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ABSTRACT 

Numerical Analysis of Die-Casting Process in Thin Cavities using Lubrication 

Approximation 

by 

Alexandre Reikher 

The University of Wisconsin Milwaukee, 2012 

Under the Supervision of Professor Krishna M. Pillai 

Casting of thin wall parts has become a reality of the die cast industry today. 

Computational fluid dynamics analyses are an integral part of the production 

development process. Typically the three-dimensional Navier-Stokes equations 

coupled with the energy equation have to be solved in order to gain an 

understanding of the flow and solidification patterns, position of the flow front, as 

well as location of the solid-liquid interface as a function of time during the 

process of cavity filling and solidification.  A typical solution of the governing 

equations for a thin-wall casting requires large number of computational cells, and 

as a result, takes impractically long time to generate a solution. Using the Hele-

Shaw flow modelling approach, solution of the flow problem in a thin cavity can 

be simplified by neglecting the out-of-plane flow. As a further benefit, the problem 

is reduced from a three-dimensional problem to a two-dimensional one.  But the 

Hele-Shaw approximation requires that viscous forces in the flow are much higher 

than its inertia forces, and in such a case, the Navier-Stokes equation reduces to the 

Reynolds’s lubrication equation. However, owing to the fast injection speed of the 

die-cast process, the inertial forces cannot be neglected. Therefore the lubrication 

equation has to be modified to include the inertial effects of the flow.  

In this PhD thesis, a fast numerical algorithm is developed for 

modeling the steady-state and transient flows of liquid metal accompanied 

by solidification in a thin cavity. The described problem is closely related to 

the cold-chamber, high-pressure die-cast process and in particular to the 

metal flow phenomenon observed in thin ventilation channels.  
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Using the fact that the rate of metal flow in the channel is much 

higher than the solid-liquid interface velocity, a novel numerical algorithm 

is developed by treating the metal flow as steady at a given time-step while 

treating the heat transfer along the thickness direction as transient. The flow 

in the thin cavity is treated as two- dimensional after integrating the 

momentum and continuity equations over the thickness of the channel, 

while the heat transfer is modelled as a one-dimensional phenomenon in the 

thickness direction. The staggered grid arrangement is used to discretize the 

flow governing equations and the resulting set of partial differential 

equations is solved using the SIMPLE(Semi-Implicit Method for Pressure-

Linked Equations) algorithm. The thickness direction heat-transfer problem 

accompanied by phase change is solved using a control volume formulation. 

The location and shape of the solid-liquid interface are found using the 

Stefan condition as a part of the solution. The simulations results are found 

to compare well with the predictions of the commercial software 

FLOW3D
®
 that solves the full three-dimensional set of flow and heat 

transfer equations accompanied with solidification. 

 The proposed numerical algorithm was also applied to solve a 

transient metal-filling and solidification problem in thin channels. The 

presence of a moving solid-liquid interface introduces a non-linearity in the 

resulting set of flow equations, which are now solved iteratively. Once 

again, a good match with the predictions of FLOW3D
®
 was observed.  

These two studies indicate that the proposed inertia-modified 

Reynolds’s lubrication equations accompanied by through-the-thickness 

heat loss and solidification models can be successfully implemented to 

provide a quick analysis of flow and solidification of liquid metals in thin 

channel during the die cast process. Such simulation results, obtained with 

tremendous savings in CPU time, can be used to provide a quick, initial 

analysis during the design of the ventilation channels of a die-cast die. 
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Chapter 1:  Introduction 

1.1 Casting Processes 

There are several casting methods that are used to produce light metal parts. The most 

widely used are 

 Sand casting 

 Permanent mould casting 

 Die casting 

Usually economic considerations are the driving force in deciding which casting process 

can be used. The sand casting process requires the least amount of up-front investment in 

tooling. But parts cannot be produced with close tolerances and minimum machine 

stock
1
. It will require extra machining operations, which will drive the part price up.  

Permanent mould requires up-front investing in tooling. But parts can be cast with much 

closer tolerances and less machining operations. Due to intensive cooling, parts can be 

produced in a much shorter cycle time, compared with sand casting. 

The die-cast process requires a large up-front investment in tooling. Due to high pressure 

used during the die-cast process, parts can be produced with close tolerances and 

minimum machine stock.  

1.2 Sand Casting 

Sand casting is the oldest way to produce near net-shape parts. Sand casting moulds 

(Figure 1.1) are made using green or chemically bonded sand. Green sand moulds use 

                                                 
1
 Machine stock is a material added to the casting surface for subsequent machining operations with the 

purpose to achieve better surface finish and closer tolerances than die cast process allows.  
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either a mixture of natural sand and clay or synthetic sands. A typical sand casting mould 

has a gating system, risers and chills. 

 

Figure 1.1 Schematic representaion of sand casting mould 

 

1.3 Permanent Mould Casting 

Permanent mould casting is referred to as a method of casting in which the mould is not 

destroyed during extraction of the casting. Permanent moulds are capable of producing 

large number of the same casting. Castings produced in permanent moulds have generally 

finer grain structure and superior mechanical properties compared with sand castings. 

Castings also have less gas porosity, major defect of the die-castings. 

Permanent mould has the following major components: 

1. Gating system, which directs liquid metal into the cavity at a selected rate. 

2. Feeding system, which feeds liquid metal to thicker areas of the part during the 

solidification period. 
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3. Chills, which complements the feeding system by cooling thicker areas of the 

part. 

4. Venting system, which allows gases to escape during the cavity fill process. 

In general, the permanent mould casting is operationally very similar to a sand casting. It 

employs gravity as a feeding method. In order to ensure proper filling of the casting, 

sufficient head has to be provided. Position of the gating system, risers, and chill has to 

allow directional solidification, starting from the areas of the casting away from the gate 

and moving into the direction of the gates and feeders. Incorrectly designed and 

positioned gating system will result in a short fill and shrink porosity. Mistakes in the 

design of the feeding system and chills will result in excessive shrink porosity, or longer 

dwell time. Incorrectly placed and sized ventilation channels will result in excessive gas 

porosity in the casting.  

There are three major processes that are currently used to produce castings in permanent 

moulds: 

 Gravity casting 

 Low-pressure castings 

 Counterpressure casting 

1.3.1 Gravity Casting 

Gravity casting is a basic casting process that uses gravity to fill the cavity of the mould. 

This process can be used for simply shaped parts that are not going to be used in high 

stress or leak free applications. 
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 1.3.2 Low-pressure Permanent Mould Casting 

Low-pressure permanent mould casting is a process that uses pressure to feed metal in to 

the cavity. Castings produced by this method have a higher density and lower gas and 

shrink porosities. Molten metal is fed from the bottom of the cavity through the riser tube 

under some pressure (0.5 – 0.8 Bar). Advantages of this method are 

 

1. The process can be easily automated, which allows control of metal velocity, 

reduces the turbulence of the metal flow and minimizes air entrainment.  

2. A hermetically sealed furnace minimizes metal oxidation and avoids unwanted 

inclusions. 

3. Metal is fed from the bottom of the bath which allows feeding cleaner metal into 

the cavity of the mould. 

4. Directional solidification to the riser allows feeding metal until the casting is 

completely solidified. This reduces the amount of shrink porosity. 

5. This method allows producing quality casting with thinner walls. 

6. High casting yield 

1.3.3 Counter-pressure Casting 

Counterpressure casting is a method that uses low pressure to feed metal into the cavity 

from the bottom of the mould, similar to the low-pressure permanent mould casting 

method. As the cavity is filled with liquid metal, the pressure constantly increases which 

suppresses the hydrogen precipitation. Counter-pressure permanent mould casting 

method allows achieving the highest mechanical properties in a casting. The pressurized 

cavity eliminates shrink porosity without using risers.  
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1.4 Die Casting 

The earliest examples of die casting by pressure injection, as opposed to casting by 

gravity pressure, occurred in the mid–1800s. A patent was awarded to Sturges in 1849 for 

the first manually operated machine for casting printing type. The process was limited to 

printer’s type for the next 20 years, but development of other shapes began to increase 

toward the end of the century. By 1892, commercial applications included parts for 

phonographs and cash registers, and mass production of many types of parts began in the 

early 1900s. The first die-casting alloys were various compositions of tin and lead, but 

their use declined with the introduction of zinc and aluminium alloys in 1914. 

Magnesium and copper alloys quickly followed, and by the 1930s, many of the modern 

alloys still in use today became available [1]. 

The die-casting process has evolved from the original low-pressure injection 

method to techniques including high-pressure casting (at pressures exceeding 4500 

pounds per square inch), squeeze casting, and semisolid die casting. These modern 

processes are capable of producing high integrity, near net-shape castings with excellent 

surface finishes.  

Alloys of aluminum, copper, magnesium, and zinc are most commonly used for casting 

(see Table 1.1):  

 Aluminium is a lightweight material exhibiting good dimensional stability, 

mechanical properties, machinability, and thermal and electrical conductivity. 

 Copper alloy is a material with high strength and hardness. It has high 

mechanical properties, dimensional stability, and wear resistance. 
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 Magnesium is the lightest cast alloy. It is about 4 times lighter than steel and 

1.5 times lighter than aluminium. It has a better strength to weight ratio than 

some steel, iron and aluminium alloys.  

 Zinc is the easiest alloy to cast. It can be used to produce castings with 0.5 mm 

wall thickness. 

Table 1.1 Properties of the alloys [2] 

 
Aluminum Magnesium Zinc 

Tensile strength, psi x 1000 47 34 41 

Yield strength, psi x 100 (0.2 pct 

offset) 
23 23 — 

Shear strength, psi x 1000 28 20 31 

Fatigue strength, psi x 1000 20 14 7 

Elongation, pct in 2 in. 3.50 3.0 10 

Hardness (Brinell) 80 63 82 

Specific gravity 2.71 1.80 6.60 

Weight, lb/cu. in. 0.098 0.066 0.24 

Melting point (liquid), °F 1100 1105 728 

Thermal conductivity, CG5 0.23 0.16 0.27 

Thermal expansion, in./in./°F x 

10
6
 

12.1 15.0 15.2 

 

1.5 Die-cast Process 

High-pressure die casting is used for a wide range of applications in all major industries. 

Advantages of the aluminum die castings are: 

1. High mechanical properties in combination with light weight. 

2. High thermal conductivity. 

3. Good machinability. 

4. High resistance to corrosion. 

5. Parts can be produced with no or a limited amount of machining. 
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6. Parts can be cast with reproducable and close dimensional tolerances. 

7. Low scrap rate. 

8. High production rate 

9. Thin cross sections 

Die casting is a precision manufacturing process in which molten metal is injected at 

high pressure and velocity into a permanent metal mould. There are two basic die-casting 

processes: 

1. Hot chamber process.  

2. Cold chamber process.  

1.5.1 Hot Chamber Process 

In a hot chamber die-cast machine (Figure 1.2), a metal injection system is immersed 

in the molten metal.  

Advantages of hot chamber die-cast process are 

1. Cycle time kept to a minimum. 

2. Molten metal must travel only a short distance, which ensures minimum 

temperature loss during cycle time. 

The hot chamber process can be used only for alloys with a low melting point (lead, 

zinc). Alloys with a higher melting point will cause degradation of the metal injection 

system. 

The hot chamber die-cast process has the following steps: 

1. Hydraulic cylinder applies pressure on plunger (Figure 1.2). 

2. Plunger pushes metal from the sleeve through the gating system into the cavity 

(Figure 1.3a). 
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3. High pressure is maintained during the solidification process. 

4. After solidification is complete, the die opens (Figure 1.3b).  

5. The part is ejected from the cavity (Figure 1.3c). 

 

Figure 1.2. Schematic representation of hot chamber die-cast machine 

 

 

 

 

 

 

 

 
a 

 
b 

 
c 

 

Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a. 

plunger pushes metal from the sleeve through the gating system into the cavity; b. after 

solidification process is complete, the die opens; c. the part is ejected from the cavity. 
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1.5.2 Cold Chamber Process 

The cold chamber die-cast process is used for alloys with a higher melting point 

(aluminium, magnesium,  brass). In a cold chamber die-casting machine (Figure 1.4), the 

metal is in contact with the machine injection system only for a short period of time.  

 

Figure 1.4. Schematic representation of cold chamber die-cast machine 

A typical process consists of several steps (Figure 1.5): 

1. Molten metal is ladled into the shot sleeve (Figure 1.5a). 

2. Hydraulic cylinder applies pressure on the plunger (Figure 1.5b). 

3. The plunger pushes metal from the sleeve through the gating system into the 

cavity (Figure 1.5c). 

4. High pressure is maintained during the solidification process (Figure 1.5d). 

5. After solidification is complete, the die opens (Figure 1.5e).  

6. The part is ejected from the cavity (Figure 1.5f). 
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a b 

  
c d 

 

 

e f 

Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a. 

molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on 

plunger; c. plunger pushes metal from the sleeve through the gating system into the 

cavity; d. high pressure is maintained during solidification; e. after solidification is 

complete, the die opens; f. the part is ejected from the cavity. 

 

Disadvantages of the die cast process are: 

1. Porosity is the major defect of the die cast process, 

2. High cost of the die-cast die. 

1.6 Challenges of metal flow in thin cavities 

Recent trends in the industry to reduce energy consumption, reduce mass of components, 

and achieve greater efficiency of the end user products resulted in more complex die-cast 

parts. Thin wall castings, in combination with new materials, offer weight reduction with 
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increased strength. Secondary operations like welding and heat treatment have raised 

quality requirements for these highly engineered castings. In order to achieve the greater 

structural uniformity, high-efficiency vacuum systems are routinely used on die cast dies. 

Major problems that increase cost and limit the use of die-cast parts are porosity and 

blisters. Gas porosity usually results from improperly design flow pattern or cooling 

system, inadequate size of the ventilation system. High temperature gradients between 

the molten metal and die-cast die cavity steel require more careful consideration at the 

process design stage.  

Numerical simulations are regularly used nowadays to predict problems during 

molding and optimize mold design. Flow and thermal analyses in die casting are 

conducted by commercial software including FLOW3D, EKK and MAGMASOFT. Such 

numerical analyses help to predict defects of the die cast process such as gas and 

thermally induced porosities, cold flow, and premature solidification.   

Purpose of the present work is to simplify numerical analysis of the liquid metal 

flow and solidification in a thin cavity by employing the Reynolds’s lubrication 

approximation. Reducing the three-dimensional Navier-Stokes equations to a two-

dimensional flow equations based on the Reynolds lubrication approximation allows one 

to eliminate velocity calculations in the traverse direction. It simplifies computational 

domain from three dimensions to two dimensions, reduce computational time 

significantly, and allows one to achieve the solution of the flow and solidification 

problem much faster with reasonable accuracy. 
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Chapter 2: Literature Overview 

2.1 A Historical Overview of Numerical Methods 

Numerical analysis is the area of mathematics that solves differential equations that 

describe real world problems by numerical approximation. History of numerical 

approximations can be traced back to 1650 BC when Rhind Papyrus of Egypt used a 

root-finding method for solving equations [3]. Archimedes of Syracuse in 287-212 BC 

used numerical methods for calculating lengths, areas, and volumes of geometric figures 

[4]. Many current numerical approximations are based on a fundamental work of Isaac 

Newton and Gottfried Leibnitz [4]. Numerical methods for root-finding and polynomial 

interpolation first introduced by Newton still find wide use in modern algorithms. 

Contribution of famous mathematicians of 18
th

 and 19th century Euler (1707-1783), 

Joseph-Louis Lagrange (1736-1813), and Karl Friedrich Gauss (1777-1855) laid the 

foundation for treating numerical methods as an independent branch of the mathematical 

science. Beginning of modern numerical analysis can be attributed to work by John von 

Neumann and Herman Goldstine [5].  

 In our days, development of new computational platforms as well as development 

and constant evolution of programming languages allows one to implement more 

sophisticated, more powerful numerical algorithms. Fortran still remains the most popular 

programming language for implementing numerical algorithms. Together with other 

programming languages including C, C++, and JAVA, it allows one to develop new 

engineering software-based tools for solving rather complex engineering problems. In 

recent years, programming languages that combine numerical programming and 

graphical tools have gained popularity. MATLAB© is one of the most popular ways of 
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doing numerical computations, while Maple© and Mathematica© are the most popular 

packages used for solving the mathematical problems analytically. 

2.2 Finite Difference Method 

To find solution of partial differential equation (PDE), computational domain has to be 

discretizied into finite difference grid. Lines that divide computational domain called 

finite difference grid. Points of intersection of the grid lines called grid points. One of the 

numerical procedures that solve PDE at the grid points are called finite difference 

method. After finite difference grid is established, a finite difference approximation has 

to be developed—it is often done by writing Taylor series at every grid point for the 

dependant variable. Then the solution of the PDE in terms of the solution of a system of 

algebraic equations can be found [6].  

2.3 Control Volume Method (CVM) 

The computational domain is subdivided into a finite number of non-overlapping control 

volumes by orthogonal but not necessarily uniformly-spaced grid lines. Control volume 

method (see Figure 2.1) is based on the principal of achieving flux balance in a finite 

control volume [7]. Algebraic equations are set by achieving the balance of a physical 

quantity in a control volume. A scalar grid point “P”, located at the center of each control 

volume, is used for storing values of variables such as pressure and enthalpy. Velocity 

components are stored at control volume faces. However storage of velocity components 

are staggered with respect to the faces:  velocities ‘u’ are stored at west and east faces, 

while velocities ‘v’ are stored at north and south faces. So control volume storage for 

vector quantities are different from the scalar components—this arrangement is used to 

prevent the estimation of unrealistic results for pressure and velocities.   
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Figure 2.1 Control volume method.  

2.4 Free Surface Approximation using a Numerical Technique 

2.4.1 Marker and Cell (MAC) Method 

Marker and cell method was first introduced in 1965 [8]. The method is based on placing 

a set of marker particles within a fluid. Particles can move with the fluid but have no 

volume or mass. Computational cells that contain the marker particles are considered 

occupied by a fluid. Computational cells without the marker particles are considered 

empty. Free surface is considered to be in a cell that has a marker particle and borders 

with at least one empty cell. Advection of a free surface is computed based on movement 

of the particles with locally-interpolated fluid velocities. A prominent disadvantage of the 

MAC method is the high usage of CPU time for tracing all marker particles. Other 

disadvantages include lost ability to track volume and impractical implementation for 

three dimensional flows.  
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2.4.2. Surface Marker Method 

In an attempt to reduce the CPU and memory requirements of the MAC method, marker 

particles were placed on a free surface only [9]. This method did improve the computer 

memory usage.  

2.4.3 Free Surface Approximation using Volume of Fluid (VOF) Method 

Volume of fluid method [10] (see Figure 2.2) was developed to take advantage of volume 

tracking capabilities of the MAC method and reduce its CPU memory requirements. In 

order to minimize storage space, only one of the flow variables (pressure, velocity, 

temperature) is stored in a single control volume. Following the same methodology, fluid 

volume fraction is stored in each computational volume. Volume fraction is a step 

function that can be either zero or one. Free surface is located between completely filled 

and empty cells. Based on a fraction of fluid in the particular cell, slopes and the 

curvature of the free surface can be easily computed as well. To compute surface 

advection in time in 2D, the kinematic equation for fluid fraction can be used: 

   0














y

F
v

x

F
u

t

F
    (2.1) 

where F is a fraction of fluid in a cell, u and v are velocities in x and y direction 

respectively. Volume of fraction method has proven to be a robust and accurate in 

tracking a free-surface flow [11]. It is a substantially simplified MAC method without 

any added computational costs. 
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Figure 2.2 Volume of fluid method 

2.5 Reynolds’s lubrication approximation 

In 1886 Osborne Reynolds [12] derived the differential equation governing the pressure 

distribution in thin film of lubrication. If the cavity is assumed to be thin, and out of plane 

flow is neglected, the three dimensional problem can be simplified to a two dimensional 

one. Consider one dimensional Navier-Stokes equation:  
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         (2.2) 

where, pand,,  are density, viscosity, and pressure respectively. 

If we assumed that   

 Derivative of u with respect of time is equal to zero, 

 Velocity is independent of x and doesn’t have y or z component, 

 Pressure is hydrostatic in z direction, 

 Cavity is assumed to be thin and varying slowly along the x and y directions, 

 Inertial forces are much smaller than viscous forces, 
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then the Navier-Stokes equations, on being integrated along the thickness (z) direction, 

can then be reduced to the well known Reynolds lubrication equation [13]: 
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    (2.3) 

Here h is the cavity thickness while Ui and Vi are the x and y direction velocities of the 

upper and lower surfaces. For our case with both the walls of the channel being stationary 

and no variation in flow in the y direction, Eq. 2.3 reduces to 

0
















x

P
S

x
          (2.4) 

where 


3h
S   is flow conductance and P is liquid pressure. 

Equation (2.3) indicates that the Navier – Stokes equation is reduced to a lubrication 

equation under the assumption that inertia effects can be neglected. However in order to 

implement lubrication equation for numerical analysis of the liquid metal-flow in the thin 

cavities, the inertia effects cannot be excluded from our consideration due the high 

thickness-based Reynolds (~ 60,000) number of the process. Hence the lubrication 

equation with inertia effects coupled with energy equation will be used to numerically 

compute liquid metal flow with solidification in a narrow channel. 

2.6 Scope and objective 

In the present work, numerical algorithm for modeling the steady as well as transient 

flow of liquid metal and its subsequent solidification in a thin cavity is developed. Metal 

flow happens in a thin ventilation channel at the end of the die cast process. Main 

purpose of this algorithm is to develop a numerical ability to calculate quickly and with 

reasonable degree of accuracy how far liquid metal will be able to travel in the ventilation 
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channel before solidification occurs. It will enable engineers to design die ventilation 

channels without solving the full Navier-Stokes equation, which takes a long time owing 

to a very large aspect ratio of the channel geometry, i.e., the channel thickness is in 

millimeters while the potential length of the liquid metal flow is in tens of centimeters.  

Objectives of this thesis proposal are: 

1. Develop a 2-D equation set for the flow and solidification of liquid metal in thin 

cavities using the Reynolds’s lubrication approximation  

2. Develop a numerical algorithm to analyze steady-state and transient metal flow in 

the thin channel with solidification  

3. Validate our numerical simulation against experimental data 

To achieve these objectives, we will present the results in the following two parts: (a) a 

proof-of-concept study in chapter 3 with a simpler, steady flow of metal in a channel 

while the skin of solid metal growing on the channel walls, (b) a more advanced, 

transient flow in the channel in chapter 4 with a moving metal-air interface while the 

solid-metal skin grows on the walls. 
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Chapter 3:  A fast numerical simulation for modeling simultaneous 

metal flow and solidification in thin cavities using the lubrication 

approximation 

 

Abstract: A numerical algorithm for modelling steady flow of liquid metal 

accompanied by solidification in a thin cavity is presented. The problem is closely 

related to a die cast process and in particular to the metal flow phenomenon 

observed in thin ventilation channels. Using the fact that the rate of metal flow in 

the channel is much higher than the rate of solidification, a numerical algorithm is 

developed by treating the metal flow as steady in a given time-step while treating 

the heat transfer in the thickness direction as transient. The flow in the thin cavity is 

treated as two dimensional after integrating the momentum and continuity 

equations over the thickness of the channel, while the heat transfer is modelled as a 

one-dimensional phenomenon in the thickness direction. The presence of a moving 

solid-liquid interface introduces non-linearity in the resulting set of equations, and 

which are solved iteratively. The location and shape of the solid-liquid interface are 

found as a part of the solution. The staggered grid arrangement is used to discretize 

the flow governing equations and the resulting set of partial differential equations is 

solved using the SIMPLE algorithm. The thickness direction heat-transfer problem 

accompanied by phase change is solved using a control volume formulation. The 

results are compared with the predictions of the commercial software FLOW3D
®
 

which solves the full three-dimensional set of flow and heat transfer equations 
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accompanied with solidification. The Reynolds’s lubrication equations 

accompanied by the through-the-thickness heat loss and solidification model can be 

successfully implemented to analyze flow and solidification of liquid metals in thin 

channel during the die cast process. The results were obtained with significant 

savings in CPU time.   

 

3.1 Introduction 

Global competition for manufacturing superiority has entered a new stage. As economists 

predicted for quite some time, there is no a single country or a region which can claim 

absolute world dominance in manufacturing capabilities. Widespread use of numerical 

analysis software and free exchange of information allow engineers around the world to 

design, analyze, and bring to manufacture new products in record times. Die cast industry 

is not an exception. Flow, thermal, and distortion analyses are the integral part of 

developing die cast process parameters as well as die-cast die design. But due to an 

increase in complexity of part design, it takes longer to go through the complete 

numerical analyses cycle; in many cases, it takes several iterations to achieve the desired 

results. 

With the development of faster computers as well as more efficient and accurate 

numerical approximations, engineers can examine more design options and achieve better 

results in a much shorter time. However, in spite of the latest advances in numerical 

simulations, detailed examinations of the flow and solidification inside thin channels 

remain challenging.  
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Liquid flow and solidification in channels is a complex phenomenon which 

gained much attention of researchers in the past few decades. Complexity of the fluid-

flow physics and solidification, as well as changes in the flow regime along the length of 

the channel, create quite a few challenges in the development of numerical algorithms to 

predict the location and shape of the liquid-solid interface as well as velocity and 

temperature distributions in the channel. Detailed descriptions of the fluid flow, heat 

transfer and solidification in the straight channels was conducted by Epstein and Chung 

[14]. The numerical analysis of fluid flow and solidification in channels requires the 

solution of the 3D Navier–Stokes equations.  The thin cavities with high length-to-

thickness aspect ratios require quite a large number of computational cells in order to 

achieve accuracy and convergence.   

Many numerical algorithms were developed to analyze flow and solidification 

between two parallel plates. In order to simplify the 3D problem, it is reduced into a 2D 

one, where the original governing equations are converted from the Cartesian coordinate 

system into the curvilinear coordinates. The numerical model developed by B. Weigand 

et. al [15] successfully solved the two-dimensional Navier-Stokes equation coupled with 

the heat transfer equation.  The numerical analysis of heat transfer during solidification in 

a channel, in most cases, requires the conversion of the heat conduction equation from the 

Cartesian coordinates into the curvilinear coordinates as well [16].   

Though several numerical methods have been proposed to model solidification of 

materials in the recent past, not all of them are useful for modelling the flow and 

solidification in thin channels. For example, a generalized finite difference method was 

shown to be an efficient technique to model the solidification of metals in [17]. However, 
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the model was developed for stationary liquid metals and requires a numerical procedure 

for identification and generation of nodes throughout the computational domain; such a 

method will be difficult to implement in thin channels as it will require to generate large 

number of computational nodes. Similarly, a cellular automaton model, used for 

microscopic modelling of heat transfer and coupled with the finite volume method for 

macroscopic modelling of solidification process, was introduced by Yao et al. [18]. The 

model allows for accurate prediction of the solidification parameters in both macro and 

micro scales. However, the model is implemented for stationary fluids only and requires 

finite volume descritization in the direction of solidification.  A numerical algorithm for 

modelling two-phase flow was proposed in [19] where forcing terms are added to the 

Navier-Stokes equations to account for the properties variation between the two fluids. 

The method doesn’t account for the inertia driven flows as well as does not predict 

solidification, and requires computational descritization of the domain in the direction of 

the interface between two fluids during advection. In the last few years, several finite-

difference and finite-volume based methods have been developed and implemented to 

model solidification of metals during casting [20-21]. These models concentrate on 

developing accurate and efficient algorithms to predict temperature distribution during 

the solidification process. Such models require a large number of computational cells to 

be generated in the direction of solidification-front motion and do not account for the 

effects of the inertia driven flow on temperature distribution in the liquid phase. 

Another approach is to convert the original 3D governing equations into the 

depth-averaged equations; this approach is widely used in the shallow-depth fluid-flow 

models [22-23]. However, these algorithms still require the solution of the turbulence 
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models. Several turbulence models have been developed to be used with the depth-

averaged governing equations [23-26].  

Although the above-mentioned approaches simplify the governing equations, the 

inclusion of turbulence and other details in numerical models requires substantial amount 

of CPU time to achieve converged solution. Moreover, conversion of the governing 

equations into curvilinear coordinates in [23-26] creates added complexities in the 

development of the numerical algorithm. 

In this paper, we propose a simpler, less-computationally expensive approach 

where the three-dimensional problem of flow and solidification in a thin channel is 

reduced to a two-dimensional one based on the Hele-Shaw approximation [27]. This 

approach is based on the Reynolds lubrication theory. Fundamental assumption of the 

lubrication equation is that in thin, slowly-varying cavities with the flow at relatively 

small Reynolds’s numbers, the inertia forces are much smaller than the viscous forces 

and can be neglected. In such a situation, the three-dimensional Navier-Stokes equation 

can be reduced to a Reynolds’s lubrication equation and used to analyse flows in thin 

cavities [13]. In spite of its limitations, the Reynolds’s lubrication formulation remains 

the foundation of the numerical analysis in thin cavities.  

Owing to the high-speed nature of the die cast process [28], inertia effects in the 

metal flow cannot be neglected. Some attempts were made to include the influence of 

inertia in the lubrication equation. For example, validity of integration of the governing 

equation over a cavity thickness after assuming a parabolic distribution of the velocity 

was experimentally confirmed [27]. Similarly, the inertia effects in thin-channel flows 
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were included in the lubrication equation and validity of the altered lubrication equation 

for a wide range of Reynolds numbers was established [30-31].  

In this paper, a numerical solution of flow in a thin cavity using the lubrication 

approximation along with a control-volume based solidification model will be presented. 

The staggered grid arrangement is used to discretize the governing equations. Then an 

iterative SIMPLE algorithm is used to solve the discretized equations for momentum in 

the centre-line 2D plane within the channel, while another iterative scheme is used to 

model the out-of-plane solidification. 

Before presenting a detailed flow model, several dimensionless parameters have 

to be examined in order to identify the driving forces controlling the flow in thin channels 

during the die-cast operation. Relative importance of the inertial forces compared to the 

surface tension forces can be examined using the Weber number: 

  


 hU
We l

2

0                      (3.1) 

where, hUl ,0,  and  are density of liquid metal, average velocity, height of the 

channel, and surface tension, respectively. 

Using the die-cast aluminium properties listed in Table 3.1 and assuming the average 

fluid velocity in the ventilation channel to be 1.6 ms
-1

 while taking the channel gap to be 

0.0005 m, the corresponding Weber number will be 

   9.3
86.0

0005.0*6.1*2650 2

We  

This value indicates that the initial inertia forces, before the metal flow in the cavity is 

affected by solidification, are almost two times higher than the surface tension forces.  
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The ratio between the surface tension and viscous forces has to be studied next. 

The Capillary number, which represents the ratio of the viscous forces compared to the 

capillary forces, can be expressed as 

      


 0U
Ca       (3.2)  

 

Table 3.1 Properties of A380 aluminium [32] 

 

Metal density    2650[kg m
-3

] 

Heat conduction coefficient (ks, kl) 
94 [J m

-1
 s

-1
 K

-1
] 

Specific heat (C) 938 [J kg
-1

 K
-1

] 

Liquid metal viscosity    10
-3

 [kg m
-1

 s
-1

] 

Solidification point 538 [
0
C] 

Latent heat (Lf) 3.97x10
5
 [J kg

-1
] 

 

Using the values listed in Table 3.1, the Capillary number can be estimated to be 

     2
3

86.1
86.0

6.1*10 


 eCa  

This result indicates that the surface tension forces are two orders-of-magnitude larger 

than the viscous forces. Evaluation of Eqs.(3.1) and (3.2)  lead to the conclusion that 

inertial forces  dominate the  metal flow in thin channels during the die-cast operation.  

3.2 Development of steady-state solution of flow in thin cavity 

Metal flow and solidification in a thin channel is a subject of this study. Molten 

metal is fed from the left of the channel (see Figure 3.1) in positive “x” direction. Flow is 

induced due a pressure difference between the left side (inlet) and right side (outlet) of 

the channel. In the present study, it is assumed that a steady flow of metal has been 
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established before the onset of solidification at the walls. (Such an assumption is justified 

since the filling of such channels happen within a second.) After a sufficient amount of 

heat has been extracted from the metal, a solid-liquid interface formed next to the channel 

walls grows and meets at the centre of the channel. Fluid flow is assumed to feed the 

solidification front while the heat is being extracted.  

 

Figure 3.1. Straight channel with a rectangular cross-section: the liquid metal enters from 

the left-most section in the y-z plane , flows along the x direction, and then exits from the 

other end. 

 

Both the metal and channel are at superheated temperature initially. The channel 

walls are suddenly cooled to a temperature below the solidification temperature. 

Solidification fronts will be forming near the walls of the channel, propagating inside the 

molten metal. During solidification, the metal is moving under a pressure-driven flow 

with a prescribed inlet velocity.   

Now we present a comparison of the typical speed with which the metal solidifies versus 

the speed with which the metal passes through the channel—such a comparison will help 

us to ignore solidification during the filling of the channel. A typical solidification rate 

“S” inside the horizontal channel can be found [25] using properties of aluminium, 

shown in Table 3.1 as  
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001.0*97.3*2650

10650
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            

where, 
sf kHLwTmT ,,,,

0
 and  - temperature of the metal, temperature of the wall, latent 

heat of fusion, average height of the channel, heat transfer coefficient, and density of the 

aluminum, respectively.          

Meanwhile the typical rate for metal flow in the channel
*
 without the solid-liquid 

interface being present is 1 ms
-1

. The characteristic values clearly show that the rate of 

solidification is much smaller then the rate of metal flow in the channel. In fact, as the 

solid-liquid interface converges at the centre of the channel, the rate of metal flow 

increases, and the ratio of the solidification rate to the flow rate further reduces and goes 

almost to zero. Based on these conclusions, we are justified in developing our numerical 

algorithm for transient solidification in the channel accompanied by liquid-to-solid heat 

conduction, while treating the metal flow to be quasi-steady. 

The proposed numerical algorithm is developed based on the assumptions, that at 

time greater than zero, the liquid metal is entering the channel with its temperature above 

the melting point. Due to their low thermal resistance, the channel walls are assumed to 

remain at a constant temperature below the melting point to induce solidification. Since 

the variation in the solid-layer thickness with position along the channel length is small, 

quasi stable-state can be assumed for the heat conduction in the solid. The liquid-metal 

temperature is taken to be a constant, while the metal velocity at the channel entrance is 

                                                 
*
 The typical velocity corresponds to the end of the die cast process, after the main cavity is filled and 

liquid metal is in the ventilation channel. 
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considered to be fully developed and steady. All physical properties for both the liquid 

and solid phases are considered constants.  

Problem is applicable to the metal die-cast process involving flow in thin cavities. 

A brief description of the process is given below. Thin-wall castings, flow in ventilation 

channels, etc., are some examples where the proposed algorithm can be utilized. The 

proposed numerical solutions can be used to reduce the number of design iterations 

employing the full 3D simulation algorithm. One of the ways to reduce the computational 

time is to reduce a 3-D problem to a 2-D one. In the present case, the die-cast mold cavity 

is thin and hence the flow in the vertical direction is neglected. Assumption of negligible 

inertial forces allows one to reduce the Navier-Stokes equations to the Reynolds 

lubrication approximation. But such an approximation is valid only for small Reynolds 

numbers. A major characteristic of the die casting process is metal flow under high 

pressure and velocity, and since the Reynolds numbers can achieve quite high values, the 

inertia effects cannot be neglected. Hence a modified lubrication approximation after 

including the inertial effects is employed to predict the thickness-averaged in-plane flow 

in the die-cast mould.  

The presented algorithm considers the thickness-averaged 2-D steady-state flow 

in a die-cast mold in the in-plane directions and 1-D along-the-thickness transient heat-

transfer. A set of nonlinear partial differential equations is developed to solve for flow 

which are then discretized using the finite difference scheme after employing the 

SIMPLE algorithm. A direct control-volume based formulation is proposed to model heat 

transfer and solidification along the thickness direction. The two sets of equations are 

solved in an iterative manner using Matlab  and the obtained results are validated by 
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comparing with the ones achieved using the commercial software FLOW3D
2
, where the 

control volume method is used to discretize the governing equations while the enthalpy 

method is used to estimate temperature distribution in the cavity.  

3.3 Governing equations 

 We are considering a three-dimensional flow in a straight channel with 

rectangular cross-section as shown in Figure 3.1. The flow is considered to be 

incompressible, viscous, and Newtonian. Due to the fact that the rate of metal flow in the 

channel is much higher than the rate of solidification, a steady-state flow at a given time-

step with transient heat conduction from liquid into solid is assumed. Since the inertial 

effects characterized by high Reynolds’s number are dominant in the flow, so the 

gravitational forces are neglected. The governing equations are expressed in the Cartesian 

coordinate system with x coordinate in the direction of flow (along the cavity length), y 

in the direction normal to the flow (along the cavity width), and z  in the direction 

transverse to the x-y plane (along the cavity height); u, v, and w are the corresponding 

velocities. The governing equations used are the continuity, momentum, and energy 

equations in the liquid and solid phases with momentum and energy boundary conditions 

specified at the channel walls, inlet, and outlet as well as at the solid-liquid interface. 

Location and shape of the solid-liquid interface is found as a part of the solution of the 

                                                 
2
 FLOW3D

®
 [33] is a general purpose commercial CFD software which solves three-dimensional 

fluid-flow and solidification problems using the finite different approximation. FLOW3D utilizes the 

Volume-of-Fluid technique and the FAVOR method to track free surfaces as well as solid-liquid interfaces. 

The two equation k-e model is used to resolve the turbulent properties of the flow. The averaged Navier–

Stokes equations coupled with the energy equation allow the software to achieve an accurate solution for 

turbulent metal flow undergoing solidification.  
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presented algorithm. The steady-state conservation equations governing the transport of 

mass, momentum and energy are expressed as follows. 

Liquid region 

Continuity equation: 
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Momentum balance equations: 
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Energy balance equation: 

In differential form, the energy balance equation is expressed as 

 0



qTvC

t

T
C


                                     (3.6) 

where, qandtTC ,,, are specific heat, temperature of the metal, time, and heat flux, 

respectively. 

Solution of the governing equations (3.4) to (3.6) presents several problems. To begin 

with, the convective terms in the left hand side of Eq. (3.5) are non-linear. All equations 

are coupled because velocity components are present in each equation. On comparing the 
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rate of solidification (see Eq. 3.3) to the rate of flow, one can define a solidification 

parameter as 

                                                          
u

S
s                                                               (3.7) 

Based on the flow and solidification characteristic of the presented problem and the 

characteristic x-direction velocity of u=1m/s, the solidification parameter in our case will 

be 

    0518.0
0.1

0518.0
 s  

 

Metal flowing in thin channels is affected by solidification, which results in the 

presence of a growing solid-liquid interface next to the cooler channel wall. As the time 

progresses, the solid-liquid interfaces from the two walls converge at the centre of the 

channel; in other words, a progressive reduction of the effective channel gap h. When 

0h , the conservation of mass of the flowing metal indicates that 

0 su . In this limit when 0s , the effect of solidification in terms of 

momentum transfer on the metal flow is negligible, and hence the velocity field can be 

uncoupled from the temperature field [31]. In other words, we can use the zero velocity at 

the interface to model the metal flow while the energy equation is used to estimate the 

channel gap. 

In order to further simplify the governing equations, we conducted an order-of-

magnitude analysis to determine the importance of each term on the flow characteristics. 

Under this, the dimensionless variables were defined as 
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where, tildes designate dimensionless quantities, sandWVL ,

_

,

_

,,,   are length of the 

channel, dimensionless temperature, reference time, reference velocity in x and y 

direction, reference velocity in z direction 















L

H
V 0
_

and location of the solid-liquid 

interface, respectively.  

Owing to a small aspect ratio of the cavity height to its length and width, length 

and width of the cavity are considered on the same order of magnitude and will be 

denoted by L along both x and y. For notational convenience, the tildes are dropped from 

non-dimensional variables. 

On non-dimensionalizing the continuity equation, Eq. (3.4), we get 
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Multiplying all terms of Eq. (3.9) by 
_

VL  will result in 
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We have to define the characteristic velocity in z direction. In order to insure that all the 

terms of Eq. (3.10) are on the same order of magnitude, the characteristic velocity in z 

direction is defined as: 
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Eq. (3.11) indicates that the characteristic velocity in z direction is much smaller than 

those in x and y directions, i.e., 
__
VW  because Ho<<L . After absorbing this conclusion, 

the resultant non-dimensional continuity equation, Eq.(3.10), reduces to  
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Substitution of dimensionless variables in the momentum balance equations, Eq. (3.5), 

leads to 
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Due to the small cavity aspect ratio, i.e. 
L

H o <<1, all terms on the order 
2

2

L

H o or higher 

can be neglected. Then the in-plane momentum balance equations result in 
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while the momentum equation in the direction transverse to the flow reduces to  
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Eq. (3.17) indicates that the fluid pressure is uniform in the z direction regardless of the 

inertia effects in the flow and hence, the pressure is p = f (x, y, t) regardless of the high-

Re character of the flow.  

 

Previous work on high-speed flow in thin channels [29] has assumed a parabolic 

distribution of flow velocities. We also will assume a parabolic distribution of velocity 

along the x and y directions for further analysis: 

)2)(,( zhzyxUu       (3.20a) 

)2)(,( zhzyxVv       (3.20b) 

On being integrated over the thickness of the channel, the continuity equation, Eq. (3.12), 

becomes 
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Note that based on the no-penetration boundary condition on top and bottom, and the 

small cavity size in z the direction, “w” velocity variation is negligible and is set to zero 

(i.e., 0




z

w
). 

 On non-dimensionalizing Eq.(3.16), the in-plane two-dimensional momentum 

equations are expressed as  
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After integrating Eq.(3.22) across the cavity thickness from 0 to h, the momentum 

equations become
3
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where, Re2   modified Reynolds number,  as a cavity aspect ratio 









L

H0  

and Re as a Reynolds number with the 
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For a detailed derivation of the equation set Eq.(3.23), see Appendix A (Appendix A 

shows the derivation of the equations for the transient-flow case. Derivation of the 

steady-state flow equations, Eq. (3.23), is the same, except for the absence of the 

transient term). 

Energy equation 

A general balance equation for energy is developed for the arbitrary control volume 

shown on Figure 3.2. On integrating the conservative form of Eq. (3.6) over the control 

volume after neglecting variations in fluid properties and velocity, we get 
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On rewriting the last two terms of Eq. (3.24) as surface integrals, the energy balance 

equation over the fixed control volume changes to   

                                                 
3
 Derivation of the Eq. 3.23 is for two dimensional variation of the cavity thickness “h”. The second term of 

the equations has denominator of 6 instead of 12 in [12]. 
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The control volume can be treated as an open system that exchanges heat with its 

surroundings and where mass can flow in and out, hence Eq. (3.25) represents the energy 

balance that can be described as: Rate of heat accumulation in control volume = net rate 

of heat transport into control volume (by fluid flow) - net rate of heat transferred out of 

control volume to surrounding through conduction. Note that due to high Peclet numbers 

(45) involved in this problem, the energy transfer between the fluid metal and the channel 

wall, or between the fluid and solidified metal, is driven by convection; the heat transfer 

through the liquid metal is taken to be purely convective as well. The conduction terms 

are ignored. 

 

Figure 3.2. A typical control volume, defined around the nodes of the mid-level x-y 

plane, is used to model the z-direction heat loss and subsequent solidification, in the thin 

cavity.  

 

Boundary and initial conditions 
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At the initial time t = 0, the same uniform temperature, T = 650
o
C, is applied to liquid 

metal lying within the computational domain. At the entrance (x = 0), the fluid 

temperature is set as T= 650
0
C. At the solid-liquid interface, Ts = Tl = Tmelt. The wall 

temperatures at  z = 0 and z = h are set to 10
 o
C. The flow is driven by a uniform velocity 

imposed at x=0 location. The outflow boundary condition specified at the end of the 

cavity, x=L, is 0




x

u
. The no-slip boundary conditions are applied at the walls. 

Additionally, a no-penetration boundary condition, in the form of the velocity gradient in 

the direction normal to the wall being equal to zero (i.e., 0




y

v
), is applied. An 

additional condition is needed to express the velocity of the moving solid-liquid interface 

as a function of heat transfer in both the solid and liquid phases.   This is called the Stefan 

condition and can be expressed [30] as  

     tsx
x

lT
lktsx

x

sT
sk

dt

ds
fL 









     (3.26) 

where, k is heat transfer coefficient, subscripts s and l are designate solid and liquid 

metal,  respectively.  

 In order to establish the validity of Eqs. (3.21), (3.23) and (3.25) that form the 

governing equations for the presented problem, they were solved numerically and the 

results were compared with the solution of the incompressible Navier – Stokes equations 

fully-coupled with the three-dimensional energy equation during solidification that was 

solved using the commercial software FLOW3D.  

3.4 Solution procedure   

 The system of dimensionless equations, Eqs.(3.21)-(3.23), and Eq.(3.25) gives a 
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complete mathematical formulation of the presented problem of liquid-metal flow and 

solidification in a thin channel. The solution involves determination of velocity and 

temperature distribution in the liquid phase, as well as the temperature distribution in the 

solid phase, of the thin channel. The governing equations in a liquid phase are coupled 

through the interface (Stefan) condition, Eq.(3.26). The solution of the Stefan condition 

gives the location of the solid-liquid interface as a function of time and position along the 

length of the channel.    

The problem is solved in a straight channel of rectangular cross-section shown in 

Figure 3.1. A uniform velocity is applied at the x=0 location to drive the flow. Constant 

temperatures are specified at z=0 and z=h walls, while the walls at y=0 and y= ymax are 

considered adiabatic. Owing to the weak coupling between the momentum and energy 

equations, the temperature distribution within the computational domain can be solved 

first. This establishes the location and shape of the solid-liquid interface, and thus defines 

the boundaries of the liquid domain.  Momentum equations are then solved using the 

SIMPLE [7] procedure where the momentum and continuity equations are solved in a 

coupled manner. The momentum equation, Eq (3.23), uses the guessed pressure field and 

solves for the preliminary velocities U and V. Then the modified continuity equation, Eq 

(3.21), is used to calculate the corrected value of the pressure field:               
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In the usual incompressible form, the mass conservation or the continuity equation does 

not have any pressure term. An artificial compressibility term “a” has to be added to the 
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modified continuity equation, Eq.(3.27), to allow for a solution of P. The usual values are 

0.1 > a > 1.2—it is taken to be 0.8 [38] in the present algorithm.  

Solution procedure is described in Figure 3.3, and can be broken down as follows: 

1. Guess pressure values in the first time step. 

2. Solve the momentum equation to estimate the preliminary values of the u and v 

velocity components. 

3. Use the modified continuity equation, Eq. (3.27), to correct the pressure values. 

4. Correct velocities using the new pressure value and continue iterating until the 

continuity Eq. (3.21) is satisfied. 

At this point of analysis, height “h” of the channel in the momentum equations 

still remains unknown. In the absence of solidification, “h” is equal to the channel height, 

and the momentum and continuity equations alone will allow us to estimate the velocity 

and pressure distributions in the channel. In order to close the system of governing 

equations, the energy balance equation has to be solved to find temperature distribution in 

the channel. Based on the result of the energy equation and using Stefan condition, Eq. 

(3.26), location of the solid-liquid interface can be established for every particular time 

step. On knowing the location of the solid-liquid interface, “h” value can be updated and 

used in the momentum equation for the next time step. It is assumed that there is a perfect 

contact between the solidified metal and walls of the channel. Walls of the channel are 

assumed to have high thermal mass and conductivity, and therefore, their temperatures 

remain constant during the calculation procedure. 
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Figure 3.3 Flow chart for the solution algorithm 

 

 

Start 

Make initial guess of pressure field 

Solve the discretized form of the momentum equation, Eq. (3.23), to 

obtain the initial “U” and  “V” velocities 

Substitute the initial velocities into pressure correction Eq. (3.27) 

Solve pressure correction Eq. (3.27) to obtain correction value 

Use pressure correction value to obtain corrected velocities. Use 

corrected velocities to satisfy the continuity equation 3.21 

Use final velocity values to solve for energy balance, Eq. (3.25) 

Calculate location of solid –liquid interface using Eq. (3.26) 

Update local h (Fluid region height) values (Appendix C) 

Move to the next time step 

Yes 

No 

Test for convergence 
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Note that the momentum equations were solved in dimensionless form while the 

energy equation was solved in dimensional form.  

3.5 Results 

Governing equations were solved as indicated in section 3.4 (Solution procedure). 

The material properties used in the results presented in this section are shown in Table 

3.1. 

The proposed algorithm is verified for flow and solidification in a straight channel 

of a rectangular cross-section (Figure 3.1). At the initial time step itself, the flow is 

considered fully developed. Flow is driven by a uniform axial velocity imposed at the 

entrance of the cavity at x=0. At the time t=0, metal temperature is considered to be 

600
o
C and a uniform temperature of 10

o
C is applied to the top and bottom of the cavity (z 

direction). At the inflow boundary, the metal temperature is set to a constant 600
o
C. 

Analyses were run for 1s. Velocity, temperature distribution, and location of solid—

liquid interface were plotted at three locations. Velocity u=1m/s was applied at x =0 

location. Proposed algorithm was verified against results obtain using the commercial 

software FLOW3D which simulated a fully-coupled three-dimensional flow analysis with 

solidification. 

 Channel (Figure 3.1) dimensions are 10x1x0.1 (mm) in the  x, y, and z directions, 

respectively. Grid independence was insured by comparing 2-D results
4
  of the analysis 

with grid densities 100x10, 200x20, 300x30, 400x40, 500x50, 600x60 shown in Figure 

3.4.  Since the difference between 500x50 and 600x60 results are less than 0.1%, the 

analyses were conducted originally with 500x50 grid. In order to reduce angularity in the 

                                                 
4
 The mesh densities are for solving the z-averaged velocity fields along x and y directions  
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interface-location plots, the mesh density along the thickness z-direction was later taken 

to be 150 grid points. 

 

Figure 3.4. Grid independence study conducted at z=0.5 plane. [The cavity width in y 

direction was non-dimensionalized as y/L, Eq(3.8), after using the length of the cavity as 

L=0.01m. The velocity was rendered dimensionless as u/V , Eq(3.8),  after employing the 

characteristic velocity value of V =1 m/s.] 

 

 The governing equations, Eqs. (3.21) and (3.23), were solved using the algorithm 

described in the last section. Convergence of the solution was judged by the maximum 

change in each variable values during each iteration. The solution was considered 

converged when changes in a dimensionless variables value was less than 10
-8

. 

To verify analyses obtained using the presented algorithm, three-dimensional flow 

and solidification solutions from the commercial CFD code FLOW3D were obtained 

using the same boundary and initial conditions. Presented results include fluid velocity, 

temperature distribution, as well as location of the solid-liquid interface. Three control 

points along the x direction at dimensionless locations x = 0.2, x = 0.5, and x = 0.9 were 

chosen for the plots of z-averaged velocities based on the solidification patterned 

observed in the cavity.  
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Results presented in Figures 3.5a, 3.5b, and 3.5c show velocity variation along the 

cavity length where the velocities predicted by our program are compared with the 

velocities predicted by FLOW3D. We observe that a fairly close flow-prediction is made 

by our simulation based on the lubrication approximation. We also observe that the x-

direction velocity increases with x.  

 
a. 

 
b. 

 
c. 

 

Figure 3.5. Velocity destribution; a) Velocity distribution at x=0.2, b) Velocity 

distribution at x=0.5, c) Velocity distribution at x=0.9 [The cavity width in y direction 

was non-dimensionalized as y/L, Eq(3.8), after using the length of the cavity as L=0.1m. 

The velocity was rendered dimensionless as u/V , Eq(3.8),  after employing the 

characteristic velocity value of V =1m/s.] 

 

Temperature distribution shown in Figures 3.6a, 3.6b, and 3.6c are plotted at the 

same locations as used for Figure 3.5. Temperature distribution, as it falls below liquidus 

temperature or melting point of Aluminium (Table 3.1), suggests the presence of solid-
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liquid interface some distance away from the cavity wall. Moving solid-liquid interface 

reduces cavity height, and as a result, causes an increase in the melt velocity (Figure 3.5) 

due to conservation of mass.  

 
a.  

b. 

 
c. 

 

 

Figure 3.6. Temperature distribution along the cavity thickness at time=1s:  a) 

Temperature distribution at x=0.2; b) Temperature distribution at x=0.5;  c) Temperature 

distribution at x=0.9. Coordinate in the z direction was non-dimensionalized as z/ Ho , 

Eq(3.8), while using Ho = 0.0001m as the cavity thickness. 

 

Evolution of the solid-liquid interface along the channel length is shown using 

Figures 3.7a and 3.7b. We note that some discrepancy exists between the lubrication 

approximation solution and the Flow3D solution in the beginning. However, we achieve 

a better convergence of results as the time increases. The difference in the results may be 

attributed to the turbulent nature of the flow employed in FLOW3D simulation: as the 

channel height decreases, turbulence is less prevalent in the flow, and the results 

predicted by the presented algorithm are closer to the FLOW3D solution.  
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a. 

 

 

b.  

 

Figure 3.7. Evolution of the solid–liquid interface with time for u=1: a) The interface 

location at t=0.5s, b) The interface location at t=1s. [The cavity length in x direction was 

non-dimensionalized as x/L, Eq(3.8), after using the length of the cavity as L=0.1m. 

Coordinate in the z direction was non-dimensionalized as z/ Ho , Eq(3.8), while using Ho 

= 0.001m as the cavity thickness.]  

 

At the specified x locations, differences in the position of the solid—liquid 

interface are significant enough to cause visible velocity differences in Figure 3.5. As the 

above given discussion indicates, velocity changes caused by the reduction in cavity 

height “h” corresponds nicely with the changes in velocity estimated by FLOW3D. All 

results are within 10% of the solution obtained by running three- dimensional analyses 

utilizing the commercial software FLOW3D.  

 A significant computational advantage is achieved through a dramatic reduction 

in CPU time. Owing to the simplification of the governing equations using the lubrication 

approximation, the CPU time for the proposed algorithm was observed to be 20s. In 

contrast, the CPU time for the corresponding three-dimensional analysis with FLOW3D 

software was 12 min. This 36 fold reduction in CPU time clearly demonstrates that the 

proposed algorithm based on reduced physics is quite fast without a significant sacrifice 

in the accuracy. 
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3.6 Conclusion 

Results of the presented analyses indicate that Reynolds lubrication approach can 

be successfully implemented to investigate the flow and solidification of the molten metal 

in thin cavities during the die cast process. The proposed 2.5D algorithm allows one to 

estimate the thickness-averaged liquid-metal velocity in the plane of the cavity using the 

finite difference method; then a finite-volume based algorithm allows one to estimate 

temperature distribution along the thickness direction as well as location of the solid—

liquid interface. The numerical simulation based on the algorithm is verified by 

comparing its predictions with the solution of the three-dimensional Navier-Stokes 

equation fully coupled with three dimensional energy equation as predicted by the 

commercial software FLOW3D
®
. Results indicate that the proposed simulation is fairly 

accurate in predicting the averaged velocity fields, temperatures along the thickness, and 

gap thicknesses inside the cavity. Considering small error and significant savings in 

computational time, the proposed algorithm can be used to reduce time on the initial 

stages of process development of the die-cast process. It will expedite flow analysis of 

the die casting process by using the presented algorithm in cases where the high aspect 

ratio of the thin cavity requires large number of the computational cells to achieve the 

converged solution. It can be especially useful in analyzing fluid flow and solidification 

in ventilation channels of the die-cast die. 
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Chapter 4:  A Fast Simulation of Transient Metal Flow and 

Solidification in a Narrow Channel 

 

Abstract:  A fast numerical algorithm for modelling the transient flow and solidification of liquid 

metal in a narrow gap is presented. The problem is closely related to the die-cast process, and in 

particular to metal flow in thin ventilation channels. After integrating over the channel thickness 

and employing the lubrication approximation, the Navier-Stokes equations are reduced to 2-D 

equations for modelling the in-plane flow. The flow model is solved along with a heat balance 

equation after including the effects of solidification in a control volume. The flow variables and 

temperature distribution are solved in three stages. In step one, commercial software FLOW3D
®
 is 

utilized to solve 3-D Navier-Stokes equations coupled with the heat balance equation for flow and 

solidification in the main cavity. In step two, the flow and heat transfer variables from the main 

model are transferred as the entrance boundary condition for the proposed numerical simulation. 

And finally in step three, the metal flow and solidification in a thin channel is modelled using the 

2-D equations coupled with the 1-D heat balance equation.  Since the solid-liquid interface 

introduces non-linearity in the flow, the 2-D flow equations are solved iteratively while a 

staggered grid arrangement as required by the SIMPLE algorithm is used for discretization. Later, 

the proposed simulation is applied to predict parts produced by the high pressure die cast process 

(HPDC). The model is validated by comparing its results with those obtained from the 

commercial flow-and-solidification software Flow3D® as well as with the experimentally 

measured secondary dendrite arm spacing (SDAS). 

4.1. Model development 

 In typical applications related to a high pressure die-cast process, metal has to flow 

through a combination of thin (1-3 mm) and thick sections (4-8mm). Commercial software 
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allows one to use different mesh densities based on the scale of the computational domain. As 

can be seen in Figure 4.1, the ventilation (or the gas evacuation) channel is an order of 

magnitude smaller than the rest of the casting. Substantial reduction in the cell size is required 

in order to achieve a convergent solution in a thin channel portion of the casting.  Owing to the 

fact that flow in the cavity of the die-cast die is highly turbulent, the mesh has to be sufficiently 

refined in order to resolve the flow accurately.  

 
Figure 4.1 A schematic showing the thick and thin section of a typical die-cast part 

 

Further increase in mesh density to accommodate flow within thin ventilation 

channels is usually impractical, and as a common practice, the flow analyses are 

conducted in the main cavity only. The algorithm presented in this paper will allow one 

to extend the flow and solidification analysis into thin channels also.  The computational 

domain is divided into two regions (see Figure 4.2). In the main cavity, the flow and 

solidification analysis is conducted using commercial software, which solves the three-

dimensional Navier-Stocks equation coupled with energy equation. In the thin-channel 

region, the lubrication equation, coupled with heat balance equation developed for a 

control volume defined around a node of the 2-D in-plane mesh, is solved in a finite time 

interval iteratively. Owing to the fact that both models are solved in different dimensional 
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and time scales, a procedure was developed to transfer the flow-variable values from the 

main cavity to the thin-channel via the interface (or ‘cut-off’) plane.  

 
 

Figure 4.2. A schematic showing the main cavity and the thin channel of a die-cast die 

connected through a cut-off plane.  

4.2 Main cavity model 

Flow variables and temperature distribution in the main cavity are solved using the 

general-purpose commercial CFD software FLOW3D
®
.  The software provides solutions 

to three-dimensional fluid and heat flow and solidification problems using the finite 

difference approximation. The Navier –Stokes equations coupled with the energy 

equation achieve an accurate representation of the turbulent fluid and heat flow 

accompanied with solidification. The two-equation k-ε model is used to resolve the 

properties of turbulent flow. A control volume method is used to discretize the governing 

equations and the enthalpy method is used to evaluate temperature distribution in the die 

cavity. The VOF (volume of fluid) method is used to accurately track free surface 

evolution in the computational domain. 
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4.3 Thin channel model 

Owing to the small aspect ratio (height to length ratio) of the channel,  

  1
c

o

L

H
       (4.1) 

and the problem of modelling metal flow in the ventilation channel can be reduced to the 

solution of the in-plane lubrication equation combined with the solution of the out-of-

plane heat transfer and solidification model (see chapter 3 as well as [34]). To take into 

consideration the high-velocity flow observed in the die-cast process, the inertia-effect 

terms were added to the final lubrication equations according to the recommendations of 

[30, 34]. In order to model die-cast die filling with liquid metal, an extra transient term 

has to be incorporated into the momentum equation, Eq. (3.5), for the steady-flow case 

discussed in section 3. The governing equations in differential form are shown below. 

Continuity equation: 

                                            0 v


                                                           (4.2) 

Momentum balance equations: 
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t

v






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
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  2               (4.3) 

Energy balance equation: 

 0



qTvC

t

T
C


                                      (4.4) 

An order-of-magnitude analysis was conducted in order to simplify the governing 

equations and to determine the importance of each term during high-speed flows in thin 



51 

 

 

 

channels. Only a summary will be presented here—the details of this reduction in the 

governing equations for thin-channel flows can be found in chapter 3.3 and Appendix A. 

 

For this reduction (chapter 3.3 and Appendix A), the following dimensionless variables 

were used: 
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The earlier-given governing equation can be re-expressed in dimensionless form, after 

dropping the inconvenient tilde signs, as: 

Continuity equation 
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Momentum equation 
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The momentum equation in the direction transverse to flow reduces to  

z

p




0                   (4.7c) 
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implying that fluid pressure is uniform in the z direction regardless of the inertia effects 

in the flow. 

The dimensionless groups used in this development are: 

Reynolds number 

     


lcLV
Re      (4.8) 

Modified Reynolds number [39] 

     Re2                 (4.9) 

with 
cL

oh
  

Eqs. (4.7a) and (4.7b) can now be expressed as 
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Once again, based on the recommendations of [33], we assume a parabolic velocity 

distribution along the x and y directions:  

)2)(,( zhzyxUu       (4.11a) 

)2)(,( zhzyxVv       (4.11b) 
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After integrating over the thickness of the channel, the continuity equation, Eq. (4.6), 

becomes 

0









y

V

x

U
       (4.12) 

Note that based on the no-penetration boundary condition 0




z

w
and small size of the 

cavity in the z direction, w velocity variation is negligible, and is set to zero. 

After integrating across the thickness of the cavity from 0 to h, the momentum, Eq. 

(4.10), becomes 
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Note that the only difference between Eqs. (3.23) and Eqs.(4.13) is the presence of the 

first (transient) terms. 

Energy equation 

 The general thermal energy balance equation (Eqs. (4.4), (3.24), and (3.25)) are 

described in Section 3.3 and are used in the transient model as well. 

Boundary and initial conditions 

The thin-channel geometry used for model validation is shown in Figure 4.3. At the 

initial time t = 0, the same uniform temperature, T = 600
o
C, is applied to the liquid metal 

lying within the computational domain. At the entrance (x = 0),  the fluid temperature is 

set as T= 600
0
C. At the solid-liquid interface, Ts = Tl = Tmelt. The wall temperatures at  z 

= 0 and z = h are set to 60
 o
C. The flow is driven by a uniform velocity imposed at x = 0 
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location. The outflow boundary condition specified at the end of the cavity, x=L, (after 

the liquid has gone beyond the exit) is 0




x

u
. The no-slip boundary conditions are 

applied at the left and right walls in the y direction. Additionally, a symmetry boundary 

condition, in the form of the velocity gradient in the direction normal to the wall being 

equal to zero (i.e., 0




y

v
), is applied.  

 

 
Figure 4.3 The thin-channel geometry used for model validation: the left- and right-side 

segments are 1 mm and 0.5 mm thick, respectively. (The other dimensions are given in 

Figure 4.11 and Table 4.1)  

 

 Note that Eqs. (4.12), (4.13) and (3.25) form the governing equations for the thin 

channel problem. 

4.4 Coupling of the main cavity and thin channel flows 

Main cavity and thin channel are divided by cut-off plane (see Figure 4.2). In 

order to ensure a smooth transition of velocities and pressure from the main cavity into 

the thin channel region, the pressure, velocity and temperature values have to match at 
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the cut-off plane. The metal velocity in the main cavity is matched to the metal velocity 

in a thin channel by the fact that flow volume supplied from the main cavity is equal to 

the volumetric flow in the channel:  

    
h

H
UV        (4.14) 

The temperature and pressure distributions at the exit of the main cavity are integrated 

over the thickness of the cavity H, such that these averaged values are applied as a 

temperature and pressure boundary conditions for the thin channel section at the cut-off 

plane.  The time-step size has to be addressed as well. Owing to the difference in the 

length scales of the two regions, the time scales of the main cavity and thin channel 

regions are related as 

    


maint
channelt


      (4.15) 

The parameter λ had to be chosen such that the solution in the thin channel was kept 

stable. Based on the difference in the main cavity and thin channel length-scales, the 

scale parameter was chosen to be λ = 10.  

4.5. Discretization of governing equations 

The computational domain has to be subdivided on smaller controlled volumes 

where the average flow variables can be solved for using the discretized form of balance 

laws.  

4.5.1 Main cavity 

Owing to the fact that FLOW3D
®
 [39], a commercial CFD software, was used for 

computing flow and temperature quantities in the main cavity, discretization of governing 
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equation for the main cavity is not given in this paper. Automatic structured grid 

generation function of the software was used to discretize the  computational domain. 

The fractional area/volume method, FAVOR™ [11], is used for modelling the complex 

geometry of our main cavity. 

4.5.2 Thin channel 

To avoid unrealistic behaviour of the momentum equations, a staggered grid 

arrangement is used to discretize the governing equations, Eqn. 4.13 (a) and (b), in the 

thin channel using the SIMPLE algorithm. The principal of the 2-D staggered grid 

arrangement (Figure 4.4) is that the scalar quantities such as pressure, temperature, and 

height of the channel are stored at the centre of the control volume. However, storage of 

velocity components are staggered with respect to the faces:  velocities ‘U’ are stored at 

the west and east faces, while velocities ‘V’ are stored at the north and south faces.  The 

discretization of the governing equations in thin cavity is described in detail in Appendix 

B; only equations in the final form are given below in section 4.6.2. 

 
 

 

Figure 4.4. The staggered grid arrangement (based on SIMPLE algorithm) was employed 

for solving the in-plane flow variables.  

 

 



57 

 

 

 

4.6. Solution procedure 

Solution procedure in the form of a flow chart is described in Figure 4.5. Initial 

conditions in the main cavity include metal temperature, cold chamber die-cast machine 

plunger-velocity profile, initial temperature of the die-cast die. 

4.6.1 Solution procedure in main cavity 

Before calculations of the metal flow in the main cavity can begin, die 

temperature distribution has to be established. Using a FLOW3D feature called "thermal 

die cycling", the die is filled with molten metal instantaneously and held for the duration 

of the dwell time (25s). During this time, the conduction equation to predict temperature 

in the die-cast die is solved in order to account for heat transfer from liquid metal to the 

die steel. Then the liquid metal is ‘removed’ from the die ‘instantaneously’, and external 

cooling is the applied to the die in order to correct the die steel temperature. This process 

is repeated until the die temperature attains a quasi-stable state. The final calculated die 

temperature was compared to the temperature of the die-cast die using a thermal imaging 

camera. Process was repeated with adjustment in time and efficiency of the external 

cooling, until error of temperature distribution was less than five percent. When the 

thermal quasi-stable state is achieved, flow analysis in the main cavity can begin. The 

final die temperature is used as a boundary condition for further flow and solidification 

analysis in the main cavity. Metal in the cavity is then driven by the plunger of the die 

cast machine. (Figure 4.6 shows the schematics of a typical die-cast die with shot 

cylinder and piston assembly.)  
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Figure 4.5 The proposed solution algorithm for solving flow and temperature variables in 

the thin cavity 

Start 

Solve for velocity, pressure, and 

temperature distributions in the main cavity 

Transfer the calculated variables from the 

main cavity into the thin channel  

Find location of air-metal interface, 

based on velocity distribution, Eq.(4.15). 

Find height of  liquid domain from 

temperature distribution and using Stefan 

condition, Eq(3.26) 

Solve for velocities and temperature in the thin 

channel using Eqs. (4.13) and (3.25) 

Find new locations of solid-liquid (Appendix C) 

and metal-air interfaces Eq.(4.15) 

Is h > 0 ? 

End 

Yes 

No 



59 

 

 

 

 

 

Figure 4.6  A schematic of a die-cast die with shot sleeve and plunger: 1) Shot 

sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die, 

5) Mold cavity, 6) Ventilation channel. 

 

The plunger velocity profile (Figure 4.7) is transferred into FLOW3D
®
 from the 

shot monitoring system VisiTrak®
5
. Calculations in the main cavity continue until the 

liquid metal has reached the cut-off plane, which is positioned on the border between the 

main cavity and thin channel.  At this point, all flow and temperature variable values are 

transferred from the main cavity into the thin channel using the procedure outlined in 

Section 4.4 

Tracking of free surface between liquid metal and air 

Fractional volume of fluid (VOF) [11] method is used to track the metal-air free surface 

interface. Method is based on the assumption that function F, which represents fraction of 

fluid in the cell, can assume values between 0 and 1: value 1 is assigned to the cell full of 

                                                 
5
 The shot monitoring system is for tracking the plunger velocity during the injection process.  
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fluid, while 0 is assigned to an empty cell (see Figure 2.2). Based on this assignment, 

every cell with function F values between 0 and 1 contain a free surface. The time-

depended function F is governed by the equation 

   0
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t
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which states that the value of F moving with the fluid remains unchanged. The VOF 

method is based on the assumption that the local rate of change of F in a cell is equal to 

the amount of F fluxing through the faces of the cell. The total amount of fluid volume 

crossing the face of the cell per unit cross-sectional area is tUVol  ; this is multiplied 

by the cell face-area to estimate the amount of fluid passing through in a unit of time. 

 

 

Figure 4.7. Typical plunger velocity profile (IPS = inches per second)—

‘position’ is the distance plunger travels during the die cast process. 

4.6.2 Solution procedure in thin channel 

The problem is solved in a straight channel with a rectangular cross-section (Figure 4.3). 

Computation begins with an estimation of temperature distribution in the computational 

domain. It establishes the location and shape of the solid-liquid interface in the region 
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traversed by the liquid metal. The solid-liquid interface defines the boundary of the liquid 

domain. Then the momentum equations can be solved to define the distribution of 

thickness-averaged velocities in the computational domain. This velocity distribution is 

then used to define the position of the free surface in the next time step.  The assumptions 

adapted for the development of the proposed algorithm are: 1. Fluid is incompressible 

and Newtonian. 2. Flow is laminar. 3. Heat conduction in the direction of metal flow in 

the channel is negligible. 4. Heat resistance of the channel walls are negligible 

Solution of the thickness-averaged continuity and momentum equations 

Discretized forms of Eqns. (4.12), (4.13), and (3.25) can be expressed as follows. 

In the following equations, Eqs. (4.17)—(4.19), indices in capital letters indicate the 

primary grid where indices in small letters indicate the secondary grid (see Appendix B 

for more details).  

Continuity equation:  
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In the y direction: 
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Energy equation 

Heat balance equation, Eq. (3.25), discretized over the control volume in a finite 

time-interval results in 
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The momentum equations are solved using the SIMPLE procedure [7] which is used to 

couple the momentum and continuity equations. The momentum equations, Eqs. (4.18a) 

and (4.18b), use the pressure field transferred from the main cavity and solve for 

preliminary velocities U and V. In its incompressible form, the mass conservation 

equation doesn't have a pressure term. However, an artificial compressibility term, “a” , 

has to be added to the modified continuity equation, Eq.(3.27), to allow for the solution 

of pressure P. Usual values of the artificial compressibility term are 0.1 > a > 1.2; it is 

taken to be 1.2 [39] in the presented algorithm.  

 The modified continuity equation, derived from Eq. (3.27), is used to calculate 

the corrected values of the pressure field:                 
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Solution of the continuity and momentum equations procedure can be broken 

down into following steps: 1. Use the pressure transferred from the main cavity in the 

first time-step. 2. Solve the momentum equation to estimate the preliminary values of  U 

and V . 3. Use the modified continuity equation, Eq. (4.20), to correct pressure values. 

4. Correct the U and V velocities using the new pressure values and continue the 

iterations until the continuity equation, Eq.(4.17), is satisfied. 

                 At this point of the analysis, the height of the thin channel, h, in the 

momentum equations still remains unknown. In the absence of solidification, the 

momentum and continuity equations alone will allow one to estimate the velocity and 

pressure distributions in the thin channel behind the front in a given time step. In order to 

close the system energy balance, Eq. (4.19) has to be solved; solution of this energy 

balance equation allows one to estimate the temperature distribution in our calculation 

domain. Based on the result of the energy equation and through the use of the Stefan 

condition, Eq. (3.26), the location of the solid-liquid interface can be established for 

every time-step (see Appendix C for details). The location of the solid-liquid interfaces 

allows one to update the h values and to use them in the momentum equation for the next 

time-step. It is assumed, in this algorithm, that there is perfect contact between the 

solidified metal and walls of the channel. Wall temperature of the channel remains 

constant during the calculation procedure—this means that the walls have high thermal 

mass and conductivity.  
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4.7 Summary of Numerical Methods 

The presented numerical algorithm allows one to estimate the flow and 

solidification variables during the die-cast operation in a mould containing a thick main 

cavity and a thin ventilation channel. Flow and heat transfer in the main cavity is 

estimated using the commercial software Flow-3D. The cut-off plane separating the main 

cavity from the thin channel is used to transfer flow and temperature variables from the 

main cavity to the thin channel as boundary and initial conditions in the proposed 

algorithm.  The flow velocities and time steps are transferred according to the length-

scale difference between the two flow regions.  Velocities and pressure distribution in a 

thin channel are estimated using the lubrication approximation after taking into account 

inertia effects and solidification in the metal. The 3-D flow field is reduced to a 

thickness-averaged 2-D flow field which is to be solved in the central plane of the thin 

channel. The liquid metal-air free surface is tracked using the VOF method. The channel 

gap is estimated after incorporating solidification through 1-D out-of-plane heat transfer 

in the channel.  Owing to the simplification of the algorithm based on the lubrication 

approximation, the proposed numerical approximation is expected to offer significant 

amount of savings in computational time.  

4.8. Validation of the Proposed Numerical Algorithm  

Casting shown in Figure 4.8 is produced by a cold chamber high pressure die-cast 

process.  
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Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The 

overflows are created when the metal front, after filling the main cavity, fills up the 

machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up. 

 

The plunger velocity profile is transferred into FLOW3D
®
 from the shot 

monitoring system VisiTrak
®
 and is shown in Figure 4.7. The molten-metal (Aluminium 

A380) temperature was set at 650
0
C, and the initial die-temperature was set at 150

0
C. 

Through the instantaneous fill-cycle process of FLOW3D
6
, the die temperature was made 

to reach a quasi-stable state. Then a prescribed plunger velocity was applied to fill the 

cavity of the die-cast die. Results of the flow analysis are shown in Figure 4.9. Final 

temperature distribution in the cavity of the die- cast die filled with liquid metal is 

illustrated in Figure 4.10. 

 

 

                                                 
6
 Twenty five instantaneous fill cycles were applied. 
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Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in 

the main cavity. (The velocity is in m/s.) 

 

 

 

 
Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled 

with liquid metal at the end of the fill process. (The temperature is in 
0
C.) 

Velocity, temperature, and pressure distribution were extracted from the main 

cavity at the location of the cut-off plane. All the flow and metal temperature quantities 
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were transferred into the proposed algorithm as the initial condition for the subsequent 

numerical simulation in the thin channel. In order to verify the velocity distribution 

predicted by the proposed algorithm, they were compared with the ones obtained from 

the analysis conducted by the commercial software FLOW3D. A separate three-

dimensional model of the thin channel was imported into FLOW3D. The velocity and 

temperature distributions, converted into thin-channel scale, were applied as a boundary 

and initial conditions. The temperature and velocity at the inlet of the channel were 

considered constant. Both FLOW3D
®
 and our proposed numerical algorithm were set to 

run until the solid-liquid interfaces converged at the middle of the channel.   

In order to establish the validity of governing equations [Eqs. (4.12), (4.13) and 

(3.25)] for modelling the flow and solidification of liquid metal in a thin channel, the 

resultant simulation was applied to a ventilation channel of rectangular cross-section 

(Figure 4.11).   

 
 

Figure 4.11 A schematic of the considered ventilation channel: the stepped profile is 

necessary to solidify and contain the overflowing metal. The dimensions a, b and c are 

listed in Table 4.1. 
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Table 4.1 Thin channel dimensions 

 

 a(1) a(2) b c(1) c(2) 

Dimensions (mm) 1 0.5 20 50 50 

 

The proposed governing equations were solved numerically and the results were 

compared with the solution of the incompressible Navier – Stokes equations fully-

coupled with the three-dimensional energy equation during solidification that was solved 

using the commercial software FLOW3D. Finally, a parametric study was conducted to 

define the relation between metal progress in the ventilation channel and three 

parameters: initial velocity, temperature of the channel walls, and the thickness of the 

channel. Developed curve can be used as a guide in designing ventilation channel of the 

die-cast dies.  

Properties of the commercial Aluminium alloy, A380, were used for our 

numerical calculations. Results of the numerical prediction of the flow and solidification 

of the molten metal flowing in a thin channel by our code were compared with the results 

obtained from the commercial software FLOW3D as well as the actual casting lengths. 

The predicted rate of solidification was further validated by comparing the calculated 

(based on the results obtained using the proposed numerical algorithm) and measured 

secondary-dendrite-arm spacing. 

4.9 Validating velocity distribution in the channel 

Metal flow in the cavity, as controlled by the solid-liquid interface location in the 

channel, was studied. Mesh density was set at 500 X 150 cells along the x and y 

directions, respectively. Ventilation channel in FLOW3D was meshed with 100X10X5 
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computational cells in x, y, and z direction, respectively. Decision on mesh densities in 

both algorithms were based on our mesh independence analysis, and were carried out 

until differences in the obtained results did not vary more than 0.1%.   

 Velocity distributions in a channel was extracted at fixed locations (see 

Figure 4.12) at a given time from the numerical results given by the proposed algorithm 

and the results obtained from the commercial software FLOW3D; such comparisons are 

shown in Figure 4.13.  

 

Figure 4.12 A schematic showing a typical cross-section of the stepped ventilation 

channel. Sections I and II are used for the comparison of predictions by the proposed 

algorithm and FLOW3D. 

 

 

 

 

 

 

 

Figure 4.13 Comparison of velocity distributions in the ventilation channel: (Left at 

0.05s) section I and (Right at 0.05s) section II of Figure 4.12. Note that the plot gives 

velocities averaged along the thickness direction.  
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Solution obtained from FLOW3D takes into account the turbulent character of the 

flow where it employs fully-coupled three-dimensional momentum and energy equations. 

Turbulent quantities were resolved using the two-equation k model. As observed in 

Figure 4.13, the thickness-averaged velocity distribution, obtained from the lubrication 

approximation based simulation, do not differ by more than 5% from the full 3D flow and 

solidification simulation. However, due to the turbulence character of the flow, the 

resultant velocity distribution obtained using FLOW3D exhibit plug-type flow profile. 

Assumptions of laminar flow and parabolic velocity profile in the proposed algorithm 

explain the differences in velocity profiles obtained from FLOW3D and the algorithm. 

The in-plane velocity profile approximated by the lubrication formulation becomes 

curved as flow progresses along the channel. On the other hand, the velocity profile 

predicted by FLOW3D appears plug-like, which is typical of turbulent flows. 

4.10 Validating solidification analysis 

Solidification analysis is an important part of the numerical approximation of the 

die-cast process. It defines the boundary of computational domain during liquid-metal 

flow simulation, as well as mechanical properties of the die-cast part [35]. Initial metal 

temperature was extracted from the flow and solidification analysis conducted in the 

main cavity. Temperature of the metal was kept constant at the inlet during numerical 

simulation of flow and solidification in the ventilation channel. Temperature of the 

channel walls used in the simulation is based on the measured temperature of the die steel 

of the die-cast die. Twenty consecutive measurements using an infrared device (‘thermal 

gun’) has shown that average temperature of the channel walls is 60
0
 C. Due to the quick 
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filling of the channel, wall temperature was considered constant. In order to verify the 

accuracy of temperature distribution obtained using the proposed algorithm, values of 

metal temperature were extracted at two specified locations (Sections 1 and 2) shown in 

Figure 4.12. Along-the-thickness temperatures presented in Figure 4.14 show a very good 

correlation between results from the proposed algorithm and results from the commercial 

software FLOW3D. 

 

Figure 4.14 Comparison of temperature distributions in the ventilation channel: (Left at 

0.05s) section I and (Right at 0.05s) section II of Figure 4.12.  

4.11 Validating locations of liquid metal-air and solid-liquid interfaces 

    As was described above, the proposed algorithm allows one to predict the 

location of the solid-liquid interface as well as the location of the free surface as they 

evolve during computational cycle.  Location of the solid-liquid interface is found using 

the Stefan condition, while the free-surface position is defined by the VOF method. 

Velocity and temperature distributions are calculated in the liquid region.  
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a. 

 
b. 

 

 
c. 

 

 
d. 

 

 
e. 

 

 

Figure 4.15 Locations of the free surface: Proposed numerical algorithm (top), FLOW3D 

(bottom) at a) 0.01s, b) 0.018s, c) 0.029s, d) 0.045s, e) 0.06s [In all views, the horizontal 

axis along ‘x’ direction is along the channel length, while the vertical axis is the width of 

the channel (m) in ‘y’ direction] 

 

Locations of the free surface at various times are shown in Figure 4.15. As it can 

be seen, there is good correlation in the location of the free surface as predicted by our 
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algorithm and FLOW3D. However, an observation can be made on shapes of the free 

surfaces predicted by the two simulations. The proposed algorithm predicts a smooth, 

second order curve as a free surface, compared with the almost flat free-surface predicted 

by FLOW3D. Actual casting of the metal solidified in the ventilation channel shows that 

both algorithms predicted correct length of metal flow in the channel (note that 

numerically estimated flow-lengths were found to be within 5% of the flow-lengths seen 

in an actual casting), but FLOW3D predicted correct shape of the solidified metal
7
 (see 

Figure 4.16). An explanation of the difference in the free-surface shapes comes from the 

assumption of laminar flow in the proposed algorithm; FLOW3D utilizes the two-

equation k-ε model for modelling the turbulent metal flow, which contributes to its ability 

to predict correct free-surface shape. 

                                                 
7
 The sections of castings (Figure 4.16) have confirmed that the wavy shape of the solidified metal as 

predicted by Flow3D is quite accurate.  
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a. 

 
b. 

Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a) 

Measured length of  metal flow in the ventilation channel after solidification stops it; b) 

Enlarged image of the solidified metal in the channel 
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  Locations of the solid-liquid interface as predicted by the two simulations, at 

various times, are shown in Figure 4.17.  It can be observed that as the metal flows in the 

cavity, heat gets extracted by the channel walls held at constant temperature, below the 

temperature of solidification. Metal solidification on walls occurs at some distance from 

the channel inlet. As metal continue to flow into the cavity and reaches the thinner 

section of the channel, the metal starts solidifying at the cross-over point also. It can be 

explained by the fact that since the velocity in the constricted part of the channel is 

higher, it increases the heat transfer between walls of the channel and the liquid metal.  

Both algorithms predict correct locations of the areas where constrictions due to metal 

solidification on walls are formed inside the channel, and the area where the top and 

bottom solid-liquid interfaces converge in the middle of the channel and stop the metal 

flow. This location is also confirmed by the actual casting (Figure 4.16), where the darker 

area in the beginning of the thinner area of the channel
8
 indicates where the solidification 

occurs first.    

                                                 
8
 The dark color of the metal is due to the mixing of burnt die-release agent with liquid metal at the 

contraction of channel. 
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a. 

 

 

 

 

 

(Figure 4.17) 
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b. 

 

 

(Figure 4.17) 
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c. 

Figure 4.17. Location of the solid-liquid interface predicted by simulations: the proposed 

algorithm (top), commercial software FLOW3D (bottom) at a) 0.036s, b) 0.055s, c) 

0.06s. The yellow (light) color represents the liquid metal while the green (dark) color 

signifies solidified metal.  

 

4.12 Verification of cooling rate using measured secondary dendrite arm spacing.  

Often verification of the cooling rate of the molten aluminium is conducted by comparing 

the calculated and measured Secondary Dendrite Arm Spacing (SDAS) [42]. Three 

samples were prepared to measure SDAS. Preparation procedure included: a) cutting the 
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sample, b) mounting the sample in a fixture using an epoxy, c) grinding and polishing 

with progressively reduced grit size until a planer surface is achieved, d) chemical 

etching using a reagent. Keller’s reagent was used to prepare sample shown in Figure 

4.18; the purpose of this step was to highlight the microstructure of the specimen.  

 
 

Figure 4.18 Cross section of the casting used to measure SDAS (200X magnification) 

 

Three separate samples were prepared using procedure described above. 

Measured SDAS were in the range 0.00017 – 0.00019 m. In order to verify rate of 

solidification of the presented algorithm and commercial software FLOW3D, 

solidification curve was plotted (see Figure 4.19). Based on the calculated rate of 

solidification, SDAS can be estimated using the formulae  
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where, G is a temperature gradient,   solidification rate, and T  is a temperature range 

between the start and end of secondary dendrite growth.  

The constant M is estimated as 
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where dkandmcecD ,,0,,,  are diffusivity, Gibbs—Thompson coefficient, eutectic 

concentration, solute concentration, liquidus slope, and distribution coefficient 

respectivly. 

Using the values from Table 4.2, the constant M can be calculated as 
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Therefore, the calculated SDAS is 
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Results of this calculation show that both FLOW3D and proposed algorithm 

predict correct rate of solidification of the liquid metal.  

Table 4.2 Values of variables in Eq. (4.21)-(4.22) [43] 

 

D(m
2
/s)  (K m) ce c0 k m(K/%) G(K/s) v (K/s) 

5e-9 5.56e-8 0.12 0.09 0.1613 2.25 40 1250 
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Figure 4.19 Temperature history at the centerline of section I in Figure 4.12; the cooling 

rate, ν, is obtained from the slope of the curve.  

 

4.13 Significant Improvement in Computational Speed 

The most beneficial advantage of the proposed numerical algorithm is the substantial 

reduction in CPU time. Proposed algorithm required only 8 minutes to achieve a 

converged solution compared to 52 minutes required by the commercial software 

FLOW3D for the case shown in Figures 4.15 and 4.17. This remarkable reduction in 

computational time is an important feature of the proposed algorithm—the little error in 

its predictions are a small price to pay for a many-fold improvement in the computational 

speed.  
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4.14 Further Validation through a Parametric Study 

Further verification of the proposed model was conducted by changing initial cavity 

thickness, channel-wall temperature, and liquid-metal velocity at the inlet. For the 

parametric study, the channel was considered to be of a constant height. The liquid-metal 

flow-length in all three cases was compared with the results obtained using FLOW3D.   

Comparisons of these numerical results are shown in Figures 4.20 – 4.22. 

4.14.1 Effect of changes in ventilation-channel thickness 

First parametric study was conducted by changing the thickness of the ventilation channel 

and keeping the wall temperature and liquid-metal initial velocity constant. Channel 

thickness was changed from 0.5 mm to 1 mm, with initial metal velocity set at 1 m/s and 

wall temperature kept constant at 60
0
 C. Flow analyses were run three times with a 0.25 

mm increase in the ventilation channel thickness. Results of the study are shown in 

Figure 4.20 where flow length (the length the liquid metal moves in the ventilation 

channel before coming to a stop) is plotted as function of channel thickness. We see a 

remarkable convergence between predictions of our algorithm and FLOW3D. The 

monotonically-increasing result indicates an increase of the liquid-metal flow length can 

be expected by increasing the channel thickness. Doubling the channel thickness results 

leads to a similar increase in the flow length. 
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Figure 4.20  Metal flow-length vs. cavity thickness—result of the parametric study. 

 

 

4.14.2 Effect of changes in wall temperature of the ventilation channel  

 

Next parametric study was conducted by changing the temperature of the ventilation-

channel walls. The channel thickness was set at 1 mm and the walls temperature was 

initially set at 60
0
 C with the initial liquid-metal velocity of 1 m/s. Four consecutive 

simulations were conducted with temperature of the wall increased by 20
0
 C each time. 

The relation between the wall temperature and the liquid-metal flow-length is shown in 

Figure 4.21. Once again, a remarkable match is obtained between the predictions of our 

proposed algorithm and FLOW3D. Results indicate that the wall temperature of the 

channel has only a slight effect on the flow length of the liquid-metal.  
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Figure 4.21 Metal flow-length vs. wall temperature—result of the parametric study. 

 

4.14.3 Effect of changes in the initial metal velocity  

Variation of the initial liquid-metal velocity and its effect on the flow length in the 

ventilation channel was also studied. The liquid-metal velocity was initially set at 0.5 

m/s, with the ventilation channel thickness at 1 mm and the channel-wall temperature at 

60
0
C. Four consecutive simulations were run while increasing the inlet metal-velocity by 

0.25 m/s each time. The resultant correlation between the liquid-metal initial velocity and 

flow length is shown in Figure 4.22.   Results indicate that flow length of the liquid metal 

increases with an increase in the  metal velocity at the channel entrance. However, after 

the metal speed reaches 1.5 m/s, the increase in the flow length is much less than seen 

between the velocities of 0.75 – 1.5 m/s. It can be explained by the fact that convective 

heat-transfer coefficient between liquid metal and channel wall is an increasing function 
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of the metal velocity
9
: it increases with an increase in the metal velocity, and 

consequently, the liquid metal solidifies much faster in the channel.  Also note that the 

accuracy of proposed algorithm deteriorates with an increase in the inlet speed. It can be 

explained by the fact that as the Reynolds number increases with an increase in the inlet 

speed of the liquid metal, turbulence in metal flow become more pronounced and the 

lubrication approximation employed in our algorithm is rendered increasingly less 

accurate.  

 

 
 

Figure 4.22 Metal flow-length vs. metal velocity at the entrance of the ventilation 

channel—result of the parametric study. 

                                                 
9
 Increase in the liquid-metal velocity increases the Reynolds number, which in turn increases the Nusselt 

number. Since Nusselt number is proportional to the convective heat transfer coefficient, it increases heat 

transfer coefficient as well [8]. 
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 4.15 Summary and Conclusions 

A numerical algorithm based on the lubrication approximation is developed to 

study transient flow and solidification in a thin ventilation channel of the die-cast die. 

Procedure consists of dividing casting into two regions.  First solution is obtained in the 

main cavity where some commercial CFD software can be used to estimate flow and 

temperature distributions. Then the results at cut-off plane between the main cavity and 

ventilation channel are transferred into proposed algorithm as initial condition at the 

entrance of the ventilation channel for further analysis. The flow governing equations are 

integrated along the channel thickness using the lubrication approximation to yield 

governing equations for 2.5-D channel flow.  The heat balance equation over the control 

volume yielded a temperature equation after incorporating the Stefan’s condition for 

metal solidification. The finite difference method based on SIMPLE algorithm with 

staggered Cartesian grid arrangement is used for numerical approximation of the 

discretized governing equations. Volume of fluid method is utilized to define position of 

the free surface.  

Results of the presented algorithm are validated by comparing them with 

predictions of the commercial CFD software FLOW3D
®
 for a casting produced by the 

cold-chamber high-pressure die-cast process. The algorithm results are in good 

agreement (within 5%) with the predictions of the commercial CFD code as well as 

observations in actual castings. A good agreement is also achieved between the directly 

measured SDAS (secondary dendrite arms spacing) from an actual casting and the 

theoretically estimated SDAS using our algorithm and FLOW3D results. 
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A parametric study of on liquid metal flow and solidification in a ventilation 

channel using both the algorithm and FLOW3D results shows that the metal flow-length 

increases with the increase in the ventilation-channel thickness, wall temperature, and 

initial entrance velocity. Doubling the channel thickness leads to a similar increase in the 

flow length. Changes in the channel thickness influence the liquid-metal flow-length the 

most, and the channel wall temperature influences the flow length the least. These results 

can be used during the initial stages of the die-cast die design to estimate the length of the 

ventilation channel. 

Although proposed algorithm did not predict the correct shape of the free surface 

of the liquid metal flow in the ventilation channel, and the shape of the solid-liquid 

interface, it correctly predicted flow length of the metal in the channel, and the location 

where solidification occurs along the channel length. Despite being slightly inaccurate, 

the most significant advantage of the proposed numerical algorithm is a substantial 

reduction in CPU time—the proposed algorithm required merely 8 minutes to achieve a 

converged solution compared to the 52 minutes required by the commercial software 

FLOW3D. 
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Chapter 5: Some Concerns and Future Research Directions 

In the last two chapters, the algorithm developed using the lubrication 

approximation and the simpler laminar flow is shown to be a useful tool for predicting 

flow length, gap width, and temperature distribution during the flow of the liquid metal in 

thin channels. It was found to be especially useful for predicting the flow and 

solidification characteristics in the ventilation channels of the die-cast die.  

However, the presented algorithm revealed some of its limitations as well. For 

example, the algorithm was developed and verified for simple rectangular channels.  

Future development of the algorithm should include derivation of the governing 

equations for flow in more complex shaped channels. To analyze the flow and 

solidification characteristics of liquid metal flowing around corners and in wavy shaped 

channels, it may be necessary to include the centripetal-type inertial forces as well as to 

use the curvilinear coordinates. Modifications of some basic assumptions may also be 

necessary. For example, assuming a slug-flow velocity profile rather than a parabolic 

profile may be closer to the real turbulent flow observed in the channel. These types of 

changes should be a part of the directions taken for future code development.  

Presented algorithm was developed using a constant thermo-physical properties of 

the liquid metal. Future developments should include the use of the solidification model 

that utilizes the temperature-percentage of solids curve obtained from the solidification 

curve and measured using a thermocouple in conjunction with the Fourier interaction 

procedure [41]. It will allow one to use the presented algorithm to calculate flow and 

solidification characteristics for a variety of commercial alloys For example, the 

solidification curve for the aluminum alloy A380 is shown in Figure 5.1. The curve shape 
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represents a balance between heat lost by the metal during solidification and heat 

generated during phase change.  As observed in the figure, the latent heat of fusion is not 

a linear function of time. In binary alloys, the heat is released over a range of 

temperatures, so solidification does not progress in an orderly manner. First part of the 

solidification curve indicates rapid release of the latent heat, until all superheat is lost. 

However, solidification doesn’t affect the liquid metal until the temperature falls below 

the liquidus line (point 1 on the solidification curve). This point is also called the 

temperature of liquidus arrest; this is the temperature at which the primary dendrites start 

to form.  The next important point on the solidification curve, point 2, is corresponds to 

the time close to the end of the solidification process. In order to better determine the 

characteristic points of the solidification process, the first-derivative curve is overlaid on 

the solidification curve and is shown in Figure 5.2. The first-derivative curve not only 

helps to determine changes in the solidification process, but also allows one to distinguish 

the point at which the primary and secondary dendrites are formed. As it can be observed 

in the figure, the first-derivative curve increases in value (up to the point 1 in Figure 5.2), 

indicates the beginning of solidification. And then, at the end of the solidification process 

(point 2 in Figure 5.2), it decreases. The region between points 1 and 2 on the first-

derivative curve indicates free growth of the primary dendrites. The temperature range, as 

seen between points 1 and 2, is where dendrite arms increase in size, but are not yet 

touching each other.  Point 2 is called the dendrite coherency point and corresponds to the 

fraction of solids in the liquid metal when dendrite arms come in contact with each other. 

After that point, free growth is not possible any more, and the region between point 2 and 

point 3 corresponds to the phenomena of dendrite thickening and formation of the rigid 
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skeleton. The region of the first-derivative curve between points 4 and 5, corresponds to 

the end of solidification. Derived relations will allow one to use a temperature-dependent 

latent heat value, instead of the usual constant one. 

 

Figure 5.1 The measure solidification curve for aluminum A380 alloy.  

 

 

Figure 5.2 The first-derivative curve, obtained from the slope of the solidification 

curve shown in Figure 5.1, is overlaid on the original solidification curve.(Y axis 

is liquid metal temperature, X axis is percentage of solid in metal) 
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The melt viscosity does not play a significant role in the flow of liquid metal in 

thin channels. As was shown earlier using the Weber and Capillary numbers, the inertial 

force is the dominant force during metal flow through the ventilation channels. However, 

in order to increase the accuracy of predictions by the proposed algorithm, the change in 

the metal viscosity with an increase in solid volume fraction still needs to be included, 

even though most of the change in viscosity occurs towards the end of solidification [44] 

and hence may not affect the simulation accuracy much.  

As shown in Figure 5.2, the primary dendrites start to form when the metal is still 

in the shot sleeve, i.e., at point 1. As the metal flows through the gates of the die-cast die, 

some of the dendrites break into smaller pieces, and are carried through the cavity of the 

die-cast die to the overflows and then to the ventilation channels, thus increasing the solid 

fraction in the melt. They usually become centers of nucleation for the equiaxed dendrites 

during further solidification. Note that due to a small channel thickness (0.5 mm), a high 

metal velocity, and a high solidification rate, the columnar dendrites cannot form during 

solidification inside the thin channels and the mushy zone doesn’t develop to influence 

the metal flow.  (As seen in Figure 5.3, the non-dendrite structure is dominant inside the 

thin ventilation channel.)  

  

Figure 5.3 Non-dendrite structures seen in the micrograph of a section of a thin 

ventilation channel. 



92 

 

 

 

As a future development, the variable viscosity as a function of the liquid-metal 

temperature (and hence the solid fraction) can be used to improve the accuracy of the 

proposed algorithm. Such a development may improve the prediction accuracy for the 

analysis of metal flows in thicker channels (1-2 mm).  

With an increase in the accuracy of temperature predictions, several other 

important parameters can be predicted as well. For example, after implementing all the 

proposed changes in the code, the simulation for predicting metal flow and solidification 

can also be used for the subsequent prediction of the macro and micro structures in thin 

channels. 

The ideas presented in this final chapter, if implemented, may improve the 

accuracy of the proposed algorithm. However, their implementation will introduce 

additional nonlinearities (and hence additional iterative loops) in the proposed (simpler) 

solution, and hence may rob the method of its advantages of faster computational speed. 

Only some future research will answer these questions conclusively.  
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Appendix A 

Reynolds lubrication equation after including the effect of inertia   

Governing equation of the transient flow in non-dimensional form is given as follows: 

Momentum equations 
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where Re2    modified Reynolds number. 

Re - Reynolds number
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Continuity equation 
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The dimensionless variables are defined as  
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where 
_

V  is a reference velocity, u, v, and w are the velocities in x, y, and z direction, and 

H is the thickness of the cavity. Since velocity w is vanishing at the top and bottom 

boundaries, and its variation is negligible owing to a small thickness of the cavity, it will 
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be set to zero. Using the continuity equation, equation (A1) can be expressed in a 

convergent form as 
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On integrating equation (A3) over the thickness of the cavity yields 
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We will assume parabolic form of velocity distribution in x and y direction: 

)2)(,,( zhztyxUu           (A5) 

)2)(,,( zhztyxVv           (A6) 

On substituting velocity distribution equations (A5) and (A6) into equation (A4), we get 
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Using the property 
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the term X in equation (A8) can be written as 
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And then term X1 in Eq.(A9) can be written as 
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Opening brackets in equations (A8) and (A9) as well as temporarily eliminating the 

common z direction integral yields: 
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Opening brackets and rearranging terms in equations (A11) and (A12) results in the 

following equations: 
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Substitution of the above-derived terms into the original equations, Eqs. (A11) and 

(A12), results in 
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Rearranging terms in Eq. (A19) leads to 
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We will bring back the z direction integration and integrate along the z direction all the 

terms of equation (A20) in the following section. 
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Integrating term I results in 
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Integrating term IX results in 
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Integrating term II results in 

42

6

1

4

4

3

4
22

04

4

03

3
22

0

3

0

222

0

)32(22

h
y

h
UV

x

h
U

hh

y

h
UV

x

h
U

hzh
h

z

y

h
UV

x

h
U

h

dzzdz

h

hz
y

h
UV

x

h
U

h

dzzhz
y

h
UV

x

h
U











































































































































  (A25) 

Integrating term IIX results in 
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Integrating term III results in 
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Integrating term IIIX results in  
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On substituting back all the above terms into equation (A20), we get  
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On dividing this equation by h, we get 
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A combining of similar terms results in 
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The second term in the first equation of (A39) can be rewritten as 

y

U
V

x

U
U

y

V

x

U
U

y

U
V

y

V
U

x

U
U

x

U
U

y

UV

x

U
























































 2
 

Since 0









y

V

x

U
 (from the continuity equation, Eq.(4.12)), the final form is 

y

U
V

x

U
U

y

UV

x

U


















 2
 

The second term in the second equation on (A39) can be transformed similarly. 

On substituting back these transformations in (A39), the final form of the governing 

equations is expressed as  
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Appendix B  

 

Discretization of momentum equations 

 
The final momentum equations, Eqn. (4.13), given in chapter 4 are replicated here for 

convenience. 
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Figure B.1 Staggered grid arrangement 

 

Staggered grid arrangement is shown in Figure B.1. This grid arrangement provides a 

stronger coupling between fluid pressure and velocities, thereby improving the stability 

of the solution. The primary grid-points, where the scalar quantities as pressure P and 
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temperature T are stored, are denoted with capital letters.  The secondary grid-points, 

where vector quantities such as velocities U and V are stored, are denoted with small 

letters.  

 The discretized form of momentum equations on the staggered grid, using the first 

order, forward difference scheme in time and the central difference scheme in space, is 

shown below. 

Momentum equation 

In the x direction: 
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Due to the staggered-grid arrangement used for the discretization of our partial 

differential equations, the values of velocities are available only on the secondary-grid 

points. An interpolation must be used to determine velocities on the primary-grid points. 

The following relations can be used: 
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Figure B.2. Grid lines arrangement near the channel walls 
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In order to eliminate the need for pressure values at the boundaries, walls of the channel 

are made to coincide with the secondary-grid lines. Then fluid pressure is calculated 

inside the channel only. 

No-slip boundary condition can be expressed as: 
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Appendix C 

 

Estimation of location of solid-liquid interface 
 
Using the Stefan condition, the solid-liquid interface velocity can be calculated as 
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When solid liquid interface is formed, x

Ts





 term reduces to 0 since the interface 

temperature is kept at the melting point everywhere, while x

Tl





 is estimated based on the 

temperature distribution in the liquid metal. 

To compute the movement of the interface with time, the 1-D velocity of the 

solid-liquid interface is multiplied by the time step: 

   tn
isn

ih  *11       (C2) 

Then the current height of the channel is estimated as 

   121  n
ihn

ihn
ih       (C3) 

with the factor of 2 being used to include the effect of interface movements both from top 

and bottom. A typical interface motion is shown in Fig. C.1 
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Figure C.1 A schematic showing the growth of solid-liquid interface due to metal 

solidification on the channel walls. 
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