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ABSTRACT 
COPPER INTERCALATION INTO GRAPHITE 

 
by 
 

Kyle Kalbus 
 

The University of Wisconsin-Milwaukee, 2012 
Under the Supervision of Professor Benjamin Church 

 
 

An electric brush is necessary for an electric motor to function. The purpose of this thesis 

is to propose a technique to improve electric brush properties in an effort to produce a 

more proficient electric motor by creating a new brush material with improved properties 

and performance. There are many applications for electric motors and each application 

would benefit from overall, increased proficiency. Understanding the role an electric 

brush plays within an electric motor is crucial to improving functionality. The proposed 

technique to create a novel graphite-copper material involves a two-step procedure that 

will intercalate CuCl2 into the graphite structure, and then by chemical reduction, will 

reduce the CuCl2 and result in the final products of copper and graphite. The proposed 

technique seeks to successfully increase the conductivity and wear properties of an 

electric brush by incorporating copper into graphite which will also enhance the 

properties of an electric motor. This thesis will detail the procedures of data collection 

and how to analyze results of the proposed technique. Expected results will also be 

discussed utilizing preliminary data collected utilizing XRD, SEM, TGA, and BET 

equipment. Finally, struggles and challenges of such a technique will also be discussed as 

well as plans for future work on the proposed technique.   
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INTRODUCTION 
 

This project incorporates improving the efficiency of an electric motor by 

changing its overall composition and look. Understanding how electric motors and 

brushes work are crucial towards the accomplishing the final goal of this project. An 

electric motor can be defined as a device which conducts current between stationary 

wires and moving parts, typically using a rotating shaft. Some common applications 

include alternators, electric motors, and electric generators. Brushes for electric motors 

usually contain Graphite or Carbon powder. Copper is used to improve the conductivity 

in applications that involve Direct Current (DC). An electric motor consists of these 

essential pieces: rotor, commutator, brushes, axle, field magnet, and a DC power supply. 

The image below shows a schematic of the various components found in an electric 

motor.  

 

Figure 1: Schematic of an Electric Motor [1] 

The magnetic field is created by the magnets at each end of the battery. The 

attractive and repelling forces from the magnets create a rotational motion that powers 
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the electromagnetic rotor. By fine-tuning and perfecting the cycle time of the 

electromagnet, it allows the motor to spin more freely. Individual components must also 

be explained. The armature is an electromagnet made by coiling a thin wire around two 

or more poles of a metal core and is attached to an axle along with the commutator. In the 

diagram below, it shows three different views of the armature.  

 

Figure 2: Three different views of an Armature. Left: front view, Right: side view, Bottom: end-

on view. [1] 

 In the bottom image of the figure above, the armature part is not visible and this 

allows the focus to be on the pair of plates attached to the axle and these plates provide 

the connections for the coil of the electromagnet. The rotational motion of the electric 

motor is done by the commutator and brushes. The figure below shows how these 

components interact with one another. 
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Figure 3: Shows how the Commutator and Brushes Interact with each other [1]. 

The commutator is attached to the axle of the electromagnet so they spin along 

with the magnet. The brushes, for this application are carbon, illustrated in red; remain in 

contact with the commutator. As current flows from the battery to the brushes, the 

charges between the poles change. When attractive charges begin to form between the 

battery and brushes, the electric field flips allowing electron transfer from the brushes 

back to the commutator.  

As mentioned previously, electric motors use two electric brushes to transmit 

electric energy to the motor. The brushes are opposite in charge and complete an 

electrical circuit. The way they work is that the brush rubs on the commutator ring around 

the motor’s armature. As seen in the figure below, this is what a typical carbon brush 

looks like. 

 

Figure 4: Carbon Brush for an Electric Motor [2]. 
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 As the image above shows, there are several different components involved in 

constructing a carbon brush. A copper wire is embedded within the carbon and the 

circular rotating piece of metal known as the commutator or slip rings are connected to 

the carbon. The copper wire brushes against the commutator rings and this allows a 

current to be conducted along the carbon brush.   

The reason that carbon, more specifically graphite, is used is due to its properties 

of: low price, and conductivity. There is still enough resistance so that a gradual shift of 

current from the commutator can pass through each section. Brushes do have a tendency 

to wear out, but they are relatively inexpensive and simple to replace making it an 

attractive option for low end electric motor applications.  

 This project was initiated by Schunk Graphite Technology, LLC located in 

Menomonee Falls, Wisconsin. Schunk Graphite is one of the leading companies when it 

comes to carbon-based products in the world. This organization also manufactures more 

than carbon brushes. Other products include: bearings and seals, fuel cell plates, space 

technology equipment, along with several other very specialized applications [3].  

 The Research and Development Team at Schunk Graphite is looking for ways to 

improve the performance of the carbon brushes they produce. The question was posed: 

Does the type of graphite used in manufacturing carbon brushes have a significant impact 

on the performance of the component? Based on this question, the goal of this project 

was to determine if there was a way to improve the brush performance by creating a 

novel material of graphite with intercalated copper.  

Barring that the answer to be yes, the purpose of this project became to improve 

the conductivity and wear properties of electric brushes. For carbon brushes, copper is 
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commonly used to improve the conductivity. Graphite, which is how carbon is naturally 

found, has a hexagonal structure. The idea is to get copper atoms into the carbon structure 

and form an intercalated material with copper located between the layers of carbon. This 

intercalated material is not commercially produced and has not been attempted for 

applications that requires a high conductivity and wear resistance.  

The stages of Graphite Intercalation Compounds are labeled as Stage 1, Stage 2, 

etc. and it is used to identify the layers of graphite between a layer of intercalate. 

Properties such as composition, temperature of formation, molar ratios, and particle size 

are all unique in this regard with respect to each other [4-7]. For copper intercalation, the 

number of graphite layers sandwiched by layers of CuCl2 determines the stage of the 

intercalation. The figure below depicts what the different intercalation stages would look 

like. As shown in Figure 5, the A, B and C layers are the different graphite layers. 

 

Figure 5: Example of Different Staging Levels of Intercalation [4] 
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The layers labeled α, β, γ, and δ characters represent the intercalation layers, 

which is copper in the figure above. For Stage 1 intercalation, the figure above shows that 

there is one layer of graphite between the copper layers, or alternating layers of copper 

and graphite [4]. Looking along the side of the figure, there is an Id given, which is 

known as the intercalation distance. The intercalation distance is the distance between 

two copper layers in the graphite structure. For Stage 1, Stage 2, and Stage 3, the 

intercalation distances (Id) are 9.37Å, 12.72Å, and 16.07Å [5, 6].  

 In was discovered by Inagaki and Ohira that the optimal formation of Copper 

intercalation is at 450oC for three days [8] and is considered the standard practice as the 

initial step to get Copper intercalated into the graphite structure. The result of this process 

is a Stage 1 Graphite Intercalated Compound with intercalation of CuCl2. The ratio of 

graphite to anhydrous CuCl2 mixed together is done in a 1:1 molar ratio. After mixing the 

graphite and CuCl2 and taking it out of the furnace, the resulting material is washed in 

diluted HCl solution and then with H2O to remove the excess CuCl2 and then the powder 

is dried in a vacuum oven at 60oC.  

 Below are some prior results from a group that took a different approach in 

eliminating the chlorine atoms from the structure. Ammonia, distilled H2O, 

ethylenediamine, KB4, ethanol, distilled H2O (again), and finally HCl acidified FeCl3 

solution was used to remove the loose Copper species.  

 Taking a look at the planar view below, one can see what a Stage 1 Copper GIC 

structure looks like [4]. There is alternating layers of Graphite, which is hexagonal in 

shape and the CuCl2 intercalated layer, is represented by the circles.  

The table below shows the results of all stages of Copper intercalated graphite 
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using the molten salt method [5, 7]. The formation temperature increases as the stage 

increases, especially for stage 3 formation. The chemical composition changes 

significantly as well. Stage 1 produces the highest amount of copper within the structure, 

but also has the highest standard deviation [7]. Stage 2 and Stage 3 have a lower amount 

of copper within the structure as would be expected, since it forms less frequently among 

the graphite planes. The sizes of the copper particles are relatively constant throughout 

the different stages. Stage 1 particles had an average size of 22.5nm, whereas Stage 2 and 

Stage 3 particles were almost identical in size being 28.3nm and 28.5nm [7]. The higher 

amount of variation in Stage 1 compared to Stage 2 and especially Stage 3 shows the 

heterogeneous nature of the structure. Stage 1 has the highest standard deviation and the 

size of the copper molecules vary significantly. Stage 2 is a lot more consistent and 

homogenous than Stage 1 looking at the results, but it is not quite as homogeneous as 

Stage 3 results show [7].  

 

Figure 6: Planar view of Stage 1 Copper GIC. [4] 
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Table 1: Intercalation Results from a Recent Paper to Show the Relationship between Stage and 

Composition [7]  
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METHOD 

This project hopes to accomplish two steps. The first step is to get the copper 

atoms in the carbon structure and by mixing anhydrous copper (II) chloride with natural 

graphite in molar ratios of: 1:1, 3:1, and 6:1 that are in powder form [5]. These powders 

are then placed into a glass ampoule, where the air will be removed from and vacuum 

sealed because anhydrous copper chloride reacts strongly to air adsorbing moisture from 

the atmosphere, lowering the reactivity of the copper chloride and restricting the amount 

of material that can intercalate into the carbon layers.  

 After the powdered mixture is sealed in an ampoule, it is time to heat the ampoule 

in a tube furnace at 480oC for three days [5, 8]. After the ampoule has been removed and 

the material within it has been recovered, the recovered material will be cleaned. This is 

done by washing the solute in diluted hydrochloric acid and water to remove the 

remaining copper chloride. The resulting material is then dried in a vacuum oven at 60oC 

for at least 12 hours to remove any moisture that remains from the washing process.  

 The resulting material left is the graphite that has the copper intercalated in it. 

Even with the washing, there are still excess chlorine atoms within the structure. To 

reduce this excess, the powder can be loaded into a watch glass and processed with 4% 

Hydrogen in Argon (4% H2/Ar). This is done within a tube furnace at 300oC for an hour. 

This process will be optimized using TGA to study the weight change kinetics applied to 

the tube furnace.  

There are several primary methods that can be used to determine the effectiveness 

of this process by collecting data after each step. Thermogravimetric Analysis (TGA) will 

be used to determine the mass change. X-Ray Diffraction (XRD) will be used to 
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determine the secondary components in each graphite sample and to measure the relative 

amount of intercalation that took place. Brunauer-Emmett-Teller (BET) Surface Area 

Analysis will be used to analyze the changes in surface area and porosity of the graphite 

and the graphite intercalated compound (GIC). Finally, the Scanning Electron 

Microscope (SEM) will be used to closely examine the microstructure of the graphite 

samples and the GIC compound along with Energy Dispersive X-Ray Spectroscopy 

(EDX or EDS) that will determine impurities present. 

 

  

http://www.ceram.com/testing-analysis/techniques/brunauer-emmett-teller-surface-area-analysis-barrett-joyner-halenda-pore-size-and-volume-analysis/
http://www.ceram.com/testing-analysis/techniques/brunauer-emmett-teller-surface-area-analysis-barrett-joyner-halenda-pore-size-and-volume-analysis/
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RESULTS 

Thermogravimetric Analysis (TGA) measures the amount and rate of change of 

mass within a carefully controlled temperature and atmosphere. This is used to determine 

the composition and to predict the thermal stability resulting from changes due to 

decomposition, oxidation, or dehydration [9]. The goal of TGA in this project is to use 

this method to determine the amount of copper intercalated within the graphite structure. 

In order to show the amount of copper intercalation, the curves of the raw graphite will 

be compared to and the intercalated material following each step of the process to see the 

presence of copper. 

The simplest and most effective way to accomplish this is by coming up with a 

heating program that burns off all the graphite powder. In Nitrogen gas, the boiling point 

was initially thought to be between 700-800oC. The program that was initially done was 

to ramp the temperature up 20oC/min up to 1200oC and hold that temperature for ten 

minutes to ensure that all the powder evaporated entirely. The ramp rate had to be 

reduced to 15oC/min to ensure that all the graphite evaporated before the end of the TGA 

run.  

Below is a figure of the TGA results for the pure graphite samples. The table 

shows the important data that can be obtained by running a TGA sample. The onset 

temperature is the point at which significant mass change occurs. The derivative onset 

temperature is slightly different than the regular onset temperature because the 

measurement is taken from the derivative curve of the TGA result. The mass change is 

the difference in mass percent from start to finish, and represents the percentage of mass 

that was lost during the TGA sample run [10]. 
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Type Onset Temp(⁰C) Derivative Onset Temp.(⁰C) Mass Change 

F11 698.2 703.5 96.98 

F99.5 698.7 710.8 98.29 

Micrograph 99835 744.3 731.4 96.59 

Timcal KS75 770.8 796.0 97.57 

Timcal M150-97 790.5 760.2 96.76 

Timcal T44 765.5 744.1 98.93 

Table 2: TGA Results for the Raw Graphite Samples 

The F11 and F99.5 both have very similar temperatures and mass changes. The 

Timcal materials have a similar grouping as well with the onset temperatures being very 

close to each other. The relative mass change for all these are relatively close to each 

other. One of the bigger sources of error is mass size. Basically, the bigger the sample 

size, the lower the percentage of material gets burned off.  The reason is that the mass 

loss ends shortly before the maximum temperature is reached, so there may be some 

additional burning if we let this continue.  

Below are the two of the most different TGA curves that came out through the 

characterization process. Figure 1 is displaying the F11 TGA curve. The vertical axis is 

%TG and on the right side is the scale for the derivative curve for the TG. The onset 

temperature where the material starts to burn off is approximately 700C with a mass 

change of 97%.  
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Figure 7: TGA Results from F11 raw material 

Compare the sample of F11 to that of Figure 2 below which is the Timcal T44. 

The onset temperature takes place at approximately 750C and has a mass change of 

almost 99%. The evaporation rate of the T44 is quite a bit greater than the F11 and takes 

place during a smaller temperature window.  

 

Figure 8: TGA Results from Timcal T44 Raw Materials 

It looks like the Timcal T44 starts to burn off 50C higher than the F11 and 

finished evaporating at 1050C whereas the F11 continued the process until about 1100C. 

This is likely related to the Carbon purity of the two raw materials. The percent carbon of 
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the F11 is 97.90% whereas the content in the Timcal T44 is somewhere in the lower 99% 

range. This would explain why the onset begins sooner in the F11 and lasts to later 

temperatures than the T44 due to the impurities.  

X-Ray Diffraction (XRD) is a way to determine the phase identification of a 

crystalline material and can provide information on unit cell dimensions. The analyzed 

material is typically found in a powder form and the average bulk composition can be 

determined [11]. X-Rays are reflected off of the sample from different atomic layers from 

various angles and the peaks with respect intensity and angle of two-theta can be used to 

determine the crystal structure, lattice parameters, and the relative composition of an 

unknown material. The graphite powder analyzed during this project had different levels 

of purity, ranging from 95-99% depending on the sample. When natural graphite is being 

pulled from the earth, there is a material called fly ash that comes out with it and is a 

combination of several different ash byproduct materials such as SiO2 and Na2O. The 

best way to describe an ash is any oxide naturally found in the earth.  

 For this project, the goal was to use XRD to determine the approximate amount of 

intercalation that occurred. The graphite powders were run with a general scan of two-

theta from five to 70 degrees continuously at a rate of 1.25 degrees per minute. This was 

done to get a general outlook of the spectra that resulted, and to determine if any of the 

ash content was detectable using XRD. There were some troubles getting a run to 

complete since the counts on the intensity maxed out, which made the rest of the run 

irrelevant. To fix that, the two-theta angle of 25.5 to 27 degrees was skipped due to the 

incredibly high peak from the graphite making the secondary peaks very small in size. 

This helped to reveal the secondary peaks from the XRD test, and the current was 
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amplified to help magnify the peaks. Below are the XRD patterns stacked on top of each 

other, and this was done to identify the differences between and identify what was the 

cause of them.  

 

Figure 9: XRD Patterns of Raw Graphite Samples 

 The results from the XRD data show several spots that are worth inspecting. The 

peaks at the two-theta angles of 24, 42, 44, and 55 are the areas of interest since they vary 

by the material. After the peaks were identified, the XRD PDF cards compared the peaks 

to each other. The difficulty during this step is that the relative intensities are all based in 

relation to the strongest peak, which was skipped over to reveal the secondary peaks. So 

considering that detail, the two-theta angles where the peaks occur have an elevated 

emphasis for analysis over intensity. Below is an example of a graphite XRD pattern 

result superimposed on a PDF card for graphite. There were approximately 12 different 

PDF card results for graphite, so the best overall result was used to match up with the 

pattern.  
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Figure 10: XRD Pattern with PDF Card 75-1621 [12] super-imposed on F99.5 graphite result.  

 As the figure above shows, the angles of the diffraction pattern match up very 

well. The intensities were quite accurate as well. The only peak that stands out is the one 

at about 55o two-theta, and the fact that the biggest peak was skipped over to analyze the 

secondary peaks could have created this accentuated peak. The next step was to see if the 

major kinds of ash such as SiO2 or Na2O can be identified in the XRD pattern. After 

some analyzing and searching peaks, none of the types of ash or any other impurities 

could be found using this technique.  

Results from the Brunauer-Emmett-Teller (BET) Surface Area Analysis are 

shown in Table 1. BET measures the specific surface area of a material by using physical 

adsorption of gas molecules on a solid surface [13]. The pore volume and diameter were 

http://www.ceram.com/testing-analysis/techniques/brunauer-emmett-teller-surface-area-analysis-barrett-joyner-halenda-pore-size-and-volume-analysis/
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calculated using the Barrett-Joyner-Halenda (BJH) Adsorption. The BJH method, 

proposed in 1951, was designed for relatively wide-pore adsorbents with a wide pore size 

distribution. It turns out that it can be applied to nearly all types of porous materials. The 

model is based on the assumption that pores have a cylindrical shape and that pore radius 

is equal to the sum of the Kelvin radius and the thickness of the film adsorbed on the pore 

wall [14]. 

 The results show that all the graphite samples are very porous. In the table below, 

the results show that the Specific Surface Area (SSA) is between 0.93 and 7.83 m2/g 

which is a large area for one gram of material. The pore volume determines the amount 

of porosity per gram of material. The pore diameter is a measurement of the average pore 

diameter. The pore results are slightly narrowed by restricting the size of the pores 

between 17 Å and 3000 Å for the diameter.  

 Specific Surface Area (SSA) Pore Volume Pore Diameter 

Sample (m²/g) (cm³/g) (Å) 

F99.5 4.21 0.0133 118.6 

Timcal KS75 4.96 0.0160 129.5 

F11 7.83 0.0173 143.7 

Micrograph 99835 2.88 0.00443 168.2 

Timcal T44 4.04 0.0172 237.7 

Timcal M150-97 0.93 0.00253 494.1 

Table 3: BET Results for Raw Materials 

Below are figures showing the isothermal plots of the F-11 and F-99.5 isothermal 

plots. There are two curves, adsorption and desorption that show the relationship between 
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the relative pressure and the quantity adsorbed.  This relationship shows the amount of 

porosity of the different types of graphite. 

 

Figure 11: Isothermal Curves for Adsorption and Desorption of F-11 

The results from the F-11 curves show some difference between the adsorption 

and desorption isotherms. The result that followed was expected since the surface area, 

pore size, and pore diameter are bigger than the other raw materials that are being 

compared.  

 

Figure 12: Isothermal Curves for Adsorption and Desorption of F-99.5 
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The results in Figure 12 the F-99.5 show the adsorption and desorption curves 

almost on top of each other which indicates minimal porosity within the graphite. The F-

99.5 results from the table above shows that the powder has a lower surface area, pore 

size, and pore diameter, which would lead to closer adsorption and desorption curves. 

The higher surface area and pore size would probably make gas-phase transport and 

reaction easier.  So this initial result indicates that the F11 should be a better starting 

material than the F-99.5. All the other graphite raw materials, not pictured, follow this 

shape. Overall, the higher surface area and pore size causes a higher amount of 

adsorption for the F-11 compared to the F-99.5 as well as a greater discrepancy between 

the relative adsorption and desorption curves between these two samples.  

A scanning electron microscope (SEM) creates an image by scanning the surface 

of the sample with high energy electrons. The interactions that take place between 

electrons from the electron microscope and the sample reveal information about the 

sample including external morphology (texture), chemical composition, crystalline 

structure, and orientation of the sample being analyzed. Pictures were taken of each 

sample at various magnifications and at two different operating distances to better 

understand and to visualize the structure.  

Low magnification gives insight of what the surface layers of the material look 

like and higher magnifications can be used to investigate how layers stack on top of each 

other and are orientated with respect to each other. The graphite samples were looked at 

two different operating distances as well. The closer working distance shows depth of 

field and can be used for Energy Dispersive X-Ray Spectroscopy (EDX or EDS) that can 

determine impurities present and the farther working distance is used for high resolution 
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images. Below is a comparison of the different graphite types from the closer working 

distance that can help determine the relative depth of field. 

 

Figure 13: Comparison of Graphite Samples with a Working Distance of 13mm and 

Magnification of 100X.  

  There were major differences between the powders analyzed in particle 

morphology observed by using the SEM. The Timcal M150-97 and the Micrograph 

99835 had a noticeable amount of fine particulate content. Timcal samples showed the 

most flake-like morphology while the F11 and F99.5 had somewhat more rounded 

features. The F11 and the Timcal M150-97 samples have large and round like flakes. The 

flakes can be visually seen with the F99.5, Micrograph 99835, and with the Timcal T44 

as well but noticeably smaller than the F11 and the Timcal M150-97. The Timcal KS75 

stands out from the other microstructures. There are some distinguishable flakes, but the 

orientation is random, making it appear that no ordered arrangement exists. The next set 

F11 

Timcal T44 Timcal M150-97 

Timcal KS75 

F99.5 

Micrograph 99835 
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of images are the same graphite samples, but the working distance has been moved 

farther back to 39mm, which gives these images greater resolution. 

 

Figure 14: Comparison of Graphite Types with a Working Distance of 39mm and Magnification 

of 100X 

These pictures show the structure of the graphite flakes and how tightly stacked 

on top of each other the layers are. The Micrograph 99835, Timcal T44 show smaller 

flakes and they’re tightly packed with relation to one another.  The F99.5 and Timcal 

KS75 have an intermediate flake size but different appearance. The Timcal KS75 seems 

to be quite porous whereas the F 99.5 is packed tightly together. Whereas the F11 and 

Timcal M150-97 have a larger grain size and the depth of the flakes can be seen along 

with some gaps between the flakes as well.  

One of the special tools that can be utilized by a Scanning Electron Microscope 

(SEM) is the Energy Dispersive X-Ray Spectroscopy (EDX or EDS). It’s an analytical 

technique used for the elemental analysis or chemical characterization of a sample and 

relies on interaction of X-ray excitation. The way each element is characterized is due to 

F11 

Timcal T44 Timcal M150-97 

Timcal KS75 Micrograph 99835 

F 99.5 

http://en.wikipedia.org/wiki/Chemical_element
http://en.wikipedia.org/wiki/Characterization_%28materials_science%29
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its unique atomic structure allowing unique set of peaks on its X-ray spectrum. The 

energy of the X-rays is characteristic of the difference in energy between the two shells, 

and of the atomic structure of the element from which they were emitted; this allows the 

elemental composition of the specimen to be measured. Below are the EDX scans for 

each graphite sample that was being compared in this project. 

 

Figure 15: Comparison of all the EDX Scans at 100X 

The scans might be difficult to look at together in this view, but there are some 

things that can be pointed out. Carbon is the predominant element present, and therefore 

its peak is the strongest by far. That’s due to graphite being carbon, but other trace 

elements are present in varying amount for each sample. The smaller peaks come from 

other materials such as silicon, calcium, aluminum, magnesium, and iron. This is no 

surprise since graphite is naturally dug out of the ground using mining methods, making 

this material surround by these elements that are naturally found in the earth’s crust in the 

form of oxides.  

F11 

Timcal T44 Timcal M150-97 

Timcal KS75 Micrograph 99835 

F 99.5 
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The specific results are hard to see with the sizing of the spectrums along with the 

elements that show up in the scan at this scale, and will briefly mention each material 

result. The table below gives a summary of the counts for each element present along 

with the time each sample was counted for.  

Graphite Type Mg(counts) Al(counts)  Si(counts) Ca(counts) Time(sec) 

F11 20 30 55 15 90 

Micrograph 99835 40 48 50 25 60 

Timcal KS75 10 15 25 10 90 

Timcal M150-97 110 115 180 125 90 

Timcal T44 100 124 140 70 90 

F 99.5 32 40 45 20 60 

Table 4: Counts for the Elements of Magnesium, Aluminum, Silicon, and Calcium 

The results from this table clearly show the amount of relative impurities in each 

graphite sample. The reason the time varies between some of the samples were because 

the increase was done after the running of the Timcal KS75 and F 11 samples. The counts 

for Carbon are over 1,000 which should give some idea of the composition being 

predominantly graphite. Iron is not listed in this table because the results were very low 

in terms of count for some of the graphite samples. These results cover a very large area 

on the atomic scale with a magnification of only 100X and covering the highlighted 

rectangle as shown in the table. The counts were so low on these samples, that the time of 

the scan was increased from 60 to 90 seconds to produce a more accurate count. These 

two samples have a very low count of all the mineral elements meaning that they have a 

high purity. The counts were significantly lower on all the impurity groups as the table 

shows.  
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 The two samples that have the shorter count time of 60 seconds can be grouped 

together as the medium grade purity samples. If we pro rate the counts to a 90 second 

window, the magnesium counts are approximately 50 to 60; aluminum and silicon are 60 

to 75, and calcium is about 30 to 40 counts during that amount of time. The samples with 

the highest amount of impurities are the Timcal T44 and Timcal M150-97. It can be seen 

from the SEM images because there’s a higher amount of contrast in those pictures and is 

likely due to the impurities that exist in the microstructure and the different elements 

radiate at different energy levels that caused the differing levels of intensity. 

 To characterize each raw material of graphite, a comprehensive summary of each 

material is put together containing images at magnifications of 100X, 200X, 500X, 

1,000X with the working distances at both 13mm and 39mm. The EDX scan of each 

graphite sample is included in this section to summarize the results obtained from SEM 

of each material. The first sample to be looked at is the F11 and the first figure below is 

the images from the working distance of 13 mm.
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Figure 16: SEM Images of F11 Graphite at Various Magnifications at a Working Distance of 

13mm 

As the magnification increases, the arrangement of the flakes can be examined. 

The flakes tend to stack on top of each other and tend to be oriented in the same 

direction.  The picture at 500X is quite unique with this large needle like flake going 

across the entire picture. Looking at the surrounding flakes, notice how they’re all 

surrounding the needle one appearing almost only horizontal to the plane of the picture. 

The next image is the same sample but at the other working distance of 39mm.  

100X 200X 

500X 1000X 
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Figure 17: SEM Images of F11 Graphite at Various Magnifications at a Working Distance of 

39mm 

As the magnification increases on the F11 graphite, the proximity and orientation 

of the flakes stacked on top of each other can be observed. The packing stays close 

together as we increase the magnification of the F11 graphite. There seems to be a 

rounded shape to them as the focus shifts to the individual particles as the magnification 

increases. Finally, the EDX scan for the F11 sample determines the counts produced at 

different energies and gives an elemental analysis.  

100X 200X 

500X 1000X 
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Figure 18: EDX Scan for F11 at 100X Magnification to Show the Overall Composition 

Here’s the result of the EDX scan for the F11 graphite sample. The red rectangle 

is the area that was scanned and the results are in the chart above. The focus here is on 

the elemental earth elements so carbon is cut out of the image to focus on the impurities. 

As mentioned earlier, F11 is a high grade purity compared to the other samples tested and 

therefore the peaks are lower than the other samples. The next sample that will be 

characterized will be the Micrograph 99835. The first figure below is SEM images that 

are taken from a short working distance. 
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Figure 19: SEM Images of Micrograph 99835 Graphite at Various Magnifications at a Working 

Distance of 13mm 

The microstructure for the Micrograph 99835 is shown above. At 100X 

magnification, it looks like there are a lot of small to medium sized flakes, but as 

magnification increases, the ability to focus in on some of the larger grains are possible. 

The size of the grains was larger than expected and there was more randomness in the 

orientation than expected. In the 500X and 1000X pictures, darker areas or holes between 

the flakes are quite noticeable. This explains why this graphite has a lower density than 

the other graphite samples.  

100X 200X 

500X 1000X 



29 
 

 
 

 

Figure 20: SEM Images of Micrograph 99835 Graphite at Various Magnifications at a Working 

Distance of 39mm 

Here are the images taken at from 39mm giving us detailed resolution of the 

microstructure. The micrograph 99835 is a very fine structure. The individual flakes are 

small in diameter, but have a random orientation with creates small pores that are visible 

at 200x magnification. The size of the graphite particles seem to vary significantly which 

also contributes to the micropores. 

  

100X 200X 

500X 1000X 
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Figure 21: EDX Result of Micrograph 99835 Graphite at 100X 

 The results for the EDX scan for the Micrograph are shown in the figure above. 

The micrograph was found to be in the middle with regards to the counts of impurities as 

shown in the summary above. There is a distinct iron peak that can be made out from this 

spectrum. The count time is at 60 seconds instead of 90 which makes the results seem 

less than some of the other samples. The next material that will be summarized will be 

the Timcal KS75.  
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Figure 22: SEM Images of Timcal KS75 Graphite at Various Magnifications at a Working 

Distance of 13mm 

As mentioned previously, the orientation with the flakes have a more random 

orientation than the other graphite samples. As the magnification increases, it becomes 

easier to see the way that the flakes orient themselves with respect to each other.  There 

aren’t as many holes that can be visibly seen considering the orientation and the density 

of the Timcal KS75 is higher than some of the other graphite samples. Next are some 

more images of this material from a farther distance for some better resolution.  

  

100X 200X 

500X 1000X 
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Figure 23: SEM Images of Timcal KS75 Graphite at Various Magnifications at a Working 

Distance of 39mm 

The Timcal KS75 graphite has a smaller flake size. The orientation seems more 

ordered than the other graphite materials causing very few micropores within the 

structure. As the magnification increases, it can be seen that the flakes have the same 

orientation which would also explain the close packed structure. The next figure below 

will be the results from the EDX scan.  

 

100X 200X 

500X 1000X 
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Figure 24: EDX Result of Timcal KS75 Graphite at 100X 

Here is the EDX spectrum that was recorded for the Timcal KS75. As the table presented, 

this material has a high level of purity and has very little impurities present. This material 

had the fewest amount of impurities out of all the types of graphite that were tested. 

Timcal M150-97 is the next graphite sample that was examined.  

 100X 200X 
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Figure 25: SEM Images of Timcal M150-97 Graphite at Various Magnifications at a Working 

Distance of 13mm 

From the pictures shown, the relatively large flake structure and how they stack 

on top of each other stand out in the image above. What looks unique about the Timcal 

M150-97 is the varying flake size that forms. There are large flakes that tend to orient 

themselves in a similar way to each other and the smaller flakes that stick out between the 

larger ones creating a compact structure. This material has the largest range of flake size 

of any of the graphite samples.  

 

 

  

1000X 500X 

100X 200X 
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Figure 26: SEM Images of Timcal M150-97 Graphite at Various Magnifications at a Working 

Distance of 39mm 

For the Timcal M150-97, the large flake size and the large pores within the 

structure is clearly visible. The shape of these flakes has an oval shape to them. Looking 

closely at the 100X, there are a couple very bright areas and is due to the overall shiny 

appearance to some of the flakes and from the evidence provided from the EDX results, 

shows that this is from the impurities present in the material itself. The next figure is the 

EDX scan from the Timcal M150-97. 

 

Figure 27: EDX Scan of Timcal M150-97 Graphite at 100X Magnification 

500X 
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 As mentioned earlier in the images, Timcal M150-97 has the highest counts of 

impurities out of all the graphite samples tested. All the different impurities are distinct in 

this spectrum, including iron which was indistinguishable in some of the scans. The 

picture in the scan above shows the area that the scan took place. The shiny areas are 

from the impurities in the sample since graphite shows up pretty dark since it doesn’t 

send off a strong reflection from the electrons. The counts for all the major impurities are 

all over 100 and are considerably higher than the other materials and create this shiny 

residue on anything this material touches. The next material that will be characterized 

will be the Timcal T44.  

 

Figure 28: SEM Images of Timcal T44 Graphite at Various Magnifications at a Working Distance 

of 13mm 

 

100X 

500X 1000X 

200X 
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From the pictures taken using the SEM, there’s a clear resolution that this material 

is composed of many small flakes. This creates a compact microstructure with very few 

pores. The EDX results show that the T44 has a high number of impurities and the 

contrast level would lead to that premonition as well. When the magnification is 

increased to 500X and 1000X, the orientation of the smaller flakes with respect to each 

other are clearly visible. The orientation of the flakes appearance becomes more random 

and tiny holes within the structure can be seen. The next series of images are from a 

farther working distance of the Timcal T44.  

 

 Figure 29: SEM Images of Timcal T44 Graphite at Various Magnifications at a Working 

Distance of 39mm 

The different graphite particles from the Timcal T44 are very small in size and 

oriented in such a way that there aren’t any significant pores within the structure. The 

100X 200X 

500X 1000X 
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higher magnifications show how the different orientations fit closely together having a 

smaller number and size of pores. The shape of these flakes appears to be more needle 

like, whereas some of the other samples have a circular type of structure. The image at 

200X shows a larger sized impurity with the bright intensity in the lower left hand corner. 

Finally, here is the EDX scan for this material.  

Figure 30: EDX Scan of Timcal T44 Graphite at 100X Magnification 

 The EDX results for the Timcal T44 are presented in the figure above. This has a 

high impurity count, with magnesium, calcium, and silicon all over 100, while the 

calcium is at approximately 75. The only sample with higher impurity counts is the 

Timcal M150-97. Both peaks for iron are visible in this spectrum and labeled in the 

figure above. Now it’s time to examine the final material being characterized, the F99.5 

sample.  
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Figure 31: SEM Images of F99.5 Graphite at Various Magnifications at a Working Distance of 

13mm 

Finally, there’s the F99.5 material that is composed of primarily smaller flakes 

with some larger ones within the structure. This material looks fairly porous in the 

pictures taken, so this could be a good candidate to insert copper into. The orientation 

looks quite randomized as well when looking at the sample at higher magnifications. At 

1000X, the different elevations of the graphite at the surface of the material can be clearly 

seen by the different areas of contrast. There are a few grains in the center that stand out 

while the surrounding area is dark and unoccupied.  

  

100X 200X 

500X 1000X 
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Figure 32: SEM Images of F99.5 Graphite at Various Magnifications at a Working Distance of 

39mm 

The F 99.5 appears to have a closely packed structure along with a small particle 

size. As magnification is increased, some pores between some of the flakes become 

visible. The shape of the flakes varies considerably with some being quasi-circular and 

there are some needlelike ones as well. At higher magnifications, the flakes are randomly 

oriented in a way that makes the structure closely packed together with very few 

micropores.  

100X 200X 

500X 1000X 
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 Figure 33: EDX Spectrum of F99.5 Graphite at 100X Magnification 

 Above is the resulting EDX scan of the F99.5 graphite. What is unique about this 

result is the apparent presence of sulfur. It is quite significant and seems to have the 

highest impurity count over magnesium, aluminum, and silicon among others. More work 

needs to be done to determine in what form the sulfur exists within this material.  

 This concludes the SEM results and is the primary source of characterizing the six 

types of graphite being examined. The Timcal KS75 and F11 have higher grade of purity 

and that is reflected by the EDX results along with the images taken with the SEM due to 

the lack on contrast. On the other hand, the Timcal T44 and Timcal M150-97 have sharp 

contrast in the SEM images and correlates well with the level of impurities.  
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EXPERIMENTAL DIFFICULTIES 

 Characterizing the raw materials was the first step in this process and obtaining 

results were straight forward, but that wasn’t the case for samples that went through the 

first step of the intercalation process. There were severe issues related to getting CuCl2 

intercalated. The main issues related to accomplishing this are: ampoules imploding in 

the furnace, opening the ampoules if they survived the heating and recovering the 

intercalated material after opening the ampoules.  

After adding the graphite and CuCl2, the samples were then taken to the glass 

shop to get vacuum sealed so that the material was not exposed to atmospheric 

conditions. This was done to prevent moisture in the air to affect the materials in the 

ampoule, especially the anhydrous CuCl2, since it readily reacts with H2O along with the 

lowering of the internal pressure of the ampoules. As seen in figure 34 below, this does 

not prevent the ampoules from being unrecoverable. The samples imploded from the 

pressure caused from heating the samples to higher temperatures.  
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Figure 34: Results from a preliminary trial to intercalate CuCl2 into graphite   

The ampoules like imploded as opposed to exploded during heat treatment. 

Looking along the right hand side of the image in Figure 34, it is apparent that the 

ceramic hearth broke into several pieces. That is used as a spacer to help provide even 

heating to the objects placed on it. There is also a considerable amount of discoloration 

within the furnace due to the graphite being expelled from the imploded ampoule. The 

powder is light and free flowing, making the remnants hard to contain.  

After reviewing the current procedure, there were a couple factors that needed to 

be investigated further. The factors that needed to be reconsidered were the amount of 
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material put in the sample, and the configuration of the ampoule itself. Both of these 

considerations are related to reducing the initial amount of internal pressure contained in 

the ampoule.  

The initial dimensions of the ampoule were 25mm diameter with a height of 9mm 

and the top part had a diameter of 11mm and was designed for easy vacuum sealing. 

Vacuum sealing was an issue and was able to lower the internal pressure to only 100 

millitor. This was with the weight inside the sample containing 15 grams of material. 

There was no previous method that used this amount of material within an ampoule. The 

reason this was attempted was due to making enough final material that enough material 

would be produced for the whole procedure, including analysis. The first adjustment that 

was made was lowering the material inside the sample from 15 grams down to 7 grams. 

This is the quickest and easiest step to lower the internal pressure within the ampoule, but 

this didn’t prevent the ampoules from imploding.  The image below is what an empty 

ampoule looks like and even though the dimensions changed during research, the overall 

shape remained the same. 

 

Figure 35: An Empty Ampoule with dimension 22mm outer diameter and 7mm length at the 

bottom with 19mm outer diameter at the top with thick wall tubing glass. 

The next step was to change the dimensions of the ampoule so that there was less 

empty space inside of it and that improve the vacuum seal on the ampoule. The 
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dimensions were reduced to a diameter of 22mm with a length of 7mm, and the top 

portion had a diameter of 9mm. The wall thickness of the tubing changed as well from 

medium wall tubing to thick wall tubing to make the ampoules safer during the 

intercalation process. Pictured above is and empty ampoule with all the modifications 

previously mentioned. These changes lowered the overall volume significantly, but this 

didn’t significantly improve the overall performance of the ampoule. The internal 

pressure after all of these changes decreased, but not drastically with the internal pressure 

still residing at 60 millitor.  

Some of the ampoules put into the furnace didn’t implode during the heating 

process. Although, trying to open the ampoules safely and easily was difficult because of 

the internal pressure within them. After consulting with the person who helped design 

and build the ampoules in the glass shop, the best approach to open them was by striking 

the tip  where they were sealed with a hammer. Using the hammer to strike the tip created 

issues with safely opening the ampoule and collecting intercalated material for analysis 

and for the chlorine reduction step. Pictured below is what a sealed ampoule looked like 

after it survived the intercalation process.  

 

Figure 36: Sealed Ampoule after Step 1 of Intercalation 

The initial plan was to wrap the ampoule in a cloth and paper towel to contain the 

glass and powder and was thought to be sufficient. The energy released during the 
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implosion was significantly larger than anticipated and forced additional precautions to 

be considered. When striking the ampoule with the hammer, it wouldn’t always break on 

contact making the environment less predictable. The sealed end of the ampoule where 

the powders were put in from was the area where the seal would be the weakest. When 

attempting to break the ampoule, parts of the sealed ampoule would chip off into small 

pieces but the seal remained intact, making the targeted area smaller and harder to open. 

When the ampoule finally broke, a loud booming noise would follow along with a small 

cloud of powder resonating in the vicinity of where it was broken.  

The initial plan results expected to be that the cloth would absorb some of the 

energy from the implosion, but the force would be great enough that the multiple layers 

of cloth would rip and unravel itself in the process. The first sample, the ampoule was 

held in the left hand while trying to break the ampoule with the right hand; the ampoule 

disintegrated upon rupture. After that, it was necessary not to suspend the ampoule in the 

air by holding it with the left hand and thus it was laid atop a counter to help balance and 

anchor the ampoule along with absorbing some of its energy. With all those precautions 

in place, it still was not safe enough.  

There was one incident during this project that resulted in an injury. When trying 

to open an ampoule, the force was so significant that it ripped through the cloth, through 

the lab gloves, and broke through the skin of the hand. There were several small 

lacerations with shrapnel all over the left hand glove and on the hand where the glove 

failed. Thankfully, there were no serious injuries and after a brief trip to the campus 

medical center. After that incident, it was determined that the procedure of how to open 

the ampoule safely needed to be adjusted.  



47 
 

 
 

The initial attempt to break the ampoule was to use a glass cutter to score the 

glass and create an area on the neck where the ampoule would break cleanly. That idea 

did not work so well because it was very hard to scratch the glass all the way around the 

neck in the same groove. The glass cutter would get caught up on the neck and the 

narrow area by the seal wasn’t long enough to get the proper clearance to induce breaking 

at that spot effectively. The overall result was no significant improvement, and the blades 

for the cutter wore out very quickly in the process. After this failed attempted the 

consensus was that the ampoule had to break in an enclosed area to prevent another 

incident from happening again. Dr. Church came up with the idea of using a door hinge 

like apparatus in a plastic container filled with insulation to encapsulate the implosion. 

Below is what the apparatus looked like from several different viewpoints.  

 

Figure 37: The Door Hinge Apparatus Used to Make Ampoule Breaking Safe 

 This device was created by Dr. Church and by looking at the picture on the left 

shows what the ampoule breaker looks like on the inside. The breaker is entirely enclosed 

within a plastic container that’s surrounded by foam. This was done to completely 

enclose the ampoule as its being broken and to prevent any further injury. The middle 

picture shows where the ampoule is inserted into, and to be able to insert the ampoule, the 

door hinge must be flat across so that it can be broken along the neck. Finally, the image 

on the right shows how to break the ampoule. There was a hole drilled into the lid of the 
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plastic container to ensure that no debris or material escape the ampoule breaker. A 

screwdriver is inserted into this hole to push the door hinge until the ampoule breaks and 

the resulting material can be collected. There were some complications to this method in 

accumulated the intercalated material though. 

The final issue encountered was how to accumulate and extract the intercalated 

powder after the implosion. The first couple times after breaking the ampoule, it wasn’t 

possible to accumulate the powder to process it any further. When holding the ampoule 

by hand, the powder fell to the ground. After laying the ampoule atop of a counter, the 

powder and the glass ampoule intermingled and the two materials had to be separated.  

The process started by removing the larger pieces of glass and was done very carefully by 

hand. Problems came through this step because there were two different stages present in 

the ampoule during this stage. There were both intercalated graphite and excess CuCl2 

present, but most of the excess copper chloride stayed attached to the ampoule itself. 

Then to remove the excess CuCl2 ions, a vacuum pump was used to filter out the diluted 

HCl solution and the excess chlorine atoms from the intercalated powder.  

To end with up with solely the intercalated graphite, the remaining material was 

dried in the vacuum oven at 60oC for 12 hours. The time and temperature were picked in 

such a way that the water used to wash the sample after the filtration process would 

evaporate without the material reacting with the atmosphere. The issue related to this was 

that the end product was a very miniscule amount and this made the amount from a single 

ampoule impossible to analyze. To do the characterization of this intercalated material as 

done with the raw materials of graphite, we need approximately three to five grams for all 

the tests. The result from an ampoule that had seven grams of material put inside of it and 
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then sealed yielded well under one gram of product.  

Considering the stability of the ampoules in the furnace and the time it takes to 

process them, the timeframe to accomplish reproducible results took a significant amount 

of time.  Three ampoules were processed at once, but either all or none of them would 

survive the heating process, and usually the ampoules would implode. These are the 

reasons why this project was a major challenge in coming up with measurable results. 

Both the technique and process need to be refined and mastered before reproducible 

results can be achieved.  
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CONCLUSION: FUTURE WORK 

There is still more work to be done before this project is completed. Before any 

comparable results can be obtained, the process must first be mastered. Once that has 

been resolved, the intercalated material needs to be analyzed to see how much CuCl2 has 

entered the graphite structure and the stage of the graphite intercalated compound needs 

to be examined. Next, the chlorine reduction step would strip away the chlorine atoms 

that are still attached to the copper within the structure, and finally final material could be 

analyzed to characterize the overall composition of the copper intercalation within the 

graphite and the performance of the material compared to raw graphite.  

The issues that have prevented this project from delivering measurable results 

relate to the stability and overall result from the material in the ampoules. Optimizing the 

conditions to prevent the ampoules from imploding in the furnace during the intercalation 

process is necessary to progress in this project. The issues that need to be overcome with 

respect to the ampoules are as follows: 1) Can a lower furnace temperature create 

favorable conditions for intercalation, 2) Find a better way to execute the ampoule filling 

process, and 3) Find a better location to store the materials. 

Looking further into possible solutions to the issues, lowering the furnace 

temperature to find out if the ampoules are more stable would be the easiest adjustment to 

make since it does not change the procedure or any other parameter and should lower the 

internal pressure on the ampoules. The next possible solution would be to store all the 

necessary chemicals in a glove box to prevent moisture from accumulating in the 

ampoules and chemicals, especially Copper (II) Chloride. As the stability of the ampoules 

increase and the method is mastered, research would pick up with the focus switching to 
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characterizing the amount and stage of intercalation that takes place. This would include 

the same evaluation that took place with the raw graphite material and would include 

SEM, BET, XRD, and TGA.  

There are also some issues related to XRD that need to be addressed. In the 

preliminary characterization, there were not any peaks that could be characterized from 

the impurities. There are approximately five areas of interest that are worth investigating 

into further. To do so, it would involve increasing the current of the machine to intensify 

the peaks and the counts during the scan. The other adjustment that would be necessary 

would be to slow down the scanning rate to develop a more accurate and detailed scan to 

help refine the preliminary results. The way to work around this issue would be to run the 

XRD scan under the same conditions as the initial characterization process and analyze 

the difference in the two patterns. The same process would be done with TGA and BET 

to determine the relative amount of intercalation that took place within the ampoule. The 

other major characterization taking place during this step is using the EDX feature of the 

SEM to approximate the overall composition of the intercalated material, especially with 

regards to the copper and chlorine content within the structure.  

The other way research would pick up would be initializing the second step of this 

process, reducing the chlorine in the graphite intercalation compound. There is a 

significant amount of setup in this process. The idea behind the chlorine reduction 

process would be to have Ar 4% H2 gas flowing through a quartz tube that would be 

sealed at both ends so the intercalated graphite would not be exposed to any other 

elements. The quartz tube is enclosed and surrounded by a furnace with the graphite 

being with the quartz tube. On the other end of the tube where gas is flowing in, there 
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would be a tube that leads into a container of water. The reason that the gas exiting the 

quartz tube is going into a container of water is due to safety issues. The chemical 

reaction below is the net equation taking place in the quartz tube furnace: 

H2 (v) + CuCl2(s) = 2HCl (v) + Cu(s) 

As the equation shows, this produces a volatile vapor of hydrochloric acid. The 

options to accomplish this would be to operate this step under a fume hood to evacuate 

the odor associated with this reaction or run the tube into a beaker of water so that there 

would a diluted solution of hydrochloric acid that would be disposed of properly in a safe 

and effective manner. This step could be optimized and adjusted after running the same 

conditions with the TGA by studying the weight change kinetics under the same 

conditions the graphite undergoes in the furnace and quartz tube apparatus.  

Once the process has been optimized and samples have gone through the chlorine 

reduction stage, the last step is the final characterization. Along with the SEM, TGA, 

XRD, and BET that has been done in every stage there are a few new analytical 

techniques that are suggested. One of the major unknowns of this project is the 

intercalated material’s resistance to oxidation, especially with regards to thermal stability. 

The desired application for this material will expose the material within the electric brush 

to high temperatures that could lead to some oxidation and quick decomposition. Another 

aspect that needs to be investigated is the mechanical properties of the intercalated 

material. For this test, it would require a nanoindenter. This procedure and method has 

become very popular over the last couple of decades since it only requires a small amount 

of material for the test and it is ideal for powders [15, 16].  

Another important test that is important for this application is pin-on-disc wear 
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testing. Another word for an instrument that does this kind of testing is a tribometer. Pin-

on-disc consists of a stationary pin under an applied load in contact with a rotating disc. 

The pin can have any shape to simulate a specific contact, but spherical tips are often 

used due to its simple geometry. Coefficient of friction is determined by the ratio of the 

frictional force to the loading force on the pin. This test is typically used for low friction 

coatings such as diamond-like carbon coatings on valve train components in internal 

combustion engines [17, 18].  

Finally, the last analytical technique that could help understand the kinetics of this 

reaction would be using the Transmission Electron Microscope (TEM). This is an 

electron microscope like the SEM, but the main difference is that with a TEM, electrons 

pass through the specimen and reveal an image whereas with a SEM, electrons react with 

only the surface atoms to provide a picture. Using a TEM would give some insight into 

what stage of intercalation is commonly seen in the final material and how the copper 

atoms interact with the carbon atoms [19]. Carbon atoms have a flat hexagonal structure 

which could allow an entire layer of copper atoms to squeeze between two graphite 

layers. Another interesting feature would be to see if the intercalation stage is 

homogeneous or if it changes regularly. Understanding the interaction that takes place at 

the atomic level could lead to advancements in many other fields related to both carbon 

and copper related applications.  

Even though this project still has work left to do, it relates to a set of problems 

that engineers deal with regularly in a professional environment. One must be flexible 

and innovative to work through unforeseen issues in design and environment limitations.  

Conducting a research project allows for the creation of new skills and knowledge to all 

http://en.wikipedia.org/wiki/Coatings
http://en.wikipedia.org/wiki/Diamond-like_carbon
http://en.wikipedia.org/wiki/Valve_train
http://en.wikipedia.org/wiki/Internal_combustion_engine
http://en.wikipedia.org/wiki/Internal_combustion_engine
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those involved by being exposed to new equipment and real-world applications. Overall, 

the outlook on the future of this project and the results to date has been very beneficial 

both personally and professionally.   
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