

a control group. The authors did not find a significant change in arch movement 

associated with chronic plantar fasciitis, but they concluded instead that the arch 

mechanics may influence the severity of plantar fasciitis, once the condition is present 

(Wearing et al., 2004). In addition to dynamic arch mechanics, Wearing et al. (2004) also 
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investigated first metatarsophalangeal joint motion using lateral radiographs of the foot 

during walking. They reported that patients with plantar fasciitis had a greater peak 

metatarsophalangeal joint angle during stance compared to asymptomatic participants. 

Wearing et al. (2004) also assessed fascial thickness with sonographic imaging, and 

compared the measurements between groups. They found that the peak 

metatarsophalangeal joint angle significantly correlated with an increase in fascial 

thickness in only the symptomatic foot of the plantar fasciitis group participants (Wearing 

et al., 2004). These results are consistent with the idea that a loss of stiffness in the 

plantar fascia is associated with plantar fasciitis. As previously stated, recent studies 

using sonoelastography have shown a decrease in stiffness of the plantar fascia that is 

associated with plantar fasciitis (Wu et al., 2011), while others reported degeneration and 

adaptive thickening using ultrasound imaging (Cardinal et al., 1996; Lemont et al., 2003; 

Wearing et al., 2006). Together, these result in a loss of integrity of the structure, 

ultimately affecting motion at the first metatarsophalangeal joint. These factors may all 

contribute to change in joint angle that Wearing et al. (2004) reported. Although the 

above studies have improved understanding of the dynamic movement of the plantar 

fascia throughout the stance phase, they are not clinically feasible to conduct due to cost 

and radiation exposure. 

Surface-based two-and three-dimensional motion analysis studies have more 

recently investigated the motion of the plantar fascia during gait, with contrasting results 

to those of the earlier studies. The surface-marker based studies found the arch to 

elongate until approximately 75-80% of the stance phase, followed by shortening until 

toe-off (Cashmere, Smith, & Hunt, 1999; Chang et al., 2007; Hunt, Smith, & Torode, 
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2001). The technique employed during these studies likely accounts for the vast 

differences in results. While the more recent two and three dimensional surface-based 

marker studies are affected by some skin movement error, the surface mounted 

goniometry used by Wearing et al. (2006) may have been prone to larger error due to its 

greater mass. Warren and Jones (1987) performed a two-dimensional gait analysis to 

compare running kinematics in runners with plantar fasciitis, runners who were currently 

pain-free but had a history of plantar fasciitis, and non-injured runners with no history of 

plantar fasciitis. Each subject was filmed in both a barefoot and running shoe condition 

while running on a treadmill. The film was used to record the runners’ footstrike type and 

to measure the calcaneal pronation. The authors found that runners with plantar fasciitis 

pronated more than non-injured runners; however, they had only moderate success in 

correctly classifying subjects into their proper groups. Although an improvement from 

the static studies, this study is limited due to the projection errors associated with two-

dimensional gait assessment. A year later, Messier and Pittala (1988) compared rearfoot 

kinematics of competitive and recreational runners who were not injured with runners 

who had plantar fasciitis. Subjects ran on a treadmill for five minutes in their normal 

training shoes, while two-dimensional data was collected from contrasting markers that 

were placed on the subject’s legs and heel counters. The results were in agreement to 

those found by Warren and Jones (1987) in that plantar fasciitis is associated with 

excessive rearfoot movement. 

Contrary to previous findings on plantar fasciitis and rearfoot pronation, a more 

recent retrospective study by Pohl et al. (2009) did not reveal differences in rearfoot 

motion between a healthy group and a plantar fasciitis group. Pohl et al. (2009) 
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investigated rearfoot kinematics during the stance phase of walking gait in 20 female 

runners with plantar fasciitis using a surface marker based rearfoot model. The 

participants ran overground while kinematic data was recorded using a three-dimensional 

motion capture system and force plate. The authors did not find significant differences in 

peak dorsiflexion, peak eversion, time to peak eversion, and the eversion excursion, 

between the plantar fasciitis and control groups. While the three-dimensional analysis is 

an improvement over the previous two-dimensional studies, there are still several 

limitations associated with the foot model used. They only tracked rearfoot motion, 

potentially masking kinematic differences within the midfoot. The potential importance 

of midfoot motion to foot function has been reported by Arndt et al. (2009); Cobb et al. 

(2009) who investigated multi-segment foot kinematics during jogging and walking, 

respectively. Arndt et al. (2007) demonstrated increased midfoot mobility with in vivo 

running kinematics through an invasive in-vivo kinematic study on four male 

participants. Bone pins were inserted in nine foot segments and segment motion was 

tracked during several jogging trials. Significant motion in the talonavicular joint was 

observed in all three planes of motion (Arndt et al., 2007). Cobb et al. (2009) showed a 

significant difference in motion distal to the calcaneus between typical and low arch 

participants during walking. The authors investigated stance phase kinematics between 

participants with low-mobile versus typical foot postures using a multi-segment medial 

foot model. Four functional articulations were tracked, with significant differences 

observed in the calcaneonavicular complex abduction excursion during midstance 

between the two groups (Cobb et al., 2009). The results of these two studies demonstrate 

important differences in midfoot motion that cannot be ignored. To further emphasize the 
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importance of investigating midfoot function, Pohl et al. (2009) suggested that plantar 

fasciitis may be more related to midfoot pronation rather than rearfoot pronation. 

Increased forefoot pronation has previously been associated with plantar fasciitis in 

walking (Chang et al., 2007), further indicating the importance of tracking foot motion 

distal to the calcaneus. Analysis of midfoot and forefoot motion during running using a 

multi-segment foot model may inform researchers of potential associations of foot 

motion in runners with plantar fasciitis compared to injury-free runners.  

Another important consideration in evaluating the result of Pohl et al. (2009) is 

the fact that the variables were computed over the entire stance phase versus examining 

kinematics within subphases of stance. Based on previously developed theories of foot 

function during gait (Brasile & Hedrick, 1996; Hicks, 1955) and previous in-vitro and in-

vivo studies (Hicks, 1954; Hicks, 1955; Vedi et al., 1999; Williams et al., 1999), 

assessing the stance phase of gait as a single phase may potentially mask differences that 

may occur during  the stance subphases. As previously mentioned, several authors have 

demonstrated that the foot functions differently throughout the stance phase. During flat 

standing, the medial longitudinal arch functions similar to both a beam and truss, but 

primarily a truss during late stance and toe off (Hicks, 1955). Moreover, in-vivo models 

using magnetic resonance imaging revealed that the plantar fascia is relaxed until heel 

lift, when digital extension initiated the windlass mechanism (Vedi et al., 1999; Williams 

et al., 1999).  

The results from the invasive in-vivo and in-vitro studies, in addition to the gait 

analysis studies, suggest that runners with plantar fasciitis may exhibit altered kinematics 

in the distal segments of the foot during mid and late stance phase. However, the effect of 
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plantar fasciitis during running with a surface-marker based multi-segment foot model 

has not yet been examined. In order to develop and implement training programs that 

effectively reduce runner’s risk of developing plantar fasciitis it is important to first 

understand the mechanical changes during gait associated with plantar fasciitis. 

 

Multi-segment Foot Model 

 

Recently, a number of multi-segment foot models have been developed in order to 

characterize foot kinematics. The multi-segment models began as single segment and 

rearfoot complex models, but have since progressed to models that include up to six 

segments (Rankine, Long, Canseco, & Harris, 2008). The single segment models treat the 

foot as a single rigid segment, an over-simplification of the foot. The first marker-based 

rearfoot segment models compared the motion of the calcaneus and the tibia, using a 

variety of optoelectronic capture systems (Kepple, Stanhope, Lohmann, & Roman, 1990; 

Moseley, Smith, Hunt, & Gant, 1996). These were also an over-simplification. Both 

models ignore the distal segments of the foot, which have recently shown significant 

motion to occur (Cobb et al., 2009; Lundgren et al., 2008; Nester et al., 2007). 

Some of the first multi-segment foot models were two- foot segment models that 

defined a forefoot segment in addition to the traditionally defined hindfoot and tibia 

segments (Davis, Zifchock, & Deleo, 2008; Hunt et al., 2001; Kitaoka et al., 2006). These 

models had the ability to analyze the distal motion of the foot, which the previous 

rearfoot complex models ignored; however, there was still considerable disagreement in 

the results among the models. Moreover, there were differences in the methods between 

foot models, including marker position and number of markers used, particularly with the 
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number of metatarsal markers. Each model was also used on different clinical 

populations, so it is difficult to compare results among the studies. Hunt et al. (2001) 

employed a two foot-segment model (leg, rearfoot, and forefoot) to look at the change in 

height of the medial longitudinal arch during the stance phase of walking in twelve male 

participants. These authors noted that the frontal, transverse, and sagittal planes of motion 

in the forefoot segment were in agreement with previously reported forefoot motion from 

bone pin studies. This finding was important in that it established the concurrent validity 

of marker based multi-segment foot models as well as confirmed the importance of the 

joints distal to the calcaneus. 

In addition to the previously mentioned two foot segment models, several three 

foot segment models that define tibia/fibula, hindfoot, forefoot, and hallux segments have 

also been developed (Carson, Harrington, Thompson, O'Connor, & Theologis, 2001; 

Cornwall & McPoil, 1999, 2002; Kidder et al., 1996; Myers, Wang, Marks, & Harris, 

2004). More recently, Jenkyn, Anas, and Nichol (2009) developed a four foot-segment 

foot model to analyze the foot and ankle complex in walking. Their model subdivided the 

foot into hindfoot, midfoot, medial forefoot, and lateral forefoot segments. The study 

reported that hindfoot and forefoot pronation in the frontal plane coincided with the 

dropping of the medial longitudinal arch during midstance, and arch raising in the late 

stance and swing phase (Jenkyn et al., 2009). This model is unique because of its 

separation of medial and lateral forefoot segments, defining them as two separate 

segments rather than a rigid segment. Recently, Wolf et al. (2008) suggested that this 

separation of the medial and lateral forefoot is important due to the segments acting 

independently of one another. Recently, Cobb et al. (2009) developed a four foot model 
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that defined rearfoot complex, calcaneonavicular complex, medial forefoot, and the first 

metatarsophalangeal complex functional articulations to compare different foot structures 

during walking. The study reported differences in motion in the segments distal to the 

calcaneus between participants with differing foot structure, further signifying the 

importance of tracking the motion of the foot beyond the rearfoot. Similarly, Arndt et al. 

(2007) demonstrated significant increased midfoot mobility, but with in-vivo running 

kinematics. The use of multi-segment models enables researchers to identify differences 

between foot structures and pathologies, the medial and lateral forefoot segments, and the 

motion occurring in the midfoot. All of these components may be important to analyze in 

future models.  

Collectively, the many multi-segment foot models have led to the development of 

a six-segment multi-segment model that is used in the current study. It expands upon 

these current multi-segment foot models by including medial and lateral midfoot 

segments in addition to medial and lateral forefoot segments (Bauer, Joshi, Klinkner, & 

Cobb, 2011; Cobb, James, Hjertstedt, & Kruk, 2011). The application of a multi-segment 

foot model to plantar fasciitis may improve understanding of the mechanical effect of 

plantar fasciitis on gait.   

 

Diagnosis 

 

Clinical Diagnosis 

 

A contributing factor in the inconsistent results between previous studies 

investigating the effect of plantar fasciitis on gait mechanics is the lack of a gold standard 
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diagnostic test for plantar fasciitis. Plantar fasciitis is typically a clinical diagnosis based 

on the presence of signs and symptoms characteristic of the injury. Pain at the heel, 

especially during the first few steps in the morning or after being inactive for an extended 

period of time are the most common symptoms used to diagnose plantar fasciitis 

(Alshami, Babri, Souvlis, & Coppieters, 2007; Cole et al., 2005; Karabay et al., 2007; 

Wearing et al., 2006). Another common symptom reported by athletes, especially 

runners, is an initial decrease in heel pain early with activity followed by a return of 

symptoms at the end of prolonged activity (Karabay et al., 2007). 

  

Diagnostic Imaging 

 

While the presence of plantar fasciitis can be determined using the traditional 

clinical method of diagnosis for plantar fasciitis, it is difficult to differentiate other 

potential causes of heel pain. Heel pain may be caused from numerous conditions in 

addition to plantar fasciitis, including tarsal tunnel syndrome, entrapment of plantar 

nerves of the foot, calcaneal fracture, rupture of the plantar fascia, and atrophy of the heel 

fat pad (Alshami et al., 2007). Definitive differential diagnosis often requires some form 

of diagnostic imaging in addition to the clinical examination. Plain radiographs can rule 

out calcaneal stress fracture (Roxas, 2005) or show calcaneal spurring and calcifications 

within the plantar soft tissue (Cosca & Navazio, 2007). However, not all cases of plantar 

fasciitis are associated with the development of calcaneal heel spurs. In fact, 15 – 25% of 

asymptomatic individuals have been reported to show radiographic evidence of heel 

spurs, while many patients with plantar fasciitis do not reveal presence of heel spurs. 
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Additionally, the cost and radiation exposure limit the clinical usefulness of radiographs, 

and they are not able to assess soft tissues (Young et al., 2001). 

More recently, researchers and clinicians have begun using ultrasound to 

investigate the mechanical properties of the plantar fascia. Studies of the uninjured 

persons have revealed the plantar fascia to be hyperechoic with a striated appearance 

resulting from the longitudinal fibers orientation (Cardinal et al., 1996). Studies using 

ultrasound to image the plantar fascia of patients with plantar fasciitis have revealed 

adaptive thickening at the origin, a hypoechoic appearance resulting from tissue 

degeneration, and presence of fluid collection (Cardinal et al., 1996; Karabay et al., 2007; 

Sahin et al., 2010; Wearing et al., 2004; Wu et al., 2011). Specifically, Karabay et al. 

(2007) evaluated 23 cases with plantar fasciitis, using ultrasonographic imaging to 

analyze the structure. Their images depicted a thickening at the proximal portion of the 

fascia, hypoechoic changes, and presence of perifascial fluid. Thickening in plantar 

fasciitis patients have been reported to be 4 mm or larger, compared to 2-2.5 mm in 

asymptomatic persons (Cardinal et al., 1996). This thickening and hypoechoic 

appearance are theorized to occur from the repetitive movement and constant loading 

during weightbearing activities, including running. During running, the plantar fascia 

may be aggravated from the overload and overuse, leading to subsequent degenerative 

changes in the connective tissues (Karabay et al., 2007; Ribeiro et al., 2011). 

In addition studying the changes in tissue thickness and appearance, Wu et al. 

(2011) used elastography to evaluate the stiffness of the plantar fascia in a group of both 

healthy young and old adults, as well as individuals with plantar fasciitis. The results 

indicated an associated decrease in stiffness in healthy older adults and individuals with 



42 

 

plantar fasciitis (Wu et al., 2011). As mentioned previously, these findings are contrary to 

the traditional thought of an increase in stiffness associated with plantar fasciitis, but may 

explain some of the inconsistencies between the theorized mechanical effects of plantar 

fasciitis on gait and the results of experimental studies. This softening of the plantar 

fascia may weaken the structure by reducing the loading capacity and its ability to 

maintain the arch’s rigidity. This loss of stability may further lead to mechanical changes 

during the stance phase of gait. 

These studies suggest that when used in conjunction with the traditional clinical 

exam, ultrasound imaging may be a useful diagnostic tool for definitively diagnosing 

plantar fasciitis. Moreover, the fact that ultrasound is noninvasive, relatively inexpensive, 

and does not involve radiation exposure, suggests that sonography may also be a useful 

imaging technique for assessing treatment programs effectiveness (Cardinal et al., 1996)  

 

Conclusions 

 

Most researchers agree that plantar fasciitis is multifactorial pathology with a 

mechanical overload component. It is a degenerative condition, affecting 10% of all 

runners, and lasting for 6-18 months. It is also a large public health problem and 

debilitating condition because of the importance the plantar fascia plays during gait. The 

plantar fascia functions to maintain the medial longitudinal arch and to aid in re-

supination of the foot during the late midstance and propulsive stages of gait. 

Biomechanical analyses have shown an increase in tension of the plantar fascia as the 

arch elongates during midstance, which is theorized to increase tension within the plantar 

fascia.  
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Researchers have identified various risk factors for developing plantar fasciitis; 

however, results have been equivocal. Several anatomical factors, including foot 

structure, leg length, ankle range of motion, and first metatarsophalangeal joint range of 

motion have been associated with plantar fasciitis, but the results have been inconsistent. 

Moreover, biomechanical factors including foot pronation during gait have also been 

identified as risk factors.  

A limitation of previous research investigating the mechanical changes associated 

with plantar fasciitis may be modeling the foot as a single rigid segment. Recent studies 

using multi-segment foot models have reported significant midfoot and forefoot motion 

during gait. To date no study has investigated running kinematics in patients with plantar 

fasciitis using a six segment foot model. Further analysis of this motion during running 

can enhance understanding of plantar fasciitis. 

Plantar fasciitis is most commonly a clinical diagnosis, but clinicians and researchers 

have started using ultrasound as a diagnostic tool. Ultrasound imaging could help 

definitively diagnose plantar fasciitis in conjunction with a clinical exam, and lead to 

improved prevention strategies and treatment programs for these patients.  
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CHAPTER 3: METHODS 

 

Participants 

 

Forty-nine participants went through an initial phone screening. Of these, sixteen 

did not qualify based on the initial screening, one did not qualify based on the physical 

exam, one was unable to complete the gait trials due to a pain level of eight, and one 

participant had data that was not unable to be tracked. Of the forty-nine, thirty 

participants (15 plantar fasciitis and 15 control) were fully collected and analyzed. 

Fifteen runners with plantar fasciitis and fifteen age, gender, and mileage matched-

controls were recruited for this study (Table 1). Runners were chosen because of the 

prevalence of plantar fasciitis among this population. Specifically, plantar fasciitis is the 

third most frequently diagnosed running injury (Taunton, Ryan, Clement, McKenzie, & 

Lloyd-Smith, 2002), affecting 10% of all runners (Baxter, 1994).  

 

Table 1. Mean (SD) of demographic information for plantar fasciitis and control group 

participants 

 
 

Variable Plantar Faciitis Control 

Gender m = 8, f = 7 m = 8, f = 7 

Age, years 30.00 (8.74) 29.27 (6.44) 

Height, cm 170.60 (8.25) 170.52 (7.78) 

Mass kg 67.98 (8.20) 68.07 (9.99) 

 

 

 

Previous research reported a large effect size for maximum first 

metatarsophalangeal joint angle during gait between a plantar fasciitis and control group 

(Effect size = 1.1) (Wearing et al., 2004). Based on these previous data, to achieve a 
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power of 0.8 with α = 0.05, 10 subjects per group were required to compare the 

metatarsophalangeal joint angle. In addition, previous research from an ongoing footwear 

study in the Musculoskeletal Injury Biomechanics Laboratory at UW-Milwaukee, using 

the same kinematic variables as the proposed study, reported a range of small to large 

effects sizes between footwear conditions. Based on these data, to achieve a power of 0.8 

with α = 0.05, 7-39 subjects were needed per group to compare kinematic variables. 

Therefore, based on previous research, and sufficient power to detect a moderate effect 

size (Effect size = 0.25) in the kinematic variables between participants with plantar 

fasciitis and a control group, 15 subjects per group were needed to achieve a power of 0.8 

with α = 0.05 (Wearing et al., 2004). Participants were recruited: (1) from the University 

of Wisconsin-Milwaukee community via announcements in the College of Health 

Sciences classrooms; and (2) from the posting and emailing of flyers both on campus and 

to appropriate businesses and organizations in the community.  

 

Inclusionary/Exclusionary Criteria 

 

Plantar Fasciitis Group 

 

To be eligible for participation in the plantar fasciitis group, runners were 

required to meet the following criteria: have the presence of the common clinical signs 

and symptoms used to diagnose plantar fasciitis for a minimum of six weeks (Roos et al., 

2006; Wearing et al., 2004); be 18-45 years old; be habitually running at least10 miles 

per week at the time of the study (Messier & Pittala, 1988); and have a body mass index 

(BMI) of less than 30 kg/m
2 

. The BMI criteria was selected due to obesity, classified as a 



46 

 

BMI of 30 kg/m
2 

or greater, having been established as a risk factor for plantar fasciitis in 

previous studies (Buchbinder, 2004; Riddle et al., 2003). Of the fifteen participants 

tested, the group consisted of 12 left and 3 right feet. If plantar fasciitis was bilateral, then 

the most severe limb was tested.  

Participants were not required to have a diagnosis of plantar fasciitis from an 

allied health professional. Rather, the common clinical signs and symptoms utilized by 

allied health professionals to diagnose plantar fasciitis (Allen & Gross, 2003; Filippou et 

al., 2004; Karabay et al., 2007) were used as inclusionary criteria for participation in the 

study. Specific inclusionary criteria included a complaint of tenderness to palpation of the 

medial calcaneal tubercle and the medial aspect of the proximal portion of the plantar 

fascia, or pain along the plantar fascia as it courses under the arch toward the metatarsal 

heads (Cornwall & McPoil, 1999; Karabay et al., 2007). Additionally, the participants 

must have reported that the pain from the plantar fasciitis: was present upon 

weightbearing immediately following prolonged periods of inactivity (Allen & Gross, 

2003; Karabay et al., 2007); and gradually decreased throughout the day with ordinary 

walking; and worsened with prolonged activity (Cardinal et al., 1996). Furthermore, 

participants were required to have the signs and symptoms for a minimum of six weeks. 

Based on previous studies, the six-week criteria was determined to be sufficient time for 

degenerative changes in the plantar fascia to occur and to avoid recruiting patients with 

plantar fasciitis that were potentially in the acute inflammatory response stage of tissue 

healing (Wearing et al., 2004).   

The upper age range limit was selected due to results of a study by Wu et al. 

(2011) that showed similar changes in the plantar fascia stiffness assessed with 
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ultrasound imaging in healthy older adults ages 50 and older and a group of younger 

patients with plantar fasciitis. Imaging of the older adults over 50-years old showed a 

softening of the plantar fascia that was similar to that seen in individuals with plantar 

fasciitis (Wu et al., 2011). To avoid the presence of age-related changes that would 

potentially mask differences between healthy individuals and runners with plantar 

fasciitis, individuals older than 45-years old were excluded. Finally, the minimum 

mileage criteria of 10-miles per week, is consistent with previous studies looking at 

runners with plantar fasciitis (Messier & Pittala, 1988).  

In addition to the inclusionary criteria, the exclusionary criteria were based on 

patients' previous injury and general medical history. Specific exclusionary criterion 

included current injuries other than plantar fasciitis, pregnancy, and a history of: lower 

extremity surgery on the injured side; inflammatory or connective tissue disease such as 

osteoarthritis, rheumatoid arthritis, and Marfan Syndrome; a diagnosed foot deformity 

such as hallux valgus; a neurologic systemic disorder that would predispose an individual 

to heel pain and/or muscle weakness; and diabetic neuropathy (Wearing et al., 2007). The 

exclusionary criteria were selected because of potential that they may cause changes in 

foot function similar to those associated with plantar fasciitis. 

Previous or current treatment was not an exclusionary criterion for the study. The 

rationale for not excluding potential participants based on current/previous treatments 

was the fact that there is limited evidence supporting the effectiveness of any current 

treatment modalities for plantar fasciitis (Buchbinder, 2004; Crawford & Thomson, 2003; 

Irving et al., 2008; Wolgin et al., 1994). Therefore, individuals who were seeking 

different treatment or therapy for their plantar fasciitis were included if: (1) there was no 
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change in treatment protocol for six weeks leading up to their testing session; and (2) 

they continued to have the clinical signs and symptoms of plantar fasciitis. Although 

current treatment was not used as exclusionary criteria, any treatment that the participants 

were receiving was documented. The common treatment interventions that the 

participants received included plantar fascia stretching, ankle range of motion stretching, 

icing, therapeutic ultrasound, massage under the arch and heel, orthotic devices and/or 

heel cushions, foot muscle strengthening, night splints, and cortisone shots.  

 

Control Group 

 

The control group runners were age (± 5 years) (Allen & Gross, 2003), gender-

matched with the plantar fasciitis group participants. For mileage matching, runners were 

further grouped according to average weekly mileage (10-20, 20-30, and 30+ miles per 

week). In addition to the exclusionary criteria for the plantar fasciitis group, the control 

group could not have a history of plantar fasciitis or a lower extremity injury within the 

previous six months. These criterions were established to eliminate factors that may 

induce mechanical dysfunction and mask differences between groups. The limb of the 

control group that was tested was side-matched to their matched plantar fasciitis group 

participant  

Study Protocol 

 

Initial Phone Screening 

 

Participants completed a 10 minute initial phone screening assessment. For 

plantar fasciitis group participants, the interview consisted of questions pertaining to the 
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inclusionary criteria, the symptomatic complaints of their condition, and a brief medical 

history (Appendix E). The participant was asked to report the magnitude of their pain, 

based on a 0-10 pain scale ("0" was "no pain" and "10" was "worst pain ever"), during the 

first few steps of walking after arising in the morning and after prolonged periods of 

inactivity (Wearing et al., 2007). The control group participants completed the same 

questionnaire, with the exception of the questions pertaining to the current plantar 

fasciitis injury.  

 

Visit One 

 

After qualifying based on the initial phone assessment, the participants reported to 

the Musculoskeletal Injury Biomechanics Laboratory (Enderis Hall room 132) for Visit 1. 

Visit 1 consisted of a brief physical exam for the plantar fasciitis group participants to 

rule out other potential causes of heel pain. The visit also included ultrasound imaging 

and foot structure assessment of participants in both groups. This testing session lasted 

approximately 45 minutes. Prior to beginning the testing session, all participants were 

informed of the study procedures and were asked to read and sign an informed consent 

approved by the University’s Institutional Review Board.  

 

Physical Exam 

 

To confirm the presence of plantar fasciitis and rule out other common causes of 

heel pain, a Certified Athletic Trainer examined the potential plantar fasciitis group 

participants. To confirm the presence of plantar fasciitis, the examiner palpated the 

proximal insertion of the plantar fascia, as well as passively extended the first 
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metatarsophalangeal joint. If a pain was elicited on either test the presence of plantar 

fasciitis was confirmed. Other potential sources of heel pain that were ruled out through 

manual muscle testing and palpation of relevant structures in the foot included tarsal 

tunnel syndrome, calcaneal stress fracture, heel pad syndrome, and tibialis posterior and 

Achilles tendinopathy (Aldridge, 2004).  

 

Ultrasound Assessment 1 

 

Participants received an ultrasound assessment in the Physical Activity and Health 

Research Lab, in Enderis Hall, Room 434. Three successive ultrasound images of both 

feet were captured, following a protocol similar to that reported by Rathleff, Moelgaard, 

and Olesen (2011). The measurement method has been established as having moderate-

high intra- and inter-tester reliability for imaging the plantar fascia. Ultrasound imaging 

consisted of positioning the patient lying in a prone position with the ankle in a neutral 

dorsiflexion/plantar flexion position and the toes extended to near end range. The 

thickness of the proximal attachment of each participant’s right and left plantar fascia 

were imaged using an ultrasound machine equipped with a 4.0 cm wide transducer head 

and 12 MHz transducer (Vivid-i, General Electric Healthcare; Waukesha, WI) and a scan 

depth of 2.5 cm. The examiner applied ultrasonic gel to the transducer and to the patient’s 

skin. The foot was placed in a neutral position with the toes extended to apply tension to 

the plantar fascia (Figure 3).  
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Figure 3. Set-up for ultrasound imaging. 

 

Imaging of the plantar fascia consisted of real time scanning of longitudinal sonographic 

images. To obtain the scans, the ultrasound transducer was positioned approximately 0.05 

cm medial to the proximal attachment of the plantar fascia on the calcaneal tubercle. 

While in a seated position, the examiner slowly moved the transducer laterally across the 

participant’s foot until a clear image of the plantar fascia was displayed on the screen 

(Figure 4). At this point, the examiner froze and saved the image. The procedure was 

repeated until three successful images were collected. A successful image was based on 

the clarity and positioning of the images. Specifically, clearly defined borders, and proper 

alignment of the calcaneus and the plantar fascia were the criteria needed for each 

successful image. Still images were saved in DICOM (Digital Imaging and 

Communications in Medicine) format, exported onto DVDs, and post-processed using 

AccessPoint Software from Freeland Systems (North Venice, FL). After all of the images 

for the participants were collected, they were batch-read in order to increase the examiner 

repeatability and reliability. The images were then sent to Dr. Kenneth Lee, a Radiologist 

at the University of Wisconsin-Madison for over-reading. If consented, participants were 
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notified if any incidental findings were found in the images and were encouraged to 

follow up with their physician. 

The thickness of the proximal insertion of the plantar fascia for each image was 

measured until the measurements were within 0.5 mm of each other (Figure 4). 

Hypoechoic appearance was also noted for each image. The ultrasound measurement was 

used to investigate differences in plantar fascia thickness between runners with plantar 

fasciitis and uninjured runners since it is unknown if there is an adaptive thickening 

associated with runners.  

 

 

Figure 4. Representative ultrasound image of the left plantar fascia of an asymptomatic 

individual demonstrating the procedures that will be used to quantify the diameter of the 

plantar fascia. 
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Foot Structure Assessment 

 

Arch structure was determined based on the navicular index measure assessed 

using the digital photographic measurement method (DPMM). The navicular index was 

calculated as a ratio of the navicular tubercle and the truncated foot length (distal toe – 

posterior calcaneus) (Figure 5). The participant’s foot was positioned using the protocol 

outlined in Cobb et al. (2011). Briefly, the DPMM procedures consisted of the examiner 

identifying three anatomic landmarks (navicular tuberosity, medial mallelous, and the 

metatarsophalangeal joint) on the foot to be measured using a ballpoint pen (Figure 5). 

The medial border of the participant’s foot to be measured was positioned in the center 

and along the front edge of a custom built measuring platform that was placed on a 

measurement scale. The leg was aligned vertically in the frontal and sagittal planes while 

digital photographs were captured during a 10% weightbearing condition. Next, two 

depth measurements of the dorsum of the foot and the metatarsophalangeal joint were 

obtained using sliding calipers. The measurements were used as inputs in the subsequent 

data analysis to correct for out of plane perspective errors.  

 

Figure 5. Digital photographic measurement method. 
 

 

The pictures were then uploaded to a customized software program (Matlab v. 

7.6.0, The Mathworks Inc, Natick, MA) where seven anatomic landmarks, two reference 

points, and a scale factor were identified to compute the navicular index. The anatomic 
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landmarks included the heel tip, navicular tubercle, first metatarsophalangeal joint, toe 

tip, dorsum of the first metatarsophalangeal joint, dorsum height at 50% of the foot 

length, and medial malleolus (Figure 5). The reference points were the rearfoot and 

forefoot contact points, and the scale factor was computed through the digitizing of two 

points of known length on a ruler positioned on the platform. To facilitate identification 

of the dorsal landmarks, the software program plotted reference lines at 50% of total foot 

length and at the first metatarsophalangeal joint, perpendicular to the local horizontal 

reference axis (the line connecting the rearfoot and forefoot contact points) (Figure 5). 

Perspective errors of out-of-plane anatomic landmarks were corrected by linearly 

adjusting the scaling factor by the percentage distance out of plane using the following 

formula: %Error = [1 – (L1/L2)] * 100, where L1 is the plane-to-camera distance and L2 

is the landmark-to-camera distance (Cobb et al., 2011).  

 

Visit Two 

 

Ultrasound Reliability 

 

To assess the reliability of the examiner during the study, twenty percent of the 

participants were randomly selected to have a second ultrasound exam. This exam lasted 

approximately 20 minutes. The images were collected at the same time of day (± 3 hours) 

as the first images. The testing session was performed as per the protocol mentioned 

previously. The reliability of the examiner was assessed on the images collected during 

the two visits. The measurements of the images between the two sessions were defined as 

reliable if the measurements were within one digital pixel (about 0.11 mm).  
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Gait Analysis 

 

The running gait analysis was conducted in the Musculoskeletal Biomechanics 

Laboratory (Enderis 132). Prior to beginning the gait analysis, the participants were given 

time to walk and run in the sandal (Maui and Sons, Pacific Palisades, CA) that they 

would wear during the gait analysis trials. If the runners in the plantar fasciitis group 

were symptomatic due to inactivity prior to the gait analysis, they were encouraged to run 

on a treadmill to further warm-up until the pain subsided (Karabay et al., 2007; Messier 

& Pittala, 1988; Uden et al., 2011; Wearing et al., 2007). The participants were able to 

begin the gait trials only when they reported that they had a pain level of 2 on the 0-10 

pain scale. This criterion was established to ensure the participants were not symptomatic 

and to avoid any effect of pain on their gait. 

Participants completed 10 successful running trials at 4.0 (±10%) m/s along a 

runway with a force plate mounted in the middle of the runway. The runners ran at 4.0 

(±10%) m/s to limit any variability in gait kinematics due to different running speeds. A 

successful running trial was defined as a trial during which initial contact and toe-off 

occurred on the force plate. Following each trial, participants in the plantar fasciitis group 

were asked to report their pain based on the 0-10 scale described previously. Since it is 

unknown whether the pain associated with plantar fasciitis changes foot kinematics 

during running, the gait trials were discontinued if the patient experienced a pain level of 

3 or greater. Only one participant discontinued the trials due to a pain level of 8 during 

the gait trials. The data for this participant was discarded and another participant was 

recruited. 
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Multi-segment Foot model 

 

A six foot segment model was used to quantify foot motion during the gait 

analysis. The model partitioned the foot into six different segments (hallux, medial 

forefoot [first and second metatarsals], lateral forefoot [fourth and fifth metatarsals] 

navicular, cuboid, and calcaneus) and also defined a leg segment. During the gait 

analysis, technical marker clusters consisting of four 6.4 mm markers were placed either 

on the skin or on custom built wands on each of the segments of interest. The technical 

markers identified six functional articulations: rearfoot complex (RC, formed by the leg 

and calcaneus segments), calcaneonavicular complex (CNC, formed by the calcaneus and 

navicular segments), calcaneocuboid joint (CC, formed by  the calcaneus and cuboid 

segments), medial forefoot (MFF, formed by the navicular and medial forefoot 

segments), lateral forefoot (LFF, formed by the cuboid and lateral forefoot segments), 

and 1st metatarsophalangeal complex (MTP, formed by the hallux and the medial 

forefoot segments) (Figure 6).  

 

 
 

Figure 6. Technical and anatomical markers. The anatomical markers were the markers on the 

metatarsal heads, the malleoli, and tibial tuberosity (not shown). Additional anatomical landmarks on 

the calcaneus, navicular, hallux, and cuboid segments were identified using a Davis Pointer. Left 

Figure: cancaleus (XCA, YCA, ZCA), cuboid (XCU, YCU, ZCU), lateral rays (XLR, YLR, ZLR), and hallux 

(XH, YH, ZH) anatomical coordinate systems. Right figure: Leg (XL, YL, ZL), navicular (XN, YN, ZN), 
and medial rays (XMR, YMR, ZMR) anatomical coordinate systems. All of the anatomical coordinate 

systems were defined using the appropriate anatomical landmarks. 
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In contrast to other studies, the multi-segment foot model used in the current 

study has been demonstrated to be reliable during both walking and running gait (Bauer 

et al., 2011). All functional articulations across all three planes were very repeatable 

(correlation coefficients of ≥ 0.70), except the calcaneonavicular transverse plane 

(correlation coefficient = 0.64) and the lateral forefoot frontal plane (correlation 

coefficient = 0.56) which were moderately repeatable (Bauer et al., 2011). All technical 

marker clusters were secured to the participant using liquid adhesive (Mastisol, Ferndale 

Laboratories, Inc, Ferndale, MI), double sided adhesive electrode washers (In-Vivo 

Metric, Healdsburg, CA), and tape (Elastikon, Johnson & Johnson, New Brunswick, NJ). 

The technical marker clusters were placed on areas where skin movement relative to the 

underlying bone was minimal and not covered by the sandals worn by the participants. 

Prior to performing the gait trials, an anatomical calibration procedure was 

completed to identify relevant anatomical landmarks on each segment and to define local 

coordinate systems within each segment. The procedure was a static trial in which the 3D 

position of additional anatomical reference landmarks on the foot and leg were identified 

using either 6.4 mm retro-reflective markers (Figure 6) or a Davis pointer. The 

participant was placed in a seated position for the calibration trial so that compensatory 

movements due to abnormal foot posture/mobility were not captured. The anatomical 

reference markers were then removed prior to the performance of the gait trials. 

Three dimensional positions of the technical marker clusters were captured at 200 

Hz with a 10-camera Eagle system (Motion Analysis Inc, Santa Rosa, CA). A force plate 

(Advanced Mechanical Technology, Inc., Watertown, MA) sampling at 1000 Hz 

mounted near the center of the run-way identified initial contact and toe-off events of the 
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stance phase. Following completion of the calibration and running trials, Cortex software 

(Motion Analysis Inc, Santa Rosa, CA) was used to reconstruct the 3D position of each 

reflective marker. A custom written software program (Matlab v. 7.6.0, The Mathworks 

Inc., Natick, MA) was then used to filter the data, and reconstruct the 3D position of each 

segment using the calibrated anatomical system technique with a single value 

decomposition optimization procedure (Cappozzo, 1984). The single value 

decomposition is an optimization procedure that was incorporated to further minimize 

skin movement errors that occur during dynamic movements. The anatomical reference 

markers were reconstructed using the single value decomposition optimization procedure 

and used to define six functional articulations, compute anatomical axes of rotation, and 

compute clinically relevant joint angles for each of the functional articulations using the 

joint coordinate system technique (Grood & Suntay, 1983). The data were time 

normalized to 100% stance, and ensemble averaged from five of the ten trials. Due to the 

variability of gait, a minimum of 5 trials are required to collect reliable data. The five 

most consistent trials were used for ensemble averaging. The consistency of the trials was 

determined by visual assessment of the time-series plots. Finally, the Matlab program 

calculated joint range of motion in four different subphases of stance. The subphases 

were defined as phase 1 (0-20% of stance), phase 2 (21-50% of stance), phase 3 (51-75% 

of stance) and phase 4 (76-100% of stance) (Ferber et al., 2005). All motions were distal 

segment moving on the proximal segment with the exception of the rearfoot complex, 

which was the proximal moving on the distal segment. 
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Statistical Analysis 

 

The Statistical Package for the Social Sciences version 13.0 (SPSS Inc., Chicago, 

IL) was used to perform the statistical analyses. Joint angles of the functional 

articulations within each of the four stance subphases were computed. For each stance 

subphase, three separate MANOVAs were performed to analyze between-subject sagittal, 

frontal and transverse planes range of motion differences for three of the functional 

articulations (RC, CNC, and CC). Three separate MANOVAs were performed to analyze 

between-subject sagittal plane range of motion for the remaining three functional 

articulations (MFF, LFF, and MTP). The independent variables in the MANOVAs were 

the group (plantar fasciitis and control) and the dependent variables were the range of 

motion in each plane (sagittal, frontal, transverse). To minimize the number of variables 

within each MANOVA, a preliminary analysis was performed to determine whether a 

primary motion occurred for each joint. If there was less than 1º of motion, it was 

eliminated from the analysis within the MANOVA. Follow-up independent t-tests were 

used to investigate significant MANOVA omnibus F ratios. The significance level for all 

of the tests was α ≤ 0.05.  

The secondary purpose of the study was to investigate differences in plantar fascia 

thickness between runners with plantar fasciitis and uninjured runners. To assess this 

relationship, independent t-tests were performed to compare differences in plantar fascia 

thickness between the control and plantar fasciitis groups. A dependent t-test was 

performed to compare differences in plantar fascia thickness between the plantar fasciitis 

group injured foot versus the uninjured foot.  
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CHAPTER 4: RESULTS 

 

Foot Structure 

 

Prior to performing the gait kinematic statistical analysis, differences in foot 

structure between the injured and uninjured groups were investigated. The preliminary 

investigation was performed to determine if foot structure should be included as a co-

variate in the subsequent analyses. This was deemed important due to the theorized 

relationship between foot structure and plantar fasciitis (Huang et al., 2004; Kwong et al., 

1988; Pohl et al., 2009; Rome et al., 2001; Taunton et al., 2002; Wearing et al., 2006; 

Williams et al., 2001) and previous studies that have revealed kinematic gait differences 

between participants with differing foot structures (Arndt et al., 2007; Cobb et al., 2009). 

Independent t-tests were used to assess differences between the groups. One control 

group participant’s images could not be digitized, so the data was discarded from the foot 

structure comparison. Results revealed no significant difference in arch structure between 

groups (F 1,27 = 0.361 p = 0.553). Based on descriptive data collected from a group of 

uninjured individuals a NI of less than 0.204 (the ratio 1SD below the mean of the 

descriptive data) may be classified as a low arch, a NI between 0.204 and 0.268 (ratios 

within ±1 SD of the mean of the descriptive data) may be classified as typical arch, and a 

NI of greater than 0.268 (the ratio 1 SD above the mean of the descriptive data) may be 

classified as a high arch. Using the above criteria, both groups would be classified as 

having typical arch structure (plantar fasciitis mean: 0.229 ± 0.031; control mean: 0.232 ± 

0.028). 
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Multi-Segment Foot Kinematics 

Phase 1 

 The MANOVA results for the CC ROM between the runners in the plantar 

fasciitis group and the control group was significant (F 3,26 = 4.042, p = .017). MANOVA 

results were not significant for RC, CNC, MFF, LFF, or MTP ROM between groups 

during phase 1 (Appendix G). Follow-up independent t-tests for the CC joint omnibus F- 

ratio revealed significantly increased eversion excursion (F 1,28 = 10.514, p = 0.003) in 

the plantar fasciitis group (mean: -3.63 ± 2.73°) versus the control group (mean: -1.16 ± 

1.14°). The control group landed in a more everted position, with very little frontal plane 

movement in phase 1. In comparison, the plantar fasciitis group landed in a less everted 

position, then everted to the end of phase 1. There were no other significant findings in 

the CC joint ROM (Table 2, Figure 7).  

 

Table 2. Mean (SD) sagittal, frontal, and transverse plane ROM for the calcaneocuboid 

joint during phase 1 
 

 

    Plantar Fasciitis  Control p-value 

Sagittal Plane Dorsiflexion 4.44 (3.74) 4.91 (2.73) p = 0.701 

Frontal Plane Eversion 3.63 (2.73) 1.16 (1.14) p = 0.003* 

Transverse Plane Adduction 3.63 (1.89) 3.28 (2.14) p = 0.645 

 
*Significantly different from control group (p < 0.05) 
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Figure 7. Frontal plane calcaneocuboid joint stance phase kinematics (mean ± 1 SD) for 

the control (black lines) and plantar fasciitis (gray lines) group participants. 

 

Phase 1 (0-20% of stance) defined the early period of stance phase. During this 

phase, the CC (calcaneocuboid) eversion excursion was significantly greater in the 

plantar fasciitis group compared to the control group (mean difference: 2.47º). While the 

CC is everting during this time, the RC (rearfoot complex) and lateral midfoot (CC) are 

in contact with the ground and the foot is transitioning from a relatively rigid structure to 

a mobile structure. With the CC motion, the control group landed in a more everted 

position, and then exhibited very little frontal plane movement during the phase (1.16 ± 

1.14º). In comparison, the plantar fasciitis group landed in a less everted position, then 

everted through the end of the phase (3.63 ± 2.73º) (Figure 9, Appendix I). 

 

Phase 2 

  

MANOVA results did not reveal significant group differences for any of the 

variables within the functional articulations during phase 2 (Appendix H). Phase 2 (21-
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50% of stance phase) defined the midstance period of stance phase. Both groups began 

phase 2 in a dorsiflexed MFF position, and continued to dorsiflex to the end of phase 2, 

with the plantar fasciitis group in slightly greater dorsiflexion (Figure 11, Appendix I). 

For the CNC, the plantar fasciitis group began in a greater inverted position compared to 

the control group. However, the plantar fasciitis group went through slight inversion 

before everting to the end of phase 2, ending in a similar position as they started in. The 

control group had less inversion at the beginning, and instead everted to the end of the 

phase, to a more neutral CNC position (Figure 10, Appendix I). 

 

Phase 3 

 

MANOVA results did not reveal significant group differences for any of the 

variables within the functional articulations during phase 3 (Appendix H). Phase 3 (51%-

75% of stance phase) defined the late stance period of stance phase. The plantar fasciitis 

group started in a greater inverted CNC position compared to the control group; however, 

both groups displayed a similar pattern of eversion through the rest of the phase, with the 

plantar fasciitis group resulting in slightly increased eversion excursion. Both groups also 

followed a similar pattern for the MFF. They started in a dorsiflexed position, then 

plantarflexed to the end of the phase. 

 

Phase 4 

 

MANOVA results were not significant for the RC, CC, CNC, MFF, LFF, or MTP 

ROM between groups during phase 4 (Appendix H). Phase 4 (76-100% of stance phase) 
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defined the terminal stance period of stance phase. Both groups exhibited a similar 

pattern of MTP (first metatarsalphalangeal complex) motion. They begin in an extended 

position, and then extended to ≈90% of the phase, where they started to flex. The plantar 

fasciitis group started and ended with slightly less extension, so the overall motion was 

greater (Figure 11, Appendix I). 

 

Ultrasound 

 

Twenty percent of the participants (6 randomly selected participants) underwent 

repeat scans within one week of the first scan (± 3 hours). Intra-reader and intra-scanner 

measurements were assessed. All measurements of the reliability session were within one 

digital pixel of the first session. 

Independent t-test results revealed the thickness of the plantar fasciitis group 

participants was significantly greater (mean: 4.64 ± 1.07 mm) than the limb-matched 

control group participants (mean: 3.75 ± 0.54 mm) (F 1,28 = 6.650, p = 0.007). Although 

the mean of the control group plantar fascia thickness was less than 4.0 mm, there were 

three control group participants who had a thicker plantar fascia (over 4.0 mm) but were 

asymptomatic (Range: 4.372 mm – 4.772 mm). In addition, there were six plantar 

fasciitis group participants who did not demonstrate thickening of the plantar fascia 

greater than 4 mm (Range: 3.153 mm – 3.969 mm).  

The dependent t-test comparing the thickness of the plantar fascia between the 

plantar fasciitis group injured foot versus the uninjured foot revealed the thickness of the 

injured foot was significantly greater than the uninjured foot (mean: 3.66 ± 0.56 mm) 

(F1,28 = 6.776, p = 0.004).  
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Results of an independent t-test that assessed the non-injured foot in the plantar 

fasciitis group and the limb-matched control were not significant (F 1,28 = 0.019, p = 

0.659). The thickness of the non-injured side was slightly less (mean: 3.75 ± 0.54 mm) 

than that of the control group. 
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CHAPTER 5: DISCUSSION 

 

The primary hypothesis of this study was that participants with plantar fasciitis 

would have altered kinematics during the mid and late stance phases of gait. Specifically, 

it was hypothesized that the medial midfoot (calcaneonavicular complex) and forefoot 

would be more mobile during midstance, and that the first metatarsophalangeal joint 

would exhibit increased extension in late stance due to a decreased stiffness and 

degeneration of the plantar fascia. These hypotheses were not supported by the current 

study. Although the plantar fasciitis group demonstrated greater medial midfoot and 

forefoot motion during midstance and increased first metatarsalphalangeal complex 

extension during late stance compared to the uninjured group, the differences were not 

statistically significant. However, there were significant differences between the groups 

in the calcanealcuboid joint during early stance (phase 1).  

The secondary hypothesis of this study was that the thickness of the plantar fascia 

would be significantly greater in runners with plantar fasciitis compared to uninjured 

runners. This hypothesis was supported by the data. 

 

Multi-segment Foot Kinematics 

Phase 1  

 

The increased eversion excursion of the CC in the plantar fasciitis group may 

suggest decreased lateral midfoot stability as eversion is a component of pronation which 

functions to increase the mobility of the foot. However, the role of the plantar fascia in 

supporting the lateral longitudinal arch is unknown.  All of the previous plantar fascia 
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(Kayano et al., 1986; Sarrafian, 1987; Wright & Rennels, 1964) and plantar fasciitis 

(Messier & Pittala, 1988; Pohl et al., 2009; Taunton et al., 2002) studies have focused 

exclusively on the contribution of the plantar fascia to medial longitudinal arch stability 

and the effect of plantar fasciitis on medial longitudinal arch function (Huang et al., 2004; 

Wearing et al., 2004), respectively. Similarly, there is no previous gait research to which 

to compare the results of the current study since all the studies have either ignored the 

midfoot altogether (Chang et al., 2007; Messier & Pittala, 1988; Pohl et al., 2009; 

Taunton et al., 2002) or have performed walking gait trials rather than running (Chang et 

al., 2007).  However, if the rearfoot and midfoot act as a constrained tarsal mechanism as 

proposed by (Huson et al., 2000), a loss of rearfoot complex stability (RC) may result in a 

loss of medial (CNC) and lateral (CC) midfoot stability. The decreased midfoot stability 

could also affect both the medial and lateral longitudinal arch (formed by the calcaneus, 

cuboid, and 4th and 5th metatarsals) stability. In the current study, however, only lateral 

midfoot (CC) motion was significantly different between the groups. One potential 

reason that the medial midfoot (CNC) motion was not significantly affected may be that 

it was not on the ground during early stance and therefore, not loaded to the same degree 

as the rearfoot complex and the lateral midfoot. Moreover, it is possible that the extrinsic 

and intrinsic foot musculature were able to compensate for a decrease in medial 

longitudinal arch stability caused by the loss of plantar fasciitis stiffness. The 

musculature may not, however, be well positioned to compensate for decreases in lateral 

longitudinal arch stability. The majority of the larger intrinsic and extrinsic foot muscles 

that function as dynamic stabilizers are either located on the medial side or have 

attachment to the medial foot.  
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Regarding the RC (rearfoot complex) eversion ROM, there was no statistically 

significant difference between groups. The participants in the plantar fasciitis group 

demonstrated only slightly greater RC eversion excursion during phase 1 (mean: -7.39 ± 

3.12°) compared to the control group (mean: -5.92 ± 2.51°). Visual inspection of the 

frontal plane RC graphs suggests that although the plantar fasciitis group participants 

landed in a greater inverted position compared to the control group, both groups 

underwent a similar eversion range of motion during the subphase. As previously stated, 

one explanation for lack of statistical significance may the positioning of the extrinsic 

and intrinsic foot musculature. The failure to reach statistical significance may also have 

been due in part to the large variability within groups (plantar fasciitis group eversion 

ROM range: 2.91º – 12.349º; control group eversion ROM range: 0.045° – 19.83º) 

(Figure 8, Appendix I).  

Differences in foot strike patterns may have contributed to the variability. Visual 

assessment of the runners during the gait analysis session suggested that some runners 

were rearfoot strikers, while others were midfoot/forefoot strikers. Previous studies have 

shown that foot strike pattern affects the kinematics of healthy runners (Lieberman et al., 

2010; William et al., 2000). Due to the exploratory nature of the current study, however, 

foot strike pattern was not used as inclusionary/exclusionary criteria. This may, however, 

be important criteria to consider in future studies. It is unclear if the runners with plantar 

fasciitis were natural midfoot/forefoot runners or if they changed their foot strike from a 

rearfoot to the mid/forefoot either intentionally or unintentionally to reduce their heel 

pain during running. If the runners did alter their foot strike pattern due to pain, it was 

likely an adaptation that occurred over time versus during the running trials since all of 
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the participants were currently running a minimum of 10 miles/week. Additionally, some 

of the variability across participants may have been due to the unfamiliarity with the 

sandal used in the study. However, a previous study that investigated the kinematics 

differences between running in shoes versus sandals, reported no differences in rearfoot 

eversion excursion between the conditions (Barnes et al., 2010). This study used both gait 

sandals and shoes with a neutral foot bed, which was similar to the flat, neutral foot bed 

of the sandal used in the current study. It should be noted, however, that no study has 

analyzed the midfoot and forefoot kinematic differences between a running shoe and 

sandal due to the impracticality of placing retroreflective markers on the distal segments 

foot in a running shoe. Therefore, it is unknown whether the distal foot segments function 

differently in a running shoe versus a sandal.  

  

Phase 2 

 

It was hypothesized that a softening of the plantar fascia in the plantar fasciitis 

group (Wu et al., 2011) would result in increased midfoot and forefoot ROM during 

midstance. However, this hypothesis was not supported. Rather, there were no significant 

differences between groups in the midfoot and forefoot. The range of motion in the 

medial midfoot (plantar fasciitis eversion ROM: 1.62 ± 1.76º; control group ROM: 1.60 ± 

0.99º; plantar fasciitis inversion ROM: 1.47 ± 2.53°; control group inversion ROM: 0.45 

± 0.68°) and medial forefoot (plantar fasciitis dorsiflexion ROM: 6.54 ± 2.88º; control 

group dorsiflexion ROM: 6.00 ± 2.06º) were very similar.  

The results of the current study are inconsistent with those of Chang et al (2007). 

Chang et al (2007) observed increased forefoot motion in the plantar fasciitis group 



70 

 

participants compared to healthy controls during walking. However, the differences 

between the results of the current study and the Chang et al. (2007) study may be 

explained by the differences in methodology. Chang et al. (2007) assessed walking gait 

while the current study investigated running gait. Recent studies comparing the two gait 

modes have indicated that the foot functions differently in walking versus running gait 

(Arndt et al., 2012, Cobb et al., 2012). In a preliminary study, Arndt et al. (2012) 

investigated in-vivo multi-segment foot kinematics during walking and running in 

healthy adults. The authors demonstrated that the foot, particularly the midfoot, was more 

mobile during walking but revealed increased rigidity during running. Furthermore, in 

another preliminary study, Cobb et al. (2012) demonstrated increased foot mobility 

during walking compared to running in different shoe conditions. In addition, the 

previous study analyzed forefoot motion by assessing the movement of the forefoot 

relative to the calcaneus (Chang et al., 2007), which is different than the six-segment foot 

model used in the current study which tracked the specific motion of the medial and 

lateral midfoot. 

The previously mentioned increased rigidity of the foot in running gait during 

walking gait is likely the result of increased activity of the dynamic stabilizers of the foot 

(the intrinsic and extrinsic foot muscles). If this is the case, our hypotheses regarding 

midfoot motion may not have been supported in part because the increased muscular 

activity may have compensated for the loss of plantar fascia stiffness during running 

Phase 3 

 

It was hypothesized that there would be an increase in the medial midfoot and 

altered medial forefoot motion in the plantar fasciitis group during this phase due to the 
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softening of the plantar fascia (Wu et al., 2011); however, this was not supported. Rather, 

there were no significant differences in medial midfoot (CNC) motion (plantar fasciitis 

group eversion ROM: 3.58 ± 1.60º; control group eversion ROM: 3.03 ± 1.66º) or medial 

forefoot (MFF) motion (plantar fasciitis group plantarflexion ROM mean ± SD: -7.84 ± 

2.3°; control group plantarflexion ROM mean ± SD: -7.95 ± 2.71°) between groups.  

 

Phase 4 

 

It was hypothesized that participants in the plantar fasciitis group would 

demonstrate increased first metatarsophalangeal joint complex ROM during the terminal 

stance of running gait; however, this was not supported. Rather, there were no significant 

differences between groups during phase 4. 

As previously mentioned, during terminal stance the plantar fascia simulates a 

windlass by wrapping around the metatarsal heads, locking the midtarsal joints and 

raising the arch. Therefore, it was expected that the softening of the plantar fascia 

associated with plantar fasciitis (Wu et al., 2011) would affect the motion at the first 

metatarsophalangeal joint during late stages of running gait. The results of the current 

study, however, did not support this theory. Rather, there were no significant kinematic 

differences between groups during phase 4.  

These results are also inconsistent with those from a previous study that, 

demonstrated an increase in the peak metatarsophalangeal joint angle (≈4º mean 

difference) in individuals with plantar fasciitis compared to uninjured participants during 

terminal stance of walking gait(Wearing et al., 2004). The mean difference in 

metatasophalangeal joint range of motion between the groups in the current study was 
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less than 2º. Additionally, the peak angle (≈30º) occurred at ≈90% of stance phase for 

both groups (Figure 11, Appendix I). However, as seen in the figure, there was also large 

variability in the joint ROM within the plantar fasciitis group (range: 4.04º - 24.71º), 

which may have contributed to the lack of statistical significance (Table 6, Appendix H). 

Further inspection of the plantar fasciitis group data revealed that two participants had 

very low extension ROM (4.04º and 5.83º) during the phase. Potential reasons for this 

may have been that over time the participants altered their gait to avoid pain or 

discomfort associated with first metatarsophalangeal (MTP) joint extension during late 

stance. As previously stated, another explanation may be that the muscular activity 

(dynamic stabilizers) was sufficient to compensate for the decreased stiffness of the 

plantar fascia.  

 With respect to the inconsistency in the results of the current study compared to 

those of Wearing et al. (2004), differences in methodology between the previous studies 

may partially explain the disparity between the findings. Wearing et al. (2004) used two-

dimensional digital fluoroscopy to record dynamic lateral radiographs of the foot 

(Wearing et al., 2004), compared to the three-dimensional six-segment surface marker 

based foot model used in the current study. It is unknown if the two methods of analyzing 

foot motion can be compared. However, a limitation to this previous data collection was 

that only the initial 80% of stance was analyzed, because the frequency response of the 

image intensifying system resulted in a blurring of the images beyond this point (Wearing 

et al., 2004). Since the current study revealed a peak angle at ≈90% of stance, it is 

difficult to compare the peak angles   between the studies. Moreover, participants in the 

previous study were assessed during walking gait (Wearing et al., 2004). As previously 
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mentioned, foot function during walking gait cannot be compared directly to foot 

function during running (Arndt et al., 2012 ; Cobb et al., 2012).    

 

Ultrasound 

 

 The results of the ultrasound measurements supported the hypothesis and were 

consistent with previous findings (Cardinal, 1996; Karabay et al., 2007). There was an 

associated increase in plantar fascia thickness in those with plantar fasciitis (mean: 4.64 ± 

1.07 mm). Previous studies have reported that a thickness of ≥ 4.0 mm in patients with 

the traditional clinical signs and symptom of the pathology was an indication of plantar 

fasciitis (Cardinal, 1996; Huang et al., 2004; Karabay et al., 2007). In the current study, 

4.0 mm was not used as criteria because it was unknown if this thickness would be 

appropriate for younger more active individuals. In this population, there may be an 

adaptive thickening due to the increased load experienced during running, which has not 

been investigated prior to the current study.  

Before making generalizations regarding the effect of plantar fasciitis on plantar 

fascia thickness in runners, a number of important factors should be considered. These 

data suggest that although the average thickness of the plantar fasciitis group was greater 

than 4.0 mm, and the average thickness of the control group was less than 4.0 mm, this 

threshold may not be most appropriate criteria for runners. Rather, a percentage 

difference of the plantar fasciitis group that is compared to either a large descriptive data 

set of uninjured runners or to the uninvolved limb, together with a clinical exam that 

confirms that presence of the clinical signs and symptoms of the condition may be more 
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appropriate. Additionally, it may also be important to include additional sonographic 

measures such as echogenicity, stiffness, and fluid level, in addition to thickness since 

those measurements have previously been reported to be associated with plantar fasciitis 

(Cardinal, 1996; Karabay et al., 2007). 

Second, age has also been shown to be associated with an increase in fascia 

thickness and a softening of the plantar fascia (Wu et al., 2011). Wu et al (2011) 

examined the plantar fascia of participants who were 50 years old and older without 

plantar fasciitis and compared them to a group of individuals with plantar fasciitis. 

Results revealed similar softening of the plantar fascia in both groups. In an attempt to 

avoid recruiting participants with age- related plantar fascia changes that may have 

masked differences associated with plantar fasciitis, the current study excluded 

individuals greater than 45 years old.  However, since Wu et al. (2011) only recruited 

participants in the older age group who were 50 and older, the point at which the age-

related changes in the plantar fascia begin is unknown. If the changes begin prior to the 

age of 45, it is possible that some of the control participants in the current study had age-

related changes to the plantar fascia similar to those associated with plantar fasciitis. In 

the current study, the three participants in the control group who had a thickness of 

greater than 4.0 mm were between 32 and 45 years old. Stiffness was not assessed in the 

current study so it is unclear whether this was a factor. Furthermore, it is unclear whether 

the thickness associated with the runners was degenerative or adaptive from running. In 

comparison to Wu et al., (2011), the average plantar fascia thickness of the younger 

healthy subjects (2.4 ± 3.0 mm) was much less than those of the current study (3.7 ± 0.5 

mm) in a relatively similar age group (Mean age for both studies ≈30 years). These data 
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suggest that it is possible for an adaptive thickness to occur during running. Moreover, 

these factors may further suggest the need for other sonographic measures (echogenicity, 

fluid, or elasticity) of the plantar fascia in addition to thickness assessment. These 

measurements would enhance the understanding of the structure of the plantar fascia. In 

addition, there may be a need to develop relative difference criteria and/or criteria that 

consider age and/or activity level.  

Third, although previous research has shown a significant difference between the 

uninjured foot in the plantar fasciitis group compared to the control group (Fabrikant et 

al., 2001; Wearing et al., 2004), the current study did not show similar findings. Plantar 

fascia thickness in the asymptomatic limb (mean: 3.66 ± 0.56 mm) of the plantar fasciitis 

group was not significantly different than that of the control group (mean: 3.75 ± 0.54 

mm). Although it is difficult to compare data from the current study to the previous 

studies due to the differing age and activity levels of the participants, these data may 

further suggest that there is a healthy adaptive thickening of the plantar fascia that occurs 

in response to the repetitive loading during running.  

 

Other Factors 

 

It is well-known that the plantar fascia is a main contributor of medial 

longitudinal arch support during both static stance and walking gait (Wearing et al., 

2006). The contribution of the plantar fascia to medial longitudinal arch support during 

running gait, however, has not been investigated. Results of the current study suggest that 

other than calcaneocuboid joint eversion ROM during early running stance, there are no 

significant running gait kinematic differences between runners with and without plantar 
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fasciitis. However, prior to making generalizations regarding the effect of plantar fasciitis 

on foot function during running, a number of important factors should be considered. 

First, the role of dynamic stabilizers in supporting the medial longitudinal arch during 

running gait has not been established. Other authors have investigated intrinsic foot 

muscle activity during loading conditions, demonstrating increased muscle activity in the 

supporting foot muscles with an associated increase in load (Salathe & Arangio, 2002; 

Thordarson et al., 1995). Salathe and Arangio (2002) also reported that this increased 

load reduces the amount of load on the plantar fascia. There was an associated increase in 

the force exerted by the muscles during the toe-standing condition, which is thought to 

help in maintaining balance in addition to maintaining the medial longitudinal arch. With 

their mathematical model, these authors concluded that the muscles of the foot actively 

support the arch during toe-off and decrease the load borne by the plantar fascia (Salathe 

& Arangio, 2002). Kibler et al. (1991) also found that high deficits of plantar flexor 

muscle strength deficits were associated with plantar fasciitis (Kibler et al., 1991). 

More recently, Chang et al. (2012) used MRI to estimate the volume of the tibialis 

posterior and plantar intrinsic foot muscles between the affected and unaffected limb of 

participants with unilateral chronic plantar fasciitis. Their results revealed that the 

forefoot volumes of the plantar intrinsic foot muscles in the affected limb were 

significantly smaller in participants involved versus uninvolved foot. Rearfoot, total foot 

volume, and tibialis posterior size were similar between groups (Chang et al., 2012). The 

atrophy of the forefoot in the plantar fasciitis group suggests potential dysfunction may 

occur during gait. The forefoot muscles may fatigue faster because of their smaller 

volume, so changes in kinematics may not occur until this point. In conjunction with the 
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evidence that pain associated with plantar fasciitis decreases with the first few minutes of 

running and returns with prolonged activity (Cardinal et al., 1996; Karabay et al., 2007), 

these results may suggest that changes in running gait may not be evident until the foot 

musculature becomes fatigued. However, the population studied in the Chang et al. 

(2012) was older (44.9 ± 8.4 years) and had no minimum activity-level requirement 

compared to the current study (30.0 ± 8.7 years), but participants were excluded if they 

had a BMI of > 35 kg/m
2
. The age and activity level of the participants in this previous 

study may limit the generalization of the results since the effect of physical activity on 

the foot musculature is unknown (Buchbinder, 2004). It is possible that the repetitive 

loading of running may result in hypertrophy or limited atrophy and weakening of the 

foot musculature.  

Second, although degenerative changes within the plantar fascia have been 

associated with plantar fasciitis (Lemont et al., 2003; Wu et al., 2011), when the 

degenerative changes begin and when the changes are sufficient to affect function has not 

been established.  Participants in the plantar fasciitis group in the current study were 

required to have symptoms for at least six weeks. The average length of symptoms in the 

current study (5.67 ± 4.85 months) was less than the average duration of 10-12 months in 

the Wu et al. (2011) study. Although previous research has suggested that six weeks is a 

sufficient amount of time for mechanical changes to occur within the plantar fascia 

(Wearing et al., 2004), it is possible that the hypothesized kinematic differences were not 

observed in the current study because the degeneration had not reached the threshold at 

which function was affected. 
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Limitations 

 

Multi-segment Foot Kinematics 

 

There are a number of limitations to this study that should be considered prior to 

drawing conclusions from these data. First, all of the participants in the study were 

runners that ran at least 10 miles per week. Second, participants were excluded if BMI 

was greater than 30 kg/m
2
. As previously mentioned, it is unknown whether obesity 

and/or inactivity contribute differently to the development of plantar fasciitis 

(Buchbinder, 2004), therefore, the results of the current study may not be applicable to 

individuals with plantar fasciitis who are less active and/or obese.  

 Third, although all participants walked and ran in the sandal provided by the lab 

prior to beginning the running gait trials, it is possible that participants altered their 

kinematics due to not being used to the sandal. Furthermore, as previously stated the  

kinematics in the distal foot segments may be different running in a sandal versus a 

running shoe.  Fourth, the fact that foot strike pattern was not an 

inclusionary/exclusionary criterion is another limitation of the current study. Previous 

data has shown that foot strike does affect foot/rearfoot running kinematics (De Wit et al., 

2000; Lieberman et al., 2010; Williams et al., 2000), so it is unknown how this affected 

the joint angles. However, no previous study has determined whether plantar fasciitis is 

associated with a specific foot strike pattern, or a change in foot strike pattern, therefore it 

was not feasible to use foot strike pattern as an inclusionary/exclusionary criteria for the 

current study.   
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Ultrasound 

 

 There were also limitations associated with the ultrasound testing. Specifically, it 

is unknown whether activity level and time of day affect the changes in thickness or 

appearance of the plantar fascia; therefore, the re-test of participants for the reliability 

portion of the study may have been strengthened if both measures were assessed during 

the same day (Rathleff et al., 2010). In addition, the absence of guidelines for the 

participants to follow prior to the ultrasound examination and the fact that the time of day 

at which sonography assessment was performed was not standardized may also be 

limitations of the study. These may be important omissions if activity performed prior to 

assessment and/or diurnal changes do influence the thickness of the plantar fascia 

(Rathleff et al., 2010). While sonography assessment was always performed prior to gait 

analysis, standardizing the time of day and activities prior to testing was not feasible due 

to variability associated with access to the sonography system and the availability and 

training schedules of the participants. 

Directions for Future Research 

 

 This was the first study to investigate the effect of plantar fasciitis on multi-

segment foot kinematics during running. While the study has advanced the understanding 

of how plantar fasciitis affects foot function, further investigation into a number of areas 

related to the pathology and its effect on function are warranted. Specifically, two areas 

that require further research are that of the progressive degenerative process associated 

with plantar fasciitis and the relationship between the progressive degenerative process 

and foot function. Future research should focus on the sonographic and gait assessment of 

patients grouped according to the duration of plantar fasciitis symptoms. Additionally, 
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future studies could partition groups based on running experience. The pathoetiology and 

effect of plantar fasciitis on gait mechanics in recreational or less experienced runners 

may be different than in elite or very experienced runners. It is possible that the plantar 

fasciitis may be more of an inflammatory pathology in the recreational runners, versus a 

more degenerative condition in the experienced or elite runners. 

 Another area that requires further investigation is the effect of prolonged running 

on the foot mechanics of runners with plantar fasciitis. This would allow the researcher to 

determine whether the pain associated with plantar fasciitis resulted in participants’ alteration in 

gait pattern over time. If differences in kinematics are noted between the groups after the 

prolonged run, it may be that the foot muscles are unable to compensate for a loss of 

stiffness in the plantar fascia when fatigued. Additionally, since foot strike pattern has 

previously been shown to affect foot kinematics (De Wit et al., 2000; Lieberman et al., 

2010; Williams et al., 2000), future research may need to group plantar fasciitis and 

control participants according to foot strike pattern. It might also be interesting to see if 

runners develop the plantar fasciitis as midfoot/forefoot strikers or if they changed their 

foot strike pattern because of the pain associated with plantar fasciitis. 

 Finally, since orthotics have been used as a successful conservative treatment for 

individuals with plantar fasciitis in several studies (Cole et al., 2005; Davis et al., 1994; 

Kogler et al., 1996; Roos et al., 2006), an orthotic intervention would be an appropriate 

follow-up. It would be interesting to investigate whether the increased eversion 

calcaneocuboid joint excursion during early stance that was present in runners with 

plantar fasciitis would be altered with orthotic intervention.   
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Summary 

 

The primary hypothesis of the study was that runners with plantar fasciitis would 

demonstrate statistically significant distal foot kinematic differences during mid and late 

stance phases of gait. However, this hypothesis was not supported. Rather, there was a 

significant difference in the calcanealcuboid (CC) joint eversion during early stance. The 

increased eversion excursion of the CC in the plantar fasciitis group may suggest 

decreased lateral midfoot stability. The secondary hypothesis was supported, in that the 

ultrasound images revealed statistically significant thickening in the plantar fasciitis 

group. Although this study has advanced the understanding of the effect of plantar 

fasciitis on running gait, additional study of the influence of extrinsic and intrinsic foot 

musculature and foot strike pattern are warranted. It is possible that muscular activity was 

sufficient to compensate for the decreased stiffness of the plantar fascia, so that changes 

in kinematics in individuals with plantar fasciitis may not be evident until the dynamic 

muscular support becomes fatigued. Additionally, previous studies have shown that foot 

strike pattern affects the kinematics of healthy runners so this may be important criteria to 

consider in future studies.  
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Appendix A 

 

DO YOU HAVE HEEL PAIN? 

Do you run? 
University of Wisconsin-Milwaukee 

Musculoskeletal Injury Biomechanics Laboratory, Enderis 132 

 

Purpose: To investigate foot kinematics in runners with 

plantar fasciitis versus injury-free runners.  

Who can participate? 
1. Runners (minimum of 10 miles/week) 

2. Ages 18-45 

3. No major surgery to the lower extremity 

4. Must not be pregnant 

5. Currently have heel pain  

 

What will I do? 

 Initial Phone Screening: Questions regarding study qualifications (~10 min) 

 Visit 1: Flexibility measurements, Running gait analysis (~1.5 hrs) 

 Visit 2: Foot structure assessment, Ultrasound images of the foot (~45 min) 

Do I get paid? 

 YES! You will receive $40.00 in gift cards! 

 
Interested? Contact: 

Principal Investigator 

Robin Bauer, BA 

heel-pain@uwm.edu 

414-229-5147 

 

 

Co-Investigator 

Stephen Cobb, PhD, ATC, CSCS 

 

  
This research project has been approved by the University of Wisconsin-Milwaukee Institutional Review Board for the 

Protection of Human Subjects (IRB Protocol Number 12-229, approved on February 16,2012). 
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Appendix B 

 

DO YOU RUN? 
University of Wisconsin-Milwaukee 

Musculoskeletal Injury Biomechanics Laboratory, Enderis 132 

 

 

Purpose: To investigate foot kinematics in runners with plantar fasciitis 

versus injury-free runners.  

Who can participate? 

6. Runners (minimum of 10 miles/week) 

7. Ages 18-45 

8. No major surgery to the lower extremity 

9. Must not be pregnant 

10. Currently injury-free  

 

What will I do? 
 Initial Phone Screening: Questions regarding study qualifications (10 min) 

 Visit 1: Flexibility measurements, Running gait analysis (~1.5 hrs) 

 Visit 2: Foot structure assessment, Ultrasound images of the foot (~45 min) 

 

Do I get paid? 

 YES! You will receive $40.00 in gift cards! 

 

Interested? Contact: 

Principal Investigator 

Robin Bauer, BA 

heel-pain@uwm.edu 

414-229-5147 

 

Co-Investigator 

Stephen Cobb, PhD, ATC, CSCS 

 

 

 

This research project has been approved by the University of Wisconsin-Milwaukee Institutional Review 

Board for the Protection of Human Subjects (IRB Protocol Number 12-229, approved on February 

16,2012).

mailto:rlbauer@uwm.edu
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Appendix C 

 

Overread For Plantar Fascia Imaging 

 

Study Title:  “The Effects of Plantar Fasciitis on Multi-segment Foot Running Gait 

Kinematics” 

 

Right Foot 

 

Parameter Yes No 

1. Correct study subject ID entered   

2.  Correct Preset Selected   

3. Gain settings adjusted appropriately   

4. Depth setting at 2.5 cm   

5. Plantar Fascia is demonstrate longitudinally    

6. Plantar Fascia is imaged perpendicular to ultrasound beam   

7. Plantar Fascia borders demonstrated clearly   

8. DICOM file saved and backed up per study guidelines   

9. Measurement made in triplicate   

10. All measures are with one digital pixel   

Quality Score:  _____/10 = _______% 

 

  

Pass   

 

 

 

Left Foot 

 

Parameter Yes No 

1. Correct study subject ID entered   

2.  Correct Preset Selected   

3. Gain settings adjusted appropriately   

4. Depth setting at 2.5 cm   

5. Plantar Fasica is demonstrate longitudinally    

6. Plantar Fasica is imaged perpendicular to ultrasound beam   

7. Plantar Facia borders demonstrated clearly   

8. Dicom file saved and backed up per study guidelines   

9. Measurement made in triplicate   

10. All measures are with one digital pixel   

Quality Score:  _____/10 = _______% 

 

  

Pass   
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Appendix D 

 

UNIVERSITY OF WISCONSIN – MILWAUKEE 

CONSENT TO PARTICIPATE IN RESEARCH 

 
THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE YEAR PERIOD 

 

1. General Information 

 

 

Study title: The effects of plantar fasciitis on multi-segment foot running gait kinematics  

 

Person in Charge of Study (Principal Investigator): The student Principle Investigator (SPI) 

for this study is Robin Bauer, B.A. Robin Bauer is a graduate student in the Department of 

Kinesiology, with an emphasis in Biomechanics, working on her Thesis project. She is under the 

supervision of Stephen Cobb, PhD, ATC, CSCS, the Principle Investigator (PI) of the study. Dr. 

Cobb is a faculty member in the Department of Kinesiology. 
 

2. Study Description 

 

 

You are being asked to participate in a research study.  Your participation is completely 

voluntary.  You do not have to participate if you do not want to. 
 

Study description: 

The primary purpose of this study is to compare running kinematics in runners with plantar 

fasciitis and injury-free runners using a multi-segment foot model. The secondary purpose is to 

investigate the relationship between plantar fascia thickness and the clinical signs and symptoms 

of plantar fasciitis in runners.  

 

The results of the proposed study will enhance understanding of the mechanical effects of plantar 

fasciitis on running gait mechanics. Specifically use of the multi-segment foot model will allow 

identification of potential changes in the running mechanics of the different segments of the foot 

in individuals with plantar fasciitis. This study will also expand upon the proposed relationship 

between ultrasound assessment of plantar fascia thickness and the clinical signs and symptoms of 

plantar fasciitis in runners. Moreover, it may contribute to the understanding of the etiology of 

plantar fasciitis and to the development of more effective treatment protocols. 

 

Initial participant screening will occur over the phone. Following the initial phone screen, the 

testing sessions and data collection will be conducted at the University of Wisconsin-Milwaukee 

in the Musculoskeletal Injury Biomechanics Laboratory (Enderis 132) and the Physical Activity 

and Health Research Lab Enderis 434). 30 individuals (age 18 – 45 years) will participate in this 

study, and will be recruited from the University, surrounding community, and local fitness clubs 

and medical clinics (i.e. podiatry clinics). 
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As a participant in this study, you will be asked to first complete an initial phone screen  (~ 10 

min). If you qualify, you will be asked to attend 2 testing sessions: the first testing session will be 

approximately 45 minutes and the second session will last about 1.5 hours.  

 

 

3. Study Procedures 

 
 

What will I be asked to do if I participate in the study? 

If you agree to participate you will be asked to provide a telephone number at which you can 

be reached to complete a 10 minute initial screening. If you qualify, you will be asked to report 

to the Musculoskeletal Injury Biomechanics Laboratory (Enderis 132) for testing. All 

procedures and measurements involved in the testing session will be performed by the SPI or 

PI. 

 

INITIAL SCREENING: PHONE ASSESSMENT (All potential participants)(~10 min) 

 

 The Screening and Medical History Questionnaire for potential plantar fasciitis group 

participants will include questions pertaining to clinical signs and symptoms plantar 

fasciitis. Additionally, all participants will be asked questions pertaining to your physical 

activity level and previous lower body injury(ies) and surgeries, pregnancy, and presence 

of diseases/illness that may exclude participation. 

 

VISIT ONE: (~ 45 minutes) 

1. Informed Consent Process (All participants) 

 If you agree to participate in the study, you will be asked to complete the 

following. 

 

2. Physical Exam (~5 minutes) (Only plantar fasciitis group participants) 

 This exam will be performed if you complain of heel pain. 

 A Certified Athletic Trainer will perform a physical examination that includes 

palpating the proximal insertion of the plantar fascia (located on the inside part of 

your heel), as well as extending the first metatarsophalangeal joint (joint of big 

toe). Other potential sources of heel pain will be ruled out through muscle testing 

and palpation of relevant structures in the foot. Both of these exams may elicit 

moderate pain. 

 You will be asked to rate your pain level on a scale from 0 to 10, with 0 

indicating “no pain” and 10 indicating “worst pain ever.” 

 If you qualify as having plantar fasciitis, you will be asked to continue to the 

testing session.  

 

3. Weight and height measurements  (All participants)(~1 minute) 

 

4. Foot Structure Assessment (All participants) (~10 minutes) 

 This includes measurements of your feet. These will require small marks to be 

placed on your skin over specific bony landmarks with a pen or washable marker. 

The marks will be used to obtain measurements of your foot that will be used to 
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determine your foot structure (i.e. flat foot, high arch). A digital photograph will 

be taken of both feet with 10% of your body weight on the foot to be measured. 

Measurements will be taken from the digital pictures to determine your foot 

structure. This photograph will not have any of your identifiers attached to it, so 

individuals who see it will not know that it is your foot. If you choose not to have 

your foot photographed, you may not participate in the study. 

 

5. Ultrasound Assessment (All participants) (~15 minutes) 

 Ultrasound assessment will take place in the Physical Activity and Health 

Research Lab, in Enderis Hall, Room 434. Three successive ultrasound images of 

both feet will be captured. You will lie in a prone position with your ankle in a 

neutral position and toes extended to near end range. The thickness of the 

proximal attachment of your right and left plantar fascia will be imaged using an 

ultrasound machine. The SPI will apply ultrasonic gel to the transducer and to 

your skin and capture images of your feet. The procedure will be repeated until 

three successful images have been collected. A successful image will be based on 

the measurement of the thickness of the plantar fascia. If you choose not to have 

your foot imaged, you will not be able to participate in the study. 

 

VISIT TWO: (~ 1 hour and 15 minutes) 

1. Ultrasound Assessment (All participants) (~15 minutes) 

1. You may be randomly selected to have your foot imaged a second time. 20% of the 

participants will be randomly selected in order to test the reliability of the examiner. 

2. The ultrasound protocol will consist of the same procedures as Visit One.  

 

2. Ankle and Toe Flexibility Assessment (All participants) (~15 minutes) 

Ankle range of motion will be assessed first. You will be seated on a bench, with your 

leg hanging over the table. Your knee will be flexed at 90º and the ankle will be in a 

neutral position. The PI will stabilize your tibia and fibula, then use one hand to 

move the foot into end range dorsiflexion by pushing on the bottom of your foot. The 

SPI will then use a goniometer to measure your ankle dorsiflexion range of motion. 

This will be repeated 3 times. 

First metatarsophalangeal (MTP) joint (big toe) range of motion for each foot will be 

measured next. Your knee and ankle will be positioned in the same starting position 

as that for ankle range of motion. The SPI will position your first MTP joint in a 

neutral position, stabilize your foot, and then push your big toe toward the top of your 

foot until the end range of motion is felt. The SPI will use a goniometer to measure 

the joint. This will be repeated 3 times.   

Gastrocnemius (calf) muscle length will be measured next. You will lay supine with 

your knee fully extended and foot in a neutral position. The SPI will place pressure 

on the front portion of your leg to maintain an extended knee position, and then flex 

your ankle to the end of the range of motion by pushing upward across the bottom 

surface of the foot. The SPI will then measure the ankle position with a goniometer. 

This will be repeated 3 times. 
 

3. Gait Analysis (All participants)  (~45 minutes) 

 The running gait analysis session will consist of 10 successful running gait trials 

along a runway with a force plate (a device used to measure the forces between the 

ground and your foot) mounted in the middle of the runway. You will perform the 
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running trials at a speed of 4.0 m/s ± 10% (8.96 mph ± 10%) wearing a sandal with 

no support.   

 During the gait trials, you will have groups of small reflective markers located on 

your legs and feet. The markers will be placed directly on your skin or on custom 

built wands that will be placed on your skin. The markers and wands will be secured 

to your skin using double sided adhesive tape and a liquid adhesive. The position of 

the reflective markers during the gait trials will be recorded using a 10 camera 

Motion Analysis system. The Motion Analysis System will record the position of the 

reflective markers on your legs and feet, but will not record any images of your 

person. If you choose not to be recorded during the gait trials, you will not be eligible 

to complete the study. 

 Prior to performing the gait trials, additional reflective markers will be located on 

specific bony landmarks on your legs and feet while you are in a seated position. The 

position of the additional markers will be recorded and then the markers will be 

removed before you complete the gait trials. 

 If you are in the plantar fasciitis group, you will be asked to report your pain level 

after each trial based on the scale previously described. 

 

 

4. Risks and Minimizing Risks 

 
 

What risks will I face by participating in this study? 

The potential risks other than muscle soreness or tightness for your participation in this research 

study are minimal. 

 

Physical Risks: 

 

Likely: 

 Minor muscle soreness and/or tightness (< 30% of participants). 

 

Less Likely: 

 Musculoskeletal injury such as muscle strain (< 2%) 

 Allergic reaction to the liquid adhesive used to secure the reflective markers (< 2%) 

 

Protection of Physical Risks: 

To reduce the above risks, appropriate warm-up has been incorporated before the running gait 

trials. If you feel any soreness or irritation while participating in this study, please tell the 

investigators as soon as possible. If you are injured, experience allergic reaction to the liquid 

adhesive used to secure the reflective markers, or experience shortness of breath while 

participating in this research study, initial first aid and/or appropriate emergency measures will be 

provided/initiated by the Principal Investigator, who is a Licensed Athletic Trainer. If you are a 

UWM student you will be referred to the Norris Health Center for follow-up care. Non-students 

will be referred to their primary care physician and will be responsible for all expenses incurred.  

 

Risks to Privacy and Confidentiality:   
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Less Likely: 

 Since a photograph and an ultrasound image will be taken of your foot, this might 

increase risks to your privacy (less than 1%).   

 Since your private information will be collected for this study, there is always a risk of 

breach of confidentiality (less than 1%) 

 

Protection of Risks to Privacy and Confidentiality: 

 All data will be stored in a locked filing cabinet in a locked room. All data will be given a letter 

and number that is uniquely associated with you. This code will not contain any partial identifiers 

(i.e. last four digits of your SSN) and will be stored in a separate locked office in a locked filing 

cabinet.  No identifiers will be stored with the research data. Only those individuals with an active 

role in this study will have access to the research data and only the SPI and PI will have access to 

identifying information. When all participants’ have completed active participation in the study 

and data collection is completed, the code will be destroyed.  All appropriate measures to protect 

your private information will be taken. 

 

In the event of an incidental finding (i.e. tumor) while imaging the foot, you have the option to be 

notified by phone and encouraged to follow-up with your physician. The researchers are not 

health care providers who have appropriate expertise to make a diagnosis based on ultrasound 

imaging. You also have the option to include your primary care physician name and contact 

information on the HIPAA form to allow us to follow-up with your primary care physician.  

 

 

5. Benefits 

 
 

Will I receive any benefit from my participation in this study? 

 There are no benefits to you other than to further research. 
 

 

6. Study Costs and Compensation 

 

 

Will I be charged anything for participating in this study? 

1. You will not be responsible for any of the costs associated with this research study. 

 

Are subjects paid or given anything for being in the study? 

1. You will not receive payment for participating in either the phone screen and/or Visit One. 

2. If following the phone screen and Visit One you qualify for participation in the study, you 

will receive $40.00 in gift cards upon successful completion of Visit Two. 
 

 

7. Confidentiality 
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What happens to the information collected? 

All information collected about you during the course of this study will be kept confidential to the 

extent permitted by law. We may decide to present what we find to others, or publish our results 

in scientific journals or at scientific conferences.  Information that identifies you personally will 

not be released without your written permission. Only the SPI, PI, and limited Musculoskeletal 

Injury Biomechanics Laboratory personnel will have access to the information.  However, the 

Institutional Review Board at UW-Milwaukee or appropriate federal agencies like the Office for 

Human Research Protections may review this study’s records. 

 

The confidentiality of your data and information will be safeguarded as outlined in “Risks & 

Minimizing Risks” section under the “Protection of Risks to Privacy and Confidentiality” header. 
 

 

8. Alternatives 

 

 

Are there alternatives to participating in the study? 

 

There are no alternatives to participating in this research study.  You may choose not to 

participate. 

 

9. Voluntary Participation and Withdrawal 

 
 

What happens if I decide not to be in this study? 

Your participation in this study is entirely voluntary. You may choose not to take part in this 

study.  If you decide to take part, you can change your mind later and withdraw from the study. 

You are free to not answer any questions or withdraw at any time. Your decision will not change 

any present or future relationships with the University of Wisconsin-Milwaukee. 

 

If you withdraw from this study before completing the second testing session, we will destroy all 

information we collect about you. Your decision not to participate or to withdraw early will not 

result in penalty or harm, nor will it affect your grade or class standing.   
 

 

10. Questions 

 

 

Who do I contact for questions about this study? 

For more information about the study or the study procedures or treatments, or to withdraw from 

the study, contact: 

 

   Robin Bauer, BA, Student Principal Investigator 

Department of Kinesiology 

PO Box 413 

Milwaukee, WI 53201 
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(414) 229-5147 

    

Stephen Cobb, PhD, LAT, CSCS, Principal Investigator 

Athletic Training Education Program 

Department of Kinesiology 

PO Box 413 

Milwaukee, WI 53201 

(414) 229-3369 

 

Who do I contact for questions about my rights or complaints towards my treatment as a 

research subject? 

The Institutional Review Board may ask your name, but all complaints are kept in confidence. 

 

Institutional Review Board 

Human Research Protection Program 

Department of University Safety and Assurances 

University of Wisconsin – Milwaukee 

P.O. Box 413 

Milwaukee, WI 53201 

(414) 229-3173 
 

11. Signatures 

 

 

Research Subject’s Consent to Participate in Research: 

To voluntarily agree to take part in this study, you must sign on the line below.  If you choose to 

take part in this study, you may withdraw at any time.  You are not giving up any of your legal 

rights by signing this form.  Your signature below indicates that you have read or had read to you 

this entire consent form, including the risks and benefits, and have had all of your questions 

answered, and that you are 18 years of age or older. 

 

 ________________________________________________  

Printed Name of Subject/ Legally Authorized Representative  

 

 ________________________________________________   _____________________  

Signature of Subject/Legally Authorized Representative Date 

 

 

Research Subject’s Consent to Audio/Video/Photo Recording: 

 

It is okay to photograph my foot while I am in this study and use my photographed data in the 

research. 

Please initial:  ____Yes    ____No 

 

It is okay to ultrasound my feet while I am in this study and use my photographed data in the 

research. 

Please initial:  ____Yes    ____No 
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It is possible the ultrasound may have incidental findings such as a tumor. In the case of an 

incidental finding, we will contact you by phone. However, since the researchers are not health 

care providers who have appropriate expertise, you will be encouraged to follow up with your 

physician.  

 

Please initial:  

_____ Please do not notify me of any incidental findings obtained from this research. 

_____ Please ask me at the time of notification whether or not I want to receive incidental 

findings information. 

 

Principal Investigator (or Designee) 

I have given this research subject information on the study that is accurate and sufficient for the 

subject to fully understand the nature, risks and benefits of the study. 

 

 ________________________________________________   _____________________  

Printed Name of Person Obtaining Consent Study Role 

 

 ________________________________________________   _____________________  

Signature of Person Obtaining Consent Date 
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Appendix E 

 
Demographic Information 

Gender:   

Age:    

Height:   

Weight:   

BMI:   

 

 

Screening & Medical History Questionnaire 

Screening Criteria 

Please answer the following questions to the best of your ability: 

 

 Yes    No Are you between the ages of 18 and 45 years old? 

 

Medical History Questionnaire 

For your safety, a list of conditions that would make you unable to participate in this study has 

been prepared.  Please read this list carefully and consider whether any of the conditions apply to 

you.  If any of these conditions are true for you, you will not be able to participate in this study.  

For each condition, please indicate “yes” or “no” if this is true or not for you. 

 

1. How many miles/week do you run? 

 

  0-9  

  10-20 How long have you been running this mileage? _________________________ 

  20-30 How long have you been running this mileage? _________________________ 

  ≥30 How long have you been running this mileage? _________________________ 

 

2.       Yes    No Do you suffer from heel pain?  

If no, continue to question 3. 

If yes, continue with the following questions then skip to question 6.  

 

How long have you had heel pain? _____________________________ 

 

 Yes    No Do you have heel pain with your first few steps in the 

morning?  

 

On a scale from 0 to 10, with 0 indicating “no pain” and 

10 indicating “worst pain ever”, rate your pain level ___ 

 

 Yes    No Do you have heel pain with the first few steps after 

prolonged periods of inactivity? 

 

On a scale from 0 to 10, with 0 indicating “no pain” and 

10 indicating “worst pain ever”, rate your pain level ___ 
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 Yes    No  Is the area where you have heel pain tender to touch? 

 

 Yes    No  Does your heel pain decrease with normal walking? 

 

 Yes    No Does your heel pain increase during periods of 

prolonged physical activity? 

 

 Yes    No Have you received or are you currently receiving 

treatment for your heel pain?  

 

If yes, please indicate the type and length of treatment 

 

 Yes    No      Plantar fascia stretching   Length of treatment________________ 

 Yes    No      Calf stretching    Length of treatment________________ 

 Yes    No      Low-Dye taping    Length of treatment________________ 

 Yes    No      Orthotics     Length of treatment________________ 

 Yes    No      Extracorporeal shockwave therapy  

Length of treatment________________ 

 Yes    No      Iontophoresis    Length of treatment________________ 

 Yes    No      Surgery     Length of treatment________________ 

 Yes    No      Other treatment. Please describe: 

______________________________________________________________________________

______________________________________________________________________________ 

 

3.       Yes    No  Have you ever been diagnosed with plantar fasciitis? If so, when?  

__________________________________________________________ 

 

4.       Yes    No  Do you have any current lower extremity injuries? If yes, please  

describe: ___________________________________________________ 

  

5.       Yes    No  Have you had any lower extremity injuries in the last 6 months? If yes,  

please describe: _____________________________________________ 

 

6.      Yes    No  Have you ever had lower extremity surgery? If yes, please describe:  

__________________________________________________________ 

 

7.      Yes    No   N/A Are you pregnant? 

 

8.      Yes    No  Do you have a history of inflammatory or connective tissue disease (i.e.,  

osteoarthritis, rheumatoid arthritis, Marfan Syndrome)? If yes, please 

describe: ___________________________________________________ 

 

9.       Yes    No  Do you have a history any previous trauma or injury to the foot/heel? If  

yes, please describe:__________________________________________ 

 

10.      Yes    No  Do you have any diagnosed foot deformity (i.e. hallux valgus)? 

 

11.      Yes    No  Do you have a history of a neurologic systemic disorder? 

 

11.      Yes    No  Do you have a history of diabetes? 
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12.      Yes    No  Do you have a buddy who you run with and can refer to us for  

participation in this study? 

 

Comments/Notes: 
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Appendix F 

 
Patient Hx 

 Primary c/o: 

 

 

 Sx location 

 

 Pain characteristics 

 

 

 VAS score (0-10) 

 

 Functional disability 

 

 

 Sx duration 

 

 Sx progression 

 

 

 Mechanism of injury 

 

 

 Sx constancy 

 

 

 Affecting factors 

 

 

 Neurological Sxs 

 

 Joint locking/catching/instability 

 

 

 

 Current/previous treatment  

 

 

 Current/previous medications  

 

 

 Night pain (if indicated) 
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Objective 

Observation (Signs of inflammation, symmetry, posture) 

 

 

 

 

 

 

Assessment 

 Scanning exam ( Lumbar spine if indicated) 

 

 

 

 

 Examination of movement 

 AROM 

 

 

 PROM  

 

 

 

 

 Resisted Isometric movements 

 

 

 

 Special tests  (as indicated) 

 

 

 Neurological evaluation (if indicated) 

 

 

 

 

 Palpation* 

 

 

Impression: 
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Case Report Form (CRF) 

 

Date: _____-______-_______ 

 DD      MM        YYYY 

 

Subject ID Number: ________-________-00000000   

 

1. MSK Preset Selected       Y N 

2. Right Plantar Fascia Imaged      Y N 

3. Left Plantar Fascia Imaged      Y N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurements:  

 

Side Measure 1 (cm) Measure 2 (cm) Measure 3 (cm) 

Right Plantar Fascia 

 
   

Left Plantar Fascia 

 
 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Comments  

 
 
 
 
 

Comments  

 
 
 
 
 



109 

 

 

Appendix H 

 

Table 3. Phase 1 Mean (SD) of functional articulations. 

 
 

Functional 

articulation 

Plane Motion Group Mean (SD) 

Plantar Fasciitis  Control 

Rearfoot Complex Sagittal Dorsiflexion 3.38 (3.21) 2.37 (4.08) 

Plantarflexion 4.30 (2.86) 3.73 (3.51) 

 Frontal Inversion 0.02 (0.06) 0.18 (0.70) 

 Eversion 7.39 (3.12) 5.92 (2.52) 

 Transverse Adduction 4.56 (2.84) 3.93 (1.73) 

 Abduction 0.15 (0.27) 0.27 (0.90) 

 
Calcaneocuboid 

Complex 

Sagittal Dorsiflexion 4.44 (3.74) 4.91 (2.73) 

Plantarflexion 0.23 (0.59) 0.00 (0.00) 

 Frontal Inversion 0.72 (0.84) 0.80 (0.95) 

 Eversion 3.63 (2.73) 1.16 (1.14) 

 Transverse Adduction 3.63 (1.89) 3.28 (2.14) 

 Abduction 0.53 (0.65) 0.17 (0.63) 

     
Calcaneonavicular 

Complex 

Sagittal Dorsiflexion 2.44 (1.98) 2.86 (1.83) 

Plantarflexion 0.48 (1.00) 0.39 (1.26) 

 Frontal Inversion 2.55 (2.09) 1.93 (1.81) 

 Eversion 0.66 (1.19) 0.53 (1.05) 

 Transverse Adduction 2.45 (2.57) 1.82 (1.39) 

 Abduction 1.11 (1.82) 0.26 (0.48) 

     
Medial Forefoot Sagittal Dorsiflexion 5.82 (5.76) 4.75 (3.15) 

Plantarflexion 0.76 (1.28) 0.38 (0.80) 

     
Lateral Forefoot Sagittal Dorsiflexion 3.87 (2.45) 2.56 (2.50) 

Plantarflexion 0.37 (0.60) 0.64 (1.26) 

     
First 

Metatarsophalangeal 

Complex 

Sagittal Extension 1.29 (1.55) 0.52 (1.07) 

Flexion 10.27 (7.04) 9.25 (5.62) 
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Table 4. Phase 2 Mean (SD) of functional articulations. 
 
 

Functional 

Articulation 

Plane Motion Group Mean (SD) 

Plantar Fasciitis  Control 

Rearfoot complex Sagittal Dorsiflexion 10.35 (2.56) 10.82 (2.63) 

Plantarflexion 0.00 (0.02) 0.00 (0.00) 

 Frontal Inversion 1.41 (1.32) 1.36 (0.78) 

 Eversion 1.53 (1.39) 1.34 (0.75) 

 Transverse Adduction 3.35 (2.13) 3.22 (3.44) 

 Abduction 0.49 (0.59) 0.65 (0.66) 

     
Calcaneocuboid 

Complex 

Sagittal Dorsiflexion 2.90 (2.26) 2.46 (1.64) 

Plantarflexion 0.49 (0.76) 0.37 (0.58) 

 Frontal Inversion 1.94 (1.77) 1.82 (1.07) 

 Eversion 1.24 (1.57) 0.40 (0.72) 

 Transverse Adduction 2.03 (1.15) 1.15 (1.43) 

 Abduction 0.98 (1.13) 1.55 (1.47) 

     
Calcaneonavicular 

Complex 

Sagittal Dorsiflexion 1.78 (1.52) 1.38 (1.18) 

Plantarflexion 0.68 (0.88) 0.57 (0.72) 

 Frontal Inversion 1.47 (2.53) 0.45 (0.68) 

 Eversion 1.62 (1.76) 1.60 (0.99) 

 Transverse Adduction 1.65 (1.40) 1.41 (0.87) 

 Abduction 0.74 (0.88) 0.45 (0.54) 

     
Medial Forefoot Sagittal Dorsiflexion 6.54 (2.88) 6.00 (2.06) 

Plantarflexion 0.08 (0.12) 0.64 (0.18) 

     
Lateral Forefoot Sagittal Dorsiflexion 3.50 (1.74) 2.99 (1.33) 

Plantarflexion 0.22 (0.67) 0.13 (0.20) 

     
First 

Metatarsophalangeal 

Complex 

Sagittal Extension 1.76 (1.72) 1.91 (1.56) 

Flexion 7.04 (6.31) 5.56 (4.28) 
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Table 5. Phase 3 Mean (SD) of functional articulations. 
 
 

Functional 

Articulation 

Plane Motion Group Mean (SD) 

Plantar Fasciitis  Control 

Rearfoot complex 
Sagittal Dorsiflexion 0.48 (0.85) 0.45 (0.41) 

Plantarflexion 5.94 (2.81) 5.75 (2.09) 

 Frontal Inversion 4.16 (1.81) 4.77 (1.41) 

 Eversion 0.19 (0.70) 0.00 (0.00) 

 Transverse Adduction 0.03 (0.05) 0.06 (0.17) 

 Abduction 5.66 (2.74) 5.32 (1.76) 

     
Calcaneocuboid 

Complex 

Sagittal Dorsiflexion 0.43 (0.44) 0.42 (0.68) 

Plantarflexion 2.66 (2.38) 2.79 (2.35) 

 Frontal Inversion 1.15 (1.01) 0.51 (0.75) 

 Eversion 0.95 (0.94) 1.46 (1.16) 

 Transverse Adduction 0.20 (0.38) 0.18 (0.37) 

 Abduction 2.65 (2.04) 2.12 (1.98) 

     
Calcaneonavicular 

Complex 

Sagittal Dorsiflexion 1.26 (1.57) 0.94 (1.42) 

Plantarflexion 1.56 (1.90) 1.51 (1.94) 

 Frontal Inversion 0.02 (0.08) 0.00 (0.00) 

 Eversion 3.58 (1.60) 3.03 (1.66) 

 Transverse Adduction 1.45 (1.16) 1.63 (1.70) 

 Abduction 0.89 (1.26) 0.52 (0.87) 

     
Medial Forefoot Sagittal Dorsiflexion 0.05 (0.07) 0.03 (0.09) 

Plantarflexion 7.84 (2.35) 7.95 (2.71) 

     
Lateral Forefoot Sagittal Dorsiflexion 0.35 (0.61) 0.05 (0.13) 

Plantarflexion 3.56 (2.52) 3.14 (2.17) 

     
First 

Metatarsophalangeal 

Complex 

Sagittal Extension 18.36 (3.34) 19.49 (4.22) 

Flexion 0.00 (0.00) 0.00 (0.00) 
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Table 6. Phase 4 Mean (SD) of functional articulations. 
 
 

Functional 

articulation 

Plane Motion Group Mean (SD) 

Plantar Fasciitis  Control 

Rearfoot Complex Sagittal Dorsiflexion 0.00 (0.00) 0.13 (0.49) 

Plantarflexion 19.62 (4.26) 19.28 (5.46) 

 Frontal Inversion 2.77 (2.85) 3.47 (3.39) 

 Eversion 0.97 (2.02) 0.81 (1.48) 

 Transverse Adduction 0.88 (1.28) 1.01 (1.91) 

 Abduction 5.90 (4.27) 5.78 (4.27) 

     
Calcaneocuboid 

Complex 

Sagittal Dorsiflexion 0.66 (1.18) 0.33 (0.96) 

Plantarflexion 4.92 (3.30) 4.71 (2.19) 

 Frontal Inversion 1.60 (1.96) 0.77 (1.13) 

 Eversion 1.61 (2.14) 1.19 (1.09) 

 Transverse Adduction 1.18 (1.47) 1.02 (1.02) 

 Abduction 2.13 (1.50) 1.64 (2.36) 

     
Calcaneonavicular 

Complex 

Sagittal Dorsiflexion 2.50 (1.91) 1.21 (1.22) 

Plantarflexion 1.19 (1.64) 1.28 (1.33) 

 Frontal Inversion 0.48 (0.74) 0.67 (1.43) 

 Eversion 3.42 (3.31) 1.60 (1.17) 

 Transverse Adduction 1.99 (2.15) 1.57 (1.70) 

 Abduction 0.84 (1.38) 0.87 (1.337) 

     
Medial Forefoot Sagittal Dorsiflexion 0.00 (0.00) 0.00 (0.01) 

Plantarflexion 16.98 (4.17) 15.58 (3.24) 

     
Lateral Forefoot Sagittal Dorsiflexion 0.31 (0.98) 0.03 (0.13) 

Plantarflexion 7.67 (3.33) 6.68 (2.11) 

     
First 

Metatarsophalangeal 

Complex 

Sagittal Extension 15.32 (6.19) 13.63 (3.45) 

Flexion 4.61 (3.67) 3.25 (3.29) 
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Appendix I 

 

 
 

 

Figure 8. RC stance phase kinematics (mean ± 1 SD) for the control (black lines) and plantar fasciitis (gray 

lines) group participants. From top to bottom: sagittal, frontal, and transverse planes ROM 

 



114 

 

 
 

 

Figure 9. CC stance phase kinematics (mean ± 1 SD) for the control (black lines) and plantar fasciitis (gray 

lines) group participants. From top to bottom: sagittal, frontal, and transverse planes ROM 
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Figure 10. CNC stance phases kinematics (mean ± 1 SD) for the control (black lines) and plantar fasciitis 

(gray lines) group participants. From top to bottom: sagittal, frontal, and transverse planes ROM 
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Figure 11. Stance phase kinematics (mean ± 1 SD) for the control (black lines) and plantar fasciitis (gray 

lines) group participants. From top to bottom: MFF sagittal plane ROM, LFF sagittal plane ROM, MTP 

sagittal plane ROM 
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Appendix J 

 

Anatomical Reference Systems of Right Leg 

(Same for the left leg) 

 

 

 

Leg 

ŌL : Midpoint between the medial and lateral malleoli anatomical markers. 

ẐL: Unit vector directed from ŌL  to the tibial tubercle anatomical marker, directed 

cranially. 
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ŶL: Unit vector formed by the cross product of the ẐL unit vector and the position vector 

directed from ŌL to the lateral malleolus anatomical marker and the, directed 

anteriorly. 

XL: Unit vector formed by the cross product of the ẐL and ŶL unit vectors, directed from 

left to right. 

 

Calcaneus 

ŌCA: Located at the posterior-proximal calcaneus. ŶCA: Unit vector directed from ŌCA to 

the midpoint between the sustentaculum tali and peroneal tubercle anatomical 

markers,  directed anteriorly.  

ẐCA: Unit vector formed by the cross product of the ŶCA unit vector and a position vector 

directed from ŌCA to the sustentaculum tali anatomical marker, directed cranially 

XCA: Unit vector formed by the cross product of the ŶCA and ẐCA unit vectors, directed 

from left to right 

 

Navicular 

ŌN: Located at the plantar proximal navicular 

ŶN: Unit vector directed from ŌN  to the distal plantar navicular anatomical marker 

directed anteriorly 

XN: Unit vector formed by the cross product of ŶN  and a position vector directed from ŌN  

      to the dorsal proximal navicular anatomical marker , directed from left to right 

ẐN: Unit vector formed by the cross product of the XN and ŶN unit vectors, directed   

      cranially 
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Cuboid 

ŌCU: Located at the plantar proximal cuboid 

ŶCU: Unit vector directed from ŌCU to the plantar distal cuboid anatomical marker, 

directed anteriorly 

XCU: Unit vector formed by the cross product of the ŶCU unit vector and a position vector 

directed from ŌCU to the dorsal proximal cuboid anatomical marker directed from 

left to right 

ẐCU: Unit vector formed by the cross product of the XCU and ŶCU unit vectors, directed 

cranially 

 

Medial Rays 

ŌMR: Located at the base of the first metatarsal  

ŶMR: A unit vector directed from ŌMR to the head of the first metatarsal anatomical marker 

directed anteriorly 

ẐMR: The cross product of the position vector directed from ŌMR to the head of the second 

metatarsal anatomical marker and the YMR unit vector, directed cranially 

XMR: The cross product of the ẐMR and ŶMR unit vectors, directed from left to right 

 

Lateral Rays 

ŌLR: Located at the base of the fifth metatarsal 

ŶLR: Unit vector directed from ŌLR to the head of the fifth metatarsal directed anteriorly 



120 

 

ẐLR: Unit vector formed by the cross product of the ŶLR unit vector and a position vector 

directed from ŌLR to the head of the fourth metatarsal anatomical marker , directed 

cranially 

XLR: Unit vector formed by the cross product of the ŶLR and ẐLR unit vectors, directed 

from left to right 

 

Hallux 

ŌH: Located at the proximal end of the hallux  

ŶH: A unit vector directed from ŌH to the head of the first distal phalanx anatomical 

marker, directed anteriorly  

ẐH: Unit vector formed by the cross product of the ŶH unit vector and a position vector 

directed from ŌH  to the medial surface of the first distal phalanx  anatomical marker, 

directed cranially 

XH: Unit vector formed by the cross product of the ŶH and ẐH unit vectors, directed from 

left to right
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Appendix K 

Anatomical landmarks  

Segment  

Leg Medial malleolus* 

Lateral malleolus* 

Tibial tubercle* 

 

Calcaneus Sustentaculum tali† 

Peroneal tubercle†  

Dorsal posterior calcaneus* 

 

Navicular Dorsal proximal† 

Plantar proximal† 

Distal plantar† 

 

Cuboid Dorsal proximal† 

Plantar proximal† 

Plantar distal† 

 

Medial rays Head of 1
st
 metatarsal† 

Head of 2
nd

 metatarsal† 

Base of 1
st
 metatarsal† 

 

Lateral rays Head of 5
th

 metatarsal† 

Head of 4
th

 metatarsal† 

Base of 5
th

 metatarsal† 

 

Hallux Base of 1
st
 proximal phalanx† 

Head of 1
st
 distal phalanx 

Medial surface of 1
st
 distal phalanx†  

*Identified using a 6.4 mm retroreflective marker 

 †Identified using a digitizing pointer 
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