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Abstract

DC and Microwave Analysis of Gallium Arsenide
Field-Effect Transistor-Based Nucleic Acid Biosensors

by

John K. Kimani

The University of Wisconsin–Milwaukee, 2012
Under the Supervision of Professor David P. Klemer

Sensitive high-frequency microwave devices hold great promise for biosensor design.

These devices include GaAs field effect transistors (FETs), which can serve as trans-

ducers for biochemical reactions, providing a platform for label-free biosensing. In

this study, a two-dimensional numerical model of a GaAs FET-based nucleic acid

biosensor is proposed and simulated. The electronic band structure, space charge

density, and current-voltage relationships of the biosensor device are calculated.

The intrinsic small signal parameters for the device are derived from simulated DC

characteristics and used to predict AC behavior at high frequencies.

The biosensor model is based on GaAs field-effect device physics, semiconductor

transport equations, and a DNA charge model. Immobilization of DNA molecules

onto the GaAs sensor surface results in an increase in charge density at the gate

region, resulting from negatively-charged DNA molecules. In modeling this charge

effect on device electrical characteristics, we take into account the pre-existing sur-

face charge, the orientation of DNA molecules on the sensor surface, and the distance

of the negative molecular charges from the sensor surface. Hybridization with com-

plementary molecules results in a further increase in charge density, which further

impacts the electrical behavior of the device. This behavior is studied through

simulation of the device current transport equations. In the simulations, numeri-

cal methods are used to calculate the band structure and self-consistent solutions

ii



for the coupled Schrödinger, Poisson, and current equations. The results suggest

that immobilization and hybridization of DNA biomolecules at the biosensor device

can lead to measurable changes in electronic band structure and current-voltage

relationships.

The high-frequency response of the biosensor device shows that GaAs FET de-

vices can be fabricated as sensitive detectors of oligonucleotide binding, facilitating

the development of inexpensive semiconductor-based molecular diagnostics suitable

for rapid diagnosis of various disease states.
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1

Chapter 1

Introduction

Medical diagnostics have experienced tremendous advances over the last century

and continue to enjoy state-of-the-art cutting edge technology today. To meet the

need for diagnostics at the molecular level, FETs and semiconductor integrated cir-

cuit technology have provided a base to achieve miniaturized biosensor devices for

in vitro and in vivo biomolecular sensing. A biosensor then, can be defined as an

analytical device that uses an immobilized biospecific derived recognition system in-

tegrated within a transducer to detect and convert direct biochemical reactions into

quantifiable energy signals. The energy signals may take the form of an electrical,

optical, thermal, or magnetic response. The biochemical reactions detected by the

biosensor include the action of enzymes, antibody, antigen, organelles, DNA, cells,

tissue, or organic molecules.

The interaction of biological molecules results in changes to either chemical or

physical properties. The parameters involved could include a change in mass, ab-

sorbance, heat, conductance or electron transfer. The transducing system converts

this change into an appropriate signal and relays it for further processing. Figure

1.1 shows a generalized biosensor with a transducer that converts the biochemical

reaction of analytes A and B into an electrical signal. The signal is then ampli-

fied and processed by appropriate data processing unit. In the biosensor, a sensing

molecule B is a biologically sensitive material immobilized onto the transducer. A

solution containing analyte A is then brought into the system for recognition.

Depending on the kind of chemical or physical change involved, and the trans-

ducer used, biosensors can be of various kinds. Examples of biosensors range from
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Figure 1.1: A general biosensor device.

optical biosensors such as those based on surface plasmon resonance [8, 9], elec-

trochemical biosensors which are potentiometric or amperometric [10, 11], quartz

crystal microbalance sensors based on the piezoelectric effect [12,13], and cantilever

based biosensors [14–16]. All of these biosensors have been widely used to detect

the presence of specific substances and biomolecules in sample solutions including

oxygen [17,18], pH variations [19,20], enzymes [21,22], proteins [23,24], and nucleic

acids [25–27].

Devices operating on a biosensor’s basic principles were first observed in the

1920s [28, 29]. In the 1950s, L. C. Clark described the first biosensor and its prin-

ciples of operation in a paper he published in the ASAIO journal, in which he

described the operation of an electrode to detect oxygen tensions in blood and tis-

sue [17]. Clark, henceforth referred to as the father of biosensors, published a more

definitive paper in 1962 which outlined the principles of operation of the first glu-

cose biosensor. This sensor introduced enzyme transducers based on the enzyme

glucose oxidase. The device revealed that oxygen and glucose concentrations were

proportional. This transducer served as a platform for electrochemical sensors [21].

Following Clark’s research, Updike and Hicks [30] built a functionalized enzyme elec-

trode for measuring glucose, and Guibault and Montalvo developed the first urea

sensor based on a potentiometric approach using the enzyme urease immobilized
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on an ammonia electrode [31]. The first ion-selective field effect transitor (ISFET)

was introduced in 1970 by Bergveld [32]. In 1975, Lubbers, et al., developed the

first fiber-optic biosensor that measured O2 or CO2 [33], and a fiber optic glucose

biosensor based on surface plasmon resonance appeared in 1980. The first DNA

biosensor based on a quartz crystal microbalance (QCM) was described by Fawcett

et al., in 1988 [34].

Commercialization of biosensor technology began in 1975 when the Ohio-based

Yellow Springs Instrument Company marketed its glucose analyzer [35]. In 1992,

the first hand-held biosensor was released by i-SAT [36]. The great promise held by

these biosensors led to numerous research projects on diverse biosensors beginning

in the 1980s and 1990s [37–39].

The merger between the biochemically selective recognition and solid state in-

tegration circuits has resulted in the miniaturization of biosensor devices, making

it possible to obtain results using only a small sample of specimen. This minia-

turization is possible because of the micro level fabrication technology employed in

the semiconductor industry [16, 40, 41]. Micro level fabrication enables multisensor

realization on a single chip where different substances can be detected simultane-

ously. The ease of fabricating many devices on one chip makes cost effective large

scale production possible. Due to the minute size of the sensors, implantation has

also become possible, enabling in vivo measurements. Reliable bio/chemical FETs

have been applied effectively in various arenas including medical diagnostics [42,43],

environmental monitoring [44,45], and food quality control [46, 47].

Field-effect transistors have played an essential role in pH and molecular de-

tections, forming a novel platform for biosensor devices. The operation of these

biosensors work on the same principles used in MOSFET devices: they have an

active channel through which electrons or holes travel from source to drain (or vice

versa in the case of holes). The channel however, is modulated by a potential applied
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to an isolated gate metal electrode. For MESFETs, the gate metal is effectively re-

placed by a biorecognition molecule immobilized on the device. Interaction of the

target biomolecules in solution with the immobilized biorecognition molecule leads

to electron or charge transfer and the creation of a potential difference which modu-

lates the conducting channel within the semiconductor. Other label-free field-effect

transistors such as those based on silicon have been used in DNA sensing [48–50].

Microchips and silicon nanowires have been favored because of their miniaturiza-

tion and sensitivity [16,41,51,52], but the fabrication of nanowires makes this tech-

nology unsuitable for mass production. Surface plasmon resonance (SPR) DNA

sensors have also been proposed for their high sensitivity [53–55]. SPR sensors how-

ever, require complex equipment setup [56, 57], are affected by optical interference

fringes [55], and require modified probes. Their sensitivity also decreases with short

DNA sequences and small packing density [58]. The performance of these devices

depends on various parameters including the selectivity of the bioreceptor, magni-

tude of charge transfer, sensitivity of the transducer and more. This dissertation

focuses on DNA-based biosensors fabricated on GaAs FETs. GaAs transistors offer

a platform with great promise especially when the need exists for faster, smaller, and

cheaper sensing devices for molecular diagnostics. The technology provides label-

free devices which are easy to use and minimize any modifications of biomolecules

that could result in the long detection times and complicated protocols required by

traditional methods.

In this research, GaAs field-effect devices are simulated and analyzed as plat-

forms for DNA biosensors. The DC characteristics are established for the GaAs

device incorporating a DNA charge model for single strands immobilized on the

gate region, and after hybridization by complimentary target strands. The potential

for microwave frequency applications is also discussed with the extraction of small

signal parameters. This study is also motivated by the fact that DNA hybridiza-
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tion leads to rapid diagnosis of infectious diseases using short DNA sequences which

serve as genetic markers for these diseases. Biomolecular binding activity can be

directly transduced into an electrical signal using microwave field-effect devices that

have high speed and sensitivity with readily available and mature semiconductor

fabrication techniques.

Chapter 2 summarizes GaAs characteristics together with field-effect devices that

form the biosensor platform. Device operation and important electrical parameters

are also discussed. The detection of DNA biomolecules involves the understanding

of the DNA structure, immobilization onto the GaAs surface, hybridization, and

charge transfer model studied in Chapter 3. Chapter 4 deals extensively with the

field-effect device physical model which details the theory behind the charge carriers

and current equations. Chapter 5 explains the numerical methods used to calculate

the band structure and the self-consistent solutions for the coupled Schrödinger,

Poisson, and current equations in the simulations. The simulations and results,

which include the device setup, calculations, and device modeling are discussed in

Chapter 6, and conclusions presented in Chapter 7.
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Chapter 2

GaAs Characteristics and Devices

Gallium arsenide is a “III-V” compound semiconductor composed of the elements

gallium in group III and arsenic in group V of the periodic table. Created and

reported by Goldschmidt in 1929 [59], the electronic properties of GaAs and other

III-V compounds as semiconductors were reported 1952 when the first published

article on the subject appeared [1]. The two elements form a crystal lattice that

gives the compound semiconductor properties similar to those in group IV, such as

silicon and germanium. GaAs is based on crystalline material having two sublattices,

gallium and arsenic; each face centered cubic (fcc) structure. The two sublattices

are offset by half the diagonal of the fcc cube from each other. Figure 2.1 shows the

unit cube crystal structure of GaAs.

Figure 2.1: GaAs crystal structure.

Each Ga atom in the lattice is surrounded by four equidistant As atoms and vice
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versa, forming a crystal structure configuration called a cubic zincblende. The bond

between each pair of nearest neighbors is formed by electrons with opposite spin.

The band structure of semiconductors is dictated by the laws of quantum mechan-

ics. In particular, electrons in isolated atoms can only exist at specific energy levels.

Therefore, these atoms possess specific energy values. The bands of interest where

these electrons can be found in semiconductor materials are termed conduction and

valence bands, having energies Ec and Ev respectively. Between these bands exists

a forbidden region with non-existent states called the band gap, Eg, an important

parameter in the material properties of semiconductors. At room temperature and

normal atmospheric conditions, GaAs has an energy band gap value of 1.42eV com-

pared to the silicon value of 1.2eV. GaAs is also a direct band gap material since

the minimum of the conduction band is directly above the maximum of the va-

lence band. GaAs electron mobility at 300 K (≈8500 cm2/V-s) is about six times

that of Si (≈1400cm2/V-s) with a higher drift velocity desired for optimum device

performance. The carrier velocity is impacted by electric field which subjects it to

an accelerating force (F = −qE). Carrier velocity is also affected by opposition

forces from electron scattering and collisions with the crystal lattice. At low field

strengths, the velocity is defined as the drift velocity, v, and is linearly related to

the electric field strength through a constant of proportionality µ, expressed as

v = µE (2.1)

where the electron velocity v is in cm/s, E is the electric field strength (V/cm)

and µ (in cm2/V-s) depends on the mean free time between collisions (τc) and the

electron effective mass (m∗). This can be expressed as

µ = −qτc
m∗

(2.2)
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with the velocity v in (2.1) written as

v = −qτc
m∗

E (2.3)

This relationship is graphed in Figure 2.2 for GaAs and silicon. Although the

Figure 2.2: Drift velocity-electric field characteristics of GaAs and Si [1].

peak mobility of GaAs at the linear region can be up to six times greater than

that of silicon, the maximum drift velocity is always at least two times that of Si.

Mobility is a function of temperature and impurity concentration, and at equilibrium

conditions, the saturation, or peak, velocity of GaAs is about 2.1 x 107 cm/s [1].

Appendix B lists important GaAs properties and material characteristics, and a

complete physical model of GaAs and field-effect devices used in this research are

discussed in detail in Chapter 4.

The superior transport properties of GaAs over those of silicon make it desirable

for use at microwave frequencies. Another major advantage of GaAs in microwave
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applications is the higher resistivity substrates available with GaAs. Whereas un-

doped Si materials have resistivities of approximately 100 Ω-cm, GaAs materials can

be made with resistivities greater than 108 Ω-cm, providing a better semi-insulating

substrate in which device isolation can be easily achieved for GaAs FET applica-

tions.

2.1 The Shockley FET Model

The main concept of the field effect transistor dates back to the 1930s when two

patents were filed on methods for controlling an electric current [28,29]. However, it

wasn’t until the 1950s when Stuetzer in 1950 [60], and Shockley in 1952 [61] analyzed

and described the modern FET device. Since their actual demonstration in the late

1960s and early 1970s [62–64], they have played an important part in microwave

industry in the design of amplifiers, mixers, oscillators, switches, attenuators, mod-

ulators, and high speed integrated circuits [40].

Figure 2.3 shows a simple GaAs MESFET cross-section whose main features are

the metal-semiconductor junctions. In the device, an n-doped (around 1017 cm−3)

GaAs region forms an active channel and is grown epitaxially on a low-conductivity

semi-insulating substrate. Source and drain contacts (comprised of Au/Ge alloys)

form ohmic contacts on the active channel, while the gate is a Schottky barrier.

Popular gate contacts are Al, Ti-Pt-Au layered structure, and Pt. The gate also

can be formed by a p+ region. A gate potential (also called gate bias) modulates

Figure 2.3: Simple cross-section of a GaAs MESFET.
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the width of the depletion region under the gate, varying the cross section area of

the active channel. In this way, the source-drain current IDS can be controlled. As

the gate bias increases, the drain region of the channel becomes increasingly reverse-

biased, finally saturating and limiting further carrier flow. At this point the channel

is referred to as being “pinched off”, and current in the channel remains unchanged.

In modern devices, the conducting channel has sub-micron nominal printed gates

that can control the flow of current in the channel, making the device behave as a

high speed voltage controlled switch.

Figure 2.4 shows a schematic of the Shockley model of a MESFET proposed

by William Shockley [61]. This model uses a gradual channel approximation which

assumes that the channel dimensions are a gradually varying function of position.

The region under the gate is totally depleted with a sharp boundary between this

region and the neutral undepleted channel. At each point, the depletion width Ad(x)

Figure 2.4: MESFET showing the depletion region and the channel for current flow
(dotted line).

under the gate is a solution of the Poisson equation for a one dimensional junction

and is a factor of the built-in voltage Vbi, the gate voltage VGS, and the channel

voltage V (x), given by

Ad(x) =

[
2εrε0
qNd

(V (x) + Vbi − VGS)

] 1
2

, (2.4)
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which leads to the incremental change of the channel potential, dV

dV = IchdR =
Ichdx

qNdµnW [A− Ad(x)]
, (2.5)

where Ich is the channel current, qNd is the charge density, µn is the electron mobility,

and W [A−Ad(x)] is the channel area. The current equation Ich can thus be obtained

by substituting equation (2.4) into (2.5) and integrating from x = 0 to L giving

Ich = ID = g0

VDS − 2

3

[
(VDS + Vbi − VGS)

3
2 − (Vbi − VGS)

3
2

]
V

1
2
po

 (2.6)

for MESFET linear operation where the drain voltage VDS is less than the saturation

drain voltage VD(sat), (VDS < VD(sat)). The dashed line is the current path in the

undepleted region on Figure 2.4. Here, Vpo is the pinched-off voltage at the onset of

saturation, defined by

Vpo =
qNdA

2

2ε
, (2.7)

where A is the thickness of the active layer, ε = εrε0 is the permittivity of GaAs,

and g0 is the channel conductance when the channel is fully open (Ad(x) = 0), given

by

g0 =
qµnNdWA

L
, (2.8)

where W is the gate width and L is the gate length.

At saturation, (VDS > VDS(sat)) where

VDS(sat) = Vpo − Vbi + VGS, (2.9)

the drain current becomes saturated and remains unchanged with further changes
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in VDS. This current is given by

ID(sat) = g0

[
Vpo
3

+
2 (Vbi − VGS)

3
2

3V
1
2
po

− Vbi + VGS

]
. (2.10)

Typical current-voltage characteristics curves for the active and saturation re-

gions at different gate voltages for the Shockley model are shown in Figure 2.5.

Similar current-voltage relationships have also been obtained in models described

by Curtice [65, 66], Statz et al. [67], and Chang et al. [68].

Figure 2.5: Current voltage characteristics of a MESFET.

2.2 Small Signal Equivalent Circuit

Equivalent circuits for the MESFET can be modeled as either small signal or large

signal models. Large signal models can be described by increased changes in terminal

voltages that result in a nonlinear response of the drain-source current characteris-

tics. Information from multiple bias points is thus extracted and circuit elements

like capacitances, inductances, and resistances are described by empirical or phys-
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ical expressions that are functions of device and terminal voltages. In small signal

equivalent models, however, small gate-to-source voltages produce linear changes in

drain-source currents. This model is expressed by a simple lumped-element circuit;

at a given bias point in the saturation region the circuit elements can be determined

by either DC current-voltage characteristics or scattering parameters (s-parameters)

over a certain frequency range. In this work, we consider only the small signal model

since it is sufficient to model the FET device where the applied signal is much smaller

than the bias voltage.

Small signal equivalent circuit models have been determined [2, 69–73], and one

commonly-used model is shown in Figure 2.6. The model shown is for an extrinsic

device operating in common-source configuration in the saturation region. This

Figure 2.6: Basic equivalent circuit for GaAs MESFET.

extrinsic model includes the intrinsic device, shown in the box and in Figure 2.7,

together with the extrinsic (parasitic) elements. In the intrinsic FET model, Cgs and

Cgd represent the geometric capacitances due to the space charge region between the

gate and source electrodes, and between the gate and drain electrodes respectively.

Cds models the substrate capacitance between the drain and the source, gm is the

frequency-independent transconductance, Rds is the output resistance, and Ri is a
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Figure 2.7: Intrinsic equivalent circuit for GaAs MESFET.

charging resitance for the distributed nature of RC networks. Other small signal

figures of merit include the delay time, τ , which is the response time of the drain to

changes in charge at the gate, the transition frequency ft at which the current gain is

unity, and the maximum frequency of operation fmax. The extrinsic elements include

the source, drain, and gate-metal resistance Rs, Rd, and Rg that are associated with

device contacts, on the order of 1Ω for microwave FETs [74]. Parasitic inductances

represented by Lg, Ls, and Ld also arise from metal contacts with the device surface,

with values typically ranging from 5− 10pH for Lg and Ld, and 1pH for the Ls [74].

The physical origin of these components is shown in Figure 2.8 where the equiv-

alent circuit is superimposed on a MESFET cross-section. The figure shows both

the parameters responsible for the active characteristics as well as some parasitic

elements. These circuit elements are derived from small-signal s-parameter mea-

surements or from DC characteristics as described next.

2.2.1 Transconductance, gm

The MESFET can be modeled as a voltage-controlled current source, since the

drain current can be altered by small variations of the gate electrode potential. The

transconductance that defines the intrinsic small signal current gain is obtained
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Figure 2.8: Physical origins of the equivalent circuit components of a MESFET [2].

from the differentiation of the drain current expression with respect to gate-source

voltage with constant drain-source voltage. That is

gm =
∂ID
∂VGS

|VDS=constant (2.11)

which for the Shockley model evaluates to

gm = g0
(VDS + Vbi − VGS)

1
2 − (Vbi − VGS)

1
2

V
1
2
po

(2.12)

for the linear region and

gm(sat) = g0

[
1−

(
Vbi − VGS

Vpo

) 1
2

]
(2.13)

for the saturation region.
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2.2.2 Output Resistance, Rds

Output resistance is the channel resistance that is often given by its inverse, the

output conductance, gds. This conductance is derived from the change in drain

current expression with respect to drain-to-source voltage, determined by

gds =
1

Rds

=
∂ID
∂VDS

. (2.14)

The output resistance is low at low bias levels and increases as the device reaches

saturation.

2.2.3 Gate-to-Source Capacitance, Cgs

The gate-to-source capacitance, Cgs, for a given constant drain potential represents

the rate of change of free charge on the gate electrode as a function of small variations

in gate bias voltage, given by

Cgs =
∂Qg

∂VGS
|VGD=constant, (2.15)

where Qg is the gate charge determined by integrating the normal component under

the gate over the gate area, using the Poisson equation. Knowledge of this capac-

itance is useful for input impedance and high frequency performance and typically

on the order of 1pF/mm gate width.

2.2.4 Gate-to-Drain Capacitance, Cgd

The gate-to-drain capacitance, Cgd, is found from the derivative of the depletion

charge below the gate as a function of gate-drain voltage at a constant gate-to-
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source voltage as follows,

Cgd =
∂Qg

∂VGD
|VGS=constant. (2.16)

Cgd is typically in the order of 1pF/mm gate width and smaller values are essential

for greater reverse isolation of the device at high frequencies.

2.2.5 Drain-to-Source Capacitance, Cds

Cds is the substrate capacitance that accounts for geometric capacitance effects

between the source and drain electrodes and given by

Cds =
∂Qg

∂VDS
|VGS=constant (2.17)

This capacitance is typically considered parasitic and is an order of magnitude less

than Cgs, and Cgd.

2.2.6 Transition Frequency, fT

For use in microwave applications, important transistor figures of merit are the gain

bandwidth product fT , and the maximum frequency of oscillation, fmax. For short

gate lengths, fT is related to the transit time of electrons across the channel and is

given by

fT =
gm

2π(Cgs + Cgd)
. (2.18)

The parameter fmax, is also defined as the frequency which the unilateral power gain

reduces to one. It is given approximately by

fmax =
fT
2

√
Rds

Rg

, (2.19)
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where Rg is the gate resistance. This is the maximum frequency at which power

can be extracted from the device, and for high frequency performance, short gate

length and high semiconductor carrier velocities are essential. This also reduces the

transit time τ required for carriers to travel from the source to the drain, given by

τ =
L

µEx
≈ L2

µVD
(2.20)

for low fields and

τ = L/vs (2.21)

for high fields. The saturation velocity is denoted as vs.

2.2.7 Charging Resistance, Ri

This resistor accommodates gate charging current paths and models finite charging

times proportional to the carrier transit delay with a constant K = 0.1747 [75],

given by

Ri =
Kτ

Cgs
. (2.22)

For the overall equivalent circuit shown in Figure 2.7, the parameter values have

been determined for various device geometries [74–81] and Table 2.1 shows some

typical circuit values for a small-signal GaA MESFET with a gate length in the

range 0.25µm to 1µm.

Rds: 250 - 500Ω Cgs: 0.15 - 0.4 pF
Ri: 1.0 - 10Ω Cgd: 0.01 - 0.03 pF
Rg: 0.5 - 3Ω Cds: 0.05 - 0.1 pF
Rs: 1.0 - 5Ω gm: 20 - 40 mS
Rd: 1.0 - 5Ω τ : 0 - 5 ps

Table 2.1: Typical equivalent circuit values for a small-signal GaAs FET.
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2.3 The Ungated GaAs FET

The structure of an ungated GaAs FET can be compared with that of a MESFET

with a missing gate Schottky contact, leaving a free GaAs surface between the source

and the drain ohmic contacts. This surface has a pinned Fermi level by a high density

of surface states, leaving a depletion layer whose shape and thickness determine the

low field resistance and the saturation current. The effect of the surface states

is described in section 4.4.3. Provided that the source-to-gate separation region

is higher than the depletion depth, the ungated FET acts as a saturated resistor

with an electric field almost perpendicular to the surface. The channel (and hence

the resistivity of this device) is modulated by both the channel and the surface

potentials.

Figure 2.9 shows a schematic of an ungated FET. Baek et. al. [5] used this simple

model to deduce the electron saturation velocity, vs, and the surface built-in voltage

Vsbi as factors of device length and measured current-voltage characteristics. For a

Figure 2.9: Simple Cross-section of an ungated GaAs FET.

uniform doping profile with an applied drain voltage, the surface depletion depth

is a factor of the uniform doping density, Nd, the surface built-in voltage, Vsbi, the

channel potential V (x), and the surface potential, φs(x), given by

qNd

2ε
h2(x) = Vsbi + V (x)− φs(x). (2.23)
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The surface potential, φs(x), varies linearly along the surface according to

φs(x) =
VD
L
x, (2.24)

where VD is the applied drain voltage and L is the contacts separation distance.

The current-voltage characteristics of this device can be modeled as a two-piece

lineal approximation where we first consider the low electric field (electron velocity

< saturation velocity) with a constant electron mobility, followed by the onset of

saturation, illustrated in Figure 2.10.

Figure 2.10: Two-piece linear approximation for electron velocity.

As the drain-source potential is increased, a current flows and the current-voltage

behavior for the region below saturation velocity is linear, directly following the

velocity-field characteristics of the GaAs semiconductor. The channel current, ID,

in this region is given by

ID = qNdµnW [A− h(x)]
∂V (x)

∂x
, (2.25)

where qNd is the charge density, µn is the low field mobility, W [A − h(x)] is the

channel area, and ∂V (x)
∂x

is the electric field. Integrating equation (2.25) from x = 0

to L with the boundary conditions for V (x) expressed as

V (0) = RcID
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V (L) = VD −RcID (2.26)

leads to an expression for ID defined as

G =
1

2

[
h2(0)− h2(L)

]
− d [h(0)− h(L)] + d(d− A) ln

(
h(0) + d− A
h(L) + d− A

)
(2.27)

where

G =
εVD
qNd

(2.28)

h(0) =

[
2ε

qNd

(Vsbi +RcID)

] 1
2

(2.29)

h(L) =

[
2ε

qNd

(Vsbi −RcID)

] 1
2

(2.30)

and

d =
LID

WqµnNdVD
. (2.31)

Here, Rc is the ohmic contact resistance under the source and drain contacts and

ε is the dielectric permittivity. For GaAs ε = εrε0 ≈ 1.14x10−10F/m [6]. In cases

where Rc → 0, the depletion layer becomes uniform with current, ID given by

ID = WqµnNd
VD
L
A

[
1−

(
Vsbi
Vpo

) 1
2

]
, (2.32)

where Vpo is defined in equation (2.7). Hence the resistance of the channel can be

approximated as

R = Rch =
L

WqµnNdA

[
1−

(
Vsbi
Vpo

) 1
2

] . (2.33)

For electron velocities below the saturation velocity (where the electric field is below

the saturation electric field Es in Figure 2.10), the device behaves as a resistor with

the slope of the ID − VD characteristic curve defining the sum of the channel and

contact resistances. The saturation current, IDsat, in the saturation region can be
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expressed as

IDsat = WqNd

[
A−

{
2ε

qNd

(Vsbi +RcIDsat)

} 1
2

]
vs, (2.34)

where vs is the electron saturation velocity. This equation can be solved for IDsat

obtaining

IDsat = WAqNdvs

[
1 +

χ

2
−
(
χ2

4
+ χ+

Vsbi
Vpo

) 1
2

]
, (2.35)

where

χ =
WAqNdvsRc

Vpo
. (2.36)

In the limiting case where Rc = 0, IDsat reduces to

IDsat = WqNdA

[
1−

(
Vsbi
Vpo

) 1
2

]
vs. (2.37)

A typical current-voltage characteristics curve for the ungated FET is shown in

Figure 2.11.

Figure 2.11: Current voltage characteristics of ungated FET.
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Chapter 3

DNA Properties and Sensor Model

3.1 The DNA Structure

Deoxyribonucleic acid (DNA) is a biological polymer molecule typically made up

of thousands of nucleotide monomers serially arranged in a double-helix consisting

of nitrogenous bases, and phosphate group linkages, attached to a backbone of

deoxyribose, a pentose sugar. Genetic information is defined over the entire length

of the molecule, encoded within the nucleotide sequence. Figure 3.1(a) shows the

double helix DNA structure which was first proposed by J. Watson and Crick in

1953 [82] based on x-ray crystallography images by Rosalind Franklin [83]. Figure

3.1(b) shows the “ball-and-stick” molecular appearance of the double helix structure.

The structure is made up of two single strands twisted and linked to one another by

hydrogen bonding which follows base-pairing rules. The nitrogenous bases, adenine

(A), thymine (T), guanine (G), and cytosine (C), are classified as either pyrimidines

or purines. Pyrimidines are derived from the heterocyclic compound pyrimidine, and

purines are derived from the fused-ring compound purine, with structures shown in

Figure 3.2 and Figure 3.3 respectively.

The bases are linked to the deoxyribose sugar through a β-glycosidic linkage

from the N-9 position of the purine, or the N-1 position of the pyrimidine to the

1’C position of the sugar to form a nucleoside molecule. (The notation (X-1), de-

notes the nitrogen or carbon molecule position in the base, and (1’X), denotes the

carbon position on the sugar molecule.) The nucleoside molecule is in turn linked

to a phosphate group on the 5’C position of the sugar to form a nucleotide molecule
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(a) (b)

Figure 3.1: DNA molecule [3].

(a) (b)

Figure 3.2: Pyrimidine bases (a) Thymine and (b) Cytosine.

called deoxyribonucleotide. Repeated units of various types of nucleotides joined

together form polynucleotide polymers that define the nucleic acid DNA. The nu-

cleotides are linked to each other through phosphodiester linkages between the 3’C

of a nucleotide and the 5’C of an adjacent one. Figure 3.4 shows a single strand
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(a) (b)

Figure 3.3: Purine bases (a) Adenine and (b) Guanine.

of a DNA polynucleotide formed by four nucleotides with bases guanine, cytosine,

thymine, and adenine. The sequence can be defined by the abbreviations of the

bases GCTA in the 5’→3’ direction, where 5’ and 3’ designate the carbon on the

sugar at each end of the strand.

Figure 3.4: Sequence GCTA of a DNA single strand from [3] showing the phosphate
group.

Through base pairing, two complementary single strands oriented in opposite
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directions (“polarities”) join to form the double helix of Figure 3.1. This DNA

molecule is completely twisted every 10 base pairs, or 3.4 nm, referred to as the

pitch. The base pairs are 0.34 nm apart on the same strand, forming a hydrophobic

core with the sugar molecule. The phosphate groups are on the surface, and each

group carries a negative charge. The nucleotides are thus negatively charged at

neutral pH.

3.2 DNA Bonding and Hybridization

The base pairing behind the duplex molecule is formed by a pyrimidine and purine.

The pyrimidine adenine pairs with the purine thymine (A-T) through two H bonds

and guanine pairs with cytosine (G-C) through three H bonds. This pairing results

in complementary chains that agree with the Watson and Crick’s model shown in

Figure 3.5.

Figure 3.5: Planar view of the double helix showing the H Bonds [3].
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The H bonds can be broken at high temperatures in a process called denatur-

ization. In this process, the double helix separates into its single strands. Denatur-

ization can be determined by UV absorption measurements as shown in Figure 3.6.

Figure 3.6: DNA absorption spectrum.

At the wavelength of maximum absorption, 260 nm, the denatured single stranded

DNA has 40 percent more absorbance than the double stranded native DNA. The

low absorbance in double stranded DNA results from the fact that it is a stiff and

highly elongated molecule with high viscosity. An increase in temperature reduces

the viscosity, leading to the collapse of the DNA molecule in a process called melt-

ing. The melting temperature, Tm, is the temperature at which 50 percent melting

has occurred. This temperature is affected by the ionic strength in the medium at

neutral pH, and the ratio of the G-C base pair content to A-T base pair content of

the given strand. The presence of three H bonds per G-C base pair compared to

two H bonds per A-T base pair affects the temperature according to

Tm = 81.5 + 16.6logM + 41(nG+ nC)− 500/Ldna
◦C (3.1)
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where Ldna is the length of the DNA duplex in base pairs, M is the salt concentration,

and nG and nC are the fractions of G and C in the DNA. For DNA with less than

20 base pairs, a simple formula for calculation of Tm is

Tm = 4(G+ C) + 2(A+ T ) ◦C (3.2)

At temperatures below Tm, complementary single strands of DNA begin to re-

associate in a process called renaturation. This process is also called hybridization,

or annealing, and occurs naturally at room temperature for strands with melting

temperature greater than room temperature.

3.3 Genetic Markers and Diseases

Thousands of information-containing elements are encoded in the DNA structure.

These elements are called genes, and are contained in a short or a long DNA se-

quence. When expressed in certain organisms, genetic disorders and some diseases

can be identified by specific gene marker sequences, or “alleles”. Such diseases in-

clude sickle cell disease [84], lyme disease [85], salmonella infection [86], hepatitis

C [87] Huntington’s disease [88], color blindness [89], and many more. The gene

marker alleles are abnormalities associated with specific oligonucleotides, small se-

quences of DNA up to 30 base pairs long. The abnormalities are caused by small

mutations or deletions of bases in the DNA sequence, and can be detected by com-

plementary oligonucleotide primers.

Sickel cell anemia, for example, is a gene defect from a known mutation of a single

nucleotide (A to T) in the sequence 5’-CACCTGACTCCTGA-3’, to the mutant

sequence 5’-CACCTGACTCCTGT-3’ of the β-globin gene. An allele-specific primer

will hybridize only with the mutant (sickle cell) DNA. Table 3.1 shows gene marker

alleles for other genetic disorders that could be detected by the biosensor, and their
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complimentary allele specific primers that are immobilized on the surface of the field

effect biosensor device.

Genetic disorder Allele DNA Sequence References
Sickle cell 5’-CACCTGACTCCTGT-3’ [84,90]

complimentary 5’-ACAGGAGTCAGGTG-3’
Lyme Disease 5’-ATGCACACTTGGTGTTAACTA-3’ [85,91]

complimentary 5’-TAGTTAACACCAAGTGTGCAT-3’
Cystic Fibrosis 5’-TAGTAACCACAA-3’ [92,93]

complimentary 5’-TTGTGGTTACTA-3’
Tangier 5’-CCTTGCCTCCTAGTGTAGGATTT-3’ [94]

complimentary 5’-AAATCCTACACTAGGAGGCAAGG-3’
Salmonella 5’-TATGCCGCTACATATGATGAG-3’ [86,95]

complimentary 5’-CTCATCATATGTAGCGGCATA-3’
Hepatitis C 5’-ACCCTCGTTTCCGTACAGAG-3’ [87,96]

complimentary 5’-CTCTGTACGGAAACGAGGGT-3’

Table 3.1: Allele specific gene marker sequences for various diseases.

3.4 Immobilization onto GaAs Surfaces

To detect these disease markers, the transducer (GaAs) surface is functionalized

with immobilized complimentary ssDNA strands on the gate region of the field-

effect device. The immobilization of the probes to the sensor occurs by means of

a robust covalent bond between the oligonucleotide probes and the sensor surface.

The surface is typically the (100) crystal plane family, produced by epitaxial growth

or decapping methods, resulting in evenly spaced crystal planes with square lattice

symmetry. These crystal planes are polar with either Ga or As atoms on the surface.

The atoms on the surface have two back bonds with other atoms in the bulk material

and two unsaturated dangling bonds.

Research on biosensors based on GaAs devices started with the attachment of

biomolecules on solid surfaces of metals and semiconductors [97–101]. Parton, et
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al., studied the material properties of GaAs, semiconducting polymers, and acous-

tic waves as platforms for biosensor applications [102]. The first attachment of

biomolecules on GaAs was reported by Sheen, et al., in 1992 [103] who attached

self-assembled monolayers (SAMs) on the GaAs surface. Sheen concluded that ac-

tive As sites reacted with molecules, enabling passivation and attachment of other

biomolecules on GaAs surface. Other studies on the attachment mechanism, ori-

entation, strength, and composition of biomolecules on bare GaAs surfaces were

conducted and reported in [104–113].

The attachment of DNA on GaAs started when Liu, et al., immobilized DNA on

gold-covered glass and proposed a solid-support chemistry for DNA reactions [114].

Later, Goede Karste, et al., showed that peptide clusters could self-assemble on semi-

conductor surfaces [115, 116]. In 1994, Ratner and co-workers [97] studied the ori-

entation of purine and pyrimidine bases, and concluded that the bases self-assemble

on gold surfaces in an ordered 2-D lattice, similar to that of a bulk crystal. Steel, et

al., of Columbia University investigated the effect of oligonucleotide probe length on

assembly onto solid surfaces. Steel concluded that the surface density of thiolated

oligonucleotides shorter than 24 bases is mostly independent of probe length, and

they conform to an end-attached configuration where each ssDNA strand is bound

to the substrate solely through a 5’-end thiol [117]. Ladan, et al., attached and

studied the orientation of DNA oligonucleotide probes on a GaAs surface [118,119].

In his dissertation, Yang performed an extensive study of attachment and char-

acterization of DNA probes on GaAs-based semiconducting surfaces [120]. Yang’s

investigation showed that non-modified DNA and thiol-modified DNA can attach

to the As terminated surface. The bonds involved utilize a strong covalent bond on

the 5’-end of the thiol-modified or non-modified DNA. Weak bonds, also reported

by Ladan, et al., [118], were also found to exist between the nitrogen, or oxygen of

the bases with the As atoms, or between the nitrogen in the bases that could lead
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to π − π interactions between neighboring DNA molecules. The weak bonds allow

the DNA molecules to remain on the surface, but they can be removed by ultrasonic

cleaning after immobilization [120, 121], or by the inclusion of a mercaptohexanol

(MCH) spacer molecule that displaces nitrogen bonds [118,119].

The specific sequences of oligonucleotides attached could be of the form shown

in Table 3.1, such as 5’-AGTCAGTCCTA-3’ for the sickle cell gene marker, or a

thiol-modified oligonucleotide of the form HS-(CH2)6-5’-AGTCAGTCCTA-3’ for the

same gene marker. The DNA oligonucleotides immobilized onto the GaAs surface

were found to orient at an angle of about 54◦ with respect to the GaAs surface [112,

113, 119, 120]. Figure 3.7 shows the orientation of DNA molecules on the biosensor

device.

Figure 3.7: Side view appearance of DNA oligonucleotides attached on GaAs surface.

In the proposed DNA sensor device, an immobilized oligonucleotide probe hy-

bridizes with the complementary gene marker ssDNA sequence. This hybridization

event is transduced into an electrical signal following charge transfer and accumu-

lation on the sensor surface.

3.5 Charge Transfer Model

The negatively charged DNA strands make it possible to measure both immobi-

lization onto the field-effect transistor surface and specific target DNA binding to
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the oligonucleotide probes. DNA sensors based on Bergveld Ion-selective field-effect

transistor principles [32] have been developed. The sensors employ an electrolyte-

insulator-silicon structure where the DNA oligonucleotides attach to the insulator,

(SiO2-electrolyte interface) [48,49,122–124], and require an electrode to establish a

voltage bias in the solution. On the sensor surface, detection of charge variation is by

field-effect current-voltage measurements [122], capacitive measurements [125–127],

or electrochemical impedance measurements [128]. The surface charge and sur-

face potential for such Si/SiO2/electrolyte sensors have been modeled by various

groups [52, 129–131], and represented by the Graham equation [132]. The equation

states that

σ0 =
√

8εelε0kTc0sinh

(
qφ0

2kT

)
, (3.3)

where εel is the permitivity of the electrolyte, ε0 is the permitivity of free space, c0

is the buffer ionic strength, and φ0 is the surface potential. However, these sensors

are also sensitive to pH changes and could be affected by the ionic strength of the

electrolyte.

The charge model for our biosensor device is based on the ungated GaAs FET

discussed in section 2.3, and shown in Figure 2.9. The underlying model for the

current equations are based on the Poisson equation of the form

∇ · [ε∇φ(x)] = −q(nFET + ns), (3.4)

where φ(x) is the electrostatic potential, and qnFET represents the charge carrier

density associated with the doping concentration in the semiconductor. qns is the

net surface charge density from the unbound surface charge groups. After the immo-

bilization of single-stranded DNA molecules, shown in Figure 3.7, and hybridization
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with the complimentary allele molecules, the Poisson equation (3.4) becomes

∇ · [ε∇φ(x)] = −q(nFET + ndna). (3.5)

The charge density, qndna, represents charges from the attachment or hybridization

of ssDNA, and from any unbound surface charges. Charges from the attachment

of DNA oligomers are affected by the packing density of attached DNA oligomers,

oligomer length, and the orientation of the DNA strands described next.

Since the diameter of the DNA molecule is 2.0 nm [3]. The maximum packing

density dmax possible on 2.0 nm centers is approximately 2.5x1013 DNA oligomers/cm2

immobilized on the surface. The DNA molecule contains negative charges concen-

trated on the DNA phosphate-sugar backbone. Each nucleotide, hence each base,

carries one negative charge. An oligonucleotide of length Ldna bases long will have

Ldna negative charges. For instance, an oligonucleotide that is 20 bases long will

have 20 negative charges. The oligonucleotide could take the form of the compli-

mentary allele of any of the specific gene markers in Table 3.1. The charge density

ρbound due to the bound DNA molecules Ldna bases long is thus given by

ρbound = dmaxLdna charges/cm2 (3.6)

In an ideal situation, the small lattice constant (0.565 nm) of GaAs results in a

surface concentration of atoms (number of atoms/unit area) on the GaAs(100) sur-

face of about 6.257x1014 atoms/cm2 [133]. This concentration results in 1.251x1015

potential binding sites/cm2 since each surface molecule carries two unbound charges.

The high number of potential binding sites, compared to the maximum packing den-

sity of immobilized DNA, means that unbound surface charges are likely to exist

after oligomer immobilization. These unbound charges, with density ρunbound, con-
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tribute to the total charge density on the surface, given by

qndna = ρtotal = ρbound + ρunbound charges/cm2, (3.7)

where ndna are the charges in the Poisson equation (3.5). After the hybridization

event, the bound charges, ρbound, are expected to increase, potentially doubling

in the event that all immobilized ssDNA oligomers hybridize with complimentary

oligomers.

In a non-ideal situation, where the semiconductor is doped, a net surface charge

ns is developed when dopant electrons in the conduction band drop in energy, filling

the empty surface band states. This surface charge is given by ns = zdepND, where

ND is the doping density, and zdep is the depletion region formed by positive charges

of equal magnitude (maintaining charge neutrality). The potential V (z) within the

depletion region is given by

V (z) = −q
2ND

2εε0
(z − zdep)2, (3.8)

where z = 0 is defined at the surface. V (0), the potential of the depletion region, is

also referred to as the surface built-in potential, (Vsbi). The resulting surface charge,

on the order of 1012cm−2, is much smaller than the total surface density of states

∼ 1.25x1015cm−2. The effect of this net surface charge is to reduce the population

of dangling bonds, in turn reducing the probability of DNA adsorption.

The tilting nature of the attached DNA molecules shown in Figure 3.7 results

in various modifications of this charge model. The tethering of the molecules in

this tilted manner could lead to loosely packed molecules, potentially as low as 50%

attachment [113]. This results in a decrease in the number of bound charges ρbound,

in (3.7), and an increase in the number of unbound charges ρunbound. Another factor

that might affect the distribution of the total charge is the distance of the charges on
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the DNA molecule from the sensor surface [132]. DNA oligomers with many bases

(large Ldna) may have charges substantially far from the surface that can result in

a small electric field Es on the surface. The field due to a charge q1 along the DNA

molecule, at a distance R from the surface can be expressed as

Es =
q1

4πε0εrR2
V/m (3.9)

Figure 3.8 illustrates the effect of charge distance from the sensor surface on the

Figure 3.8: The decreasing electric field created by a charge at a distance R from
the surface.

electric field it creates at the surface. The equivalent charge density ρbound, in (3.6),

of charges along the DNA strand is thus inversely proportional to 1/R2.

The changes in the distribution of charges on the surface and in the DNA layer

modulates the conductance of the active channel in the GaAs transistor. The current

equations are obtained from the Poisson equation solved self-consistently from the

solutions of the Boltzmann transport equation and drift-diffusion equations, the
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subject of the next chapter.
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Chapter 4

FET Transistor Physical Model

4.1 Electronic Band Structure

The band theory of semiconductors allows us to understand the band structure,

electron motion, and electron energies within the allowed energy bands. This theory

is important in order to understand the electron energy dependence and quantum

mechanical considerations of a periodic crystal potential used in the semi-classical

transport model.

4.1.1 Band Structure Parameters

Crystalline semiconductors like GaAs have a repeated structure of the corresponding

Bravais lattice. The crystal potential V (r) is thus periodic with

V (r +R) = V (r), (4.1)

where R is a vector on the bravais lattice. The electronic band structure and the

wave function can be obtained from the Hamiltonian, which observes the crystal

symmetry of semiconductors. The motion of each electron in the crystal can be

described by the Schrödinger equation given by

Hψn(r) = Enψn(r) (4.2)
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with the one-electron Hamiltonian H given by

H = − h̄2

2m
∇2 + V (r), (4.3)

where ψn(r) is the wave function, and eigenvalues En represent the electron energy in

an eigenstate n. Each eigenstate can only accommodate a maximum of two electrons

of opposite spin according to the Pauli exclusion principle. The Hamiltonian is an

energy operator with the first and the second terms in equation (4.3) defining the

kinetic energy and potential energy of the particle respectively. Combining equation

(4.2) and (4.3) gives the one-body Schrödinger equation of the form

(
− h̄2

2m
∇2 + V (r)

)
ψnk(r) = Enψnk(r). (4.4)

The general solution of the above equation, also referred to as the eigenfunction of

the equation, takes the form

ψnk(r) = exp(ik · r)unk(r) (4.5)

where the function

unk(r + R) = unk(r) (4.6)

has the same periodicity as the crystal, and the term exp(ik · r) describes the vari-

ations at large scales. ψnk(r) is the Bloch function, and the above solution method

is referred to as the Bloch Theorem.

Applying the Hamiltonian one-body Schrödinger equation (4.4) to the Bloch

function (4.5) yields equation (4.7) below, satisfied by unk(r):

(
h̄2

2m
(−i∇+ k)2 + V (r)

)
unk(r) = En(k)unk(r), (4.7)



39

where we note that the factor exp(ik · r) cancels out. When the wave vector, k, is

varied, an energy band for each integer n is defined by the energy eigenvalues. The

Bloch function requires k to be quantized to

k = (kx, ky, kz) (4.8)

in the space reciprocal to the crystal generated by the basis vector ai. This vector

is derived from the basis vector aj of the bravais lattice by

ai · aj = 2πδij (4.9)

Any translation vector G of the reciprocal lattice takes the form

G = l1a1 + l2a2 + l3a3 (4.10)

where the li are integers. For GaAs with a face-centered cubic lattice and side length

a, the reciprocal lattice is a body-centered cubic lattice with sides 4π/a as shown in

Figure 4.1.

Figure 4.1: Reciprocal lattice of an fcc crystal [4].
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The periodicity of the crystals allows k to assume all possible values resulting in

an extended zone scheme for the band structure. This extended zone scheme may

lead to the reciprocal space being too large to classify the Bloch function. However,

k can be limited according to k−2dπ/a [134], where d is an integer chosen to limit k

to [−π/a, π/a]. This results in the reduced zone scheme, a volume of the reciprocal

space close to the original node k = 0 known as the “first Brillouin zone”. For a free

particle, a plot of the extended zone scheme and reduced zone scheme are shown in

Figure 4.2.

Figure 4.2: Extended zone scheme and reduced zone scheme of a free particle.

In a bulk crystal however, many electrons are interacting with the crystal lattice

and other electrons. This interaction makes the calculation of the band structure a

many-body problem. The pseudopotential method described by Phillips [135, 136]

was developed to solve the Schrödinger equation for bulk crystals where the potential

experienced by each individual electron is unknown. The GaAs band structure

calculated by Cohen, et al., using the pseudopotential method at room temperature

is shown in Figure 4.3(a) [137,138]. Figure 4.3(b) shows the reduced wave vector for

energies close to the top of the valence band and bottom of the conduction band.

The spin-orbit splitting results in a split-off valence band 0.34eV lower than the

degenerate heavy holes and light holes valence bands. The minima of the conduction

band located at points Γ(0, 0, 0),L(1/2, 1/2, 1/2), and along X(1, 0, 0) have energies

that can be obtained as functions of the wave vector. The minima directly above
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Figure 4.3: Electronic band structure of GaAs calculated by pseudopotential method
[4].

the maximum of the valence band is known as the Γ minima and its energy can be

defined as

E(1 + αE) =
h̄2k2

2m
(spherical for Γ minima), (4.11)

where

α =
1

Eg

(
1− m∗

me

)2

(4.12)

and

E(k) =

(
h̄2k2

2

)(
k2x
mx

+
k2y
my

+
k2z
mz

)
(ellipsoidal for L and X minima), (4.13)

where Eg is the energy gap, m∗ is the effective mass, and me is the free electron

mass [6, 139]. The band gap energy, Eg, in GaAs is the energy difference between

the conduction band and valence band at the Γ minima point in the middle of the

Brillouin zone. This energy is temperature-dependent and can be modeled according
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to the Varshni equation [140] of the form

Eg(T ) = Eg,T0 −
αEgT

2

βEg + T
(4.14)

where Eg,T0 is the band gap at T = 0 K, and αEg and βEg are adjustable Varshni

parameters. Table 4.1 shows the temperature dependent energy gap parameters at

Γ, L, and X band energies for a temperature range 0 < T < 1000 K and Figure 4.4

shows the temperate dependence of the band gap in this temperature range. At 300

K the band gap is 1.42eV for GaAs as shown on the Figures 4.3 and 4.4.

Band Eg,T0 [eV] αEg [eV/K ] βEg [K] references
Γ 1.519 5.405x10−4 204 [6, 141,142]
L 1.815 6.05x10−4 204 [6, 141,142]
X 1.981 4.60x10−4 204 [6, 141,142]

Table 4.1: Parameter values for band gap dependence in temperature

Figure 4.4: Temperature dependence of band gap energy in GaAs.

4.1.2 The k·p Method

In direct band gap semiconductors the local minimum and maximum occur at the

zone center (k0 = 0), and the wave vector k varies only by a small amount. Many

properties of the semiconductor depend on the position and shape of the minima and
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maxima at k0. The k·p method is a semi-empirical method particularly convenient

for analyzing the band structure near point k0. The k·p method based on the Kane’s

Model, [139, 143] can be derived from the one-electron Schrödinger equation (4.4).

The method can also be written in the form of equation (4.15) below

(
p2

2m
+ V (r)

)
ψnk(r) = Enψnk(r) (4.15)

where p2 = −h̄2∇2.

Using the Bloch Theorem, and replacing ψnk(r) with the Bloch function equation

(4.5), we obtain an equation in unk(r) in the form

(
(p + h̄k)2

2m
+ V (r)

)
unk(r) = En(k)unk(r) (4.16)

which can be expanded to equation (4.17) below.

(
p2

2m
+
h̄

m
k · p +

h̄2k2

2m
+ V (r)

)
unk(r) = En(k)unk(r) (4.17)

The k·p Hamiltonian matrix, from (4.17), is expressed as

Hk·p(k) = En(k0) +
h̄

m
k · p +

h̄2k2

2m
(4.18)

where En(k0) is the simple form of (4.17) at k0, and given by

(
p2

2m
+ V (r)

)
unk0(r) = En(k0)unk0(r) (n = 1, 2, 3, ...) (4.19)

In the term k·p, p is the momentum, and the operator (h̄/m)k·p in (4.17) is con-

sidered as a perturbation in the Hamiltonian. This method assumes that the values

of En(0) are known from theory or experiment.
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4.1.3 The Effective Mass

In the presence of an applied electric or magnetic field, an electron in a periodic

potential is accelerated relative to the lattice and can have a much larger or much

smaller effective mass than the mass of a free electron. The k·p method can be used

to derive the effective mass for nondegenerate and degenerate bands such as the

heavy-hole, light-hole, and the spin-orbit split-off bands as described in [4,7,134,144].

In the first Brillouin zone, the ∂E/∂(k) relationship is parabolic as shown in Figure

4.2. With a known change in k (∂k), the effective mass can be calculated using the

equation

1

m∗
=

1

h̄2
∂2E

∂k2
. (4.20)

For a three dimensional crystal, we can apply the effective mass tensor given by

(
1

m∗

)
ij

=
1

h̄2
∂2E

∂ki∂kj
(4.21)

where i and j are the Cartesian coordinates. Table 4.2 shows the effective mass

values for electrons and holes in GaAs relative to the mass of a free electron m0.

Band m∗ [T = 0 K] m∗ [T = 300 K]
Γ 0.067 0.063
L 0.56 0.56
X 0.85 0.85

Heavy-hole 0.51 0.50
Light-hole 0.082 0.076
Split-off 0.154 0.145

Table 4.2: Effective electron and holes masses (m∗/m0) [4, 6, 7].

Effective mass calculations can lead to either effective mass for density of states

or for conduction calculations. The isotropic effective mass in GaAs however makes

these two values equal.
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4.2 Current Equations

Transport equations in semiconductors and semiconductor devices are governed by

drift-diffusion current equations derived from the semi-classical Boltzmann transport

equation (BTE).

4.2.1 Boltzmann Transport Equation

The BTE is based on the principles of classical statistical mechanics described in

the Liouville theorem [145]. It incorporates quantum effects due to the continual

decrease in device dimensions of modern semiconductors, and the periodicity of the

crystal. The solution of the equation will first be obtained for intrinsic carriers for

an undoped semiconductor, and then extended to donors and acceptors for a doped

device.

4.2.1.1 Intrinsic Carriers

In an intrinsic semiconductor, the allowed number of states per unit volume can be

represented as a function of E according to

nc(E) = 4π(2mi
e)

3/2 1

h3
(E − Ec)1/2 (4.22)

for the conduction band and

nv(E) = 4π(2mi
h)

3/2 1

h3
(Ev − E)1/2 (4.23)

for the valence band. nc(E) and nv(E) are termed the density of states. mi
e and mi

h

are the density-of-state masses for electrons and holes respectively, obtained from

mi
v = M2/3

c
3
√
mlmtmt v = e, h (4.24)
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where Mc is the number of equivalent band minima, ml and mt are the effective

masses longitudinal and transverse to the principal axis of revolution [7]. For three

dimensions, the density-of-state masses are obtained from the effective mass tensors

m∗ie and m∗ih for electrons and holes respectively according to

mi
v = (detm∗iv )1/3 v = e, h. (4.25)

Electron occupation in each of these states is governed by the distribution func-

tion f(k, r, t), the probability that a state with wave vector k is occupied by an

electron at position r at a time t. The equation for this function f is the Boltzmann

transport equation given by

∂f

∂t
+ υ · ∇rf + k̇ · ∇kf =

(
∂f

∂t

)
coll

, (4.26)

where the first term defines the change in distribution with time, the second and the

third define the flow of electrons in real space and k-space respectively. The term

on the right is the collision integral over the first Brillouin zone where collisions are

assumed instantaneous. This integral can be represented as

(
∂f

∂t

)
coll

=

∫
[W (k′,k)fk′(1− fk)−W (k,k′)fk(1− fk′)]dVk′ , (4.27)

where the two terms in the integral represent the increase or decrease of fk(r, t) by

transition from all other states, and to other states respectively. For conservation

of energy, W (k′,k) = W (k,k′), and (4.27) simplifies to

(
∂f

∂t

)
coll

=

∫
W (k,k′)(fk′ − fk)dVk′ . (4.28)
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In an intrinsic device with uniform equilibrium, (4.28) reduces to

(
∂f

∂t

)
coll

= 0 (4.29)

and this solution is the well-known Fermi-Dirac distribution function:

f(E) =
1

1 + e(E−Ef )/kT
(4.30)

which gives the probability that a band state of energy E is occupied by an electron

at temperature T , where k is the Boltzmann constant and Ef is the so-called Fermi

level. The product of this equation (4.30) and the density of states equation (4.22)

gives the electron density in an incremental energy range dE, from which we can

obtain the density of electrons n given by

n =

∫ ∞
Ec

nc(E)f(E)dE = 4π(2me)
3/2 1

h3

∫ ∞
Ec

(E − Ec)1/2dE
1 + e(E−Ef )/kT

. (4.31)

For conduction band energies that are greater than 3kT above the Fermi level,

the Fermi-Dirac distribution can be approximated by the Maxwell-Boltzmann dis-

tribution. Suppose we introduce the dimensionless variable x = (E − Ec)/kT and

substitute it in equation (4.31). The equation becomes

n = 4π

(
2mekT

h2

)3/2 ∫ ∞
0

x1/2

1 + exp[x− (Ef − Ec)/kT ]
dx

= 4π

(
2m∗ekT

h2

)3/2

exp

(
Ef − Ec
kT

)∫ ∞
0

x1/2e−xdx (4.32)

The integral is a standard form, evaluating to
√
π/2. Thus, (4.32) reduces to

n = 2

(
2πm∗ekT

h2

)3/2

exp

(
Ef − Ec
kT

)
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= NC exp

(
Ef − Ec
kT

)
, (4.33)

where

NC = 2

(
2πm∗ekT

h2

)3/2

(4.34)

is called the conduction band effective density of states. The value of NC is approx-

imately 4.7x1017cm−3 for GaAs at room temperature (300 K) [6].

In a similar manner, we can obtain the hole density, p, in the valence band as

p = NV exp

(
Ev − Ef
kT

)
, (4.35)

where

NV = 2

(
2πm∗hkT

h2

)3/2

(4.36)

is the valence band effective density of states which is about 7.0x1018cm−3 for GaAs

at room temperature.

For an intrinsic semiconductor, the mass action law defines that

np = n2
i , (4.37)

where ni is the intrinsic carrier density, and the electron density in the conduction

band is equal to the hole density in the valence band, n = p = ni. The intrinsic

carrier density ni is obtained from equations (4.33) and (4.35) according to

ni =
√
np =

√
NCNV exp

(
−(EC − EV )

2kT

)
, (4.38)

where (EC−EV ) = Eg is the band gap energy. Equating equation (4.33) and (4.35)

where n = p, and evaluating the Fermi level Ef results in

Ef = Ec −
1

2
Eg +

kT

2
ln
NV

NC

(4.39)
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where the Fermi level lies close to the middle of the band gap at any given temper-

ature.

4.2.1.2 Donors and Acceptors in Semiconductors

N-type semiconductors contain a concentration ND of donors with an ionization en-

ergy ED. Similarly, p-type semiconductors have an acceptor concentration NA with

ionization energy EA. At high temperatures, some of these donors and acceptors

may be ionized and others may not. To maintain charge neutrality, the negative

charges (electrons and ionized acceptors) must be equal to the positive charges (holes

and ionized donors), that is

n+N−A = p+N+
D (4.40)

where N+
D and N−A are the ionized donors and acceptors respectively. The electron

concentration n and hole concentration p are for an extrinsic device in this case,

and obtained from the Boltzmann transport equation (4.26). In the presence of

an external perturbation, the non-uniform equilibrium solution of the Boltzmann

equation is given by

f(E) =
1

1 + e(E−Ef+qφ)/kT
(4.41)

where φ is the electric potential. The electron density can now be obtained from

equations (4.22) and (4.41) as follows:

n =

∫ ∞
Ec

nc(E)f(E)dE = 4π(2m∗e)
3/2 1

h3

∫ ∞
Ec

(E − Ec)1/2dE
1 + e(E−Ef+qφ)/kT

. (4.42)

Suppose we introduce dimensionless variables x = (E−Ec)/kT and η = (Ef −Ec +

qφ)/kT and substitute them in equation (4.42). The equation becomes

n = 4π

(
2m∗ekT

h2

)3/2 ∫ ∞
0

x1/2

1 + e(x−η)
dx (4.43)
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which can be used to define the electron density in the conduction band minima

according to

n = 2

(
2πm∗ekT

h2

)3/2
2√
π

∫ ∞
0

x1/2

1 + e(x−η)
dx

n = NCF1/2(η), (4.44)

where NC denotes the effective density of states in the conduction band and

F1/2(η) =
2√
π

∫ ∞
0

x1/2

1 + e(x−η)
dx (4.45)

is the Fermi-Dirac integral of order 1
2
.

Using a similar approach we can calculate the hole density in the valence band

with an analogous equation

p = NV F1/2(η) (4.46)

where NV is the effective density of states for the valence band and η = (Ev −

Ef − qφ)/kT . With donor or acceptor impurities, the semiconductor is said to be

degenerate and the mass-action law np = n2
i does not apply. Instead, np is given by

the product of (4.44) and (4.46):

np = NCNV F1/2

(
Ef − Ec + qφ

kT

)
F1/2

(
Ev − Ef − qφ

kT

)
(4.47)

The concentration of ionized donors is given by

N+
D =

ND

1 + gd exp[(Ef − Ei
D)/kT ]

(4.48)

where Ei
D = (Ec − qφ − ED,ion), with an ionization energy ED,ion, degeneracy gd,

and donor density ND characterizing each type of donor. Similarly, ionized acceptor
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concentration is given by

N+
A =

NA

1 + ga exp[(Ei
A − EF )/kT ]

(4.49)

where Ei
A = (Ev−qφ−EA,ion), with an ionization energy EA,ion, degeneracy ga, and

acceptor density NA characterizes each type of acceptor. Impurity degeneracies for

donors is normally, gd = 2 and ga = 4 for acceptors [146].

4.2.2 Drift-Diffusion Model

Drift-diffusion semiconductor equations are obtained from the solutions of the first

two moments of the Boltzmann transport equation [6, 147–149] together with the

self-consistent solution of the Poisson equation:

∇ · [ε(x)∇φ(x, t)] = −q[N+
D (x)−N−A (x)− n(x, t) + p(x, t)] + ρT . (4.50)

In this equation, φ(x, t) is the electrostatic potential, n(x, t), p(x, t), N+
D , and N−A ,

are the charge carriers contributing to the charge density as discussed in section

4.2.1 above, and ρT is the charge density of the surface states, charged recombination

centers, or traps. The current density for electrons and holes resulting from the first

moments of the Boltzmann equation are given by

Jn = qnυn + qDn∇n (4.51)

and

Jp = qnυp − qDp∇p (4.52)

for low fields. The first term in the equation is the drift component of the current

and the second term is the diffusion component that corresponds to the concentra-

tion gradient. The diffusion coefficients Dn and Dp can be defined by the Einstein
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relationship

Dv =
µvkT

q
v = n, p, (4.53)

and the carrier mobilities µn and µp are discussed in section 4.3.

For high fields where the drift velocity is no longer proportional to the electric

field, the current density equations (4.51) and (4.52) become

Jn = q (−nυn(E) +Dn(E)∇n) (4.54)

and

Jp = q (pυp(E)−Dp(E)∇p) (4.55)

respectively, where

υn(E) = µnE (4.56)

and

υp(E) = µpE. (4.57)

The electric field E is given by E = −∇φ. These equations are solved with the

continuity equations for electrons and holes given by

∂n

∂t
=

1

q
∇ · Jn +Gn (4.58)

and

∂p

∂t
=

1

q
∇ · Jp +Gp, (4.59)

which impose the conservation laws for the carriers. Gn and Gp are the generation-

recombination rates discussed in Section 4.5.

For this system of equations, the unique solution of the Poisson equation requires

specifying the boundary conditions for the structure and contacts. For the GaAs

field effect device, Ohmic contacts, Schottky contacts, and surface states are applied
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as discussed in Section 4.4. The solution of the coupled drift-diffusion equations

and quantum mechanical approach enable us to determine the charge self-consistent

solution for the electrostatic potential, quasi Fermi levels, the built-in potential,

current densities, and other properties. Numerical techniques used to determine

these solutions are discussed in Chapter 5.

4.3 Carrier Mobility

The mobility parameter used in the drift-diffusion model has dependencies on dop-

ing density, temperature, and electric field. It is important to account for those

dependencies in the analysis and design of semiconductor devices as they may affect

the general performance of the device.

4.3.1 Doping concentration

The dependence of mobility on doping can be expressed as

µv = µv,min +
µv,max − µv,min

1 +
(
ND
Nv
ref

)αv v = n, p (4.60)

where µv,min is the minimum mobility dominated by the impurity scattering of

highly doped material, µv,max is the maximum mobility of the undoped material

dominated by the lattice scattering, ND is the concentration of ionized donors, N v
ref

is the reference doping density at (µv,max−µv,min)/2, and αv is the Caughey/Thomas

model parameter discussed in [150]. Table 4.3 illustrates typical values for GaAs

from [150–152] and Figure 4.5 illustrates the mobility as a funtion of doping density

where the expression has a resemblance to the Fermi-Dirac function.
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Parameter Electrons Holes
µmin 1000.0 cm2/V-s 32 cm2/V-s
µmax 8200.0 cm2/V-s 432 cm2/V-s
Nref 6.0e16 cm−3 1.88e17 cm−3

α 0.55 0.5

Table 4.3: Parameters for doping dependence on mobility.

Figure 4.5: Mobility dependence in doping concentration.

4.3.2 Temperature Dependence

The intrinsic or low-doped samples are dominated by lattice vibrations that are

temperature dependent. This temperature dependency results in the expression

(4.61) below that affects the mobility obtained in equation (4.60) [153].

µv(T ) = µv

(
T

T0

)γv
v = n, p, (4.61)

where T0(300 K) is the reference temperature and γv is the temperature-dependent

parameter. The parameter is normally 1.0 for electrons in GaAs and 2.1 for holes

[142,151].
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4.3.3 Electric Field

The high-field mobility of electrons and holes is dependent on the electric field

according to

µv(E) =
µLv[

1 +
(
µLv

Ev
vsatv

)βv] 1
β

v v = n, p, (4.62)

where βv is an adjustable temperature dependent parameter for both electrons and

holes. µv is the low field mobility and vsatv is temperature dependent saturation

velocity given by

vsatv (T ) = vv0 − dvvel(T − T0) v = n, p, (4.63)

where v0 is the saturation velocity at the reference temperature T0 = 300 K, and

dvvel is the velocity temperature coefficient.

This equation is not a good fit for GaAs and other compound semiconductors,

however, because their v vs Ev curves possess a peak higher than the saturation

velocity. The following expression is used frequently to model this behavior.

µv(E) =
µLv + vsatv

(Ev)β−1

(Epkv )β

1 +
(
Ev
Epkv

)β v = n, p, (4.64)

where Epk
v is the peak electric field at maximum velocity v = µvEv, beyond which

the velocity of electrons decreases with increasing electric field in a phenomenon

known as negative differential resistivity. This peak electric field is temperature

dependent according to

Epk
v (T ) = Ev

0 − dvE(T − T0) v = n, p (4.65)

In (4.65), Ev
0 is the peak electric field at temperature T0 and dvE is a temperature

dependent coefficient. Numerical values for the parameters used in equation (4.62)

and (4.64) have been obtained for Si [150], [154] and GaAs [65], [155]. At 300 K
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typical parameters values for Si and GaAs are shown in table 4.4.

Material vsatn [cm s−1] βn [ ] Epk
n [V cm−1] references

GaAs 1.0x107 4 3.3x103 [65]
Si 1.1x107 2 [150,154]

Table 4.4: Velocity saturation coefficients for GaAs and Si.

Figure 4.6 shows a plot of mobility vs electric field for GaAs (equation (4.64)) and

silicon (equation (4.62)), using the values in Table 4.4 respectively. The resulting

velocity-field curves (v = µvEv) are shown in Figure 4.7, which resembles Figure 2.2

of Chapter 2, and were also obtained in [155] and [156].

Figure 4.6: Mobility dependence in electric field.

The GaAs curve shown in Figure 4.7 portrays a peak at the critical field, Epk
n

before settling on the saturation velocity because of the negative differential mobility.

4.4 Boundary Conditions

To model a short gate-length planar MESFET device, specific boundary condi-

tions must be specified at the boundaries and interfaces of the semiconductor de-

vice. These conditions are required for the unique solutions of the coupled second-

order partial differential equations which include the elliptic Poisson equation and
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Figure 4.7: Drift velocity dependence in electric field.

parabolic continuity equations. On the boundaries and surfaces, semiconductor

materials can be bounded by insulators, metals, or other semiconductor materials

forming interfaces called heterojunctions. Here, we will consider semiconductor-

metal contacts that can be either Ohmic or Schottky, and surface states will be

discussed in section (4.4.3). It is assumed that the potential and carrier gradients

normal to the rest of the surfaces are zero for a free standing device. This means

that ∂ψ
∂x
, ∂n
∂x

= 0 and ∂ψ
∂y
, ∂n
∂y

= 0 for boundaries parallel to the x-axis and y-axis

respectively.

4.4.1 Ohmic Contacts

Ohmic contacts are non-rectifying semiconductor-metal junctions with a very small

space charge region. In a highly doped semiconductor, this implies large band

bending and a very thin barrier at the interface, making it easy for charge carriers

to tunnel through the energy barrier. Figure 4.8 shows an n-type semiconductor-

metal ohmic contact.

The metal quasi-Fermi level is equal to the semiconductor quasi-Fermi level.

The thin barrier allows charge carriers to both exit the device or enter the device,
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Figure 4.8: An ohmic boundary.

allowing the contacts to behave like charge reservoirs. This leads to high current

densities at low voltage drops which (by Ohm’s law) results in low resistance at the

contacts. A charge has to be assigned a constant value at the ohmic contacts and the

electrostatic potential can be determined from the local charge neutrality conditions

at the boundary. In this case, we consider the contact carrier temperatures Tn

for electrons and Tp for holes as constants, set equal to the lattice temperature.

For charge neutrality at an ohmic contact (n − p − N = 0), artificial boundaries

for isolating the device are required and approximated by the Neumann boundary

conditions:

∂V (x)

∂(x)
=
∂n(x)

∂(x)
=
∂p(x)

∂(x)
= 0. (4.66)

Dirichlet boundary conditions are applied for the electrostatic potential V (x),

and the electron and hole concentrations nD and pD respectively at the ohmic con-

tacts. A uniform potential is applied in the form of an instantaneous drain voltage

φ = VD and source voltage φ = VS at the drain and source contacts respectively,

and the following boundary conditions are imposed

V (x) = Vap + Vbi, (4.67)

where Vap denotes the applied potential on the contact and Vbi is the built-in po-

tential of the semiconductor. The built-in potential depends on the doping concen-
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tration, the temperature, and on the semiconductor material and can be given as a

logarithmic function

Vbi = kBT ln

(
nD
ni

)
, (4.68)

where kBT represents the thermal voltage. For very high doping where the contact

resistance tends to zero (i.e., ideal ohmic contacts),

np = n2
i = NCNV exp

(
−(EC − EV )

kBT

)
, (4.69)

where ni is the intrinsic carrier concentration, which depends on material and tem-

perature. (EC−EV ) = Eg, is the band gap energy, and NC and NV are the effective

density of states for the conduction band and valence bands respectively, as was

discussed in section 4.2.1.

This theory leads to the applied Dirichlet boundary conditions for electron and

hole concentrations nD and pD, expressed respectively as

nD =
1

2

(
N +

√
N2 + 4n2

i

)
(4.70)

pD =
1

2

(
−N +

√
N2 + 4n2

i

)
, (4.71)

where N is the net concentration of dopants. We can then calculate the built-in

potential Vbi by substituting equation (4.70) or (4.71) into equation (4.68) above,

obtaining

Vbi = kBT ln

[
1

2ni

(
N +

√
N2 + 4n2

i

)]
(4.72)

or

Vbi = −kBT ln
[

1

2ni

(
−N +

√
N2 + 4n2

i

)]
(4.73)

respectively.
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4.4.2 Schottky Contacts

A semiconductor-metal contact with a barrier height greater than the thermal volt-

age (qφB > kBT ) is referred to as a Schottky barrier. This barrier gives a fixed

energy difference between the Fermi level and the conduction band edge, deter-

mined by the surface states. A low doping concentration less than the density of

states in the conduction band or valence band exists at the contact due to band

bending. Figure 4.9 shows the formation of a Schottky contact before and after a

metal and an n-type semiconductor are brought together. The metal work func-

Figure 4.9: A Schottky boundary.

tion in this case is greater than the semiconductor work function (WM > WS),

the more energetic electrons from the semiconductor conduction band can readily

tunnel into the metal, creating an electron-depleted region near the surface of the

semiconductor. This region creates a contact potential eV0 = WM −WS called the

built-in potential. The barrier height of the electrons moving from the metal to the

semiconductor qφB, is given by

qφB = WM − χ = eV0 + (EC − EFn) (4.74)
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where χ is the electron affinity of the semiconductor. As seen in Figure 4.9, (EC −

EFn) increases towards the contact showing a low carrier concentration given by

n = NC exp

(
−(EC − EFn)

kBT

)
(4.75)

in the electron-depleted region.

This analysis assumes pure contact between the metal and semiconductor with-

out any other interfacial layers. In a non-ideal case, interfacial layers, interface

states, and chemical reactions on the semiconductor surface can alter the barrier

height. Although this can be undesirable in other FET devices, it provides an ideal

platform for the devices to be used in chemical sensing and biosensor applications.

Hence, the same concept used in modeling the Schottky barrier can be used to model

semiconductor interactions with biomolecules.

In Schottky contacts, Dirichlet boundary conditions apply to the electrostatic

potential and the current density. For the electric potential,

φ = Vapplied + VSchottky, (4.76)

where VSchottky is set to the energy difference between the barrier height, and the

energy between the conduction band and Fermi level in an intrinsic semiconductor:

VSchottky = φB −
Eg
2q

+
kBT

2q
ln

(
NC

NV

)
, (4.77)

where Eg denotes the bandgap energy. The current density through the Schottky

interface is calculated as follows

Jn · n̂ = −qυn · (n0 − nS) (4.78)

Jp · n̂ = −qυp · (p0 − pS), (4.79)
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where n̂ is the outward oriented vector normal to the interface, and nS and pS are

the carrier concentrations at the surface given by

nS = NC exp

(
−(EC + eV0)

kBT

)
(4.80)

pS = NV exp

(
EV − eV0
kBT

)
, (4.81)

and n0 and p0 are the equilibrium electron and hole density concentrations given by

n0 = NC exp

(
−qφB
kBT

)
(4.82)

p0 = NV exp

(
−Eg + qφB

kBT

)
, (4.83)

where an assumption of infinite recombination rate applies. The current density is

also proportional to the surface recombination rates υn and υp for electrons and

holes respectively given as

υn =

√
kBT

2π ·mn

=
A∗nT

2

qNC

(4.84)

υp =

√
kBT

2π ·mp

=
A∗pT

2

qNV

, (4.85)

where A∗n and A∗p are defined by

A∗n,p =
4π · q ·mn,p · kB

h3
, (4.86)

also known as the effective Richardson constants for electrons and holes, respectively,

typical for thermionic emission processes.
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4.4.3 Surface States

In GaAs, the Ga and As atoms are covalently bonded. Each As atom on the (100)

surface has two bonds with Ga atoms from the layer below, leaving two other unsat-

urated free bonds responsible for the surface electronic states that strongly affect the

behavior of GaAs semiconductor surfaces. These ’dangling’ unsaturated free bonds

give rise to states other than the Bloch-state bands, and often lie energetically in

the bulk band gap. The unsaturated bonds can also rearrange themselves leading to

surface reconstruction, or can become passivated by a monolayer of adatoms such as

oxygen. We will assume a perfectly terminated periodic crystal, for simplicity, with-

out surface reconstruction or passivation. The crystallographic density of surface

atoms can be in the range of 1014cm−2, resulting in a very large density of surface

states (e.g 1 state per surface atom) acting as donors or acceptors [157,158].

The surface states have their levels in the band gap placed at a position 1/3Eg

above the valence band. The large density of states at the position of the surface

states results in the formation of a space charge layer at the surface where the Fermi

level becomes “pinned” at the surface state energy. In this action, the electrons

captured in the surface levels form a dipole layer which screens the semiconductor

interior. This Fermi level pinning is similar to Schottky barrier pinning, as can

be seen in Figure 4.10. From Figure 4.10, the average energy of the pinned states

Figure 4.10: Pinning of Fermi level with large surface density of states.
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is Es above the valence band, where the surface states stabilize the Fermi level.

As a result, a barrier is formed inside the semiconductor which equals the band

bending. For an n-type GaAs whose band gap energy is 1.42eV , the high density of

surface states means a high electronegativity that can lead to energy barrier values

of 0.8− 0.9eV at the surface [157].

The deposition of metals causes the generation of new states also positioned in

the band gap, as in the case of a MESFET. Metals with various work functions can

result in variations of the barrier and thus the barrier potential. The surface states

can also be decreased by covering the surface with a thin layer of natural oxide, a

technology used for silicon MOS transistor production. In this research, the surface

states are controlled by depositing biomolecules such as DNA which bind to the

surface molecules of the GaAs semiconductor [118,120]. The attachment of ssDNA

biomolecules on the surface of GaAs and the binding of their complement molecules

(to form double stranded DNA) results in changes in the surface states at each

stage. The attachment and hybridization process results in charge transfer, hence

variation of the contact barrier, depletion depth and channel electrical properties,

as described for the ungated FET in Section 2.3 and in Figure 2.9.

4.5 Carrier Generation and Recombination

The generation of electron-hole pairs can occur when energy is available which is

significantly greater than that of the band gap. This results in transfer of electrons

from the valence band to the conduction band. A reciprocal process corresponding

to the transfer of electrons from the conduction band to the lower energy valence

band is also possible and is called electron-hole recombination. These generation-

recombination processes involve the creation or annihilation of photons and can be

radiative or nonradiative, leading to different possible classifications, outlined next.
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4.5.1 Direct Generation-Recombination Model

Generation-recombination is a radiative process that involves direct band-to-band

transfer of electrons from the conduction band to the valence band. In recombination

of electron-hole pairs, a photon with energy equal to the band gap energy is emitted.

The generation mechanism involves the absorption of energy greater than the band

gap energy in the form of a photon (Ephoton > Eg). The generation-recombination

rate is proportional to the excess carrier density and is modeled as follows

RDIR = Rn −Gn = CDIR
(
np− n2

i

)
(4.87)

where Rn is the recombination rate, Gn is the generation rate, and (ni = nopo) is the

intrinsic carrier density where no and po are the electron and hole concentrations at

thermal equilibrium. CDIR is a capture coefficient with typical values of 1.1x10−10

[142] to 7.2x10−10cm3/s [159] for GaAs. This mechanism is predominant and very

important for direct band gap semiconductor materials such as GaAs, InAs, InP,

and GaN for applications in optoelectronics.

4.5.2 Shockley-Read-Hall Recombination

Also known as trap-assisted generation/recombination, this mechanism involves elec-

trons or holes occupying a trap energy level within the band gap caused by struc-

tural defects or presence of foreign particles. As a final state, the electrons and holes

move to the conduction band and valence band respectively for generation, or both

to the valence band state for recombination. This generation/recombination rate is

modeled using the Schockley-Read-Hall [160] equation

RSRH =
np− n2

i

τp (n+ n1) + τn (p+ p1)
, (4.88)
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where n1 and p1 are defined as

n1 = Nc (TL) exp

(
ET − Ec
kBTL

)
(4.89)

p1 = Nv (TL) exp

(
Ev − ET
kBTL

)
, (4.90)

where TL is the lattice temperature, and τp and τn are lattice temperature dependent

generation-recombination lifetimes expressed as

τn =
1

σT,nNTvn
(4.91)

τp =
1

σT,pNTvp
, (4.92)

where NT is the trap density, σT,n and σT,p are the trap capture cross sections for

electrons and holes respectively, and vn and vp are the electron and hole thermal

velocity at room temperature expressed as

vv =

√
3kBTL
m∗c,v

, (4.93)

where v = n for electrons and v = p for holes. The recombination rate is maximum

when the trap energy level ET is midway between the gap and n1 = p1 = ni.

4.5.3 Auger Recombination

This is a three particle process that involves direct recombination of an electron

and hole with the energy released being absorbed by a third particle (electron or

hole). This third particle is raised to a higher energy. The recombination rate for

this mechanism is affected by the density of electrons or holes that receive energy
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after the recombination (or release energy after generation), modeled as

RAU =
(
CAU
n n− CAU

p p
) (
np− n2

i

)
, (4.94)

where CAU
n and CAU

p are Auger coefficients of electrons and holes respectively.

4.5.4 Surface Recombination

As seen in Section 4.4.3, the surface of semiconductors contains active dangling

bonds that can contain a large number of recombination centers. This can be mod-

eled as trap-assisted recombination, given by

US =
np− n2

i

τp (n+ n1) + τn (p+ p1)
, (4.95)

where

τn =
1

Nstvthσn
(4.96)

and

τp =
1

Nstvthσp
. (4.97)

In (4.96) and (4.97), vth is the thermal velocity, and σn and σp are the trap capture

cross sections for electrons and holes respectively. This expression is similar to the

Schockley-Read-Hall expression (4.88), where the surface states per unit area, Nst,

is different, given that the density of traps exists only at the semiconductor surface.
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Chapter 5

Numerical Techniques

The simulation study for the GaAs FET-based DNA biosensor is done using the

nextnano software. nextnano is a device simulation tool for nano-scale semicon-

ductor quantum structures and devices. The software can calculate a wide range of

physical properties of devices using an extensive database for Si/Ge, II-VI, and III-V

semiconductors, and electrolyte materials [161, 162]. In the software, device phys-

ical behavior and semiconductor equations are calculated with various numerical

techniques. In this chapter, we outline the numerical techniques used for our study.

The numerical approaches were selected to suit our needs of calculating semicon-

ductor transport equations incorporating quantum mechanical effects. The methods

outlined below were used in the calculations of the electronic band structure, dis-

cretization, and obtaining the self-consisted solution of the coupled Schrödinger,

Poisson, and current equations.

5.1 Envelope Wave Approximation

The electronic band structure of semiconductor devices can be calculated using the

envelope function approximation (EFA), originally developed by G. Bastard [163,

164]. The envelope function is a slow varying function that outlines the amplitudes

of a rapidly varying signal, as shown in Figure 5.1.

The envelope approximation, used in the Schrödinger equation, takes the form

ψ(r) =
∑
k

F (k)eik·ruk(r) (5.1)
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Figure 5.1: The envelope wave and the signal wave.

where the Bloch wave ψ(r), given in (4.5), describes the energy eigenfunctions for

mobile charge carriers. The summation represents the full wave function for the

Hamiltonian which shows the envelope approximation. F (k) is the envelope wave

that is summed over all k values.

This envelope function approximation is applied to solve the k·p method de-

scribed in section 4.1.2. In the k·p approximation, we use the effective mass approx-

imation (EMA) model, in which only one band is considered. The k·p Hamiltonian

matrix (4.18) for EMA reduces to a function of k given by

HEMA(k) = En(k0) +
h̄2

2
k · 1

m∗
k, (5.2)

where m∗ is the effective mass tensor given by (4.21). The envelope function Hamil-

tonian for the conduction band, subject to an external potential Vext, is then given

by

HEA
EMA = − h̄

2

2
∇ ·
(

1

m∗

)
∇+ EC + Vext (5.3)

where EC = En(k0) is the energy of the conduction band at k = k0 [149].

Computing the electronic structure with the k·p envelope function approxima-
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tion involves very large matrix eigenvalue systems. Solving these matrix systems re-

quire efficient iterative methods. Arnoldi iteration, which computes the eigenvalues

of a large sparse or structured matrix [165], is employed to solve the matrix systems.

The Arnoldi iterations are implemented using the ARPACK software package [166].

ARPACK is efficient for eigenvalue methods involving sparse real and complex Her-

mitian matrices. These matrices result from the discretization of the k·p equations

by the finite difference method.

5.2 Finite Difference Method

The semiconductor partial differential equations to be solved are multi-dimensional

and non-linear in nature. To achieve versatile and accurate results, the solution

of these coupled partial differential equations must calculated using a numerical

approach. The finite difference method with box integration, described in [147,

153, 167], is applied to the coupled equations, and the software implementation for

our computations are detailed in [149, 168]. In the finite difference method, the

computational domain described by the device geometry is partitioned into a finite

number of subdomains, or boxes, surrounded by mesh points. In the boxes, material

properties are assumed to be constant, and currents defined on the boundaries are

similar for all boxes sharing a mesh line. The mesh lines are parallel to the coordinate

axis, and the meshes formed are non-uniform for greater accuracy in high derivatives,

and time and memory saving for low derivatives [147]. Figure 5.2 shows the finite

difference discretization for an ungated transistor device.

Discretization is performed on every mesh point which invokes its four nearest

neighbors, on a scheme known as classical five-point discretization. This scheme is

illustrated in Figure 5.3. The five-point discretization scheme uses a control box
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Figure 5.2: Finite difference mesh for an ungated transistor.

Figure 5.3: Grid node representation in a finite difference box integration scheme.

shared by the four neighboring quadrants around the mesh point represented by

ui,j = u(xi, yj) i = 1, 2, 3, ...Nx, j = 1, 2, 3, ...Ny (5.4)

where Nx and Ny are the total number of mesh lines parallel to the x-axis and y-axis

respectively.

The continuous dependent variables from the discrete points can be used to
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derive the nonlinear algebraic equations necessary to approximate the solutions of

the partial differential equations. These solutions are discretized values at every

mesh point in the domain for physical variables such as electrostatic potential (φ(x)),

and carrier concentrations n and p. The Poisson equation (4.50), for example, is

repeated here in a simpler form:

∇ · ε∇φ = −q
(
N+
D − n+ p−N−A

)
, (5.5)

which can be discretized as follows

(
φi+1,j − φi,j

hi
∆k +

φi,j+1 − φi,j
kj

∆h+
φi−1,j − φi,j

hi−1
∆k +

φi,j−1 − φi,j
kj−1

∆h

)

= − q

ε0εr

(
N+
Di,j
− ni,j + pi,j −N−Ai,j + nsi,j

)
·∆k∆h (5.6)

This discretization of the Poisson equation shows that the potential at a mesh point,

in the control box of length ∆h = (hi + hi−1)/2 and ∆k = (kj + kj−1)/2, depends

on the potential and charge at the mesh point, and at the four neighboring mesh

points. The current continuity equations, (4.58) and (4.59), for electrons or holes

can be discretized in the form of 5.7 on a uniform 2-D grid with mesh size ∆.

n(i, j, k + 1)− n(i, j, k)

∆t
=
Jx(i+ 1/2, j, k)− Jx(i− 1/2, j, k)

q∆

+
Jy(i, j + 1/2, k)− Jy(i, j − 1/2, k)

q∆
(5.7)

Material properties, such as the Debye length, and the dielectric relaxation time,

must be taken into account when equations are discretized through the finite dif-

ference scheme. The Debye length defines the space decay constant for excess car-

rier distribution which decays in space (by carrier diffusion) to the bulk concentra-

tion [148]. The mesh size, therefore, must be smaller than the Debye length given
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by

LD =

√
εkBT

q2ND

. (5.8)

The field produced by charge carriers causes them to fluctuate. The simulation time

step is limited by the decay time (dielectric relaxation time) for these fluctuations

given by

tdr =
ε

qNDµ
. (5.9)

For GaAs, at a typical doping density, ND ≈ 1018cm−3, and mobility µ(ND) ≈

6000cm2/V-s, the Debye length is approximately 5 nm, and tdr is approximately

10−15s.

5.3 The Newton-Raphson Method

Newton’s method is an iterative technique suitable for the solution of the discretized

set of simultaneous equations formed by the finite difference method. Newton’s

method is based on a linear approximation of the function f(x), using a tangent to

the function curve, as illustrated in Figure 5.4 [169].

The initial point x1, guessed close to the root, is used to determine the next

point x2 using the tangential angle θ relationship as follows

x2 = x1 −
f(x1)

f ′(x1)
(5.10)

with the general form

xk+1 = M(x) = xk −
f(xk)

f ′(xk)
k = 1, 2, 3, ... (5.11)

The method is quadratically convergent if |M ′(x)| < 1 on an interval about the root
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Figure 5.4: Illustration of the Newton method.

r, and converges when

lim
k→∞
‖xk+1 − xk‖ = 0 (5.12)

or

lim
k→∞

f(xk) = 0 (5.13)

When Newton’s method is applied to the discretized Poisson equation (5.6), the

equation assumes the matrix form

[A][φ] = [B(φ)], (5.14)

where the matrix [A] is the coefficient matrix, and [B(φ)] contains the terms in the

right hand of (5.6). This equation shows the non-linear dependence of the charge

density ρ(φ) = q
[
N+
D (φ)− n(φ) + p(φ)−N−A (φ)

]
on the electrostatic potential φ in

the Poisson equation (5.5). For the solution using the Newton-Raphson algorithm,
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The Poisson equation takes the form

f(φ) = ∇ · ε∇φ+ ρ(φ) = 0, (5.15)

where Newton’s iterations converge to the solution φ of the function f(φ) ≡ f(xk)

in (5.11). For local convergence, the solution of (5.15) can be expressed as

ψk+1(λ) = ψk − λ
f(φk)

(Jφf)(φk)
, (5.16)

where λ is the step length in the direction of the steepest descent f(φk)/(Jφf)(φk),

and Jφ is the Jacobian matrix [149,153,168].

5.4 The Predictor-Corrector Method

The predictor-corrector method is based on a multistep scheme. The solution of

a function y is first estimated with a local truncation error, then improved with a

correction term. An algorithm such as the Euler method [169], written as

yk+1 = yk + hy′k +O(h2) (5.17)

can be improved to

yk+1 = yk + h
y′k + y′k+1

2
(5.18)

which requires that y′k+1 be known. The simple Euler method (5.17), the “predic-

tor”, can be used to predict a value of yk+1. yk+1 is then used to compute y′k+1,

which in turn improves the estimated yk+1 in the improved Euler method (5.18),

the “corrector”.

The implementation of the predictor-corrector method on the coupled Schrödinger-

Poisson equations is outlined here, and a detailed discussion is found elsewhere
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[149,170]. The solution, φ, presented in section 5.3 above for the non-linear Poisson

equation (5.5), depends on the charge density

ρ(φ) = q
[
N+
D (φ)− n(φ) + p(φ)−N−A (φ)

]
(5.19)

In the equilibrium situation, the charge densities n(φ), and p(φ), are obtained

from equations (4.33), and (4.35) respectively, given here with their electrostatic

potential-dependent predictors.

n(φ) = NC exp

(
Ef − Ec + q(φk − φk−1)

kT

)
(5.20)

p(φ) = NV exp

(
Ev − Ef − q(φk − φk−1)

kT

)
(5.21)

where φk−1 is the electrostatic potential from the previous step. The self-consistent

solution of the charge densities depends on the energies and wave functions from

the solution of the Schrödinger equation (4.2), repeated here as

Hψn(r) = Enψn(r). (5.22)

The solution eigenfunctions ψn for this equation depend on the elecrostatic potential

φ from the Poisson equation:

∇ · ε∇φ+ ρ(φ) =
[
N+
D (φ)− n(φ) + p(φ)−N−A (φ)

]
(5.23)

The predictor-corrector method can then be used to find the solution to this

coupled system of Schrödinger-Poisson equations. In the implementation, the quan-

tum densities n(φ), and p(φ) are used as predictors for the Poisson equation. A new

potential φ is determined and used in the Schrödinger equation to calculate a new

set of eigenfunctions and eigenenergies. This system of iterations continues until a
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specified maximum number of iterations is met, or stabilization occurs at a specified

residual R(n) = ‖nk+1 − nk‖ ≤ εres.

In the non-equilibrium situation, the solution to be determined is that of a cou-

pled Schrödinger, current, and Poisson equations. The drift-diffusion current equa-

tions (4.58) and (4.59) (determined in section 4.2.2) become coupled to the Poisson

equation through the quasi Fermi energies which determine the charge densities.

The charge densities used in this case are those for a non-equilibrium situation de-

scribed in section 4.2.1.2, and obtained from equation (4.44) and (4.46) respectively.

These charge densities with their electrostatic potential-dependent predictors, are

expressed as

n(φ) = NCF1/2

(
Ef − Ec + q(φk − φk−1)

kT

)
, (5.24)

and

p(φ) = NCF1/2

(
Ev − Ef − q(φk − φk−1)

kT

)
. (5.25)

The current equations are also coupled to the Schrödinger equation through the

eigenstates and eigenenergies.

This inclusion of the current equations limits the used of the predictor-corrector

method, and calls for other iterative schemes. One approach described in [168,170]

involves alternating the solutions of the Schrödinger-Poisson equations solved by the

predictor-corrector method, with the fixed quasi Fermi levels EF,n, or EF,p and the

current equations with fixed eigenpairs {ψi, Ei}. An underrelaxation approach is

used for the quasi Fermi energies, with an adaptively-determined relaxation param-

eter ωk.
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Chapter 6

Device Simulation and Results

Performance optimization is essential in semiconductor device manufacturing. De-

vice simulation reduces the costs involved in manufacturing and testing for perfor-

mance enhancement. Detailed behavior of general device structures with different

geometries and doping profiles can be simulated and analyzed within hours. Pro-

cessing methods and parameters can be altered giving insight into how they affect

the semiconductor device and performance. In this study, we use a semiconductor

device equation solver (NextNano) to simulate a GaAs FET-based biosensor device

governed by the semiconductor equations presented earlier. The geometry and ma-

terial properties of the device are specified in an input text file. This input file is

also used to specify the computations to be done, the numerical techniques to be

applied, and the output setup and formats. In this manner, we hope to learn the

effects of molecular interactions at the device surface.

6.1 Device Setup

We simulate a two dimensional (2D) physical model of the GaAs biosensor device.

The 2D device model gives a comprehensive and accurate representation of the

device’s physical and electrical properties. The model takes into account the active

region with appropriate boundary conditions for contacts and surfaces, computing

the equilibrium and non-equilibrium transport equations. The device is grown on a

semi-insulating GaAs substrate.

GaAs field effect devices are unipolar, reducing the semiconductor equations to

ones describing electron transport only. Therefore, we neglect the minority carriers
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and assume negligible generation and recombination effects. For an isolated device,

both the boundaries inside the semiconductor bulk and the current free surfaces are

modeled with zero-valued derivatives normal to the boundary for both potential and

carrier density. The source and drain ohmic contacts are assumed to be ideal with

pre-specified fixed potential and fixed carrier concentrations imposed as boundary

conditions. The source potential is set to zero, and a varying potential is applied to

the drain contact to derive the current as a function of drain-to-source voltage VDS.

The gate region potential is controlled by the surface charge, or by charge effects

associated with the addition of DNA biomolecules. The semi-insulating substrate

is assumed to have a negligible effect on the drain-source current. The 2D FET

biosensor device is illustrated in Figure 6.1.

Figure 6.1: The 2D FET biosensor device geometry used in simulation.

The geometry of the device is defined by the basic and essential parameters

which determine the performance and current-voltage relationship. These param-

eters include gate length (Lg), gate width (Wg), and active channel thickness (A).

The device used in this study, and shown in Figure 6.1, has an active n-doped GaAs

layer of thickness A = 0.1 µm, and a gate region length Lg = 0.25 µm for the 2D

simulation. For an actual device in three dimensions, the cross-section of the 2D

device shown in Figure 6.1 is projected along the device width. The device width
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(Wg), for typical GaAs FET devices ranges from 2 to 3 orders of magnitude higher

than the gate length [6, 74].

The n-GaAs active channel is assumed to have a constant doping profile with

doping density ND = 0.15x1018cm−3 of n-type impurities, with full ionization of elec-

trons from the donors. The material properties for the GaAs zincblende structure,

such as the conduction band and valence band effective masses discussed in section

4.1.3 are taken from Vurgaftman et al. [141]. The GaAs lattice constant a = 0.5653

nm, and the static dielectric constant is taken to be εr = 12.93. The lattice tem-

perature is set to 300 K and assumed constant over the entire device. The device

performance depends on temperature, and various characteristic relationships have

been defined for temperature-dependent parameters. Some of the parameters that

depend on temperature include the lattice constant, band gap energy (4.14), car-

rier mobility (4.61), device saturation velocity (4.63), and peak electric field (4.65).

These parameters have a direct effect on the device carrier transport equations,

hence on the performance of the device.

The solution of the coupled system of semiconductor equations requires dis-

cretization of the physical device. The discretization results in a mesh scheme that

ensures that enough nodes are included for convergence of the solution. At areas

near the boundaries, or areas where physical properties change rapidly, it is essential

to have more nodes to accurately model device behavior. We have defined meshes

of size 5.0 x 1.0 nm in most of the device and 2.5 x 1.0 nm near the source and

drain junctions, and near the ends of the gate region. The mesh sizes are smaller

than the Debye length, LD = 11.1 nm at ND =0.15x1018cm−3 (5.8), as required for

spatial decay of carrier distribution due to diffusion.

Table 6.1 summarizes the parameters used for the GaAs biosensor device simu-

lation.
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Parameter value
Gate region length Lg = 0.25 µm
Active channel thickness A = 0.1 µm
Doping density ND = 0.15x1018cm−3

Temperature T = 300 K
Dielectric constant εr = 12.93
Lattice constant a = 0.5653 nm
Peak electric field Epk = 3.2 KV/cm
Saturation velocity vs = 1.2x107cm/s

Table 6.1: Device parameters for the GaAs FET device.

6.2 Simulation Flow

Program execution depends on the device specifications in the input file and the

material properties defined in the database, as shown in Figure 6.2. The calculation

Figure 6.2: Program interaction with the input file and material properties in the
database.

flow for solving the coupled Schrödinger, Poisson and current equations is shown

in Figure 6.3. All constants and data which remain invariant during the iterative

solving of the coupled equations are calculated and set up in the initialization stage.

This stage also includes preparation and conversion of all semiconductor and GaAs

material-specific parameters needed and found in the input file or the database,

and the evaluation of the bulk band structures. The electronic band structure is

calculated within the effective mass approximation, using the envelope wave approx-

imation discussed in section 5.1.

The nonlinear Poisson equation is used to calculate the built-in potential classi-
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Figure 6.3: Computational flow for device simulation.

cally for the equilibrium conditions. The Fermi level is set to 0 eV, and an initial

guess for the electrostatic potential is calculated. Newton’s method is used for the

solution of the Poisson equation with Neumann boundary conditions for zero electric

field. The intrinsic density is calculated using the built-in potential. For quantum

mechanical effects, the built-in potential is also calculated quantum mechanically

using the classical built-in potential as an initial guess for the electrostatic poten-

tial. The coupled nonlinear Schrödinger-Poisson equation is applied and iterated

to a solution using the predictor-corrector algorithm. In the iterations, the Pois-

son equation is solved for the electrostatic potential using a predicted value for

the charge density. The electrostatic potential is used in the Schrödinger equation,
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with the corrected value for the charge density to solve for the eigenstates ψi, and

eigenenergies Ei, in turn used by the Poisson equation. The iterations continue

until convergence of the electron density, or until a specified maximum number of

iterations is exceeded.

For the nonequilibrium conditions, an electric field is applied across the contacts

by applying a bias potential VDS across the drain and source contacts. Therefore,

we include the current equations defined by the drift-diffusion model described in

section 4.2.2. In this model, we only consider electrons as the charge-carriers, and

ignore any carrier generation or recombination. The carrier mobility is modeled

with a dependence on the lattice temperature (according to (4.61)), doping density

(4.60), and electric field (4.64).

With the inclusion of the current equations, the quantum mechanical solution

of the coupled system of Schrödinger, Poisson, and current equations is solved self-

consistently. For the quasi-Fermi level, Dirichlet boundary conditions are applied

for the ohmic contacts and for the gate region. The surface charge density in the

gate region also results in band bending, and a barrier potential φB exists between

the Fermi level and the conduction band energy EC . Dirichlet boundary condi-

tions are applied for the electrostatic potential at the interface. The coupled system

of Schrödinger and Poisson equations is iterated using the predictor-corrector al-

gorithm described earlier. The coupled current-Poisson equation is solved using

Newton’s method to determine the quasi-Fermi levels and the electrostatic poten-

tial used in the Hamiltonian for the Schrödinger equation. The current equation

is solved with underrelaxed Fermi energies that determine charge density for the

Poisson equation.

In the postprocessing step, solutions of the electrostatic potential, quasi-Fermi

levels, and charge densities obtained from the self-consistent solution of the Schrödinger,

Poisson, and current equations are used in further calculations to determine any
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other desired quantities, such as current density, band structures, and current-

voltage relationships (I-V curves). If a voltage sweep is applied to the contacts for

the purpose of obtaining I-V curves, the self-consistent solutions of the Schrödinger,

Poisson, and current equations determined as shown in Figure 6.3 must be repeated

for each voltage step.

6.3 Simulation Results and Device Modeling

This section presents simulation results of a GaAs field-effect DNA biosensor. To

understand the performance of the GaAs transistor-based DNA sensor, we first look

at the electronic band structure and the changes associated with molecular immobi-

lization and hybridization of complementary DNA biomolecules. DC current-voltage

relationships are simulated, investigating the effect of DNA charge on the electrical

behavior of the device. Small-signal parameters of the biosensor device are derived

from incremental perturbations of the DC measurements. These parameters are

then used to analyze the small signal AC response of the device for potential ap-

plication at high frequencies where 1/f noise decreases. For the AC response, we

consider only the intrinsic device parameters at a given bias point. An extensive

study of device behavior at high frequencies (in the microwave and millimeter wave

range of the electromagnetic spectrum) is beyond the scope of this dissertation, and

is left for future research.

6.3.1 Electronic Band Structure

The electronic band energies are first calculated and presented in Table 6.2. These

energy values are based on the Varshni equation given in (4.14), and the parameters

in Table 4.1. The band gap energy, 1.422 eV, is the difference between the Γ

conduction band energy and the heavy-hole valence band energy. Table 6.3 shows
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Electronic band Energy [eV]
Γ 0.6
L 0.885
X 1.077
Heavy-hole -0.82233
Light-hole -0.82233
Split-off -1.16333

Table 6.2: Electronic band energies at 300 K, relative to the Fermi energy EF = 0.0
eV.

the calculated effective density of states for the conduction and valence bands. The

density of states directly affects the carrier concentration n for both the equilibrium

and nonequilibrium conditions according to (4.33) and (4.44) respectively.

Effective density of states Value [1x1018 cm−3]
NC(Γ) 0.4352
NC(L) 10.4323
NC(X) 19.7421
NV (Heavy-hole) 8.8721
NV (Light-hole) 0.445
NV (Split-off) 1.7901

Table 6.3: Effective density of states for conduction and valence bands at 300 K.

The potential distribution across the active channel region for a pure surface

charge at equilibrium conditions is shown in Figure 6.4. This figure shows that, at

zero bias potential (VDS = 0 V) there is a built-in potential energy of −0.576 eV

associated with the surface charge over the gate region. This potential is uniform

from the source contact to the drain contact and decays with depth from the gate

region interface to the semiconductor bulk. In nonequilibrium conditions (Figure

6.5), an applied bias voltage VDS = 0.6 V creates a high-field region at the drain

side. The current channel is modulated, under both equilibrium and nonequilibrium

conditions, by the depletion region resulting from the surface charge. Changes in

the surface charge resulting from immobilization of ssDNA and hybridization by
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complementary strands results in a change in Vsbi. This change in Vsbi, using the

pure surface charge case as a reference, is illustrated in Figure 6.6. Vsbi increases

by 2.54 mV after immobilization of a 20-mer ssDNA, and by 5.08 mV after DNA

hybridization with a completely complementary strand. The change in potential

that results from the immobilization of DNA molecules also decreases with depth,

from the interface to the semiconductor bulk.

Figure 6.4: Potential energy [eV] across the active channel layer in equilibrium
conditions.

Figure 6.5: Potential energy [eV] across the active channel layer with an applied
VDS = 0.6 V.

The charge distribution in the biosensor modulates the conductance of the chan-

nel from drain to source. Figure 6.7 shows the internal space charge density, with the

depletion layer characterized by a decrease in carrier concentration at the boundary.

The space charge is created by positive charge in the semiconductor, which compen-

sates for negative surface charge resulting from DNA immobilization, maintaining

charge neutrality. The change in charge density under the gate region (near the
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Figure 6.6: Plot of ∆Vsbi, the change in Vsbi associated with DNA immobilization
and hybridization, relative to a pure surface charge.

drain end) is characterized by high electric fields, yielding a drift velocity which

rises to a peak according to Figure 4.7, and falls to an equilibrium value at satura-

tion. This velocity-field relationship results in nearly equal charges in the depletion

layer and in the conducting channel.

Figure 6.7: Space charge density [x1018 e/cm3] across the active region with VDS =
0.6 V.
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6.3.2 Device I-V Curves

The current-voltage relationship predicted by our model was compared against ex-

perimental results of Baek, et al., [5] for similar device dimensions, with Vsbi =

0.576V and ND =0.15x1018cm−3. Figure 6.8 shows that the results of our simula-

tion are in relative qualitative and quantitative agreement with Baek’s results. One

distinction is that our model assumes zero ohmic contact resistance, while Baek’s

device portrays an infinite (ideal) output resistance Rds, shown by the constant

output current in saturation.

Figure 6.8: I-V curves from surface charges comparing our simulated results and the
experimental results from Baek et. al. [5] for a 100 µm wide device.

Immobilization and hybridization of DNA molecules results in a change in the

charge density at the gate region. This change in charge modulates the depletion

layer and the channel current which flows under the gate region. This change in

channel dimensions is illustrated by the respective change in current density within

the channel as shown in Figure 6.9. As shown in this figure, the simulation predicts a
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decrease in current after immobilization of ssDNA molecules, and a further decrease

after their hybridization with complementary strands. The actual change in current

density with respect to the pure surface charge case is shown in Figure 6.10. There

is a decrease in current density of about 0.45 A/m after immobilization, resulting

from an increase in net charge density over the gate region, associated with an

increase in depletion depth. The increase in the depletion depth within the active

region reduces the channel conducting area, hence a decrease in current density.

Hybridization results in a further increase in charge density and a further decrease

in current density (0.9 A/m with respect to pure surface charge), as expected.

Figure 6.9: I-V Curves for the biosensor device before immobilization of ssDNA,
after immobilization, and after hybridization event.

The effect of DNA oligonucleotide length on current density is of great interest,

and was also simulated. Longer oligonucleotides (Ldna > 20 mers) will have addi-

tional negative charge along the DNA molecule that is situated further from the

surface. Shorter molecules (Ldna < 20 mers) will have fewer negative charges. We
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Figure 6.10: Change in current density associated with DNA immobilization and
hybridization, relative to pure surface charge.

investigated shorter DNA oligonucleotides (Ldna = 12 mers), and longer oligonu-

cleotides (Ldna = 28 mers), comparing them against the initial (Ldna = 20 mers)

oligonucleotides. Figure 6.11 shows the resulting I-V curves for the immobilization

of various ssDNA lengths, compared to a pure surface charge. The changes involved

are small, but a magnified view at the VDS = 0.6 V bias point is shown in Figure

6.12, providing an insight into the magnitude of the effect. All DNA lengths in the

figure exhibit an average decrease in current density of ≈ 0.45 A/m with respect to

that of the pure surface charge current density. The insert in Figure 6.12 shows that

the longer the DNA length, the greater the decrease in current density. However,

this decrease in current density is small and decays with increasing DNA lengths.

The decay results from a decreasing effect of DNA molecular charge at an increasing

distance R from the surface. The decrease is proportional to 1/R2, which results in

a small net electric field at the surface, shown in Figure 3.8.



91

Figure 6.11: The effect of DNA oligomer length on the conducting channel, illus-
trated by changes in the I-V curves.



92

Figure 6.12: The effect of DNA oligomer length (manifested by molecular charge)
illustrated at a bias point VDS = 0.6 V.
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6.3.3 Small Signal Analysis

Using the DC current-voltage relationships and the charge density behavior pre-

dicted by the simulation, we can obtain the intrinsic AC small-signal parameters

discussed in Section 2.2. Using these parameters, we can predict the AC response

of the device. We will only consider the small-signal values at a single bias point,

since most transistor devices are typically characterized and modeled at high fre-

quencies by impedance (S-parameter) measurements at a single bias voltage and

current. The small-signal values at the bias point will also be sufficient to illustrate

the performance of the small-signal equivalent circuit of Figure 2.7. We select the

bias point VDS = 0.6 V, with current IDS = 8.17 mA for a typical 100 µm wide

device, based on the I-V characteristics (Figure 6.8) of our simulated device.

Some important AC small-signal parameters which can be derived from our sim-

ulated results are the output conductance of the device, the transconductance of

the active channel, and the capacitances resulting from the charge density under

the gate region. Figure 6.13 shows the output conductance gds, and Figure 6.14

shows the resulting output resistance Rds = 1/gds obtained from (2.14). The value

of gds decreases with increasing VDS and becomes nearly constant at the onset of

saturation. Rds behaves inversely to gds. Figure 6.15 illustrates the transconduc-

tance gm of the active channel with increasing VDS. The transconductance increases

at low bias voltages and stabilizes in the saturation region.

The capacitances Cgs, Cgd, and Cds are voltage-dependent, according to equa-

tions (2.15), (2.16), and (2.17), respectively. Cgs decreases with increase in VGS

when VGD is held constant. Cgd decreases as VDS is increased, while Cds increases

with increasing VDS. From these results, we can calculate the so-called transition

frequency fT (2.18), the maximum frequency of oscillation, fmax (2.19), the car-

rier transit time τ (2.21), and the charging resistance Ri (2.22). At the bias point

VDS = 0.6 V and IDS = 8.17 mA, these parameter values were calculated and are
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Figure 6.13: Output conductance as a function of VDS.

shown in Table 6.4.

Parameter Value
gds 0.943 mS
gm 17.6 mS
Rds 1060 Ω
Cgs 0.0378 pF
Cgd 0.0364 pF
Cds 0.4163 fF
Ri 0.0963 Ω
fT 37.77 GHz
fmax 355.0 GHz
τ 0.0208 ps

Table 6.4: Small signal parameter values at a bias voltage VDS = 0.6 V and drain-
to-source current IDS = 8.17 mA for a 100 µm wide device.

The response of the impedance across the drain and source contacts is influenced

by the modulation of the current channel and can be analyzed at different frequen-

cies. The impedance (S-parameter) measurements were obtained for the small-signal
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Figure 6.14: Output resistance as a function of VDS.

equivalent circuit shown in Figure 6.16. The circuit was configured for one-port

measurements with the parameter values in Table 6.4, and analyzed using the Qucs

circuit simulator. Figure 6.17 shows the reflection coefficient S11(magnitude and

phase angle) of the device over the frequency range 0 Hz to 100 GHz, using a Smith

chart presentation. The resulting output impedance of the device can be obtained

from

Zout = Z0
1 + S11

1− S11

(6.1)

where Z0 =50 Ω is the standard characteristic impedance used in the analysis, and

S11 is a complex quantity in general. Figure 6.18 shows the magnitude of the output

impedance of the device as a function of frequency. At low frequencies, Zout ≈ 1060

Ω, dominated by the value of the output resistance Rds (Table 6.4) obtained from

a DC analysis. As frequency increases, the device output resistance drops by (at

least) an order of magnitude over the 100 GHz frequency range. Shifts in device
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Figure 6.15: Transconductance of the device as a function of VDS.

Figure 6.16: Intrinsic equivalent circuit for the GaAs biosensor device modeled for
high-frequency analysis.

small-signal parameters such as transconductance and capacitance values are also

similar as a function of frequency [74,171]. Understanding the device behavior over
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Figure 6.17: The reflection coefficient of the biosensor device as a function of fre-
quency, using a Smith chart presentation. (Center point = 50 Ω normalization
impedance.)

a wide frequency range is critical for the successful design of GaAs transistor-based

biosensor devices, and allows one to optimize a transistor-based DNA detection

device for highest sensitivity and specificity.
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Figure 6.18: Output impedance as a function of frequency.
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Chapter 7

Conclusion

A physical model for a GaAs FET-based DNA biosensor was developed and sim-

ulated. In this model, GaAs FET transistor physical properties were studied, and

device transport equations modeled, incorporating the electrical charge effect from

DNA biomolecules. A DNA charge model was developed assuming covalent teth-

ering of DNA molecules to dangling bonds on the field-effect device surface. DNA

charges on the surface have an effect nearly equal to that of the pre-existing sur-

face charges; those charges on the molecule more distant from the surface have a

decreasing electrostatic effect on sensor performance. This model also assumes that

DNA molecules are, on average, oriented at an angle of 54◦ to the sensor surface, as

predicted in the literature.

The electronic band structure of the device was studied (as influenced by DNA

binding), and results show that there is an increase in surface built-in potential

Vsbi by 2.54 mV after immobilization, increasing to 5.08 mV after hybridization of

complementary DNA molecules. The increase in Vsbi results from an increase in net

negative charge in proximity to the gate region, over and above that of contributions

by the pre-existing surface charges. The effect of these changes in charge density at

the gate region was also studied, specifically examining charges in the current-voltage

relationships obtained. The I-V characteristics show a decrease in current density

along the conducting channel by ≈0.45 A/m after immobilization, and ≈0.9 A/m

following hybridization by complementary DNA strands. The decrease in current

density was associated with an increase in negative charge density at the gate region,

resulting in an increase in the depletion depth and a decrease in the effective area
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of the conducting channel.

Potential applications of a GaAs biosensor device at high frequencies were then

presented, based on extraction of the intrinsic small signal AC parameters from the

DC measurements. The AC response was specifically analyzed at a single bias point,

conveniently selected from the DC characteristics. The analysis shows that the out-

put impedance of the device decreases with frequency, and good performance can be

achieved up to the cut-off frequency of fT = 37.77 GHz. The maximum frequency

of oscillation is fmax = 355 GHz, suggesting that the device has the potential to

be used at frequencies even higher than fT , but the design of biosensor applica-

tions at these high frequencies may be hindered by the availability of testing and

characterization equipment. An extensive study of higher frequency performance is

left for future study. Such a research undertaking should include a noise analysis

(which becomes important at high frequencies), as well as the effects of parasitic re-

sistances, capacitances, and inductances, some induced perhaps by the biomolecules

themselves.

The research presented in this dissertation provides a means for reliably char-

acterizing and modeling a GaAs DNA biosensor device. The performance of the

device can be improved by optimization of all physical and electrical device param-

eters involved, as well as accurate modeling of the device environment. In modeling

a semiconductor field-effect device, an expanded study would also examine parasitic

effects such as substrate effects, contact resistances, and fringing fields.

In a DNA sensing application, the complementary ssDNA molecules to be de-

tected are presented in an ionic solution. The solution contains charged particles

from other compounds or elements in solution, such as H3O
+, OH−, Na+, or K+.

These ions may affect the charge distribution and the working pH conditions of the

device, and an extensive analysis of these effects could be incorporated in the device

model, based on an understanding of the changes in charge distribution involved as
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well as interface parameters.

While research into devices based on GaAs and its alloys continues to expand,

other compound semiconductors such as GaN, InP, and their alloys have also been in-

vestigated as platforms for biosensor design [172–178]. These materials are currently

used in MESFETs and high electron mobility transistor (HEMTs) devices. GaN

has shown great promise in high-frequency, high-power applications, and research

study which includes applications in biosensing is ongoing. The DNA biosensor de-

vice model developed here can also be extended to GaN and other high-frequency

compound semiconductor devices. These high-frequency devices can potentially re-

sult in improved sensitivity and specificity, which could in turn support the use of

semiconductor-based molecular sensors for medical diagnosis.
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Appendix A Some Important Physical Constants

Quantity Symbol Value
Avogadro’s number NAV 6.0221367 x 1023 1/mol
Bohr energy EB 13.606 eV
Bohr magneton µB 5.78832 x 10−5 eV/T
Bohr radius aB 0.52917 Å
Boltzmann constant kB 1.38066 x 10−23 J/K
Electronic charge q 1.60218 x 10−19 C
Electron volt eV 1.60218 x 10−19 J
Mass of electron at rest me 9.1093897 x 10−31 kg
Mass of proton at rest mp 1.6726231 x 10−27 kg
Permeability in vacuum µ0 1.2623 x 10−8 H/cm(4π x10−9)
Permittivity in vacuum ε0 8.85418 x 10−12 F m−1

Planck’s constant h 6.62607 x 10−34 J−s

Reduced Planck’s constant h̄ = h/2π 1.05457 x 10−34 J−s

Speed of light in vacuum c 2.9979 x 108 m sec−1

Thermal voltage at 300K kBT/q 0.02586 V
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Appendix B Properties of Gallium Arsenide (GaAs)

Crystal structure zinc blende
Breakdown field (V/cm) ∼4.0 x 105

Density (g/cm3) 5.3176 (at 298 K)
Dielectric constant (κs) 12.93 (at 300 K)

(κ0) 10.89 (at 300 K)
Diffusion constant (cm2/s) 207 (electrons, at 300 K)

10 (holes, at 300 K)
Effective density of states in the conduction band (cm−3) 4.7 x 1017 (at 300 K)
Effective density of states in the valence band (cm−3) 7.0 x 1018 (at 300 K)
Effective electron mass (in units of me) 0.067 (at 0 K)

0.063 (at 300 K)
Effective hole mass (in units of me) heavy hole 0.51 (at < 100 K)

0.50 (at 300 K)
light hole 0.084 (at < 100 K)

0.076 (at 300 K)
density of states 0.53

Electron affinity (V) 4.07
Energy gap (eV) 1.424 (at 300 K)

1.507 (at 77 K)
1.519 (at 0 K)

Index of refraction 3.3
Intrinsic carrier concentration (cm−3) 2.1 x 106 (at 300 K)
Intrinsic Debye length (µm) 2250 (at 300 K)
Intrinsic resistivity (Ω-cm) 108 (at 300 K)
Lattice constant (Å) 5.6533 (at 300 K)
Melting point (◦C) 1240
Mobility (cm2/V-s) 8500 (electrons, at 300 K)

400 (holes, at 300 K)
Optical phonon energy (eV) 0.035
Specific heat (J/g−◦C) 0.35
Thermal conductivity (W/cm−◦C) 0.46
Thermal diffusivity (cm2/s) 0.44
Thermal expansion, linear (◦C−1) 6.86 x 10−6 (at 300 K)
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