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ABSTRACT 

AN INVESTIGATION OF THE THROUGH-THICKNESS STRESS INTENSITY 

FACTOR USING P- AND H-ELEMENT FINITE ELEMENT ANALYSIS 

 

 

by 

Christopher Castle 

The University of Wisconsin-Milwaukee, 2012 

 

 

 

The stress intensity factor is used in fracture mechanics to characterize the stress state 

near the crack tip in a structure under remotely applied loads.  The magnitude of the 

stress intensity factor is dependent on geometry, the size and location of the crack, and 

the magnitude and distribution of loads on the structure.  The scope of this thesis is the 

study of the through-thickness stress intensity factor using two different FE approaches.  

P- and h-element finite element methods are used to study the stress intensity factors. The 

accuracy of the predicted Mode I stress-intensify factor (KI) is assessed using closed-form 

and planar analysis approaches.  The research also contains studies on how plate 

thickness, element formulations, and materials affect KI, as well as possible relationships 

between the through-thickness KI and KC, the critical stress intensity factor. 
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1. Introduction 

1.1 Introduction 

 This study investigates the effect of thickness on the determination of the Mode I 

stress intensity factor.  Stress intensity factors, which have units of stress ∙ (length)
1/2

, 

characterize the stress state ahead of a sharp crack using a single constant value [1].  

Stress intensity factors are most often approximated using two-dimensional analysis, but 

three-dimensional analysis is required to determine if the two-dimensional idealization is 

acceptable [2].  Stress intensity factors were first developed by Irwin [3], who used 

Westergard’s [4] previous research as a basis for his work.  Stress intensity factors are 

important as they provide a means for determining when fracture will take place, which 

occurs when the stress intensity factor equals the material’s fracture toughness [1].  The 

investigation is performed using p-element and h-element finite element analyses.  These 

two methods were chosen as they are the two most common finite element techniques.  

Three-dimensional results from both methods are compared to one another and to two-

dimensional analyses.  This section presents the theoretical background on the three-

dimensional stress intensity factor determination. 

1.2 Research objectives and methodology 

 The primary objective of this research is to compare the through-thickness Mode I 

stress intensity factors (KI) calculated using two fundamentally different finite element 

(FE) approaches.  The h-element method is based on a fixed polynomial order whereas 

the p-element is based on increasing the polynomial order.  The aim is to understand the 
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variation in results based on using these two approaches.  The goal of the investigation is 

to: 

 Understand how the stress intensity factor, KI varies through the thickness of 

plates which may be commonly encountered in engineering practice 

 Assess the error associated with using two-dimensional analysis and closed form 

solutions to determine the stress intensity factor in a cracked, three-dimensional 

structure 

 

 The following sections describe some of the key research carried out in the area 

and the research methodology.   Three-dimensional finite element models will be 

analyzed using two different methods, specifically the h-element and p-element methods.  

These models will be used to make comparisons between the two approaches for a 

number of common plate thicknesses.  Two-dimensional finite element models will also 

be constructed to compare the error that may be associated with making planar 

assumptions.  Research in the effects of related topics such as element technology and the 

use of various common engineering materials will also be included. 

2. Literature review 

 The following literature review covers the basic principles of linear elastic 

fracture mechanics important to this research and a summary of the theoretical 

framework underlying the h- and p-element methods.  It also reviews previous research 

on the topic of three-dimensional stress intensity factors. 
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2.1 Plane stress versus plane strain 

 A common practice in stress analysis is to assume a specimen is in a two-

dimensional, planar state of stress.  This two-dimensional state can be described as either 

plane stress or plane strain.  Plane stress is defined as a state of stress in which the normal 

stress, σZ, and the shear stresses σXZ and σYZ directed perpendicular to the x-y plane are 

assumed to be zero [1].  More simply put, two faces of a cubic element are stress free [5] 

(see Figure 1). 

 

Figure 1: Stress tensor at a point in space 

 

 Plane stress occurs most often for very thin isotropic plates subjected to only in-

plane loads [1].  Considering a cracked plate, the region near the crack typically 

experiences plane stress conditions if the crack length is large compared to the plate 

thickness [6].  Conversely, plane strain is described by the condition in which the strain 

normal to the x-y plane, εZ, and the shear strains ϒXZ and ϒYZ are assumed to be zero.  

Plane strain often occurs when a specimen is much thicker in one direction (for example 

the z direction) than in the other two (x and y) directions [1].  For a cracked plate plane 
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strain conditions typically prevail near the crack when the crack length is small compared 

to the plate thickness [6].   

 However, real structures seldom behave in purely plane strain or plane stress 

ways.  This is especially true in cracked structures, where local constraints near the crack 

tip cause increases in stress intensity.  This increase in stress intensity is often ignored in 

analysis, which usually assumes constant stress through the thickness [7].  Stresses are 

not uniform through the thickness, and can only be accurately analyzed using three-

dimensional analysis [8]. 

 Bakker showed that a cracked plate under plane stress undergoes a change to 

plane strain behavior near the crack tip [7].  He states that this change occurs at r/t < 0.5, 

and is confirmed by Nakamura for a sufficiently thin plate [9].  Nakamura goes further to 

say that this transitional region extends to a radial distance from the crack front of about 

one and one-half times the plate thickness.  Bakker [7] adds that the radial position where 

the plane stress to plane strain transition takes place strongly depends on the position in 

the thickness direction. 

2.2 Elementary fracture mechanics & stress intensity factor 

 Fracture mechanics is that technology concerned with the modeling of cracking 

phenomena [10].  Paris [11] stated that “the high elevation of stresses near the tip of a 

crack should receive the utmost attention, since it is at that point that additional growth of 

the crack takes place.”  The topics that follow give the basis for making such evaluations. 

 For a plate with a through-thickness crack, the loading on the crack is typically 

described as one of three types, or modes (Figure 2).  Mode I describes an opening of the 

crack, with the applied tensile load normal to the crack plane (cleavage), and will be the 
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focus of this research.  Mode II describes in-plane shear, and Mode III describes out-of-

plane shear (tearing).  In addition, the crack may be simultaneously subjected to a 

combination of these loading modes, known as mixed mode loading. 

 

Figure 2: Crack opening modes 

 

 The geometries of cracks, with radius of curvatures approaching zero at the crack 

tip, cause stress fields that approach infinity proportional to the reciprocal of the square 

root of the distance from the crack tip [12].  This occurs even at low load levels.  As such, 

commonly used failure measures such as von Mises are not applicable [13].  The stress 

intensity factor (K, or SIF) was first proposed by Irwin in 1957 [14] and can be thought of 

as a measure of the effective local stress at the crack tip [15].  An increasing K indicates 

the stress near the crack tip is increasing.  With this linear elastic fracture mechanics 

approach of characterizing the crack tip stresses, small amounts of plasticity may be 

viewed as taking place within the crack tip stress field and neglected for the 

characterization [11].  K is designated by the mode of loading, such as KI, KII, and KIII. 
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K is usually expressed in the following units: 

        for metric units 

         for imperial units 

 K can be determined using closed-form solutions, finite element analysis, and a 

number of other techniques.  The solutions relate the remote loading, geometry of the 

specimen, and the crack size to the stress intensity factor, K.  Using the stress intensity 

factor in design requires knowledge of the critical stress intensity factor or fracture 

toughness (KC). 

 The critical stress intensity factor or fracture toughness (KC) is a mechanical 

property that measures a material’s resistance to fracture.  Fracture toughness is used in 

structural integrity assessment, damage tolerance design, fitness-for-service evaluation, 

and residual strength analysis [14].  KC is further expressed according to the loading 

mode, such as KIC, KIIC, KIIIC for modes one, two, and three, respectively.  When the 

stress intensity factor reaches the material’s fracture toughness an existing crack will 

undergo unstable crack extension [16].  Since KC is material specific its value must be 

determined for each material of concern.  Further, KC can vary with temperature, 

component thickness, and strain rate.  Table 1 lists critical stress intensity factors for 

some common materials [17]. 
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Table 1: Critical stress intensity factors for common materials 

 KC 

 MPa √m ksi √in 

Steel AISI 4340 59 53.7 

Stainless Steel AISI 403 77 70.1 

Aluminum 2024-T851 23 20.9 

Titanium Ti-6AI-6V 66 60.1 

 

 The critical stress intensity factor, KC, is strongly dependent on plate thickness 

[10].  For thin plates it is often the case that the plastic zone around a crack is on the 

order of the plate thickness.  This allows KC to reach a maximum value (KC(max)).  As 

plate thicknesses increase the size of the plastic zone decreases, lowering the toughness 

of the material to some level below KC(max).  As plate thicknesses continue to increase the 

plastic zone size becomes constant and KC reaches an asymptotic value (KC(min)), known 

as the “plane strain fracture toughness” [14].  This is shown in Figure 3.  

 

Figure 3: Effect of thickness on KC 
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 The strain energy release rate, G, describes the energy required to grow a crack by 

a unit length in a given material.  This quantity can also be determined from numerical 

and analytical approaches and can be an indirect approach to measure the stress intensity 

factor.  G can be calculated from K by the following relationship [1]: 

   
  

 

 
 Equation 1 

 

 The stress intensity factor is useful beyond just being able to predict when 

fracture will occur under monotonic loading.  Paris’ Law relates the range of stress 

intensity factors to sub-critical crack growth due to fatigue loading, and is shown below 

[1]: 

 
  

  
      

Equation 2 

 where 
  

  
  is the change in crack length per loading cycle 

          are material constants 

     is the range of stress intensity factors 

 

 Linear elastic fracture mechanics is applicable for conditions that develop a 

relatively small plastic zone.  This includes metallic materials at low load levels.  It can 

be also used for certain materials up to the point of fracture, such as high strength steels, 

precipitation-hardened aluminum, monolithic ceramics, and ceramic composites [1].  

Linear elastic fracture mechanics methods are typically applied to nuclear pressure 

vessels and piping, oil and gas pipelines, petrochemical vessels and tanks, and 

automotive, ship, and aircraft structures [14]. 
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 The J Contour Integral is a generalized version of the energy release rate, G, and 

as such is actually equal to G.  J was first introduced by Rice in 1968 [14] as a path-

independent contour integral for the analysis of cracks.  J extends fracture mechanics 

beyond limitations set forth for linear elastic fracture mechanics, and can be viewed as 

both an energy parameter and a stress intensity parameter [1].  J can also be defined by its 

mode, including JI, JII, and JIII. 

2.3 Equations for stress intensity factors  

 Stress intensity factors can be determined for certain cases if the geometry and 

remote loading is known.  The Mode I stress intensity factor can be developed using a 

stress function approach, assuming plane strain.  The derived equations for the crack tip 

stress field and displacement field are as follows [11]: 

 
   

  

    
   

 

 
      

 

 
   

  

 
  

   
  

    
   

 

 
      

 

 
   

  

 
  

    
  

    
   

 

 
   

 

 
   

  

 
 

            

          

  
  

 
 

 

  
   

 

 
          

 

 
  

  
  

 
 

 

  
   

 

 
          

 

 
  

    

Equation 3 
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 Higher order terms are neglected in the development of the above equation, and 

hence it is limited to cases where the crack radius r is small compared to dimensions such 

as the crack length.  Only a partial derivation was shown.  The full derivation may be 

found in [11]. 

 For a semi-infinite plate with a through-thickness centered crack and a remote 

tensile load (Figure 4) the Mode I stress intensity factor is simplified to [1]:  

           
Equation 4 

where σ is the applied remote stress and a is the crack length 

 

Figure 4: Semi-infinite center-cracked plate 

 

 KI can also be calculated by first solving the J integral.  The basic equation for 

doing so is: 

         
Equation 5 
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This equation holds true for plane stress.  For plane strain conditions E is replaced by E’, 

where  

    
 

    
 

Equation 6 

 

 Equations like those above often assume the crack is small relative to the 

specimen size, such that the crack-tip is not affected by the external boundaries [7].  For 

the center-cracked plate studied here, the specimen may be described by the ratio of the 

crack length to the plate width, a/W.  The convention is to describe the full length of the 

crack as 2a, and the plate width as 2W, as shown in Figure 5. 

 

Figure 5: Finite width center-cracked plate 

 

 The Mode I stress intensity factor equation for an infinite plate can be modified to 

include the effect of finite width as shown in the following equation [1]: 
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Equation 7 

 

 These stress intensity factor equation solutions typically exist only for fairly 

simple geometries and loadings.  For more complicated scenarios alternate methods must 

be used, such as finite element analysis. 

 However, the equations presented above do not satisfy all the three-dimensional 

equations of elasticity.  The assumption that σxx, σyy, and σxy are a function of the x and y 

coordinates only (assuming z is the through-thickness coordinate), and that the stresses on 

all z planes are zero violates some of the compatibility equations [6].  For many 

engineering geometries and loadings the stresses cannot be assumed to remain constant in 

the component’s thickness direction.  As such a more rigorous, three-dimensional 

approach is needed for many real-world situations. 

2.4 Crack tip triaxiality & plate thickness 

 Anderson [1] describes crack tip triaxiality as follows.  A thin uncracked plate 

subjected to in-plane loading would be in a state of plane stress.  This is not true for a 

cracked plate, except for regions sufficiently far from the crack.  A single planar 

assumption, plane stress or plane strain, is not applicable to the entire plate [2].  When a 

cracked plate is loaded such that an opening load is placed on the crack, a large stress is 

developed normal to the crack plane.  This in turn causes contractions near the crack-tip 

both in the through-thickness direction and the direction parallel to the crack plane.  The 

material surrounding the crack creates a constraint on such contractions, causing a triaxial 
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state of stress near the crack-tip.  The magnitude of the constraint is dependent on the 

thickness, size, and configuration of the cracked specimen [14].  In fact this stress 

triaxiality is not limited to cracks, but is present at other stress raisers as well, such as the 

case with a hole in an infinite plate [18].  This triaxiality results in stress intensity factors 

for through-thickness cracked plates that are (1-ν
2
)

-0.5 
times greater than generally 

reported in stress intensity handbooks [7].  Bakker [7] gives three reasons why a plate 

that is otherwise in plane stress will experience crack-tip triaxiality: 

1. The constraint discussed above causes a plane strain state near the crack tip.  

Since areas far from the crack tip are in a plane stress state, there must be a 

transition from plane strain to plane stress state in the vicinity of the crack tip. 

2. According to linear elastic fracture mechanics, the singularity at a crack tip is r
-0.5

 

at the plate surface of an elastic component.  Benthem [19] derived the stresses on 

a crack front normal to the surface to be singular with ≈ r
-0.452

.  This implies that 

the stress intensity factor at the free surface is equal to zero since it is defined as 

the strength of the r
-0.5

 singularity at the crack tip.  The stress intensity factor 

equaling zero at the free surface is also supported by Yamamoto’s research [8]. 

3. Shear lips formed at the free surface may cause a Mode I crack to become a 

mixed mode crack. 

 

 As such, using a two-dimensional solution to calculate stress intensity factors 

results in error by a factor of: 

                   
Equation 8 
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For steel with a Poisson’s ratio of 0.3, this translates to an error of approximately 4.8 

percent.  Table 2 lists the Poisson’s ratios [20] and errors for common engineering 

materials. 

Table 2: Error in two-dimensional KI calculation for common materials 

material Poisson's ratio 
error, 

% 

cork 0 0.00 

concrete 0.2 2.06 

cast iron* 0.235 2.88 

glass* 0.24 3.01 

foam* 0.25 3.28 

steel* 0.285 4.33 

stainless steel* 0.305 5.00 

sand* 0.325 5.74 

aluminum alloy 0.33 5.93 

copper 0.33 5.93 

titanium 0.34 6.33 

magnesium 0.35 6.75 

clay* 0.375 7.87 

gold 0.42 10.19 

saturated clay* 0.45 11.98 

rubber 0.5 15.47 
*average Poisson’s ratio 

Note that the error in using two-dimensional analysis on cork is zero, meaning that the 

two-dimensional solution is equal to a three-dimensional solution.  This is supported by 

Yamamoto’s research, where he states that a Poisson’s ratio of zero causes two-

dimensional and three-dimensional solutions to agree [8]. 

 Crack tip triaxiality is also the cause of crack tip tunneling.  This phenomenon 

describes how through-thickness fatigue cracks in plate geometries almost always show 

crack front tunneling.  This scenario can be described by a curved crack front with the 

deepest point of the crack at the center of the plate [7].  Bakker claims this is because the 

stress intensity factor is highest at the center of a plate for a straight crack front.  
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However, the situation where the stress intensity factor is highest at the center of the plate 

only occurs for relatively thin plates.  For thicker plates the stress intensity reaches a peak 

value just below the free surface [8]. 

 Bakker [7], Benthem [19], and Yamamoto [8] postulate that the stress intensity 

factor at the free surfaces is equal to zero.  However, this claim is still an active area of 

research.  Shivakumar [21], Hartranft and Sih [22], and Sih [6] have studied the 

intersection between the through-thickness crack and the free surface for over two 

decades.  Shivakumar [21] explains the through-thickness stress field in terms of 

singularities, stating that there are two dominant singularities impacting the through-

thickness response.  He states that the first singularity is dominant over the middle 96% if 

the specimen for a Poisson’s ratio of 0.3.  The second singularity is dominant at the free 

surface and quickly diminishes away from the free surface.  The thickness of this second 

singularity boundary layer is approximately 2% of the specimen thickness for a Poisson’s 

ratio of 0.3. 

2.5 Finite element analysis techniques 

 Finite element analysis (FEA) is one of the most powerful and pervasive 

numerical methods used in modern engineering practice.  A central principal of FEA is 

subdividing the solution domain into smaller, geometrically simple pieces which are 

called elements, in a process called discretization [15].  An example discretization, or 

mesh, of a plate with a hole in it is shown in Figure 6. 



16 

 

 

 

Figure 6: Example of discretization 

 

 The finite element method is an approximation of an exact answer and therefore 

has some amount of error.  These errors can come from errors in idealization or 

discretization, as depicted in Figure 7. 

 

Figure 7: Numerical simulation process [15] 

 

 The most common basis of the finite element method used in modern commercial 

finite element analysis software is known as the h-element method, where “h” refers to 

the characteristic length of an element.  For an h-element analysis, the polynomial degree 

of any particular element is kept constant throughout the analysis [15].  With the h-

element approach the discretization error is reduced by increasing the number of 

elements, thus reducing the characteristic length of the elements.  The increase in element 
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density may be global, or localized to singularities within the model.  In order to assure 

mesh convergence with the h-element method the analyst is required to run an initial 

analysis, then look for regions of high stress (or strain) gradients, and then refine the 

mesh density in these high gradient areas.  If mesh refinement does not change the 

magnitude of stress or strain significantly after refinement, then the solution in that area 

is considered converged.  If instead the magnitude changes, then additional refinement is 

done until the stress or strain reaches its asymptotic value.  Examples of commercial 

finite element analysis packages that rely primarily on the h-element method include 

ANSYS [23], Abaqus [24], and Nastran [25]. 

 Another method is known as the p-method.  In the p-element approach the initial 

mesh is used throughout the analysis.  To reduce the discretization error the polynomial 

degree of the elements is increased [15].  This increase in polynomial degree may be 

done local to singularities, or consistently throughout the mesh.  Incrementally increasing 

the polynomial degree of the elements is done until stress convergence is realized.  This 

process relieves the user of the need to diligently assure mesh convergence has been 

achieved.  When singularities are present, such as the case with analytical fracture 

mechanics, p-element methods converge with exponential rates if the mesh is properly 

refined towards the singularities [26].  Two of the most common p-element based 

commercial finite element analysis packages are PTC Creo Simulate [27] (formerly 

known as Pro/Mechanica) and StressCheck [32].  ANSYS [23] and Nastran [25] also 

have limited p-element capability, although it is not as widely used as their h-element 

approaches. 
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2.6 K-extraction method in both techniques 

 Three methods for extracting stress intensity factors from finite element solutions 

are presented.  The virtual crack extension method is included because it was significant 

in the development of the domain integral method.  The domain integral method and 

contour integral methods are also presented and have emerged as powerful approaches in 

the determination of three-dimensional stress intensity factors [28]. 

2.6.1 Virtual crack extension method 

 One method for calculating stress intensity factors is the virtual crack extension 

method [29].  Here the energy release rate G is calculated along the crack front.  From G 

the stress intensity factor can be calculated for plane strain as: 

     
 

      
  

Equation 9 

 

 The virtual crack extension technique can be divided into two approaches [1].  

The first is the stiffness derivative formulation.  It is a precursor to the other contour 

integral methods, and is now considered outdated.  The stiffness derivative formulation 

calculates the energy release rate G from its relationship to the finite element stiffness 

[30].  Another approach to the virtual crack extension method is the continuum approach.  

Rather than relying on the finite element stiffness and displacement matrices, this 

approach considers the energy release rate of a continuum.  As such this approach is not 

limited to finite element methods. 

 The virtual crack extension method is not suitable for calculating K values for the 

separate modes under mixed mode loading [7].  Bakker concluded that the virtual crack 
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extension method of stress intensity factor calculation may require a finer mesh than 

other methods. 

2.6.2 Domain integral method 

 The h-element code used in this study, Abaqus, uses the domain integral method 

to evaluate contour integrals.  The method is robust in the sense that accurate contour 

integral estimates are usually obtained even with quite course meshes [31].  This is due to 

the fact that the integral is assessed over a domain of elements surrounding the crack, 

lessening the effect of errors in local solution parameters.  A weighted mean of pointwise 

values within each domain is used, and thus the accuracy of the extracted values 

increases as the domain sizes are decreased [28].  In other words, as the through-

thickness mesh density is increased the accuracy of the extracted values increases.  

Abaqus first calculates the energy release rate J, from which it then calculates the 

required K values. 

 Considering a two-dimensional problem, the domain integral approach uses a 

closed contour as shown in Figure 8.  Here there is an outer integral Γ1, an inner integral 

Γ0, and integrals Γ+ and Γ- along the upper and lower crack faces. 
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Figure 8: Two-dimensional domain integral [1] 

 

In the absence of body forces, thermal strains, and crack-face tractions, the domain 

integral approach calculates J as follows [1]: 

        

   

   
      

  

   
  

  

 
Equation 10 

 

Here A* is the area enclosed by the integral, q is an arbitrary but smooth function that is 

equal to unity on Γ0 and zero on Γ1, uj is the crack-opening displacement, w is the strain 

energy density, and δij is the Kronecker delta. 

 Rather than using an area integral, generalization of the domain integral to three 

dimensions involves using a volume integral.  The approach is illustrated in Figure 9. 
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Figure 9: Three-dimensional domain integral [1] 

 

 The equation for this is [7]: 

 

           

   

   
      

  

     

     

     

   
 

   

   
   

   

   
      

     

   

   
   

     

 

Equation 11 

 

 

Here V* is the volume of the segment, ΔL is the length of the crack front segment, S+ and 

S- are the upper and lower crack faces, and Fi is the force vector.  The superscript p 

denotes the plastic portions of work and strain.  This equation calculates a weighted 

average of J over the crack front segment, and assumes a local coordinate system.  The 

individual stress intensity factors can then be extracted using the following relationship: 

   
 

  
       

Equation 12 

 

where 

                
  

Equation 13 
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and B is called the pre-logarithmic energy factor matrix [31].   

 The domain integral approach is extremely versatile in that it is applicable to 

static, dynamic, elastic, plastic, and viscoelastic problems.  It is relatively simple to 

implement numerically and is very efficient [1].  The domain integral method is usually 

implemented with the aid of structured meshes and special treatment of the crack front 

elements [28].  One drawback of the domain integral method is that the integral estimates 

may be inaccurate at the crack front ends.  This can be compounded if the element quality 

near the crack ends is undesirable [31]. 

2.6.3 Contour integral method 

 StressCheck [32] uses the contour integral method to calculate Mode I and Mode 

II stress intensity factors.  The contour integral method was originally proposed by Szabó 

and Babuška [33] in context of the p-element finite element method.  For a planar 

solution, the Mode I stress intensity factor is calculated as follows: 

          Equation 14 

 

Here the A term is the first term of the asymptotic expansion of the solution in the 

neighborhood of the crack tip and is defined as follows: 

                     

 

 

where W is an extraction function, TFE is the traction vector along Γ computed from the 

finite element solution uFE, and T
(W)

 is the traction vector along Γ due to the extraction 

function [32].   
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Expanding along Γ, 

      
  

  
 
  

  
              

              
 
  

 
Equation 15 

 

and 

      
  

  
 
  

 
Equation 16 

 

The terms due to the extraction function are 

 

  
  

 
 

 
     

    
   

 
 

 
     

Equation 17 

 

Here G is the modulus of rigidity rather than the energy release rate, and D is given by: 

           
Equation 18 

 

For plane strain 

          
Equation 19 

 

and for plane stress 

   
   

   
 

Equation 20 
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Also 

 

        
   

 

 
    

 

 
 

 

 
   

  

 

   
 

 
    

 

 
 

 

 
   

  

 

  

      

  
 
 

 
   

 

 
 

 

 
   

  

 
       

 

 
   

  

 
 

 

 
   

 

 
     

 
 

 
   

  

 
 

 

 
   

 

 
       

 

 
   

 

 
 

 

 
   

  

 
     

  

Equation 21 

 

In order to expand this into three dimensions, the following changes are made: 

 

   
  

     
  

   
               

                
  

Equation 22 

where 

 

       

                
  

  
      

 

  
 

 

 
Equation 23 

 

 The contour integral method is described as being super-convergent, in that the 

errors in stress intensity factors converge to zero much faster than the error in strain 

energy as the number of degrees of freedom increase [34] [35].  Wen [36] states that the 

contour integral method leads to increased accuracy in stress intensity factor extraction, 

even with course meshes.  Another advantage of this approach is that it can extract stress 

intensity factors directly for mixed mode problems [35]. 
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2.7 Experimental methods for determining the Stress Intensity Factor 

 A vast amount of work has been done on the development of analytical methods 

for determining stress intensity factors in elastic solids.  Experimental methods are also 

needed to compliment such analytical methods, providing guidance for future analytical 

methods and verification of current approaches [37].  A few experimental methods are 

highlighted here. 

2.7.1 Two-dimensional  

 Several experimental methods exist for determining KI for through-cracked, thin 

planar specimens.  KI can be determined by using three strain gages in the near field 

region on the plate’s surface.  KI is calculated using the relationship 

          
Equation 24 

 

where A0 is an unknown coefficient which can be solved with data from the strain gage 

readings.  The strain gage approach can be reduced to a single gage through precise 

placement of that single gage, as shown in Figure 10. 

 

Figure 10: Placement of single strain gage for KI determination [13] 
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The gage is placed at P at an angle θ to the crack plane, and its axis x’ is oriented at an 

angle α to the crack plane.  The necessary angles θ and α depend on the material’s 

Poisson’s ratio.  The equation relating KI to the strain reading εX’X’ is [13]: 

 

        
  

    
     

 

 

 
 

 
       

  

 
      

 

 
       

  

 
       

Equation 25 

 

 The remaining methods discussed here for determining KI in two-dimensional 

bodies are optical in nature.  Photoelastic methods are preferred as they provide a rich 

field of data near the crack tip which can be used for accurate KI determination.  In 

photoelasticity, either a special model is built from a photoelastic material, often a 

polymer, or a photoelastic coating is applied to the specimen itself.  The model or 

specimen is placed in a polariscope, which is an optical instrument that employs 

polarized light in its operation.  The specimen is then loaded and the resulting fringe 

pattern is recorded and interpreted.  Irwin, credited for developing the concept of the 

stress intensity factor, also developed a method for determining KI from the geometric 

characteristics of the fringe loops near the crack tip.  Irwin’s approach is known as the 

apogee method [13]. 

 Caustics is an experimental method which transforms a stress singularity into an 

optical singularity.  Typically a laser is used to project a coherent light beam on a cracked 

specimen in the vicinity of the crack tip [38].  If the specimen is transparent the light is 

transmitted through it.  Opaque specimens can also be used if one surface of the specimen 

is mirrored [13].  The specimen is subjected to an applied load, which causes an abrupt 
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change in thickness, Δh, in the area of the stress singularity [38].  This change in 

thickness is characterized by the following equation [13]: 

 
    

  

 
          

Equation 26 

 

where h is the specimen thickness.  The change in thickness causes a scattering of the 

reflected light, which when projected onto a reference screen is concentrated along a 

curve.  This curve is called a caustic [38].  Stress intensity factors can then be determined 

from the caustics from the following equation [13]: 

          
    

     
 

Equation 27 

where D is the diameter of the caustic, z0 is the distance from the specimen to the 

reference screen, and C1 is an optical constant.  Caustics can also be used to provide 

information about the triaxiality in the crack region [38].  Caustics has proven to be one 

of the most successful experimental methods to determine fracture properties due to its 

sensitivity to strain gradients, simplicity [39], and efficiency [40]. 

 The coherent gradient sensing method (CGS) measures in-plane stress fields in 

planar solids [43].  CGS measures the same mechanical fields as caustic approaches, but 

differs in that it provides full-field information.  The use of CGS in experimental fracture 

mechanics employs a laser as a light source, and a camera as a recording device.  

Depending on whether the specimen is transparent or not, light waves are either 

transmitted through or reflected off of the specimen.  These light waves then pass through 

two parallel gratings, which diffract the light.  These gratings typically consist of glass 

planes with chrome depositions, commonly referred to as Ronchi gratings [13].  The light 

then travels through a filtering lens, and a filtering plane.  An aperture on the filter plane 
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allows only the necessary diffracted light to pass on to the camera, where the resulting 

interferograms are recorded.  The interferograms are then used to determine surface 

deformations in the area of the crack plane [41].  The displacement information is then 

used to calculate stress intensity factors. 

 Digital image correlation is an optical method which has been used to extract 

stress intensity factors of thin planar specimens.  The basis of the method is that an 

optical image of the specimen is recorded at some initial state, and then a second image is 

recorded after a deforming load is placed on the specimen.  The specimens are often 

enhanced by depositing a pattern of dots on the surfaces to be imaged, usually with spray 

paint.  For each image the light intensity of each pixel is determined.  A correlation 

between the two images is done to quantify the displacement field.  The correlation 

involves determining unique features of the plate, in the form of clusters of pixels with 

unique shapes and light intensities.  For its application in fracture mechanics, digital 

image correlation is used to determine the displacement field around the crack tip [37].  

Chu [42] presents the mathematical means for solving stress intensity factors from the 

displacement field. 

2.7.2 Three-dimensional 

 Much of the recent experimental research in linear elastic fracture mechanics has 

been focused on development of stress intensity factor solutions for three-dimensional 

cracked-body problems [16].  The following methods are used for three-dimensional 

fracture analysis, but may also be used for two-dimensional cases. 

 Moiré techniques are those where displacements are measured using two sets of 

gridding placed on the surface of model; one set is adhered to the surface, whereas the 
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other set is not and acts as a reference to measure relative displacements [43].  The 

displacement field is related to the moiré fringe orders N by [13]: 

        
Equation 28 

 

where p is the pitch of the master grating.  This information is then used to obtain KI.  

 Dhar et al [44] used an experimental method based on the moiré technique to 

determine Mode I stress intensity factors in polycarbonate.  They called their method the 

multiple embedded grid moiré technique, because the specimens were made of multiple 

layers of polycarbonate bonded together with gridding between the layers.  The grids are 

used to measure the crack opening displacement with high resolution photography, which 

is then used to calculate stress intensity factors at different locations through the 

specimen thickness.  Their findings concluded that the stress intensity factor was higher 

on the midplane than on the specimen surfaces.  Dhar claims that at the time of their 

paper (1989), several researchers were trying to solve the three-dimensional stress 

intensity factor analytically, but that only experimental methods have been successful in 

that endeavor. 

 A frozen-stress photoelastic determination of the SIF for a through-cracked semi-

infinite plate can be performed as follows.  A stress-freezing photoelastic material, 

typically a thermosetting polymer [45], is cast into through-thickness sections and starter 

cracks are introduced [16].  These cracks can either be artificial, which are machined into 

the material, or natural cracks.  Natural cracks are formed by impacting the material 

surface with a sharp blade, and then cyclically loading the material which causes the 

cracks to grow until the desired crack length is achieved.  The cracked sections are then 

glued together.  The model is subjected to a stress-freezing cycle under load in an oven at 
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a temperature higher than the material’s glass-transition temperature, and then allowed to 

cool slowly to room temperature.  Thin through-thickness slices are cut from the model 

and analyzed with a polariscope to identify fringes [16].  The term stress-freezing comes 

from the fact that these materials retain the strain and birefringence even when the load is 

removed and the model is cut into slices.  Constitutive equations are then used to 

determine the stress fields in the slices. From these stress fields the stress intensity factors 

can then be determined [45].  Common materials used for frozen-stress photoelastic 

methods have Poisson’s ratios of approximately 0.5, as compared to the Poisson’s ratio of 

most engineering materials of about 0.3.  Because of this difference, experimental results 

using these methods tend to overestimate the SIF in common engineering materials by 

about five percent [16].  The frozen-stress method has seen limited use in the past due to 

the time and therefore expense needed in its use, but is experiencing a gain in recent 

years.  Improvements in material selection, slicing methods, and polariscopes are credited 

for the increased use of stress-freezing photoelasticity [45].  Epoxies have proven to be a 

nearly ideal stress-freezing material due to their castability, machinability, optical 

properties, and linearity in optical and mechanical properties [46]. 

 Dhar [44] lists two additional experimental techniques that have been used by 

other researchers for this same investigation: 

1. Crack opening interferometry measuring the separation of the crack faces by 

observing the destructive interference of light reflected by the two crack faces 

2. Scattered light speckle interferometry which measures the change in 

displacements on any plane in a transparent model through the use of coincident 

coherent sheets of light traveling in opposite directions 
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3. Finite element analysis of crack geometries 

3.1 Model 

 A series of finite element analysis studies were performed using conventional h-

element as well as p-element methods, using both planar and three-dimensional models.  

For these studies the material was modeled as linear steel with the properties shown in 

Table 3.  

Table 3: Steel properties used in analyses 

Steel 

Modulus of elasticity 205 GPa 

Poisson’s ratio 0.3 
 

The basic model is that of a center-cracked plate with the dimensions shown in Figure 11, 

subjected to a remote tensile load along the long axis.  When subjected to a 200 MPa 

remote stress, the basic closed-form Mode I stress intensity factor for this geometry is 

26.145 MPa∙m
1/2

, accounting for the finite width.  This can be obtained by using the 

geometric and loading parameters defined in Equation 7. 
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Figure 11: Baseline model dimensions (Note crack is a through-thickness crack) 

 

3.2 Planar analysis 

 Planar finite element models analogous to the three-dimensional models were 

developed to quantify the potential error in making planar assumptions for determining 

the stress intensity factors.  In the following section, planar models in the h-element and 

p-element approaches are examined.    

 A two-dimensional Abaqus model was built which closely matches the 

topographical mesh used in the three-dimensional studies, as shown in Figure 12.  The 

model consists of 4,978 quadratic reduced integration elements, type S8R.  The shell 

thickness is 5.0 millimeters, and the same 200 MPa remote load was applied. 
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Figure 12: Abaqus planar model for center cracked specimen 

 

The computed KI value, averaged for contours three through five, was found to be 25.359 

MPa∙m
1/2

.   

 A similar Abaqus model was also built to assess the effect of using two-

dimensional plane strain and plane stress elements, type CPE8 and CPS8 elements 

respectively.  The difference in computed KI values was insignificant, with both plane 

strain and plane stress elements reporting a KI of 25.356 MPa∙m
1/2

.  This slight difference 

may be attributable to minor differences in the two meshes. 

 A two-dimensional StressCheck model was built which closely matches the 

topographical mesh used in the three-dimensional studies, as shown in Figure 13.  The 

model consists of 276 elements.  The shell thickness is 5.0 millimeters, and the same 200 

MPa remote load was applied.  The computed KI value was found to be 25.352 MPa∙m
1/2

.  

Both plane strain and plane stress solutions were computed from the same model, and 

both produced the same KI value. 
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Figure 13: StressCheck planar model 

 

3.3 Three-dimensional analysis 

3.3.1 H-element analysis 

 The h-element analysis was performed using Abaqus/Standard [24].  Two planes 

of symmetry were used, with one perpendicular to the crack plane and another 

perpendicular to the thickness, as shown in Figure 14. 

 

Figure 14: H-element geometry model with two planes of symmetry 
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Within Abaqus/CAE a seam crack is introduced by defining the faces which represent the 

crack plane, followed by defining the crack edge, as shown in Figure 15. 

 

Figure 15: Crack definition in Abaqus/CAE (in quarter model) 

 

In order to accurately compute the contour integral, a singularity is artificially introduced 

at the crack front.  This is done by using degenerated quadratic elements, such that the 

topology of the element is collapsed from a quadrilateral shape to a triangular shape.  

Further, the midside nodes on the element sides which are then pointed at the crack edge 

are moved to distances one-quarter of the element’s length from the crack edge.  This 

results in a singularity of r
-1/2

 for the stresses in this zone.  This is shown graphically in 

Figure 16. 
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Figure 16: Introduction of singularity in h-element model 

 

The mesh, shown in Figure 17, consists of 18,700 second-order reduced integration 

hexahedral solid elements, type C3D20R.  Seven concentric rings of elements were used 

around the crack edge for the purpose of computation of the contour integral which is 

subsequently used to determine K.   

 

Figure 17: H-element finite element mesh 

 

A 200 MPa remote traction load was applied, equivalent to 37,500 N on the half-

symmetry model, or 75,000 N on the full model.  The deformed shape is shown in Figure 

18 with a contour of the longitudinal stress.  The deformed shape is scaled +100x. 
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Figure 18: H-element deformed plot showing the longitudinal stress contour 

 

Calculating KI directly using the contour integral approach 

 Six contour integral outputs were determined from the results.  The raw output for 

all six contours is shown in Figure 19.  It is generally considered good practice to 

consider the average of a series of contours just outside the crack tip.  The results from 

averaging contours three through five are shown in Figure 20, and can be compared to the 

closed-form solution of 26.145 MPa∙m
1/2

.   The Mode I stress intensity factor is computed 

by first extracting JI along the crack edge.  Then KI is calculated using both plane stress 

and plane strain assumptions.  This is shown in Figure 21.  Results from Figure 20 are 

included for comparison. 
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Figure 19: KI output for all six contour integrals 

 

 

Figure 20: Average of contours three through five 
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Figure 21: Comparison of K calculation methods for plane strain and plane stress assumptions 

 

 It can be seen that the KI values calculated directly by the h-method match closely 

to the KI values calculated from J, assuming plane strain.  This is consistent with the 

findings of Bakker [7] that demonstrated a plane strain state near the crack front. 

3.3.2 P-element analysis 

 The p-element models were developed using two planes of symmetry: one 

through the thickness and one perpendicular to the crack plane.  This was done for 

computational efficiency.  In order to introduce the crack into the model, the mesh is first 

constructed with a visible gap along the crack plane, as shown in Figure 22.  Once the 

mesh is completed, the crack is closed by projecting the nodes on both sides of the crack 

plane so that they are coincident with the nodes on the other side of the crack plane.  The 

completed mesh contains 1200 elements, and is shown in Figure 23.  There are 6 rings of 

elements around the crack tip, as shown in Figure 24.  There are fewer elements in the p-
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element mesh as compared to the h-element mesh, both through the thickness and radially 

around the crack tip.  This is typical of p-element meshes since the p-method involves 

raising the polynomial order of the elements to achieve mesh convergence rather than 

increasing the element density.    

 

 

Figure 22: Introduction of crack into p-element mesh 

 



41 

 

 

 

Figure 23: Completed p-element mesh 

 

 

Figure 24: P-element mesh refinement around crack tip 
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A 200 MPa remote traction load was applied, as indicated by the arrows in Figure 25.  

This is equivalent to 18,750 N on the quarter-symmetry model, or 75,000 N on the full 

model.  Two faces (shown in blue) were constrained with normal (symmetry) constraints, 

and a third face was constrained in the longitudinal direction, also shown in Figure 25. 

 The deformed shape is shown in Figure 26 with a contour of the longitudinal 

stress.  The deformed shape shown has been scaled +100x.  The Mode I stress intensity 

factor is extracted along the crack edge and plotted as a function of the distance from the 

plate centerline, shown in Figure 27.  These values can be compared to the closed-form 

solution of 26.145 MPa∙m
1/2

, calculated using Equation 7.  The KI values determined by 

this approach differ from the h-element in that they are lower at the midplane and 

increase toward the free surface. 

 

Figure 25: P-element model loads and boundary conditions 
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Figure 26: P-element deformed plot showing the longitudinal stress contour 

 

 

Figure 27: P-element Mode I stress intensity factors vs. distance from plate centerline 
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Figure 28 shows the rate of convergence of the three-dimensional p-element solution in 

terms of energy norm.  The error in energy norm is similar to the root-mean-square 

measure of error in stress.  In order to extract a converged stress intensity factor it is 

recommended to have an error in energy norm less than five percent [32].  As stated in 

Section 2.6.3, the error in stress intensity factor extraction converges much faster than the 

error in energy norm. 

 

Figure 28: Convergence of 3D p-element solution 

 

Calculating KI from JI 

 The Mode I stress intensity factor is computed by first extracting JI along the 

crack edge.  KI is then calculated using both plane stress and plane strain assumptions.  

This is shown in Figure 29.  The KI values for the p-element method which are calculated 

from J values match the trend of those found in the literature review and those obtained 
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from the h-method.  The KI values here are highest at the midplane and decrease toward 

the plate’s free surface. 

 

 

Figure 29: P-element KI calculated from JI 

 

3.4 Mesh density study 

 In order to assure the through-thickness behavior is captured correctly, refined 

models were made for both h- and p-element models.  The same topological density was 

used, but both models had their through-thickness densities doubled. 

3.4.1 H-element mesh sensitivity 

 Several models were compared to study the effects of the mesh density on the 

results.  The h-element model was changed from four elements to eight elements through 

the thickness, going from 18,700 to 37,400 total elements.  The two mesh densities are 

compared in Figure 30.  The results, shown in Figure 31, show less through-thickness 
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oscillation of KI for the refined model compared to the baseline model. Based on the 

above results a subsequent through-thickness mesh refinement was done.  The density 

was increased from eight to twelve elements through the thickness, for a total of 56,100 

elements.  The results are shown in Figure 32.  The new results, labeled “second 

refinement” in Figure 32, show a marked improvement in smoothness compared to the 

previous results (labeled “first refinement”) for the region away from the plate’s 

midplane.  Near the midplane the two sets of results are nearly identical.  Table 4 

summarizes the three different meshes. 

 

Figure 30: Comparison of h-element through-thickness mesh densities 
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Figure 31: Effect of h-element though-thickness mesh density on KI calculation 

 

 

Figure 32: Further through-thickness refinement of the h-element model 
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Table 4: H-element mesh densities 

Configuration Number of Elements 

Number of Elements 

Through the 

Thickness 

Mesh Bias 

Baseline 18,700 4 none 

First Refinement 37,400 8 none 

Second Refinement 56,100 12 none 

 

3.4.2 P-element mesh sensitivity 

 The p-element model was changed from four elements to eight elements through 

the thickness, and 1200 to 2400 total elements.  The two meshes are compared in Figure 

33.  Based on previous results, the p-element mesh study was done using KI values 

calculated from J values.  The results, shown in Figure 34, show there is no significant 

change in through-thickness Mode I stress intensity factor calculation between the two 

models.  The denser model was used for subsequent investigations. 
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Figure 33: Baseline and refined p-element models 

 

 

Figure 34: Effect of p-element through-thickness mesh density on KI calculation 
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3.4.3 Comparing refined p-element and h-element results 

 Figure 35 shows the comparison of calculated KI values for both finite element 

methods.  The h-element results are those from calculating KI directly using the domain 

integral procedure discussed in [31].  P-method results are obtained by first calculating JI 

then solving for KI.  This is done rather than extracting KI directly due to the error seen in 

Section 3.3.2.  P-method results are shown for both plane stress and plane strain 

assumptions.  It can be seen that near the plate’s midplane the h-element results are 

similar to the p-element results when making a plane stress assumption.  The h-element 

results approach the p-element plane strain assumption near the free surface.  This could 

possibly be evidence that the crack is under plane stress conditions near the free surface 

and plane strain conditions closer to the center of the plate.  

 

 

Figure 35: Comparison of refined results for 3D Models 
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 The fact that the p-method is not correctly extracting KI directly is a significant 

barrier to its use.  The user is left to instead extract JI and then calculate KI using 

Equation 5 and Equation 6.   Since the cracked area is generally under plane strain 

conditions but may transition to plane stress conditions near the free surface, the choice 

of using the plane strain or plane stress equation for this region must be made carefully. 

3.5 Comparison of planar and three-dimensional results 

 Figure 36 compares the results for KI for a 5mm thick plate.  The p-element and 

h-element two-dimensional solutions give essentially the same result.  These results 

however are significantly lower than the peak values obtained from the three-dimensional 

solutions near the plate mid-planes.  The average three-dimensional solution at the plate 

midplane is 26.661 MPa∙m
1/2

.  The average two-dimensional solution is 25.356 MPa∙m
1/2

.  

Assuming the three-dimensional solution is more correct at the plate’s midplane, this is 

an error of 4.89 percent. 
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Figure 36: Comparison of KI calculations for 5mm thick plate 

 

3.6 Thickness effects on stress intensity factors 

3.6.1 Three-dimensional analysis 

H-element analysis 

 The refined h-method models labeled “Second Refinement” in Table 4 were 

modified in thickness to analyze KI for different plate thicknesses.  The same through-

thickness density of twelve elements was used for the initial study.  Figure 37 shows the 

result of this study.  Figure 38 displays the same data, but with the plate thicknesses 

normalized to unity.  These results show differences in behavior in the thicker models 

beginning at approximately three-quarters of the distance to the free surface, continuing 

to the free surface.  Additional refinement was done as shown in Figure 39 to study this 

effect.  The through-thickness mesh density near the midplane was kept the same as the 
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previously refined models, but the through-thickness density near the free surface was 

greatly increased. Table 5 summarizes the h-element mesh refinement. 

Table 5: H-element mesh refinement with bias toward free surface 

Configuration Number of Elements 

Number of Elements 

Through the 

Thickness 

Mesh Bias 

Second Refinement 56,100 12 none 

Third Refinement 84,510 18 

denser toward free 

surface 

 

 Results of this refinement for the 25mm thick plate are shown in Figure 40.  The 

refinement resulted in three significant changes: 1) The maximum KI was reduced 

through refinement 2) The stress intensity near the peak KI became smoother 3) The 

minimum KI near the free surface was reduced in value.   

 The remaining h-element models were given similar refinement.  KI values as a 

function of distance are shown in Figure 41, while normalized results are shown in Figure 

42.  It was seen that thicker models caused increasingly higher maximum KI values.  

Also, as the model thickness was increased, the location of maximum KI value moved 

from the plate midplane to a position just below the free surface. 
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Figure 37: H-element analysis of different thickness plates 

 

 

Figure 38: H-element results normalized for thickness 
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Figure 39: Refined Abaqus model of 25mm thick plate 

 

 

Figure 40: Refined results for 25mm thick plate 
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Figure 41: Refined h-element results as a function of distance 

 

 

Figure 42: Refined h-element results normalized for distance 
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P-element analysis 

 The p-element model labeled “refined model” in Figure 33 was used for the 

following studies.  The model thickness was changed for the six different studies, but the 

same mesh was used.  Figure 43 shows the through-thickness variation in KI for several 

different plate thicknesses.  Figure 44 shows the variation normalized as a function of 

plate thickness percentage. It can be seen that for plates 5mm and less thick the Mode I 

stress intensity factor is highest at the plate midplanes.  For plates 10mm thick and 

thicker, KI is highest at a location slightly below the free surface.  Figure 45 confirms that 

a converged solution was obtained. 

 

Figure 43: Through-thickness variation of KI 

 



58 

 

 

 

Figure 44: Normalized through-thickness variation of KI 

 

 

Figure 45: Convergence plot for 25mm thick p-element analysis 
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3.6.2 Comparison of methods, including two-dimensional analysis 

 The previously created two-dimensional models were modified and reran for the 

six plate thicknesses considered.  The three-dimensional results from Section 3.6.1 were 

included for comparison.  Results are shown in Figure 46Figure 46 through Figure 51. 

 

 

 

Figure 46: Comparison of methods for 2.5mm thick plate 
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Figure 47: Comparison of methods for 5mm thick plate 

 

 

Figure 48: Comparison of methods for 10mm thick plate 
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Figure 49: Comparison of methods for 15mm thick plate 

 

 

Figure 50: Comparison of methods for 20mm thick plate 
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Figure 51: Comparison of methods for 25mm thick plate 

 

 It can be seen that the two-dimensional results are essentially equal for all 

thicknesses analyzed.  The three-dimensional results are reasonably close to one another 

toward the center of the plate for the thicker specimens, but differ toward the free 

surfaces.  Some of this variation may indicate the need for additional mesh refinement 

near the surface.  Further studies would be needed to make this determination.  For the 

thinner plates the h-method three-dimensional solution is slightly more conservative than 

the p-method three-dimensional solution toward the center of the plate.  This is especially 

true for the 2.5mm thick plate.  For all cases the three-dimensional results are more 

conservative than the two-dimensional results, except at the free surface.  An analysis of 

the errors in the solutions is shown in Table 6.  With the two-dimensional results 

essentially being identical, the average of the Abaqus and StressCheck results was used.  

For the three-dimensional results the maximum value obtained from the two three-
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dimensional results was used, and was assumed to be the true maximum value.  The error 

analysis was done accordingly. 

Table 6: Error in using two-dimensional analysis 

 
KI (MPa(m)1/2) 

 plate 
thickness 

2D 
value 

3D 
value 

error, 
% 

2.5 mm 25.356 26.865 5.6 

5mm 25.356 26.691 5.0 

10mm 25.356 26.643 4.8 

15mm 25.356 26.816 5.4 

20mm 25.356 27.003 6.1 

25mm 25.356 27.181 6.7 

 

 For the plate thicknesses analyzed, the average error in KI values associated with 

using a two-dimensional analysis is 5.6 percent.  This compares well to Bakker [7] and 

Benthem’s [19] previous work, where they estimate the error to be approximately 4.8 

percent for the material used here. 

3.7 Element type effects 

 All of the three-dimensional analysis within this research has been done using 

hexahedral (brick) and/or pentahedral (wedge) shaped elements.  For StressCheck there is 

only one formulation available for these elements, which is fully integrated.  This is 

because the p-elements do not suffer from Poisson’s ratio locking like lower order 

elements may, and thus a reduced integration treatment is not necessary [32].  For the 

second-order solid elements used in the Abaqus three-dimensional models, there are three 

element integration schemes available.  This is summarized in Table 7. 
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Table 7: Solid element types 
Element Designation Solver Description 

C3D20R Abaqus 

Reduced integration.  Default 

element, reduces run time 

compared to C3D20 element. 

C3D20 Abaqus 

Fully integrated.  May suffer 

from volumetric locking for 

nearly incompressible 

materials undergoing large 

strains. 

C3D20H Abaqus 

Hybrid, linear pressure.  

Generally reserved for nearly 

incompressible materials. 

Default StressCheck Fully integrated. 

 

A study was done using the Abaqus model shown in Figure 39, which was modified to 

represent a five millimeter thick plate.  The element formulation was changed and the 

corresponding through-thickness KI values were recorded.  The results of this study are 

shown in Figure 52. 
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Figure 52: Comparison of element type on KI extraction 

 

 Results for all three element types are nearly the same except for very near the 

free surface.  Although normally reserved for (nearly) incompressible materials, the 

C3D20H (hybrid) elements appear to handle the end conditions better than either the 

C3D20 or C2D20R elements for the mesh used, assuming Benthem [19] is correct in his 

assertion that KI → 0 at the free surface.  It is possible that this is because the volumetric 

strain varies linearly over the element for hybrid elements. 

3.8 Effects of Poisson’s ratio 

 A study was done to assess the error in using a two-dimensional planar analysis.  

The p-method was used to attain two- and three-dimensional solutions for three different 

Poisson’s ratios, and two different plate thicknesses.   Equation 8 is used to determine the 

predicted error.  The actual error is calculated by assuming the maximum value of the 

three-dimensional solution is the true value, and then calculating the error between that 



66 

 

 

value and the two-dimensional value.  Plots of KI through the thickness of a 5mm thick 

plate and a 25mm thick plate are shown in Figure 53 and Figure 54, respectively.  Table 8 

compares the predicted and actual errors for the 5mm thick plate.  Table 9 does the same 

for the 25mm thick plate.  It can be seen that Equation 8 is accurate for the thin plate, but 

that the error in using planar analysis for a thicker plate is actually higher than the 

equation predicts. 

 

 

Figure 53: Through-thickness KI for different ν for a 5mm thick plate 

 

 

Table 8: Error in using planar analysis for a 5mm thick plate 

Poisson’s ratio Predicted Error Actual Error 

0.25 3.28% 3.28% 

0.30 4.83% 4.80% 

0.35 6.75% 6.63% 
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Figure 54: Through-thickness KI for different ν for a 25mm thick plate 

 

Table 9: Error in using planar analysis for a 25mm thick plate 

Poisson’s ratio Predicted Error Actual Error 

0.25 3.28% 4.29% 

0.30 4.83% 5.86% 

0.35 6.75% 7.67% 

 

4. Conclusions 

4.1 Conclusions   

 The stress intensity factor is used in fracture mechanics to characterize the stress 

state near the crack tip in a structure under remotely applied loads.  The magnitude of the 

stress intensity factor is dependent on geometry, the size and location of the crack, and 
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the magnitude and distribution of loads on the structure.  The scope of this thesis is the 

study of the through-thickness stress intensity factor using two different FE approaches.  

P- and h-element finite element methods are used to study the stress intensity factors. The 

accuracy of the predicted Mode I stress-intensify factor (KI) is assessed using closed-form 

and planar analysis approaches.  The research also contains studies on how plate 

thickness, element formulations, and materials affect KI, as well as possible relationships 

between the through-thickness KI and KC, the critical stress intensity factor. 

 

Several conclusions may be made from this work: 

1. The two methods of two-dimensional finite element analysis report nearly 

identical KI values. 

2. The two methods of three-dimensional finite element analysis report very close KI 

values over approximately the center two-thirds of the plate, but differ closer to 

the free surface. 

3. Two-dimensional analysis by its nature does not capture any variation of KI 

through a plate’s thickness.  This results in a non-conservative outcome when 

compared to peak KI values obtained from three-dimensional analysis.  

Additionally, the two-dimensional analysis is unable to capture the trend of KI 

approaching zero at the free surface.  

4.  The theoretical error in using two-dimensional analysis given by Bakker [7] is 

confirmed for thin plates, but is actually higher than predicted for thicker plates. 

5. The error associated with using two-dimensional analysis for calculating KI is 

dependent on the plate material, and increases with increasing Poisson’s ratio. 
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6. Using three-dimensional analysis, both the h-method and p-method report a peak 

KI value at the midplane for the thinner specimens, specifically those that are 2.5 

and 5mm thick.  This is consistent with findings from the literature review [19] 

[8]. 

7. For specimens thicker than 5mm thick, both h- and p-methods predict a peak KI 

value slightly below the free surface.  This is consistent with Yamamoto’s 

findings [8], and might be explained by Shivakumar’s work on through-thickness 

singularities [21]. 

8. For the meshes used, the h-method models do a better job than the p-method 

models of approaching KI = 0 at the free surface, as Benthem [19] reports should 

be the case at the free surface.  It is assumed that if both mesh densities were 

increased infinitely, especially near the free surface, both would return the 

expected KI=0 result at the free surface. 

9. While the domain integral method used by Abaqus is somewhat insensitive to in-

plane mesh density, it is very sensitive to through-thickness mesh density, 

particularly approaching the free surface. 

10. The p-method appears to require significantly less mesh density near the free 

surface in order to adequately capture the peak KI values that occur just below the 

free surface for thicker plates. 

11. For modeling the through-thickness stress intensity factor using Abaqus, the 

C3D20H elements appear to provide the most stable results for capturing KI near 

the free surface.  It is possible that this is because hybrid elements force the 

volumetric strain to vary linearly over the element. 
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4.2 Suggestions for future research 

 Of particular interest for future work, partly because of a lack of such supporting 

research, is the rise of KI just below the free surface for thicker specimens.  Further, if 

this rise in KI can be verified, the impact on this with regard to how it may tie into 

decreasing KC with increasing plate thicknesses should be studied.  The current ASTM 

standards [47] do have provisions for larger plate thicknesses to preclude plasticity near 

the crack tip; however, it may be not only plasticity that is responsible for the higher 

apparent toughness in thin plates.   Also, more detailed mesh studies should be done to 

better determine what level of through-thickness mesh density is needed, especially near 

the free surface, to accurately capture the KI gradient.  In order to verify findings of this 

paper physical testing may be required.  One of the methods discussed in Section 2.7.2 

such as the frozen-stress technique or the multiple embedded grid moiré technique could 

be used for this.  More mesh convergence studies would lead to a better understanding of 

accurate KI extraction in cracked plates, especially in high gradient regions near the free 

surface of cracked plates. 
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