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ABSTRACT 

EFFECTS OF PHOSPHATE ON THE TRANSPORT ESCHERICHIA COLI IN SATURATED QUARTZ 
SAND  

by 

Nan Chen 

The University of Wisconsin-Milwaukee, 2012 
Under the Supervision of Professor Jin Li 

 

Bacterial deposition and survival in porous media is a crucial phenomenon in various 

environmental processes including bioremediation, water treatment, and pathogen 

contamination. The fate of bacteria in porous media may be greatly influenced by ionic 

strength and phosphate. Although phosphate is widespread in the natural environment, 

the influence of phosphate on the transport of three strains of ESCHERICHIA COLI 

O157:H7 cells in the groundwater system remains unknown.  

Experiments were performed in saturated sand packed columns with and without 

phosphate to examine the transport of bacteria, deposition rate coefficient, interaction 

energy between bacteria and sand, and bacteria surface charge. 

Experimental results indicate that phosphate could enhance the transport of three 

strains of ESCHERICHIA COLI O157:H7 cells under the ionic strengths varied from 10 to 

100 mM. Under higher ionic strength, three strains of ESCHERICHIA COLI O157:H7 cells 

displayed lower retention in sand. According to interaction energy profiles, majority of 

deposition of three strains of ESCHERICHIA COLI O157:H7 cells in the packed-bed system 

occurred in the secondary energy minimum. The response of three strains of 
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ESCHERICHIA COLI O157:H7 cells to different phosphate concentrations and ionic 

strength conditions were explained by the extended DLVO (XDLVO) theory and the 

steric repulsion caused by extracellular macromolecules. It was concluded that 

phosphate could broaden the spread of three strains of ESCHERICHIA COLI O157:H7 cells, 

and potentially other types of bacterial cells, within the soil groundwater system. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1. Introduction 

The transport, deposition and survival of bacteria in porous media are of great 

importance in various environmental, industrial and health contexts, such as water 

quality control technology, and initiation of infection, groundwater contamination and 

subsurface bioremediation [1-6]. Traditionally, understandings of bacteria transport and 

deposition behaviors are based on studies of model colloids, such as latex microspheres, 

which are not necessarily representative of the complex shapes and surface 

characteristics of bacterial cells [5, 7-11]. Studies have shown that both physical and 

chemical interactions have effects on colloids deposition onto porous media, such as, 

hydrodynamic drag, surface charge heterogeneity, bacterial cell characteristics, 

hydrophobicity and electrostatic repulsive forces [5-19]. The influence of these factors 

on colloid adhesion to media have been tested by two experimental techniques, a 

packed-bed column and a radial stagnation point flow system [3, 5, 20-22]. 

The research reported in this thesis was undertaken to elucidate the mechanisms 

involved in the adhesion of E. coli, a Gram-negative bacterium in porous media and to 

gain insight into the impact of environmental conditions on the fate of bacteria in 

porous media. 
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1.2. Objective 

The goal of this study was to gain a fundamental understanding of the mechanisms 

controlling bacterial adhesion in aquatic systems with relevance to subsurface porous 

media. The specific objectives are as follows:  

1. To explore the fundamental mechanisms involved in the initial stages of bacteria 

adhesion, and to gain insight into the extent to which bacterial surface polymers 

influence bacteria adhesion. 

2. To test the role of phosphate on bacterial transport and deposition in porous media. 

1.3. E. coli O157:H7 Characteristics 

E.coli O157:H7 was first recognized as a pathogen in 1982 during an outbreak 

investigation of hemorrhagic colitis. E.coli O157:H7 infection can lead to hemolytic 

uremic syndrome, characterized by hemolytic anemia, thrombocytopenia, and renal 

injury [23]. Epidemiologic investigations have demonstrated that dairy cattle, especially 

young animals, are a principal reservoir of E.coli O157:H7. Farm surveys have frequently 

isolated verotoxin-producing E.coli, including serotype O157:H7, from dairy cattle. The 

pathogen is typically carried by healthy cattle, and isolation of sick cattle is not likely to 

reduce the risk of transmission; hence, control of infection among cattle is difficult [24, 

25]. A recent survey of feces of dairy calves in 14 states of the United States revealed 

that 22% of control herds and 50% of case herds were E.coli O157:H7 positive [26]. 

Populations of E.coli O157:H7 ranging from <102 to 105 CFU/g of feces were detected in 
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the positive calves, and the animals were determined to intermittently shed E.coli 

O157:H7 [27]. Depending on survival of the pathogen, bovine feces containing E.coli 

O157:H7 could be an important source of reinfection of dairy herds and a possible 

source of contamination of the environment. 

Bovine products such as undercooked ground beef and raw milk have most often been 

implicated in food-borne infections with E.coli O157:H7. There also have been reports of 

E.coli O157:H7 outbreaks associated with both drinking and recreational water. 

Investigations indicated that this pathogen could remain viable in water for a long 

period of time or that the water might be repeatedly contaminated from unknown 

sources [28]. Accordingly, the highly pathogenic nature of this organism demands a 

clear understanding of its transport and fate in subsurface environments in order to 

assess and mitigate the potential risk to public health. 

1.4. E. coli O157 mutants: rfaC, waaL 

Over the past several years, several groups have elucidated the chemical structure of 

bacterial Lipopolysacharides (LPS) [29]. LPS is composed of the hydrophobic lipid A (the 

component that interacts with the inner leaflet of the outer membrane), an inner and 

an outer core, and the repeating units of O-antigen (Figure 1)[29]. The rfaC cell is LPS 

core biosynthesis while waaL cell is putative LPS biosynthesis. The LPS length of rfaC cell 

is shorter than the LPS length of waaL cell. [3] 

Bacterial adhesion to surface has typically been described as the balance between 

attractive and repulsive physicochemical interactions. Long-range forces that can act 
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over tens of nanometers, such as London-van der Waals and electrostatic interactions, 

have long been recognized as influencing factors for bacterial adhesion [30]. However, 

often only qualitative or inconsistent correlations are observed between bacterial 

adhesion and the van der Waals and electrostatic properties of the substrate [31, 32]. 

Short-range forces include steric interactions, specific ion effects, Lewis acid-base 

interactions, hydration forces, hydration pressure, hydrogen bonding, and the 

hydrophobic effect [33]. Only recently quantitative means of including non-DLVO 

(Derjaguin, Landau, Verwey and Overbeek) interactions in colloidal interactions have 

been proposed [34]. Bacterial adhesion may also involve specific interactions between 

complementary surfaces such as lectin-like interactions mediated by surface polymers. 

Techniques that average surface properties over a population of cells do not allow for 

the determination of the influence of localized structures. 

LPS and proteins in the outer membrane of Gram-negative bacteria as well as 

extracellular polysaccharides for some strains are the polymers that may influence 

adhesion. LPS molecules are anchored to the cell outer membrane through their lipid 

moiety. The core region of the LPS consists of negatively charged groups, such as 

phosphates and carboxylic groups, which usually give the LPS its negative charge [3]. 

The outer polysaccharide part of the LPS is the O-antigen, which consists of 20-70 

repeating units of three to five sugars and can protrude up to 30 or more nm into the 

cell surroundings. For Gram-negative bacteria, the O-antigen is likely responsible for 

polymer interactions with surfaces. Outer-membrane proteins are less likely to interact 

with the solid surfaces since they are hidden behind the O-antigen layer [34]. 
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Research with mutant bacterial strains has provided some information on how LPS 

macromolecules affect adhesion. Williams and Fletcher isolated mutant strains of 

Pseudomonas fluorescens whose O-antigen portion of their LPS was either missing or 

truncated [35]. Without the O-antigen, the mutants attached more to hydrophobic 

polystyrene tissue culture dishes and less to hydrophilic polystyrene dishes than did the 

parent strain. However, the parent and mutant strains were all adhesive to sand, which 

suggested that multiple types of biopolymers mediate adhesion. In some cases, the 

presence of LPS can facilitate adhesion through the formation of hydrogen bonds. 

DLVO-type repulsion may be overcome when surface polymers possessing high affinities 

for the solid surfaces anchor the cell to a substratum across a repulsive energy barrier. 

The considerable strength of these short-range interactions leading to an irreversible 

bacterial adhesion has been suggested to originate from the formation of the hydrogen 

bonds [3]. 

Recent advances in analytical techniques allow for the characterization of biopolymers 

at the nano-Newton and nanometer level. Atomic force microscopy (AFM) was used to 

probe the adhesive interactions and biopolymer properties of various fungal and 

bacterial cells [36-43]. By making contact between the microbe and an AFM tip and 

pulling on the surface macromolecules, the physical properties of the biopolymers 

(elasticity, conformation) were determined [39, 41, 42] The chemical nature of microbial 

surfaces was determined, aided by the use of functionalized AFM probes [36]. 
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Figure 1.1 A schematic drawing of the envelope of Gram-negative bacteria. [42] 

1.5. Role of Phosphate on Bacteria Transport 

Previous works at both the laboratory and field scale have shown that phosphate may 

have an impact on the transport and the survival of bacteria in porous medium [44]. The 

presence of phosphate in water mains has been shown to improve the water quality by 

reducing the occurrence of coliform bacteria and inhibits biofilm growth, despite the 

fact that phosphate serves as an essential nutrient for microorganisms [45, 46].  

Phosphate treatments are usually applied to water mains to control corrosion and the 

release of metals into the water. This procedure is highly controversial. One 

disadvantage of this procedure is that phosphate may serve as a nutrient for the 

microorganisms, which will sustain bacterial growth in waters with limited amounts of 

phosphate [47, 48]. However, the addition of phosphate to drinking water networks has 

been shown to increase the water quality by reducing biofilms, improving the efficiency 
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of disinfectants, decreasing the occurrence of coliforms, and surprisingly by drastically 

reducing bacterial production [49, 50]. These observations suggest that the favorable 

environment provided by the corrosion products are probably modified by the 

phosphate, making the environment less suitable for bacterial development. 

The influence of phosphate on natural organic matter adsorption was observed by 

Geelhoed et al. (1998) [51]. They compared the adsorption of phosphate and citrate in 

single anion systems or in competitive systems and showed that phosphate has a much 

larger intrinsic affinity for goethite than citrate. Phosphate anions were shown to reduce 

citrate adsorption onto goethite significantly. Thus, similar surface sites are involved in 

the adsorption of both carboxyl and phosphate anions onto goethite. This competition 

must be responsible for the limitation of bacterial adhesion in the presence of 

phosphate anions. Iron oxyhydroxide surface sites, preferentially bound to phosphate 

anions, can no longer bind to carboxyl. 

Park et al.[46] conducted packed-bed column experiments to investigate bacterial 

adhesion to iron-coated surfaces at various phosphate concentrations. The results 

showed that at phosphate concentrations between 0 and 0.5 mM, bacterial attachment 

to iron-coated sand decreased with increasing phosphate concentration, possible due to 

charge modification from positive to negative by adsorbed phosphate ions. Between 0.5 

and 2.0 mM, however, bacterial attachment increased with increasing phosphate 

concentration, possibly due to compression of the electrical double layers between 

bacteria and phosphate-adsorbed/negatively charged surfaces by free phosphate ions. It 
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was concluded that phosphate could play different roles in bacterial interaction with 

iron-coated surfaces depending on its concentration. 

1.6. DLVO Theory and XDLVO (extended DLVO) Theory 

The standard model for bacterial adhesion implies that bacteria start from a weakly 

attached reversible state, where non-specific interactions are involved, and progress to 

a more strongly attached irreversible state, which is governed by both non-specific and 

specific interactions [52, 53]. The non-specific interaction energies that govern the initial 

phase of the bacterial adhesion mechanism are basically the Lifshitz van der Waals (LW) 

and the electrostatic double layer (EL) interactions, which can be either attractive or 

repulsive depending on the surface charge. These interaction energies are well 

understood and described generally in the classical DLVO theory of colloid stability [54, 

55]. The DLVO theory has been widely used as a theoretical model no only qualitatively 

but also quantitatively to calculate the actual adhesion energy variations involved in 

bacterial adhesion and aggregation as a function of separation distance between the 

interacting surfaces [5, 20, 56, 57]. 

However, in the classical DLVO theory, both the substratum and the colloidal particle 

surfaces are assumed to be chemically inert. This is not valid for the bacterium and 

substratum surfaces where hydrogen and chemical bonds are involved in the adhesion 

mechanism. Van Oss et al. suggested an additional term called the short-range Lewis 

acid-base (AB) interactions to account for hydrogen bonding on close approach of 

bacteria and substrate surfaces, in the extended XDLVO theory [58, 59]. These AB 
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interactions are accounted for, in addition to LW and EL interactions, to explain the 

discrepancies between the DLVO predictions and experimental observations [60]. The 

AB interactions are based on electron acceptor/electron donor interactions between 

polar moieties in polar media. In addition, depending on the hydrophobic/hydrophilic 

property of both microbial cells and substrate surfaces, these polar interactions could 

be attractive (hydrophobic attraction) or repulsive (hydrophilic repulsion or hydration 

effects), and may be up to 10-100 orders of magnitude greater than EL and LW 

interactions. The addition of the polar interactions has resulted in the XDLVO approach 

(XDLVO) for quantifying the interaction energy in order to predict the adhesion. It as 

claimed that the XDLVO approach might be the promising model to explain the 

experimental results of bacterial adhesion since it combines both the thermodynamic 

approach and DLVO theory [35, 61]. However, the validation of this approach as a 

predictive physicochemical model to study the bacterial adhesion is still under 

investigation. 

Many researchers have previously investigated comparison between the DLVO and 

XDLVO predictions. Brant et al., have investigated the investigated the interaction 

energies for different membrane-colloid combinations [59]. They found that the XDLVO 

approach predicts considerably different short-range (separation distance < 10 nm) 

interaction energies when compared with DLVO predictions, particularly for hydrophilic 

membrane-colloid combination. The hydrophilic repulsion resulted in much larger 

energy barrier at short-range, while the hydrophobic attraction resulted in much 

attractive energy profile. Meinders et al. investigated the deposition and reversibility of 
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bacterial adhesion on various substrate surfaces, and they have found that XDLVO 

model explain more accurately the bacterial adhesion than the DLVO theory for a 

hydrophobic substratum surface [62]. Azeredo et al. showed, on one hand, that the 

adhesion in phosphate buffer saline of bacterial mutants to glass is mainly explained by 

the DLVO theory [61]. On the other hand, they found that the XDLVO theory enabled 

the interpretation of the adhesion of some of these mutants to glass in presence of the 

exopolymers, where hydrophobic interactions played an important role in the 

irreversible adhesion. 

1.7. Classic Colloid Filtration Theory 

Colloid transport in porous media is controlled by the mass transfer of suspended 

particles from the bulk flow to the surface of collector grains and the attachment of 

particles to solid surfaces as a result of colloid-surface interaction. Yao et al. described 

colloid removal for water filtration in terms of two rate-limiting steps: (a) the physical 

processes of diffusion, interception, and gravitation setting that result in collisions 

between colloids and grains and (b) the chemical factors controlling the interaction 

forces that result in the attachment of colloid to the grain surface [63]. According to 

Yao’s conceptual model, particle concentration in the fluid phase is represented by first 

order kinetics with a spatially and temporally constant colloid deposition rate coefficient. 

The suspended and retained particle concentrations in the porous media are therefore 

predicted to decrease exponentially with transport distance. Based on this assumption, 

the fraction of colloids recovered from the effluent of packed bed columns or aquifers is 
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typically used to estimate the deposition rate coefficient (Kd), or alternatively, the 

sticking efficiency ( ) defined as the ratio of particles that attach to collector grains to 

particles that collide with collector grains [64]. 

The classical colloid filtration theory is used to determine the theoretical particle 

deposition distribution. This is seen through the deposition equation measuring bacteria 

adherence per mass of glass bead collector grain surface: 

S (X) = 
       

  
     

    

 
                          (1.1) 

where X = column depth 

             t0 = injection time 

               = bed porosity 

                Kd = deposition rate coefficient 

                C0 = initial cell concentration 

                 b = porous medium bulk density 

                U = approach velocity 

Deposition rate coefficients, Kd, collector removal efficiencies,  , and attachment 

efficiencies,  , can be computed using experimental findings and the following 

equations: 

kd = -
 

  
In(

 

  
)                                                (1.2)   
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where     
  = normalized breakthrough concentration 

              U = approach (superficial) fluid velocity 

                = packed bed porosity 

               = length of packed bed 

        kd = 
 

 

     

   
                                               (1.3) 

where dc = collector diameter 

and 

      
  

      
                                                (1.4) 

In general, recent experimental successes do not coincide with the Classical Clean Bed 

Filtration Theory [57]. 

1.8. Secondary Energy Minimum 

The adhesion of E. coli bacteria strain to quartz sand in the presence of repulsive 

electrostatic interactions is systematically examined. An increase in the ionic strength of 

pore fluid results in an increase in bacterial attachment, despite DLVO calculations 

indicating a sizable electrostatic energy barrier to deposition. Bacterial deposition is 

likely occurring in the secondary energy minimum, which DLVO calculations indicate 

increases in depth with ionic strength. A decrease in the ionic strength of the pore fluid 
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results in release of the majority of previously deposited bacteria, suggesting that these 

cells were deposited in the secondary minimum [57].  

Redman et al.  conducted a number of release experiments to investigate whether the 

bacterial cells retained in the packed bed during a transport experiment were indeed 

deposited in secondary energy minimum [57]. By numerically integrating the 

breakthrough curve which can demonstrate bacterial elution, Redman et al.  calculated 

the amount of bacterial cells adhered to the quartz grains. According to these 

calculations, a significant fraction of the deposited bacterial cells are eluted from the 

column when the low ionic strength solution was introduced, ranging from an average 

of 0.4 when the cells were deposited in 10 mM to >0.68 when the cells were deposited 

at higher ionic strengths. The release of the majority of deposited cells suggests that the 

bacteria were not irreversibly attached to the quartz grain in a primary minimum but 

initially deposited within secondary energy minima.  

In a study utilizing a parallel plate deposition system, Meinders et al.  observed a similar 

behavior, where several bacterial strains attached to glass surfaces despite the very 

large calculated energy barriers [62]. Meinders et al. postulated that bacterial 

deposition occurred in the secondary energy minimum, based on a correlation between 

the deposition rate and the calculated secondary minimum depth. 

1.9. Surface Charge 

As mentioned, a great cause for bacterial adhesion to collector grain surfaces includes 

surface charge heterogeneity, influenced by pH of solution, zeta potential and surface 
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roughness of colloid and collector grain surfaces. These influences provide patches of 

locally favorable adhesive sites on either the colloid or collector grain surface allowing 

stronger adhesion in the primary energy minima [57]. Redman et al., along with other 

mentioned research display the use of anionic surfactants, such as sodium dodecyl 

sulfate or silane, during the washing process to create favorable adhesion on these 

repulsive patches by giving them an opposite charge. Redman’s specific group also 

tested the transport and deposition kinetics of E.coli D21g on ultra pure quartz grains I 

packed bed columns and stagnation point flow systems using both favorable and 

unfavorable conditions. The tested theory shows an increase in colloid deposition on 

collector grain surfaces with an increase of ionic strength of buffer solution. 

Redman et al., further tests the aforementioned influence of ionic strength on bacteria 

deposition by reducing electrostatic double layer repulsive forces by creating a more 

homogeneous charged surface. A depiction of the variation of DLVO interaction energy 

with separation distance at different ionic strengths specifically shows the depths of the 

primary and secondary energy minimums in Redman et al., figures. The average zeta 

potential in Redman’s study is negative for both the colloid and collector grain surfaces. 

The predicted electrostatic double layer interaction energy is therefore repulsive and 

anticipates total cell repulsion throughout the column experiments. Despite predictions, 

experimental findings show a clear correlation of increasing deposition with ionic 

strength. Redman et al., reinforces the previous statements and details the impact that 

van der Waals and electrostatic double layer interaction energies have on adhesion in 
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the near unity linear correlation between attachment efficiency and DLVO attachment 

theory. 

1.10. Soft Particle Theory 

Claude Zobell and coworkers first introduced the importance of bacteria adhesion in the 

1940s, which observed that the number of bacteria on surfaces was dramatically higher 

than the surrounding medium [66]. After a silent period of 30 years, the subject of 

bacterial adhesion again became of interest in the early 1970s. And for the last three 

decades, many researchers have shown great importance of elucidating the 

mechanisms of attachment to surfaces and understanding the influence of attachment 

on the bacterial cell and on the surface it attaches to. 

Different from colloids, bacterial cell surfaces are highly dynamic, and respond to a 

variety of environmental changes. Understanding of the basic mechanisms controlling 

bacterial initial attachment is still lagging. Previous work on bacterial adhesion has 

shown that DLVO type interactions may be overcome in the presence of bacterial 

surface polymers, which may possess high affinities to the solid surface and anchor the 

cell to the surface or inhibit it by preventing the bacteria from getting close to the 

surface [4].  From an electrostatic perspective, bacteria must be viewed as soft particles 

in which ions can penetrate through the surface appendages on the cells, and thus 

require a fundamentally different description of surface interaction forces than for ion-

impenetrable inorganic colloids [4, 67]. In addition, bacterial population heterogeneity, 

surface roughness, and cell motility are also known to affect bacterial adhesion. 
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Bacterial attachment cannot be fully understood without considering the effects of the 

substratum, the hydrodynamics of the aqueous medium, the characteristic of the 

medium, and various properties of the cell surfaces [10, 68]. 

1.11. Biofilm 

Bacterial deposition onto biofilm-coated porous media is a crucial phenomenon in 

various environmental processes, including bioremediation, biofiltration, and pathogen 

transport in soil and groundwater [69]. Biofilm is an assemblage of microbial cells 

enclosed in a matrix of extracellular polymeric substances (EPS), which form on surfaces 

in virtually all aquatic ecosystems that can support microbial growth [6]. EPS, a complex 

mixture of biomacromolecules consisting primarily of polysaccharides and proteins with 

small but variable amounts of lipids and nucleic acids, can make up to 90% of the 

organic carbon in a typical biofilm. The EPS constituents contain active sites such as 

neutral moieties, ionized moieties and amino groups [1, 70].  

The impact of biofilm EPS on bacterial adhesion is determined by a number of factors, 

including DLVP forces, van der Waals and electrostatic forces [71], hydrophobicity and 

hydration effects as described by the DLVO-AB model, and non-DLVO interactions [14]. 

Depending on its shape, compressibility, and chemical composition, bacterial surface 

EPS may encourage adhesion in porous media by polymer bridging between cells and he 

solid surface or hinder cells to reach the energy minimum by steric interactions. Recent 

atomic force microscopy (AFM) studies also have shown that interaction between 

biopolymer coated surfaces and bacteria are complex [72]. 
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Biofilms are known to affect the physical and hydrodynamic properties of porous media. 

Different from the ion-impermeable inorganic porous media surfaces, biofilm formation 

provides small water channels that can help convey water and chemical solutes while 

preventing bacteria and colloids that are too large to pass through [73-77]. Biofilms may 

promote bacterial deposition by physical straining or discourage bacterial adhesion 

through changes in hydrodynamic conditions caused by extensive biofilm growth. As 

biomass accumulates, the reduced bed porosity provides an additional surface area for 

deposition, which can enhance particle removal [10, 78]. Conversely, reduced porosity 

leads to an increased local flow velocity and shear stress, which can impair the 

deposition. 

Liu et al., demonstrated that biofilm-coated porous media might promote or impair the 

transport and deposition of bacteria, depending on the thickness of the biofilm and the 

types of EPS polymer [6]. With thin biofilm accumulation, polymer interaction between 

the biofilm surface EPS and bacteria plays a more important role in bacterial adhesion 

while porous media physical and hydrodynamic changes as a result of biofilm growth 

might become significant when biofilm accumulated to a certain thickness.  

1.12. Hydrophobic Attraction 

As known, aggregation of nonpolar substances in water is a consequence of minimizing 

their hydrophobic effect, which is the disruption of dynamic hydrogen bonds between 

water molecules causing losses in the translational and rotational entropy. Hence, the 

hydrophobic interaction, being at the molecular level responsible for such aggregation 
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phenomena of nonpolar molecules as the protein folding, formation of lipid bilayers and 

micelles, is due to neither a repulsive force between the water and the nonpolar 

molecules nor an attraction between the latter themselves [79]. 

At the macroscopic level, a distinctive attraction beyond the DLVO surface forces was 

revealed between atomically sooth mica surfaces hydrophobized by physically adsorbed 

cationic surfactants using surface force apparatus (SFA), obeying a short-range (up to 10 

nm) exponential with a decay length of around 1 nm [80]. The extension of this extra 

attraction was found by a bimorph force sensor to be somehow higher (up to 20 nm) 

between glass surfaces (molten droplets) carrying adsorbed CTA+ cations [81]. A long-

range attraction decaying with the power law over 100 nm was even detected in atomic 

force microscope (AFM) between silica surfaces hydrophobized chemically by surface 

silylation [82-86]. 

Later on, the latter long-range attraction, measured between silylated surfaces of a 

silica sphere and a silica substrate was attributed to sub-micro cavities nucleating on the 

robust hydrophobic layers because of their roughness and/or exposition to air 

atmosphere before the immersion and execution of measurements in water [87]. 

Indeed, even a very long-range attraction was found to soften to the point of vanishing 

when interacting silylated surfaces experienced low-level vibrations around a mean 

static separation [88]. 

An attraction of longer range has also been detected between silica surfaces or mica 

surfaces whose hydrophobicity was imparted in situ by the adsorption of long-chain 



19 
 

 
 

cationic surfactants [89]. In this case, the introduction of air bubbles into the system and 

their stabilization on the surfaces may be assisted by the dissolved surfactants 

themselves. When a specific procedure that guaranteed the air-free surfactant solution 

by dissolving the surfactant under vacuum was used, however, the long-range attraction 

did not appear.  

The uncertainty about the character of hydrophobic attraction (HA) manifested 

between fixed macroscopic surfaces is paralleled between freely moving, colliding and 

interacting particles in disperse systems. Really, an additional long-range attraction has 

been inferred from the analysis of surface forces at the onset of the so-called 

hydrophobic coagulation or flocculation of more or less polydisperse suspensions of 

highly charged silica particles, hydrophobized in air by the methylation procedure out of 

the suspensions [90]. This may, again, stem from capillary bridges of tiny gaseous nuclei 

connecting the particles and so enhancing the coagulation by overcoming the 

electrostatic repulsion [91, 92]. 

As to the coagulation initiated by the addition of cationic surface active agents, 

measurements on silica sols have been undertaken in which associations between 

hydrophobic tails of the surfactant molecules adsorbed from their solutions were 

considered to apply in the sense of the short-range hydrophobic attraction [93]. 

Unfortunately, although the effect of gas nucleation is expectably less tendentious at 

the adsorption layers of surfactants, the coagulation efficiency was evaluated without 
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the possibility of distinguishing the possible hydrophobic interaction from the DLVO 

ones in these experiments. 

Generally, the exact analysis of surface forces within aggregating colloidal systems is 

possible by determining the absolute values of aggregation rate constants. The latter 

values were found to agree well with these, predicted from the DLVO theory without 

any fitting parameters, only for uniform polymer lattices carrying a low surface charge 

[94, 95]. As to the uniform colloidal metal oxides, however, the agreement could be 

obtained at the price of manipulating even fundamental parameters such as the particle 

radius, surface potential or the Hamaker constant beyond their physical limits, 

irrespective of whether relative or absolute rate constants were evaluated [96, 97]. 

1.13. Acid-Base Interactions 

The physicochemical properties of the bacteria cells are as described previously are 

affected by and influence attachment and culture conditions. In a study testing acid and 

alkaline conditions, seven O157:H7 strains interacted more with acidic solvents, 

accepting and donating more electrons than with the alkaline opposition [60]. Rivas et 

al., conducted a similar hydrophobicity test to that of Li and Mclandsborough testing 

different strains of O157:H7. The electron donor/receptor tests proved O157:H7 strains’ 

adhesion is stronger to chloroform than hexadecane proving that there is better 

electron donation than reception. To prove the importance of acid-base interactions, 

Rivas et al., conducted an experiment using 150 mmol/L high ionic PBS solutions to 
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inhibit the electrostatic interactions leaving the constant van der Waals interactions 

clearly display the acid-base interactions by their effect on the change of adherence. 

2. MATERIAL AND METHODS 

2.1. Bacteria Strains and Cell Preparation 

The specific strains include E.coli O157:H7 (chlorampfenicol, kanamycin, rifampin), rfaC 

(kanamycin, rifampin) and waaL (kanamycin, rifampin), which obtained from Dr. C.H. 

Yang’s lab in the department of Biological Sciences at the University of Wisconsin-

Milwaukee. For each experiment, the stored strains were streaked onto Luria-Bertani 

(LB) agar plates and incubated at 37   overnight. A single colony was then transferred 

into 15mL LB broth and grown in a shaker incubator (New Brunswick Scientific E24) at 

200rpm and 37   for 16-20 hours. Stationary-phase bacterial cells were harvested by 

centrifugation (Juan MR23i) at 3000 g and 4   for 10min. After the supernatant was 

decanted, the pellets were rinsed in appropriate electrolyte solutions. The 

centrifugation and re-suspension procedure was repeated twice to remove traces of 

growth media. A final cell concentration of approximately 107 colony forming units 

(CFU)/mL was obtained by optical density (OD) using an UV/Visible spectrophotometer 

(Shimadzu UV-1700) at 220 nm wavelength. Cell suspensions were kept on ice before 

the filtration experiment to minimize potential bacterial growth. The cell surface 

macromolecules were left unaltered in the suspension used in the column transport 

experiments. The motility of the bacteria did not change after the double mutation. 
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2.2. Electrolyte Solutions 

Four different types of electrolyte solutions were used in this experiment. The total ionic 

strength of the electrolyte solutions was either 10 mM or 100 mM. The 10 mM 

electrolyte was prepared by dissolving 0.585 g/L NaCl in ultrapure water (Milli-Q water, 

Millipore Corp.). Under each inonic strength condition, the phosphate concentrations 

varied as 0 mM and 1 mM. The 1 mM phosphate buffered saline (PBS) was prepared by 

dissolving 1.093 g/L Na2HPO4, 0.3175 g/L NaH2PO4·H2O in ultrapure water. The pH of the 

electrolytes ranged from 7.0 to 7.2. 

2.3. Granular Porous Medium 

Cylindrical polycarbonate plastic columns (26 cm long, 2.54 cm internal diameter) were 

wet packed to a porosity of 0.344 with high-purity quartz sand (US Silica) with a size 

range of 0.354-0.420 mm. The high-purity quartz sand was heated by 70% nitric acid on 

a hotplate at 150   overnight. The sand was thoroughly rinsed with deionized water for 

20 times before bathed in diluted NaOH solutions overnight. Followed by is the rinsing 

step discussed before. The sand cleansing process was repeated twice to remove 

surface iron oxide/hydroxide coatings and organic materials, as well as fine particles 

attached to sand surfaces. 

2.4. Packed-bed Column Transport Experiments 

A peristaltic pump (Cole Parmer, IL) was used to pump the solutions in a down flow 

mode. Prior to each experiment, the column was equilibrated by pumping at least 20 
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pore volumes of bacteria-free background NaCl solutions through the column at a 

constant approach velocity of 0.31 cm/min. The ionic strengths of the NaCl solutions 

were 10 mM and 100 mM. Approximately 3 pore volumes of bacteria suspension 

(~3 107 CFU/mL) were injected after switching the influent from the background 

electrolyte solution to the cell suspension. The column effluent was connected to flow-

through quartz cells and the concentration of the bacterial cells was monitored every 30 

s using a spectrophotometer (Shimadzu UV-1700) by measuring the absorbance at a 

wavelength of 220 nm [98, 99]. Following the bacteria injection, columns were eluted 

with 4 pore volumes background electrolyte solution until the absorbance of the 

effluent returned to zero. All experiments were performed in triplicates at room 

temperature (20-25 ). 

2.5. Deposition of E.coli O157:H7, rfaC and waaL Cells         

To compare quantitatively the overall deposition of the three E. coli strains at different 

solution ionic strengths, the deposition rate coefficient kd was estimated using the 

steady state breakthrough concentrations of the cell according to the following 

equation [56, 100]: 

     
 

   
   

 

  
                                  (2.1) 

where   = porosity of the sand 

              = specific discharge 

              = length of the column 
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  = normalized breakthrough concentration  

2.6. XDLVO Interaction between E.coli O157:H7, rfaC and waaL Cells and 

Quartz Sand 

The transport of bacterial cells within saturated porous media is governed by the energy 

interactions between bacterial cells and the surface of solid matrix. According to the 

XDLVO theory, the forces include the Lifshitz-van der Waals (LW) interactions, the 

electrostatic double layer (EDL) repulsion, and the Lewis acid-base (AB) interaction [101-

103]: 

                                 (2.2) 

The LW, EDL, and AB interaction energies (                ) can be calculated using 

the following equations [43, 52, 53, 57, 104-107]: 
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(2.6) 

     
   

  
                                                  (2.7) 

 where   = the Hamaker constant 

   = equivalent radius of the bacterial cells 

  = separation distance between the bacterium and sand surface 

  = minimum equilibrium distance between the cell and sand surface (=0.157 nm) 

  = electron-accepting interfacial tension parameter 

  = electron-donating interfacial tension parameter 

   = LW interfacial tension parameter 

  = dielectric permittivity of vacuum 

  = dielectric permittivity of water 

 = inverse of Derby length 

  = surface potentials of the bacterial cells 

  = surface potentials of sand 

  = characteristic decay length of AB interactions in water (= 0.6 nm) 

    

  = hydrophobicity interaction free energies per unit area corresponding to    
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   = 21.8 mJ/m2        

  = 25.5 mJ/m2         
  = 25.5 mJ/m2 

  
   = 39.2 mJ/m2       

  = 1.4 mJ/m2         
  = 7.8 mJ/m2 

Values of              for three E. coli strains sere determined by measuring the 

contact angles     using three different probe liquids with known surface tension 

parameters [108]: 

  
              

          
        

                      (2.8) 

where the subscript   represents water                             

           , glycerol                                              or 

diiodomethane                                      [108]. The contact 

angles were acquired with a Rame-Hart goniometer using bacterial lawns produced by 

filtering cells onto porous membrane [43]. 

2.7. Steric Interaction Between Cells and Quartz Sand 

In biological systems, the classical DLVO model often failed to fully explain the bacterial 

transport and deposition behavior observed in experiments due to the presence of 

extracellular macromolecules on bacterial surface [56, 100-102]. The steric repulsion 

between two parallel surfaces similarly coated by macromolecules is described by the 

deGennes equation [109]: 

  
  

    
  

 
 
 

  

  
 

  
 
 

  

      For                                            (Equation 2.9) 
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where   is the pressure between the two parallel surfaces,   is the separation distance, 

  is the thickness of brush layer and   is the average distance between anchoring sites. 

For E.coli O157:H7, rfaC, and waaL, of the values of   is 30 nm [15], 2.4 nm, and 4.4 nm, 

respectively; the values of   is 2.2 nm [110], 2.2 nm, and 2.2 nm.  

If one plate has the brush and the other plate is bare,    should substitute   and the 

pressure should be divided by 2 [72]: 

  
 

 

  

    
  

 
 
 

  

  
 

  
 
 

  

      For                                            (Equation 2.10) 

Integration using Derjaguin’s approximation, we have the steric force expression for a 

sphere-plate system [109]: 

    
  

     
 

 
 
 

  

  
 

 
 
 

  

 
 

 
   

  

  
  

  

     
 

 
 
 

  

  
 

 
 
 

  

         (Equation 

2.11) 

The integration of   gives the steric interaction energy (       ) for a sphere-plate 

system 

               
 

 

 
 

    
  

  

  
       

 

 
 

 
  

       
 

 
 

 
  

                

                                                                                                                                       (Equation 

2.12) 



28 
 

 
 

2.8. E.coli O157:H7, rfaC and waaL Cells Characterization 

1. Zeta Potential: Zeta potential values of bacteria cells and sand were used to 

represent surface potentials in Equation 2.5. Cell suspensions were prepared in a 

similar procedure, as in the column transport experiments and the quartz sand 

was pulverized to colloid-sized particles and then suspended in the electrolyte 

solutions. The electrophoretic mobility of the bacterial cells and colloidal quartz 

sand in each solution was then measured using a ZetaPALS analyzer (Brookhaven 

Instruments Corporation). The Smoluchowski equation was used to convert 

electrophoretic mobility values into zeta potentials.  

2. Cell Size: To measure cell sizes, photos of Wild Type, rfaC and waaL suspended in 

various solutions were obtained using a Nikon Eclipse 50i microscope, equipped 

with a Photometric coolsnap ES digital camera and the MetaMorph software. The 

length and width of the cells were then determined using the ImageJ software and 

the equivalent radii of the cells were calculated as   
     

 
 , where    and    

represent the length and width of the cell, respectively. The equivalent cell radius 

of E. coli O157:H7, rfaC and waaL were around 0.85   , 0.64    and 0.93   , 

respectively [111]. 

3. Contact Angles: The contact angles of water, glycerol, and diiodomethane on Wild 

Type, rfaC and waaL (Table 2.1) were measured by Rame-Hart instrument.  
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Contact Angle                                 

rfaC 47  ( 0.2 ) 32.3  ( 1.1 ) 54.8  ( 0.6 ) 

waaL 28.1  ( 0.4 ) 25  ( 0.9 ) 48.7  ( 0.5 ) 

Wild Type 22.1  ( 0.1 ) 27.0  ( 1.8 ) 63.0  ( 0.7 ) 

 

Table 2.1 Measured contact angles of water, glycerol, and diiodomethane on Wild Type, 

rfaC and waaL cells. 

3. Results 

3.1. Breakthrough Curves of E.coli O157:H7, rfaC, and waaL Cells    

Figure 3.1 presents the breakthrough concentrations of waaL. Results from the packed-

bed transport experiments show that higher percentages of waaL cells should travel 

through the sand columns when the concentration of phosphate progressively increased 

from 0 to 1 mM, indicating that phosphate can promote the transport of waaL (Figure 

3.1). At a constant ionic strength of 100 mM, 75.9% ( 6.3%) and 51.8% ( 6.2%) of the 

rfaC cells were immobilized within the sand columns for phosphate concentrations of 0 

and 1 mM, respectively. At a constant ionic strength of 10 mM, 61.8% ( 7.8%) and 9.6% 

( 0.96%) of the waaL cells were immobilized within the sand columns for phosphate 

concentrations of 0 and 1 mM, respectively. 
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Figure 3.1 Breakthrough concentrations of waaL bacteria and saturated quartz sand, 

under two solution ionic strengths: 10 mM and 100 mM. Concentrations of phosphate 

were 0 and 1 mM. Experimental conditions were: approach velocity = 0.31 cm/min, 

porosity = 0.344 and pH = 7.2. Breakthrough curves represent the average of triplicate 

parallel packed-bed column experiments. 

Figure 3.2 presents the breakthrough concentrations of rfaC. Results from the packed-

bed transport experiments show that higher percentages of rfaC cells should travel 

through the sand columns when the concentration of phosphate progressively increased 

from 0 to 1 mM, indicating that phosphate can promote the transport of rfaC (Figure 

3.2). At a constant ionic strength of 100 mM, 74.3% ( 2.9%) and 41.8% (      %) of 
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the rfaC cells were immobilized within the sand columns for phosphate concentrations 

of 0 and 1 mM, respectively. At a constant ionic strength of 10 mM, 43.3% ( 4.8%) and 

4.7% ( 1.9%) of the rfaC cells were immobilized within the sand columns for phosphate 

concentrations of 0 and 1 mM, respectively. 

 

Figure 3.2 Breakthrough concentrations of rfaC bacteria and saturated quartz sand, 

under two solution ionic strengths: 10 mM and 100 mM. Concentrations of phosphate 

were 0 and 1 mM. Experimental conditions were: approach velocity = 0.31 cm/min, 

porosity = 0.344 and pH = 7.2. Breakthrough curves represent the average of triplicate 

parallel packed-bed column experiments.  
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Figure 3.3 presents the comparison of breakthrough curves between E.coli O157:H7, 

rfaC, and waaL cells. The breakthrough curve of rfaC was higher than waaL in the same 

scale under each condition, which indicated waaL efficient transport ability in the quartz 

sand. 

 

Figure 3.3 Comparison of breakthrough curves between E.coli O157:H7, rfaC, and waaL 

cells. Experimental conditions were: approach velocity = 0.31 cm/min, porosity = 0.344 

and pH = 7.2. Breakthrough curves represent the average of triplicate parallel packed-

bed column experiments. 
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3.2. Deposition Rate of E.coli O157:H7, rfaC, and waaL Cells 

Figure 3.4 presents deposition rate coefficient (kd) of waaL bacteria cells. At a constant 

ionic strength of 100 mM, deposition rate coefficient (kd) decreased from 0.082 

( 0.0066) min-1 to 0.033 ( 0.000028) min-1 when phosphate concentration increased 

from 0 to 1 mM (Figure 3.4). A similar trend was observed when the ionic strength was 

maintained at 10 mM. The deposition rate coefficient decreased from 0.034 ( 0.0052) 

min-1 to 0.0029 ( 0.0012) min-1 when phosphate concentration increased from 0 to 1 

mM, respectively. 



34 
 

 
 

 

Figure 3.4 Bacteria’s deposition rate coefficient (kd) of waaL cells was determined from 

the breakthrough curves using Equation 2.1 under both ionic strengths. Experimental 

conditions were: approach velocity = 0.31 cm/min, porosity = 0.344 and pH = 7.2. Error 

bars represent standard deviations of triplicate measurements. 

Figure 3.5 presents deposition rate coefficient (kd) of rfaC bacteria cells. At a constant 

ionic strength of 100 mM, deposition rate coefficient (kd) decreased from 0.085 ( 0.016) 

min-1 to 0.044 ( 0.0077) min-1 when phosphate concentration increased from 0 to 1 

mM (Figure 3.5). A similar trend was observed when the ionic strength was maintained 

at 10 mM. The deposition rate coefficient decreased from 0.058 ( 0.012) min-1 to 
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0.0060 ( 0.00064) min-1 when phosphate concentration increased from 0 to 1 mM, 

respectively. 

 

Figure 3.5 Bacteria’s deposition rate coefficient (kd) of rfaC cells was determined from 

the breakthrough curves using Equation 2.1 under both ionic strengths. Experimental 

conditions were: approach velocity = 0.31 cm/min, porosity = 0.344 and pH = 7.2. Error 

bars represent standard deviations of triplicate measurements. 

Figure 3.6 presents the comparison of deposition rate coefficient between E.coli 

O157:H7, rfaC, and waaL cells. The retention of rfaC cells within quartz sand was higher 
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than waaL under each condition. Consistent with findings reported in breakthrough 

curves.  

 

Figure 3.6 Comparison of deposition rate coefficient between E.coli O157:H7, rfaC, and 

waaL cells. Experimental conditions were: approach velocity = 0.31 cm/min, porosity = 

0.344 and pH = 7.2. Error bars represent standard deviations of triplicate measurements. 

3.3. Zeta Potential of E.coli O157:H7, rfaC, and waaL Cells 

Figure 3.7 represents zeta potentials of both waaL cells and quartz sand, which were 

negative. In general, the zeta potentials of sand were  40 mV less negative when ionic 

strength increased from 10 mM to 100 mM due to the compression of electric double 
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layer. The zeta potentials of the waaL cells  10 mV and  30 mV less negative when 

ionic strengths are 100 mM and 10 mM. For both quartz sand and bacterial cells, an 

increase in ionic strength led to a decrease in the zeta potential of the bacterial cells 

(Figure 3.7). For both quartz sand and bacterial cells, phosphate decreased zeta 

potential values. This could be related to adsorption of phosphate onto the surface of 

quartz sand (e.g., through the bonding between phosphate phosphorus and oxygen at 

the surface of quartz) and bacterial cells, which could increase the negative surface 

charge under the pH conditions employed in this research [112]. 

 

Figure 3.7 Surface zeta potential of waaL bacteria (core mutant) and saturated quartz 

sand, under two solution ionic strengths: 10 mM and 100 mM, as a function of solution 
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chemistry. Concentrations of phosphate were 0 and 1 mM. Error bars represent 

standard deviations of ten replicate measurements. 

Figure 3.8 represents zeta potentials of both rfaC cells and quartz sand, which were 

negative. In general, the zeta potentials of sand were  35 mV less negative when ionic 

strength increased from 10 mM to 100 mM due to the compression of electric double 

layer. The zeta potentials of the rfaC cells  10 mV and  30 mV less negative when ionic 

strengths are 100 mM and 10 mM. For both quartz sand and bacterial cells, an increase 

in ionic strength led to a decrease in the zeta potential of the bacterial cells (Figure 3.8). 

For both quartz sand and bacterial cells, phosphate decreased zeta potential values. This 

could be related to adsorption of phosphate onto the surface of quartz sand (e.g., 

through the bonding between phosphate phosphorus and oxygen at the surface of 

quartz) and bacterial cells, which could increase the negative surface charge under the 

pH conditions employed in this research [112]. 
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Figure 3.8 Surface zeta potential of rfaC bacteria (O-antigen mutant) and saturated 

quartz sand, under two solution ionic strengths: 10 mM and 100 mM, as a function of 

solution chemistry. Concentrations of phosphate were 0 and 1 mM. Error bars represent 

standard deviations of ten replicate measurements. 

Figure 3.9 presents the comparison of zeta potential between E.coli O157:H7, rfaC, and 

waaL cells.  
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Figure 3.9 Comparison of zetapotential between E.coli O157:H7, rfaC, and waaL cells. 

Error bars represent standard deviations of ten replicate measurements. 

3.4. Steric Energy Interaction of E.coli O157:H7, rfaC, and waaL Cells 

Figure 3.10 indicates that the steric interaction between rfaC surface and quartz sand 

was significantly higher than the XDLVO forces at comparable distances. This is 

qualitatively consistent with our observation that retention of rfaC is reversible when 

the XDLVO theory predicts the absence of energy barrier. Additionally, it has been 

hypothesized that the conformational changes caused by the deprotonation of bacterial 

surface lipopolysaccharides carboxylic and phosphoric functional groups allowed for 
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greater penetration of the counterions into the polymer layer, which in turn decreased 

the attachment of rfaC cells onto the surface of quartz sand.  

 

Figure 3.10 Steric interaction energy profile between rfaC cells and surface of quartz 

sands. The energy interaction was expressed in kT, where k is Boltzmann constant and T 

is absolute temperature in Kelvin. 

Figure 3.11 indicates that the steric interaction between waaL surface and quartz sand 

was significantly higher than the XDLVO forces at comparable distances. This is 

qualitatively consistent with our observation that retention of waaL is reversible when 

the XDLVO theory predicts the absence of energy barrier. Additionally, it has been 
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hypothesized that the conformational changes caused by the deprotonation of bacterial 

surface lipopolysaccharides carboxylic and phosphoric functional groups allowed for 

greater penetration of the counterions into the polymer layer, which in turn decreased 

the attachment of waaL cells onto the surface of quartz sand.  

 

Figure 3.11 Steric interaction energy profile between waaL cells and surface of quartz 

sands. The energy interaction was expressed in kT, where k is Boltzmann constant and T 

is absolute temperature in Kelvin. 

Figure 3.12 presents the comparison of steric energy interaction profile between E.coli 

O157:H7, rfaC, and waaL cells.  
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Figure 3.12 presents the comparison of steric energy interaction profile between E.coli 

O157:H7, rfaC, and waaL cells. 

3.5. XDLVO Interaction Energy Profiles 

The measured contact angles of water, glycerol, and diiodomethane on waaL bacteria 

were 47  ( 0.2 ), 32.3  ( 1.1 ) and 54.8  ( 0.6 ), respectively. The values of    ,    

and    for waaL bacteria are calculated as 31.6, 21.9 and 5.0 mJm-2, respectively. Using 

the values previously determined for quartz in Morrow et al.,[107] the Hamaker 

constant in Equation 2.4 for the bacterium-water-quartz system was estimated as 
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2.81 10-21 J. The estimated value of     

   in Equation 2.7 was 7.6 mJm-2, suggesting a 

repulsive AB interaction between the waaL cells and the quartz sand. 

Figure 3.13 presents the calculated XDLVO energy interaction profiles of waaL bacteria. 

Energy barrier were present when phosphate concentrations were 0 mM and 1 mM 

under both ionic strengths which were 10 mM and 100 mM. At the ionic strength of 100 

mM, the first energy barrier (Figure 3.10 A) values were 84.1kT (No phosphate) and 217 

kT (1 mM phosphate), respectively, where k is the Boltzmann constant and T is the 

absolute temperature in Kelvin. The secondary energy minimum (Figure 3.10 B) values 

were 15.4 kT (No phosphate) and 14.7 kT (1 mM phosphate). Similarly, when ionic 

strength was 10 mM, the first energy barrier changed from 13800 kT to 15000 kT for 

both 0 mM and 1 mM phosphate. The secondary energy minimums were 3.4 kT (No 

phosphate) and 3 kT (1 mM phosphate). 
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Figure 3.13 XDLVO interaction energy profiles of waaL bacteria in clean column with 

different phosphate concentrations under different ionic strengths. Insets highlight the 

locations of the secondary energy minima. 

The measured contact angles of water, glycerol, and diiodomethane on rfaC bacteria 

were 28.1  ( 0.4 ), 25  ( 0.9 ) and 48.7  ( 0.5 ), respectively. The values of    ,    

and    for rfaC bacteria are calculated as 35, 38.7 and 3.5 mJm-2, respectively. Using the 

values previously determined for quartz in Morrow et al.,[107] the Hamaker constant in 

Equation 2.4 for the bacterium-water-quartz system was estimated as 3.69 10-21 J. The 

estimated value of     

   in Equation 2.7 was 20.9 mJm-2, suggesting a repulsive AB 

interaction between the rfaC cells and the quartz sand. 
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Figure 3.14 presents the calculated XDLVO energy interaction profiles of rfaC bacteria. 

Energy barrier were present when phosphate concentrations were 0 mM and 1 mM 

under both ionic strengths which were 10 mM and 100 mM. At the ionic strength of 100 

mM, the first energy barrier (Figure 3.11 A) values were 46.7kT (No phosphate) and 76.6 

kT (1 mM phosphate), respectively, where k is the Boltzmann constant and T is the 

absolute temperature in Kelvin. The secondary energy minimum (Figure 3.11 B) values 

were 21.7 kT (No phosphate) and 21.4 kT (1 mM phosphate). Similarly, when ionic 

strength was 10 mM, the first energy barrier changed from 11000 kT to 12600 kT for 

both 0 mM and 1 mM phosphate. The secondary energy minimums were 4.73 kT (No 

phosphate) and 4.2 kT (1 mM phosphate). 
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Figure 3.14 XDLVO interaction energy profiles of rfaC bacteria in clean column with 

different phosphate concentrations under different ionic strengths. Insets highlight the 

locations of the secondary energy minima. 

Figure 3.15 presents the comparison of interactional energy profiles of E.coli O157:H7, 

rfaC, and waaL cells. The interaction energy of waaL was higher than rfaC in the primary 

energy barrier. In the secondary energy minimum, rfaC went deeper than waaL. 

Majority deposition of rfaC cells happened in the secondary energy minima.  
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Figure 3.15 Comparison of interactional energy profiles of E.coli O157:H7, rfaC, and 

waaL cells. Experimental conditions were: approach velocity = 0.31 cm/min, porosity = 

0.344 and pH = 7.2. Error bars represent standard deviations of triplicate measurements. 

4. Discussion 

4.1. Transport of E. coli O157:H7, rfaC and waaL cells within Sand Packs. 

It was reported that under high pH ( 8.4) conditions, the retention of E. coli O157:H7 

cells within quartz sand increased with decreasing ionic strength [113]. Consistent with 

findings in previous research, results from our study show that the deposition of E. coli 
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O157:H7, rfaC and waaL cells increased with decreasing ionic strength under a pH of 7.2, 

regardless of phosphate concentrations (Figures 3.3 and 3.6). For instance, in the 

absence of phosphate, the deposition rate coefficients of rfaC were 0.082 ( 0.0066) 

min-1 and 0.034 ( 0.0052) min-1 for 10 and 100 mM of ionic strength, respectively. A 

similar trend in deposition rate coefficients of waaL, results were 0.085 ( 0.016) min-1 

and 0.058 ( 0.012) min-1 for 10 and 100 mM of ionic strength solutions, respectively. 

The zeta potentials of E. coli O157:H7, rfaC and waaL cells were less negative, and in 

contrast to the trend observed for quartz sand, an increase in ionic strength led to a 

slight decrease in the zeta potential of the bacterial cells (Figure 3.9). For both quartz 

sand and bacteria cells, phosphate decreased zeta potential values. This could be 

related to adsorption of phosphate onto the surface of quartz sand (e.g., through the 

bonding between phosphorus and oxygen at the surface of quartz) and bacterial cells, 

which could increase the negative surface charge under the pH conditions employed in 

this research [112]. 

The energy barriers (Figure 3.12), could indicate the attachment of E. coli O157:H7, rfaC 

and waaL cells to the surface of quartz sand and thus change a system that would make 

it unfavorable for deposition. This trend is consistent with results from the packed-bed 

column transport experiments, which suggest that phosphate increased the transport of 

E. coli O157:H7, rfaC and waaL cells. Additionally, the magnitude of the energy barriers 

was generally higher for the 100 mM ionic strength conditions than the 10 mM ionic 

strength conditions. This is consistent with the observation that the transport of E. coli 
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O157:H7, rfaC and waaL cells within the quartz sand columns increased with higher 

ionic strength (Figures 3.3 and 3.6). 

Moreover, the magnitudes of the energy barriers of rfaC cells were higher than waaL 

cells under each conditions (Figure 3.12). This trend is consistent with the results from 

packed-bed columns experiment that the retention of waaL cells within quartz sand is 

higher than rfaC cells under each conditions (Figure 3.6). 

The total XDLVO energy interaction profiles reflect the summation of the LW, EDL, and 

AB interactions. The LW and AB components of the overall interaction energy are 

independent of water chemistry parameters and remain the same for all conditions. 

Ionic strength, however, had a significant impact on the zeta potential of E. coli O157:H7, 

rfaC and waaL cells and the sands (Figure 3.9). As the sand zeta potential became less 

negative when ionic strength increased from 10 to 100 mM, the zeta potential of E. coli 

O157:H7, rfaC and waaL cells became more negative.  In response to the changes in the 

zeta potential values, the calculated EDL interactions between bacterial cells and quartz 

sand under 100 mM ionic strength conditions were more repulsive than the EDL 

interactions under 10 mM ionic strength conditions. 

4.2. Role of Secondary Energy Minimum on the transport of E. coli 

O157:H7, rfaC and waaL cells. 

It was reported that bacterial deposition is likely occurring in the secondary energy 

minimum, which DLVO calculations indicated increases in depth with ionic strength [57]. 
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The van der Waals and electrostatic double layer interactions have different 

dependencies with respect to separation distance. Therefore, calculations of the total 

interaction energy profiles predict the presence of a secondary energy minimum at a 

greater separation distance than that of the energy barrier (Figure 3.12). The XDLVO 

profiles are highlighted in Figure 3.10 and 3.11 to indicate the magnitude of this 

secondary energy minimum. 

Bacteria approaching quartz sand would first experience an attractive force before 

encountering the significant repulsive energy barrier. Cells unable to overcome the 

energy barrier could remain associated with the quartz sand within the secondary 

energy minimum unless they had sufficient energy to escape. The magnitude of the 

secondary energy minimum increases with ionic strength. For instance, the depth of 

secondary minima of rfaC cells ranges from 3.4 kT at 10 mM to 15.4 kT at 100 mM, with 

corresponding separation distances of 4 to 24 nm and the absent of phosphate, 

respectively. 

The secondary minimum depths discussed previously were calculated by assuming that 

electrostatic component of the XDLVO interactions followed the Hogg et al. expression 

for interaction at constant surface potentials [114]. Other models for calculating 

electrostatic interactions include assuming a constant surface charge or by 

compromising between the two approaches and relaxing the assumption of constant 

charge or potential, the so-called linear superposition approximation (LSA) [65]. The 

three models of electrostatic interactions are similar for separation distances greater 
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than about 5 nm; however, at closer distances they show significant different behavior. 

Therefore, predictions of the presence or absence on an energy barrier and a secondary 

energy minimum at moderate to high ionic strengths are strongly dependent on the 

model chosen for the calculation of electrostatic double layer interaction. 
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APPENDIX: Figures from previous work 

Breakthrough curves of E. coli O157 in10mM Ionic Strength Solution 
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