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ABSTRACT
ENDOCRINE AND MORPHOLOGICAL ASPECTS OF GROWTH AND
SEXUAL MATURATION IN WILD-CAUGHT MALE VERVET MONKEY S
(CHLOROCEBUS AETHIOPS PYGERYTHRUS)

by
Tegan J. Gaetano

The University of Wisconsin at Milwaukee, 2012
Under the Supervision of Dr. Trudy R. Turner

Knowledge of baseline changes in testosteroner{d@)ogher androgens is central
to both investigations of morphological, physiokali and behavioral correlates
of inter-individual variation in the timing and gfeof key events and transitions
over the life course and questions of the evolutbspecies-specific schedules
of maturation in primates. T represents an importaleterminant of
spermatogenesis in male mammals and plays a cealeain the expression of
male sexual behavior and the development of secprsdx characteristics. This
research integrates hormonal and morphometric rdsttiodetermine age-related
changes in fecal testosterone (fT) metabolites mumdphological markers of
sexual maturation, including testicular volume, ypadass (measured as BMI),
and canine length, over the life course in a ceexdional sample (n = 56) of
wild-caught South African male vervet monkey€hlorocebus aethiops
pygerythruy. Contrary to expectations of this study, T wag sgnificantly
associated with age € 0.1316 by ANOVA). However, BMIg = 0.00022) and
testis volume [ = 4.335e-06) were strongly related to age, comedmg to the

eruption of the canine teeth at adolescence (3atsyef age). These results



strongly suggest the existence of an adolescenttgrspurt in male vervets. An
interpretation of activation of the developmenttioése maturational markers in
preparation for challenges encountered at reprogucamnaturity, including
dispersal and reproduction, is tentatively adopkeste following Jolly and
Phillips-Conroy (2003, 2006). However, future |doginal observations to
determine changes within individuals are necesapyovide greater confidence

in this interpretation.
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[. INTRODUCTION

The concept of life history trade-offs has beertrumaental to explanations of
observed variation in the timing and shape of kegnés, transitions, and phases
in the life course by providing a framework thatsmlers all aspects of an
organism. Life history theory describes differensé&rategies of allocation of
resources among components of fitness (e.g. enevggted in survival versus
reproduction) through the organizing principle @fde-offs. Trade-offs refers to
the negative relationship between life history comgnts and can be imagined as
a series of facultative decisions as regards tloeatlon of energy to one aspect
of the life course over another.

Delayed puberty and an extended period of preschmtive growth
characteristic of the order Primates have resuitedgelection for a distinct
juvenile period. The juvenile period representsradd-off between energy
invested in somatic growth and survival and energgended on reproduction.
However, somatic growth and investment in the dgwalent of secondary sex
characteristics (SSCs) may ultimately increaseviddal fithess by conferring a
competitive advantage against conspecifics, etftm@ugh agonistic competition
or the attraction of mates (Charnov and Berrigd#93]1 Leigh and Blomquist,
2007). The transition from the pre-reproductivegstéo reproductive maturity is
associated with a shift in life history prioritiesd, accordingly, the uptake of a
different fitness-maximizing strategy (reviewed Rereira and Leigh, 2003).

Thus, investigations of the timing of the expressib life history traits within an



individual as well as differences in life histotyadegies between individuals are
central to our understanding of the evolution f&f history diversity.

Endocrine data have the potential to provide imsigto the mechanisms
regulating relationships among life history traftéetterson and Nolan, 1992;
Whitten and Turner, 2009). Hormones act as interaned between the physical
environment and the internal architecture of aranigm, acting both at the level
of genes and whole-body phenotypic traits in thguleaion of transitions
between life history stages (Ketterson and Nol&921 Hau, 2007). Patterns of
the secretion of gonadal steroid hormones, incydestosterone (T), during
development have been described for humans (emgsusinghaet al, 1974;
Genazzanet al, 1978; Apter, 1980; Sizonenko, 1989) and seveniatgie taxa
(e.g., McCanret al, 1974; Styne and Grumbach, 1978; Castraedrad, 1986;
Crawfordet al, 1997), typically from captive populations. Howevsignificant
gaps remain in our knowledge of the mediating ¢$fext steroid hormones on
the timing and shape of life history events, patady in ontogeny.

In male mammals, T is an important determinantmafle reproductive
function through its effects on the differentiatioh the brain and gonads, the
production of functioning gametes, the maintenasfcaccessory sex organs, and
the expression of SSCs, such as body size and enuseks dimorphism
(reviewed in Wells, 2007), sexually-selected cdioraof the pelage and dermis
(e.g., Wickings and Dixson, 1992b; Setchell andsbix 2001; Waittet al,
2003), development of the vocal apparatus (e.glaB®yand Cheney, 1997), and

behaviors associated with competition for accessrdproductively-viable



females, including mate-guarding, aggression agamsspecifics, and courtship
(e.g., Bernsteiret al, 1979; Albertset al, 1992).

Knowledge of age-typical changes in T secretionmale primates is
critical to investigations of the relationship betm T and parameters of
individual development, including variation in thiing of sexual maturity and
patterns of SSC emergence, and questions of thieitewo of species-specific
schedules of growth and sexual maturation. Furtbeemthe response of
hormone systems to transitions in life history banused to assess the influence
of behavior and features of the external envirortnoenthe secretion of gonadal
hormones.

This research integrates hormonal and morphometniethods to
determine age-graded changes in T excretion and déeelopment of
morphological markers of sexual maturation body sndasstis volume, and
canine length over the life course in a sample itd-saught male South African
vervet monkeysGhlorocebus aethiops pygerythjuMembers of this subspecies
are found throughout sub-Saharan Africa and argtadato a wide range of
environmental conditions. This adaptability decesasthe likelihood that
differences in the hormone profiles of sample atsnae solely due to the
effects of variable habitats. Fecal testosteromg gfofiles were examined across
three age classification schemas of increasingifspgcin order to account for
small hormonal and morphological changes that odeuing puberty given the
relatively rapid growth of the vervet monkey and poeserve statistical

robusticity (Leigh, 1996).



The primary objective of this research was to abi@rize fT profiles of
male vervets at each stage of the life cycle, estittg adults and immatures to
establish baseline patterns of growth and sexuainaizon for the species. In this
study, sexual maturation refers to changes incddsti volume, body mass
(measured as BMI), and excreted levels of T ancethption of the canine teeth
that are associated with the adolescent stageva@la®ment. In male primates,
these events have been interpreted to reflecategir of preparation for dispersal
from the natal group, competition for a place ie ttominance hierarchy of the
adoptive troop, and ultimately, competition for n@guctive opportunities (Jolly
and Phillips-Conroy, 2003, 2006). In consideratodrthis interpretation, special
attention was paid to changes occurring arounct$ienated age of reproductive
maturity based on averages established on the bas$mngitudinal behavioral
studies (Horrocks, 1986; Chenetyal, 1988).

To analyze fT profiles across life history stage§,fecal samples were
collected from males of a wide age range acrossiptejlgeographically distinct
sites throughout central and southeastern SouthcaAfand assayed for T
metabolites using a method validated for vervet kega (Whittenet al, 1998).
fT profiles were compared across age classes aadiagd in relation to changes
in testis volume, BMI, and canine length. This comgnt was intended to
provide a characterization of inter-individual éifénces in the relationship
between excreted fT and the development of physicatacteristics associated
with male reproductive success. Parametric ANOVAd amon-parametric

Kruskal-Wallis tests were used to identify relasbips among the data. Results



of this research provide greater insight into howisT physiologically and
morphologically expressed at different stages ef life cycle in male vervet
monkeys. Knowledge of baseline changes in fT is orgmt to both
investigations of correlates of inter-individual rizdion in fT excretion and
questions concerning the evolution of species-fipessthedules of maturation in

primates.

. BACKGROUND

A. Vervet Monkey Phylogeny

Primates comprise one of 18 orders of extant platdgeutherian) mammals.
With over 300 identified species (361 IUCN/SSC gumed species: Aguiar,
2010), the order Primates is one of the most speand the placental mammals
(Groves, 2001, 2005a; Grubdt al, 2003; Reedeet al, 2007; Rylands and
Mittermeier, 2009). The order (excluding tree-shs¥i8 generally acknowledged
to contain six monophyletic superfamilies: Lemuead(Malagasy lemurs),
Lorisoidea (Asian lorises, African galagos, andt@s)t Tarsioidea (Indonesian
and Philippine tarsiers), Ceboidea (New World mgskeCercopithecoidea (Old
World monkeys), and Hominoidea (apes and humanspgtet al., 1989). The
group Cercopithecoidea is comprised of a singlarextamily, Cercopithecidae,
and the extinct group Victoriapithecidae. Suppotbgdgenetic data (Zhang and
Ryder, 1998) and corroborated with studies of molgdy (Goodmanet al.,

1998), the family Cercopithecidae has been detethito contain a single



monophyly of two subfamilies: Colobinae (the leadtieg monkeys) and
Cercopithecinae (the cheek pouch monkeys) (Rage,1999).

Members of the diverse subfamily Cercopithecinatso called the
“‘omnivore” Old World monkeys, are morphologicallyffdrentiated from the
colobines on the basis of the following traits:xflde buccal pouches used to
store food (Fig. 3), elongated nasal bones fornairigng snout, broad incisors
and molars with high crowns and low cusps, andnapks, non-ruminant gut
(Fleagle, 1999; Groves, 2000). Two chromosomallyfetBntiated tribes
(modified from subfamily status by Groves, 2001 preltterize the subfamily:
Cercopithecini and Papionini. The Papionine grompich is characterized by a
diploid chromosome count of 42, includes the wiediktributed genud/lacaca
(macaques) and the African — with the exceptioar® species d?apiofound in
the Arabian Peninsula — papionine$fandrillus (drills and mandrills),
Cercocebus(terrestrial mangabeys),ophocebus(arboreal mangabeysPapio
(savannah baboons), antheropithecus(gelada baboons). Although some
arrangements pladsophocebuss a subgenus @fercocebugPageet al., 1999),
recent chromosomal analyses of the tribe have gly®uggested a paraphyletic
relationship between the two mangabey taxa, Wincocebudorming a clade
with Mandrillus andLophocebusas the sister-taxon of theapio Theropithecus
grouping (Disotellet al., 1992; Disotell, 1996, 2000; Harris and DisoteB98).
Further divisions of Papionini separdiéacaca (subtribe Macacina) from all

other papionines (subtribe Papionina) (Szalay aglddn, 1979).
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Fig. 1. Distinctive morphological traits separating
the Old World monkey subfamilies Colobinae and
Cercopithecinae. (Taken from Fleagle, 1999).

The tribe Cercopithecini hosts a rich diversity mbrphological and
behavioral forms, making defining tribe memberstpprticularly difficult.
Because of this, workers are increasingly turniogmolecular characters to
distinguish this group from the papionines (e.guirilaux et al., 1988; Ruvolo,
1988; Turneret al., 1988; Pageet al., 1999; Disotell and Raaum, 2002; Tesi
al., 2002a; Moulinet al., 2008). For example, unlike members of the tribe

Papionini, the cercopithecines vary considerablylipioid chromosome count;



however, this number is always over 42 (ButynskiQ4). Morphologically, the
cercopithecines are differentiated from memberBagionini by the presence of
a four-cusped third, mandibular molar without adggnulid (Butynski, 2004).

The cercopithecines includéllenopithecus(Allen’s swamp monkeys),
Miopithecus(talapoin monkeys)Erythrocebus(patas monkeys);ercopithecus
(the guenons), and the newly revived gertislorocebus(vervet or green
monkeys). Although basally positioned in the tribercopithecini on the basis of
chromosomal (Dutrillauxet al., 1988, Tosiet al., 2002a) and protein DNA
(Ruvolo, 1988) data, the genus-grodgkenopithecusindMiopithecushave been
argued to represent members of the tribe Papiamnhe basis of papionine-like
cyclical sexual swellings in females, facial gesjrand social behavior (Groves,
1989, 2000; Disotell, 2000). More recent Y-chronmasoand mtDNA sequence
studies have indicatedlllenopithecusas the sister-taxon of all other members of
the tribe Cercopithecini (Tost al., 2002a, 2002b; Disotell and Raaum, 2002).
Furthermore, Y chromosome and karyotic studies Hmtd suggested that the
terrestrial cercopithecines -Erythrocebus Chlorocebus and sometimes
Cercopithecus Ihoestt form a paraphyletic clade rooted Ailenopithecusand
separated from the arboreal cercopithecines byglesievolutionary transition
(Tosiet al.,2002a, 2002b; Perelmatal.,2011).

The most recent tabulations indicate between 18l{eet al., 2003) and
24 (Groves, 2001, 2005a) subspecie€efcopithecusVariations in the number
of guenon species acknowledged in the literatuee largely dependent on

whether the author classifies the vervet monkeyeurtie genus designation



Cercopithecusor Chlorocebus The nameChlorocebuswas separated from the
“true Cercopithecus clade by Groves (1989, 2000) on the basis of
synapomorphic craniodental traits shared viitlythrocebus including angular
shape of the orbits, the inferior margin of the @ygta curved down rather than
straight, and the upper incisors form a straighhaathan sloped bite. This
taxonomic distinction was further supported by Yerhosome data in Tost al.
(2002b, 2003).

Due, at least in part, to the considerable pheno@persity of this genus
across their wide geographic distribution, the éxaomber of species or
subspecies representedGhlorocebusemains unresolved. Broadly, the number
of taxonomically-distinct groups acknowledged ie therature varies according
to whether the taxon is assessed according to rotapical — including pelage
and whisker color (see Table 1) — or genetic tr&its example, on the basis of
variation in cranial morphology across ecogeogratines, Cardini and Elton
(2008) and Eltoret al. (2010) argued the speci€zercopithecus aethiopt
contain six geographically-distinguished subspec@sesponding to the species
groups recognized in Groves (2001, 2005a). By esntgenetic studies indicate
little genetic variation within the genus as a véh@lurner, 1977, 1981) and
between populations inhabiting South Africa in gattar (Grobler and Matlala,
2002; Grobleret al., 2006; McAuliffe Dore, 2008), putting to questiohet
robustness of species and subspecies distinctiande mn the basis of color and

size differences alone.
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Grubbet al. (2003) following Napier (1981) considered t@e aethiops
group — included in th€ercopithecuglade — to consist of one polytypic species,
partly because Struhsaker (1970) was unable torrdete differences in the
vocalizations of populations of verve€.(aethiopy and tantalus(. tantalus
monkeys. According to Grubdt al. (2003) the group contains six subspec{es:
aethiops(grivet monkeys),C. sabaeuqgreen monkeys)C. tantalus(tantalus
monkeys),C. djamdjamensi¢Bale Moutains monkeys);. pygerythrug(vervet
monkeys), andC. cynosurogMalbrouck monkeys). Each of these was elevated
to species status by Groves (2001, 2005a) folloidagdelot (1959, 1974). The
most recent IUCN/SSC assessment of the taxa in £0@8ved Groves’s (2001,
2005a) suggestion for the taxa, recognizing theigerameChlorocebusas well
as all six species.

This paper follows the taxonomy established by &s0¢1989, 2000,
2001, 2005a) with modifications from Perelmanal. (2011) who sequenced
34,927 DNA base pairs to produce the most compseenmolecular
phylogenetic tree of the primates to date (see BEigSix subspecies — the six
species recognized in Groves (2001, 2005a) arertmv® subspecies rank — are
recognized for the specig€shlorocebus aethiops this paper on the basis of
findings of molecular studies (Turner, 1977, 19&tpbler and Matlala, 2002;
Tosi et al., 2002a, 2002b, 2003; Groblet al., 2006; Jasinska&t al., 2007,
McAuliffe Dore, 2008; Perelmast al., 2011). Collaboration of molecular and
anatomical techniqgues may provide greater insighto ithe evolutionary

relationship between members@iflorocebusand the other primates.
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Fig. 2. Molecular phylogeny of the parvorder
catarrhini based on 34,927 bp sequenced from 54
genes. (Modified from Perelmiet al, 2011)

Pelage color and length varies widely across thledistribution of the
species, with regional patterns distinguishing shbspecies (see Fig. 4). These
variations have led some authors to split the taxbm distinct species groups
(e.g., Dandelot, 1959, 1974; Hill, 1966; Napier &hapier, 1967; Groves, 2001,
2005a). In particular, the distinctive featuredtué Bale Mountain monkeyCh.
a. djamdjamens)s including morphological adaptations for liferagh altitudes,
have propelled some authors to argue for speciatisst(Groves, 2005a).
However, because of the inability of genetics stadio detect significant
variations between populations (e.g., Turner, 19881; Grobleret al., 2006;
McAuliffe Dore, 2008) the taxon is considered onghly polymorphic species
with regional subspecies designations in this wolk.full description of

subspecies pelage differences is provided in Thble

B. Vervet Monkey Behavior and Ecology

i. Description



12

qs002 ‘san019 , 1900z ‘Bue uoymegeoz equiwiyd pue Jsuubis § ‘:886T ‘PINouIaT 16g8uopbuly | (996T ‘|IIH U0 pased) /6T ‘1auing
"WN1042s an|q ajed e aAey Sale|\ ‘Sirey [esiop

aylaor) ay) Buneredas pueq moiq anym ‘wure} e Ayusn ade) yoe|q e sl ‘surelUNO ajeg ayl ~afisuawelpwelp
sirey alym Buoj jo pieaq v paddil-xoe|q (1810ys B pue SIaySIYM 181oys YRk ul A9|leA Uiy ueidoiylg ayj Jo 1sea ‘eidoiylg e "y) Asxuow
[esiop ay1 BurLisnod surey 19ssni-yemiAsabuo| aney saloadsgns SsIy) JO SISqWIBIA joepiiy ayl Inoybnouyl painguisig surejuno areg
‘wiNjolos an|g ainze
ue aney Safe|N 193} pue spuey A100S pue yepFmogns pal e aaey salnadsqgns Syl Iany embuenq
10 slaquiaN ‘pasodx@aypbuines| ‘peay ay) pue Apoq [esiop ayl JoANRS 3yl Jo 1sam ‘eiquiez ‘As|[eA Janly embuen ayl
aAI|0-ysiAelb 1I0ysS "ApogAgaue 1sealq ay) UMOP pualxa pue SaAa ayl punose) pue eigiueN uiayiou 01 spiemyinos obuo) ay) -$0Insouko e 'y)d)
sBull preq yum aoey) pajuswbidap ApydiEinole 1ouuog e wloy siiey aluym 1oys 10 oggnolieloowa ulayinos wolj sabuey Aaxuow noigre
‘As|leA Wiy uerdoiyi3
"WINJ0J9s an|g AXs e aAey sajdgyjiel uel e pue 1n] [epned aliym e aneydszos 3U1 Sk 1Sea Je) S pue owQ JaAIY 3yl Jo syueg
SIY1 JO slaquia|y "Apoq jpe@y ay Jo siiey Jabuo| syl wolj ade) ayl Josliey  Yinos ayl Se yinos Jey se eanu3 pue ‘eidoiyig
Jauoys ayl sareledas pueq molq [@)EIym  ‘ade) 3oe|q A100s e Buiwel ayoeisnow  naqil@ ul pue yinos ayl ul ejjebuoly 01 yuou ~«Hdoiyiee e 'y))
31IYM & pue SIaXSIYM alym parebugian ‘Ajlesiop sirey anljo-ysiAelb asped 3Ul Ul LIeg)| Wolj uepns ay) ul panguisiq Aayuow 19ALD
‘Yinos
3Y} Ul BOLYY YINoS pue ‘euemsiog ‘anbiquezoiy
"wiNj0J9s an|g asionbin e aney sajeN "yored [epneg . e ‘Imeey ‘elquiez ‘epuebn ‘eluezue] ‘eAuay

Aq paysinbunsip aJe saloadssing Jo siagquway “Ajj2q ayi Buoje pue 1eolyl ayl pmo  eldoiyl Jo SpUBMO| UISISea ayl 0] Yyuou auy ul
Buipusixa sirey anym ‘Bummuooqg e Ag pawel) ‘aoey 8yl JSA0D SIley YOeWEI0  BI[BWOS WIBYINOS pue ‘Uil 3yl Jo 1sea spueybly .«8EniyifiabAd e 'yD)

"di jre1 yoe|q e yum ‘|rel ayl o1 Buipuaikpoq [esiop ayl uo siiey mojaA-ysiAelo ‘Ao|mpd ueidoiylg ayr woly pawnguisia Asyuow 19NN
"winyoJos aniq Axs

' aAey sael |id] anym e pue 199} sfed ‘yn] fepned aliym BAY ApOg [esIop dAIj0 AU JO 10L1SIQ BUBRNINL
uy "Ieq reJjodwa) ay) | sipe|q JO pueq B Ag SISXSIUM Wol) paresedases) pu  axeT ayl pue ‘epuebn ‘uepns ayl 0] spiemisea o£nrewuel e 'yo)
MOJQ S)IYM Y "SIed ay) [eaduod 0] dn paysnigusysiniym Buo| Aq pawwill ade) yoe|g eueYD Ul ASaASAIY BIOA BU) JO 1Ska sabuey Aayuow snpejue |

Wwn)oJos an|q aed e aney SN "MOIJ 38U} UO SIBOIuYM ‘ueaqqued ayl ul SN 1S pue sopegleg

10 pueg ay1 syognaedes "e‘sploads ay) Jo Siaquiawl JISUeN 193} 0} PaINpPoJIUI USag Sky salnadsgns|sgueys

ared pue dn el mojjaA e yum ‘mojjaA pueigvysiuaalb ‘palo]oaiq SsI Apog [esiop Ul Wa1SAB\IY BIJOA 3U1 JO 1SOM 0] 1Sam ay] -shaeqges e 'yn)
3yl ‘simg)aA-ysippal ‘Jabuol Jo qiq e pue siaysiym Mdigppawrel) yoe|q A100S ul nessig-eauing pue s wWolj paingLisiq Aaxuow uaalo
suonougeIol0) abead uoledao aiydeliboas sal0adsqgns
‘uonnquIsip

olydeiboab uo sajou yusdoiyiae sngadolojy salnadsgns B8IsIp 01 uayel suolelleA 10j02 abejad Jo Arewwns T s|qeL



13

Compared with other semi-terrestrial members ofc@athecinae occupying
open habitats (e.gRapio, Mandrillus, Theropithecus Erythrocebu} vervet
monkeys are small and only moderately sexually doig in body size, with an
average adult female weight of 3.55 kg to the nsatel9 kg (calculated as the
average of nine mean body weights from captive \aitd studies reviewed in
Turneret al, 1994). Members of both sexes have a yellow t@emsh-brown
dorsal coat with long, white hair on the ventratip@nd a band of white hair on
the brow and along the cheeks, framing a sootykidiace (with the exception of
the pale-faceh. a. cynosurgs(Groves, 2001; Cawthon Lang, 2006). The skin
of the hands and feet is black or mottled black pale. Infants are born with a
black natal coat and pinkish skin on the face, baattl feet. Adult coloration is
gradually acquired by 12 weeks of age (Lee, 1988adh males and females of
the species have eggshell blue abdominal skin,wisienost visible in the adult
male scrotum (Chiarelli, 1972). Males have colodahitalia consisting of a sky
blue scrotum and a red penis and perianus surrauoyglong, white hairs. These
sexually-selected features are exposed during male-dominance displays and
are commonly referred to in the literature as thed; white and blue display”
(Struhsaker, 1967a; Durham, 1969).

Experimental manipulations of male scrotal colorcaptive populations
have demonstrated a link between color saturatnehraale-male aggression. In
a series of studies, Gerald (1999, 2001) found thales with similar scrotal
color exhibited greater aggression towards onehendhan males with different

scrotal color. Furthermore, male scrotal color haen shown to be positively



14

related to testes volume @h. a. pygerythrussuggesting that this trait may be
related to sperm competition (Daney al, 2011, in prep). Recent reports of
increasing scrotal albinism among island populatiofCh. a. sabaeysowever,
suggest a reduction in the sexual significancehete traits in this subspecies
(Geraldet al, 2010). The cause of this variation between subepaés unknown.

Vervets are primarily quadrupedal and are speedlifor terrestrial
running, which accounts for approximately 20% ofdmotion, and arboreal
climbing and jumping (Chiarelli, 1972; Fleagle, 999 Compared with the
almost exclusively arboreal guenons, the vervet kapnhas developed
anatomical adaptations (e.g., greater forearm, Harales only], foot and tail
lengths) suited for mosaic habitats requiring wrial as well as arboreal
locomotion (Anapokt al., 2005). These adaptations are argued to haveastt le
in part, permitted the vervet monkey to survived aven thrive, in heavily
human-disturbed habitats, such as those chardntevisthe Cape Verde and
Caribbean islands (Boultat al., 1996).

The maximum lifespan of vervet monkeys in the wddinknown due to
high incidence of predation but they are knownite between 11 and 13 years
in captivity (Fairbanks and McGuire, 1986; CawtHamng, 2006). Vervets are
preyed upon by a number of species in the wildusiog baboonsRapio spp);
leopards Ranthera pardus and other felids, including caracal€aracal
melanotig, servals Eelis serva), lions Panthera le® and African wild cats
(Felis silvestri$; hyenas Crocuta spp, jackals Canis mesomelagnd C.

adustuy, and raptors, including Verreaux’s eagle oBubo lacteus martial
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eagles PRolemaetus bellicosys and crowned hawk-eaglesStéphanoaetus
coronatu$ (Struhsaker, 1967a; Isbell, 1990; Cawthon Lar@)6}. Venomous
snakes, including Egyptian cobrddaja haje and puff-addersHitis arietans,
are also a source of potential harm to unwary \er{&truhsaker, 1967a). On the
islands of Barbados and St. Kitts and Nevis dags, ihtroduced to the islands as
pets, account for a considerable proportion of eemjuries and deaths (Isbell
and Enstam, 2002). However, of all of these, hunaasperhaps their greatest
threat. Vervets are actively hunted and eaten lyMoslim human populations
throughout their African distribution (Wolfheim, 89). In other areas, vervets
are considered agricultural pests and are extetedrizoth by private landowners

and by government programs (Hey, 1967; &tal.,1986).

ii. Diet and Distribution

Geographic Distribution and Habitat

Vervets are the most abundant of the cercopithecinekeys and are widely
distributed across the savannas and riverine ®m@ssub-Saharan Africa, from
Senegal in the west to Somalia in the east and fr@msouthern border of the
Sahara Desert to the southernmost point of SoutticaAf with the notable

exceptions of the Namib Desert of southern Afrind ¢he dense rain forests of
the West African countries of Nigeria, Cameroon,b@a Congo and the
Democratic Republic of the Congo (Table 1, Fig(Syuhsaker, 1967a; Fedigan
and Fedigan, 1988; Enstam and Isbell, 2007). Imtlie17" century populations

of Ch. a. sabaeudrom West Africa were introduced to the islands thé
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Republic of Cape Verde off the coast of Senegal thedCaribbean islands of
Barbados and St. Kitts and Nevis (Horrocks, 1986).

Persistent zones of hybridization exist betweerstnsaubspecies oth.
aethiops(see Detwilert al., 2005 for a comprehensive survey of hybrid zones)
(e.g., Ch. a. tantalusx Ch. a. pygerythrusalong the western shores of Lake
Abaya, Ethiopia and parts of Congo-Kinshasa [Dantgdel959; Dandelot and
Prevost, 1972; Lernould, 1988; Groves, 200CJ. a. aethiopsx Ch. a.
pygerythrus in Ethiopia [Dandelot and Prevost, 1972; Gruhal., 2003], and
Ch. a. djamdjamensig Ch. a. aethiops< Ch. a. pygerythrux Ch. a. tantalus
from southwest Uganda to western Ethiopia [Napl®81; Kingdon, 1997]),
with the exception of island populations@i. a. sabaeusn the Cape Verde and
Caribbean island<Ch. a. sabaeug Ch. a. tantalugTurner, 1977), an€h. a.
cynosuros Additionally, hybrids ofCh. a. pygerythrusand the guenon species
Cercopithecus mitisxave been recorded at Ngong Forest Sanctuary &ud D
Forest in southern Kenya (De Jong and Butynskip201

Although vervet monkeys have a relatively broadimmmental tolerance,
inhabiting such disparate biotic zones as tropiaal forest, lowland evergreen
forest, montane evergreen forest, thorn forestubs@nd the Mediterranean
evergreen vegetation of parts of South Africa (faarand Brain, 1968) and able
to tolerate temperature lows from -4°C at the filsouth Africa to highs up to
33.7°C in Cameroon, 40°C in Senegal and 50°C inolth (Nakagawa, 1999),
they typically prefer drier habitats than their goe relatives and primarily

woodland savannas and gallery forests along riazedsother water courses
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Fig. 3. Continental map of Africa with known distributioof Ch. aethiops
subspecies: (1Ch. a. sabaeys(2) Ch. a. tantalus tantalys(3) Ch. a. t.

marrensis (4) Ch. a. t. dugetti(5) Ch. a. aethiops(6) Ch. a. a. matschie(7)

Ch. a. a. hilgerti (8) Ch. a. djamdjamensig9) Ch. a. pygerythrus arenarius
(10) Ch. a. p. zavattarji(11) Ch. a. p. excubitor(12)Ch. a. p. rubella(13)Ch.

a. p. callidus (14) Ch. a. p. centralis(15) Ch. a. p. johnstoni(16) Ch. a. p.

nesiotes (17) Ch. a. p. rufoviridis (18) Ch. a. p. pygerythryg(19) Ch. a. p.

marjoriag, (20) Ch. a. p. ngamiensig21) Ch. a. p. helvesceng22) Ch. a.

cynoruos zone of hybridization (H). (Taken from Lernouk$88).

(Fleagle, 1999; Skinner and Chimimba, 2005). Alstike the guenons, vervets
do not occupy forests homogenously; rather, theximae fringe resources
between dense forests and open savanna grassf@adtail and Brain, 1968).
Vervets have also been observed to colonize resquoor habitats, such as the
mangrove swamps of West Africa (Zinnet al., 2002) and those disturbed by

human activity (Leet al.,1986).
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Diet

Like all other members of the subfamily Cercopiihae, vervets are
distinguished from the African Colobinae by mormwtal adaptations for a
predominantly frugivorous diet (e.g., flexible ckegouches; molars with high
crowns and low, rounded cusps; and a simple, nonAant gut) (Fleagle, 1999;
Groves, 2000; Enstam and Isbell, 2007). Like theedb guenons, vervets
regularly consume invertebrates, flowers, fruiedse leaves and tree gum and
are known to eat bark, grass and the stems, pithsavollen thorns of the
angiospermAcacia spp. (Kavanagh, 1978; Wrangham and Waterman, 1981,
Whitten, 1983; Isbelét al.,1998; Enstam and Isbell, 2007). However, unlile th
guenons, flowers (up to 50%) and even tree gum tu®0%) have been
demonstrated to constitute greater proportionshefadnnual diet of the vervet
monkey than fruit (see Table 2), leading some wgite suggest that vervets are
more accurately described as nectivores or floes¢wVhitten, 1988).

However, as illustrated in Table 2, the relianéev@rvets on particular
food items fluctuates greatly across study sitessmasons. For example, Barrett
(2009) found that the variable climate of northe®outh Africa produced
markedly different vervet diet profiles between twet and dry seasons (see
Table 2). Moreover, during the lean months of the skason vervets have been
observed to engage in more crop and food-raidinggiag strategies (Saf al.,
1999). The search for easily accessible food artérvehuring the dry season has

led vervets to utilize human-occupied areas and rkaslted in considerable
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conflict between humans and vervets (e.g., Brerataal., 1985; Boultonet al.,
1996; Sagt al.,2001; McDougallet al, 2010; McAuliffe Dorejn prep).

The ability of vervets to modify their diet to mamze the resources of the
various habitats they occupy, including disturbesha of secondary growth, has
earned them such titles as “opportunistic omniv@ed “eclectic feeder” and is
partly responsible for the widespread success @fsfiecies (Struhsaker, 1969;
Kavanagh, 1978; Leet al., 1986; Gautier-Hion, 1988; Estes, 1991). Much like
the macaques of India, Japan, Singapore, and etsewle.g., Fuentest al.,
2007, 2008; Hsu and Kao, 2009), vervets succegséxploit heavily human-
modified habitats such as tourist centers and udaaks (Fedigan and Fedigan,
1988). Human foods tend to be easily digested aagg-rich compared with
the protein-rich and fibrous mature leaves avadahlring the dry season (Quick,
1986) and regular intake of human foods has beewrsho be associated with
higher average BMIs in vervets (Pampush, 2010). 8thkty of vervets to adapt
to a wide range of environments is perhaps basitiited by the overwhelming
success of vervets on the Caribbean islands ofd8ladand St. Kitts and Nevis
compared with the failed introduction of the arl@rguenonCercopithecus
monato the island of Grenada, West Indies, 200-300syego (Fedigan and
Fedigan, 1988; Glenn, 1997). Moreover, prolongatad with humans has been
demonstrated to have a profound effect on the aitopun of technical skills by
vervets, such as operating door and window latdkes Van De Waal and

Bshary, 2010).



20

Vervets forage for food in small groups during they, exploiting open
savanna and human-populated areas, and retreasigndted sleeping trees at
the edges of riparian forest at night (Harrisor83;9-edigan and Fedigan, 1988).
In response to periods of resource scarcity anghéeature extremes during the
annual dry season, vervets modify foraging behayiepending more time
foraging in groups for uncommon foods; ranging grai, conserving energy
when food is sparse and expending energy whenegyredtirns are expected; and
defense of home ranges (i.e. degree of territoy)alKavanagh, 1978; Harrison,
1983, 1984; Fedigan and Fedigan, 1988; Lee and ddad®998). Priority of
access to clumped food resources (e.g. the newedeaggum and flowers of
Acacia tortilis A. xanthophloea and A. elatior) is awarded according to
hierarchical rank, with high ranking females spagdgreater amounts of time
eating these foods than low ranking females (Wijtt#983). It has been
suggested that the consumption of these foods sitiyaly correlated with
reproductive success in female vervets (Whitte®3).9perhaps due to antibiotic
properties (including condensed tannins) Atacia spp (Wrangham and

Waterman, 1981).

lii. Social Organization

Group Composition, Ranging, and Territoriality

Vervets live in relatively stable multi-male, meléimale social groups varying in
size from as few as two adults and accompanyingmgnts (Isbekt al., 1991)

to up to 140 individuals (Kavanagh, 1981; Isbell &oung, 1993), with a mean
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size of 25 (Struhsaker, 1967b; Fedigan and Fedit@288). Although group sizes
fluctuate greatly across habitats and seasons €T2phl adult mean sex ratios
remain fairly consistent at between 1.0 and 1.5alemto every male (Hall and
Gartlan, 1965; Struhsaker, 1967a, 1967b; Horrot@86; Fedigan and Fedigan,
1988). Unusual among most primates (and mammatgemneral), vervet males
tolerate the presence of other, reproductivelywactnales year-round. Several
explanations for this residence pattern have beepoged, including cooperative
defense of food (Isbekt al, 1991) or females (Wrangham, 1980; Andelman,
1986; Altmann, 1990; Mitaret al, 1996), defense against predation threat (Van
Schaik and Van Noordwijk, 1989; Baldellou and Her®92; Hill and Lee,
1998), and the size of the neocortex, which has pegposed to constrain group
size by limiting the number of social relationshipa individual is able to
monitor (Dunbar, 1992, 1995; Dunbar and Schult)720However, the most
convincing explanation, called the “limited dispdrdypothesis,” suggests that
the high costs of male dispersal across a highliabke landscape may favor the
formation of multi-male groups (Isbedt al, 2002; se®ispersa).

Following the hypothesis that primate group sizas @nging patterns are
determined by the intensity and type of exploitatt@mpetition (i.e. scramble or
contest), it is expected that terrestrial specrwarily reliant on a frugivorous
diet will tend to live in larger groups and occufarger home ranges than
smaller, arboreal and predominantly folivorous sgedqVan Schaik and Van
Hooff, 1983; Dunbar, 1998; Wranghast al, 1993). Accordingly, both vervet

group and home range sizes are predicted to fallesdere between those
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characteristic oPapio spp. (average group size: 55; average home range size:
1,352 ha; reviewed in Melnick and Pearl, 1987) @edcopithecuspp.(average
group size: 20; average home range size: 40 ha&ewed in Enstam and Isbell,
2007)(Chapman and Chapman, 2000).

However, comparisons show that while the averageeteyroup (25) and
home range (42 ha) sizes follow predictions ofttpeothesis (Struhsaker, 1967b;
Wolfheim, 1983; Fedigan and Fedigan, 1988; Enstath Ibell, 2007), the
species exhibits variation in group size and ramdiahavior substantial enough
both between and within populations to obscurerspiecific differences. Indeed,
depending on social group size and seasonal res@wailability, home ranges
can vary in size from as small as 9.4 ha to upli® ka (Wolfheim, 1983), and
day range lengths can far exceed these figuresT@ele 2) (Enstam and Isbell,
2007).

For vervet monkeys, the most reliable predictogm@iup size and activity
patterns, including ranging, is access to highitpalood resources. As
demonstrated by Isbell and Young (1993), althougie tspent feeding does not
significantly increase in resource-poor areas, greides tend to be smaller and
population densities higher, suggesting that lessgy is expended in expanding
and defending home ranges during periods of resosmarcity (Kavanagh,
1981). Other aspects of animal activity have alsenbshown to be influenced by
poor ecological conditions. For example, Isbell afmlng (1993) found that
individuals in smaller groups tended to allogroantoaver rates than individuals

in larger groups.
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Vervet monkeys are more territorial than member€efcopithecusand
fiercely defend small, semi-permanent territoriggiast invasions from other
troops (Struhsaker, 1967b; Cherstyal., 1981; Isbellet al., 1990). Encounters
between conspecific groups of vervet monkeys tyfyigavolve three different
aggressive vocalizations — intergrouprs, grunts, andong aars (Struhsaker,
1967c) — as well as agonistic chases and phyditzalka (Hauser, 1989; Enstam
and Isbell, 2007). However, individuals of diffetesexes, ages, and ranks behave
differently in response to intergroup encounteexhBps predictably, Cheney
al. (1981) found that individuals with the most toddsom intergroup incursions,
namely high-ranking females and adult males witk treatest access to
receptive females, engaged the most in intergrawgounters, whereas juvenile
males that have not yet dispersed from their ngtalps tended to behave

affiliatively towards individuals, especially fenesl, from other groups.

Dispersal

Like the females of many OIld World Monkey speciesgy(, Macacg Papio,
Cercopithecus female vervet monkeys remain in their natal gotheir entire
lives where they form linear rank hierarchies oigat along stable matrilines
and according to which priority of access to fowgter, and social and sexual
partners is organized (Chenetyal, 1981; Cheney and Seyfarth, 1987). Although
females rarely leave their natal groups, extrenoeigiits resulting in population

decreases and extinctions among the well-studiedetédroops of Amboseli
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National Park, Kenya, in the late 1970s and 198@pdiled several juvenile
females to join other troops (Haustral.,1986; Isbelkt al.,1990, 1991).

By contrast, males disperse to neighboring groapsexual maturity
(reached at approximately 3 years of age) and lestabominance hierarchies
through contest competition with resident males i{#®h and Turner, 2009).
Inter-troop male migration peaks at the onset efrttating season (roughly April
through October; Andelman, 1987) and is assocmittdincreases in male-male
aggression (Henzi and Lucas, 1980). The outcomesmafe dominance
interactions are determined by an array of factoduding age, length of group
tenure, availability of male relatives or otheried| and fighting ability
(Struhsaker, 1967b; Cheneyal.,1981). Males may migrate multiple times over
the course of their lives (Cheney and Seyfarth31&bellet al.,2002).

Dispersal has been shown to be highly correlateti wicreases in the
secretion of both testosterone and the mammalm@ssshormone cortisol in a
number of female-philopatric species (e@ebus apellaLynch et al., 2002;
Chlorocebus aethiopsvicGuireet al.,1986; Whitten and Turner, 2008yrocuta
crocuta Holekamp and Smale, 199Blacacaspp.: Muehlenbeiret al., 2004;
Papio hamadryasBeehnetet al., 2006;Propithecus verreauxBrockmanet al.,
2001). During dispersal, individuals experiencehkigrates of mortality from
predation and starvation compared with residenten@nspecifics and lose
opportunities to mate while alone (Isbetl al., 1993; Wolff, 1994; Alberts and

Altmann, 1995). Thus, dispersal represents a casidividual fitness.
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Unlike the forest guenons, vervet troops are restli to sleeping trees
located along narrow strips of riverine forest, hwitoops lined up one after
another rather than scattered homogenously thrauighe habitat (Enstam and
Isbell, 2007). This arrangement severely reducsgedsal options for males (i.e.
only two directions). Under the limited dispersgphbthesis, limited choices for
dispersing males as well as the relatively hight<@ssociated with migration
were significant enough in vervet evolution to fiéaie selection for a facultative
multi-male social system (Isbedl al.,2002). However, because vervet males do
not often disperse across long distances and dbawat an extensive “non-group
phase,” the costs of dispersal may be negligiblee(@@y and Seyfarth, 1983).
Thus, lack of dispersal choices is the more rolxglanation for multimale
residence.

A consequence of few dispersal options, parallgbelisal, in which males
emigrate from their natal groups with related madegoin troops containing
older relatives, is vervets. Patterns of paraligbersal result in a high probability
of genetic relatedness between resident and imntigraales (Cheneyt al,
1981, Isbellet al., 2002). According to the rule of inclusive fithesgrvets are
thus expected to have reduced male-male aggreastbfow rates of infanticidal
behavior (Hrdy, 1979; Isbedit al.,2002). Few instances of infanticide have been
recorded forCh. aethiopsand all cases of suspected infanticide (Fairbaamids
McGuire, 1987) and aggression towards immigrantemébtekliset al., 1985)
have occurred under captive conditions or in unentadops or troops with a low

relatedness quotient due to greater dispersal rptidsbell et al. 2002).
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Additionally, in contrast to females of other sanardwelling Cercopithecines
(e.g.,CercocebusPapio, Theropithecul the evolution of concealed ovulation in
female vervets can be understood in connection satéction pressures acting in
favor of the co-residence of related males and rdaegly, against infanticide
and male-male aggression (Andelman, 1987). Althobgih-ranking vervet
males tend to have higher reproductive success {banranking males
(Struhsaker, 1967b), there is no evidence for molgtion of copulations by
males or the formation of aggressive male coaktighndelman, 1987). Given
concealed ovulation and male co-residence charstiteof the species, the
reproductive payoff of these efforts would be smaHlis suggests that females
may selectively choose to mate with high-rankindemaluring estrous (Keddy,

1986).

Intragroup Relationships

As a consequence of sex-biased dispersal in vemadtgions between females
constitute the majority of all adult social intetiaos in the species (Rowell,
1988). Conversely, interactions between femalesrasident males are primarily
restricted to the mating season (Enstam and IsB&07). Female rank is
inherited maternally and is supported through tioalé of female kin against
unrelated individuals including resident males {Bsaker, 1967a). Both male
and female rank hierarchies are linear and ramdemonstrated through priority
of access to spatial positions (Struhsaker, 196fdmd (Whitten, 1983), and

grooming and mating partners (Seyfarth and Cheb@84), as well as through
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agonistic interactions (Isbell and Pruetz, 199&mkEle rank hierarchies remain
relatively stable over time and rank reversalsrare (Melnick and Pearl, 1987).
Following predictions of the social model hypotisesivhich predicts that in
primate societies with female philopatry and staliemale dominance
hierarchies, older, high-ranking females will be tbrincipal shapers of social
learning (Kendakt al, 2010), vervet matriarchs direct the transmissibeocial
traditions across generations (Van De W&tall,, 2010).

The strength of female dominance hierarchies imates is strongly
influenced by access to resources (Stestlal, 1997). Reliance on clumped,
monopolizable resources such as fruit and meabmsnwnly associated with
formalized nepotistic or despotic linear hierarshand higher rates of agonistic
behavior between and within social groups while ralant or dispersed
resources, such as plant material, are correlattbdegalitarian or individualistic
relationships among females (Clutton-Brock and dgni1977; Whitten, 1983;
Van Schaik, 1989; Isbell, 1991; Pruetz and IsB9I00; Sterck and Steenbeek,
1997; Isbell and Young, 2002). Although the omnows vervets tend to follow
general patterns of the socioecological model,athiéty of vervets to exploit a
diverse range of foods (see Table 2) and form teamgosubgroups during
seasonal periods of resource scarcity suggestelatirce competition may not
be the primary determinant of female dominancerautions for this species
(Altmann, 2009; Koenig, 2002; Sussman and Garb@Q72 Others have

suggested predation threat (Sussman and Garbe?,) 20@ group size and
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spread (Koenig and Borries, 2006) as potentiauerftes on the dynamics of
female social interactions in vervets.

Vervet monkeys have an extensive repertoire of haatéons, including,
but not limited to, affiliative grunts, alarm calknd intergroup trills (Struhsaker,
1967b). Using playback experiments, Cheney anda®iy{1980, 1981, 1982a,
1986, 1988) demonstrated that these vocalizatimrgam discrete, context-
dependent messages relating to the external wieddexample, predator alarm
calls produced by vervets were found to vary adogrdo predator threat (e.qg.,
Cheney and Seyfarth, 1981, 1985a; Seyfatthl, 1980a, 1980b; Seyfarth and
Cheney, 1990; Owren, 1990; Brownhal, 1992); that is, alarm calls for one class
of predators were structurally unique from all otlpgedator calls and were
recognized as such by all adult members of themrou

The specificity of these calls to particular predathas been suggested to
have evolved as a response to the 3-D predatosdapéd (Makiret al, 2012).
Vervets commonly utilize habitats characterized dogh aerial and terrestrial
predator threats. Thus, predator alarm calls apeard to confer a survival
advantage that outweighs the costs of evolving suslophisticated system. A
variety of other primate groups have been obsereegroduce referential
predator alarm calls (e.g.Cebus capuchinus Digweed et al, 2005;
Cercopithecus campbellzuberbihler, 2001Cercopithecus dianaZuberbihler
et al, 1997, 1999; Zuberbuhler, 2000plobus badiusStandford, 1995 ulemur

fulvus Fichtel and Kappeler, 200Propithecus verreauxiFichtel and Kappeler,
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2002; Pan troglodytesCrockford and Boesch, 2003), however, these cady
not always communicate response urgency (Perettd@acedonia, 1991).
Competency in the production and recognition esthvocalizations was
found to be gradually acquired during juvenescescggesting that, to some
extent, this represents a learned behavior (Séyf@nd Cheney, 1980, 1986,
1997; Hauser, 1989). Further study revealed theahzations are involved in the
formation and maintenance of vervet social relagps. In a series of papers,
Cheney and Seyfarth (1980, 1982a, 1982b, 1985bg)1€8monstrated that
vervets are able to recognize both kin and nonkihviduals based on their
vocalizations and classify individuals according dominance relations, rank
hierarchies, and matrilineal kinship based on themalizations. Furthermore, it
was found that individuals are able to remember Whbaved affiliatively or
agonistically toward them in the past and modifgitibehavior to reflect these
relationships. This ability to simultaneously manitmany relationships has been
suggested to exert a constraint on social group @eeGroup Composition,

Ranging, and Territoriality.

vi. Life History

Notable among OIld World monkeys, vervet femalesndb exhibit a defined
estrus period of perineal swelling within menstreyales (Rowell, 1970; Elegt
al., 1989). Instead, female vervets are characterigedobcealed ovulation and
prolonged sexual receptivity extending beyond teaga of maximum fertility

(Andelman, 1987). Mean menstrual cycle and meresgghs have been reported
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at between 30 and 33 days and 2.5 and 5.0 daysatesely (Johnsoret al.,

1973; Elseet al., 1986; Eleyet al., 1989; Seieret al., 1991). Menstruation
generally begins between 6 and 14 days before m@aklating estradiol
concentrations (Hes al.,1979).

In the wild, vervet monkey scheduling of reprodaontifollows a
marginally seasonal pattern for both males and liesn&leyet al., 1986; Elseet
al., 1986; Kudoloet al.,1986). Females generally give birth to a singfanhat
the beginning of the annual wet season (Novembeyugh May for South
Africa) when food is generally most abundant (Ssaker, 1967a; Gartlan, 1969;
Lancaster, 1971); however, in vervet populatiotmabiting Barbados births peak
in the dry season (Horrocks, 1986). In captivityvegs reproduce throughout the
year (Seier, 2005). Twinning has been observedwildg population; however,
both twins were not successfully raised to adulth@@ollack and Raleigh, 1994).

Mean gestation period lengths have been reportedaiative populations
at 165 days by Rowell (1970) and 163 days by Jahesal. (1973). Bramblett
et al. (1975) reported a mean interbirth interval for &envervets of 337.9 days,
but intervals commonly range from 183 to over 80y (Fairbanks and
McGuire, 1984; Lee, 1984a; Caeb al., 1995). Female rank is the most robust
predictor of female reproductive success in verwsith higher-ranking females
reproducing earlier and having shorter interbirtteiivals, more births per year,
and higher rates of infant survivorship than lowaking females (Whitten,

1983; Fairbanks and McGuire, 1984; Cheregl.,1988).
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Male reproductive success is influenced by a nurobéactors, including
male-male competition, female rank, and female guegfce for higher-ranking
males (Keddy, 1986). Males do not establish coips$sbr associate with females
outside of the breeding season (Keddy, 1985). Hewewa recent study
demonstrated that when the number of receptive lé=ria a population is few
males associate with females more than when reeefgeimales are abundant,
conforming to biological market theory (Frutestual.,2009).

Average birth weights are about 343-364 g for maled 318-352 g for
females (Seier, 1986; Clat al., 2002). Infants generally remain dependent on
their mothers for 12 months (Lee, 1987); howevesvet mothers typically
initiate weaning when the infant is about 3-6 menthld (Fairbanks and
McGuire, 1987). The timing of weaning is dependenta number of factors,
including availability of high-quality nutrition @e, 1984b; Hauser and
Fairbanks, 1988), the mother's reproductive expeee (Whitten, 1982;
Fairbanks and McGuire, 1987; Fairbanks, 1988a),maatérnal condition (Leet
al. 1991). In some wild populations it has been edechghat the abortion rate is
about 26% (Turneet al., 1987) and 30-57% of infants die in their first ye&
life (Cheneyet al.,1988; Eley, 1992).

In her review of alloparenting in primates, Hrdy9{6) observed that
alloparenting often involves the kidnapping andleiation of an infant by the
‘caretaker’ and sometimes results in harm or fgtadf the infant, causing a
reproductive cost to the mother. Infant kidnappiagd abuse has been

documented in a number of primate species (Mgcaca fuscataSchinoet al,
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1993; Papio cynocephalusShopland and Altmann, 1987; Kleindorfer and
Wasser, 2004Semnopithecus enteltudrdy, 1978).

However, in vervets, alloparental care does noteappo be abusive
(Struhsaker, 1971; Lancaster, 1971; Lee, 1984&tedn, allomothering is
suggested to benefit the mother by reducing theuamof time and energy
invested in infant care and the alloparent by mioyg parental experience
(Fairbanks, 1990). Supporting this reciprocal besefiypothesis, reports of
vervet allomothering suggest that nulliparous fexsaklated to the mother are
the most frequent caretakers (e.g., Struhsakerl;18hnsoret al., 1980; Lee,
1984a; Meaneet al., 1990). However, unrelated juvenile males and adult,
reproductively-active females, have also been eesketo care for infants (Krige
and Lucas, 1974; Fairbanks, 1988b). Adult malesndb generally engage in
parental care (Gartlan, 1969); however, lower-ragknales have been observed
to associate with groups of infants (Danggrs. obs.

Compared with six other Old World monkeys, RowetidaRichards
(1979) classified vervets, along with Sykes’ morkegs a fast-maturing, quick-
breeding species. Infants are nutritionally indejgem at 12 months of age
although adult dentition is not fully emerged uiadtout 40-67 months (Turnet
al., 1998; Bolter and Zihlman, 2003). In their analysfspatterns of physical
development in wild vervets, Bolter and Zihiman @3pfound that vervet body
systems develop in a mosaic fashion, with the bna@&turing first, followed by
the skeletal and dental framework, and finally nkeismass. Moreover, they

observed pronounced sexual dimorphism in the raté taming of physical
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development, with females attaining adult propoi@arlier than males (Bolter
and Zihlman, 2003). Age of first reproduction i9ab36-41 months for females
(Fairbanks and McGuire, 1984). Males reach sexuwdlrty considerably later,
at about 46 months of age (Hiyaoka al., 1990; Bolter and Zihiman, 2003);
however, they may not successfully reproduce latgk in life (Keddy, 1986).

Like in many other Old World monkey species, playngtitutes a
considerable part of infant and juvenile vervetidist (Fedigan, 1972; Rose,
1977; Fairbanks, 1993; Govindarajdtal., 1993). Fairbanks (1993) has argued
that play in vervets encourages physical fitneskfaailitates learning about the
outside world. A similar argument has been made &onumber of animal,
including primate, taxa (e.g., Poirier and Smit@74; Smith, 1982; Caro, 1988;
Burghardt, 1998; Byers, 1998; Spinkd al., 2001). Although play is not
estimated to be a significant energetic cost (Marii984), Lee (1984b) found
that juvenile vervets typically engage in more higtensity play behaviors when
food densities are higher. This suggests that sedispmay have some influence
on the behavior of infant and juvenile vervets. leger, ecological stress does
not appear to inhibit the ability of vervets to sessfully reproduce (Lee, 1984a
citing long-term data from Cheney and Seyfarth).

Predation accounts for up to 70% of adult vervethkey deaths in the
wild (Isbell 1990). While reproductive senescenees fbeen demonstrated for
only a small number of nonhuman primates (e.g. Bawd1979), in a
comparative study of several primate species, €aab. (1995) found that while

some females continue to reproduce their entirdt dohes, others stop well
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before death. This pattern parallels but does pptaimate human menopause.
Whether or not a menopause-like postreproductiveogesxists for nonhuman
primate females is still debated. Altmann (198 Quad that nonhuman primate
females do not consistently exhibit a complete atg®s of reproductive potential

and therefore cannot be considered to have a masabgeriod.

C. Life History Theory

Life history theory describes all components of liteeof an organism — how big
it will be at birth, how fast it will grow, when will start reproducing, how many
offspring it will have, how long it will live — inorder to arrive at an
understanding of the evolutionary forces that stapegStearns, 1976, 1989,
1992; Van Noordwijk and De Jong, 1986; Hill, 1993jl and Kaplan, 1999;
Leigh and Blomquist, 2007). Evolutionary theory ¢iots that selection will
favor phenotypic traits that confer a fithess adage measured as reproductive
output (Darwin, 1871). Drawing from this basic terde history theory attends
to the very simple question: Why not have more pffgy? An answer is
approached through the notion of trade-offs.

“Trade-offs” refers to the negative correlatiortvbeen life history traits;
that is, the fithess costs associated with thecallon of energy, a limited
resource, to one aspect of the life course ovethan¢Clutton-Broclet al.,1982;
Rose, 1983; Reznick, 1985; Stearns, 1989, 1992).ekample, early sexual
maturation is often associated with early termoratof the life span (see for

example Miyatake, 1997; Leret al., 1994; Djawdaret al., 1996). Life history
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theory predicts that selection will favor suitestddits that code for the most
efficient allocation of time and energy resourcdseqy constraints of the
environment to four competing events in the lifairse: growth, storage, and
reproduction (Gadgil and Bossert, 1970; Stearn6,19992, 2000; Partridge and
Harvey, 1988; Hill and Kaplan, 1999). However, ol schedules of resource
allocation vary widely across taxa (38emparative Life Historigs The concept
of life history trade-offs has been instrumental explanations of observed
variation in the timing and shape of key event@nditions, and phases in the life
course both between and within species by providifiggmework that considers
all aspects of an organism. Although heuristic tegain extent, imagining life
as a sequence of facultative “decisions” inextiigdinked to a fithess value has
drawn attention to the mechanisms underlying pasgtef phenotype expression.
The focus of life history theory on the variabtese and energy follows
from the principle that fitness is constrained hg &bility of an individual to
harvest energy from the environment and convett ¢hargy into reproductive
output over unit time (Hill, 1993; Hill and Kaplai999). Specifically, natural
selection is expected to act on life events reltbesje-schedules of reproduction
and mortality, such as age at first reproductiaterbirth interval, and lifespan,
given that fitness is calculated as intrinsic @tércrease and is derived from the
sum of reproductive output of each year lived (Wehnd Wheeler, 1995).
Although much of the language of life history theemphasizes selection at the
level of the individual, trade-offs ultimately futh@n to shape the evolution of

taxon-specific ‘norms of reaction’ — the array adspible life history features
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produced by the genotype across a range of enventsm(Gomulkiewicz and

Kirkpatrick, 1992; Worleyet al, 2003).

I. Comparative Primate Life Histories
Body and brain size have long been recognizedadigr mammalian metabolic
rates according to the law of surface area (Kleid®47; McMahon, 1973;
Gould, 1975a; Martin, 1981; McNab and Eisenber@919Vhite and Seymour,
2003), and have been proposed to account for muclhe variation in
mammalian life histories (Western, 1979; Westerh 8semakula, 1982; Harvey
and Clutton-Brock, 1985; Smith, 1992). The studydportion as a function of
scale, ‘allometry’ is concerned with how life histdraits scale to size measures,
such as limb length (e.g., Aiello, 1981, 1984)nahcapacity (e.g. Pilbeam and
Gould, 1974), and tooth size (e.g., Gould, 1975bg&ich and Smith, 1985).
Size effects have been proposed to influence thersity of structural
forms among related taxa (Gingeriehal.,1982; Shea, 1992; West al., 1997;
Leigh et al., 2003; Purviset al., 2003) and have been used to predict such life
history parameters as reproductive rate (e.g., #nd974; Reiss, 1991; Ross
and Jones, 1999), growth rate (e.g., Gould, 1968aM 1977; Pontieret al.,
1989), and lifespan (e.g., Sacher, 1959; Promisl®®3). However, size alone
does not provide a complete explanation for difieess in mammalian life
history components, which have been found to syatieally co-vary across taxa
independent of size effects (e.g. brain, body, a@onatal weights: Harvey and

Clutton-Brock, 1985; Promislow and Harvey, 1990)r Example, although the
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dental complement has a strong allometric effebg indriid primates of
Madagascar show accelerated dental developmentdiayed growth of the
skeletal framework and delayed sexual maturatiard{@yet al, 2003).

An alternative explanation suggests that taxormifipe life history
strategies are the result of selection acting ooombination of life history
variables adapted to rates of adult extrinsic nhtytand are only marginally
constrained by size effects (Partridge and Hari888; Promislow and Harvey,
1990; Harvey and Purvis, 1991; Janson and Van kch@b3; Kappeler, 1996;
Janson, 2003; Johnson, 2003; Puetial.,2003; Rubenstein, 2003). Supporting
this hypothesis, a growing number of studies h&neve that when phylogenetic
effects are removed, variation in mammalian lifestdry traits does not
significantly correlate with allometric scaling nse@es (e.g. brain size and
metabolic rate: Read and Harvey, 1989; Hamiesl.,1991; Harvey and Keymer,
1991). Following from this hypothesis, the expressof “timed” phenotypes,
such as weaning, dispersal, and reproduction, whrehdirect components of
lifespan, may provide particular insight into thauses of variation in energy
production and allocation in the life historiesredmmals (McNab, 1988; Smith,
1992; Enquiset al.,1999; Hill and Kaplan, 1999).

Drawing on techniques of allometric scaling, tralochronic’ model
scales life history traits to life span or othemeéd events in the life course
(Smith, 1992; Glazier and Newcomer, 1999). Rateml(@gous to size) and
patterns (analogous to shape) of life events asdedcto taxon-specific age

schedules of reproduction and mortality, providantink between the timing and
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pattern of events in life history and dynamics ofergy production and
allocation. For example, early age at first repataiun tends to coincide with
other stereotypically “fast” traits, such as retaly high mortality rates, large
litters, short interbirth intervals, and short I§pans (Mangel and Stamps, 2001,
Bielby et al.,2007). Although few empirical studies have made afsit (see for
exception Smith, 1992; Glazier and Newcomer, 198 allochronic model has
the unique potential to reveal interrelations & history traits and explain how
suites of traits correspond to constraints of tfespan, and therefore conditions
of the environment.

Introduced to ecology by MacArthur and Wilson (I86r- and K-
selection, in whichr refers to the maximum intrinsic rate of increasd & is the
carrying capacity of the environment, has sincend@eadened by Pianka (1970,
1972), Gadgil and Solbrig (1972), and Stearns (19BF7, 1989) to describe
variation in the “pace” of mammalian life historiea&hereag-selected taxa are
opportunistic, characterized by early maturatibte, production of many, “cheap”
offspring, and early termination of lifé{-selected taxa exist at or near the
carrying capacity of the environment and gain aroépctive advantage by
increasing the competitive ability of each offsgrifsee for review Parry, 1981).
Ther- andK-selection model produces a fast-slow continuumammalian life
histories, in which most mammals exist somewheravdéen the extremes.
Although it has been the subject of criticism (edgirstonet al, 1970), taken
heuristically, ther- and K-selection model contributes elements of density-

dependent regulation, resource availability, andrenmental variability to more
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widely accepted density-independent demographic etsodBoyce, 1984;
Reznicket al, 2002).

Compared with those of most other mammals of aintibdy size, primate
life histories tend towards the “long-and-slow” eodthe continuum. Primates
are characterized by relatively low rates of prdauncand growth, long gestation
periods, long interbirth intervals, the productioh few, large neonates, low
juvenile and adult rates of extrinsic mortality,ndp lifespans, and delayed
reproductive maturity (e.g., Harvey and Clutton-&k01985; Promislow and
Harvey, 1990; Pereira, 1993; Ross, 1998; Ross ands) 1999; Mace 2000;
Leigh and Blomquist, 2007). Reprinted from Charreavd Berrigan (1993),
Figure 4 describes the average adult life span amerage age at first
reproduction of two primate taxa compared againsaraple of other mammals.
The primate averages are well above those of theramammals sampled,
suggesting that primates have considerably slower Histories than other
mammals of similar body size.

Variation in life history variables between primapades is such that the
fast-slow continuum can also be found within thienate order (Kappelest al.,
2003). Differences in the pace of primate life digts are most pronounced
between the phylogenetically primitive strepsirhpranates and the anthropoids.
For example, the gray mouse lemur, a small prosimpaimate, reaches
reproductive maturity within a year of birth andbguces two or more litters of
two offspring each per season (Wrogemanral., 2001; Andrés and Solignac,

2003; Génin, 2008), whereas relatively long-liveatiltp females give birth to
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singleton infants at intervals of four to six yeafter transferring from their natal
groups at seven to ten years of age (Watts, 198@arDand McNeilage, 1998;

Stokeset al.,2003; Robbingt al.,2004).
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Fig. 4. Average values for age at reproductive maturity rheasured from
weaning to age at first reproduction) and adudt §pan (measured as the inverse
of the average adult instantaneous mortality rstefor a sample of primates
and other mammals. (Taken from Charnov and Berritya83).

ii. Male Life History Strategies

Life history parameters of most male mammals am@pstl by the organizing
principle that male reproductive success is limibgdaccess to reproductively
viable females (Darwin, 1871; Wade, 1979; Anderssb®94). Conversely,

female reproductive success is shaped by condibbmsenstruation, gestation,
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birth, and lactation, and does not appear to bé&danby the ability to attract
mates (for exceptions see Johnson, 1988; Rosen980; Owenst al., 1994).
While males also invest in reproduction through rs@ogenesis, the
development of secondary sexual attributes, matgettion, and even parental
care, reduced male investment in gametes and pareate increases their
potential rate of reproduction, resulting in an mpenal sex bias in favor of
males (Trivers, 1972; Clutton-Brock and Vincent,919 Clutton-Brock and
Parker, 1992; Kvarnemo and Ahnesjo, 1996; Kokko #&mmhaghan, 2001;
Clutton-Brock, 2007). Although metabolic costs ass®d with spermatogenesis
can reduce survivorship in some animals (eAustropotamobius italicus
Rubolini et al., 2007; Caenorhabditis elegans Van Voorhies, 1992;
Notophthalmus viridescen$akahashi and Parris, 2008ipera berus Olssonet
al., 1997), competition for access to reproducing lesiaepresents the limiting
factor of primate male reproductive success.

In consideration of sex differences in energy itwveEst in gametes, males
are expected to have a higher potential reprodeictte than females (Parketr
al., 1972; Clutton-Brock and Vincent, 1991; CluttoreBk and Parker, 1992).
Sexual dimorphism in reproductive success was fitstnonstrated in the
common fruitfly Orosophila melanogasterby Bateman (1948) and has since
been substantiated for a number of animal taxa, @.gnelanogasterPartridge
and Farquhar, 1983Enallagma hageni Fincke, 1986;Gryllus bimaculatus
Simmons, 1988Mirounga augustirostrisLe Boeuf, 1974Papio spp.: DeVore,

1965; Rana sylvatica Howard, 1980). However, a recent replication of
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Bateman’s classic experiment wilh melanogastereported little evidence to
support the claim that the sexes differ in fitnpssential as a consequence of
disproportionate investment in gametes (Gowaty al, 2012). Moreover,
reproductive output of males cannot exceed thafeofales (Queller, 1997).
Thus, it is perhaps more accurate to say that naake€xpected to have higher
rates ofvariation in reproductive success than females (see Kaktkal, 2006
for review).

In his oft-cited treatise on sexual selection, &rs/(1972) argued that
sexual dimorphism in behavior and the expressiasuoh secondary sexual traits
as size, color, and the development of the vocgagius is a product of
differential investment in parental care. Among nmates, species with
polygynous social systems, wherein males engagaténse competition for
access to females, exhibit greater sexual dimamphmscanine length and body
size than monogamous or polyandrous species (@HBtock, 1977; Harveyet
al., 1978; Plavcan, 1999). However, the strength isfalhgument has been called
to question (Wade, 1979), and factors includingl@igny (e.g. Cheveruet al,
1985), allometric effects (e.g., Leutenegger andcewelud, 1982; Fairbairn,
1997), predation pressure (e.g., Leutenegger anly,KEQ77; Harveyet al,
1978; Anderson, 1986), and diet (e.g. Ford, 199yehbeen proposed to
influence sexual size dimorphism.

Male reproductive competition represents a cemtesérminant of taxon-
specific patterns of social group organization addlt sex ratios. For example,

differences between single-male and multi-male iaxiestes size are such that
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relative testis size has been used to predict @ngisystem of taxa for which
only anatomical data exists (Dixson, 1995). A numifeexplanations have been

proposed to account for different mating systenthénorder primates.

Harcourt et al. (1981) suggested that breeding season length may

determine mating system. In taxa with a short brepgeason, a single male may
not be able to monopolize access to all reprodelgticeceptive females given
that frequent copulations reduce sperm quality antput (Harcourt, 1991;
Harcourt et al., 1995), thus resulting in a multi-male system; veasr an
extended breeding season may enable a single matarpetitively exclude all
other males.

Shorter breeding seasons are also expected tasbeiasd with selection
for increased investment in sperm-producing tigstercourtet al., 1981). This
hypothesis was substantiated by Ridley (1986). aftm (1990) called to
guestion Ridley’'s categorization of breeding seadengths and instead
suggested the number of adult females in a groupredicted by resource
abundance to represent the most important deteninimfamating system (see
also Emlen and Oring, 1977). This hypothesis waspsted by Andelman
(1986), who demonstrated that cercopithecine grevtisless than five females
tend to be single-male and groups with more thari@males are multi-male.

Predation (Clutton-Brock, 1989; Van Schaik and kereann, 1994) and
infanticide risk (Van Schaik, 1996; Van Schaik dtappeler, 1997) have also
been offered as possible explanations for pattefrecial group organization.

Although interspecific patterning of social grouganization and mating system
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may be determined by one or a combination of tlias®rs, it is important to

note that considerable variation exists within ggget¢hat may be influenced by
conditions of the environment, such as seasonatuiftions in temperature and
rainfall or anthropogenic modification of primatealitats (Fuentes, 2007,
Thierry, 2007, 2008; Chapman and Rothman, 2009).

Although traditionally approached from a reprodwetor evolutionary
ecology perspective, infanticide is ultimately ebjsat of life history as both
frameworks attempt to explain the evolution of phtgpes, particularly those
relating to individual reproductive success (Chishet al, 1993; Stearns, 2000;
Kaplan and Gangestad, 2004). Infanticide has bedlhdecumented in primates
(e.g., Cercopithecus mitisButynski, 1982;Macaca spp.: Soltiset al., 2000;
Papio spp.: Palombitet al., 2000; Weingrill, 2000;Presbytis entellusHrdy,
1974; Hausfater, 1982; Newton, 1986) and other malife.g. Mus musculus
Huck et al., 1982; Brooks and Schwarzkopf, 1983anthera leo Pusey and
Packer, 1994Rattusspp.: Mennella and Moltz, 1988ysus arctos Bellemainet
al., 2006) and is generally considered to be a prodfisexual conflict (Smuts
and Smuts, 1993; Van Schaik and Kappeler, 1997;3@&maiket al.,2004). Hrdy
(1974) was the first to suggest that the killingirdants by recently immigrated
or dominant males may confer a reproductive adggntby hastening the
mother’s return to estrus and increasing the malebability of successfully
siring offspring due to his new social status.dsponse, females have evolved a
number of counter-strategies, including sexualaigg through genital swelling

(e.g., Zinneret al, 2004; Engelhardet al, 2005), promiscuous mating (e.g.,
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Agrell et al.,1998; Wolff and Macdonald, 2004; Kowalewski andéza, 2010),
and developing “friendships” with resident maleg(eVan Schaik and Kappeler,
1997; Palombit, 2000; Weingrill, 2000; Nguyen al, 2009). Although hotly
debated (e.g., Dolhinow, 1977; Bartlegt al, 1993; Sussmart al, 1995),
Hrdy's explanation remains the best supported exglan for infanticide in

primates.

iii. Life History Variables in Ontogeny

As a consequence of their slow growth rate, primapend an extended amount
of their lives as juveniles. Investment in thiglgtage represents a central trade-
off between energy expended on growth and sunawal energy expended on
reproduction (Stearns, 1989, 1992). However, tleeation of energy to growth
may ultimately increase individual fitness by reidigc predation risk through
increased size or by enhancing intrasexual conmgetigbility (Nylin and
Gotthard, 1998; Hill and Kaplan, 1999; Mace, 20009r example, following
from predictions of sexual selection theory, inuestt in the development of
SSCs, such as the vocal apparatus required foprthauction of characteristic
long calls of orangutan males (Mitani, 1985; Schdmm and Van Hooff, 1986;
Delgado, 2006) and the bright pelage and sexual stioration of male drills
and mandrills (Setchell and Dixson, 2001; Maetyal., 2009; Setchelkt al.,
2005, 2006), confers a reproductive advantage falesnof primate groups in
which male fitness is defined through competitiothveonspecifics and female

choice (West-Eberhard, 1979; Small, 1989; Setarall Kappeler, 2003).
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In the model proposed by Charnov and Berrigan (),99atterns of
juvenile development set the pace of adult livesabse energy allocated to
growth during the juvenile period is converted inéproductive effort following
growth cessation at adulthood. Thus, increasedstnvent in growth ultimately
results in an increase in the net energy avail&dreeproduction over the life
course (reviewed in Leigh and Blomquist, 2007). terms of metabolic
expenditure, Charnov and Berrigan (1993) dividedbeelopmental period into
three distinct stages, each characterized by ardift growth function (Fig. 5).
First, the costs of growth of an individual fromettime of conception until
weaning are almost entirely absorbed maternallpudin lactation and food-
sharing (Altmann and Samuels, 1992), but may atéssupplemented by alternate
caregivers (e.g. Callitrichidae: Garber and LeigB97). From weaning until
adulthood, which is commonly taken as age at feptoduction (Pereira, 1993),
the energy costs of further growth as well as tbeetbpment of secondary sex
characteristics are taken up by the individual witimimal provisioning by the
mother or other related individuals (e.g., Schesatel Nash, 1977; De Waal,
1989; De Waalet al, 1993). At growth cessation, energy gained dutimg
growth period is converted into reproductive effort

The timing of life stage transitions is mediateddspects of the physical,
biotic, and social environment, most notably byesabf extrinsic mortality.
Theories of the evolution of aging predict thatamgms that experience high
rates of mortality attributable to extrinsic factpsuch as predation, starvation, or

disease, will evolve high intrinsic rates of mattali.e. early senescence and a
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short lifespan (Williams, 1957; Hamilton, 1966; Abrs, 1993; Holliday, 2006).
Following from the principle of trade-offs, the litimg effects of rates of
extrinsic mortality on the lifespan are expectedd&iermine species-specific
dynamics of growth, maturation, body size, and adpction (Promislow and
Harvey, 1990; Stearnst al, 2000). As mentioned earlier, the juvenile period
represents an important determinant of lifetimerodpctive success. Because
juvenescence is characterized by nutritional inddpace from the mother and
entrance into an adult ecological niche, juvendes particularly vulnerable to
starvation and foraging-related predation. In thewenile risks’ model, Janson
and Van Schaik (1993) propose that this risk isimiied in primates through
the adoption of a slow-growth strategy, prolongithg juvenile period but
lowering the risk of death per unit time. Additidlgaa prolonged juvenile period
may confer a fithess advantage by allowing an inddial sufficient time to attain
the ecological and social skills necessary to ssfodly exploit the adult
foraging niche and navigate social life.

The transition from one developmental stage tontyd is associated with
a shift in life history priorities and, accordingiyhe uptake of a different fitness-
maximizing strategy (reviewed in Pereira and Le@®03). Given that it is under
directional selection, inter-individual differences resource-acquisition ability
more than allocation strategy may better preditiefs (Huntet al, 2004).
However, the timing of changes in energy allocatitom somatic growth to
reproduction reflects a fundamental trade-off betweeproductive rate and

reproductive span (Johnson, 2003), and consequeaetlyesents an important
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determinant of individual fitness (e.g. Kappele®94). Moreover, the timing of
this life history event affects both the rate améation of changes in population
size (Stearns, 1992; Pereira and Leigh, 1993; Adband Altmann, 1995). For
example, in populations characterized by a positie¢ growth, individuals
favoring a strategy of early sexual maturation expected to have a higher
fitness value because each current offspring pmediuepresents a higher
proportion of the population than each future affsp relative to mortality risk
(Hill, 1993). The opposite pattern is expecteddopulations of decreasing size.

Although species-specific generalities are ofteredusn life history
research, variation in life history traits existstween individuals of a single
species which shape individual reproductive suceess fitness. Variability in
life history traits within a species may arise ime@f two ways. First, phenotypic
plasticity can occur when the norms of reactiondorindividual interact with a
variable environment to produce the most efficigidcation of resources, often
corresponding to a change in form or activity (Nyéind Gotthard, 1998; West-
Eberhard, 2003). Over time, such changes may beé®ptein the population as
alternative strategies.

For example, orangutan males lacking the pronoumsesdally selected
features characteristic of the species, termedetPBan” or “sneaker” males,
contribute to the gene pool through sexual coerct®econd, variability in a
population may reflect a maladaptation. Some imfdials are of higher quality
than others (Kokko, 1998). Thus, examinations ofiat@n in the force of

selection operating at different times in the tfaurse of an individual as well as
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differences in life history strategies among induals are central to our

understanding of the evolution of diversity amomignate life histories.

Toe—

APESED

Baby Juvenile
Birth Mom Controls ind d Growth Law Production of Offspring
ir Growth ~ 'ndependence dW/dt=AWP ] (Follows Growth Law)

Density Dependent and Declining el Constant Aduit l_\AortaIity
Juvenile Mortality Natural Selection |mposed by Environment

Fig. 5. Representation of the life history model propobgdCharnov and Berrigan
(21993) which diagrams three life history transigaefined in terms of energetics:
(1) infancy, taken as the period from birth to wiagrduring which individual costs
of growth are met by the mother; (2) juvenescefioe) weaning until reproductive
maturity growth is a condition of individual metdico expenditure and (3)
adulthood, at which time growth is converted irgproductive effort. (Taken from
Charnov and Berrigan, 1993).
D. Hormones and Life Histories
i. Testosterone and the Endocrine System
Sex-specific hormones, most notably T in malesesttbgens (estradiol-gand
estrone) in females, are important determinantsmainmalian reproductive
function. Their roles include controlling differéation of the brain and gonads,
maturation of reproductive organs, control of egengvestment in gametes,

development of secondary sex characteristics, amailation of sexual behavior

(Selcer and Leavitt, 1991). Hormones control repobige function by means of
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a series of feedback loops along the hypothalamigtary-gonad (HPG) axis.
This system acts in an episodic or pulsatile faghiath hypothalamic pulses of
gonadotropin-releasing hormone (GnRH) or GnRH-tikalecules regulating the
release of the gonadotropic hormones (GtHs) feHstimulating hormone (FSH)
and luteinizing hormone (LH) from the anterior [igmy gland (King and Millar,
1991). The HPG axis also plays a role in the rdmraof other pituitary
hormones, effects on the placenta, gonads, anaady&and, and activity in the
central and peripheral nervous systems (CamerdQ;1%vyet al.,1991; Finn
et al.,1998). GnRH along with the other releasing hornsofeeg., corticotropin-
releasing hormone, thyrotropin-releasing hormoonejatocrinin) are secreted by
peptidergic neurons of the hypothalamic median ente and transported to the
anterior pituitary by means of veins of the hyptah#o-hypophyseal portal
(HHP) system (Nelson, 2000). GnRH exists in twarferin mammals, GnRH 1,
which regulates GtH release, and GnRH Il, which besn suggested to act as a
neuromodulator and has been demonstrated to stemsgaual behavior (Neiét
al., 2001; Millar, 2003, 2005). GnRH activity is meodeed by a number of
neuronal systems within the central nervous sygtensS), including those that
regulate the release of such neurotransmittersoeepimephrine, serotonin, and
endogenous opiate peptides (Zheng, 2009). Bindteg for GnRH analogs have
been demonstrated in the testicular Leydig cell$ avarian granulosa cells of
mammals and GnRH-like peptides have been founcesticular extracts and
follicular fluid (e.g., Hsueh and Schaeffer, 1988ijlar and King, 1987; King

and Millar, 1992; Okubo and Nagahama, 2008). Algiouinterspecies
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differences exist in the control of the GnRH systeyrthe CNS, most structural
and chemical aspects of reproduction, particuldngéyhypothalamic-pituitary axis
(HPA) and the HHP system, are identical among beates (Lavyet al, 1991).
The hypophyseal GtHs LH and FSH directly affea tjonads in the
control of the development, maturation, and releefanammalian gametes
(Licht, 1979; Ishii, 1991). In females, FSH and Ltbntrol the development and
function of ovarian follicles. FSH binds to membeamceptors of the granulosa
cells of immature ovarian follicles to stimulate Litdceptor activity and the
release of aromatase (Erickson and Hsueh, 1978kdemet al, 1979). LH, in
turn, stimulates the production of androgens, @ty T and %o-
dihydrotestosterone (DHT) (Nelson, 2000). Thesesarzeted by thecal cells and
stored in the follicular cavity until they can benwerted to the female sex steroid
estrogen by the granulosa cells (Bagtdal, 1981). In the testis of males, FSH
and LH play different roles. FSH targets Sertoliscen the seminiferous tubule
to activate spermatogenesis and increase the symtlod proteins such as
androgen-binding protein, plasminogen activatogtgn kinase inhibitor, and
gamma glutamyl transpeptidase, and LH targets #yelilg cells in the interstitial
tissue to stimulate the secretion of androgendudirg T (Steinberger, 1971,
Bremneret al, 1981; DiZerega and Sherins, 1981; Swerdloff amdbdd, 1981,
Ishii, 1991). T secreted by the Leydig cells aetsconjunction with FSH on
Sertoli cells in the activation of spermatogenééhka, 1986). Although Leydig
cells do not have FSH receptors, FSH directly iases sensitivity of the testis to

LH at puberty (Fakundingt al, 1976). Gonadal hormones have an inhibitory
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effect on GnRH activity, mediating the secretiontlod GtHs, possibly through
the suppression of GnRH secretion and the suppressif pituitary
responsiveness to GnRHs (Clayton and Catt, 1981sW#to and Bremner,

1984; Singlet al, 1995).

ii. Testosterone and Male Life Histories
T and the other androgens (i.e. androstenedioneD&id act on the accessory
ducts and glands of the male reproductive traet,sécretory products of which
are critical to the production of functional spernd maintain the accessory sex
organs, including the prostate, seminal vesicled, laulba urethra glands (Knorr
et al, 1970; Nelson, 2000). Androgens also support Xpeession of SSCs, such
as the development of the vocal apparatus usdtkifohg-calls of many primate
species (e.g., Wickt al, 2003; Fischeet al, 2004), vibrant coloration of the
pelage and dermis of mandrills, vervet monkeys, athérs (e.g., Wickings and
Dixson, 1992a, 1992b; Setchell and Dixson, 2001jt\& al, 2003; Danzy,
2012) and sex dimorphism in body size and musclesnfeeviewed in Wells,
2007). Although primarily associated with the iaiton of spermatogenesis and
the maintenance of the reproductive tract, andregday a prominent role in
regulating respiratory metabolism and are linkedntany diseases, such as
prostate cancer, endometrial cancer, breast caostepporosis, and loss of
libido (Chang, 2002).

Hormones act as intermediaries between the physimsafonment and the

internal architecture of an organism, acting bdttha level of genes and whole-
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body phenotypic traits, including behavior, in sdions between life history
stages, such as maturation and reproduction (ksetteand Nolan, 1992; Hau,
2007). T has been a focus of male life historytdralue to its effects the
expression of SSCs, courtship and mating behaJers., vocalizations and
presentations, copulatory behavior), and aggres@an mate guarding, male-
male competition, territorial behavior), and sumsreg immune function
(Folstad and Karter, 1992; Owen-Ashleat al., 2004; Muehlenbein and
Bribiescas, 2005) and parental care (Marler and nelob988) (see Table 3 for
summary). Interconnections between patterns of cfeien and reproductive
behavior are supported by experimental manipulattodies (e.g., Moore, 1984;
Hegner and Wingfield, 1987; Kettersehal, 1992; De Riddeet al, 2000).

In primates, the correlation between circulatingele of T and aggressive
behavior is tenuous. An almost equal number ofistudupport (e.g., Bernstein
et al, 1979; Albertset al, 1992) and refute (e.g., Steklet al, 1985, 1986;
Nieuwenhuijsenret al, 1987; Lynchet al, 2002) the association. More recent
studies (e.g., Cavigelli and Pereira, 2000; Mudled Wrangham, 2004; Whitten
and Turner, 2004; Archer, 2006; Cristobal-Azkarateal, 2006; Gould and
Ziegler, 2007) have looked at seasonal or evemedrivariability in the
relationship between T and aggressive and repro@udiehavior using the
challenge hypothesis as a theoretical startingtpBiroposed by Wingfielét al.
(1990), the ‘challenge hypothesis’ suggests thaualéy selected behaviors in
males of species that compete for reproductivesactee females, the expression

of which are a function of circulating androgensod fluctuate in response to
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challenges of the social environment (see also ¥Mlay 1984; Wingfieldet al,
1987, 2001, 2006). While expectations of this higpsts suggest that circulating
levels of T should increase in preparation foricaitmoments in the life course,
empirical evidence in primates is mixed. A numbérstudies have shown
compelling evidence for increases in circulatinginT preparation for critical
events such as dispersal (e.g., Brockmaral., 2001; Gesquieret al., 2005;
Beehneret al., 2006) and seasonal competition for mating oppadtiesii(e.g.,
Cavigelli and Pereira, 2000; Ostnetr al, 2002; Teichroeb and Sicotte, 2008;
Girard-Buttozet al, 2009), whereas other studies have not found fegnt
support for these patterns (e.g. Beeletal.,2009). However, by positing a link
between elevated T levels and conditions specificntale life histories,
specifically the need to compete for access toodymtively viable females, the
challenge hypothesis provides an explanation fttepss of T secretion and the
expression of behaviors and SSCs associated vatbdeactive effort.

Social factors, such as sex ratio (e.g., Crist@tzarate et al., 2006;
Rangel-Negriret al., 2011) and social structure, may also exert amuénfte on
patterns of expression of male T (see HirschenmaskOliveira, 2006 for a full
review). The strength of the relationship betweeant the expression of male
reproductive behaviors is expected to vary accgrdim mating system and
degree of paternal care. Males of species with mamous mating and paternal
care of offspring (e.g., gibbons, siamangs, musgowl monkeys) should exhibit
more aggression and a corresponding increase im Tesponse to social

challenges, such as the initial formation of paiondls and territorial
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encroachment by conspecifics, than males of spagtbgpolygynous mating and
little or no paternal investment. Although few tilese species have been the
subjects of studies evaluating the challenge hygsagh Strieet al. (1999) did not
find evidence for differences in T between breedind nonbreeding seasons in
male muriquis Brachyteles arachnoidgs

Alternatively, males of species with strict hietaoal (e.g. gorillas) or
promiscuous hierarchical (e.g. chimpanzees) mulamaultifemale mating
systems are expected to exhibit many elevationsirgulating T over the life
course, corresponding to rank reversals, seasamapetition for mates, and
migration between social groups. Although few stsdhave been conducted,
these predictions are generally upheld by empireadence. For example,
preliminary data on urinary T levels from three mtn gorilla groups at
Karisoke, Rwanda, indicated slightly higher levelsI and greater aggression in
silverback males during intergroup encounters (Rabhand Czekala, 1997). In,
perhaps a more convincing example, Muller and Wmiang (2004) demonstrated
a clear connection between male T levels and perfdmaximum female
tumescence (an index of female receptivity) in @ypation of chimpanzees at
Kibale National Park, Uganda. However Muehlenbatiral. (2004) pointed out
that fission-fusion sociality characteristic of miganzees may result in a level of
unpredictability too high for the anticipation ohallenges necessary to the

hypothesis.

lii. Testosterone Secretion over the Life Cycle
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The classic view of mammalian sexual differentiatie that masculinization of
the gonads is activated by the presence of thedstermining region of the Y
(Sry) gene on the paternally-contributed Y chromoso®&np, 1967). The
expression of this chromosome starts a chain @wastarting with the promotion
of the Leydig cells to secrete androgenic hormomesdyding T (Wachtekt al,
1991). The secretion of T then triggers the develemt of the testes from the
undifferentiated gonads within the urogenital ridBavidoff et al, 2009). In the
absence of the Y chromosome, the secretion of gestras stimulated and the
Mullerian duct develops into the Fallopian tubegrus, and vagina. However,
while the Y chromosome may be primarily responsfblenitiating processes of
sexual differentiation, genes coding for sexuallynarphic traits have been
disproportionately identified on the X chromosonierqpleton, 1977; Grula and
Taylor, 1980a, 1980b; Rice, 1984).

The relative roles of genetics and hormones inislggprocesses of sexual
differentiation and dimorphism in mammals are uacl®&ecause the presence or
absence of the Y chromosome only triggers the sel@h sex-specific hormones
it has been argued that sexual differentiatiorhefibternal and external genitalia
is primarily under hormonal control (Sanders anihReh, 1990; Menket al,
2003). The ‘androgen theory of sexual differentiatigoes so far as to suggest
that most, if not all, sex differences in the néwtuctures that influence
behavior, including differentiation of neural cowtiens, the volume of cell
nuclei, dendritic distribution patterns, serotom@vels, RNA metabolism, and

cholinesterase activity, can been attributed tostheetion of T (Jost al, 1970;
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Gorski, 1978; MacLusky and Naftolin, 1981; De Vredsal, 1984; Morriset al,
2004). However, several studies have documenteghotogical and functional
sexual dimorphism prior to differentiation of th@ngqds, suggesting “direct
genetic” control of some sex-specific traits (Wairbet al, 1988; Reisert and
Pilgrim, 1991; Arnold, 1996, 2002).

The early postnatal period has been identified aestiaal phase of sexual
differentiation and development, during which T b®logically active and
available to gonadal tissues (Mamt al.,, 1989; Mann and Fraser, 1996).
Activation of the hypothalamic-pituitary-T axis lmuman infants has been shown
to be associated with a “surge” in the gonadot®id and FSH and T secretion
beginning in the second postnatal week, peakinganths two through four, and
returning to baseline concentrations at approxiimai®& months of age (Forest
al., 1973, 1974; Forest, 1990). A similar surge hashlEmonstrated for male
macaques (Steiner and Bremner, 1981; Futeal., 1982; Dixsonet al., 1998),
chimpanzees (Fulleet al., 1982), and marmosets (Abbott and Hearn, 1978a).
Experimental manipulation of circulating T levels male and female rhesus
macaques and marmosets during this period resuiteabnormal penile and
clitoral development, supporting the argument ttldas period represents a
critical stage of physio-sexual development dukirigch T is biologically active
and available to gonadal tissues (Dixseinal., 1998; Brownet al., 1999).
Artificial manipulation of circulating T during tkiperiod has also been shown to
affect sexual behavior at adulthood (Abbott and rHed978b); however,

treatment of macaques with LHRH analogues usedediate T fluctuations in
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adulthood had no effect (Eislet al, 1993; Lunnet al, 1994). Thus, prenatal
androgenization more than the postnatal T surgerimarily responsible in
organizing the neural substrates involved in sexdifierentiation (Goy and
McEwan, 1980).

Delayed puberty and an extended period of pre-cemtive growth are
two of several key characteristics that distingumsimates apart from other
mammals (Tanner, 1955; Schultz, 1956; Watts, 19Bbperty is most often
defined as the period of sexual maturation durifgctv an organism attains the
ability to produce mature gametes, taking placeghty between weaning or
nutritional independence and age at first repradaoc{Wilson, 1992; Pereira,
2002; Bronson and Rissman, 2008). It is a periogpfoductive readiness that is
most obviously characterized by maturation of theagls and the development
of SSCs (Schreibmaret al., 1991). During the pre-reproductive period,
circulating concentrations of LH, FSH, and gonaaamones are low, however
at puberty, the HPG axis is activated, an eventlwvktimulates the synthesis and
pulsatile release of GnRH and increases mean atmgllevels of LH and FSH
(Cameronet al, 1985; Schreibmaet al, 1991). Increases in the amplitude of
GtH pulses are particularly evident during sleeg&net al, 1974). This
phenomenon was first demonstrated in humans (Betyal, 1974) and has since
been observed for a number of mammalian taxa, dimedusheep (Leeet al,
1976) and chimpanzees (Hobsatral, 1980).

Activation of the HPG axis at puberty involves ttilowing events as

demonstrated by Wray and Hoffman (1986) in laboyatoats: (1) the
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establishment of synaptic connections and neurmmabdeling to facilitate the
synchronization of GnRH neurons, (2) stimulation @hRH release by the
extrahypothalamic neurotransmitter system, anda(8hange in the number of
receptors on GnRH-secreting neurons. The relatipnbbtween increases in
GnRH secretion and increases in the secretion s ®tas further demonstrated
by Marshall and Kelch (1986) and Marshat al. (1993) in a series of
experiments that artificially administered GnRHpi@pubertal male and female
rhesus macaques. The result of these studies weasapure secretion of T and
spermatogenesis in males and ovarian folliculaetigment in females.

The timing of transitions in life history, and beten the prepubertal and
postpubertal stages of development in particulad, tae rhythm of reproductive
events are shaped by a combination of factorsudmat) seasonal ecological
variables, such as photoperiod (e.g., Lincoln, 198&hka et al, 1983),
temperature (e.g., Licht, 1984; Boureeal, 1986; Huf, 1989), and rainfall, and
environmental stressors, such as predation, ardgsspc stress, and social stress
(reviewed in Bourne, 1991; Wingfield and Kenagy91p Many primate species
exhibit a seasonal patterning of reproductive @gtiWWalkeret al.,1984). Thus,
perhaps unsurprisingly, puberty in these specieg beaactivated by seasonal
cues such as photoperiods and temperature (Is@81)1 Other influencing
factors include physiological factors associatedhwautrition, adiposity, and
metabolic rate (Bronson and Rissman, 1986; Schweirtal, 1988; Cameron,

1990, 1996; Cameroet al, 1993; Foster and Nagatani, 1999) and conditidns o
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the social environment such as sex ratio and phamem (e.g., Bartletet al,
1993; Krauset al, 1999; Abbotet al, 2009).

Social control of puberty is particularly evidemt species with social
regulation of reproduction (e.g., gorillas, tamarimarmosets). For example, in a
study by Epple and Katz (1980), juvenile femaledéaxthack tamarinsSaguinus
fuscicollig exposed to adult males conceived an average?tags earlier than
juvenile females reared in same-sex peer groupsrsely, the presence of adult,
reproductively active females appears to suppréss dnset of puberty in
subordinate females (e.g allithrix jacchus Abbott and Hearn, 1978; Barreit
al., 1990;Saguinusspp.: Epple and Katz, 1984, Ziegkdral, 1987).

Prenatal exposure to hormones has also been slooaffett the timing of
puberty, the expression of reproductive phenotypes, fertility. For example,
exposure of prenatal female rhesus macagMesdca mulatta and humans to
androgens has been shown to delay menstruation ¢Gal, 1988; Zehret al,
2005; Abbottet al, 2009). Exposure of prenatal female rhesus masagué has
also been shown to cause pseudohermaphroditismir(fimoand Goy, 1986).

Before attaining adult body proportion and composit individuals
undergo rapid and pronounced morphological and iploggcal changes.
Although an adolescent growth spurt in weight akeletal dimensions is best
documented in humans (e.g., Leigh and Park, 1988ir 1999a, 1999b; Leigh,
2001), evidence of a growth spurt exists for a neimdf primates, including
chimpanzees (e.g., Spence and Yerkes, 1937; Gratitel erkes, 1940; Gavan,

1953) and some Old World monkey (e.ylacacaspp.: Van Wagenen and
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Catchpole, 1956; Castracaatal., 1986; Turnquist and Kessler, 1989; Hamada
et al., 1999;Mandrillus sphinx Setchellet al.,2001; Setchell and Dixson, 2002;
Papio spp.: Copelanet al., 1982; Altmann and Alberts, 1987) and New World
monkey (e.gCebus albifronsWylin and Naftolin, 1978) species. Factors sugh a
seasonality and nutrition may affect growth spurdet and duration. In Japanese
macaques, the spurt follows a seasonal patterih, avitmals exhibiting higher
rates of growth during the spring and summer momtihen resources are
abundant (Hamadet al, 1999). Seasonality has also been demonstrataifieict

rates of adolescent growth in humans (Bogin 1978wkd and Bailey, 1997).

Table 4.Timing of the acquisition of SSCs in male vervetreys.

Trait Age Class Source

Cranial Capacity Two Bolter and Zihiman, 2003

Scrotal Pigmentation Six Gerald, 2001; Danzy, 2@#hzyet
al., in prep.

Eruption of Canines Six Turnet al, 1998; Bolter and Zihlman,
2003; Danzy, 2012

Descent of the Testes Six to Seven  Bolter andh#hl 2003; Whitten and
Turner, 2009

Dispersal Six to Seven  Struhsaker, 1967a

Reproductive Maturity* Seven Horrocks, 1986; Gheet al, 1988

Skeletal Framework Seven Bolter and Zihlman, 2003

Dental Complement Seven Turregral, 1998; Bolter and Zihlman,
2003; Danzy, 2012

Muscle MassT Eight Bolter and Zihlman, 2003

*Based on behavioral data
tIncludes development of the masticatory muscuatur

lll. OBJECTIVES/HYPOTHESES
Knowledge of baseline changes in fT in males idreéto both investigations of

the morphological, physiological, and behavioratreates of inter-individual

variation in fT excretion at each stage of the éifeirse and questions concerning
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the evolution of species-specific schedules of maditon in primates. In view of
this, the primary objective of this research washaracterize fT profiles of wild,
male vervet monkeys, contrasting individuals withimd between age groups to
establish baseline patterns of growth and sexualnai#on for the species. Based
on results obtained for vervets (Bolter and Zihlm2003, Whitten and Turner,
2009) and other primates (e.8otus trivirgatus Dixsonet al, 1980;Callithrix
jacchus Abbott and Hearn, 1978&Jacaca mulatta Roseet al, 1978; Dixson
and Nevison, 1997Mandrillus sphinx Wickings and Dixson, 1992a, 1992b;
Papiospp.: Castracanet al, 1986; Crawforcet al.,1997; Gesquieret al, 2005;
Beehneret al, 2009;Pongo pygmaeusKingsley, 1988;Saguinus mystauck
et al, 2005; Theropithecus geladaBeehneret al, 2009), it was expected that
patterns of fT excretion would strongly correlatehwage. Moreover, fT was
expected to be more sensitive to relative age pfodictive maturity than any
other stage of life history.

Secondly, this study sought to explore the relatigqm between T and
parameters of individual development, includingiataon in the timing of sexual
maturity and patterns of SSC emergence. Changesticular volume and body
mass and the eruption of the canine teeth assdamth the adolescent stage of
development have been shown to have fithess coesegs (e.g. Leiglet al,
2008). Although age of first reproduction for malkervets can only be
established with behavioral observations, changdise expression of these traits
during adolescence have been used as an approxmaater of reproductive

maturity in many mammals (reviewed in Kuatzal, 1996). Jolly and Phillips-
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Conroy (2003, 2006) interpreted the attainmentheflsé SSCs and changes in
excreted T in baboons to reflect a strategy of ama&on for challenges
associated with attaining reproductive maturitgjuding dispersal from the natal
group, competition for a place in the dominancedrzhy of the adoptive troop,
and competition for reproductive opportunitiesthifs interpretation is supported
in vervets, maturational changes in fT excretiamexpected to coincide with the
emergence and development of SSCs. Furthermoes;imdividual variation in
the expression of fT and the morphological SSCsexigected to be greater for
subadults than for any other age group. Approactiiege objectives from a life
history perspective, this study specifically loaksrelative age of reproductive
maturity as a life stage transition, or “maturaibmilestone”, of particular

importance to lifetime reproductive output and indual fitness (Stearns, 1992).

IV. METHODS

Over the past ten years, a broad survey of thetigenmorphological, and
endocrinological variation of vervet monkeys acraseir South African
distribution has been conducted (Grobler and Matl2002; Anapoét al, 2005;
Grobler et al, 2006; Freimeret al, 2007; Jasinskat al, 2007; Whitten and
Turner, 2008; McAuliffe Doreet al, 2009). Variation within and between
populations of vervets was evaluated by sample gooes that emphasized
sampling breadth (over 800 individuals have beanpsad to date) and depth
(procedures targeted vervet troops in their entiedt over 30 locations). The

subjects of this study represent a small substti®lundertaking.
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Research presented here is compliant with protoapisroved by the
University of Wisconsin at Milwaukee IACUC, the Wersity of California at
Los Angeles IACUC, and the University of the Fraat& South Africa. This
research also adheres to the legal requiremengooth Africa. Trapping and
collection of materials follows both provincial ar@TES regulations. This
research was supported in part by NIH RO1RRO16Bfltical clearance to trap
and sample vervets was obtained from the Univeddithe Free State (13/2010)
and the University of Wisconsin at Milwaukee. Albrvets sampled were
collected under permit IEB 0002 issued by the Soafincan National
Department of Water and Environmental Affairs amskogiated Provincial

permits.

A. Study Sites and Populations

The fieldwork for this project was conducted at timlé, geographically distinct
sites throughout central and southeastern SoutitaAfrom mid-April to mid-
November, 2010 (Fig. 6). The sites reflect a walege of habitat types, altitudes,
and microclimates and differ in mean values forcyméation, temperature, and
humidity (Table 5). Rainfall is highly variable ass sites and drought conditions
fluctuate greatly from year to year. The annual sigson (roughly June through
August) is characterized by a decline in the abdityg of food and clean
drinking water and, as a consequence, vervet monmia@yality rates rise during
this period as individuals enter areas of high humapulation density in search

of easily-accessible food (see Lee and Hauser, )198& sites range from
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protected bushveld in regional and private natur@ game reserves to highly
cultivated farmland and differ greatly in size, @deristic vegetation, and
relative predation pressure. Although the Southcafr Problem Animal Control
Ordinance (“Ordinance 26, 1957”), which allowed tletermination of pest
animals including vervets, has been repealedyuch of the countrwervets are
still considered agricultural pests and are fretjyepersecuted by private
landowners (Leet al., 1986; Groblert al, 2006). Human population pressures
vary greatly among sites but are generally lowestréserves and highest for
privately owned lodges and farms (Meirimgrs. obg. All vervet monkeys used
in this study belonged to the subspedddorocebus aethiops pygerythrughis

is the predominant subspecies found in South Affarner, 1977; Kingdon,

1988; Skinner and Chimimba, 2005; Cawthon Lang6200
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Fig. 6. Provincial map of South Africa with
distribution of trapping sites indicated as
black dots
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Table 5. Description of vervet trapping sites. Rainfaltéported as an average
annual range.
Site Province GPS Coordinates* Elevation (m) Rafall (mm)

Soetdoring Reserve Free State 26.0590, -28.82295-1400 400-600
Orange Valley Farm Free State 25.1580, -30.63%0-19.25 400-600
Southford Stud Farm Free State 25.4722, -30.8350-1125 400-600
Gariep Dam Fishery Free State 25.4760, -30.6198D-1125 400-600
Sandveld Reserve Free State 25.6700, -27.68300-12%26 400-600
Parys Golf Estate Free State 27.4580, -26.894®0-1360 400-600
Zinkwazi Lodge KZNt 31.4400, -29.2770 2955 600-1200

Suela Zimbili KZN 31.4240, -29.2080 25-550 600-1200
Kwela Lodge KZN 30.3610, -29.4940 700-850 046200
Camp Anerley KZN 30.6510, -30.4560 25-550 0-6Q00
Shamwari Reserve  East Cape 26.0332,-33.3211 @®0-7 550-700
Bushman Sands East Cape 26.0772,-33.3180 450-700 550-700

Amakhala Reserve  East Cape 26.0070, -33.4930 @80-7 550-700

* GPS coordinates are provided in decimal degrees
T Kwa-Zulu Natal

B. Sampling Procedures

Animals were trapped following procedures descriledBrett et al. (1982),
Whitten and Turner (2004), and Grobler and Tur@€10). Although animals
were sampled opportunistically, natural troops wegeted in their entirety.
Areas near known sleeping sites or in close prayirto areas where vervet
troops had been visually documented were pre-baitgti maize, orange
sections, and/or apple slices given regional pesiees before traps (n=28) were
introduced. After one to three days of comfortdeleding, during which animals
would commonly sit, forage, and play on or aroumel ¢ollapsed traps, the traps
were set with orange segments. Traps were setebefmvn ¢a. 05:30 h) and
were checked at intervals of 30 minutes. The t@psisted of a wooden frame
covered by a strong wire mesh. The trap was spniran the loaded trigger stick
was disturbed by an animal. Once sprung, the trapiged a barrier, allowing

the animal to be sedated without direct contacpd&ssing a syringe through the
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wire mesh. Animals in traps were sedated by intssoular injections of zoletil
(also known as telazol) or ketamine (1.0mg/kg) bgedified veterinarian and
immediately transported to the processing areah Botetil and ketamine have
been shown to have only mild effects on cortisekle in Old World monkeys
(Bentsonet al, 2003; Sulemaset al, 2004), and, although repeated sedation with
ketamine is associated with reduced animal appEipeinger and Baker, 2007),
both of these agents have been judged safe fot-tior anesthesia of vervet
monkeys (Vercruysse and Mortelmans, 1978). Repdrte effects of repeated
chemical immobilization on plasma testosterone canetradictory. While some
studies suggest that chronic immobilization stdmsreases plasma testosterone
levels (Demuraet al, 1989; Almeidaet al, 1998) others have observed the
opposite reaction (Almeidat al, 2000). Still others have reported no effect
(Hayashi and Moberg, 1987). Regardless, chemicaldhilization with zoletil or
ketamine is not expected to affect single measaoalfandrogens given gut
passage delay (Whittest al, 1998; Beehner and Whitten, 2004; Palme, 2005).
Body temperatures were monitored for all animail®ughout the processing
procedure. Processed animals were transferred decare recovery area and
closely monitored until they rejoined their troops.

A large quantity of both invasive and non-invasoress-sectional data
was collected from each animal for analysis. Biaabsamples, including blood
serum, tissue samples from ear punches, fecal sapgenital and rectal swabs,
and hair, as well as sex (visual assessment), |deda, whole-body

morphological measurements in accordance with Ahapal. (2005), pelage
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photographs, and behavioral footage were colledted. the purposes of this
research sex, dental age, morphological measuremesaid to calculate body
mass index (BMI), canine length, testis volume, a&nolss-sectional hormone
profiles using fecal steroid assays were colleftaah 59 animals from 17 troops.
All samples were collected during periods of lownar precipitation to reduce
hormone degradation (see Beehner and Whitten, 2004)

Fecal samples were collected either immediatelr afefecation in a trap
or were manually obtained from sedated animalsguaisterile finger probe to
avoid contamination. All samples represent indigiduTo prevent breakdown of
the steroid hormones by exogenous microbes, sam@es processed within a
few hours of defecation. A portion of approximatdyg feces was mixed
thoroughly with a wooden spatula to reduce thegares of hormone “hot spots”.
The sample was then stored in a polyethylene twffsBD Falcon tube (BD
Biosciences, San Jose, California) labeled withdhie and sample number at -
30° C. Samples were stored in a portable -30° €zéwrein the field until they
could be transferred to a permanent -30° C frelerated at the University of the
Free State in Bloemfontein, SA, for longer-ternratye. Frozen storage of fecal
samples has been shown to minimize bacterial misabof the steroids and is

the recommended method of preservation (Beehnewdntden, 2004).

C. Data Collection and Analysis

I. Age Classifications



71

Establishing a standard procedure for determinigg & critical for both
describing the growth of individuals and comparipatterns of development
between and within species (Schultz, 1935; Smif#891 Smithet al, 1994).
Patterns of dental eruption were used as a relatieasure of age in this study
(Fig. 7). Eruption sequences and long bone lengithgenerally considered to be
the most accurate external identifiers of age imates (e.g.Alouatta spp.:
Balcells and Vea Baré, 200€hlorocebus aethiopsBolter and Zihlman, 2003;
Erythrocebus pataslogahara and Natori, 201Rapio spp.: Phillips-Conroy and
Jolly, 1988, Kahumbu and Eley, 1991). Although inatelividual variations
exist, particularly among immature individuals, mezge of tooth eruption is
highly correlated with mean body weight and meaarbweight (Smithet al,
1994). Each animal was assigned an age class lasethe presence and
condition of permanent dentition following recentonsensus for age
classification in the field (Turnest al, 1998; Bolter and Zihiman, 2003; Danzy,
2012; Danzyet al, in prep) (see Table 4). Non-deciduous canine length was
measured using digital calipers to the nearest10i@bh from the tooth tip to
where the tooth emerged from the gum.

When exact age is not known, narrow age classepraferred for age
estimations (Altmanret al, 1981). However, narrow age class divisions often
result in sample sizes far below statistical sigaiice. For this reason, and for
the sake of convenience, broad age classes trsdlyoocorrespond to life history
stages (e.g., infant, juvenile, adult) are commardgd in the literature. Rather

than based on dentition, broad age classes areatlypassigned based on visual
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documentation of physical, including scrotal coldescent of the testes, and
body size for males, and behavioral maturationatkera, such as nutritional
independence. However, visual documentation prevargy a rough estimate of
age and may or may not produce biologically mednilrgge categories. Taking
into account the benefits and drawbacks of bothraggihes to establishing age,
this study assessed individuals according to thalessification schemas of
increasing specificity. First, animals were group®d three classes: Infants (age
classes one and two: from birth to 20 months of,abeveniles (age classes three
through six: roughly corresponding to 22 throughmonths), and Adults (age
classes seven and eight: 40 months and after). i$tise only breakdown that
satisfies requirements of statistical significarfoe all age classes. Second,
because juveniles undergo considerable changeséetine events weaning and
reproduction, the juvenile class defined in Schdmwas split into Juveniles (age
classes three and four: 22 through 31 months) abddlts (age classes five and
six: 32 through 40 months). The third schema inetu@ll eight age classes
described in Table 6. Overlap and gaps in this Holean are due to inter-
individual variation in patterns of dental eruptigh complete breakdown of the

three classification schemas used in this stugyasided in Table 7.

ii. Morphological Measurements

Morphological measurements used in this study asdex of maturation include

canine length, testes volume, and body length anidhwused to calculate BMI.
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Fig. 7. Dental patterns in catarrhini (Taken from
Bolter and Zihiman, 2003).

Table 6. Age categories defined according to dental eraptio

Age Category Age Class Eruption Sequencet Age (Months)§
Infant One All deciduous 0-8

Two M1 12-20
Juvenile Three M1, 12 22 -27

Four M1, 11, I2M2 26-31
Subadult Five M1, 11, 12, MP3 P4 32-49

Six M1, 11, 12, M2, P3, P& 38 -40
Adult Seven All permanent dentition 40 - 67

Eight Worn dentition > 67

*Turneret al, 1998; Bolter and Zihlman, 2003; Danzy, 2012; Bagtzal, in prep.
Tl = Incisor, C = Canine, P = Premolar, M = Molar
8Overlap and gaps in age are present due to ind@ridtual variation

Body weights were obtained to the nearest 0.01 $%iggua cloth weigh bag
attached to a digital scale. Osteological markeesewused to obtain linear
measurements after Schultz (1929), Tueteal. (1997), and Anapadt al. (2005)

using a standard tape measure to the nearest nthough body length, chest

girth, and lengths of the tail, right foot, righarid, and right upper and forelimbs
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were collected as part of a survey of the genetttraorphological variability of
South African vervet monkeys (Grobler and Matl&a02; Anapolet al, 2005;
Grobleret al, 2006; McAuliffe Doreet al, 2009), only body length was used for
the purposes of this study. A description of thessasurements is provided in
Figure 8.

Along with canine size and testis volume, BMI wadcualated for each
individual as a measure of male sexual maturateollowing Groves and
Harding (2003), Primate Body Mass Index was catedlaas weight over body
length squared (Fig. 9). Although this formula ésd precise than the Human
Body Mass Index, which includes head and leg les)gtthas been validated for
use as a measure of primate body condition (Pam204i9). Testis volume was
measured using a scaled orchidometer, which egtsnatiume by comparing the

testis with a series of ellipsoid beads (Kararagal, 2005).

~

1

Fig. 8. Description of morphological measurements: (B) ybod
length, (G) chest girth, (A) arm length, (F) foredength, (H) hand
length, (T) thigh length, (C) crus or foreleg ldmgfFt) foot length,
and (TI) tail length. (Taken from Anapet al, 2005).
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A.
Human Body 3 Weight {kg)
Mass Index - —(Head + Body Length + Leg Length {m})?
B.
Weight (kg)

Primate Body Mass Index = 3
(Body Length (m))

Fig. 9. A. Formula used for calculating human body mass ir(@#l)
following Groves and Harding (2003B. Formula used to calculate
vervet BMI derived from A.

iii. Hormonal Analysis

The procedure for preservation, extraction, andorashmunoassay of excreted T
from fecal samples used in this study generallpves Whittenet al (1998) and
Beehner and Whitten (2004). Fecal samples frozef08atC at the genetics lab of
the University of the Free State, South Africa, evdrawed and homogenized in
a 10.0 ml methanol:acetone solution (100% methaddl) using a electric
homogenizer. After 7-10 hours, 4.0 ml of the samgbtdution was filtered
through a 0.3tm polytetrafluoroethylene (PTFE) syringeless fil{@hatman,
Clifton, NJ) to remove particulate matter. Theréte was diluted 1:1:1.75,
filtrate: 100% methanol:distilled water. Solid-pbasxtraction cartridges (Sep-
Pak Plus, Waters Associates, Milford, Massachusetisre then primed
following the manufacturer’s instructions by pagsx 0 ml of 100% methanol
and then 15.0 ml of distilled water through thetri@ge. The filtrate was loaded

onto the primed cartridge and set with 2.0 ml sodazide solution (0.1%). The



77

loaded cartridges were then stored in a Whirl-Paggsb(Nasco, Fort Atkinson,
Wisconsin) with 10-20 desiccate beads at -10° @hatUniversity of the Free
State, SA, until they could be transported for gsial

Samples were carried by hand to the anthropolotpprédory at the
University of Wisconsin at Milwaukee for storage -80° C. They were then
transferred to the University of lllinois Animal i®ace Lab for processing. The
cartridges were flushed with 2.0 mis of 100% metihanlried down, and
reconstituted in a phosphate-buffered saline smiutiontaining gelatin buffer
(PBS-gel). Radioactive immunoassay (RIA) kits ipmoating a tritium tracer
(Perkin Elmer, Waltham, Massachusetts, USA) andbady were used to
analyze concentrations of excreted T for all sasypBamples were set up in an
assay with 3H-steroid, PBS-gel, and the antibodg, @unted on the scintillation
counter to determine the bound hormone (followiradpiget al, 1983). Dry rather
than wet weights of the samples were used to egpres order to control for
differences in moisture content and were reporteco@/g (weight of empty
falcon tubes was subtracted from the weights of tthees plus dry sample)
(Wasseret al, 1993). This protocol has been shown to reliabRect testicular
and adrenal function in a sample of primate spgeigs,Macaca fuscataBarrett
et al, 2002; Propithecus verreauxi Brockman et al, 1998). Although an
antibody against testosterone was used in the agsgyimportant to note that
fecal steroid hormones exist as a mixture of méi@so (Bosacker, 2008).

Parameters used to check assay quality were iauerintra-assay variation. The
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%CV for fT intraassay variation was 2.29+/-1.33 £n59) and the average

interassay variation was 8.6.

iv. Data Analysis

The numeric data collected for this study did neetassumptions of parametric
statistical tests. To normalize distributions anguadize variances, thereby
enabling parametric analyses, fT and BMI were lagdformed (base 10).

Because testis mass and canine length have beem gboscale allometrically

with body mass and body length, respectively, netatalues were calculated to
control for this association (Gingeriokt al, 1982; Kenagy and Trombulak,
1986). Relative testis volume was calculated byditrg total testicular volume

by body weight (cc/kg) and relative non-deciduoasice length was calculated
by dividing canine length by body length (inches)c@utliers (defined at the

95% confidence interval or greater than two stashdi@viations above the mean)
were removed from the sample using Grubbs’ secesttb reduce sampling
error. This test has been authenticated for usé witlinal and continuous

numeric data (Grubbs, 1950).

One-way analysis of variance (ANOVA) tests weredue determine if
the categorical variable age predicted the contisuoumeric variables log fT
and log BMI. Because relative testis volume andtied canine length were non-
normal after transformation, the relationship betwéhese variables and animal
age was assessed using the nonparametric KruskasWeéat, followed by a post

Kruskal-Wallis test for multiple comparisons. Sincanine teeth erupt late in
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development, relative canine length could not bemared between individuals
of all age categories. Instead, canine length waspared between subadult and
adult individuals (age classes six and seven agit,erespectively) and inter-
individual variation in canine length was examirsmtdong fully adult animals
(age classes seven and eight). Within-subjecteledion was used to identify
significant relationships among the continuous nuenariables.

Statistical tests were performed using R (R Fouodafor Statistical
Computing, Vienna, Austria), and the threshold dfiranalyses was set at p <
0.05. The data were modeled in ANOVA using a mddahalysis for planned
comparisons. Boxplots and beanplots were genetatpobvide an illustration of
the relationship between the categorical variagle @and the numeric dependent
variables. Beanplots are particularly useful foswal comparisons because of
their ability to illustrate densities of the samplistributions (Kampstra, 2008).
Relationships among the numeric variables werstilated with regression plots.
Regression lines were fitted to the data using dehb(least-squares) regression

analysis.

V. RESULTS

Grubbs’ second test for outliers identified and ogad three individuals from the
dataset, giving the study a final sample size chbiBnals. Because the dependent
variables assessed were not normally distributestjliams were calculated and
compared instead of means. The descriptive sttistiedian and inter-quartile

range (IQR) were calculated for the untransformedables fT, BMI, testis
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volume, and canine length and are presented by gagep for each age

classification schema in Table 8.

Table 8.

Descriptive statistics median (IQR) for untransfedT (pg/g), BMI (kg/m?2),
testis volume (cc), and canine length (incheskfarh age schema (n = number of

samples).
Variable n fT BMI Testis Vol.*  Canine Lengtht
Schema 1:
Infant 9 25.36 (8.655) 21.07 (3.94) 1(0.5) /AN
Juvenile 18 30.11 (27.21) 24.05(6.09) 1.5(R.75 0.45 (0.18)
Adult 29 34.71(33.54) 31.23(4.41) 15(13) .72(0.09)
Total: 56 30.56(22.28) 27.17(9.19) 10 (14) 0.11)
Schema 2:
Infant 9  25.36 (8.655) 21.07 (3.94) 1(0.5) IAN
Juvenile 8 21.25(8.03) 22.76(5.35) 1.5(1.25) N/A
Subadult 10 41.37 (23.41) 25.08(9.69) 1.5(7) .45@0.18)
Adult 29 34.71(33.54) 31.23(4.41) 15(13) .72(0.09)
Total: 56 30.56(22.28) 27.17(9.19) 10 (14) 0.11)
Schema 3:
One 4 24.3(9.23) 20.07 (3.8) 0.5 (0.13) N/A
Two 5 25.36 (5.8) 21.8 (3.76) 1(0) N/A
Three 1 18.4(N/A)  20.79 (N/A) 4 (N/A) N/A
Four 8 24.22(17.31) 24.05(4.91) 1 (1.13) AN/
Five 4 26.68 (13.47) 22.34(3.64) 15(4.38) /AN
Six 5  44.94 (12.63) 26.72(9) 8 (7) 0.459).1
Seven 24 33.582(18.5) 30.642(6.75) 15 (8) .709(0.1)
Eight 5 58.32(5.348) 32(1.12) 25 (0) 0.7687)
Total: 56 30.56(22.28) 27.17(9.19) 10 (14) 0.11)

* Total sample size for the variable testis voluism®&5. Testis volume was not collected
for an individual from the juvenile category (adass two).

Tt Sample sizes for the variable canine length arer 3hie subadult category (age class
six) and 27 for the adult category (age classesrsand eight).

Do patterns of fT excretion correlate with age?

Results of ANOVA tests describing the effects of @ag patterns of fT excretion
and the expression of the secondary sexual chastiteBMI for each age
schema are presented in Table 9. Significant esfphvalue) of pair-wise

comparisons between age categories are providédhle 10. Both testis volume
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and canine length had bimodal distributions acregg categories after
transformation and were therefore analyzed usiadgtuskal-Wallis test. Results
of this test for each age schema are presentecdbieTL1. Post Kruskal-Wallis
multiple comparisons test results are provided abld 12. Because information
on testis volume was not collected for one animahfthe juvenile age category
(age class two), this sample was removed from titaset prior to analysis.
Analysis of the relationship between relative carlength and age was restricted
to subadult (age class six) and adult (age classgsn and eight) animals.
Boxplots and beanplots illustrating the relatiopstbetween age and the
transformed dependent variables log fT, log BMld aelative testis volume are
presented for each age schema in Figures 10, #l12nand are presented for

age and relative canine length in Figure 12.

Table 9.
ANOVA summary of results for log fT (pg/g) and I&MI (kg/m?2) for each age
schema. Significant results indicated in bold type.

Variable ANOVA Summary

Schema 1: F Sum Sq. Mean Sq. df(, df2) Sig. p-value)
log Testosterone 1.39 0.1423 0.0711 (2,53) 0.258

log BMI 18.53 0.2286 0.1143 (2,53)  7.928e-07
Schema 2: F Sum Sg. Mean Sg. df1,df2)  Sig. p-value)
log Testosterone 1.53 0.2255 0.0752 523, 0.2177

log BMI 11.81 0.2251 0.0750 (3, 52) 5.176e-06
Schema 3: F Sum Sg. Mean Sq. dft,df2)  Sig. (p-value)
log Testosterone 1.7 0.5634 0.0804 8y, 4 0.1316

log BMI 5.004 0.2421 0.0346 (7,48)  0.00022
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Table 10.

Summary of pair-wise comparisons\alue) of ANOVA tests between age and
the dependent variables log fT (pg/g) and log Bktj/in2) for each age schema.
Significant results are indicated with bold type

Log fT(pg/qg) Log BMI (kg/m?)

Age Category F Sig. (p-value) F Sig. (p-value)
Schema 1

Infant to Juvenile 1.077 0.286 2.7780076

Juvenile to Adult 1.665 0.102 5.853.13e-07
Schema 2

Infant to Juvenile 0.044 0.965 1.717 0.0920

Juvenile to Subadult 1.611 0.113 2.5910124

Subadult to Adult 1.456 0.151 5.5156.11e-06
Schema 3

One to Two -0.027 0.9784 0.054 0.9572

Two to Three -0.624 0.5359 -0.069 0.9449

Three to Four -0.129 0.8982 1.52 0.1352

Four to Five 0.353 0.7259 1.096 0.2787

Five to Six 1.743 0.0877 2.368.0222

Six to Seven 0.730 0.4691 3.810004

Seven to Eight 1.965 0.0552 3.4220013

Table 11.
Kruskal-Wallis summary of results for relative aamilength (inches/cm) and
relative testis volume (cc/kg) for each age scheé®ignificant results indicated in
bold type.

Variable H df Sig. p-value)
Canine Length*
Schema 2 3.4885 1 0.0618
Schema 3 4.3417 2 0.1141
Relative Testis Volume
Schema 1 34.2661 2 3.624e-08
Schema 2 34.6300 3 1.458e-07
Schema 3 37.1806 7 4.335e-06

* Values for relative canine length were not avalgafor Schema 1
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Schema 1

Significant differences between age categoriestervariable log fT were not
found (F(2,53) = 1.3% = 0.258). Log BMI (F(2,53) = 18.5p,= 7.928e-07) and
relative testis volume (H(2) = 34.266p, = 3.624e-08), two of the three
morphological measures of sexual maturation usékisrstudy, were found to be
significantly predicted by age category. Juveniiad significantly higher values
for log BMI (p = 0.0076) than infants, and adults had signifigahigher values
for log BMI (p = 3.13e-07) and testis volume than juveniles édéhce =
24.2088). Juveniles and infants did not signifibardiffer in testis volume

(difference = 3.3472).
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Fig. 1C. A. Boxplots and. beanplots ofa) log fT, (b) log BMI, and(c) relative
testis volume of vervet males according to ageguate(Schema 1).

Schema 2

When the age class ‘Juvenile’ used in Schema 1 fueker divided into
‘Juvenile’ and ‘Subadult’ categories, significarfoe the variable log fT was not
met (F(3,52) = 1.53p = 0.2177). Juveniles did not have significantl{fetent
values for log fT p = 0.113) or relative testis volume (difference.8566) than
subadults. However, subadult animals had signifigdngher values of log BMI

(p = 0.0124) than juvenile animals. While differendestween juveniles and
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subadults did not reach significance for two vdeapthe removal of subadults
from the lumped category ‘Juvenile’ revealed a tedegree of variation among
the dependent variables of this age group as ddnates by the IQR. Subadults
had considerably larger IQRs than juveniles for(2B.41 versus 8.03), BMI
(9.69 versus 5.35), and testis volume (7 versuS)1This observation suggests
that the subadult stage, more than any other stagedevelopment, is
characterized by a high degree inter-individualateon in the attainment of the
maturational markers BMI, testis volume, and pesheyen fT.

Moreover, the separation of subadult animals frown lumped juvenile
category revealed a significant difference in valter log BMI (p = 1.11e-06)
and relative testis volume (difference = 21.9318ween subadults and adults.
Overall, age group membership was a significandipter of log BMI (F(3, 52)
= 11.81,p = 5.176e-06) and relative testis volume (H(3) s634p = 1.458e07).
Although significance was not met, infants tendedave lower values for log
BMI than juveniles § = 0.092), but they were not found to have sigaifiity
different values for relative testis volume thangniles (difference = 1.0694).
Differences between subadults and adults in thealbiar relative canine length

neared statistical significance (difference = 10).
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Schema 3

Log fT did not significantly differ across age das (F(7,48) = 1.68@) =
0.1349), however, age class six animals tende@ve higher T values than age
class five animals (p = 0.0877) and the differebhetveen age class seven and
eight animals neared significange £ 0.0552). Age was found to significantly
predict log BMI (F(7, 48) = 5.094) = 0.00016). Age class eight animals had
significantly higher values for BMI than age clagven animalsp(= 0.00128),
which had significantly higher values than age lax animals g = 0.0004),
which had significantly higher values than age <lige animals § = 0.0222).
Relative testis volume was found to be significatrrelated with age (H(7) =
37.1806,p = 4.335e-06), but values did not significantlyfelif between age
classes. It is important to note that differencetsMeen age classes of this schema
may be due to small sample sizes. Age class thme@articular is only
represented by a single animal. Finally, relativenice length did not
significantly correlate with age (H(2) = 4.341Y~= 0.1141) either between age
classes six and seven (difference = 9.3478) ormsewwl eight (difference =
4.4022). Although this breakdown highlights the Brdédferences between age
classes, general trends among the data are mdireuldito isolate. Consistent
with predictions, expression of the dependent WéEm showed age-typical
patterns, with trajectories of fT, BMI, testis vole, and canine volume

increasing with age (see Fig. 12).
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Is fT more sensitive to relative age of reprodwectimaturity than any other
transition in the life course?

Although concentrations of fT correlated generalith age, with older animals
having higher log fT values than younger animalsigmificant increase in fT

was not evident in animals estimated to be at ar tlee age of reproductive
maturity (age class six to seven) based on deetalrds for the species. This
result is in direct contradiction to predictionstbé study. However, significance
was neared both between age classes five andsix0(0877) and seven and
eight @ = 0.0552). Although statistically insignificantnienals appeared to
exhibit an increase in relative testis volume (Aigc) and relative canine length
(Fig. 12d) between age classes six and seven. ifisent increase in log BMI

was observed in animals at reproductive maturigye (@ass sixp = 0.0222) that

continued well into adulthood (age classes seyen: 0.0004, and eightp =

0.0013).
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Do maturational changes in fT excretion coincideghwihe development of
secondary sexual characteristics, including enlangat of the testes and
increased body mass and canine length?

The relationship between fT and the SSCs testisme) canine length, and BMI
is somewhat tenuous. While log fT was found to igaiScantly related to log
BMI (F(1, 54) = 5.965p = 0.0179), it was not a reliable predictor of tiela
testis volume (F(1, 53) = 1.898,= 0.1748) or relative canine length (F(1, 28) =
0.0406,p = 0.8418). Log BMI was a better predictor of reattestis volume
(F(1, 53) = 17.57p = 0.0001057) but not of relative canine lengthl(F{8) =
1.346, p = 0.2558). Relative testis volume was the onlyialde that was
significantly correlated with relative canine leng{F(1, 28) = 4.863p =
0.03582). These relationships are illustrated wthtter plots with least-squares

lines of regression in Fig. 13.
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Fig. 1% Scatterplots with least-squares regression limestife log-transformed or relative
values ofA. fT and BMI, B. fT and testis volumeC. fT and canine lengti). BMI and testis
volume,E. BMI and canine length, arfé testis volume and canine length.

Is inter-individual variation in fT and the developnt of SSCs greatest for
individuals approaching age at reproductive matyfit

Variation in the dependent variables was evidemt ihdividuals of all age
categories; however, inter-individual variation wgenerally greatest for subadult
and adult animals as demonstrated by the IQR. Ufirgage classification of
Schema 2, subadults and adults were found to hav&derably larger IQRs than

juveniles and infants for fT (Infant: 8.665; JuMeni8.03; Subadult: 23.41; Adult:
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33.54) and testis volume (Infant: 0.5; Juvenilé25].Subadult: 7; Adult: 13),
although not for BMI (Infant: 3.94; Juvenile: 5.3Subadult: 9.69; Adult: 4.41).
Although not collected for infant and juvenile amils) inter-individual variation in
canine length was greater for subadults (0.18) thadmts (0.09). While small
sample sizes may have contributed to these regaltscularly for adults, they can

also be interpreted to reflect different pathwalymaturation.

VI. DISCUSSION

Although several significant findings emerge frone tdata, all results must be
regarded as preliminary until they can be corrotearavith further observations,
both cross-sectional and longitudinal, from a largample population. The
sequence of events that characterize male verveikk@eyogrowth and sexual
maturation is summarized in Figures 10, 11, andahb®, parallels findings from
other works summarized in Table 4. Excretion ofnfl anaturation of the male
SSCs body mass, testis volume, and canine lengdwied markedly different
trajectories. Significant results are summarizedables 11 and 12. While fT did
not undergo a significant spurt at the onset ofaepctive maturity as expected,
age class six animals tended to have higher vdlres$l than age class five
animals and differences in fT between age classeensand eight neared
statistical significance, suggesting a possible afl T later in adulthood. Body
mass showed significant increases at age classesesen, and eight, suggesting
that body mass is strongly correlated with an ast@at growth spurt. Although

relative testis volume correlated with age, siguifit differences were not found
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between age classes. However, visual comparisothefbeanplots showed
modest increases in testis volume at age clasagsskven, and eight. The spike
in body mass corresponds roughly to the erupticth@icanine teeth between age
classes six and seven and parallels findings fovete by Whitten and Turner
(2009). Similar growth spurt patterns have beenatetrated for baboons, (Jolly
and Phillips-Conroy, 2003, 2006), mandrills (Selclamd Dixson, 2002), and
mangabeys (Deputte, 1992), and are reportedlyeréat males than for females
(Glassmaret al, 1984).

Jolly and Phillips-Conroy (2003, 2006) interpretdds pattern as a
reproductive strategy of preparation prior to emtign from the natal group and
competition for a place in the dominance hierarochyhe adoptive troop. Traits
that contribute to male reproductive functioninge.(ispermatogenesis) and the
ability of males to compete for or attract repradeety-viable mates, including
the endocrine mechanisms underlying the developnoénthese traits, are
expected to emerge in preparation for critical hifstory events. Trajectories of T
secretion in many animals follow such a patterpreparation for and activation
of reproduction, with spikes directly preceding doltbwing reproductive events
(Alberts and Altmann, 1995). Changes in T excreaad the emergence of male
SSCs reported here appear to follow a mosaic patbeginning with significant
increases in body mass at age class six and caorginell into adulthood, the
eruption of the canine teeth between age classesarsl seven, followed by
descent and enlargement of the testes beginningndrage class seven, and

rounded off by a near-significant increase in flagé class eight. It is uncertain



95

whether these results can be interpreted as follpwi pattern of developmental
preparation for reproduction. Documentation of tineing of first reproduction
of individuals is necessary to support the appleadf this interpretation to the
data.

As discussed earlier, the expectation of this stalgt fT levels would
increase as age of reproductive maturity was agpexh with subadult males
exhibiting higher concentrations of fT than anyesthge group in preparation for
dispersal and reproduction, was not upheld stedibyi Furthermore, fT was
expected to positively correlate with the emergesfabe SSCs body mass, testis
volume, and canine length. Although fT positivetyrelated with body mass, the
descent and enlargement of the testes and increasanine length could not be
significantly attributed to differences in fT comteations. This result is
consistent with previous findings for baboons (Gastne et al, 1981;
Muehlenbeinet al, 2001) but not for humans (Prader, 1984). Bodysntestis
volume, and canine size tended to co-vary, althdBiyh did not significantly
predict canine size independent of the effectestis volume.

In a recent study, Gesquieet al. (2005) found that early-maturing
baboon males had consistently higher fT conceptratihan late-maturing males.
In some mammals, such as the Mongolian gerlier{ones unguiculatys
patterns of sexual maturation are strongly bimodé#h animals characterized as
either early-maturing or late-maturing strategi€¢arke et al, 1986). Among
primates, divergent developmental patterns have begorted by Watts (1985,

1990) for rhesus macaques and Tanner (1978, 1981Bielicki et al. (1984) for
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humans. Vervet males represented in this studybérdi considerable variation
both within and between age classes. Adult (agesekseven and eight) animals
generally had the greatest variation in values fforand testis volume and
subadults (age classes five and six) had the gteatier-individual variability
for body mass and canine length. Although animalgddcnot easily be classified
as early-maturing and late-maturing morphs, futlmegitudinal studies will
provide another dimension to this work by determgniif divergent
developmental strategies exist for vervets. Moreoeagitudinal records would
establish whether individual fT concentrations st&ble throughout the vervet
life course as reported in baboons (Gesquetral, 2005) and rhesus macaques
(Bercovitch and Clarke, 1995) or whether they fhaté in response to life stage
transitions or challenges of the environment.

The secretion of T and the development of bodyesysthave been shown
to be sensitive to a variety of factors in vervatsd other primate species,
including maternal rank (e.gGh. aethiopsLee, 1984aMacaca mulattaDixson
and Nevison, 1997Papio spp.: Bercovitch and Strum, 1993; Altmann and
Alberts, 2003, 2005; Johnson, 2003), dominance r@x., Macaca mulatta
Bercovitch, 1993; Bercovitch and Clarke, 198fandrillus sphinx Setchell and
Dixson, 2001fan troglodytesMuehlenbeiret al, 2004; Muller and Wrangham,
2004; Anestis, 2006Papio ursinus Beehneret al, 2006), and ecological
variables (e.g.Macaca mulatta Bernsteinet al, 1974; Robinsoret al, 1975;
Gordonet al, 1976). Although these components were not indudehis study,

it is interesting to note that at most sites onéaar adult males had considerably
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higher fT concentrations than all others. The highiability in fT excretion
among adult animals (age classes seven and eiggg)\ed here further suggests
that these males may be repressing the T levetshefr males. This conclusion
was also made in Whitten and Turner (2004). Futwebavioral analysis is
required to determine if this variability in patterof fT excretion is associated
with dominance rank.

A neonatal surge in T within the first few monthislite has been well
documented in mammals (e.@allithrix jacchus Lunn et al, 1994; Homo
sapiens Forestet al, 1974; Winteret al, 1975, 1976; Anderssoet al, 1988;
Macaca mulatta Dixson, 1986; Manret al, 1989; Nevisoret al, 1997;Pan
troglodytes Winter et al, 1975;Rattusspp.: Corbieet al, 1978, 1992; Bauret
al., 1988). However, this surge could not be demotestran this work because
invasive sampling techniques prohibited the caitectof fecal samples from
infants within the first 2-3 months of life. In fedes, menarche marks the onset
of reproductive maturity, which may be identifidddugh visual observation of
perineal swelling or menstrual bleeding (Reskoal, 1982), ultrasonographic
assessment of ovarian and uterine volume (Roekett, 2004), or by monitoring
reproductive hormones (e.g., LH, FSHp4&stradiol, inhibin A and B) (Ross and
Lipsett, 1978; Buck Louist al, 2008). However, there is no obvious criterion of
male reproductive readiness (Gesquedral, 2005). This study follows much of
the primate literature in estimating reproductivatmnity on the basis of the
descent and enlargement of the testes (e.g., Castaet al, 1986;

Nieuwenhuijseret al, 1987; Crawfordet al, 1997; Muehlenbeiret al, 2001,
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2002; Jolly and Phillips-Conroy, 2003; Charpenggral, 2008; Luetjens and
Weinbauer, 2012). However, testicular developmecus at a gradual rate and
is subject to inter-individual variability.

Above all else, the results presented here highlipe considerable
variation present in patterns of male vervet monlgnpwth and sexual
maturation. Although individual variation in phegpic traits is a necessary
condition of differential fitness and natural séiec (Darwin, 1871; Endler,
1986), variation in life history components betwesdividuals as opposed to
aggregates, including species, has only recentborbe a subject of serious
inquiry (Camet al, 2002; Kappeleret al, 2003; Pereira and Leigh, 2003;
Figueredoeet al, 2005). Inter-individual variation in the ontogéndrajectory of
a trait in particular has been argued to representmportant resource for
investigations of the underlying mechanisms of tifgtory evolution (Wright and
McConnaughay, 2002; Leigh and Blomquist, 2007).héligh this cross-
sectional examination provided a description of-ggled trajectories of T
excretion and the development of SSCs in wild m@adeith African vervet
monkeys, longitudinal data are necessary to idewm#@uses of intra- and inter-
individual variation in the expression of thesatsraFactors affecting the timing
and shape of individual life histories are comp#»d many. Longitudinal data
are better able to account for ecological and $@caditions that may exert an

influence on individual schedules of somatic groaial sexual maturation.

VII. CONCLUSION
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Knowledge of baseline patterns of somatic growtkd aexual maturation is
critical to determining species-specific parametdrdevelopment, including the
timing of sexual maturity and correlates of reprctdie success, as well as
mapping individual trajectories (Leigh, 1992). Gyactional data of 56 vervet
monkeys indicate that fT is not a reliable predicbpatterns of somatic growth
and sexual maturation in male vervet monkeys. lokboons and several other
primate taxa, male vervets exhibited an adolesgentth spurt in body mass and
testis volume corresponding to the eruption of ¢haine teeth. This spurt can
tentatively be interpreted to reflect a strategypoéparation for dispersal and
competition for reproduction. However, future |amginal observations are
necessary to support this interpretation.

Although general trends in patterns of T secretind the development of
male SSCs emerge for the species, considerableimgieidual variation existed
for these traits within age classes. However, giva cross-sectional techniques
were used, this variation may simply reflect dayd&y variability in circulating
T (see Morleyet al, 2002). While reducing the identification of ‘fals
phenomena (Muehlenbest al, 2001), the use of cross-sectional data to study
patterns of growth and development is associatetth wertain limitations,
including the inability to detect all physiologicadnd hormonal changes
associated with puberty given the rapid growth querof many nonhuman
primates, including vervets (Castracaeé al, 1986; Leigh, 1996). Thus,
longitudinal data would provide greater confidentteat small changes in

individual trajectories of growth and maturatione aaccounted for. Further
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research on other possible correlates of pattdriissecretion and the maturation
of SSCs would provide additional insight into tlueces regulating male vervet

monkey growth and reproductive functioning.
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