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            ABSTRACT 

ENDOCRINE AND MORPHOLOGICAL ASPECTS OF GROWTH AND 
SEXUAL MATURATION IN WILD-CAUGHT MALE VERVET MONKEY S 

(CHLOROCEBUS AETHIOPS PYGERYTHRUS) 
 

by 

Tegan J. Gaetano 

The University of Wisconsin at Milwaukee, 2012 
Under the Supervision of Dr. Trudy R. Turner 

 

Knowledge of baseline changes in testosterone (T) and other androgens is central 

to both investigations of morphological, physiological, and behavioral correlates 

of inter-individual variation in the timing and shape of key events and transitions 

over the life course and questions of the evolution of species-specific schedules 

of maturation in primates. T represents an important determinant of 

spermatogenesis in male mammals and plays a central role in the expression of 

male sexual behavior and the development of secondary sex characteristics. This 

research integrates hormonal and morphometric methods to determine age-related 

changes in fecal testosterone (fT) metabolites and morphological markers of 

sexual maturation, including testicular volume, body mass (measured as BMI), 

and canine length, over the life course in a cross-sectional sample (n = 56) of 

wild-caught South African male vervet monkeys (Chlorocebus aethiops 

pygerythrus). Contrary to expectations of this study, T was not significantly 

associated with age (p = 0.1316 by ANOVA). However, BMI (p = 0.00022) and 

testis volume (p = 4.335e-06) were strongly related to age, corresponding to the 

eruption of the canine teeth at adolescence (3-4 years of age). These results 
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strongly suggest the existence of an adolescent growth spurt in male vervets. An 

interpretation of activation of the development of these maturational markers in 

preparation for challenges encountered at reproductive maturity, including 

dispersal and reproduction, is tentatively adopted here following Jolly and 

Phillips-Conroy (2003, 2006). However, future longitudinal observations to 

determine changes within individuals are necessary to provide greater confidence 

in this interpretation.  
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I. INTRODUCTION 

The concept of life history trade-offs has been instrumental to explanations of 

observed variation in the timing and shape of key events, transitions, and phases 

in the life course by providing a framework that considers all aspects of an 

organism. Life history theory describes differential strategies of allocation of 

resources among components of fitness (e.g. energy invested in survival versus 

reproduction) through the organizing principle of trade-offs. Trade-offs refers to 

the negative relationship between life history components and can be imagined as 

a series of facultative decisions as regards the allocation of energy to one aspect 

of the life course over another.    

 Delayed puberty and an extended period of pre-reproductive growth 

characteristic of the order Primates have resulted in selection for a distinct 

juvenile period. The juvenile period represents a trade-off between energy 

invested in somatic growth and survival and energy expended on reproduction. 

However, somatic growth and investment in the development of secondary sex 

characteristics (SSCs) may ultimately increase individual fitness by conferring a 

competitive advantage against conspecifics, either through agonistic competition 

or the attraction of mates (Charnov and Berrigan, 1993; Leigh and Blomquist, 

2007). The transition from the pre-reproductive stage to reproductive maturity is 

associated with a shift in life history priorities and, accordingly, the uptake of a 

different fitness-maximizing strategy (reviewed in Pereira and Leigh, 2003). 

Thus, investigations of the timing of the expression of life history traits within an 
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individual as well as differences in life history strategies between individuals are 

central to our understanding of the evolution of life history diversity. 

 Endocrine data have the potential to provide insight into the mechanisms 

regulating relationships among life history traits (Ketterson and Nolan, 1992; 

Whitten and Turner, 2009). Hormones act as intermediaries between the physical 

environment and the internal architecture of an organism, acting both at the level 

of genes and whole-body phenotypic traits in the regulation of transitions 

between life history stages (Ketterson and Nolan, 1992; Hau, 2007). Patterns of 

the secretion of gonadal steroid hormones, including testosterone (T), during 

development have been described for humans (e.g., Angsusingha et al., 1974; 

Genazzani et al., 1978; Apter, 1980; Sizonenko, 1989) and several primate taxa 

(e.g., McCann et al., 1974; Styne and Grumbach, 1978; Castracane et al., 1986; 

Crawford et al., 1997), typically from captive populations. However, significant 

gaps remain in our knowledge of the mediating effects of steroid hormones on 

the timing and shape of life history events, particularly in ontogeny.  

 In male mammals, T is an important determinant of male reproductive 

function through its effects on the differentiation of the brain and gonads, the 

production of functioning gametes, the maintenance of accessory sex organs, and 

the expression of SSCs, such as body size and muscle mass dimorphism 

(reviewed in Wells, 2007), sexually-selected coloration of the pelage and dermis 

(e.g., Wickings and Dixson, 1992b; Setchell and Dixson, 2001; Waitt et al., 

2003), development of the vocal apparatus (e.g. Seyfarth and Cheney, 1997), and 

behaviors associated with competition for access to reproductively-viable 
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females, including mate-guarding, aggression against conspecifics, and courtship 

(e.g., Bernstein et al., 1979; Alberts et al., 1992).  

 Knowledge of age-typical changes in T secretion in male primates is 

critical to investigations of the relationship between T and parameters of 

individual development, including variation in the timing of sexual maturity and 

patterns of SSC emergence, and questions of the evolution of species-specific 

schedules of growth and sexual maturation. Furthermore, the response of 

hormone systems to transitions in life history can be used to assess the influence 

of behavior and features of the external environment on the secretion of gonadal 

hormones. 

 This research integrates hormonal and morphometric methods to 

determine age-graded changes in T excretion and the development of 

morphological markers of sexual maturation body mass, testis volume, and 

canine length over the life course in a sample of wild-caught male South African 

vervet monkeys (Chlorocebus aethiops pygerythrus). Members of this subspecies 

are found throughout sub-Saharan Africa and are adapted to a wide range of 

environmental conditions. This adaptability decreases the likelihood that 

differences in the hormone profiles of sample animals are solely due to the 

effects of variable habitats. Fecal testosterone (fT) profiles were examined across 

three age classification schemas of increasing specificity in order to account for 

small hormonal and morphological changes that occur during puberty given the 

relatively rapid growth of the vervet monkey and to preserve statistical 

robusticity (Leigh, 1996).  
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 The primary objective of this research was to characterize fT profiles of 

male vervets at each stage of the life cycle, contrasting adults and immatures to 

establish baseline patterns of growth and sexual maturation for the species. In this 

study, sexual maturation refers to changes in testicular volume, body mass 

(measured as BMI), and excreted levels of T and the eruption of the canine teeth 

that are associated with the adolescent stage of development. In male primates, 

these events have been interpreted to reflect a strategy of preparation for dispersal 

from the natal group, competition for a place in the dominance hierarchy of the 

adoptive troop, and ultimately, competition for reproductive opportunities (Jolly 

and Phillips-Conroy, 2003, 2006). In consideration of this interpretation, special 

attention was paid to changes occurring around the estimated age of reproductive 

maturity based on averages established on the basis of longitudinal behavioral 

studies (Horrocks, 1986; Cheney et al., 1988).   

 To analyze fT profiles across life history stages, 56 fecal samples were 

collected from males of a wide age range across multiple, geographically distinct 

sites throughout central and southeastern South Africa and assayed for T 

metabolites using a method validated for vervet monkeys (Whitten et al., 1998). 

fT profiles were compared across age classes and examined in relation to changes 

in testis volume, BMI, and canine length. This component was intended to 

provide a characterization of inter-individual differences in the relationship 

between excreted fT and the development of physical characteristics associated 

with male reproductive success. Parametric ANOVA and non-parametric 

Kruskal-Wallis tests were used to identify relationships among the data. Results 
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of this research provide greater insight into how T is physiologically and 

morphologically expressed at different stages of the life cycle in male vervet 

monkeys. Knowledge of baseline changes in fT is important to both 

investigations of correlates of inter-individual variation in fT excretion and 

questions concerning the evolution of species-specific schedules of maturation in 

primates. 

 

 II. BACKGROUND 

 A. Vervet Monkey Phylogeny 

Primates comprise one of 18 orders of extant placental (eutherian) mammals. 

With over 300 identified species (361 IUCN/SSC recognized species: Aguiar, 

2010), the order Primates is one of the most speciose of the placental mammals 

(Groves, 2001, 2005a; Grubb et al., 2003; Reeder et al., 2007; Rylands and 

Mittermeier, 2009). The order (excluding tree-shrews) is generally acknowledged 

to contain six monophyletic superfamilies: Lemuroidea (Malagasy lemurs), 

Lorisoidea (Asian lorises, African galagos, and pottos), Tarsioidea (Indonesian 

and Philippine tarsiers), Ceboidea (New World monkeys), Cercopithecoidea (Old 

World monkeys), and Hominoidea (apes and humans) (Koop et al., 1989). The 

group Cercopithecoidea is comprised of a single extant family, Cercopithecidae, 

and the extinct group Victoriapithecidae. Supported by genetic data (Zhang and 

Ryder, 1998) and corroborated with studies of morphology (Goodman et al., 

1998), the family Cercopithecidae has been determined to contain a single 
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monophyly of two subfamilies: Colobinae (the leaf eating monkeys) and 

Cercopithecinae (the cheek pouch monkeys) (Page et al., 1999).  

 Members of the diverse subfamily Cercopithecinae, also called the 

“omnivore” Old World monkeys, are morphologically differentiated from the 

colobines on the basis of the following traits: flexible buccal pouches used to 

store food (Fig. 3), elongated nasal bones forming a long snout, broad incisors 

and molars with high crowns and low cusps, and a simple, non-ruminant gut 

(Fleagle, 1999; Groves, 2000). Two chromosomally differentiated tribes 

(modified from subfamily status by Groves, 2001) characterize the subfamily: 

Cercopithecini and Papionini. The Papionine group, which is characterized by a 

diploid chromosome count of 42, includes the widely-distributed genus Macaca 

(macaques) and the African – with the exception of one species of Papio found in 

the Arabian Peninsula – papionines: Mandrillus (drills and mandrills), 

Cercocebus (terrestrial mangabeys), Lophocebus (arboreal mangabeys), Papio 

(savannah baboons), and Theropithecus (gelada baboons). Although some 

arrangements place Lophocebus as a subgenus of Cercocebus (Page et al., 1999), 

recent chromosomal analyses of the tribe have strongly suggested a paraphyletic 

relationship between the two mangabey taxa, with Cercocebus forming a clade 

with Mandrillus and Lophocebus as the sister-taxon of the Papio-Theropithecus 

grouping (Disotell et al., 1992; Disotell, 1996, 2000; Harris and Disotell, 1998). 

Further divisions of Papionini separate Macaca (subtribe Macacina) from all 

other papionines (subtribe Papionina) (Szalay and Delson, 1979).  
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The tribe Cercopithecini hosts a rich diversity of morphological and 

behavioral forms, making defining tribe membership particularly difficult. 

Because of this, workers are increasingly turning to molecular characters to 

distinguish this group from the papionines (e.g., Dutrillaux et al., 1988; Ruvolo, 

1988; Turner et al., 1988; Page et al., 1999; Disotell and Raaum, 2002; Tosi et 

al., 2002a; Moulin et al., 2008). For example, unlike members of the tribe 

Papionini, the cercopithecines vary considerably in diploid chromosome count; 

Fig. 1. Distinctive morphological traits separating 
the Old World monkey subfamilies Colobinae and 
Cercopithecinae. (Taken from Fleagle, 1999). 
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however, this number is always over 42 (Butynski, 2004). Morphologically, the 

cercopithecines are differentiated from members of Papionini by the presence of 

a four-cusped third, mandibular molar without a hypoconulid (Butynski, 2004).  

The cercopithecines include: Allenopithecus (Allen’s swamp monkeys), 

Miopithecus (talapoin monkeys), Erythrocebus (patas monkeys), Cercopithecus 

(the guenons), and the newly revived genus Chlorocebus (vervet or green 

monkeys). Although basally positioned in the tribe Cercopithecini on the basis of 

chromosomal (Dutrillaux et al., 1988, Tosi et al., 2002a) and protein DNA 

(Ruvolo, 1988) data, the genus-groups Allenopithecus and Miopithecus have been 

argued to represent members of the tribe Papionini on the basis of papionine-like 

cyclical sexual swellings in females, facial gestures, and social behavior (Groves, 

1989, 2000; Disotell, 2000). More recent Y-chromosome and mtDNA sequence 

studies have indicated Allenopithecus as the sister-taxon of all other members of 

the tribe Cercopithecini (Tosi et al., 2002a, 2002b; Disotell and Raaum, 2002). 

Furthermore, Y chromosome and karyotic studies have both suggested that the 

terrestrial cercopithecines – Erythrocebus, Chlorocebus, and sometimes 

Cercopithecus lhoesti – form a paraphyletic clade rooted by Allenopithecus and 

separated from the arboreal cercopithecines by a single evolutionary transition 

(Tosi et al., 2002a, 2002b; Perelman et al., 2011).  

The most recent tabulations indicate between 19 (Grubb et al., 2003) and 

24 (Groves, 2001, 2005a) subspecies of Cercopithecus. Variations in the number 

of guenon species acknowledged in the literature are largely dependent on 

whether the author classifies the vervet monkey under the genus designation 
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Cercopithecus or Chlorocebus. The name Chlorocebus was separated from the 

“true Cercopithecus” clade by Groves (1989, 2000) on the basis of 

synapomorphic craniodental traits shared with Erythrocebus, including angular 

shape of the orbits, the inferior margin of the zygomata curved down rather than 

straight, and the upper incisors form a straight rather than sloped bite. This 

taxonomic distinction was further supported by Y-chromosome data in Tosi et al. 

(2002b, 2003).  

Due, at least in part, to the considerable phenotypic diversity of this genus 

across their wide geographic distribution, the exact number of species or 

subspecies represented in Chlorocebus remains unresolved. Broadly, the number 

of taxonomically-distinct groups acknowledged in the literature varies according 

to whether the taxon is assessed according to morphological – including pelage 

and whisker color (see Table 1) – or genetic traits. For example, on the basis of 

variation in cranial morphology across ecogeographic clines, Cardini and Elton 

(2008) and Elton et al. (2010) argued the species Cercopithecus aethiops to 

contain six geographically-distinguished subspecies corresponding to the species 

groups recognized in Groves (2001, 2005a). By contrast, genetic studies indicate 

little genetic variation within the genus as a whole (Turner, 1977, 1981) and 

between populations inhabiting South Africa in particular (Grobler and Matlala, 

2002; Grobler et al., 2006; McAuliffe Dore, 2008), putting to question the 

robustness of species and subspecies distinctions made on the basis of color and 

size differences alone.  
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Grubb et al. (2003) following Napier (1981) considered the C. aethiops 

group – included in the Cercopithecus clade – to consist of one polytypic species, 

partly because Struhsaker (1970) was unable to determine differences in the 

vocalizations of populations of vervet (C. aethiops) and tantalus (C. tantalus) 

monkeys. According to Grubb et al. (2003) the group contains six subspecies: C. 

aethiops (grivet monkeys), C. sabaeus (green monkeys), C. tantalus (tantalus 

monkeys), C. djamdjamensis (Bale Moutains monkeys), C. pygerythrus (vervet 

monkeys), and C. cynosuros (Malbrouck monkeys). Each of these was elevated 

to species status by Groves (2001, 2005a) following Dandelot (1959, 1974). The 

most recent IUCN/SSC assessment of the taxa in 2008 followed Groves’s (2001, 

2005a) suggestion for the taxa, recognizing the genus name Chlorocebus as well 

as all six species.  

This paper follows the taxonomy established by Groves (1989, 2000, 

2001, 2005a) with modifications from Perelman et al. (2011) who sequenced 

34,927 DNA base pairs to produce the most comprehensive molecular 

phylogenetic tree of the primates to date (see Fig. 2). Six subspecies – the six 

species recognized in Groves (2001, 2005a) are lowered to subspecies rank – are 

recognized for the species Chlorocebus aethiops in this paper on the basis of 

findings of molecular studies (Turner, 1977, 1981; Grobler and Matlala, 2002; 

Tosi et al., 2002a, 2002b, 2003; Grobler et al., 2006; Jasinska et al., 2007; 

McAuliffe Dore, 2008; Perelman et al., 2011). Collaboration of molecular and 

anatomical techniques may provide greater insight into the evolutionary 

relationship between members of Chlorocebus and the other primates.  
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Pelage color and length varies widely across the full distribution of the 

species, with regional patterns distinguishing the subspecies (see Fig. 4). These 

variations have led some authors to split the taxon into distinct species groups 

(e.g., Dandelot, 1959, 1974; Hill, 1966; Napier and Napier, 1967; Groves, 2001, 

2005a). In particular, the distinctive features of the Bale Mountain monkey (Ch. 

a. djamdjamensis), including morphological adaptations for life at high altitudes, 

have propelled some authors to argue for species status (Groves, 2005a). 

However, because of the inability of genetics studies to detect significant 

variations between populations (e.g., Turner, 1977, 1981; Grobler et al., 2006; 

McAuliffe Dore, 2008) the taxon is considered one highly polymorphic species 

with regional subspecies designations in this work. A full description of 

subspecies pelage differences is provided in Table 1. 

 

B. Vervet Monkey Behavior and Ecology 

i. Description 

Fig. 2. Molecular phylogeny of the parvorder 
catarrhini based on 34,927 bp sequenced from 54 
genes. (Modified from Perelman et al., 2011). 
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Compared with other semi-terrestrial members of Cercopithecinae occupying 

open habitats (e.g., Papio, Mandrillus, Theropithecus, Erythrocebus), vervet 

monkeys are small and only moderately sexually dimorphic in body size, with an 

average adult female weight of 3.55 kg to the male’s 5.19 kg (calculated as the 

average of nine mean body weights from captive and wild studies reviewed in 

Turner et al., 1994). Members of both sexes have a yellow to greenish-brown 

dorsal coat with long, white hair on the ventral body and a band of white hair on 

the brow and along the cheeks, framing a sooty black face (with the exception of 

the pale-faced Ch. a. cynosuros) (Groves, 2001; Cawthon Lang, 2006). The skin 

of the hands and feet is black or mottled black and pale. Infants are born with a 

black natal coat and pinkish skin on the face, hands and feet. Adult coloration is 

gradually acquired by 12 weeks of age (Lee, 1984a). Both males and females of 

the species have eggshell blue abdominal skin, which is most visible in the adult 

male scrotum (Chiarelli, 1972). Males have colorful genitalia consisting of a sky 

blue scrotum and a red penis and perianus surrounded by long, white hairs. These 

sexually-selected features are exposed during male-male dominance displays and 

are commonly referred to in the literature as the “red, white and blue display” 

(Struhsaker, 1967a; Durham, 1969). 

 Experimental manipulations of male scrotal color in captive populations 

have demonstrated a link between color saturation and male-male aggression. In 

a series of studies, Gerald (1999, 2001) found that males with similar scrotal 

color exhibited greater aggression towards one another than males with different 

scrotal color. Furthermore, male scrotal color has been shown to be positively 
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related to testes volume in Ch. a. pygerythrus, suggesting that this trait may be 

related to sperm competition (Danzy et al., 2011, in prep.). Recent reports of 

increasing scrotal albinism among island populations of Ch. a. sabaeus, however, 

suggest a reduction in the sexual significance of these traits in this subspecies 

(Gerald et al., 2010). The cause of this variation between subspecies is unknown.   

Vervets are primarily quadrupedal and are specialized for terrestrial 

running, which accounts for approximately 20% of locomotion, and arboreal 

climbing and jumping (Chiarelli, 1972; Fleagle, 1999). Compared with the 

almost exclusively arboreal guenons, the vervet monkey has developed 

anatomical adaptations (e.g., greater forearm, hand [males only], foot and tail 

lengths) suited for mosaic habitats requiring terrestrial as well as arboreal 

locomotion (Anapol et al., 2005). These adaptations are argued to have, at least 

in part, permitted the vervet monkey to survive, and even thrive, in heavily 

human-disturbed habitats, such as those characteristic of the Cape Verde and 

Caribbean islands (Boulton et al., 1996). 

The maximum lifespan of vervet monkeys in the wild is unknown due to 

high incidence of predation but they are known to live between 11 and 13 years 

in captivity (Fairbanks and McGuire, 1986; Cawthon Lang, 2006). Vervets are 

preyed upon by a number of species in the wild, including baboons (Papio spp.); 

leopards (Panthera pardus) and other felids, including caracals (Caracal 

melanotis), servals (Felis serval), lions (Panthera leo), and African wild cats 

(Felis silvestris); hyenas (Crocuta spp.); jackals (Canis mesomelas and C. 

adustus); and raptors, including Verreaux’s eagle owl (Bubo lacteus), martial 
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eagles (Polemaetus bellicosus), and crowned hawk-eagles (Stephanoaetus 

coronatus) (Struhsaker, 1967a; Isbell, 1990; Cawthon Lang, 2006). Venomous 

snakes, including Egyptian cobras (Naja haje) and puff-adders (Bitis arietans), 

are also a source of potential harm to unwary vervets (Struhsaker, 1967a). On the 

islands of Barbados and St. Kitts and Nevis dogs, first introduced to the islands as 

pets, account for a considerable proportion of vervet injuries and deaths (Isbell 

and Enstam, 2002). However, of all of these, humans are perhaps their greatest 

threat. Vervets are actively hunted and eaten by non-Muslim human populations 

throughout their African distribution (Wolfheim, 1983). In other areas, vervets 

are considered agricultural pests and are exterminated both by private landowners 

and by government programs (Hey, 1967; Lee et al., 1986).  

 

ii. Diet and Distribution 

Geographic Distribution and Habitat 

Vervets are the most abundant of the cercopithecine monkeys and are widely 

distributed across the savannas and riverine forests of sub-Saharan Africa, from 

Senegal in the west to Somalia in the east and from the southern border of the 

Sahara Desert to the southernmost point of South Africa, with the notable 

exceptions of the Namib Desert of southern Africa and the dense rain forests of 

the West African countries of Nigeria, Cameroon, Gabon, Congo and the 

Democratic Republic of the Congo (Table 1, Fig. 3) (Struhsaker, 1967a; Fedigan 

and Fedigan, 1988; Enstam and Isbell, 2007). In the mid-17th century populations 

of Ch. a. sabaeus from West Africa were introduced to the islands of the 
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Republic of Cape Verde off the coast of Senegal and the Caribbean islands of 

Barbados and St. Kitts and Nevis (Horrocks, 1986).  

 Persistent zones of hybridization exist between most subspecies of Ch. 

aethiops (see Detwiler et al., 2005 for a comprehensive survey of hybrid zones) 

(e.g., Ch. a. tantalus x Ch. a. pygerythrus along the western shores of Lake 

Abaya, Ethiopia and parts of Congo-Kinshasa [Dandelot, 1959; Dandelot and 

Prevost, 1972; Lernould, 1988; Groves, 2001], Ch. a. aethiops x Ch. a. 

pygerythrus  in Ethiopia [Dandelot and Prevost, 1972; Grubb et al., 2003], and 

Ch. a. djamdjamensis x Ch. a. aethiops x Ch. a. pygerythrus x Ch. a. tantalus 

from southwest Uganda to western Ethiopia [Napier, 1981; Kingdon, 1997]), 

with the exception of island populations of Ch. a. sabaeus on the Cape Verde and 

Caribbean islands, Ch. a. sabaeus x Ch. a. tantalus (Turner, 1977), and Ch. a. 

cynosuros. Additionally, hybrids of Ch. a. pygerythrus and the guenon species 

Cercopithecus mitis have been recorded at Ngong Forest Sanctuary and Diani 

Forest in southern Kenya (De Jong and Butynski, 2010). 

Although vervet monkeys have a relatively broad environmental tolerance, 

inhabiting such disparate biotic zones as tropical rain forest, lowland evergreen 

forest, montane evergreen forest, thorn forest, scrub and the Mediterranean 

evergreen vegetation of parts of South Africa (Gartlan and Brain, 1968) and able 

to tolerate temperature lows from -4°C at the tip of South Africa to highs up to 

33.7°C in Cameroon, 40°C in Senegal and 50°C in Ethiopia (Nakagawa, 1999), 

they typically prefer drier habitats than their guenon relatives and primarily 

woodland savannas and gallery forests along rivers and other water courses 
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(Fleagle, 1999; Skinner and Chimimba, 2005). Also unlike the guenons, vervets 

do not occupy forests homogenously; rather, they maximize fringe resources 

between dense forests and open savanna grasslands (Gartlan and Brain, 1968). 

Vervets have also been observed to colonize resource-poor habitats, such as the 

mangrove swamps of West Africa (Zinner et al., 2002) and those disturbed by 

human activity (Lee et al., 1986).  

 

Fig. 3. Continental map of Africa with known distribution of Ch. aethiops 
subspecies: (1) Ch. a. sabaeus, (2) Ch. a. tantalus tantalus, (3) Ch. a. t. 
marrensis, (4) Ch. a. t. dugetti, (5) Ch. a. aethiops, (6) Ch. a. a. matschiei, (7) 
Ch. a. a. hilgerti, (8) Ch. a. djamdjamensis, (9) Ch. a. pygerythrus arenarius, 
(10) Ch. a. p. zavattarii, (11) Ch. a. p. excubitor, (12) Ch. a. p. rubella, (13) Ch. 
a. p. callidus, (14) Ch. a. p. centralis, (15) Ch. a. p. johnstoni, (16) Ch. a. p. 
nesiotes, (17) Ch. a. p. rufoviridis, (18) Ch. a. p. pygerythrus, (19) Ch. a. p. 
marjoriae, (20) Ch. a. p. ngamiensis, (21) Ch. a. p. helvescens, (22) Ch. a. 
cynoruos, zone of hybridization (H). (Taken from Lernould, 1988). 
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Diet 

Like all other members of the subfamily Cercopithecinae, vervets are 

distinguished from the African Colobinae by morphological adaptations for a 

predominantly frugivorous diet (e.g., flexible cheek pouches; molars with high 

crowns and low, rounded cusps; and a simple, non-ruminant gut) (Fleagle, 1999; 

Groves, 2000; Enstam and Isbell, 2007). Like the forest guenons, vervets 

regularly consume invertebrates, flowers, fruit, seeds, leaves and tree gum and 

are known to eat bark, grass and the stems, pith and swollen thorns of the 

angiosperm Acacia spp. (Kavanagh, 1978; Wrangham and Waterman, 1981; 

Whitten, 1983; Isbell et al., 1998; Enstam and Isbell, 2007). However, unlike the 

guenons, flowers (up to 50%) and even tree gum (up to 60%) have been 

demonstrated to constitute greater proportions of the annual diet of the vervet 

monkey than fruit (see Table 2), leading some writers to suggest that vervets are 

more accurately described as nectivores or florivores (Whitten, 1988).  

 However, as illustrated in Table 2, the reliance of vervets on particular 

food items fluctuates greatly across study sites and seasons. For example, Barrett 

(2009) found that the variable climate of northern South Africa produced 

markedly different vervet diet profiles between the wet and dry seasons (see 

Table 2). Moreover, during the lean months of the dry season vervets have been 

observed to engage in more crop and food-raiding foraging strategies (Saj et al., 

1999). The search for easily accessible food and water during the dry season has 

led vervets to utilize human-occupied areas and has resulted in considerable 
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conflict between humans and vervets (e.g., Brennan et al., 1985; Boulton et al., 

1996; Saj et al., 2001; McDougall, et al., 2010; McAuliffe Dore, in prep.).  

 The ability of vervets to modify their diet to maximize the resources of the 

various habitats they occupy, including disturbed areas of secondary growth, has 

earned them such titles as “opportunistic omnivore” and “eclectic feeder” and is 

partly responsible for the widespread success of the species (Struhsaker, 1969; 

Kavanagh, 1978; Lee et al., 1986; Gautier-Hion, 1988; Estes, 1991). Much like 

the macaques of India, Japan, Singapore, and elsewhere (e.g., Fuentes et al., 

2007, 2008; Hsu and Kao, 2009), vervets successfully exploit heavily human-

modified habitats such as tourist centers and urban parks (Fedigan and Fedigan, 

1988). Human foods tend to be easily digested and energy-rich compared with 

the protein-rich and fibrous mature leaves available during the dry season (Quick, 

1986) and regular intake of human foods has been shown to be associated with 

higher average BMIs in vervets (Pampush, 2010). The ability of vervets to adapt 

to a wide range of environments is perhaps best illustrated by the overwhelming 

success of vervets on the Caribbean islands of Barbados and St. Kitts and Nevis 

compared with the failed introduction of the arboreal guenon Cercopithecus 

mona to the island of Grenada, West Indies, 200-300 years ago (Fedigan and 

Fedigan, 1988; Glenn, 1997). Moreover, prolonged contact with humans has been 

demonstrated to have a profound effect on the acquisition of technical skills by 

vervets, such as operating door and window latches (e.g. Van De Waal and 

Bshary, 2010). 
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Vervets forage for food in small groups during the day, exploiting open 

savanna and human-populated areas, and retreat to designated sleeping trees at 

the edges of riparian forest at night (Harrison, 1983; Fedigan and Fedigan, 1988). 

In response to periods of resource scarcity and temperature extremes during the 

annual dry season, vervets modify foraging behaviors, spending more time 

foraging in groups for uncommon foods; ranging patterns, conserving energy 

when food is sparse and expending energy when greater returns are expected; and 

defense of home ranges (i.e. degree of territoriality) (Kavanagh, 1978; Harrison, 

1983, 1984; Fedigan and Fedigan, 1988; Lee and Hauser, 1998). Priority of 

access to clumped food resources (e.g. the new leaves, gum and flowers of 

Acacia tortilis, A. xanthophloea, and A. elatior) is awarded according to 

hierarchical rank, with high ranking females spending greater amounts of time 

eating these foods than low ranking females (Whitten, 1983). It has been 

suggested that the consumption of these foods is positively correlated with 

reproductive success in female vervets (Whitten, 1983), perhaps due to antibiotic 

properties (including condensed tannins) of Acacia spp. (Wrangham and 

Waterman, 1981). 

 

iii. Social Organization 

Group Composition, Ranging, and Territoriality 

Vervets live in relatively stable multi-male, multi-female social groups varying in 

size from as few as two adults and accompanying dependents (Isbell et al., 1991) 

to up to 140 individuals (Kavanagh, 1981; Isbell and Young, 1993), with a mean  
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size of 25 (Struhsaker, 1967b; Fedigan and Fedigan, 1988). Although group sizes 

fluctuate greatly across habitats and seasons (Table 2), adult mean sex ratios 

remain fairly consistent at between 1.0 and 1.5 females to every male (Hall and 

Gartlan, 1965; Struhsaker, 1967a, 1967b; Horrocks, 1986; Fedigan and Fedigan, 

1988). Unusual among most primates (and mammals in general), vervet males 

tolerate the presence of other, reproductively-active males year-round. Several 

explanations for this residence pattern have been proposed, including cooperative 

defense of food (Isbell et al., 1991) or females (Wrangham, 1980; Andelman, 

1986; Altmann, 1990; Mitani et al., 1996), defense against predation threat (Van 

Schaik and Van Noordwijk, 1989; Baldellou and Henzi, 1992; Hill and Lee, 

1998), and the size of the neocortex, which has been proposed to constrain group 

size by limiting the number of social relationships an individual is able to 

monitor (Dunbar, 1992, 1995; Dunbar and Schultz, 2007). However, the most 

convincing explanation, called the “limited dispersal hypothesis,” suggests that 

the high costs of male dispersal across a highly variable landscape may favor the 

formation of multi-male groups (Isbell et al., 2002; see Dispersal).   

Following the hypothesis that primate group sizes and ranging patterns are 

determined by the intensity and type of exploitation competition (i.e. scramble or 

contest), it is expected that terrestrial species primarily reliant on a frugivorous 

diet will tend to live in larger groups and occupy larger home ranges than 

smaller, arboreal and predominantly folivorous species (Van Schaik and Van 

Hooff, 1983; Dunbar, 1998; Wrangham et al., 1993). Accordingly, both vervet 

group and home range sizes are predicted to fall somewhere between those 
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characteristic of Papio spp. (average group size: 55; average home range size: 

1,352 ha; reviewed in Melnick and Pearl, 1987) and Cercopithecus spp. (average 

group size: 20; average home range size: 40 ha; reviewed in Enstam and Isbell, 

2007) (Chapman and Chapman, 2000).  

However, comparisons show that while the average vervet group (25) and 

home range (42 ha) sizes follow predictions of the hypothesis (Struhsaker, 1967b; 

Wolfheim, 1983; Fedigan and Fedigan, 1988; Enstam and Isbell, 2007), the 

species exhibits variation in group size and ranging behavior substantial enough 

both between and within populations to obscure interspecific differences. Indeed, 

depending on social group size and seasonal resource availability, home ranges 

can vary in size from as small as 9.4 ha to up to 518 ha (Wolfheim, 1983), and 

day range lengths can far exceed these figures (see Table 2) (Enstam and Isbell, 

2007). 

For vervet monkeys, the most reliable predictor of group size and activity 

patterns, including ranging, is access to high-quality food resources. As 

demonstrated by Isbell and Young (1993), although time spent feeding does not 

significantly increase in resource-poor areas, group sizes tend to be smaller and 

population densities higher, suggesting that less energy is expended in expanding 

and defending home ranges during periods of resource scarcity (Kavanagh, 

1981). Other aspects of animal activity have also been shown to be influenced by 

poor ecological conditions. For example, Isbell and Young (1993) found that 

individuals in smaller groups tended to allogroom at lower rates than individuals 

in larger groups.    
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Vervet monkeys are more territorial than members of Cercopithecus and 

fiercely defend small, semi-permanent territories against invasions from other 

troops (Struhsaker, 1967b; Cheney et al., 1981; Isbell et al., 1990). Encounters 

between conspecific groups of vervet monkeys typically involve three different 

aggressive vocalizations – intergroup wrrs, grunts, and long aars (Struhsaker, 

1967c) – as well as agonistic chases and physical attacks (Hauser, 1989; Enstam 

and Isbell, 2007). However, individuals of different sexes, ages, and ranks behave 

differently in response to intergroup encounters. Perhaps predictably, Cheney et 

al. (1981) found that individuals with the most to lose from intergroup incursions, 

namely high-ranking females and adult males with the greatest access to 

receptive females, engaged the most in intergroup encounters, whereas juvenile 

males that have not yet dispersed from their natal groups tended to behave 

affiliatively towards individuals, especially females, from other groups.         

 

Dispersal 

Like the females of many Old World Monkey species (e.g., Macaca, Papio, 

Cercopithecus), female vervet monkeys remain in their natal groups their entire 

lives where they form linear rank hierarchies organized along stable matrilines 

and according to which priority of access to food, water, and social and sexual 

partners is organized (Cheney et al., 1981; Cheney and Seyfarth, 1987). Although 

females rarely leave their natal groups, extreme droughts resulting in population 

decreases and extinctions among the well-studied vervet troops of Amboseli 
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National Park, Kenya, in the late 1970s and 1980s propelled several juvenile 

females to join other troops (Hauser et al., 1986; Isbell et al., 1990, 1991).  

 By contrast, males disperse to neighboring groups at sexual maturity 

(reached at approximately 3 years of age) and establish dominance hierarchies 

through contest competition with resident males (Whitten and Turner, 2009). 

Inter-troop male migration peaks at the onset of the mating season (roughly April 

through October; Andelman, 1987) and is associated with increases in male-male 

aggression (Henzi and Lucas, 1980). The outcomes of male dominance 

interactions are determined by an array of factors, including age, length of group 

tenure, availability of male relatives or other allies, and fighting ability 

(Struhsaker, 1967b; Cheney et al., 1981). Males may migrate multiple times over 

the course of their lives (Cheney and Seyfarth, 1983; Isbell et al., 2002).   

Dispersal has been shown to be highly correlated with increases in the 

secretion of both testosterone and the mammalian stress hormone cortisol in a 

number of female-philopatric species (e.g., Cebus apella: Lynch et al., 2002; 

Chlorocebus aethiops: McGuire et al., 1986; Whitten and Turner, 2004; Crocuta 

crocuta: Holekamp and Smale, 1998; Macaca spp.: Muehlenbein et al., 2004; 

Papio hamadryas: Beehner et al., 2006; Propithecus verreauxi: Brockman et al., 

2001). During dispersal, individuals experience higher rates of mortality from 

predation and starvation compared with resident male conspecifics and lose 

opportunities to mate while alone (Isbell et al., 1993; Wolff, 1994; Alberts and 

Altmann, 1995). Thus, dispersal represents a cost to individual fitness.  
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Unlike the forest guenons, vervet troops are restricted to sleeping trees 

located along narrow strips of riverine forest, with troops lined up one after 

another rather than scattered homogenously throughout the habitat (Enstam and 

Isbell, 2007). This arrangement severely reduces dispersal options for males (i.e. 

only two directions). Under the limited dispersal hypothesis, limited choices for 

dispersing males as well as the relatively high costs associated with migration 

were significant enough in vervet evolution to facilitate selection for a facultative 

multi-male social system (Isbell et al., 2002). However, because vervet males do 

not often disperse across long distances and do not have an extensive “non-group 

phase,” the costs of dispersal may be negligible (Cheney and Seyfarth, 1983). 

Thus, lack of dispersal choices is the more robust explanation for multimale 

residence.   

A consequence of few dispersal options, parallel dispersal, in which males 

emigrate from their natal groups with related males or join troops containing 

older relatives, is vervets. Patterns of parallel dispersal result in a high probability 

of genetic relatedness between resident and immigrant males (Cheney et al., 

1981; Isbell et al., 2002). According to the rule of inclusive fitness, vervets are 

thus expected to have reduced male-male aggression and low rates of infanticidal 

behavior (Hrdy, 1979; Isbell et al., 2002). Few instances of infanticide have been 

recorded for Ch. aethiops, and all cases of suspected infanticide (Fairbanks and 

McGuire, 1987) and aggression towards immigrant males (Steklis et al., 1985) 

have occurred under captive conditions or in unimale troops or troops with a low 

relatedness quotient due to greater dispersal options (Isbell et al. 2002). 
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Additionally, in contrast to females of other savanna-dwelling Cercopithecines 

(e.g., Cercocebus, Papio, Theropithecus), the evolution of concealed ovulation in 

female vervets can be understood in connection with selection pressures acting in 

favor of the co-residence of related males and accordingly, against infanticide 

and male-male aggression (Andelman, 1987). Although high-ranking vervet 

males tend to have higher reproductive success than low-ranking males 

(Struhsaker, 1967b), there is no evidence for monopolization of copulations by 

males or the formation of aggressive male coalitions (Andelman, 1987). Given 

concealed ovulation and male co-residence characteristic of the species, the 

reproductive payoff of these efforts would be small. This suggests that females 

may selectively choose to mate with high-ranking males during estrous (Keddy, 

1986).  

 

Intragroup Relationships 

As a consequence of sex-biased dispersal in vervets, relations between females 

constitute the majority of all adult social interactions in the species (Rowell, 

1988). Conversely, interactions between females and resident males are primarily 

restricted to the mating season (Enstam and Isbell, 2007). Female rank is 

inherited maternally and is supported through coalitions of female kin against 

unrelated individuals including resident males (Struhsaker, 1967a). Both male 

and female rank hierarchies are linear and rank is demonstrated through priority 

of access to spatial positions (Struhsaker, 1967b), food (Whitten, 1983), and 

grooming and mating partners (Seyfarth and Cheney, 1984), as well as through 



 

   

28

agonistic interactions (Isbell and Pruetz, 1998). Female rank hierarchies remain 

relatively stable over time and rank reversals are rare (Melnick and Pearl, 1987). 

Following predictions of the social model hypothesis, which predicts that in 

primate societies with female philopatry and stable female dominance 

hierarchies, older, high-ranking females will be the principal shapers of social 

learning (Kendal et al., 2010), vervet matriarchs direct the transmission of social 

traditions across generations (Van De Waal et al., 2010). 

The strength of female dominance hierarchies in primates is strongly 

influenced by access to resources (Sterck et al., 1997). Reliance on clumped, 

monopolizable resources such as fruit and meat is commonly associated with 

formalized nepotistic or despotic linear hierarchies and higher rates of agonistic 

behavior between and within social groups while abundant or dispersed 

resources, such as plant material, are correlated with egalitarian or individualistic 

relationships among females (Clutton-Brock and Harvey, 1977; Whitten, 1983; 

Van Schaik, 1989; Isbell, 1991; Pruetz and Isbell, 2000; Sterck and Steenbeek, 

1997; Isbell and Young, 2002). Although the omnivorous vervets tend to follow 

general patterns of the socioecological model, the ability of vervets to exploit a 

diverse range of foods (see Table 2) and form temporary subgroups during 

seasonal periods of resource scarcity suggest that resource competition may not 

be the primary determinant of female dominance interactions for this species 

(Altmann, 2009; Koenig, 2002; Sussman and Garber, 2007). Others have 

suggested predation threat (Sussman and Garber, 2007) and group size and 
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spread (Koenig and Borries, 2006) as potential influences on the dynamics of 

female social interactions in vervets.  

Vervet monkeys have an extensive repertoire of vocalizations, including, 

but not limited to, affiliative grunts, alarm calls, and intergroup trills (Struhsaker, 

1967b). Using playback experiments, Cheney and Seyfarth (1980, 1981, 1982a, 

1986, 1988) demonstrated that these vocalizations contain discrete, context-

dependent messages relating to the external world. For example, predator alarm 

calls produced by vervets were found to vary according to predator threat (e.g., 

Cheney and Seyfarth, 1981, 1985a; Seyfarth et al., 1980a, 1980b; Seyfarth and 

Cheney, 1990; Owren, 1990; Brown et al., 1992); that is, alarm calls for one class 

of predators were structurally unique from all other predator calls and were 

recognized as such by all adult members of the group.  

The specificity of these calls to particular predators has been suggested to 

have evolved as a response to the 3-D predator landscape (Makin et al., 2012). 

Vervets commonly utilize habitats characterized by both aerial and terrestrial 

predator threats. Thus, predator alarm calls are expected to confer a survival 

advantage that outweighs the costs of evolving such a sophisticated system. A 

variety of other primate groups have been observed to produce referential 

predator alarm calls (e.g., Cebus capuchinus: Digweed et al., 2005; 

Cercopithecus campbelli: Zuberbühler, 2001; Cercopithecus diana: Zuberbühler 

et al., 1997, 1999; Zuberbühler, 2000; Colobus badius: Standford, 1995; Eulemur 

fulvus: Fichtel and Kappeler, 2002; Propithecus verreauxi: Fichtel and Kappeler, 



 

   

30

2002; Pan troglodytes: Crockford and Boesch, 2003), however, these calls may 

not always communicate response urgency (Pereira and Macedonia, 1991).  

 Competency in the production and recognition of these vocalizations was 

found to be gradually acquired during juvenescence, suggesting that, to some 

extent, this represents a learned behavior (Seyfarth and Cheney, 1980, 1986, 

1997; Hauser, 1989). Further study revealed that vocalizations are involved in the 

formation and maintenance of vervet social relationships. In a series of papers, 

Cheney and Seyfarth (1980, 1982a, 1982b, 1985b, 1986) demonstrated that 

vervets are able to recognize both kin and nonkin individuals based on their 

vocalizations and classify individuals according to dominance relations, rank 

hierarchies, and matrilineal kinship based on these vocalizations. Furthermore, it 

was found that individuals are able to remember who behaved affiliatively or 

agonistically toward them in the past and modify their behavior to reflect these 

relationships. This ability to simultaneously monitor many relationships has been 

suggested to exert a constraint on social group size (see Group Composition, 

Ranging, and Territoriality). 

 

vi. Life History  

Notable among Old World monkeys, vervet females do not exhibit a defined 

estrus period of perineal swelling within menstrual cycles (Rowell, 1970; Eley et 

al., 1989). Instead, female vervets are characterized by concealed ovulation and 

prolonged sexual receptivity extending beyond the period of maximum fertility 

(Andelman, 1987). Mean menstrual cycle and menses lengths have been reported 
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at between 30 and 33 days and 2.5 and 5.0 days, respectively (Johnson et al., 

1973; Else et al., 1986; Eley et al., 1989; Seier et al., 1991). Menstruation 

generally begins between 6 and 14 days before peak circulating estradiol 

concentrations (Hess et al., 1979).  

In the wild, vervet monkey scheduling of reproduction follows a 

marginally seasonal pattern for both males and females (Eley et al., 1986; Else et 

al., 1986; Kudolo et al., 1986). Females generally give birth to a single infant at 

the beginning of the annual wet season (November through May for South 

Africa) when food is generally most abundant (Struhsaker, 1967a; Gartlan, 1969; 

Lancaster, 1971); however, in vervet populations inhabiting Barbados births peak 

in the dry season (Horrocks, 1986). In captivity vervets reproduce throughout the 

year (Seier, 2005). Twinning has been observed in a wild population; however, 

both twins were not successfully raised to adulthood (Pollack and Raleigh, 1994).  

Mean gestation period lengths have been reported for captive populations 

at 165 days by Rowell (1970) and 163 days by Johnson et al. (1973). Bramblett 

et al. (1975) reported a mean interbirth interval for female vervets of 337.9 days, 

but intervals commonly range from 183 to over 800 days (Fairbanks and 

McGuire, 1984; Lee, 1984a; Caro et al., 1995). Female rank is the most robust 

predictor of female reproductive success in vervets, with higher-ranking females 

reproducing earlier and having shorter interbirth intervals, more births per year, 

and higher rates of infant survivorship than lower-ranking females (Whitten, 

1983; Fairbanks and McGuire, 1984; Cheney et al., 1988).  
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Male reproductive success is influenced by a number of factors, including 

male-male competition, female rank, and female preference for higher-ranking 

males (Keddy, 1986). Males do not establish courtships or associate with females 

outside of the breeding season (Keddy, 1985). However, a recent study 

demonstrated that when the number of receptive females in a population is few 

males associate with females more than when receptive females are abundant, 

conforming to biological market theory (Fruteau et al., 2009).   

Average birth weights are about 343-364 g for males and 318-352 g for 

females (Seier, 1986; Cho et al., 2002). Infants generally remain dependent on 

their mothers for 12 months (Lee, 1987); however, vervet mothers typically 

initiate weaning when the infant is about 3-6 months old (Fairbanks and 

McGuire, 1987). The timing of weaning is dependent on a number of factors, 

including availability of high-quality nutrition (Lee, 1984b; Hauser and 

Fairbanks, 1988), the mother’s reproductive experience (Whitten, 1982; 

Fairbanks and McGuire, 1987; Fairbanks, 1988a), and maternal condition (Lee et 

al. 1991). In some wild populations it has been estimated that the abortion rate is 

about 26% (Turner et al., 1987) and 30-57% of infants die in their first year of 

life (Cheney et al., 1988; Eley, 1992). 

In her review of alloparenting in primates, Hrdy (1976) observed that 

alloparenting often involves the kidnapping and exploitation of an infant by the 

‘caretaker’ and sometimes results in harm or fatality of the infant, causing a 

reproductive cost to the mother. Infant kidnapping and abuse has been 

documented in a number of primate species (e.g., Macaca fuscata: Schino et al., 
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1993; Papio cynocephalus: Shopland and Altmann, 1987; Kleindorfer and 

Wasser, 2004; Semnopithecus entellus: Hrdy, 1978).  

However, in vervets, alloparental care does not appear to be abusive 

(Struhsaker, 1971; Lancaster, 1971; Lee, 1984a). Instead, allomothering is 

suggested to benefit the mother by reducing the amount of time and energy 

invested in infant care and the alloparent by providing parental experience 

(Fairbanks, 1990). Supporting this reciprocal benefits hypothesis, reports of 

vervet allomothering suggest that nulliparous females related to the mother are 

the most frequent caretakers (e.g., Struhsaker, 1971; Johnson et al., 1980; Lee, 

1984a; Meaney et al., 1990). However, unrelated juvenile males and adult, 

reproductively-active females, have also been observed to care for infants (Krige 

and Lucas, 1974; Fairbanks, 1988b). Adult males do not generally engage in 

parental care (Gartlan, 1969); however, lower-ranking males have been observed 

to associate with groups of infants (Danzy, pers. obs.).  

Compared with six other Old World monkeys, Rowell and Richards 

(1979) classified vervets, along with Sykes’ monkeys, as a fast-maturing, quick-

breeding species. Infants are nutritionally independent at 12 months of age 

although adult dentition is not fully emerged until about 40-67 months (Turner et 

al., 1998; Bolter and Zihlman, 2003). In their analysis of patterns of physical 

development in wild vervets, Bolter and Zihlman (2003) found that vervet body 

systems develop in a mosaic fashion, with the brain maturing first, followed by 

the skeletal and dental framework, and finally muscle mass. Moreover, they 

observed pronounced sexual dimorphism in the rate and timing of physical 
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development, with females attaining adult proportions earlier than males (Bolter 

and Zihlman, 2003). Age of first reproduction is about 36-41 months for females 

(Fairbanks and McGuire, 1984). Males reach sexual maturity considerably later, 

at about 46 months of age (Hiyaoka et al., 1990; Bolter and Zihlman, 2003); 

however, they may not successfully reproduce until later in life (Keddy, 1986). 

Like in many other Old World monkey species, play constitutes a 

considerable part of infant and juvenile vervet activity (Fedigan, 1972; Rose, 

1977; Fairbanks, 1993; Govindarajulu et al., 1993). Fairbanks (1993) has argued 

that play in vervets encourages physical fitness and facilitates learning about the 

outside world. A similar argument has been made for a number of animal, 

including primate, taxa (e.g., Poirier and Smith, 1974; Smith, 1982; Caro, 1988; 

Burghardt, 1998; Byers, 1998; Spinka et al., 2001). Although play is not 

estimated to be a significant energetic cost (Martin, 1984), Lee (1984b) found 

that juvenile vervets typically engage in more high-intensity play behaviors when 

food densities are higher. This suggests that seasonality may have some influence 

on the behavior of infant and juvenile vervets. However, ecological stress does 

not appear to inhibit the ability of vervets to successfully reproduce (Lee, 1984a 

citing long-term data from Cheney and Seyfarth). 

Predation accounts for up to 70% of adult vervet monkey deaths in the 

wild (Isbell 1990). While reproductive senescence has been demonstrated for 

only a small number of nonhuman primates (e.g. Bowden, 1979), in a 

comparative study of several primate species, Caro et al. (1995) found that while 

some females continue to reproduce their entire adult lives, others stop well 
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before death. This pattern parallels but does not approximate human menopause. 

Whether or not a menopause-like postreproductive period exists for nonhuman 

primate females is still debated. Altmann (1987) argued that nonhuman primate 

females do not consistently exhibit a complete cessation of reproductive potential 

and therefore cannot be considered to have a menopausal period.  

  

C. Life History Theory 

Life history theory describes all components of the life of an organism – how big 

it will be at birth, how fast it will grow, when it will start reproducing, how many 

offspring it will have, how long it will live – in order to arrive at an 

understanding of the evolutionary forces that shaped it (Stearns, 1976, 1989, 

1992; Van Noordwijk and De Jong, 1986; Hill, 1993; Hill and Kaplan, 1999; 

Leigh and Blomquist, 2007). Evolutionary theory predicts that selection will 

favor phenotypic traits that confer a fitness advantage measured as reproductive 

output (Darwin, 1871). Drawing from this basic tenet, life history theory attends 

to the very simple question: Why not have more offspring? An answer is 

approached through the notion of trade-offs.  

 “Trade-offs” refers to the negative correlation between life history traits; 

that is, the fitness costs associated with the allocation of energy, a limited 

resource, to one aspect of the life course over another (Clutton-Brock et al., 1982; 

Rose, 1983; Reznick, 1985; Stearns, 1989, 1992). For example, early sexual 

maturation is often associated with early termination of the life span (see for 

example Miyatake, 1997; Leroi et al., 1994; Djawdan et al., 1996). Life history 
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theory predicts that selection will favor suites of traits that code for the most 

efficient allocation of time and energy resources given constraints of the 

environment to four competing events in the life course: growth, storage, and 

reproduction (Gadgil and Bossert, 1970; Stearns, 1976, 1992, 2000; Partridge and 

Harvey, 1988; Hill and Kaplan, 1999). However, optimal schedules of resource 

allocation vary widely across taxa (see Comparative Life Histories). The concept 

of life history trade-offs has been instrumental to explanations of observed 

variation in the timing and shape of key events, transitions, and phases in the life 

course both between and within species by providing a framework that considers 

all aspects of an organism. Although heuristic to a certain extent, imagining life 

as a sequence of facultative “decisions” inextricably linked to a fitness value has 

drawn attention to the mechanisms underlying patterns of phenotype expression. 

 The focus of life history theory on the variables time and energy follows 

from the principle that fitness is constrained by the ability of an individual to 

harvest energy from the environment and convert that energy into reproductive 

output over unit time (Hill, 1993; Hill and Kaplan, 1999). Specifically, natural 

selection is expected to act on life events related to age-schedules of reproduction 

and mortality, such as age at first reproduction, interbirth interval, and lifespan, 

given that fitness is calculated as intrinsic rate of increase and is derived from the 

sum of reproductive output of each year lived (Aiello and Wheeler, 1995). 

Although much of the language of life history theory emphasizes selection at the 

level of the individual, trade-offs ultimately function to shape the evolution of 

taxon-specific ‘norms of reaction’ – the array of possible life history features 
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produced by the genotype across a range of environments (Gomulkiewicz and 

Kirkpatrick, 1992; Worley et al., 2003). 

 

i. Comparative Primate Life Histories 

Body and brain size have long been recognized to predict mammalian metabolic 

rates according to the law of surface area (Kleiber, 1947; McMahon, 1973; 

Gould, 1975a; Martin, 1981; McNab and Eisenberg, 1989; White and Seymour, 

2003), and have been proposed to account for much of the variation in 

mammalian life histories (Western, 1979; Western and Ssemakula, 1982; Harvey 

and Clutton-Brock, 1985; Smith, 1992). The study of proportion as a function of 

scale, ‘allometry’ is concerned with how life history traits scale to size measures, 

such as limb length (e.g., Aiello, 1981, 1984), cranial capacity (e.g. Pilbeam and 

Gould, 1974), and tooth size (e.g., Gould, 1975b; Gingerich and Smith, 1985).  

 Size effects have been proposed to influence the diversity of structural 

forms among related taxa (Gingerich et al., 1982; Shea, 1992; West et al., 1997; 

Leigh et al., 2003; Purvis et al., 2003) and have been used to predict such life 

history parameters as reproductive rate (e.g., Fenchel, 1974; Reiss, 1991; Ross 

and Jones, 1999), growth rate (e.g., Gould, 1966; Millar, 1977; Pontier et al., 

1989), and lifespan (e.g., Sacher, 1959; Promislow, 1993). However, size alone 

does not provide a complete explanation for differences in mammalian life 

history components, which have been found to systematically co-vary across taxa 

independent of size effects (e.g. brain, body, and neonatal weights: Harvey and 

Clutton-Brock, 1985; Promislow and Harvey, 1990). For example, although the 
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dental complement has a strong allometric effect, the indriid primates of 

Madagascar show accelerated dental development but delayed growth of the 

skeletal framework and delayed sexual maturation (Godfrey et al., 2003).  

 An alternative explanation suggests that taxon-specific life history 

strategies are the result of selection acting on a combination of life history 

variables adapted to rates of adult extrinsic mortality and are only marginally 

constrained by size effects (Partridge and Harvey, 1988; Promislow and Harvey, 

1990; Harvey and Purvis, 1991; Janson and Van Schaik, 1993; Kappeler, 1996; 

Janson, 2003; Johnson, 2003; Purvis et al., 2003; Rubenstein, 2003).  Supporting 

this hypothesis, a growing number of studies have shown that when phylogenetic 

effects are removed, variation in mammalian life history traits does not 

significantly correlate with allometric scaling measures (e.g. brain size and 

metabolic rate: Read and Harvey, 1989; Harvey et al., 1991; Harvey and Keymer, 

1991). Following from this hypothesis, the expression of “timed” phenotypes, 

such as weaning, dispersal, and reproduction, which are direct components of 

lifespan, may provide particular insight into the causes of variation in energy 

production and allocation in the life histories of mammals (McNab, 1988; Smith, 

1992; Enquist et al., 1999; Hill and Kaplan, 1999).  

 Drawing on techniques of allometric scaling, the ‘allochronic’ model 

scales life history traits to life span or other timed events in the life course 

(Smith, 1992; Glazier and Newcomer, 1999). Rates (analogous to size) and 

patterns (analogous to shape) of life events are scaled to taxon-specific age 

schedules of reproduction and mortality, providing a link between the timing and 
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pattern of events in life history and dynamics of energy production and 

allocation. For example, early age at first reproduction tends to coincide with 

other stereotypically “fast” traits, such as relatively high mortality rates, large 

litters, short interbirth intervals, and short life spans (Mangel and Stamps, 2001; 

Bielby et al., 2007). Although few empirical studies have made use of it (see for 

exception Smith, 1992; Glazier and Newcomer, 1999), the allochronic model has 

the unique potential to reveal interrelations of life history traits and explain how 

suites of traits correspond to constraints of the lifespan, and therefore conditions 

of the environment.   

 Introduced to ecology by MacArthur and Wilson (1967), r- and K-

selection, in which r refers to the maximum intrinsic rate of increase and K is the 

carrying capacity of the environment, has since been broadened by Pianka (1970, 

1972), Gadgil and Solbrig (1972), and Stearns (1976, 1977, 1989) to describe 

variation in the “pace” of mammalian life histories. Whereas r-selected taxa are 

opportunistic, characterized by early maturation, the production of many, “cheap” 

offspring, and early termination of life, K-selected taxa exist at or near the 

carrying capacity of the environment and gain a reproductive advantage by 

increasing the competitive ability of each offspring (see for review Parry, 1981). 

The r- and K-selection model produces a fast-slow continuum of mammalian life 

histories, in which most mammals exist somewhere between the extremes. 

Although it has been the subject of criticism (e.g. Hairston et al., 1970), taken 

heuristically, the r- and K-selection model contributes elements of density-

dependent regulation, resource availability, and environmental variability to more 
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widely accepted density-independent demographic models (Boyce, 1984; 

Reznick et al., 2002).  

 Compared with those of most other mammals of similar body size, primate 

life histories tend towards the “long-and-slow” end of the continuum. Primates 

are characterized by relatively low rates of production and growth, long gestation 

periods, long interbirth intervals, the production of few, large neonates, low 

juvenile and adult rates of extrinsic mortality, long lifespans, and delayed 

reproductive maturity (e.g., Harvey and Clutton-Brock, 1985; Promislow and 

Harvey, 1990; Pereira, 1993; Ross, 1998; Ross and Jones, 1999; Mace 2000; 

Leigh and Blomquist, 2007). Reprinted from Charnov and Berrigan (1993), 

Figure 4 describes the average adult life span and average age at first 

reproduction of two primate taxa compared against a sample of other mammals. 

The primate averages are well above those of the other mammals sampled, 

suggesting that primates have considerably slower life histories than other 

mammals of similar body size.  

Variation in life history variables between primate grades is such that the 

fast-slow continuum can also be found within the primate order (Kappeler et al., 

2003). Differences in the pace of primate life histories are most pronounced 

between the phylogenetically primitive strepsirhine primates and the anthropoids. 

For example, the gray mouse lemur, a small prosimian primate, reaches 

reproductive maturity within a year of birth and produces two or more litters of 

two offspring each per season (Wrogemann et al., 2001; Andrès and Solignac, 

2003; Génin, 2008), whereas relatively long-lived gorilla females give birth to 
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singleton infants at intervals of four to six years after transferring from their natal 

groups at seven to ten years of age (Watts, 1990; Doran and McNeilage, 1998; 

Stokes et al., 2003; Robbins et al., 2004).  

 

 

ii. Male Life History Strategies 

Life history parameters of most male mammals are shaped by the organizing 

principle that male reproductive success is limited by access to reproductively 

viable females (Darwin, 1871; Wade, 1979; Andersson, 1994). Conversely, 

female reproductive success is shaped by conditions of menstruation, gestation, 

Fig. 4. Average values for age at reproductive maturity (α, measured from 
weaning to age at first reproduction) and adult life span (measured as the inverse 
of the average adult instantaneous mortality rate, M) for a sample of primates 
and other mammals. (Taken from Charnov and Berrigan, 1993). 
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birth, and lactation, and does not appear to be limited by the ability to attract 

mates (for exceptions see Johnson, 1988; Rosenqvist, 1990; Owens et al., 1994). 

While males also invest in reproduction through spermatogenesis, the 

development of secondary sexual attributes, mate competition, and even parental 

care, reduced male investment in gametes and parental care increases their 

potential rate of reproduction, resulting in an operational sex bias in favor of 

males (Trivers, 1972; Clutton-Brock and Vincent, 1991; Clutton-Brock and 

Parker, 1992; Kvarnemo and Ahnesjo, 1996; Kokko and Monaghan, 2001; 

Clutton-Brock, 2007). Although metabolic costs associated with spermatogenesis 

can reduce survivorship in some animals (e.g., Austropotamobius italicus: 

Rubolini et al., 2007; Caenorhabditis elegans: Van Voorhies, 1992; 

Notophthalmus viridescens: Takahashi and Parris, 2009; Vipera berus: Olsson et 

al., 1997), competition for access to reproducing females represents the limiting 

factor of primate male reproductive success.  

In consideration of sex differences in energy investment in gametes, males 

are expected to have a higher potential reproductive rate than females (Parker et 

al., 1972; Clutton-Brock and Vincent, 1991; Clutton-Brock and Parker, 1992). 

Sexual dimorphism in reproductive success was first demonstrated in the 

common fruitfly (Drosophila melanogaster) by Bateman (1948) and has since 

been substantiated for a number of animal taxa (e.g., D. melanogaster: Partridge 

and Farquhar, 1983; Enallagma hageni: Fincke, 1986; Gryllus bimaculatus: 

Simmons, 1988; Mirounga augustirostris: Le Boeuf, 1974; Papio spp.: DeVore, 

1965; Rana sylvatica: Howard, 1980). However, a recent replication of 
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Bateman’s classic experiment with D. melanogaster reported little evidence to 

support the claim that the sexes differ in fitness potential as a consequence of 

disproportionate investment in gametes (Gowaty et al., 2012). Moreover, 

reproductive output of males cannot exceed that of females (Queller, 1997). 

Thus, it is perhaps more accurate to say that males are expected to have higher 

rates of variation in reproductive success than females (see Kokko et al., 2006 

for review). 

In his oft-cited treatise on sexual selection, Trivers (1972) argued that 

sexual dimorphism in behavior and the expression of such secondary sexual traits 

as size, color, and the development of the vocal apparatus is a product of 

differential investment in parental care. Among primates, species with 

polygynous social systems, wherein males engage in intense competition for 

access to females, exhibit greater sexual dimorphism in canine length and body 

size than monogamous or polyandrous species (Clutton-Brock, 1977; Harvey et 

al., 1978; Plavcan, 1999). However, the strength of this argument has been called 

to question (Wade, 1979), and factors including phylogeny (e.g. Cheverud et al., 

1985), allometric effects (e.g., Leutenegger and Cheverud, 1982; Fairbairn, 

1997), predation pressure (e.g., Leutenegger and Kelly, 1977; Harvey et al., 

1978; Anderson, 1986), and diet (e.g. Ford, 1994) have been proposed to 

influence sexual size dimorphism.  

 Male reproductive competition represents a central determinant of taxon-

specific patterns of social group organization and adult sex ratios. For example, 

differences between single-male and multi-male taxa in testes size are such that 
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relative testis size has been used to predict the mating system of taxa for which 

only anatomical data exists (Dixson, 1995). A number of explanations have been 

proposed to account for different mating systems in the order primates.  

Harcourt et al. (1981) suggested that breeding season length may 

determine mating system. In taxa with a short breeding season, a single male may 

not be able to monopolize access to all reproductively-receptive females given 

that frequent copulations reduce sperm quality and output (Harcourt, 1991; 

Harcourt et al., 1995), thus resulting in a multi-male system; whereas an 

extended breeding season may enable a single male to competitively exclude all 

other males.  

Shorter breeding seasons are also expected to be associated with selection 

for increased investment in sperm-producing tissue (Harcourt et al., 1981). This 

hypothesis was substantiated by Ridley (1986). Altmann (1990) called to 

question Ridley’s categorization of breeding season lengths and instead 

suggested the number of adult females in a group as predicted by resource 

abundance to represent the most important determinant of mating system (see 

also Emlen and Oring, 1977). This hypothesis was supported by Andelman 

(1986), who demonstrated that cercopithecine groups with less than five females 

tend to be single-male and groups with more than ten females are multi-male.  

Predation (Clutton-Brock, 1989; Van Schaik and Hörstermann, 1994) and 

infanticide risk (Van Schaik, 1996; Van Schaik and Kappeler, 1997) have also 

been offered as possible explanations for patterns of social group organization. 

Although interspecific patterning of social group organization and mating system 
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may be determined by one or a combination of these factors, it is important to 

note that considerable variation exists within species that may be influenced by 

conditions of the environment, such as seasonal fluctuations in temperature and 

rainfall or anthropogenic modification of primate habitats (Fuentes, 2007; 

Thierry, 2007, 2008; Chapman and Rothman, 2009). 

 Although traditionally approached from a reproductive or evolutionary 

ecology perspective, infanticide is ultimately a subject of life history as both 

frameworks attempt to explain the evolution of phenotypes, particularly those 

relating to individual reproductive success (Chisholm et al., 1993; Stearns, 2000; 

Kaplan and Gangestad, 2004). Infanticide has been well-documented in primates 

(e.g., Cercopithecus mitis: Butynski, 1982; Macaca spp.: Soltis et al., 2000; 

Papio spp.: Palombit et al., 2000; Weingrill, 2000; Presbytis entellus: Hrdy, 

1974; Hausfater, 1982; Newton, 1986) and other mammals (e.g., Mus musculus: 

Huck et al., 1982; Brooks and Schwarzkopf, 1983; Panthera leo: Pusey and 

Packer, 1994; Rattus spp.: Mennella and Moltz, 1988; Ursus arctos: Bellemain et 

al., 2006) and is generally considered to be a product of sexual conflict (Smuts 

and Smuts, 1993; Van Schaik and Kappeler, 1997; Van Schaik et al., 2004). Hrdy 

(1974) was the first to suggest that the killing of infants by recently immigrated 

or dominant males may confer a reproductive advantage by hastening the 

mother’s return to estrus and increasing the male’s probability of successfully 

siring offspring due to his new social status. In response, females have evolved a 

number of counter-strategies, including sexual signaling through genital swelling 

(e.g., Zinner et al., 2004; Engelhardt et al., 2005), promiscuous mating (e.g., 
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Agrell et al., 1998; Wolff and Macdonald, 2004; Kowalewski and Garber, 2010), 

and developing “friendships” with resident males (e.g., Van Schaik and Kappeler, 

1997; Palombit, 2000; Weingrill, 2000; Nguyen et al., 2009). Although hotly 

debated (e.g., Dolhinow, 1977; Bartlett et al., 1993; Sussman et al., 1995), 

Hrdy’s explanation remains the best supported explanation for infanticide in 

primates. 

 

iii. Life History Variables in Ontogeny 

As a consequence of their slow growth rate, primates spend an extended amount 

of their lives as juveniles. Investment in this life stage represents a central trade-

off between energy expended on growth and survival and energy expended on 

reproduction (Stearns, 1989, 1992). However, the allocation of energy to growth 

may ultimately increase individual fitness by reducing predation risk through 

increased size or by enhancing intrasexual competitive ability (Nylin and 

Gotthard, 1998; Hill and Kaplan, 1999; Mace, 2000). For example, following 

from predictions of sexual selection theory, investment in the development of 

SSCs, such as the vocal apparatus required for the production of characteristic 

long calls of orangutan males (Mitani, 1985; Schürmann and Van Hooff, 1986; 

Delgado, 2006) and the bright pelage and sexual skin coloration of male drills 

and mandrills (Setchell and Dixson, 2001; Marty et al., 2009; Setchell et al., 

2005, 2006), confers a reproductive advantage for males of primate groups in 

which male fitness is defined through competition with conspecifics and female 

choice (West-Eberhard, 1979; Small, 1989; Setchell and Kappeler, 2003).  
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In the model proposed by Charnov and Berrigan (1993), patterns of 

juvenile development set the pace of adult lives because energy allocated to 

growth during the juvenile period is converted into reproductive effort following 

growth cessation at adulthood. Thus, increased investment in growth ultimately 

results in an increase in the net energy available for reproduction over the life 

course (reviewed in Leigh and Blomquist, 2007). In terms of metabolic 

expenditure, Charnov and Berrigan (1993) divide the developmental period into 

three distinct stages, each characterized by a different growth function (Fig. 5). 

First, the costs of growth of an individual from the time of conception until 

weaning are almost entirely absorbed maternally through lactation and food-

sharing (Altmann and Samuels, 1992), but may also be supplemented by alternate 

caregivers (e.g. Callitrichidae: Garber and Leigh, 1997). From weaning until 

adulthood, which is commonly taken as age at first reproduction (Pereira, 1993), 

the energy costs of further growth as well as the development of secondary sex 

characteristics are taken up by the individual with minimal provisioning by the 

mother or other related individuals (e.g., Schessler and Nash, 1977; De Waal, 

1989; De Waal et al., 1993). At growth cessation, energy gained during the 

growth period is converted into reproductive effort.  

The timing of life stage transitions is mediated by aspects of the physical, 

biotic, and social environment, most notably by rates of extrinsic mortality. 

Theories of the evolution of aging predict that organisms that experience high 

rates of mortality attributable to extrinsic factors, such as predation, starvation, or 

disease, will evolve high intrinsic rates of mortality, i.e. early senescence and a 
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short lifespan (Williams, 1957; Hamilton, 1966; Abrams, 1993; Holliday, 2006). 

Following from the principle of trade-offs, the limiting effects of rates of 

extrinsic mortality on the lifespan are expected to determine species-specific 

dynamics of growth, maturation, body size, and reproduction (Promislow and 

Harvey, 1990; Stearns et al., 2000). As mentioned earlier, the juvenile period 

represents an important determinant of lifetime reproductive success. Because 

juvenescence is characterized by nutritional independence from the mother and 

entrance into an adult ecological niche, juveniles are particularly vulnerable to 

starvation and foraging-related predation. In their ‘juvenile risks’ model, Janson 

and Van Schaik (1993) propose that this risk is minimized in primates through 

the adoption of a slow-growth strategy, prolonging the juvenile period but 

lowering the risk of death per unit time. Additionally, a prolonged juvenile period 

may confer a fitness advantage by allowing an individual sufficient time to attain 

the ecological and social skills necessary to successfully exploit the adult 

foraging niche and navigate social life. 

The transition from one developmental stage to the next is associated with 

a shift in life history priorities and, accordingly, the uptake of a different fitness-

maximizing strategy (reviewed in Pereira and Leigh, 2003). Given that it is under 

directional selection, inter-individual differences in resource-acquisition ability 

more than allocation strategy may better predict fitness (Hunt et al., 2004). 

However, the timing of changes in energy allocation from somatic growth to 

reproduction reflects a fundamental trade-off between reproductive rate and 

reproductive span (Johnson, 2003), and consequently, represents an important 
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determinant of individual fitness (e.g. Kappeler, 1996). Moreover, the timing of 

this life history event affects both the rate and direction of changes in population 

size (Stearns, 1992; Pereira and Leigh, 1993; Alberts and Altmann, 1995). For 

example, in populations characterized by a positive net growth, individuals 

favoring a strategy of early sexual maturation are expected to have a higher 

fitness value because each current offspring produced represents a higher 

proportion of the population than each future offspring relative to mortality risk 

(Hill, 1993). The opposite pattern is expected for populations of decreasing size. 

Although species-specific generalities are often used in life history 

research, variation in life history traits exists between individuals of a single 

species which shape individual reproductive success and fitness. Variability in 

life history traits within a species may arise in one of two ways. First, phenotypic 

plasticity can occur when the norms of reaction for an individual interact with a 

variable environment to produce the most efficient allocation of resources, often 

corresponding to a change in form or activity (Nylin and Gotthard, 1998; West-

Eberhard, 2003). Over time, such changes may become fixed in the population as 

alternative strategies.  

For example, orangutan males lacking the pronounced sexually selected 

features characteristic of the species, termed “Peter Pan” or “sneaker” males, 

contribute to the gene pool through sexual coercion. Second, variability in a 

population may reflect a maladaptation. Some individuals are of higher quality 

than others (Kokko, 1998). Thus, examinations of variation in the force of 

selection operating at different times in the life course of an individual as well as 
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differences in life history strategies among individuals are central to our 

understanding of the evolution of diversity among primate life histories. 

 

 

    

 

 

 

 

D. Hormones and Life Histories 

i. Testosterone and the Endocrine System 

Sex-specific hormones, most notably T in males and estrogens (estradiol-17β and 

estrone) in females, are important determinants of mammalian reproductive 

function. Their roles include controlling differentiation of the brain and gonads, 

maturation of reproductive organs, control of energy investment in gametes, 

development of secondary sex characteristics, and stimulation of sexual behavior 

(Selcer and Leavitt, 1991). Hormones control reproductive function by means of 

Fig. 5. Representation of the life history model proposed by Charnov and Berrigan 
(1993) which diagrams three life history transitions defined in terms of energetics: 
(1) infancy, taken as the period from birth to weaning during which individual costs 
of growth are met by the mother; (2) juvenescence, from weaning until reproductive 
maturity growth is a condition of individual metabolic expenditure and (3) 
adulthood, at which time growth is converted into reproductive effort. (Taken from 
Charnov and Berrigan, 1993). 
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a series of feedback loops along the hypothalamic-pituitary-gonad (HPG) axis. 

This system acts in an episodic or pulsatile fashion, with hypothalamic pulses of 

gonadotropin-releasing hormone (GnRH) or GnRH-like molecules regulating the 

release of the gonadotropic hormones (GtHs) follicle-stimulating hormone (FSH) 

and luteinizing hormone (LH) from the anterior pituitary gland (King and Millar, 

1991). The HPG axis also plays a role in the regulation of other pituitary 

hormones, effects on the placenta, gonads, and adrenal gland, and activity in the 

central and peripheral nervous systems (Cameron, 1990; Lavy et al., 1991; Finn 

et al., 1998). GnRH along with the other releasing hormones (e.g., corticotropin-

releasing hormone, thyrotropin-releasing hormone, somatocrinin) are secreted by 

peptidergic neurons of the hypothalamic median eminence and transported to the 

anterior pituitary by means of veins of the hypothalamo-hypophyseal portal 

(HHP) system (Nelson, 2000). GnRH exists in two forms in mammals, GnRH I, 

which regulates GtH release, and GnRH II, which has been suggested to act as a 

neuromodulator and has been demonstrated to stimulate sexual behavior (Neill et 

al., 2001; Millar, 2003, 2005). GnRH activity is moderated by a number of 

neuronal systems within the central nervous system (CNS), including those that 

regulate the release of such neurotransmitters as norepinephrine, serotonin, and 

endogenous opiate peptides (Zheng, 2009). Binding sites for GnRH analogs have 

been demonstrated in the testicular Leydig cells and ovarian granulosa cells of 

mammals and GnRH-like peptides have been found in testicular extracts and 

follicular fluid (e.g., Hsueh and Schaeffer, 1985; Millar and King, 1987; King 

and Millar, 1992; Okubo and Nagahama, 2008). Although interspecies 
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differences exist in the control of the GnRH system by the CNS, most structural 

and chemical aspects of reproduction, particularly the hypothalamic-pituitary axis 

(HPA) and the HHP system, are identical among vertebrates (Lavy et al., 1991). 

 The hypophyseal GtHs LH and FSH directly affect the gonads in the 

control of the development, maturation, and release of mammalian gametes 

(Licht, 1979; Ishii, 1991). In females, FSH and LH control the development and 

function of ovarian follicles. FSH binds to membrane receptors of the granulosa 

cells of immature ovarian follicles to stimulate LH receptor activity and the 

release of aromatase (Erickson and Hsueh, 1978; Erickson et al., 1979). LH, in 

turn, stimulates the production of androgens, principally T and 5α-

dihydrotestosterone (DHT) (Nelson, 2000). These are secreted by thecal cells and 

stored in the follicular cavity until they can be converted to the female sex steroid 

estrogen by the granulosa cells (Baird et al., 1981). In the testis of males, FSH 

and LH play different roles. FSH targets Sertoli cells in the seminiferous tubule 

to activate spermatogenesis and increase the synthesis of proteins such as 

androgen-binding protein, plasminogen activator, protein kinase inhibitor, and 

gamma glutamyl transpeptidase, and LH targets the Leydig cells in the interstitial 

tissue to stimulate the secretion of androgens, including T (Steinberger, 1971; 

Bremner et al., 1981; DiZerega and Sherins, 1981; Swerdloff and Heber, 1981; 

Ishii, 1991). T secreted by the Leydig cells acts in conjunction with FSH on 

Sertoli cells in the activation of spermatogenesis (Tähkä, 1986). Although Leydig 

cells do not have FSH receptors, FSH directly increases sensitivity of the testis to 

LH at puberty (Fakunding et al., 1976). Gonadal hormones have an inhibitory 
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effect on GnRH activity, mediating the secretion of the GtHs, possibly through 

the suppression of GnRH secretion and the suppression of pituitary 

responsiveness to GnRHs (Clayton and Catt, 1981; Matsumoto and Bremner, 

1984; Singh et al., 1995). 

 

ii. Testosterone and Male Life Histories 

T and the other androgens (i.e. androstenedione and DHT) act on the accessory 

ducts and glands of the male reproductive tract, the secretory products of which 

are critical to the production of functional sperm, and maintain the accessory sex 

organs, including the prostate, seminal vesicles, and bulba urethra glands (Knorr 

et al., 1970; Nelson, 2000). Androgens also support the expression of SSCs, such 

as the development of the vocal apparatus used in the long-calls of many primate 

species (e.g., Wich et al., 2003; Fischer et al., 2004), vibrant coloration of the 

pelage and dermis of mandrills, vervet monkeys, and others (e.g., Wickings and 

Dixson, 1992a, 1992b; Setchell and Dixson, 2001; Waitt et al., 2003; Danzy, 

2012) and sex dimorphism in body size and muscle mass (reviewed in Wells, 

2007). Although primarily associated with the initiation of spermatogenesis and 

the maintenance of the reproductive tract, androgens play a prominent role in 

regulating respiratory metabolism and are linked to many diseases, such as 

prostate cancer, endometrial cancer, breast cancer, osteoporosis, and loss of 

libido (Chang, 2002).  

Hormones act as intermediaries between the physical environment and the 

internal architecture of an organism, acting both at the level of genes and whole-
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body phenotypic traits, including behavior, in transitions between life history 

stages, such as maturation and reproduction (Ketterson and Nolan, 1992; Hau, 

2007). T has been a focus of male life history traits due to its effects the 

expression of SSCs, courtship and mating behaviors (e.g., vocalizations and 

presentations, copulatory behavior), and aggression (e.g. mate guarding, male-

male competition, territorial behavior), and suppressing immune function 

(Folstad and Karter, 1992; Owen-Ashley et al., 2004; Muehlenbein and 

Bribiescas, 2005) and parental care (Marler and Moore, 1988) (see Table 3 for 

summary). Interconnections between patterns of T secretion and reproductive 

behavior are supported by experimental manipulation studies (e.g., Moore, 1984; 

Hegner and Wingfield, 1987; Ketterson et al., 1992; De Ridder et al., 2000).   

In primates, the correlation between circulating levels of T and aggressive 

behavior is tenuous. An almost equal number of studies support (e.g., Bernstein 

et al., 1979; Alberts et al., 1992) and refute (e.g., Steklis et al., 1985, 1986; 

Nieuwenhuijsen et al., 1987; Lynch et al., 2002) the association. More recent 

studies (e.g., Cavigelli and Pereira, 2000; Muller and Wrangham, 2004; Whitten 

and Turner, 2004; Archer, 2006; Cristóbal-Azkarate et al., 2006; Gould and 

Ziegler, 2007) have looked at seasonal or event-driven variability in the 

relationship between T and aggressive and reproductive behavior using the 

challenge hypothesis as a theoretical starting point. Proposed by Wingfield et al. 

(1990), the ‘challenge hypothesis’ suggests that sexually selected behaviors in 

males of species that compete for reproductive access to females, the expression 

of which are a function of circulating androgens, should fluctuate in response to 
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challenges of the social environment (see also Wingfield, 1984; Wingfield et al., 

1987, 2001, 2006). While expectations of this hypothesis suggest that circulating 

levels of T should increase in preparation for critical moments in the life course, 

empirical evidence in primates is mixed. A number of studies have shown 

compelling evidence for increases in circulating T in preparation for critical 

events such as dispersal (e.g., Brockman et al., 2001; Gesquiere et al., 2005; 

Beehner et al., 2006) and seasonal competition for mating opportunities (e.g., 

Cavigelli and Pereira, 2000; Ostner et al., 2002; Teichroeb and Sicotte, 2008; 

Girard-Buttoz et al., 2009), whereas other studies have not found significant 

support for these patterns (e.g. Beehner et al., 2009). However, by positing a link 

between elevated T levels and conditions specific to male life histories, 

specifically the need to compete for access to reproductively viable females, the 

challenge hypothesis provides an explanation for patterns of T secretion and the 

expression of behaviors and SSCs associated with reproductive effort.  

Social factors, such as sex ratio (e.g., Cristóbal-Azkarate et al., 2006; 

Rangel-Negrín et al., 2011) and social structure, may also exert an influence on 

patterns of expression of male T (see Hirschenhauser and Oliveira, 2006 for a full 

review). The strength of the relationship between T and the expression of male 

reproductive behaviors is expected to vary according to mating system and 

degree of paternal care. Males of species with monogamous mating and paternal 

care of offspring (e.g., gibbons, siamangs, muriquis, owl monkeys) should exhibit 

more aggression and a corresponding increase in T in response to social 

challenges, such as the initial formation of pair bonds and territorial 
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encroachment by conspecifics, than males of species with polygynous mating and 

little or no paternal investment. Although few of these species have been the 

subjects of studies evaluating the challenge hypothesis, Strier et al. (1999) did not 

find evidence for differences in T between breeding and nonbreeding seasons in 

male muriquis (Brachyteles arachnoides).  

Alternatively, males of species with strict hierarchical (e.g. gorillas) or 

promiscuous hierarchical (e.g. chimpanzees) multimale-multifemale mating 

systems are expected to exhibit many elevations in circulating T over the life 

course, corresponding to rank reversals, seasonal competition for mates, and 

migration between social groups. Although few studies have been conducted, 

these predictions are generally upheld by empirical evidence. For example, 

preliminary data on urinary T levels from three mountain gorilla groups at 

Karisoke, Rwanda, indicated slightly higher levels of T and greater aggression in 

silverback males during intergroup encounters (Robbins and Czekala, 1997). In, 

perhaps a more convincing example, Muller and Wrangham (2004) demonstrated 

a clear connection between male T levels and periods of maximum female 

tumescence (an index of female receptivity) in a population of chimpanzees at 

Kibale National Park, Uganda. However Muehlenbein et al. (2004) pointed out 

that fission-fusion sociality characteristic of chimpanzees may result in a level of 

unpredictability too high for the anticipation of challenges necessary to the 

hypothesis.  

 

iii. Testosterone Secretion over the Life Cycle 
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The classic view of mammalian sexual differentiation is that masculinization of 

the gonads is activated by the presence of the sex-determining region of the Y 

(Sry) gene on the paternally-contributed Y chromosome (Ohno, 1967). The 

expression of this chromosome starts a chain reaction starting with the promotion 

of the Leydig cells to secrete androgenic hormones, including T (Wachtel et al., 

1991). The secretion of T then triggers the development of the testes from the 

undifferentiated gonads within the urogenital ridge (Davidoff et al., 2009). In the 

absence of the Y chromosome, the secretion of estrogen is stimulated and the 

Mullerian duct develops into the Fallopian tubes, uterus, and vagina. However, 

while the Y chromosome may be primarily responsible for initiating processes of 

sexual differentiation, genes coding for sexually dimorphic traits have been 

disproportionately identified on the X chromosome (Templeton, 1977; Grula and 

Taylor, 1980a, 1980b; Rice, 1984).  

The relative roles of genetics and hormones in shaping processes of sexual 

differentiation and dimorphism in mammals are unclear. Because the presence or 

absence of the Y chromosome only triggers the release of sex-specific hormones 

it has been argued that sexual differentiation of the internal and external genitalia 

is primarily under hormonal control (Sanders and Reinisch, 1990; Menke et al., 

2003). The ‘androgen theory of sexual differentiation’ goes so far as to suggest 

that most, if not all, sex differences in the neural structures that influence 

behavior, including differentiation of neural connections, the volume of cell 

nuclei, dendritic distribution patterns, serotonin levels, RNA metabolism, and 

cholinesterase activity, can been attributed to the secretion of T (Jost et al., 1970; 
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Gorski, 1978; MacLusky and Naftolin, 1981; De Vries et al., 1984; Morris et al., 

2004). However, several studies have documented morphological and functional 

sexual dimorphism prior to differentiation of the gonads, suggesting “direct 

genetic” control of some sex-specific traits (Wai-Sum et al., 1988; Reisert and 

Pilgrim, 1991; Arnold, 1996, 2002).  

The early postnatal period has been identified as a critical phase of sexual 

differentiation and development, during which T is biologically active and 

available to gonadal tissues (Mann et al., 1989; Mann and Fraser, 1996). 

Activation of the hypothalamic-pituitary-T axis in human infants has been shown 

to be associated with a “surge” in the gonadotropins LH and FSH and T secretion 

beginning in the second postnatal week, peaking in months two through four, and 

returning to baseline concentrations at approximately six months of age (Forest et 

al., 1973, 1974; Forest, 1990). A similar surge has been demonstrated for male 

macaques (Steiner and Bremner, 1981; Fuller et al., 1982; Dixson et al., 1998), 

chimpanzees (Fuller et al., 1982), and marmosets (Abbott and Hearn, 1978a). 

Experimental manipulation of circulating T levels in male and female rhesus 

macaques and marmosets during this period resulted in abnormal penile and 

clitoral development, supporting the argument that this period represents a 

critical stage of physio-sexual development during which T is biologically active 

and available to gonadal tissues (Dixson et al., 1998; Brown et al., 1999). 

Artificial manipulation of circulating T during this period has also been shown to 

affect sexual behavior at adulthood (Abbott and Hearn, 1978b); however, 

treatment of macaques with LHRH analogues used to mediate T fluctuations in 
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adulthood had no effect (Eisler et al., 1993; Lunn et al., 1994). Thus, prenatal 

androgenization more than the postnatal T surge is primarily responsible in 

organizing the neural substrates involved in sexual differentiation (Goy and 

McEwan, 1980). 

Delayed puberty and an extended period of pre-reproductive growth are 

two of several key characteristics that distinguish primates apart from other 

mammals (Tanner, 1955; Schultz, 1956; Watts, 1985). Puberty is most often 

defined as the period of sexual maturation during which an organism attains the 

ability to produce mature gametes, taking place roughly between weaning or 

nutritional independence and age at first reproduction (Wilson, 1992; Pereira, 

2002; Bronson and Rissman, 2008). It is a period of reproductive readiness that is 

most obviously characterized by maturation of the gonads and the development 

of SSCs (Schreibman et al., 1991). During the pre-reproductive period, 

circulating concentrations of LH, FSH, and gonadal hormones are low, however 

at puberty, the HPG axis is activated, an event which stimulates the synthesis and 

pulsatile release of GnRH and increases mean circulating levels of LH and FSH 

(Cameron et al., 1985; Schreibman et al., 1991). Increases in the amplitude of 

GtH pulses are particularly evident during sleep (Kapen et al., 1974). This 

phenomenon was first demonstrated in humans (Boyar et al., 1974) and has since 

been observed for a number of mammalian taxa, including sheep (Lee et al., 

1976) and chimpanzees (Hobson et al., 1980).  

Activation of the HPG axis at puberty involves the following events as 

demonstrated by Wray and Hoffman (1986) in laboratory rats: (1) the 
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establishment of synaptic connections and neuronal remodeling to facilitate the 

synchronization of GnRH neurons, (2) stimulation of GnRH release by the 

extrahypothalamic neurotransmitter system, and (3) a change in the number of 

receptors on GnRH-secreting neurons. The relationship between increases in 

GnRH secretion and increases in the secretion of GtHs was further demonstrated 

by Marshall and Kelch (1986) and Marshall et al. (1993) in a series of 

experiments that artificially administered GnRH to prepubertal male and female 

rhesus macaques. The result of these studies was premature secretion of T and 

spermatogenesis in males and ovarian follicular development in females. 

The timing of transitions in life history, and between the prepubertal and 

postpubertal stages of development in particular, and the rhythm of reproductive 

events are shaped by a combination of factors, including seasonal ecological 

variables, such as photoperiod (e.g., Lincoln, 1981; Tähkä et al., 1983), 

temperature (e.g., Licht, 1984; Bourne et al., 1986; Huf, 1989), and rainfall, and 

environmental stressors, such as predation, anthropogenic stress, and social stress 

(reviewed in Bourne, 1991; Wingfield and Kenagy, 1991). Many primate species 

exhibit a seasonal patterning of reproductive activity (Walker et al., 1984). Thus, 

perhaps unsurprisingly, puberty in these species may be activated by seasonal 

cues such as photoperiods and temperature (Ishii, 1991). Other influencing 

factors include physiological factors associated with nutrition, adiposity, and 

metabolic rate (Bronson and Rissman, 1986; Schwartz et al., 1988; Cameron, 

1990, 1996; Cameron et al., 1993; Foster and Nagatani, 1999) and conditions of 
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the social environment such as sex ratio and pheromones (e.g., Bartlett et al., 

1993; Kraus et al., 1999; Abbott et al., 2009).  

Social control of puberty is particularly evident in species with social 

regulation of reproduction (e.g., gorillas, tamarins, marmosets). For example, in a 

study by Epple and Katz (1980), juvenile female saddle-back tamarins (Saguinus 

fuscicollis) exposed to adult males conceived an average of 233 days earlier than 

juvenile females reared in same-sex peer groups. Inversely, the presence of adult, 

reproductively active females appears to suppress the onset of puberty in 

subordinate females (e.g., Callithrix jacchus: Abbott and Hearn, 1978; Barrett et 

al., 1990; Saguinus spp.: Epple and Katz, 1984; Ziegler et al., 1987).  

Prenatal exposure to hormones has also been shown to affect the timing of 

puberty, the expression of reproductive phenotypes, and fertility. For example, 

exposure of prenatal female rhesus macaques (Macaca mulatta) and humans to 

androgens has been shown to delay menstruation (Goy et al., 1988; Zehr et al., 

2005; Abbott et al., 2009). Exposure of prenatal female rhesus macaques to T has 

also been shown to cause pseudohermaphroditism (Thornton and Goy, 1986).  

Before attaining adult body proportion and composition, individuals 

undergo rapid and pronounced morphological and physiological changes. 

Although an adolescent growth spurt in weight and skeletal dimensions is best 

documented in humans (e.g., Leigh and Park, 1998; Bogin, 1999a, 1999b; Leigh, 

2001), evidence of a growth spurt exists for a number of primates, including 

chimpanzees (e.g., Spence and Yerkes, 1937; Grether and Yerkes, 1940; Gavan, 

1953) and some Old World monkey (e.g., Macaca spp.: Van Wagenen and 
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Catchpole, 1956; Castracane et al., 1986; Turnquist and Kessler, 1989; Hamada 

et al., 1999; Mandrillus sphinx: Setchell et al., 2001; Setchell and Dixson, 2002; 

Papio spp.: Copeland et al., 1982; Altmann and Alberts, 1987) and New World 

monkey (e.g. Cebus albifrons: Wylin and Naftolin, 1978) species. Factors such as 

seasonality and nutrition may affect growth spurt onset and duration. In Japanese 

macaques, the spurt follows a seasonal pattern, with animals exhibiting higher 

rates of growth during the spring and summer months when resources are 

abundant (Hamada et al., 1999). Seasonality has also been demonstrated to affect 

rates of adolescent growth in humans (Bogin 1978; Mirwald and Bailey, 1997).   

 

 

 

 

 

 

 

 

 

 

III. OBJECTIVES/HYPOTHESES 

Knowledge of baseline changes in fT in males is central to both investigations of 

the morphological, physiological, and behavioral correlates of inter-individual 

variation in fT excretion at each stage of the life course and questions concerning 

Table 4. Timing of the acquisition of SSCs in male vervet monkeys. 
Trait    Age Class Source 
Cranial Capacity  Two  Bolter and Zihlman, 2003 
Scrotal Pigmentation Six  Gerald, 2001; Danzy, 2012; Danzy et  
   al., in prep. 
Eruption of Canines  Six  Turner et al., 1998; Bolter and Zihlman, 
      2003; Danzy, 2012 
Descent of the Testes  Six to Seven Bolter and Zihlman, 2003; Whitten and 
      Turner, 2009 
Dispersal Six to Seven Struhsaker, 1967a 
Reproductive Maturity*  Seven  Horrocks, 1986; Cheney et al., 1988 
Skeletal Framework  Seven  Bolter and Zihlman, 2003 
Dental Complement  Seven  Turner et al., 1998; Bolter and Zihlman, 
      2003; Danzy, 2012 
Muscle Mass†   Eight  Bolter and Zihlman, 2003  

*Based on behavioral data 
†Includes development of the masticatory musculature  
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the evolution of species-specific schedules of maturation in primates. In view of 

this, the primary objective of this research was to characterize fT profiles of wild, 

male vervet monkeys, contrasting individuals within and between age groups to 

establish baseline patterns of growth and sexual maturation for the species. Based 

on results obtained for vervets (Bolter and Zihlman, 2003, Whitten and Turner, 

2009) and other primates (e.g., Aotus trivirgatus: Dixson et al., 1980; Callithrix 

jacchus: Abbott and Hearn, 1978a; Macaca mulatta: Rose et al., 1978; Dixson 

and Nevison, 1997; Mandrillus sphinx: Wickings and Dixson, 1992a, 1992b; 

Papio spp.: Castracane et al., 1986; Crawford et al., 1997; Gesquiere et al., 2005; 

Beehner et al., 2009; Pongo pygmaeus: Kingsley, 1988; Saguinus mystax: Huck 

et al., 2005; Theropithecus gelada: Beehner et al., 2009), it was expected that 

patterns of fT excretion would strongly correlate with age. Moreover, fT was 

expected to be more sensitive to relative age of reproductive maturity than any 

other stage of life history. 

Secondly, this study sought to explore the relationship between T and 

parameters of individual development, including variation in the timing of sexual 

maturity and patterns of SSC emergence. Changes in testicular volume and body 

mass and the eruption of the canine teeth associated with the adolescent stage of 

development have been shown to have fitness consequences (e.g. Leigh et al., 

2008). Although age of first reproduction for male vervets can only be 

established with behavioral observations, changes in the expression of these traits 

during adolescence have been used as an approximate marker of reproductive 

maturity in many mammals (reviewed in Kunz et al., 1996). Jolly and Phillips-
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Conroy (2003, 2006) interpreted the attainment of these SSCs and changes in 

excreted T in baboons to reflect a strategy of preparation for challenges 

associated with attaining reproductive maturity, including dispersal from the natal 

group, competition for a place in the dominance hierarchy of the adoptive troop, 

and competition for reproductive opportunities. If this interpretation is supported 

in vervets, maturational changes in fT excretion are expected to coincide with the 

emergence and development of SSCs. Furthermore, inter-individual variation in 

the expression of fT and the morphological SSCs is expected to be greater for 

subadults than for any other age group. Approaching these objectives from a life 

history perspective, this study specifically looks at relative age of reproductive 

maturity as a life stage transition, or “maturational milestone”, of particular 

importance to lifetime reproductive output and individual fitness (Stearns, 1992). 

 

IV. METHODS 

Over the past ten years, a broad survey of the genetic, morphological, and 

endocrinological variation of vervet monkeys across their South African 

distribution has been conducted (Grobler and Matlala, 2002; Anapol et al., 2005; 

Grobler et al., 2006; Freimer et al., 2007; Jasinska et al., 2007; Whitten and 

Turner, 2008; McAuliffe Dore et al., 2009). Variation within and between 

populations of vervets was evaluated by sample procedures that emphasized 

sampling breadth (over 800 individuals have been sampled to date) and depth 

(procedures targeted vervet troops in their entirety at over 30 locations). The 

subjects of this study represent a small subset of this undertaking.    
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Research presented here is compliant with protocols approved by the 

University of Wisconsin at Milwaukee IACUC, the University of California at 

Los Angeles IACUC, and the University of the Free State, South Africa. This 

research also adheres to the legal requirements of South Africa. Trapping and 

collection of materials follows both provincial and CITES regulations. This 

research was supported in part by NIH R01RR016300. Ethical clearance to trap 

and sample vervets was obtained from the University of the Free State (13/2010) 

and the University of Wisconsin at Milwaukee. All vervets sampled were 

collected under permit IEB 0002 issued by the South African National 

Department of Water and Environmental Affairs and associated Provincial 

permits. 

 

A. Study Sites and Populations 

The fieldwork for this project was conducted at multiple, geographically distinct 

sites throughout central and southeastern South Africa from mid-April to mid-

November, 2010 (Fig. 6). The sites reflect a wide range of habitat types, altitudes, 

and microclimates and differ in mean values for precipitation, temperature, and 

humidity (Table 5). Rainfall is highly variable across sites and drought conditions 

fluctuate greatly from year to year. The annual dry season (roughly June through 

August) is characterized by a decline in the availability of food and clean 

drinking water and, as a consequence, vervet monkey mortality rates rise during 

this period as individuals enter areas of high human population density in search 

of easily-accessible food (see Lee and Hauser, 1998). The sites range from 
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protected bushveld in regional and private nature and game reserves to highly 

cultivated farmland and differ greatly in size, characteristic vegetation, and 

relative predation pressure. Although the South African Problem Animal Control 

Ordinance (“Ordinance 26, 1957”), which allowed the extermination of pest 

animals including vervets, has been repealed, in much of the country vervets are 

still considered agricultural pests and are frequently persecuted by private 

landowners (Lee et al., 1986; Grobler et al., 2006). Human population pressures 

vary greatly among sites but are generally lowest for reserves and highest for 

privately owned lodges and farms (Meiring, pers. obs.). All vervet monkeys used 

in this study belonged to the subspecies Chlorocebus aethiops pygerythrus. This 

is the predominant subspecies found in South Africa (Turner, 1977; Kingdon, 

1988; Skinner and Chimimba, 2005; Cawthon Lang, 2006). 

 

 
Fig. 6. Provincial map of South Africa with 
distribution of trapping sites indicated as 
black dots. 
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Table 5. Description of vervet trapping sites. Rainfall is reported as an average 
annual range.  
Site   Province   GPS Coordinates* Elevation (m) Rainfall (mm) 
Soetdoring Reserve Free State   26.0590, -28.8220 1395-1400 400-600 
Orange Valley Farm Free State   25.1580, -30.6390 950-1125 400-600 
Southford Stud Farm Free State   25.4722, -30.8327 950-1125 400-600 
Gariep Dam Fishery  Free State   25.4760, -30.6180 950-1125 400-600 
Sandveld Reserve Free State   25.6700, -27.6830 1200-1325 400-600 
Parys Golf Estate Free State   27.4580, -26.8940 1350-1460 400-600 
Zinkwazi Lodge KZN†         31.4400, -29.2770 25-550  600-1200 
Suela Zimbili  KZN       31.4240, -29.2080 25-550  600-1200 
Kwela Lodge  KZN       30.3610, -29.4940 700-850 600-1200 
Camp Anerley KZN       30.6510, -30.4560 25-550  600-1200 
Shamwari Reserve East Cape  26.0332, -33.3211 450-700 550-700 
Bushman Sands East Cape  26.0772, -33.3180 450-700 550-700 
Amakhala Reserve East Cape  26.0070, -33.4930 450-700 550-700 
* GPS coordinates are provided in decimal degrees 
† Kwa-Zulu Natal 
 

B. Sampling Procedures 

Animals were trapped following procedures described in Brett et al. (1982), 

Whitten and Turner (2004), and Grobler and Turner (2010). Although animals 

were sampled opportunistically, natural troops were targeted in their entirety. 

Areas near known sleeping sites or in close proximity to areas where vervet 

troops had been visually documented were pre-baited with maize, orange 

sections, and/or apple slices given regional preferences before traps (n=28) were 

introduced. After one to three days of comfortable feeding, during which animals 

would commonly sit, forage, and play on or around the collapsed traps, the traps 

were set with orange segments. Traps were set before dawn (ca. 05:30 h) and 

were checked at intervals of 30 minutes. The traps consisted of a wooden frame 

covered by a strong wire mesh. The trap was sprung when the loaded trigger stick 

was disturbed by an animal. Once sprung, the trap provided a barrier, allowing 

the animal to be sedated without direct contact by passing a syringe through the 
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wire mesh. Animals in traps were sedated by intramuscular injections of zoletil 

(also known as telazol) or ketamine (1.0mg/kg) by a certified veterinarian and 

immediately transported to the processing area. Both zoletil and ketamine have 

been shown to have only mild effects on cortisol levels in Old World monkeys 

(Bentson et al., 2003; Suleman et al., 2004), and, although repeated sedation with 

ketamine is associated with reduced animal appetite (Springer and Baker, 2007), 

both of these agents have been judged safe for short-term anesthesia of vervet 

monkeys (Vercruysse and Mortelmans, 1978). Reports of the effects of repeated 

chemical immobilization on plasma testosterone are contradictory. While some 

studies suggest that chronic immobilization stress decreases plasma testosterone 

levels (Demura et al., 1989; Almeida et al., 1998) others have observed the 

opposite reaction (Almeida et al., 2000). Still others have reported no effect 

(Hayashi and Moberg, 1987). Regardless, chemical immobilization with zoletil or 

ketamine is not expected to affect single measure fecal androgens given gut 

passage delay (Whitten et al., 1998; Beehner and Whitten, 2004; Palme, 2005). 

Body temperatures were monitored for all animals throughout the processing 

procedure. Processed animals were transferred to a secure recovery area and 

closely monitored until they rejoined their troops.  

A large quantity of both invasive and non-invasive cross-sectional data 

was collected from each animal for analysis. Biological samples, including blood 

serum, tissue samples from ear punches, fecal samples, genital and rectal swabs, 

and hair, as well as sex (visual assessment), dental age, whole-body 

morphological measurements in accordance with Anapol et al. (2005), pelage 
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photographs, and behavioral footage were collected. For the purposes of this 

research sex, dental age, morphological measurements used to calculate body 

mass index (BMI), canine length, testis volume, and cross-sectional hormone 

profiles using fecal steroid assays were collected from 59 animals from 17 troops. 

All samples were collected during periods of low or no precipitation to reduce 

hormone degradation (see Beehner and Whitten, 2004). 

Fecal samples were collected either immediately after defecation in a trap 

or were manually obtained from sedated animals using a sterile finger probe to 

avoid contamination. All samples represent individuals. To prevent breakdown of 

the steroid hormones by exogenous microbes, samples were processed within a 

few hours of defecation. A portion of approximately 5 g feces was mixed 

thoroughly with a wooden spatula to reduce the presence of hormone “hot spots”. 

The sample was then stored in a polyethylene twist-off BD Falcon tube (BD 

Biosciences, San Jose, California) labeled with the date and sample number at -

30º C. Samples were stored in a portable -30º C freezer in the field until they 

could be transferred to a permanent -30º C freezer located at the University of the 

Free State in Bloemfontein, SA, for longer-term storage. Frozen storage of fecal 

samples has been shown to minimize bacterial metabolism of the steroids and is 

the recommended method of preservation (Beehner and Whitten, 2004). 

 

C. Data Collection and Analysis 

i. Age Classifications 
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Establishing a standard procedure for determining age is critical for both 

describing the growth of individuals and comparing patterns of development 

between and within species (Schultz, 1935; Smith, 1989; Smith et al., 1994). 

Patterns of dental eruption were used as a relative measure of age in this study 

(Fig. 7). Eruption sequences and long bone lengths are generally considered to be 

the most accurate external identifiers of age in primates (e.g., Alouatta spp.: 

Balcells and Veà Baró, 2009; Chlorocebus aethiops: Bolter and Zihlman, 2003; 

Erythrocebus patas: Jogahara and Natori, 2012; Papio spp.: Phillips-Conroy and 

Jolly, 1988, Kahumbu and Eley, 1991). Although inter-individual variations 

exist, particularly among immature individuals, mean age of tooth eruption is 

highly correlated with mean body weight and mean brain weight (Smith et al., 

1994). Each animal was assigned an age class based on the presence and 

condition of permanent dentition following recent consensus for age 

classification in the field (Turner et al., 1998; Bolter and Zihlman, 2003; Danzy, 

2012; Danzy et al., in prep.) (see Table 4). Non-deciduous canine length was 

measured using digital calipers to the nearest 0.001 inch from the tooth tip to 

where the tooth emerged from the gum.  

When exact age is not known, narrow age classes are preferred for age 

estimations (Altmann et al., 1981). However, narrow age class divisions often 

result in sample sizes far below statistical significance. For this reason, and for 

the sake of convenience, broad age classes that loosely correspond to life history 

stages (e.g., infant, juvenile, adult) are commonly used in the literature. Rather 

than based on dentition, broad age classes are typically assigned based on visual 
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documentation of physical, including scrotal color, descent of the testes, and 

body size for males, and behavioral maturational markers, such as nutritional 

independence. However, visual documentation provides only a rough estimate of 

age and may or may not produce biologically meaningful age categories. Taking 

into account the benefits and drawbacks of both approaches to establishing age, 

this study assessed individuals according to three classification schemas of 

increasing specificity. First, animals were grouped into three classes: Infants (age 

classes one and two: from birth to 20 months of age), Juveniles (age classes three 

through six: roughly corresponding to 22 through 40 months), and Adults (age 

classes seven and eight: 40 months and after). This is the only breakdown that 

satisfies requirements of statistical significance for all age classes. Second, 

because juveniles undergo considerable changes between the events weaning and 

reproduction, the juvenile class defined in Schema 1 was split into Juveniles (age 

classes three and four: 22 through 31 months) and Subadults (age classes five and 

six: 32 through 40 months). The third schema included all eight age classes 

described in Table 6. Overlap and gaps in this breakdown are due to inter-

individual variation in patterns of dental eruption. A complete breakdown of the 

three classification schemas used in this study is provided in Table 7.         

 

ii. Morphological Measurements 

Morphological measurements used in this study as an index of maturation include 

canine length, testes volume, and body length and weight used to calculate BMI. 



 

   

73

 

 
 
 
Table 6. Age categories defined according to dental eruption*   
Age Category       Age Class     Eruption Sequence†             Age (Months)§ 
Infant   One   All deciduous   0 - 8 
   Two   M1    12 - 20 
Juvenile  Three   M1, I1, I2   22 - 27 
   Four   M1, I1, I2, M2   26 - 31 
Subadult   Five   M1, I1, I2, M2, P3, P4  32 - 49 
   Six   M1, I1, I2, M2, P3, P4, C 38 - 40 
Adult   Seven   All permanent dentition  40 – 67 
   Eight   Worn dentition   > 67 
*Turner et al., 1998; Bolter and Zihlman, 2003; Danzy, 2012; Danzy et al., in prep. 
†I = Incisor, C = Canine, P = Premolar, M = Molar 
§Overlap and gaps in age are present due to inter-individual variation 

  

Body weights were obtained to the nearest 0.01 kg using a cloth weigh bag 

attached to a digital scale. Osteological markers were used to obtain linear 

measurements after Schultz (1929), Turner et al. (1997), and Anapol et al. (2005) 

using a standard tape measure to the nearest mm. Although body length, chest 

girth, and lengths of the tail, right foot, right hand, and right upper and forelimbs 

C 

I2 

P1 

P2 

M1 

M2 

M3 

Fig. 7. Dental patterns in catarrhini (Taken from 
Bolter and Zihlman, 2003). 

I1 
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were collected as part of a survey of the genetic and morphological variability of 

South African vervet monkeys (Grobler and Matlala, 2002; Anapol et al., 2005; 

Grobler et al., 2006; McAuliffe Dore et al., 2009), only body length was used for 

the purposes of this study. A description of these measurements is provided in 

Figure 8.  

Along with canine size and testis volume, BMI was calculated for each 

individual as a measure of male sexual maturation. Following Groves and 

Harding (2003), Primate Body Mass Index was calculated as weight over body 

length squared (Fig. 9). Although this formula is less precise than the Human 

Body Mass Index, which includes head and leg lengths, it has been validated for 

use as a measure of primate body condition (Pampush, 2010). Testis volume was 

measured using a scaled orchidometer, which estimates volume by comparing the 

testis with a series of ellipsoid beads (Karaman et al., 2005).  

 
Fig. 8. Description of morphological measurements: (B) body 
length, (G) chest girth, (A) arm length, (F) forearm length, (H) hand 
length, (T) thigh length, (C) crus or foreleg length, (Ft) foot length, 
and (Tl) tail length. (Taken from Anapol et al., 2005). 
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iii. Hormonal Analysis 

The procedure for preservation, extraction, and radioimmunoassay of excreted T 

from fecal samples used in this study generally follows Whitten et al. (1998) and 

Beehner and Whitten (2004). Fecal samples frozen at -40° C at the genetics lab of 

the University of the Free State, South Africa, were thawed and homogenized in 

a 10.0 ml methanol:acetone solution (100% methanol; 4:1) using a electric 

homogenizer. After 7-10 hours, 4.0 ml of the sample solution was filtered 

through a 0.2-µm polytetrafluoroethylene (PTFE) syringeless filter (Whatman, 

Clifton, NJ) to remove particulate matter. The filtrate was diluted 1:1:1.75, 

filtrate: 100% methanol:distilled water. Solid-phase extraction cartridges (Sep-

Pak Plus, Waters Associates, Milford, Massachusetts) were then primed 

following the manufacturer’s instructions by passing 2.0 ml of 100% methanol 

and then 15.0 ml of distilled water through the cartridge. The filtrate was loaded 

onto the primed cartridge and set with 2.0 ml sodium azide solution (0.1%). The 

Fig. 9. A. Formula used for calculating human body mass index (BMI) 
following Groves and Harding (2003). B. Formula used to calculate 
vervet BMI derived from A.  
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loaded cartridges were then stored in a Whirl-Pak bags (Nasco, Fort Atkinson, 

Wisconsin) with 10-20 desiccate beads at -10° C at the University of the Free 

State, SA, until they could be transported for analysis.  

Samples were carried by hand to the anthropology laboratory at the 

University of Wisconsin at Milwaukee for storage at -80º C. They were then 

transferred to the University of Illinois Animal Science Lab for processing. The 

cartridges were flushed with 2.0 mls of 100% methanol, dried down, and 

reconstituted in a phosphate-buffered saline solution containing gelatin buffer 

(PBS-gel). Radioactive immunoassay (RIA) kits incorporating a tritium tracer 

(Perkin Elmer, Waltham, Massachusetts, USA) and antibody were used to 

analyze concentrations of excreted T for all samples. Samples were set up in an 

assay with 3H-steroid, PBS-gel, and the antibody, and counted on the scintillation 

counter to determine the bound hormone (following Bahr et al., 1983). Dry rather 

than wet weights of the samples were used to express T in order to control for 

differences in moisture content and were reported as pg/g (weight of empty 

falcon tubes was subtracted from the weights of the tubes plus dry sample) 

(Wasser et al., 1993). This protocol has been shown to reliably reflect testicular 

and adrenal function in a sample of primate species (e.g., Macaca fuscata: Barrett 

et al., 2002; Propithecus verreauxi: Brockman et al., 1998). Although an 

antibody against testosterone was used in the assay, it is important to note that 

fecal steroid hormones exist as a mixture of metabolites (Bosacker, 2008). 

Parameters used to check assay quality were inter- and intra-assay variation. The 
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%CV for fT intraassay variation was 2.29+/-1.33 (n = 59) and the average 

interassay variation was 8.6.   

 

iv. Data Analysis 

The numeric data collected for this study did not meet assumptions of parametric 

statistical tests. To normalize distributions and equalize variances, thereby 

enabling parametric analyses, fT and BMI were log-transformed (base 10). 

Because testis mass and canine length have been shown to scale allometrically 

with body mass and body length, respectively, relative values were calculated to 

control for this association (Gingerich et al., 1982; Kenagy and Trombulak, 

1986). Relative testis volume was calculated by dividing total testicular volume 

by body weight (cc/kg) and relative non-deciduous canine length was calculated 

by dividing canine length by body length (inches/cm). Outliers (defined at the 

95% confidence interval or greater than two standard deviations above the mean) 

were removed from the sample using Grubbs’ second test to reduce sampling 

error. This test has been authenticated for use with ordinal and continuous 

numeric data (Grubbs, 1950).  

One-way analysis of variance (ANOVA) tests were used to determine if 

the categorical variable age predicted the continuous numeric variables log fT 

and log BMI. Because relative testis volume and relative canine length were non-

normal after transformation, the relationship between these variables and animal 

age was assessed using the nonparametric Kruskal-Wallis test, followed by a post 

Kruskal-Wallis test for multiple comparisons. Since canine teeth erupt late in 
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development, relative canine length could not be compared between individuals 

of all age categories. Instead, canine length was compared between subadult and 

adult individuals (age classes six and seven and eight, respectively) and inter-

individual variation in canine length was examined among fully adult animals 

(age classes seven and eight). Within-subjects correlation was used to identify 

significant relationships among the continuous numeric variables. 

Statistical tests were performed using R (R Foundation for Statistical 

Computing, Vienna, Austria), and the threshold for all analyses was set at p < 

0.05. The data were modeled in ANOVA using a model I analysis for planned 

comparisons. Boxplots and beanplots were generated to provide an illustration of 

the relationship between the categorical variable age and the numeric dependent 

variables. Beanplots are particularly useful for visual comparisons because of 

their ability to illustrate densities of the sample distributions (Kampstra, 2008). 

Relationships among the numeric variables were illustrated with regression plots. 

Regression lines were fitted to the data using a model I (least-squares) regression 

analysis. 

 

V. RESULTS 

Grubbs’ second test for outliers identified and removed three individuals from the 

dataset, giving the study a final sample size of 56 animals. Because the dependent 

variables assessed were not normally distributed, medians were calculated and 

compared instead of means. The descriptive statistics median and inter-quartile 

range (IQR) were calculated for the untransformed variables fT, BMI, testis 
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volume, and canine length and are presented by age group for each age 

classification schema in Table 8.  

 

Table 8.  
Descriptive statistics median (IQR) for untransformed fT (pg/g), BMI (kg/m²), 
testis volume (cc), and canine length (inches) for each age schema (n = number of 
samples). 
Variable      n fT  BMI             Testis Vol.*      Canine Length† 
Schema 1: 

Infant      9 25.36 (8.655) 21.07 (3.94) 1 (0.5)  N/A 
Juvenile    18 30.11 (27.21) 24.05 (6.09) 1.5 (2.75) 0.45 (0.18) 
Adult      29 34.71 (33.54) 31.23 (4.41) 15 (13)  0.72 (0.09) 
Total:       56 30.56 (22.28) 27.17 (9.19) 10 (14)  0.7 (0.11) 

Schema 2: 
Infant      9 25.36 (8.655) 21.07 (3.94) 1 (0.5)  N/A 
Juvenile    8 21.25 (8.03) 22.76 (5.35) 1.5 (1.25) N/A 
Subadult   10 41.37 (23.41) 25.08 (9.69) 1.5 (7)  0.45 (0.18) 
Adult      29 34.71 (33.54) 31.23 (4.41) 15 (13)  0.72 (0.09) 
Total:       56 30.56 (22.28) 27.17 (9.19) 10 (14)  0.7 (0.11) 

Schema 3: 
One      4 24.3 (9.23) 20.07 (3.8) 0.5 (0.13) N/A 
Two      5 25.36 (5.8) 21.8 (3.76) 1 (0)  N/A 
Three      1 18.4 (N/A) 20.79 (N/A) 4 (N/A)  N/A 
Four      8 24.22 (17.31) 24.05 (4.91) 1 (1.13)  N/A 
Five      4 26.68 (13.47) 22.34 (3.64) 1.5 (4.38) N/A 
Six      5 44.94 (12.63) 26.72 (9) 8 (7)  0.45 (0.18) 
Seven      24 33.582 (18.5) 30.642 (6.75) 15 (8)  0.705 (0.1) 
Eight      5 58.32 (5.348) 32 (1.12) 25 (0)  0.758 (0.07) 
Total:       56 30.56 (22.28) 27.17 (9.19) 10 (14)  0.7 (0.11) 

* Total sample size for the variable testis volume is 55. Testis volume was not collected 
for an individual from the juvenile category (age class two).  
† Sample sizes for the variable canine length are 3 for the subadult category (age class 
six) and 27 for the adult category (age classes seven and eight). 

 
 
 

Do patterns of fT excretion correlate with age?  

Results of ANOVA tests describing the effects of age on patterns of fT excretion 

and the expression of the secondary sexual characteristic BMI for each age 

schema are presented in Table 9. Significant results (p-value) of pair-wise 

comparisons between age categories are provided in Table 10. Both testis volume 
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and canine length had bimodal distributions across age categories after 

transformation and were therefore analyzed using the Kruskal-Wallis test. Results 

of this test for each age schema are presented in Table 11. Post Kruskal-Wallis 

multiple comparisons test results are provided in Table 12. Because information 

on testis volume was not collected for one animal from the juvenile age category 

(age class two), this sample was removed from the dataset prior to analysis. 

Analysis of the relationship between relative canine length and age was restricted 

to subadult (age class six) and adult (age classes seven and eight) animals. 

Boxplots and beanplots illustrating the relationship between age and the 

transformed dependent variables log fT, log BMI, and relative testis volume are 

presented for each age schema in Figures 10, 11, and 12, and are presented for 

age and relative canine length in Figure 12.  

 
 
 
 

Table 9.  
ANOVA summary of results for log fT (pg/g) and log BMI (kg/m²) for each age 
schema. Significant results indicated in bold type. 
Variable  ANOVA Summary 
Schema 1:  F Sum Sq.    Mean Sq.   (df1, df2)       Sig. (p-value) 
log Testosterone 1.39 0.1423      0.0711           (2, 53)  0.258 
log BMI  18.53 0.2286      0.1143         (2, 53)  7.928e-07 
Schema 2:  F Sum Sq.    Mean Sq.      (df1, df2)      Sig. (p-value) 
log Testosterone 1.53 0.2255      0.0752       (3, 52)  0.2177 
log BMI  11.81 0.2251      0.0750       (3, 52)  5.176e-06 
Schema 3:  F Sum Sq.   Mean Sq.       (df1, df2)      Sig. (p-value) 
log Testosterone 1.7 0.5634     0.0804        (7, 48)  0.1316 
log BMI  5.094 0.2421     0.0346        (7, 48)  0.00022  
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Table 10.  
Summary of pair-wise comparisons (p-value) of ANOVA tests between age and 
the dependent variables log fT (pg/g) and log BMI (kg/m²) for each age schema. 
Significant results are indicated with bold type 
    Log fT(pg/g)   Log BMI (kg/m²) 
Age Category  F Sig. (p-value)  F Sig. (p-value)  
Schema 1 

Infant to Juvenile  1.077 0.286   2.778 0.0076   
Juvenile to Adult  1.665 0.102   5.851 3.13e-07  

Schema 2 
Infant to Juvenile 0.044 0.965   1.717 0.0920   
Juvenile to Subadult  1.611 0.113   2.591 0.0124   
Subadult to Adult  1.456 0.151   5.515 1.11e-06  

Schema 3 
One to Two   -0.027 0.9784   0.054 0.9572   
Two to Three   -0.624 0.5359   -0.069 0.9449   
Three to Four   -0.129 0.8982   1.52 0.1352   
Four to Five   0.353 0.7259   1.096 0.2787   
Five to Six   1.743 0.0877   2.363 0.0222   
Six to Seven  0.730 0.4691   3.804 0.0004 
Seven to Eight 1.965 0.0552   3.422 0.0013   

 
 
 
 
 
 
Table 11. 
Kruskal-Wallis summary of results for relative canine length (inches/cm) and 
relative testis volume (cc/kg) for each age schema. Significant results indicated in 
bold type. 
Variable   H  df  Sig. (p-value) 
Canine Length* 
 Schema 2  3.4885  1  0.0618 
 Schema 3  4.3417  2  0.1141 
Relative Testis Volume 

  Schema 1  34.2661 2  3.624e-08 
  Schema 2  34.6300 3  1.458e-07 

 Schema 3  37.1806 7  4.335e-06 
* Values for relative canine length were not available for Schema 1 
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Schema 1 

Significant differences between age categories for the variable log fT were not 

found (F(2,53) = 1.39, p = 0.258). Log BMI (F(2,53) = 18.53, p = 7.928e-07) and 

relative testis volume (H(2) = 34.2661, p = 3.624e-08), two of the three 

morphological measures of sexual maturation used in this study, were found to be 

significantly predicted by age category. Juveniles had significantly higher values 

for log BMI (p = 0.0076) than infants, and adults had significantly higher values 

for log BMI (p = 3.13e-07) and testis volume than juveniles (difference = 

24.2088). Juveniles and infants did not significantly differ in testis volume 

(difference = 3.3472).  

  
(a) 

 
 
 
 
 
 
 
 
 
 
 
 

  A.  B. 
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(b) 

  
(c) 

 
 
 
 
 
 

 
Schema 2 

When the age class ‘Juvenile’ used in Schema 1 was further divided into 

‘Juvenile’ and ‘Subadult’ categories, significance for the variable log fT was not 

met (F(3,52) = 1.53, p = 0.2177). Juveniles did not have significantly different 

values for log fT (p = 0.113) or relative testis volume (difference = 4.5556) than 

subadults. However, subadult animals had significantly higher values of log BMI 

(p = 0.0124) than juvenile animals. While differences between juveniles and 

Fig. 10. A. Boxplots and B. beanplots of (a) log fT, (b) log BMI, and (c) relative 
testis volume of vervet males according to age category (Schema 1). 

   A. 

  A. 

  B. 

  B. 
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subadults did not reach significance for two variables, the removal of subadults 

from the lumped category ‘Juvenile’ revealed a greater degree of variation among 

the dependent variables of this age group as demonstrated by the IQR. Subadults 

had considerably larger IQRs than juveniles for fT (23.41 versus 8.03), BMI 

(9.69 versus 5.35), and testis volume (7 versus 1.25). This observation suggests 

that the subadult stage, more than any other stage of development, is 

characterized by a high degree inter-individual variation in the attainment of the 

maturational markers BMI, testis volume, and perhaps even fT.   

Moreover, the separation of subadult animals from the lumped juvenile 

category revealed a significant difference in values for log BMI (p = 1.11e-06) 

and relative testis volume (difference = 21.9310) between subadults and adults. 

Overall, age group membership was a significant predictor of log BMI (F(3, 52) 

= 11.81, p = 5.176e-06) and relative testis volume (H(3) = 34.63, p = 1.458e07). 

Although significance was not met, infants tended to have lower values for log 

BMI than juveniles (p = 0.092), but they were not found to have significantly 

different values for relative testis volume than juveniles (difference = 1.0694). 

Differences between subadults and adults in the variable relative canine length 

neared statistical significance (difference = 10).  
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(a) 

 
(b)  

 
(c) 

   
 
 

 

 A.   B. 

 B.  A. 

  B.    A. 

Fig. 11. A. Boxplots and B. beanplots for (a) log fT, (b) log BMI, and (c) 
relative testis volume of vervet males according to expanded age categories 
(Schema 2).  
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Schema 3 

Log fT did not significantly differ across age classes (F(7,48) = 1.686, p = 

0.1349), however, age class six animals tended to have higher T values than age 

class five animals (p = 0.0877) and the difference between age class seven and 

eight animals neared significance (p = 0.0552). Age was found to significantly 

predict log BMI (F(7, 48) = 5.094, p = 0.00016). Age class eight animals had 

significantly higher values for BMI than age class seven animals (p = 0.00128), 

which had significantly higher values than age class six animals (p = 0.0004), 

which had significantly higher values than age class five animals (p = 0.0222). 

Relative testis volume was found to be significantly correlated with age (H(7) = 

37.1806, p = 4.335e-06), but values did not significantly differ between age 

classes. It is important to note that differences between age classes of this schema 

may be due to small sample sizes. Age class three in particular is only 

represented by a single animal. Finally, relative canine length did not 

significantly correlate with age (H(2) = 4.3417, p = 0.1141) either between age 

classes six and seven (difference = 9.3478) or seven and eight (difference = 

4.4022). Although this breakdown highlights the small differences between age 

classes, general trends among the data are more difficult to isolate. Consistent 

with predictions, expression of the dependent variables showed age-typical 

patterns, with trajectories of fT, BMI, testis volume, and canine volume 

increasing with age (see Fig. 12).  
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(a) 

 
 
 
 
(b) 

   
 
(c) 

 
(d) 

 B.    A. 

 B.  A. 

  A.   B. 
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Is fT more sensitive to relative age of reproductive maturity than any other 

transition in the life course?   

Although concentrations of fT correlated generally with age, with older animals 

having higher log fT values than younger animals, a significant increase in fT 

was not evident in animals estimated to be at or near the age of reproductive 

maturity (age class six to seven) based on dental records for the species. This 

result is in direct contradiction to predictions of the study. However, significance 

was neared both between age classes five and six (p = 0.0877) and seven and 

eight (p = 0.0552). Although statistically insignificant, animals appeared to 

exhibit an increase in relative testis volume (Fig. 12c) and relative canine length 

(Fig. 12d) between age classes six and seven. A significant increase in log BMI 

was observed in animals at reproductive maturity (age class six: p = 0.0222) that 

continued well into adulthood (age classes seven: p = 0.0004, and eight: p = 

0.0013).   

 

Fig. 12. A. Boxplots and B. beanplots for (a) log fT, (b) log BMI, (c) relative testis volume, 
and (d) relative canine length of vervet males according to age class (Schema 3). 
 

  A.   B. 
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Do maturational changes in fT excretion coincide with the development of 

secondary sexual characteristics, including enlargement of the testes and 

increased body mass and canine length? 

The relationship between fT and the SSCs testis volume, canine length, and BMI 

is somewhat tenuous. While log fT was found to be significantly related to log 

BMI (F(1, 54) = 5.965, p = 0.0179), it was not a reliable predictor of relative 

testis volume (F(1, 53) = 1.892, p = 0.1748) or relative canine length (F(1, 28) = 

0.0406, p = 0.8418). Log BMI was a better predictor of relative testis volume 

(F(1, 53) = 17.57, p = 0.0001057) but not of relative canine length (F(1, 28) = 

1.346, p = 0.2558). Relative testis volume was the only variable that was 

significantly correlated with relative canine length (F(1, 28) = 4.863, p = 

0.03582). These relationships are illustrated with scatter plots with least-squares 

lines of regression in Fig. 13.  

 

  

 A.   B. 
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Is inter-individual variation in fT and the development of SSCs greatest for 

individuals approaching age at reproductive maturity? 

 Variation in the dependent variables was evident for individuals of all age 

categories; however, inter-individual variation was generally greatest for subadult 

and adult animals as demonstrated by the IQR. Using the age classification of 

Schema 2, subadults and adults were found to have considerably larger IQRs than 

juveniles and infants for fT (Infant: 8.665; Juvenile: 8.03; Subadult: 23.41; Adult: 

  C.    D. 

   E.    F. 

Fig. 13. Scatterplots with least-squares regression lines for the log-transformed or relative 
values of A. fT and BMI, B. fT and testis volume, C. fT and canine length, D. BMI and testis 
volume, E. BMI and canine length, and F. testis volume and canine length. 
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33.54) and testis volume (Infant: 0.5; Juvenile: 1.25; Subadult: 7; Adult: 13), 

although not for BMI (Infant: 3.94; Juvenile: 5.35; Subadult: 9.69; Adult: 4.41). 

Although not collected for infant and juvenile animals, inter-individual variation in 

canine length was greater for subadults (0.18) than adults (0.09). While small 

sample sizes may have contributed to these results, particularly for adults, they can 

also be interpreted to reflect different pathways of maturation. 

 

VI. DISCUSSION 

Although several significant findings emerge from the data, all results must be 

regarded as preliminary until they can be corroborated with further observations, 

both cross-sectional and longitudinal, from a larger sample population. The 

sequence of events that characterize male vervet monkey growth and sexual 

maturation is summarized in Figures 10, 11, and 12, and parallels findings from 

other works summarized in Table 4. Excretion of T and maturation of the male 

SSCs body mass, testis volume, and canine length followed markedly different 

trajectories. Significant results are summarized in Tables 11 and 12. While fT did 

not undergo a significant spurt at the onset of reproductive maturity as expected, 

age class six animals tended to have higher values for fT than age class five 

animals and differences in fT between age classes seven and eight neared 

statistical significance, suggesting a possible role of T later in adulthood. Body 

mass showed significant increases at age classes six, seven, and eight, suggesting 

that body mass is strongly correlated with an adolescent growth spurt. Although 

relative testis volume correlated with age, significant differences were not found 
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between age classes. However, visual comparison of the beanplots showed 

modest increases in testis volume at age classes five, seven, and eight. The spike 

in body mass corresponds roughly to the eruption of the canine teeth between age 

classes six and seven and parallels findings for vervets by Whitten and Turner 

(2009). Similar growth spurt patterns have been demonstrated for baboons, (Jolly 

and Phillips-Conroy, 2003, 2006), mandrills (Setchell and Dixson, 2002), and 

mangabeys (Deputte, 1992), and are reportedly greater for males than for females 

(Glassman et al., 1984).  

Jolly and Phillips-Conroy (2003, 2006) interpreted this pattern as a 

reproductive strategy of preparation prior to emigration from the natal group and 

competition for a place in the dominance hierarchy of the adoptive troop. Traits 

that contribute to male reproductive functioning (i.e. spermatogenesis) and the 

ability of males to compete for or attract reproductively-viable mates, including 

the endocrine mechanisms underlying the development of these traits, are 

expected to emerge in preparation for critical life history events. Trajectories of T 

secretion in many animals follow such a pattern of preparation for and activation 

of reproduction, with spikes directly preceding and following reproductive events 

(Alberts and Altmann, 1995). Changes in T excretion and the emergence of male 

SSCs reported here appear to follow a mosaic pattern, beginning with significant 

increases in body mass at age class six and continuing well into adulthood, the 

eruption of the canine teeth between age classes six and seven, followed by 

descent and enlargement of the testes beginning around age class seven, and 

rounded off by a near-significant increase in fT at age class eight. It is uncertain 
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whether these results can be interpreted as following a pattern of developmental 

preparation for reproduction. Documentation of the timing of first reproduction 

of individuals is necessary to support the application of this interpretation to the 

data.   

As discussed earlier, the expectation of this study, that fT levels would 

increase as age of reproductive maturity was approached, with subadult males 

exhibiting higher concentrations of fT than any other age group in preparation for 

dispersal and reproduction, was not upheld statistically. Furthermore, fT was 

expected to positively correlate with the emergence of the SSCs body mass, testis 

volume, and canine length. Although fT positively correlated with body mass, the 

descent and enlargement of the testes and increases in canine length could not be 

significantly attributed to differences in fT concentrations. This result is 

consistent with previous findings for baboons (Castracane et al., 1981; 

Muehlenbein et al., 2001) but not for humans (Prader, 1984). Body mass, testis 

volume, and canine size tended to co-vary, although BMI did not significantly 

predict canine size independent of the effects of testis volume.  

In a recent study, Gesquiere et al. (2005) found that early-maturing 

baboon males had consistently higher fT concentrations than late-maturing males. 

In some mammals, such as the Mongolian gerbil (Meriones unguiculatus), 

patterns of sexual maturation are strongly bimodal, with animals characterized as 

either early-maturing or late-maturing strategists (Clarke et al., 1986). Among 

primates, divergent developmental patterns have been reported by Watts (1985, 

1990) for rhesus macaques and Tanner (1978, 1981) and Bielicki et al. (1984) for 
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humans. Vervet males represented in this study exhibited considerable variation 

both within and between age classes. Adult (age classes seven and eight) animals 

generally had the greatest variation in values for fT and testis volume and 

subadults (age classes five and six) had the greatest inter-individual variability 

for body mass and canine length. Although animals could not easily be classified 

as early-maturing and late-maturing morphs, future longitudinal studies will 

provide another dimension to this work by determining if divergent 

developmental strategies exist for vervets. Moreover, longitudinal records would 

establish whether individual fT concentrations are stable throughout the vervet 

life course as reported in baboons (Gesquiere et al., 2005) and rhesus macaques 

(Bercovitch and Clarke, 1995) or whether they fluctuate in response to life stage 

transitions or challenges of the environment.  

The secretion of T and the development of body systems have been shown 

to be sensitive to a variety of factors in vervets and other primate species, 

including maternal rank (e.g., Ch. aethiops: Lee, 1984a; Macaca mulatta: Dixson 

and Nevison, 1997; Papio spp.: Bercovitch and Strum, 1993; Altmann and 

Alberts, 2003, 2005; Johnson, 2003), dominance rank (e.g., Macaca mulatta: 

Bercovitch, 1993; Bercovitch and Clarke, 1995; Mandrillus sphinx: Setchell and 

Dixson, 2001; Pan troglodytes: Muehlenbein et al., 2004; Muller and Wrangham, 

2004; Anestis, 2006; Papio ursinus: Beehner et al., 2006), and ecological 

variables (e.g., Macaca mulatta: Bernstein et al., 1974; Robinson et al., 1975; 

Gordon et al., 1976). Although these components were not included in this study, 

it is interesting to note that at most sites one or two adult males had considerably 
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higher fT concentrations than all others. The high variability in fT excretion 

among adult animals (age classes seven and eight) observed here further suggests 

that these males may be repressing the T levels of other males. This conclusion 

was also made in Whitten and Turner (2004). Future behavioral analysis is 

required to determine if this variability in patterns of fT excretion is associated 

with dominance rank.  

A neonatal surge in T within the first few months of life has been well 

documented in mammals (e.g., Callithrix jacchus: Lunn et al., 1994; Homo 

sapiens: Forest et al., 1974; Winter et al., 1975, 1976; Andersson et al., 1988; 

Macaca mulatta: Dixson, 1986; Mann et al., 1989; Nevison et al., 1997; Pan 

troglodytes: Winter et al., 1975; Rattus spp.: Corbier et al., 1978, 1992; Baum et 

al., 1988). However, this surge could not be demonstrated in this work because 

invasive sampling techniques prohibited the collection of fecal samples from 

infants within the first 2-3 months of life. In females, menarche marks the onset 

of reproductive maturity, which may be identified through visual observation of 

perineal swelling or menstrual bleeding (Resko et al., 1982), ultrasonographic 

assessment of ovarian and uterine volume (Rockett et al., 2004), or by monitoring 

reproductive hormones (e.g., LH, FSH, 17β-estradiol, inhibin A and B) (Ross and 

Lipsett, 1978; Buck Louis et al., 2008). However, there is no obvious criterion of 

male reproductive readiness (Gesquiere et al., 2005). This study follows much of 

the primate literature in estimating reproductive maturity on the basis of the 

descent and enlargement of the testes (e.g., Castracane et al., 1986; 

Nieuwenhuijsen et al., 1987; Crawford et al., 1997; Muehlenbein et al., 2001, 
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2002; Jolly and Phillips-Conroy, 2003; Charpentier et al., 2008; Luetjens and 

Weinbauer, 2012). However, testicular development occurs at a gradual rate and 

is subject to inter-individual variability.  

Above all else, the results presented here highlight the considerable 

variation present in patterns of male vervet monkey growth and sexual 

maturation. Although individual variation in phenotypic traits is a necessary 

condition of differential fitness and natural selection (Darwin, 1871; Endler, 

1986), variation in life history components between individuals as opposed to 

aggregates, including species, has only recently become a subject of serious 

inquiry (Cam et al., 2002; Kappeler et al., 2003; Pereira and Leigh, 2003; 

Figueredo et al., 2005). Inter-individual variation in the ontogenetic trajectory of 

a trait in particular has been argued to represent an important resource for 

investigations of the underlying mechanisms of life history evolution (Wright and 

McConnaughay, 2002; Leigh and Blomquist, 2007). Although this cross-

sectional examination provided a description of age-graded trajectories of T 

excretion and the development of SSCs in wild male South African vervet 

monkeys, longitudinal data are necessary to identify causes of intra- and inter-

individual variation in the expression of these traits. Factors affecting the timing 

and shape of individual life histories are complex and many. Longitudinal data 

are better able to account for ecological and social conditions that may exert an 

influence on individual schedules of somatic growth and sexual maturation.  

 

VII. CONCLUSION 



 

   

99

Knowledge of baseline patterns of somatic growth and sexual maturation is 

critical to determining species-specific parameters of development, including the 

timing of sexual maturity and correlates of reproductive success, as well as 

mapping individual trajectories (Leigh, 1992). Cross-sectional data of 56 vervet 

monkeys indicate that fT is not a reliable predictor of patterns of somatic growth 

and sexual maturation in male vervet monkeys. Like baboons and several other 

primate taxa, male vervets exhibited an adolescent growth spurt in body mass and 

testis volume corresponding to the eruption of the canine teeth. This spurt can 

tentatively be interpreted to reflect a strategy of preparation for dispersal and 

competition for reproduction. However, future longitudinal observations are 

necessary to support this interpretation.  

Although general trends in patterns of T secretion and the development of 

male SSCs emerge for the species, considerable inter-individual variation existed 

for these traits within age classes. However, given that cross-sectional techniques 

were used, this variation may simply reflect day-to-day variability in circulating 

T (see Morley et al., 2002). While reducing the identification of ‘false’ 

phenomena (Muehlenbein et al., 2001), the use of cross-sectional data to study 

patterns of growth and development is associated with certain limitations, 

including the inability to detect all physiological and hormonal changes 

associated with puberty given the rapid growth period of many nonhuman 

primates, including vervets (Castracane et al., 1986; Leigh, 1996). Thus, 

longitudinal data would provide greater confidence that small changes in 

individual trajectories of growth and maturation are accounted for. Further 
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research on other possible correlates of patterns of T secretion and the maturation 

of SSCs would provide additional insight into the forces regulating male vervet 

monkey growth and reproductive functioning.   
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