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ABSTRACT 
APPLICATION POTENTIAL OF SOLAR PV, WIND AND FUEL 

CELLS TECHNOLOGIES FOR GLOBAL SUSTAINABILITY 
IMPROVEMENT 

 

by 

Qiang Zhai 

 

The University of Wisconsin-Milwaukee, 2012 
Under the Supervision of Professor Chris Yingchun Yuan 

 

This dissertation develops a systematic approach to comprehensively investigate the 

application potential of Solar PV, wind and fuel cells in reducing GHGs emissions for 

energy intensive global manufacturing industry. This systematic approach is 

developed by integrating the technological and economic characteristics of the clean 

energy technologies, as well as the local geographic conditions where the clean 

energy technologies may be deployed. This approach consists of the investigation on 

such aspects as: technological feasibility, capacity factor, FIT strength, Levelized 

energy cost, cost benefit and sensitivity. 

 

In this dissertation, the systematic approach developed is applied on the application 

potential analyses of solar PV, wind and fuel cells technologies in reducing GHGs for 

the global automotive manufacturers, at six global locations including Detroit, Mexico 

City, Sao Paulo, Shanghai, Cairo and Bochum. For the application potential of these 

three clean energy technologies in reducing GHGs emissions, the technological 
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feasibility, capacity factor, Levelized energy cost, cost benefit and sensitivity analysis 

are conducted with different geographic and economic parameters. The cost benefit 

trends of solar PV, wind and fuel cells in reducing GHGs emissions from 2010-2035 

are projected by using this developed approach, with the assumptions of two virtual 

cost cases. This approach is applied on the cost benefit range analysis in six selected 

countries to investigate the uncertainty of the GHGs reduction cost benefit due to the 

geographic difference. Potential cost benefit maps on GHGs emission reduction in the 

nationwide of the US lower 48 states are generated by using this systematic approach. 

The sensitivity analysis is applied for the solar PV and wind energies to investigate 

the linear relevance of different geographic and economic parameters with the cost 

benefit performance. In the FIT strength analysis of the case study, different 

geographic locations are selected due to the lack of data. 

 

This dissertation concludes with discussions on the application potential of three clean 

energy technologies at different global locations in reducing GHGs emission for 

global manufacturing industry. As there is lack of information support on the 

selection of appropriate clean energy technologies at specific locations to achieve 

GHGs emission reduction, this approach developed provides a comprehensive support 

for decision making. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Significance of global warming issue 

 

Global warming issue is mainly caused by the increasing GHGs concentrations in the 

atmosphere [Wuebbles 2001]. Many changes have been observed caused by global 

warming, in both natural systems and ecological systems. According to the 

Intergovernmental Panel on Climate Change (IPCC), based on current emission trends, 

the average global temperature is expected to rise by 1.4 °C to 5.8 °C between 1990 

and 2100 [IPCC 2001]. This could result in severe climate changes including sea level 

rise and widespread decreases in snow and ice extent, etc., which are extremely of 

human concern.  

 

Greenhouse gases (GHGs), as the dominant driver of global warming, have increased 

by an average of 1.6% per year with carbon dioxide (CO2) emissions from the use of 

fossil fuels growing at a rate of 1.9% per year and these trends are expected to 

continue over the last three decades [IPCC 2007]. Nonetheless, it is projected that 

global energy demand and associated supply patterns based on fossil fuels, as the 

main drivers of GHG emissions, will continue to grow [IPCC 2007].  

 

This chapter concentrates on the introduction of GHGs, reduction of GHGs and the 

role of such clean energies as solar PV, wind and fuel cells should play in this regard. 
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The following brief introduction of GHGs, global warming, global warming potential, 

and GHGs reduction aims to fundamentally understand the inherent connections 

among these phenomena. 

 

1.1.1 GHGs, global warming, and global warming potential (GWP) 

 

The increasing of GHGs concentration in the atmosphere is the main driver of global 

warming. CO2, CH4 and N2O are the three most common GHGs in the atmosphere. 

 

The global average concentrations of various greenhouse gases in the atmosphere have 

reached the highest levels ever recorded, and these concentrations continue to increase. 

The combustion of fossil fuels from human activities and land-use changes are largely 

responsible for the increase. CO2 levels have increased 31% in the past 200 years 

[Sims 2004]. The concentration of CO2, the most important greenhouse gas, reached a 

level of 386 ppm by 2009, and further increased to 389 ppm in 2010 [NOAA 2011]. 

This is an increase of approximately 110 ppm (around +39%) compared to 

pre-industrial levels. The concentration in 2009 of the six greenhouse gases (GHG) 

included in the Kyoto Protocol has reached 439 ppm CO2 equivalent,  an increase of 

160 ppm (around +58%) compared to pre-industrial levels, as shown in Figure 1.1 

[NOAA 2011].  
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Figure 1.1 Trends in Atmospheric CO2 [Data source: NOAA 2011] 

 

Besides CO2, methane (CH4), nitrous oxide (N2O), sulphur hexafluoride (SF6), and 

two groups of gases, hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) are 

other types of greenhouse gases as regulated in the Kyoto protocol. Different 

greenhouse gas has different impact on the global warming effect. To compare the 

radioactive forcing capacity of different gases, an index termed the global warming 

potential (GWP) is calculated for each gas, as expressed in equation (1-1). For 

example, methane has a GWP of 23 which means that it is 23 times more effective at 

trapping heat than CO2. GWP is calculated based on the amount of time a gas remains 

in the atmosphere and its relative effectiveness in absorbing infrared radiation. The 
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IPCC computes greenhouse gas GWPs for 20, 100, and 500 year time horizons [IPCC 

1990] [Yuan 2009].  

 

0 0

0 0

( ) [ ( )]

( ) [ ( )]

TH TH

i i i

i TH TH

r r i

RF t dt C t dt

GWP

RF t dt C t dt







 



 

 
                 (1-1) 

 

Where 

TH: time horizon 

RFi: the global mean radiative forcing of gas i 

ai: the RF per unit mass increase in atmospheric abundance of gas i (radiative 

efficiency) 

[Ci(t)]: the time-dependent abundance of gas i 

 

In the GWP metric, typical time horizons used for calculations are 20, 100 and 500 

years, while the 100 year time horizon is the most commonly used in various analyses 

and statements. For example, the Kyoto protocol uses the GWP results calculated 

from a 100 year time horizon. In GWP calculations, the reference gas is commonly 

selected as CO2 on which the GWP is set as 1. In equation (1-1), the numerator and 

denominator are called the absolute global warming potential (AGWP) of gas i and r, 

respectively [Yuan 2009]. The GWPs of three most common GHGs in the atmosphere 

are shown in table 1.1 [IPCC 2005] [Forster 2007] [Yuan 2009]. 
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Greenhouse gas 

Life Time 

(years) 

Radiative 

Efficiency  

(Wm
-2

ppb
-1

) 

GWP for given time horizon 

20 yrs 100 yrs 500 yrs 

CO2 120 1.4x10-5 1 1 1 

CH4 12 3.7x10-4 72 25 7.6 

N2O 114 3.03x10-3 289 298 153 

Table 1.1 GWPs of the three common GHGs [Yuan 2009, Forster 2007] 

 

1.1.2 GHGs Sources 

 

Energy supply is the main GHGs emission source. Taking US as an example, about 87 

percent of U.S. greenhouse gas emissions come from energy production and use 

[GCRP 2008]. Fossil fuels have been sharing the major of the energy mix and will be 

dominating the mix in a long term. Fossil fuels supplied 80% of world primary energy 

demand in 2004 [IEA, 2006] and their use is expected to grow in absolute terms over 

the next 20–30 years in the absence of policies to promote low-carbon emission 

energy sources. Excluding traditional biomass, the largest constituent were oil (35%), 

then coal (25%) and gas (21%) [BP 2012]. Global growth in fossil fuel demand has a 

significant effect on the growth of energy-related CO2 emissions: both the IEA and 

the U.S. EIA project growth of more than 55% in their respective forecast periods 

[IEA 2006].  
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Figure 1.2 and Figure 1.3 demonstrate the worldwide energy combustion related CO2 

emission from 1973-2009. The fuel combustion related CO2 emission amount have 

increased from 15624 Mt in year 1973 to 28999 Mt in year 2009. 

 

Figure 1.2 World CO2 emissions from fuel combustion in 1973 [Data Source: IEA 

2011] 

 

Figure 1.3 World CO2 emissions from fuel combustion in 2009 [Data Source: IEA 

2011] 
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The discussion in section 1.1 concludes with the following key points: 

a. The global warming effect has been significant. 

b. GHGs emission is the main driver of the global warming effect. 

c. Fossil fuel energy combustion is the main GHGs emission source. 

The following discussion focuses on the CHGs emission reduction options and the 

strategies to achieve this goal. 

 

1.2  GHGs emission reduction mitigation options 

 

There are different GHGs emission reduction options. This research is focused on the 

global manufacturing industry. In order to find out the possible GHGs emission 

reduction options for a manufacturing company, the first step is to investigate the 

GHGs emission sources during the manufacturing process of its products. 

 

A simplified product life cycle is illustrated in Figure 1.4, which includes raw 

material acquisition, material processing, manufacturing & assembly, use & service, 

retirement & recovery and treatment disposal. GHGs are produced in each individual 

part directly and indirectly during these stages. Direct GHGs emission is due to the 

energy consumption during the production operation. The indirect GHGs emission is 

due to the purchased electricity. 
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Figure 1.4 A product life cycle 

 

Accordingly, in order for a manufacturing company to reduce its GHGs emission, 

efforts could be placed on either direct emission reduction or indirect reduction. 

Direct GHGs emission reduction may be achieved by improving the energy 

consumption efficiency of each individual production life cycle stage and optimizing 

the production process. In regard of the indirect GHGs emission reduction, potential 

reduction could be achieved by using clean energy for supplying the energy demand 

for production, since these clean energy power systems generate less GHGs emissions 

than the conventional grid power supply industry. 

 

1.3 GHGs emission reduction options for automotive manufacturers 

 

Automotive manufacturing is energy-intensive and requires a significant amount of 
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energy input [Maclean 1998][Yuan 2006][Zhai 2011]. The demanded energy supply 

is mainly produced from fossil fuel sources, which generate a huge amount of 

greenhouse gas (GHG) emissions. These GHGs emissions are generated from direct 

on-site consumption of fossil fuel energy and indirectly from consumption of 

purchased electricity. As estimated, the manufacture of a typical vehicle requires 

approximately 120 Giga Joules of energy input [Maclean 1998]. 

 

Aware of the significance of global warming resulting from GHG emissions, the 

global automotive industry has worked intensively to reduce the GHG emissions from 

their production facilities and manufacturing processes. The Alliance of Automobile 

Manufacturers (AAM), formed by such major global automotive manufacturers as 

GM, Ford, Chrysler, Toyota, Mitsubishi, Mercedes, Porsche, Volkswagen, Volvo, and 

Jaguar, committed to achieve a 10% reduction in greenhouse gas emissions per 

number of vehicles produced from their U.S. automotive manufacturing facilities by 

2012 measured from a base year of 2002 [US DOE 2007]. During the time period 

between 2002 and 2005, the AAM members has already reduced the GHG emissions 

intensity of their U.S. facilities, measured as CO2 emissions per number of vehicles 

produced, by nearly 3% [US DOE 2007]. As many automotive manufacturers are 

operating worldwide, the total amount of GHG emissions from their global 

manufacturing facilities can be very significant. Figure 1.5 below shows the annual 

GHG emissions from the global manufacturing facilities of the six major automotive 

manufacturers including GM, Toyota, Ford, Hyundai, Honda and Daimler during 
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2004-2009.   

 

 

Figure 1.5  Annual CO2 emissions of six major global automakers [GM 2010][Ford 

2007-2010][Daimler 2010][Honda 2008, 2009][Hyundai 2009, 2010][Toyota 

2008-2010] 

 

Figure 1.5 demonstrates that the U.S. automotive manufacturers including GM and 

Ford have reduced their CO2 emissions significantly in the time period from 

2004-2009. The total CO2 emissions of GM global manufacturing facilities were 

decreased by 42.11% during the five years time period, from 11.4 million metric tons 

in 2004 to 6.6 million metric tons in 2009 [GM 2010]; the CO2 emissions from Ford’s 

global facilities were also reduced by 41.67%，from 8.4 million metric tons in 2004 to 

4.9 million metric tons in 2009 [ Ford 2007-2010].  

 

The CO2 emission reductions of GM and Ford facilities are not only from the 

Year 
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down-sizing of their manufacturing scale but also from their intensive efforts on 

energy efficiency improvements and management on their manufacturing facilities. 

For instance, GM’s U.S. facilities have participated in a total of 1753 projects from 

1991-2007 for energy efficiency improvements and conversions of energy sources to 

lower GHG emitting fuels such as switching from coal to natural gas for the operation 

of boilers, which has led to a total reduction of GHG emissions over 17 million metric 

tons CO2 equivalent [GM 2008]. Through such efforts, the amount of CO2 emissions 

per vehicle built from the GM’s manufacturing facilities in the U.S. has been 

decreased from 2.71 metric tons/vehicle in 1990 to 2.2 metric tons/vehicle in 2007 

[GM 2008].  

 

However, after decades of continuous improvement, it is difficult to further reduce 

CO2 emissions of automotive manufacturing through energy efficiency improvement 

and management, because automotive manufacturing processes are energy-driven and 

the grid power supply is mainly produced from fossil fuels. 

 

Thus, a potential solution to this dilemma is to use clean energy technologies such as 

solar photovoltaic, wind, fuel cells, etc., to partially supply the power needs of 

automotive manufacturing, so as to further reduce the GHG and associated 

environmental emissions from automotive manufacturing facilities.  

 

Clean energy technologies are recognized for their cleanliness during power 
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generations and are promoted to use worldwide. Although using clean energy 

technologies may reduce the GHG emissions, there are still some uncertainties and 

concerns for their actual implementations in practical production systems. Particularly 

in the early stage of strategy planning, there are decision-making challenges related to 

the selection and deployment of a clean energy technology from a number of 

candidates by global manufacturers such as GM which has manufacturing facilities all 

over the world. In actual applications, a sound decision is usually required to reduce a 

maximum amount of GHG emissions with a fixed budget, or reduce certain amount of 

GHGs with minimum amount of economic cost. However, currently there is a lack of 

information and data support for decision-making in selecting clean energy 

technologies and maximizing the cost benefits of clean energy supply for GHG 

mitigation of large scale industrial manufacturing systems in a global scale.  

 

There are quite a few clean energy technologies for power generation available on the 

commercial market. Considering the specificity and requirements of automotive 

production facilities as well as the maturity and adaptability of the various clean 

energy technologies, three such clean energy power systems, namely solar PV, wind 

and fuel cells have good potential in stationary power supply and GHG emission 

reduction for automotive manufacturing industry [Yuan 2009]. In this study, a number 

of representative power systems based on these three clean energy technologies have 

been selected to assess their potential application in GHG mitigation at automotive 

manufacturing facilities located at different global geographical locations.  
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1.4 Objectives of this research 

 

The objective of this dissertation research is to comprehensively investigate the 

application potential of such clean energy technologies as solar PV, wind and fuel 

cells, in GHGs reduction, for global automotive manufactures, as well as similar large 

scale global manufacturing industry. The specific objectives are as follows: 

 

1). To develop a mathematical model to quantify the cost benefit of clean energy 

supply for GHGs emission reduction, as a general decision tool to support 

decision-making in assessing the application potential of various clean energy 

technologies for power supply of large-scale manufacturing facility.  

 

2). To investigate the dependence of the clean energy technologies’ performance in 

GHGs reduction, on geographical conditions and technological characteristics. For 

example, the dependence of solar PV on the local solar insolation, local grid power 

GHG emission level and the GHG emission level of the selected PV module will be 

quantitatively discussed. 

 

3). To conduct a case study on three popular clean energy technologies including solar 

PV, wind and fuel cells stationary power supply systems. The case study will be 

conducted at six global locations as the representatives of different worldwide regions 
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including Detroit (United States), Mexico City (Mexico), Sao Paulo (Brazil), 

Shanghai (China), Cairo (Egypt) and Bochum (Germany). 

 

4). To investigate the linear relevance of different technological and geographical 

parameters and the cost benefits. A relative priority on what parameter should be 

considered in the early stages of decision-making is important for decision makers. 

This linear relevance will be illustrated by a sensitivity analysis using Pearson’s 

correlation coefficient analysis method. 
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CHAPTER 2 ENVIRONMENTAL SAVING OF GREEN HOUSE 

GAS EMISSIONS FROM LOCAL POWER SUPPLY SYSTEMS 

BY USING CLEAN ENERGY TECHNOLOGIES 

 

For all clean energy chains, inputs of energy resources and emissions of GHGs are 

extremely low compared with conventional systems [Pehnt 2006]. Solar PV, wind and 

fuel cells are considered as clean energies because these power systems produce fewer 

GHG emissions than the conventional grid power supply industry. However, such 

clean energy technologies are not completely clean. Certain amounts of emissions are 

still produced in various phases of their life cycle, including raw material acquisition, 

manufacturing, end-of-life, etc. When it comes to using such clean energy 

technologies to replace the conventional grid power supply for the global 

manufacturing industry, the lifecycle GHG emissions of such clean energy 

technologies must be considered in the assessment of the overall GHG mitigation 

potential of such applications. In this chapter, the technical principles of the solar PV, 

wind and fuel cells power systems selected for this study will be briefly introduced. In 

order to understand the mechanism of GHG emission mitigation by clean energy 

power supply, the associated life cycle assessment background will also be 

introduced. 

 

2.1 Principles and system configuration of clean energy technologies 
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2.1.1 Principle of Solar PV 

 

Solar photovoltaic systems use the photoelectric effect of semiconductor materials to 

convert solar energy (solar photons) directly into electricity. This energy conversion is 

mainly performed by the major component of PV systems, the solar module, normally 

a number of cells connected in series. Solar PV power systems produce negligible 

emissions during their operation and maintenance, but there are still emissions 

associated with other lifecycle phases of a solar PV power system, including raw 

material acquisition and production, system manufacturing, and end-of-life.  

 

On the other hand, the electricity generation of solar PV depends on the solar 

insolation level the PV system is exposed to, which is closely linked to the 

geographical location where the PV system is deployed. Thus the practical 

performance of a solar PV power system highly depends on the local seasons and 

weather. Another drawback of solar PV application is that it needs vast area of land to 

build the power system. 

 

In general, the actual power output of a Solar PV system in terms of AC electricity 

supply can be calculated through the following equation: 

DC-ACout m ave m mAC n I A e f      (2-1) 

Where 

ACout: annual power output, AC electricity (kWh/year) 
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nm: number of PV modules 

Iave: average annual solar insolation (kWh/m
2
/year) 

Am: surface area of one PV module (m
2
) 

em: module efficiency 

fDC-AC: DC-AC conversion efficiency 

 

Equation (2-1) demonstrates that, with the same surface area, the annual power output 

will be decided by the technological parameter, module efficiency and the average 

annual solar insolation. In this regard, both the technological and geographic 

characteristics should be considered when the solar PV technology is assessed. 

 

2.1.2 Principle of Wind Energy 

 

Wind is another form of solar energy, generated by uneven solar heating of the earth’s 

land and sea surfaces. Wind power output is dependent on the wind energy density of 

the geographic location where the wind turbine is installed. At a specific location, 

environmental parameters such as wind speed and air density (related to temperature, 

atmospheric pressure and altitude) jointly determine the wind energy density.  

 

The wind speeds vary with the heights above the surface of the earth, and the wind 

speed values obtained from the public reports are typically for 10 or 50 m height 
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above the ground. Wind speeds at other heights can be obtained by using the 

following transformation [Simiu 1978][Chang 2003]: 

 

0

0

( )k

z

z
v v

z
  (2-2) 

 

Where 

vz: wind speed at z m height above the ground (m/s) 

v0: wind speed at specified height of z0 (m/s) 

z0: specified height (m) 

k: Hellman exponent (k = 0.34) 

 

In Equation (2-2), the Hellman exponent value is a key parameter. The k value 

depends on the location and the shape of the terrain on the ground and the stability of 

the air [Kaltschmitt 2007]. In urban areas, the k = 0.34 value is usually selected for the 

condition of neutral air above human inhibited areas [Kaltschmitt 2007]. As a result, 

the wind power density can be calculated through the following expression [Chang 

2003]: 

 

)
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(
2

1 3







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Where 

W: wind power density (W/m
2
) 

P: air pressure (Pa or N/m
2
) 

A: area (m
2
) 

ρ: air density (kg/m
3
) 

vz: wind speed at z m height (m/s) 

λ: the dimensionless Weibull shape parameter Γ( ): the gamma function of 

( ) ,e.g. Γ( 1)=1, Γ( 1.5)=0.886, Γ( 2)=1, Γ( 2.5)=1.329, and Γ( 3)=2. 

 

The air density ρ is related to temperature, atmospheric pressure and altitude, and 

can be determined by [Chang 2003][Oztopal 2000]: 

)/(/ 3mkgRTP                      (2-4) 

Where 

R: the specific gas constant (287 J kg
-1

 Kelvin
-1

)  

T: air temperature in degrees Kelvin (deg. C + 273) 

 

The air density could also be expressed as [Chang 2003][ Oztopal 2000]: 

)/()/exp()/( 3

0 mkgRTgzRTP           (2-5) 

Where 



20 
 

0P :standard sea level atmospheric pressure (101,325 Pascals) 

g: the gravitational constant (9.8 m/s
2
); and z = the region’s elevation above 

sea level (in meters) 

 

In practice, the power output of a wind turbine is calculated from the power curve, 

which is a graph that indicates the power output values at different wind speeds. This 

power curve is normally provided when the wind turbine is installed as the form of 

either a graph or a set of numeric values. 

 

2.1.3 Principle of Fuel Cells 

 

Fuel cells are electrochemical devices. A fuel cell is very much similar to a battery in 

its mode of electricity generation. The major difference between a fuel cell and a 

battery is that a fuel cell needs a continuous supply of fuels to produce electricity, 

while a battery has chemicals stored inside that react and produce electricity.  

 

Fuel cells can be used for large-scale industrial power supply when sufficient amounts 

of fuels are supplied continuously into the system. Typical fuel cells are developed to 

use hydrogen (or hydrogen fuels) to produce electricity. Taking hydrogen as an 

example, the chemical reaction within the fuel cell system can be described as 

follows: 
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Anode side: 

22 4 4H H e                       (2-6)
 

Cathode side:  

2 24 4 2O H e H O                      (2-7)
 

Net reaction:  

2 2 22 2H O H O 
                     (2-8)

 

 

When using hydrogen as fuel, a fuel cell power system only produces water emissions 

during operation, and no GHG emissions. Accordingly, the use of fuel cell power 

systems can significantly reduce the GHGs emissions compared to conventional 

power supplies. However, currently there are quite a number of challenges associated 

with hydrogen fuel production, storage and use in fuel cells. As a result, natural gas is 

more commonly used in stationary fuel cell power systems. Although the natural gas 

consumed in a fuel cell power system is only involved in the oxidation process, 

instead of burning, the carbon elements of natural gas are still converted into CO2 

emissions. 

 

If a natural-gas based fuel cell power system will be used, a quantitative trade-off 

analysis must be conducted to evaluate the GHG mitigation potential of the fuel cell 

power system, between the life cycle GHG emissions of a fuel cell power system and 
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the GHG emissions of the conventional grid power supply, based on the same amount 

of electricity generation.  

 

Fuel cells have an advantage over solar and wind energy in that fuel cells are not 

limited by geographic conditions. The power efficiency of the fuel cell power systems 

can always be maintained at the rated output level and it can provide a steady power 

supply as long as sufficient fuels are supplied continuously into the system. Currently, 

fuel cells are mainly developed as mobile energy sources for transportation 

applications. For stationary power generations, there are only a few models available 

in the United States. In this analysis, two fuel cell stationary power systems are 

selected, with one system using hydrogen fuel, and the other one using natural gas.  

 

2.2. Life cycle GHG emission analysis of clean energy power systems 

 

Although clean energy technologies such as solar PV and wind are low carbon or zero 

carbon during the operation stage, there are GHG emissions during their production 

stages. In order to comprehensively understand the GHG emission generation 

mechanism of clean energy power systems, here in this section the life cycle 

assessment method is introduced.  

The GHG emission factor used in the following chapters of clean energy power 

systems are collected from related LCA studies. 
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Standard Life cycle assessment (LCA) was developed more than half century ago as a 

tool for analyzing environmental issues. The objective of LCA is to describe and 

evaluate the overall environmental impacts of a certain action by analyzing all stages 

of the entire process from raw materials supply, production, and transport and energy 

generation to recycling and disposal stages -following actual use, in other words, 

“from the cradle to the grave”. Energy production has obvious health and 

environmental impacts. The procedures of life cycle assessment (LCA) are part of the 

ISO 14000 environmental management standards: in ISO 14040:2006 and 

14044:2006 [ISO 2006].  

 

A brief introduction is given in the next paragraph to explain the scheme of LCA [ISO 

2006]: As a systematic approach, LCA process consists of four stages: goal and scope 

definition, inventory assessment, impact assessment and interpretation as illustrated in 

Figure 2.1. Goal and scope definition is the phase of the LCA process that defines the 

purpose and method for including life cycle environmental impacts in the 

decision-making process. A life cycle inventory (LCI) assessment is the process of 

quantifying the energy and raw material requirements as well as various wastes and 

emissions including atmospheric emissions, waterborne emissions, solid wastes and 

other releases from the entire life cycle of a product, process or activity. In the life 

cycle inventory phase of an LCA, all relevant data are collected and organized. The 

outcome of the inventory assessment is a list containing the quantities of pollutants 

released to the environment and the amount of energy and materials consumed in the 

life cycle of the product. The life cycle impact assessment (LCIA) phase of an LCA is 

the evaluation of potential human health and environmental impacts of the 

http://en.wikipedia.org/wiki/ISO_14000
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environmental resources and releases identified during the life cycle inventory (LCI). 

Impact assessment should address ecological effects and human health effects; it may 

also address resource depletion. Interpretation is a systematic technique to identify, 

quantify, check and evaluate information from the results of the life cycle inventory 

(LCI) and the life cycle impact assessment (LCIA) and communicate them effectively. 

Interpretation is the last phase of the LCA process. 

 

 

   

Figure2.1 Stages of a life cycle assessment [Data source: ISO 2006] 

 

2.2.1 Solar PV 

 

PV technology converts the sun’s rays directly to electrical energy without 

environmentally harmful discharges. The life cycle of a PV system consists of four 

main phases: Manufacturing of modules, Production of Balance of System (BOS), 
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Installation, Operation and Maintenance and End-of-life [ECLIPSE 2004]. Figure 2.2 

illustrates simplified process-flow diagrams from mining to system manufacturing 

stages, namely cradle-to-gate for mono-, ribbon-, and multi-Si PVs. 

 

 

Figure2.2 Schematic overview of the life cycle of a PV system [Data source: Vasilis 

2008] 

 

Previous life-cycle studies reported a wide range of primary energy consumption for 

PV modules. Meijer et al. evaluated 270-μmthick Si PV with 14.5% cell efficiency 

fabricated from electronic-grade high-purity silicon [Meijer 2003]. Jungbluth reported 

the life-cycle metrics of various PV systems (2000 vintage) under average insolation 

in Switzerland (1100 kWh/m2/yr). He estimated greenhouse gas (GHG) emissions in 

the range of 39–110 g CO2-equiv/kWh [Jungbluth 2005] [Vasilis 2008]. There are a 

few life-cycle studies of thin-film PV technologies; these include those of CdTe PV 

by Palz and Zibetta, Hynes et al., and Kato et al., and the amorphous silicon studies 

by Keoleian and Lewis [Palz 1991][Hynes 1994][Keoleian 1997][ Fthenakis 2008]. 

Fthenakis and Alsema reported the 2004-early 2005 status of the EPBTs and of 
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greenhouse gas (GHG) emissions in four different photovoltaic rooftop installations, 

namely ribbon- Si, multicrystalline Si (multi- or mc-Si), monocrystalline Si, and 

thin-film CdTe systems [Fthenakis 2006, 2008]. 

 

2.2.2 Wind Farm 

 

Although wind power system does not produce pollution or emissions during 

operation, there is an environmental impact due to the manufacturing process of the 

wind turbine and the disposal process at the end of the wind turbine life cycle, and 

this environmental impact should be quantified in order to compare the effects of the 

production from the point of view of LCA. The life cycle of wind turbine is illustrated 

as figure 2.3 [Eduardo 2009]. 
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Figure2.3 LCA model of a wind turbine [Data source: Martínez 2009] 

 

2.2.3 Fuel cell systems 

Fuel cells are electrochemical devices which convert chemical energy of a reaction 

directly into electrical energy. They generate DC current by the electrochemical 

oxidation of fuel (normally hydrogen) and reduction of the oxidant (usually oxygen 

from the air). As illustrated in figure, the main components of a fuel cell system 

include fuel processor to clean up the fuel and generate hydrogen, fuel cell which 

generates DC power, power conditioner to convert DC into AC power and water and 

heat management units. 
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In addition to the main components, the fuel cell system also comprises a so called 

"balance of plant"(BoP) which includes pumps, controls and safety system. The actual 

specification of components of the BoP will depend on the type of fuel cell. 

 

 

Figure 2.4 Components of a fuel cell system operated on hydrogen [Data source: 

Azapagic 2002] 
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CHAPTER 3 A SYSTEMATIC APPROACH TO INVESITIGATE 

THE APPLICATION POTENTIAL OF CLEAN ENERGY POWER 

SYSTEMS FOR GHG EMISSION MITIGATION 

 

3.1 Introduction 

 

As discussed in the above chapters, clean energy technologies may be potentially a 

choice for the manufacturing companies to be practically applied to reduce their GHG 

emissions. However, currently there are quite many different types of clean energy 

technologies on the global clean energy market, such as solar, wind, geothermal, 

bioenergy, fuel cells and so forth. Many of these clean energy technologies have been 

applied with variety of industrial uses as energy supplies. Different types of clean 

energy technologies have different technological characteristics, economic 

performances, environmental impacts and other characteristics due to their specific 

energy producing principles. When it comes to a decision to be made, the selection of 

one of the optional types of clean technologies is a complicated process. On the one 

hand, the goal of the manufacturing companies is to achieve the GHG emission 

reduction through the selected clean energy technology application for their 

production, apparently many types of clean energy technologies may have the 

qualification to be considered. On the other hand, the expected cost of the option 

against the total expected benefits should be optimal for the manufacturing companies. 

However, currently there is a lack of information and data support for 
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decision-making in selecting clean energy technologies and maximizing the cost 

benefits of clean energy supply for GHG mitigation of large scale industrial 

manufacturing systems in a global scale.  

 

In this chapter, a mathematical model is developed to quantify the cost benefit of 

clean energy supply, as a general decision tool to support decision-making in 

assessing the application potential of various clean energy technologies for power 

supply of large-scale manufacturing facility.  

 

Since the clean energy technologies (such as solar and wind) are dependent on 

geographical environmental conditions, in this analysis the geographical factors are 

also integrated in the mathematic model to provide a robust decision support for 

implementation of clean energy supply  during  sustainable manufacturing practice. 

For solar PV technology, the different surface meteorological conditions, such as the 

average sunshine time and the average solar insolation intensity will have significant 

impact on the performance of the installed PV panels. For wind energy, local 

meteorological conditions such as local temperature, altitude, and average wind speed 

will be the major determining factors for the performance of a wind turbine. In the 

developed model, the technological characteristics of solar PV and wind energy 

associated with such above geological factors will be investigated. 
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Although solar and wind are widely adopted in global energy production systems, the 

economic cost of electricity generated from solar and wind are still higher than that of 

grid power [Yuan 2009]. As a result, for promotion of the large scale clean energy 

application in global power generation system, the existence and strength of clean 

energy incentive laws play an important role in the global deployment of clean energy 

technologies [Loy 2004] [REN21 2009]. One of the most important incentives 

adopted worldwide for clean energy power promotion is Feed-in-Tariff (FIT) as 

implemented in various countries. In this study, the international FITs will be 

discussed in terms of the comparison of the strength in different global regions. This 

section of discussion will provide an extensive view for the decision makers to look 

into the world wide clean energy incentive policy mechanisms. This section of 

discussion will provide an integrated method to look into the benefits by the FITs on 

the GHG emission reduction using clean energy technologies as power supplies. 

 

In many cases, there are no available standard or reference to justify whether one 

specific clean energy technology is practically compatible for the application of GHG 

emission reduction. This uncertainty is not only decided by the technological 

principles of the specific technology; it has to do with the specific local geographical 

conditions, especially for such technologies as solar PV and wind energy. In the 

developed model, the technological feasibility analysis will provide an approach to 

investigate the practical compatibility for specific clean energy technologies at 

specific global geographic locations. 
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When evaluating the practical application potential of different clean energy 

technologies with the goal of GHG emission reduction, a quantitative method is 

needed to compare the cost and benefits. The cost benefit analysis method in this 

study, as one of the core evaluation criteria, will help investigate the GHG emission 

reduction benefits with a unit amount of economic investment. 

 

In order for the decision maker to understand the inherent impact of the technological 

characteristics and the local geographic parameters onto the cost benefit, a sensitivity 

analysis will be integrated into this model. In the sensitivity analysis, the linear 

relevance among the technological, economic parameters and the output cost benefits 

will be investigated qualitatively and quantitatively. 

 

The structure and scheme of the developed model, as well as the relationship of each 

part of the methodology is illustrated in Figure 3.1. The mechanism of the 

mathematical model will be discussed in the following sections in details.  

 

A case study is conducted on solar PV, wind and fuel cell stationary power supply 

systems. In the case study, the clean energy technologies are evaluated for their 

application potential onto the global manufacturing facilities of GM at six locations 

where its global facilities are located, including Detroit (United States), Mexico City 

(Mexico), Sao Paulo (Brazil), Shanghai (China), Cairo (Egypt) and Bochum 

(Germany). It is expected that this study would be useful for global automotive 
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manufacturers in decision-making and strategy-setting of employing clean energy 

technologies to mitigate their GHG and associated environmental emissions. 

 

 

 

Figure 3.1 Structure and scheme of the mathematic model 
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3.2 Technological Feasibility 

 

For assessing the application potential of clean energy supply in GHG emission 

mitigation of manufacturing facilities, the first step is to identify the feasibility of the 

clean energy supply at a specific geographic location. Since clean energy technologies 

such as solar PV, wind, fuel cells, etc., all generates GHG emissions from their life 

cycle; the amount of GHG emissions from the life cycle of the clean energy power 

systems will be considered as an important factor. In order for the goal of GHG 

emission mitigation to be practically achieved, the amounts of GHG emissions from 

the life cycle of the clean energy system must be lower than those from the grid power 

supply, based on the same amount of power delivery. Here the GHG emission factors 

of both grid power supply and clean energy system are employed for the 

technological feasibility analysis. Such GHG emissions as CO2, CH4, N2O, etc., from 

both grid power supply and clean energy systems are included in the analysis and all 

converted to CO2 equivalent amount using the standard Global Warming Potential 

(GWP) metric [IPCC 2007]. 

 

The emission factor of a local grid power supply is the amount of GHG emissions 

released into the atmosphere for per kWh electricity supplied, which is determined 

based on the energy consumption during electricity generation process by the local 

power grid. Due to the difference of energy sources and their proportions in the local 

electricity supply mix, the GHG emission factors from grid power supply are quite 
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different in different locations. Hence the feasibility of a clean energy supply for a 

specific geographic location can be evaluated using following equation. 

 

1 1

( ) ( )
n n

i j j j j

grid i

j j

F GWP f GWP f
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                    (3-1) 

 

Where 

F
i
: feasibility of clean energy supply i, kg/kWh; if F

i
 > 0, feasible; otherwise, 

not feasible. 

jGWP : Global Warming Potential of the j
th

 GHG, 

j

gridf
: The j

th
 GHG emission factor of a local grid power supply, kg/kwh 

j

if : The j
th

 GHG emission factor from the life cycle of i
th

 clean energy power 

system, kg/kwh 

 

After being investigated through the feasibility analysis, whether one specific clean 

energy technology has the potential for the GHG emission reduction application will 

be clarified. The clean energy technologies with the technological feasibilities will be 

then investigated by the next analysis step.  

 

3.3 Capacity Factor 

 

For such clean energy technology application as solar PV and wind energy at a 

specific location, although the energy density information can serve as the basic 
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indicator of the application potential, further analyses are needed to understand more 

about the actual implementation scenarios of these clean energy power systems at 

different geographic locations. For solar and wind energy, here the capacity factor is 

employed as a meaningful metric to assess their actual application potential at the 

selected locations.  

 

The capacity factor is defined as the ratio between the actual power output and the 

total rated power of the system available for the power generations. The expression of 

capacity factor is shown in Equation (3-2) below: 

 

%100
system

output

P

P
CF  (3-2) 

 

Where 

CF: capacity factor of a power supply system 

Poutput: actual power output of the supply system, kW 

Psystem: rated power of the supply system, kW 

 

Since the power generation mechanisms are quite different for solar and wind energy 

power systems, the details of the calculation for capacity factors are presented in the 

following sections. 
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3.3.1 Solar PV 

 

For a Solar PV plant, the capacity factor can be expressed by: 

tNP

E
CF o

s
**

                     (3-3) 

Where  

sCF : Capacity factor of solar PV system 

Eo: Life time electricity output, kWh 

P: Rated power of one solar PV module, kW 

N: Number of solar PV modules  

t: Total operation time of solar modules, hour 

The life time electricity output can be calculated by:  

tNPE TDAoo  
   

             (3-4) 

Where  

oP : Actual output power of solar module, kW 

DA
 : DC-AC de-rate factor. In most cases, 0.77 will provide a reasonable estimate 

T
 : Temperature effect factor  
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t : Total operation time of solar modules, hour 

Most crystalline silicon solar cells decline in efficiency by 0.50%/°C and most 

amorphous cells decline by 0.15-0.25%/°C.  

Alternatively, the electricity lifetime output of Solar PV plants can also be calculated 

by: 

nNAIE TDAmso                 (3-5) 

Where   

sI : Annual solar insolation, kWh/m
2
/year 

m


: 
Solar PV module efficiency 

A :  The surface area of module panel, m
2
 

 n: Total operation time of solar modules, year 

3.3.2 Wind 

 

A wind turbine is "fueled" by wind, instead of conventional fossil fuel. Wind blows 

steadily at some times and not at all at other times. Technically, a modern utility-scale 

wind turbine operates 65% to 90% of the entire lifetime, but it often runs at less than 

full capacity. Therefore, the capacity factor for a modern utility-scale wind turbine is 

less than that, typically, the factor is about of 25% to 40% [AWEA 2010]. The 

capacity factor of a wind Farm can be calculated by: 

i

o

P

P
CF                            (3-6) 
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Where 

Swi
ADP  , input power 

Dw : Wind power density, kW/m
2
 

AS : Swiping area of turbine blades, m
2
  

Po : Output power under annual average speed according to the power curve 

of the applied turbine, kW  

 

It is important to realize that while capacity factor is almost entirely a matter of 

reliability for a fueled power plant, it is not for a wind farm. For a wind farm, it is a 

matter of economical turbine design. With a very large rotor and a very small 

generator, a wind turbine would run at full capacity whenever the wind blew, which 

would generate 60-80% capacity factor, but it would produce very little electricity. 

The most electricity per dollar of investment is gained by using a larger generator and 

accepting the fact that the capacity factor will be low as a result. Wind turbines are 

fundamentally different from fueled power plants in this respect [AWEA 2010]. 

 

For a fuel cell system, although the calculation of its capacity factor could be 

conducted by the similar principle introduced above, it is not necessary for this to be 

done. In general, for a specific Fuel Cell system, the capacity factor is provided as one 

of the product specifications.  
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3.4 Strength Analysis of International Feed-in Tariff Promotion of Clean Energy 

Applications for Greenhouse Gas Emission Mitigation 

 

Although solar and wind are widely adopted in global energy production systems, the 

economic cost of electricity generated from solar and wind are still much higher than 

that of grid power [Yuan 2009]. As a result, for promotion of the large scale clean 

energy application in global power generation system, the existence and strength of 

clean energy incentive laws play an important role in the global deployment of clean 

energy technologies, [Loy 2004] [REN21 2009]. One of the most important incentives 

adopted worldwide for clean energy power promotion is Feed-in-Tariff (FIT) as 

implemented in various countries. 

 

The FIT provides a guaranteed price paid per kilowatt-hour (kWh) generated by a 

clean power installation for a guaranteed number of years [Cory 2009]. The 

guaranteed price paid and timeframe of a FIT can vary with country and technology, 

and the prices paid are usually separated into specified amounts for different brackets 

of eligible installation capacity [Gipe 2010]. The tariffs are paid to the clean power 

supplier by the utility companies, grid providers, or in some cases, the government. 

 

The FIT is advantageous to manufacturers dedicated to reduce their GHG emissions 

and therefore, it is important for global businesses to understand the financial and 
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GHG emission mitigation benefits they are provided by various FIT laws for which 

their plants can be eligible.  

 

Under different situations, Feed-in-Tariff has several meaning. “Feed-in Tariffs” 

typically refer to the regulatory, minimum guaranteed price per kWh that an 

electricity utility has to pay to a private, independent producer of renewable power fed 

into the grid [Monthorst 1999]. But, occasionally, the concept ‘feed-in tariff’ is used 

for the total amount per kWh received by an independent producer of renewable 

electricity, including production subsidies and/or tax refunds [Huber 2001]. But in 

some cases, it refers to the premium price paid above or additional to the market price 

of electricity [Haas 2001]. 

 

In the following section, a simple mathematic method is presented to characterize and 

benchmark the strength of FITs of the selected seven countries in mitigating the global 

greenhouse gas emissions from fossil fuel power generation industry. 

 

The objective of the proposed FITs in the international world is to promote the 

application of clean energy technologies in global power generation systems so as to 

reduce environmental impact of fossil fuel energy consumption. Due to the high cost 

of clean energy electricity [Yuan 2009], as calculated in cents/kWh, the price of 

produced clean power must be made competitive relative to the gird power in the 

market in order to be used by the society. The FIT incentives pay additional money to 
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cover the gap between the cost of clean power and the grid electricity. As a result, the 

mitigation of greenhouse gas emissions from fossil fuel power system is at an extra 

cost in terms of the FITs in the guaranteed paid time period. 

 

By considering the benefits of the greenhouse gas emission mitigated and the total 

amount of additional costs paid through the FITs during the guaranteed paid time, 

here a simple mathematic method has been developed to assess the strength of FITs, 

with application on greenhouse gas emission mitigation for various countries.  

 

In this method, the ratio of GHG emissions mitigated, Gi, by the use of clean energy 

source, i, to the extra dollars invested, D, is defined as the GHG emission mitigation 

benefit, B, as shown in the following equation:  
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              (3-7) 

 

Where  

Fi
w
: FIT for the capacity bracket, w, of the source, i  

Ai : annual output for the source in gigawatt-hours (GWh)  

Ti : guaranteed payment time frame for the FIT, years 

Gi
G
 : annual GHG emission from the grid, Kg CO2-eq/year,  

Gi
R
:annual GHG emissions of the clean power source, Kg CO2-eq/year 
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As a result, equation (3-7) can be simplified into the following expression:  
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                       (3-8) 

 

The simplified equation (3-8) is the formula employed in this research to characterize 

and benchmark the mitigation effect of greenhouse gas emissions by implementing 

FITs in various countries. 

 

From equation (3-8), once the FITs are assessed and values for B are calculated, the 

use of a schematic diagram simplifies the process of benchmarking and allows for a 

quick understanding of the strength and potential emissions benefits of FITs, which 

could be used to facilitate the benchmarking of the strength of FITs of various 

countries and provide a rapid decision support tool for clean energy applications in 

different global regions for greenhouse gas emission mitigation.  

 

3.5 Levelized Energy Cost analysis of Solar PV, Wind and Fuel Cell 

 

As the cost of solar PV is currently much higher than conventional grid power 

generation, the analysis of such economic parameter as Levelized Energy Cost (LEC) 

will provide references to decision makers with the minimum price at which energy 

must be sold for an energy project to break even. U.S. EIA reported the estimated 

levelized cost of new power generation resources by 2016 [US EIA 2011] By EIA’s 

report, the LEC of solar PV (0.211 $/kWh) will be still much higher than conventional 
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coal (0.095 $/kWh) by 2016. In order for us to provide a comprehensive investigation 

on the application potential of solar PV in the future, the LEC analysis is also 

discussed in this research.  

 

Levelized energy cost (LEC, also called Levelized Cost of Energy or LCOE) is a cost 

of generating energy (usually electricity) for a particular system. LEC can be 

calculated as the ration between the lifecycle cost and the lifetime energy production 

[Darling 2011]. It is an economic assessment of the cost the energy-generating system 

including all the costs over its lifetime: initial investment (overnight capital cost), 

fixed operations and maintenance (O&M), variable O&M. In this study, the levelized 

cost of solar PV is calculated over an assumed 25 years lifetime. It can be defined in 

the following equation: 

 

* *
100 ( )

i i i i

o fOMi

vOM

C P C P
LEC C

E


                (3-9) 

Where:  

LEC: Average lifetime levelized electricity generation cost, cents/kWh 

i

oC  : Investment expenditures, Overnight capital cost, $/kW 

i

fOMC : Fixed operations and maintenance, $/kW 

i

vOMC : Variable O&M expenditures, $/kWh 

P
i
: Rated power of the power system, kW 

E: Total electricity generated, kWh 
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3.6 Cost Benefit Analysis 

 

Using clean energy technologies for GHG emission mitigation in automotive 

manufacturing industry requires complex decision-making processes. Due to the fact 

that CO2 has a long persistence time in the atmosphere, the CO2 emission is a global 

issue no matter where it is generated. As a result, the automotive manufacturing 

industry needs to seek economical solutions to reduce their CO2 emissions from their 

global manufacturing facilities, which requires the selection of appropriate clean 

energy technologies and the identification of the ideal geographical location of a 

specific manufacturing facility for the clean energy deployment.  

 

Considering the major factors of industrial concerns on the application of clean 

energy systems in automotive manufacturing, the application potential of various 

clean energy technologies can be quantitatively assessed based on a cost benefit 

analysis. In this study, solar PV, wind and fuel cells are selected for analyzing and 

benchmarking their application potentials using a cost benefit analysis approach. The 

cost is the economic cost of the clean energy systems, and the benefit is the amount of 

the GHGs reduced.  

 

Regarding economic costs of clean energy power systems, there are different 

economic parameters used for describing the costs of different clean energy 

technologies. Commonly used economic costs data for clean energy systems are 
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overnight cost, fixed operating and maintenance (fixed O&M) cost, variable operating 

and maintenance (variable O&M) cost, etc [US EIA 2010]. The overnight costs are 

the cost estimates to build a plant in a typical region of the country [US EIA 2010]; 

operating and maintenance costs are those costs associated with operations and 

maintenance of clean power systems during their service life, with some costs fixed 

and some varying. For different products in the clean energy power market, the 

overnight cost and the cost for operation and maintenance of the same type of power 

system may be different, but the difference become more and more negligible due to 

the globalization of the clean energy market.  In general, the total cost of the virtual 

clean energy power system can be expressed by the following equation: 

 

( )i i i i i i

T o fOM vOMC P C C E C                        (3-10) 

Where 

i

TC : total cost of i
th

 clean energy power system in US$, 

iP : rated power of the i
th

 clean energy power system in kW, 

i

oC : overnight cost of the i
th

 clean energy power system, in US $/kW, 

i

fOMC : fix operating & maintenance cost of the i
th

 clean system, in US $/kW, 

i

vOMC : variable operating & maintenance cost of the i
th

 clean system, $/kWh, 

iE : The total electricity output during the life time of the i
th 

clean energy power 

system, in kWh. 
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Using the economic cost metric in equation (3-10), a mathematical model based on 

conventional cost benefit approach can be developed for assessing the application 

potential of clean energy stationary power supply for GHG mitigations from 

automotive and similar manufacturing systems at different global locations. Here the 

model is developed with an aim to provide a simplified mathematical approach for the 

interested industry to support the decision-making and strategy-planning during the 

early stage of project assessment, budget-planning and goal definition for GHG 

mitigation from their global production facilities.  

 

In this mathematic model, the benefit is defined as the amount of GHGs which can be 

reduced based on certain amount of economic input. From the perspective of applied 

industrial economics, the cost associated with the selected clean energy supply pattern 

should be minimal to achieve a pre-defined strategic goal of GHG reduction, or the 

reduced amount of GHG should be maximal based on a fixed amount of economic 

cost input. In this cost benefit model, all kinds of GHG emissions from electricity 

generations and supply are considered, including CO2, CH4, N2O, etc. The GHG 

emissions are characterized as the total amount of CO2 equivalent. Those non-CO2 

emissions are transformed into CO2 equivalent through their IPCC global warming 

potential (GWP) metric [IPCC 2007]. In this model, the conversion of D.C. power 

output from the clean energy power systems to conventional A.C. power supply is 

also considered in the actual power output.  Overall operating efficiency of each 

clean energy power system corresponding to local geographical and environmental 
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conditions is also considered in the analysis. The mathematical expression of the cost 

benefit model is shown in the following: 

  
( )

( ) ( )

local i i i

Ni Fi i Vi i i

E E A T
G

C C A C T A

  


    
            (3-11) 

Where, G: the amount of GHG reduction (ton/$1,000) 

Elocal: emission factor of GHGs from local grid power supply (kg/kWh) 

Ei: the life cycle GHG emissions of clean energy i (kg/kWh) 

Ai: total installed capacity of clean energy power system i 

Ti: operational life time of clean power system i (h) 

CNi: overnight cost of clean power system i ($/kW) 

Cvi: variable O&M cost of clean power system i ($/kWh) 

CFi: fixed O&M cost of clean power system i ($/kWh) 

 

Using equation (3-11), the amount of GHG reduction per unit cost investment can be 

quantitatively determined for each clean energy technology corresponding to a specific 

location of manufacturing facilities in the global scale. With the same scale of 

measurement, the cost benefit performance can be benchmarked between different 

clean energy power systems to identify the best pattern of clean energy supply for a 

specific location of manufacturing facility.   

 

3.7Sensitivity Analysis 
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The mathematical methodology developed in this study involves quite a few 

parameters, including both meteorological and economic parameters. The sensitivity 

analysis helps with ordering the importance of strength of and relevance of the inputs, 

namely the geographic and economic parameters, in determining the variation in the 

outputs. The sensitivity analysis is essential to build quality assurance for the model. 

 

Sensitivity analysis (SA) is the study of how the uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input [Saltelli 2008]. In more general terms uncertainty and sensitivity analysis 

investigate the robustness of a study. Sensitivity analysis can be useful for a range of 

purposes [Pannell 1997], including: Support decision making or the development of 

recommendations for decision makers (e.g. testing the robustness of a result); 

Enhancing communication from modelers to decision makers (e.g. by making 

recommendations more credible, understandable, compelling or persuasive); 

Increased understanding or quantification of the system (e.g. understanding 

relationships between input and output variables); etc.  

 

In this study the Pearson Correlation method is selected to evaluate the sensitivities of 

the inputs. In statistics, the Pearson product-moment correlation coefficient is a 

measure of the correlation (linear dependence) between two variables X and Y, giving 

a value between +1 and −1 inclusive. It is widely used in the sciences as a measure of 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Correlation
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the strength of linear dependence between two variables [Rodgers 1988, Stigler 

1989].  

 

Pearson's correlation coefficient when applied to a population is commonly represented 

by the Greek letter ρ and may be referred to as the population correlation coefficient or 

the population Pearson correlation coefficient. The formula for ρ is expressed by the 

following equation [Rodgers 1988, Stigler 1989]: 

 

[( )( )]cov( , ) X Y
XY

X Y X Y

E X YX Y  


   

 
 

             (3-12)

 

 

Where  

XY : Pearson’s correlation coefficient 

X : Input variable 

Y  : Output variable 

X : Standard deviation of X 

   Y : Standard deviation of Y 

X : Expectation value of X 

Y : Expectation value of Y 
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Pearson's correlation coefficient when applied to a sample is commonly represented by 

the letter r and may be referred to as the sample correlation coefficient or the sample 

Pearson correlation coefficient. A formula can be obtained for r by substituting 

estimates of the covariances and variances based on a sample into the formula above. 

That formula for r is [Rodgers 1988, Stigler 1989]: 

 

1

2 2

1 1

( )( )

( ) ( )

n

i ii

n n

i ii i

X X Y Y
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X X Y Y



 

 


 



 
                (3-13)

 

 

 

Where 

  iX : Input variable 

X : Expectation value of X 

Y : Output varialbe 

Y : Expectation value of Y 

 

The correlation coefficient is dimensionless number; it has no units of measurement. 

The correlation coefficient has the following characteristics: 

(1) -1 ≤ r ≤ 1;  

(2) The value r=1 and r=-1 occur when there is an exact linear relationship between x 

and y. 

(3) If y tends to increase in magnitude as x increases, r is greater than 0, x and y are said 

http://en.wikipedia.org/wiki/Statistical_sample
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to be positively correlated. (r >0) 

(4) If y decreases as x increases, r is less than 0 and the two variables are negatively 

correlated. (r <0) 

(5) If r=0, there is no linear relationship between x and y and the variables are 

uncorrelated. (r =0) 
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CHAPTER4 APPLICATION POTENTIAL ANALYSIS OF SOLAR 

PV, WIND AND FUEL CELLS FOR GLOBAL AUTOMOTIVE 

MANUFACTURING INDUSTRY’S SUSTAINABILITY 

IMPROVEMENT (A CASE STUDY) 

 

4.1 Introduction 

 

As discussed in the above chapters, the energy demand of automotive manufacturing 

is significant [Yuan 2006]. As estimated, the manufacture of a typical vehicle requires 

approximately 120 Giga Joules of energy input [Maclean 1998]. Electricity is one of 

the major types of energy supply for automotive manufacturing. Greenhouse Gases 

(GHGs) are generated in the process of automotive manufacturing. Greenhouse Gas 

Emissions are generated from both the direct on-site consumption of fossil fuel energy 

and indirectly from consumption of purchased electricity.  

 

Aware of the significance of global warming resulting from GHG emissions into the 

atmosphere, the global automotive industry has worked intensively to reduce the 

GHG emissions from their production facilities as well as manufacturing processes. 

For instance, the Alliance of Automobile Manufacturers (AAM), formed by such 

major global automotive manufacturers as GM, Ford, Chrysler, Toyota, Mitsubishi, 

Mercedes, Porsche, Volkswagen, Volvo, and Jaguar, committed to achieve a 10% 

reduction in greenhouse gas emissions per number of vehicles produced from their 
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U.S. automotive manufacturing facilities by 2012 measured from a base year of 2002 

[US DOE 2007]. By the previous statistics, during the time period between 2002 and 

2005, the AAM members have already reduced the GHG emissions intensity of their 

U.S. facilities, measured as CO2 emissions per number of vehicles produced, by 

nearly 3% [US DOE 2007].  

 

The General Motors Company, as one of the leading global automotive manufacturers, 

in 2007, consumed a total of 5.543 × 10
16

 Joules energy in its U.S. facilities, which 

included 2.149 × 10
16

 Joules of energy supply from purchased electricity [GM 2008]. 

The total energy consumption of GM generated 6.263 million metric tons of CO2 

emissions, which included 4.359 million metric tons’ portion from purchased 

electricity [GM 2008]. In reducing the GHG emissions, GM has implemented energy 

efficiency improvement efforts and conversions to lower GHG emitting fuels such as 

switching from coal to natural gas for the operation of boilers [GM 2008]. In statistics, 

GM facilities have participated in a total of 1753 improvement projects from 

1991–2007, which led to a total reduction of GHG emissions of over 17 million 

metric tons CO2 equivalent [GM 2008]. Through such efforts, GM has significantly 

improved the capacity utilization of its facilities operations. In terms of the CO2 

emission intensity of its facilities in the United States, GM has decreased its CO2 

emission per vehicle built from 2.71 metric tons per vehicle in 1990 to 2.2 metric tons 

per vehicle in 2007 [GM 2008]. However, despite such significant efforts in GHG 

mitigation, the total CO2 emissions from GM’s U.S. facilities still stand at over 6.0 

million metric tons each year, due to the large volume of production [GM 2008].  
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The current issue is that further reduction of GHG emissions from GM’s production 

facilities is difficult since approximately 70% of the total energy consumption is from 

purchased electricity, as shown in Figure 4.1 [GM 2008].  

 

 

Figure 4.1 GM’s Total energy usage for U.S. operations 1990-2007 [Data Source: 

GM 2008] 

 

 

As the current electricity supply relies heavily on fossil fuel energy sources, further 

reduction of GHG emissions could be possibly achieved by using clean energy 

supplies to partially replace the current grid power supply of automotive production 

facilities, since the GHG emission intensity of clean energy technologies are much 
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less than that of grid power supply [Yuan 2009]. In order to aid the global automotive 

industry in understanding the potential application of clean energy technologies in 

reducing the GHG facility emissions, a quantitative study is conducted in this in 

cooperation with the General Motors Company on assessing the potential application 

of clean energy power systems in the efforts of GHG emission mitigation from the 

production facilities of global automotive manufacturers. 

 

There are quite a few clean energy technologies for power generation available on the 

commercial market. Considering the specificity and requirements of automotive 

production facilities as well as the maturity and adaptability of the various clean 

energy technologies, three such clean energy power systems, namely solar PV, wind 

and fuel cells have good potential in stationary power supply and GHG emission 

reduction for automotive manufacturing industry [Yuan 2009]. In this study, a number 

of representative power systems are selected based on these three clean energy 

technologies to assess their potential application in GHGs mitigation at automotive 

manufacturing facilities located at different global geographic locations. 

 

As a result of economic globalization, the production facilities of major global 

automotive manufactures are spread all over the world, with very different 

geographical conditions and power supply situations. For instance, GM as a leading 

global automotive manufacturer has its production facilities in 31 countries and has its 

business operations in 157 countries throughout the world [GM 2010]. In this study, 
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six representative locations are selected from GM’s major global production facility 

list to represent the six different regions of the world. These locations include Detroit 

(United States), Mexico City (Mexico), Sao Paulo (Brazil), Shanghai (China), Cairo 

(Egypt) and Bochum (Germany), as shown in Figure 4.2 below: 

 

 

Figure 4.2 Six selected geographical locations of GM production facilities. 

 

In this study, the application potential of using the three clean energy technologies, 

namely solar PV, wind, and fuel cells, was quantitatively assessed for their 

application in reducing the GHG emissions of automotive manufacturing facilities. 

The application potential analysis results are objected for providing decision support 

of global automotive manufacturers in considering the appropriate clean energy 
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technologies and optimizing the GHG mitigation performance of the same economic 

investment. 

The three clean energy technologies are benchmarked on their technology aspects, 

application potential (in terms of economic costs of GHG reduction) in the six 

selected global locations, possible reduction range of GHG emission reduction in the 

selected countries as well as the cost benefit distribution in the US lower 48 states.  

The analyses results presented in this study will be useful in providing detailed 

quantitative information, integrating the technology characteristics of clean energy 

power systems and geographical differences of local power generation and supply 

conditions, for robust decision support in GHG emission mitigation by the global 

automotive and similar manufacturing industries with large amount of production 

volume.  

 

Here details are presented on using the developed mathematical models to analyze the 

representative solar PV, wind and fuel cells stationary power systems for GHGs 

mitigation from GM’s global automotive manufacturing facilities at the six selected 

representative locations, namely Detroit (United States), Mexico City (Mexico), Sao 

Paulo (Brazil), Shanghai (China), Cairo (Egypt) and Bochum (Germany). With the 

case study, the application potential of each clean energy technology at each location 

is quantitatively determined and benchmarked, aiming to provide decision support in 

the early stage of strategic-planning and priority-setting for employing clean energy 

supply in automotive and similar global manufacturing industry.  
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4.2 Data Collection 

 

In this study, the meteorological data and the technical data are mainly collected from 

the public resources, such as publications and major credible online resources. Here 

the data collected for applying the mathematical model are briefly introduced in the 

following section. 

   

4.2.1 Meteorological data Collection 

 

The monthly averaged amount of the total solar radiation incident on a horizontal 

surface at the surface of the earth for a given month, averaged for that month over the 

22-year period (Jul 1983 - Jun 2005) is evaluated as the numerical average of 3-hourly 

values for the given month [NASA 2008]. The monthly averaged air temperature for a 

given month is averaged for that month over the 22-year period (Jan 1983 - Dec 2004). 

Temperature values are for 10 meters above the surface of the earth. Each monthly 

averaged value is evaluated as the numerical average of 3-hourly values for the given 

month [NASA 2005]. The monthly average wind speed for a given month, averaged 

for that month over the 10-year period (July 1983 - June 1993). Wind speed values are 

for 50 meters above the surface of the earth. Each monthly averaged value is 

evaluated as the numerical average of 3-hourly values for the given month [NASA 

2005]. The collected meteorological data are presented in table 4.1. 
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Detroit 

Mexico 

City 

Sao 

Paulo 
Shanghai Cairo Bochum 

Latitude 42 19 -23 31 30 51 

Longitude -83 -100 -46 121 31 7 

Altitude(m) 180 2700 640 7 20 120 

Insolation, 

(kWh/m²/day) 
3.48  5.18  4.55  3.87  5.29  2.70  

Temperature, (°C) 9.19  16.47  21.47  15.56  21.04  9.54  

Wind speed (m/s) 5.61  3.74  3.99  5.59  4.76  6.63  

Table 4.1 Meteorological Data of Six Global Locations [NASA 2005, 2008] 

 

4.2.2 Economic and environmental data of the representative clean energy technologies 

 

On the global commercial market, there are a variety of clean energy technologies 

available for power generations and supply. These different products have different 

technical specifications which can lead to different power output and different cost 

benefit in the same application scenario. In order to make the analysis results 

comprehensive and representative, in this case study a number of the most popular 

clean energy power systems are selected and their average technical specifications are 

used as representative specifications of current technologies on the commercial 

market.  

 

In this study, a total of five multi-crystalline silicon solar PV modules are selected, 

which are the top five modules in terms of both production volume and installed 
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capacity in the world [REW 2011]. The technical characteristics are shown in Table 

4.2. For wind power system, four wind turbines at 1.5 Mega-watt are selected, 

including GE 1.5XLE, Sinovel SL1500/77, Suzlon S82 1.5MW and Nordex S77 

1.5MW, as shown in Table 4.3. These four wind power systems have the largest 

installation capacity throughout the world [MWPS 2010].  

 

Solar PV Module Manufacturer 
Rated 

Power (W) 
Eff. (%) 

Surface 

Area 

(m
2
) 

Suntech STP210-18/Ud Suntech 210 14.30 1.47 

Sharp ND-224uC1 Sharp 224 13.74 1.63 

Qcells Q.BPPARROSOE 

225 
Q-Cells 225 17.00 1.67 

YL 210 P26b/1495x990 Yingli Solar 210 14.20 1.48 

Trina Solar TSM-PC05 Trina Solar 230 14.70 1.64 

Table 4.2 Selected Solar PV Modules for Power Supply in Automotive 

Manufacturing [Zhai 2011] 

 

 

 

Manufacturer 

Rated 

Capacity(kW) 

Rotor 

Diameter(m) 

Swep 

Area(m2) 

Hub 

Height(m) 

GE 1.5XLE GE 1500 82.5 5346.00 80 

SL1500/77 Sinovel 1500 77.4 4705.13 82 

S82 1.5MW Suzlon 1500 82 5281.02 78 

S77 1.5MW Nordex 1500 77 4656.63 80 

Mean 

  

79.73 4992.05 80 

Table 4.3 Selected wind turbine systems [Zhai 2011] 
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In current stage, fuel cells are mainly developed as mobile energy sources for 

transportation applications. For stationary power generations, there are only a few 

models available in the United States. In this analysis, two fuel cells stationary power 

systems are selected, with one system using hydrogen fuel, the other one using natural 

gas. The selected fuel cell power systems are Nedstack PS100 (Hydrogen, rated at 

100 KW) and UTC Purecell200 (natural gas, rated at 200 KW), respectively, as 

shown in Table 4.4. 

 

Stationary  

Fuel Cells 
Manufacturer Fuel Type 

Rated Power  

(kW) 

PureCell 200 UTC Power Natural gas 200 

Nedstack PS100 Nedstack Hydrogen 100 

Table 4.4 Selected fuel cell stationary power system for electricity generation [Zhai 

2011] 

 

The economic costs of the selected clean technologies are shown in Table 4.5. The 

economic costs of these clean energy systems are compiled in 2010 by U.S. EIA [US 

EIA 2010]. The LCA GHGs emission factors of these clean power systems are 

collected from literature, as shown in Table 4.5. The data demonstrates that among 

these four clean energy power systems, wind has the lowest overnight cost and lowest 

life cycle GHG emission factor, while solar PV and fuel cell power systems are much 

more expensive in the system deployment and have much higher GHG emission 

factors due to their complex system structure and deployment processes. The emission 
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factors of US, Mexico, Brazil, China, Egypt and Germany are 680, 594, 93, 845, 437, 

542 g CO2eq /kWh [US EIA 2007], as shown in Table 4.6. 

 

Clean energy 

Overnight 

Cost 

($/kW) 

Fixed O &M 

Cost ($/kW) 

Variable 

O&M 

Cost ($/kWh) 

Life cycle 

GHG emission 

factor 

Solar PV 46971 25.73
1
 0.00

1
 72.42

 

Wind 2409
1
 27.73

1
 0.00

1
 10.843

 

Fuel Cells (N) 6752
1
 345.8

1
 0.00

1
 6834

 

Fuel Cells(H) 10735
6
 2147

6
 0.00

6
 835

 

Table 4.5 Economic and environmental data of the representative clean energy 

technologies 

1 
Multicrystalline Si Solar PV, onshore wind and natural gas based fuel cells, costs 

data from reference [US EIA 2011] 

2
 Multicrystalline Si Solar Cell, LCA result from reference [Pehnt 2006] 

3
1.5MW onshore wind Turbine, LCA result from reference [Pehnt 2006] 

4
 Stationary Fuel Cell (natural gas), LCA result from reference [Jaap 2006] 

5
Stationary Fuel Cell (hydrogen), LCA result from reference [Viebahn 2003] 

6
The cost data for hydrogen PEM fuel cells, from reference [Gerboni 2011] 

 

Region 
Emission Inventory (g/kWh) 

CO2 CH4 N2O CO2eq 
3
 

USA 
1
 676 0.01815 0.01053 680 

Mexico 
2
 593 0.01676 0.00230 594 

Brazil 
2
 93 0.00251 0.00106 93 

China 
2
 839 0.01458 0.01841 845 

Egypt 
2
 436 0.01365 0.00177 437 

Germany 
2
 539 0.00637 0.00779 542 

Table 4.6 GHG emission factors of local grid power supply. 

1
 The U.S. electricity emission factors are from reference [US EIA 2007].  
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2
The international electricity emission factors are from reference [US EIA 2007]. 

3
The CO2eq are calculated based on the GWP values from reference [IPCC 2010]. 

 

 

 

4.3 Technological Feasibility Analysis 

 

Before the conduction of cost benefit analysis, each selected clean energy power 

technology is investigated technically. Using equation (3-1), the technical feasibility 

of each individual clean energy system is analyzed for the six selected global 

locations. With substituting the collected life cycle GHG emission factors into 

equation (3-1), the feasibility of each clean energy power system for GHG mitigation 

at each of these six selected locations are quantitatively investigated. The calculated 

results are shown in Figure 4.3 below.  

 

 

Figure 4.3 Feasibility analyses of clean energy technologies at the six selected global 

locations 
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Figure 4.3 demonstrates that solar PV, wind, and hydrogen-based fuel cell 

technologies all have certain potentials for practical applications as clean energy 

supply for GHG mitigations at all these six locations, while the natural gas-based fuel 

cell power system is only technically feasible in Shanghai (China) because of the high 

local GHG emission factor from the conventional grid (845 g CO2.eq/kwh). 

 

Among all these six locations, wind energy has the highest potential in terms of 

absolute amount of GHG mitigation when compared with the other clean power 

systems. Solar PV and hydrogen-based fuel cell power systems are roughly at the 

same level because of the small differences of the life cycle GHG emission factors 

from the two power systems. The results in Figure 4.3 also demonstrate that, per unit 

amount of power generation, wind power system in Shanghai (China) has the 

potential to reduce as high as 834 g CO2 eq per kWh of electricity consumed, five 

times more than the reduction from natural-gas-based fuel cell power system at the 

same location. But for the actual GHG mitigation effects, it also depends on the actual 

power system outputs which rely on local geographic conditions for solar PV and 

wind technologies, which will be demonstrated in the following cost benefit analysis. 

 

4.4 Capacity Factor 

 

Although the energy density information can serve as the basic indicator of the 

application potential of clean energy power systems, further analyses are needed to 
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understand more about the practical implementation of these clean energy power 

systems in different geographical locations. For solar and wind energy, the capacity 

factor, a meaningful metric is employed to assess their actual application potential in a 

specific geographic location, to assess the performance of the clean energy systems at 

the selected locations.  

 

As discussed in the above chapter, the capacity factor is defined as the ratio between 

the actual power output and the total rated power of the system available for the 

power generations. The calculated capacity factors for solar PV and wind power 

systems at the six selected geographical locations are shown in Figure 4.5. The actual 

power output for solar PV system is calculated by multiplying the local annual solar 

insolation, the module area, module numbers, module efficiency and the DC to AC 

conversion efficiency. The actual power output for wind turbine system is calculated 

by substituting the actual wind speed at hub height into the interpolated wind power 

curve.  

 

The actual power output for wind turbines is calculated by applying the power curve 

of the wind turbine model. The power curve of each model of wind turbine is fitted by 

the power output values at different wind speeds supplied by the wind turbine 

manufacturer. The interpolated power curves of the selected wind turbines are 

presented in Figure 4.4. 
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Figure 4.4 Interpolated Power Curves of selected wind turbines 

 

The results in Figure 4.5 demonstrate that for current solar PV power systems, the 

actual capacity factors are all below 20% at these six selected locations; while the 

capacity factor of wind can reach up to 47% at these selected locations, depending on 

the local wind energy resources. Figure 4.5 indicates that Cairo has the largest 

capacity factor for solar PV at 17.98%, followed by Mexico City (17.62%) and Sao 

Paulo (15.48%). The capacity factors for solar PV in Shanghai, Detroit and Bochum 
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are 13.15%, 11.84% and 9.19%, respectively. From the comparison of the capacity 

factors at the six locations, it can be concluded that Cairo has the largest technical 

potential, followed by Mexico City, Sao Paulo, Shanghai, Detroit and Bochum. 

 

 

Figure 4.5 Capacity factors of solar PV and wind power systems at the six selected 

locations. 

 

For wind power systems, Figure 4.5 demonstrates that Bochum has the largest wind 

capacity factor at 47.24%, followed by Shanghai (28.09%), Detroit (28.42%), Cairo 

(15.97%), Sao Paulo (6.48%) and Mexico City (3.39%). For the Equation used in 

capacity factor calculations, the rated power is used as the denominator, which means 

for the same amount of rated power, the larger the output power is, the larger the 
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capacity factor will be. For a wind turbine, as discussed in the above chapters, the 

input power can be simply estimated by the following equation: 

 

Swi ADP    

 

The above equation indicates that the larger the wind power density, the larger the 

input power. Obviously, for two wind turbines with the same efficiency, the output 

power is positively correlated with the input power under the wind speed conditions 

before the rated power is reached. From this point of view, the geographical locations 

with a high wind power density can lead to a large power output of a wind turbine and 

accordingly produce a large capacity factor. In the energy density analysis, the results 

demonstrate that Bochum has the highest wind power density, followed by Shanghai, 

Detroit, Cairo, Sao Paulo and Mexico City.  

 

4.5 Strength Analysis of International Feed-in Tariff Promotion of Clean Energy 

Applications for Greenhouse Gas Emission Mitigation 

 

In this dissertation, a case study with comparison of FITs and their potential 

mitigation effect on the greenhouse gas emissions for the selected seven countries, 

including United States (US), Germany (DE), South Africa (SA), China (CH), Italy 

(IT), Iran (IR), and South Korea (SK). The selection of these seven countries is not 

exactly the same as the selection of the countries in other sections of this chapter, 
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which is because of the lack of data. However, these countries were chosen in such 

that they provide a broad representation of the global geography. The greenhouse gas 

emission data of these countries are collected from various public sources [WEC 2004] 

[US EIA 2002, 2009].   

 

This study is conducted in collaboration with General Motors (GM) with the purpose 

of understanding the role of FIT incentive policies in the mitigation of GHG 

emissions and partially to provide decision feedback for policy-makers on such 

incentive programs in the international world. 

 

Due to the differences in energy structure and economic pattern of each country, the 

FITs adopted by different countries are different. As a result, the strengths of FITs in 

promoting the application of clean energy power technologies are different from 

different countries. Since greenhouse gas emissions are global issues, the generated 

amounts from different countries of the world finally contribute to the same global 

warming problem. In this research, the strength of international FITs in promotion of 

clean energy applications is analyzed in different regions of the world. The following 

seven countries are selected as representative of each region: including United States 

(US), Germany (DE), South Africa (SA), China (CH), Italy (IT), Iran (IR), and South 

Korea (SK). A simple mathematic method is developed and implemented on the FITs 

of these seven countries for characterizing and benchmarking the strength of their FIT 
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incentives in promoting the applications of solar and wind clean energy technologies 

for reducing greenhouse gas emissions from power industry. 

 

In order to demonstrate the evolvement and improve the understanding of FITs which 

are proposed and implemented in the world, in this section the FITs of Germany and 

United States are described in details as two examples of the seven countries. 

 

Feed-in tariffs in Germany was first officially introduced on January 1, 1991 when the 

so called ‘Electricity Feed Law’ (EFL) went into effect. By the regulation of the EFL, 

the grid companies purchase renewable electricity from eligible sources and pay the 

producers concerned an annually fixed feed-in tariff [Haas 2001]. For solar and wind 

generated power, the tariff was set at 90 percent of the average electricity utility rate 

per kWh of all final consumers charged over the last but one calendar year [Haas 

2001]. In April 2000, EFL was revised and replaced by ‘Renewable Energies Law’ 

(REL); by REL, the purchase and price of electricity generated in the territory of the 

Federal Republic of Germany was regulated, from specified renewable sources (i.e. 

hydropower, wind energy, solar energy, landfill gas, sewage gas, and biomass) [Haas 

2001]. From 2000 to 2008, the renewable energy generated power in Germany 

increased from 6.3% to 15%, in the electricity mix [Haas 2001]. 

 

The FIT situation in the United States is a little different from Germany. During the 

past decade, renewable energy policy has made great progress in the US, but mainly 
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at the state level. There are currently 26 states with mandatory renewable portfolio 

standards (RPS) in the United States [Rickerson 2008]. Another six states have 

established non-binding renewable energy goals. US federal policy makers are 

looking at new ways to accelerate renewable energy development so that US can meet 

increasingly aggressive environmental and economic development goals [Rickerson 

2008]. Among the emerging policy mechanisms that are particularly being considered 

are feed-in tariffs [Rickerson 2008].  

 

Besides Germany and United States, Feed-in Tariffs have also been successfully 

implemented in the other five countries including Italy, South Korea, China, Iran and 

South Africa in 1992, 2003, 2005, 2009 and 2009, respectively [Rickerson 2008].  

 

So far, the FITs proposed and implemented in different countries are totally different. 

The strength of FITs in promoting application of clean energy systems in each country 

is also very different. As a result, the mitigation effect of greenhouse gas emissions 

from power industry using solar and wind such clean energy technologies are different 

from country to country.  

 

4.5.1 FIT data by countries 

 

In the practice, different countries employ different FIT incentives for wind and solar 

clean energies. In order to assess their strength in mitigating the greenhouse gas 
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emissions by promoting clean energy applications in power production industry, the 

FIT data for the selected seven countries are collected first as a database to perform 

strength analysis using equation (3-8). The collected FIT data for solar and wind (all 

converted to USD/KWh) are shown in table 4.7 below. The detailed description for 

data collection of each country is provided in the section below.  

 

Region 

Tariff(USD/KWh) 

Wind Solar 

U.S. 0.25 0.5 

Germany 0.1251 0.4486 

Italy 0.40779 0.67965 

Korea 0.115707 0.448569 

China 0.07735 0.297 

South Africa 0.160943 0.270384 

Iran 0.12661 0.12661 

Table 4.7 Comparison of Different FITs by Countries [Gipe 2010] [Zhai 2010] 

 

The FITs data are from [Gipe 2010]. For the U.S, since there is no federal FIT 

available, FIT of Michigan is selected as a reference, where the automotive 

manufacturing center, Detroit is located. For China, the Solar PV tariff of Jiangsu 

province is selected as a reference. Among the tariffs of both PV and wind, the tariff 

of larger capacity is chosen as reference, since a positive increasing of PV and wind 
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capacities is expected in the future. For Germany, the on-land, 20 year data are 

selected for wind and rooftop (>1000MWh) for solar PV. For Iran, the tariffs for all 

renewables are the same, from which the peak and medium load data are selected as 

reference. For Italy, the >1000 MWh/yr for solar PV and <100KW for wind are 

selected. For South Korea, >3KW for solar PV is selected, and there is only one tariff 

for wind models. For South Africa, the FIT of concentrating solar is selected as 

representative of solar PV, and there is only one tariff for all wind models. 

 

4.5.2 Comparison of the GHG emissions reduction by Solar PV and Wind 

 

In the mathematic equation (3-8), the numerator of the equation is the difference of 

greenhouse gas emissions between the grid power and clean energy power system 

(solar and wind) on the same functional unit base. As discussed in previous section, 

clean energy power systems are quite clean in their usage phase but not in other life 

cycle stages. In consideration of the greenhouse gas emissions from solar and wind 

power systems, their life cycle emissions should be used in order to conduct a 

comprehensive assessment.  

 

Here the greenhouse gas emission factors of grid power are collected, in the unit of 

metric tons CO2 equivalent per Mega-watt-hours, for the selected seven countries, as 

shown in table 4.8 below [WEC 2004]. For easy comparison, the life cycle emission 
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inventory of greenhouse gas for solar and wind clean energy power systems are also 

collected on the same unit and shown in table 4.5 [WEC 2004].  

 

By comparing the differences between the greenhouse gas emissions factors of grid 

power and clean energy (solar and wind) systems, the amount of greenhouse gas 

emission which could be mitigated by applying FITs in the selected seven countries 

can be quantitatively determined and compared, based on the collected data.  

 

Region 

Greenhouse gas emission factors 

(metric tons CO2 eq/MWh) 

Grid Power Wind Solar 

U.S.  
0.6795917 0.0124 0.0125 

Germany 0.5414807 0.0069 0.051 

Italy 0.5264159 0.0124 0.051 

Korea 0.4949416 0.0124 0.051 

China  0.8448507 0.0124 0.051 

South Africa 0.9158722 0.0124 0.051 

Iran 0.5995309 0.0124 0.051 

Table 4.8 Greenhouse gas emission factors of the seven countries for FIT analysis 

[Data source: WEC 2004] 

Note: the solar GHG emission factors of Korea, China, South Africa, and Iran are estimated as the 

same with that of Germany; the wind GHG emission factors of Italy, Korea, China, South Africa 

and Iran are taken the ECLIPSE, onshore data from [WEC 2004]. 

 



76 
 

 

Figure 4.6 GHG emission mitigations through Solar PV and wind by countries 

 

The results from Figure 4.6 indicate that the greatest reduction in greenhouse gas 

emissions per Mega-watt-hour clean energy generated under FIT incentive is in South 

Africa, next in China, followed by United States, Iran, Germany, Italy and Korea. 

When the same FIT applies, the greatest benefits from greenhouse gas emission 

mitigation using clean energy power system would be in South Africa and China 

these two countries. 

 

The reason behind the phenomenon is that fossil fuel is the major energy source of 

South Africa and China. Approximately 88% of energy in South Africa [South 

Africa.info 2011] and 70% of energy in China are supplied by coals. While in South 

Korea, coal only produces approximately 24% of total energy [US EIA 2010], even 
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less than half of that of U.S. which is about 49% in the energy supply structure [US 

EIA 2006]. 

 

4.5.3 Calculating the strength of FITs in greenhouse gas emission mitigation 

 

With the FIT data collected and the amount of the greenhouse gas emission mitigation 

computed on a unit basis, the strength of FITs in promoting the applications of clean 

energy power systems for reducing greenhouse gas emissions can be directly 

calculated from current energy production and supply industry. 

 

The strength of FIT incentives in mitigating greenhouse gas emissions in each country, 

are calculated for solar and wind clean power systems separately. To facilitate 

understanding of the plot and benchmarking of the results, the calculated greenhouse 

gas emission mitigation benefits are presented together with the FITs for solar and 

wind, respectively. 

 

Figure 4.7 below shows the FITs and emission benefits of solar PV for the selected 

seven countries. The results indicate that for solar energy mitigation, Iran has the 

highest potential of mitigation to reduce the greatest amount of greenhouses gas 

emissions on the same economic incentive base among the selected seven countries. 

In the next are followed by South Africa and China, then U.S., Germany, South Korea 

and Italy. 
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Figure 4.7 FIT and emission benefit for solar PV 

 

The results reflected in Figure 4.7 are the indicator of greenhouse gas mitigation 

benefits of solar energy applications resulting from the FIT economic input. From the 

sustainable point of views, the greenhouses gas mitigation benefits are preferred to be 

as high as possible while the economic input is preferred as low as possible. For solar 

energy situation, Iran provides the smallest FIT incentive among these seven countries, 

while Italian the highest. For China and South Africa, their large amount of 

greenhouse gas emissions from grid power due to the high share of coal in energy 

structure make the absolute amount of mitigation much larger than other countries.  
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Figure 4.8 below shows the calculated results of wind FITs and greenhouse gas 

emission mitigation benefits for the selected seven countries. The results demonstrate 

that China and South Africa are the two countries which have the highest mitigation 

benefits for employing wind power based on the same amount of economic incentive 

input. This is mainly due to the fact that these two countries have an energy supply 

structure with coal sharing a very high percent of total energy production. Also, as 

demonstrated in Table 4.7 and figure 4.8, the Italian FITs for wind  power provides 

the highest guaranteed price paid among these seven countries, and it has the 

relatively lower potential benefits than the other six countries. For U.S., Germany and 

South Korea, the strength of supporting wind energy are relatively higher, so they 

have relatively lower benefit potential for greenhouse gas emission mitigation.  

 

As clean power systems are more and more widely used in global energy production 

system, there would be significant reduction of greenhouse gas emissions per unit 

energy consumption. The reduction would be particularly significant for those 

industries with direct fossil fuel consumptions.  Although the clean energy power 

systems are environmentally beneficial, their high cost in electricity generation 

hinders their wide application in both industry and society. As a result, promotion of 

clean energy power systems through certain financial incentive programs such as FIT 

in current stage is necessary and functional in the international world. 
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Figure 4.8 FIT and emission benefit for wind    

 

Due to the differences in energy structures and economic patterns of different 

countries, the FITs provide different incentives in different regions of the world. 

These different FITs have different strength in promoting the applications of clean 

energy power systems in each country in regards to mitigating the greenhouse gas 

emissions resulting from fossil fuel energy consumptions. However, greenhouse gas 

emissions are global problems due to their long residence time in the atmosphere. Any 

emission of a greenhouse gas from different regions, if in the same quantity, would 

generate the same impact on global warming. 

 

Mitigation of greenhouse gas emissions by using solar and wind such clean energy 

power systems would be significant for the sustainable improvement of industrial 
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prosperity and social progress. While from sustainable point of view, the mitigation of 

greenhouse gas emissions through the promotion of such financial incentives as FITs 

in the international world is usually preferred with the lowest cost while the highest 

reductions, no matter where the mitigation efforts are going to be implemented. The 

economic cost is normally a key decision factor in selecting the mitigation approach 

and locations, especially during the decision-making processes of those international 

business operators and global manufacturers.  

 

In this study, a mathematic method has been developed, with the support of General 

Motors Corporation, to benchmark the international clean energy incentive policies 

for the purpose of understanding the influence of such policies on the trends for 

mitigation of greenhouse gas emissions and the implementation of clean energy 

generation technologies. The FIT is but one of such mechanisms, but unlike 

renewable portfolio standards and the trading of certified carbon reductions, it 

provides incentives for direct reductions in greenhouse gas emissions through the 

implementation of clean energy sources. Using the developed analysis method and the 

schematic plot the strengths of the FITs can be easily benchmarked, as well as their 

potential for clean energy applications to reduce greenhouse gas emissions for the 

presented cases. Manufacturers can use this quantitative and graphical approach to 

facilitate the process of decision-making regarding which locations will benefit the 

most from clean power generations in terms of greenhouse gas emissions mitigation. 

Finally, a case study on FIT strength benchmarking among seven countries including 
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United States, Germany, South Africa, China, Italy, Iran, and South Korea is 

quantitatively conducted. 

 

The mathematic method developed in this research is only useful for decision support 

in reducing total greenhouse gas emissions from global perspective of views, 

particularly in the case where only a limited budget available for reducing the amount 

of greenhouse gas emissions of those global manufacturers from their production 

facilities, manufacturing systems, supply chain, etc. The results testified are only for 

solar and wind power technologies which are currently used in energy productions, 

and the technology development uncertainties are not addressed in this simple 

mathematic analysis, which could make the results quite different when taking into 

consideration the reduced cost of clean energy power generations in the future and the 

gradual change of energy supply pattern of a specific location. 

 

The seven countries selected for this study are only representatives of different 

regions, and just selected in such to characterize the differences in FITs and their 

promotion effects in employing solar and wind to reduce the carbon footprint 

resulting from grid power supply and direct fossil fuel consumptions. Due to the limit 

of data availability and the differences of clean energy technologies employed in these 

countries, the strength analysis and the benchmarking are only quantitative estimates 

of the actual effect of such international FITs. Large uncertainties might exist in the 

computed results as well as the cited data from public sources. 
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Even so, the developed mathematic model and the presented results in this study still 

provide an useful approach and preliminary data for decision support in understanding 

the differences of FITs around the world and clarifying their differences in the 

greenhouse gas emission mitigation potential through promoting the applications of 

such clean energy systems as solar PV and wind in different regions of the world. The 

analysis and results could be useful for international business operators and global 

manufacturers to locate the ideal place to maximize the reduction of greenhouse gas 

emissions with a limited budget and efforts. 

 

4.6 Levelized Energy Cost analysis of Solar PV, Wind and Fuel Cell 

 

 

The LECs are calculated by using mathematical equation (3-9). The calculation 

results of the LECs for Solar PV, Wind and Fuel Cell plants are shown as Figure 4.9. 

From the results, for wind energy, Mexico City has the largest LEC and Bochum has 

the smallest one. This result indicates that Bochum has the best economic application 

potential of wind energy, in terms of LEC indicator comparison. 
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Figure 4.9 Levelized Energy Cost for Solar PV, Wind and Fuel Cell (NG) 

 

Figure 4.9, indicates that, for solar PV, it has the smallest LEC in Cairo (16.29 

cents/kWh), followed by Mexico City (16.62 cents/kWh), Sao Paul (18.91cents/kWh), 

Shanghai (22.28 cents/kWh), Detroit (24.75 cents/kWh) and Bochum (31.86 

cents/kWh). The LEC is the minimum required price for the electricity to be retailed, 

therefore the smaller the LEC, the larger the application potential. For this 

consideration, Cairo has the largest application potential of Solar PV, followed by 

24.75 

16.62 

18.91 

22.28 

16.29 

31.86 

4.18 

66.89 

33.45 

3.72 

20.79 

2.39 

15.52 

15.52 

15.52 

15.52 

15.52 

15.52 

Detroit 

Mexico city 

Sao Paul 

Shanghai 

Cairo 

Bochum 

Levelized Energy Cost (Cents/kWh) 

Fuel Cell Wind Solar 



85 
 

Mexico City, Sao Paul, Shanghai, Detroit and Bochum. This analysis result is the 

same with the geographical and technical analysis results. 

 

4.7 Cost Benefit Analysis 

 

4.7.1 Cost Benefit Analysis in the Six Selected Global Locations 

 

In this section, the cost benefits of each clean energy supply pattern at the six selected 

locations are assessed for quantifying and benchmarking the application potential of 

the three types of clean energy technologies for GHG mitigation in global automotive 

and similar large-scale manufacturing systems. In order to quantitatively analyze the 

cost benefit of the selected clean energy systems to supply the electricity needs of 

automotive manufacturing in different geographical locations, the amounts of the 

GHG reduction are quantified individually for the solar PV, wind, natural-gas based 

fuel cells, and hydrogen-based fuel cells at the six selected locations, with the same 

amount of economic investment. As presented in the above sections, in the 

calculations, the average solar insolation data, Iave, are the statistical data collected by 

NASA on the selected geographical location during a 22-year time period (from July 

1983 to June 2005) [NASA 2008]. The representative conversion efficiency of solar 

PV modules, em=14.79%, is the average of the five efficiency values of the selected 

solar PV modules as mentioned above. A representative surface area is also calculated 

as the average of the five surface areas of the selected solar PV modules, Am=1.578 
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m
2
. The conversion efficiency from DC to AC power supply is taken as the typical 

value of 77% [NASA 2005]. 

 

As discussed in the above sections, the wind speed data for the selected geographic 

locations are the statistical data collected by NASA during a 10-year time period 

(from July 1983 to June 1993) [NASA 2005]. The selected wind turbines have an 

average rotor diameter of 79.73 m and a swept area of 4,992.05 m
2
. NASA wind 

speed data are collected only for 50m height above the ground. Considering the 

differences of wind speed at different heights above ground, in this analysis the wind 

speeds for each location are converted between these two different heights using 

equation [Simiu 1978]: 

 

0

0

( )k

z

z
v v

z
                                (2-2) 

 

In equation (2-2), the Hellman exponent value is a key parameter. The k value 

depends on the location and the shape of the terrain on the ground and the stability of 

the air [Kaltschmitt 2007]. Since large scale manufacturing facilities such as 

automotive manufacturing are all located in city areas, in this analysis, the k=0.34 

value is selected for the condition of neutral air above human inhibited areas 

[Kaltschmitt 2007]. 
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The calculated wind speeds at hub height, as well as the calculated wind power 

density are presented in Table 4.9.  

 

 
Detroit 

Mexico 

city 

Sao 

Paulo 
Shanghai Cairo Bochum 

Wind speed at hub 

height (m/s) 

6.58 4.39 4.68 6.56 5.58 7.78 

Wind power 

density (w/m
2
) 

356.36 76.50 116.59 352.08 213.01 591.78 

Table 4.9 Calculated wind speed and wind power density 

 

The two types of stationary fuel cell power systems are dependent on continuous 

supply of fuels (hydrogen and natural gas, respectively) for power generations. In 

terms of economic cost, current hydrogen-based fuel cell power systems are much 

more expensive than natural-gas-based fuel cell power systems. As demonstrated in 

Table 4.5 above, the overnight cost of hydrogen-based fuel cell power systems is 

almost double of that of natural-gas-based fuel cell system, while the operating and 

maintenance costs are more than 400 times higher due to the high-cost processes 

associated with hydrogen production and storage with current technologies.  

 

As a result, the cost benefit analysis is conducted on these clean energy supply 

patterns for each location using equation (3-11). The calculated cost benefit results, in 

terms of GHG emission reductions per $1000 cost investment on these clean energy 

systems at the six selected locations are shown in Figure 4.10 below. The analysis 

results demonstrate that among these clean energy technologies; wind energy has the 
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highest cost benefit performance at all the six selected geographical locations except 

in Mexico City. The reason is that Mexico City has the lowest wind energy density 

among all these six locations, only 76.5 W/m
2
 based on the calculations. In 

comparison, the wind energy density data are 356.4 W/m
2 

for Detroit, 116.6 W/m
2
 for 

Sao Paul, 352.1 W/m
2
 for Shanghai, 213.0 W/m

2 
for Cairo, and 591.8 W/m

2 
for 

Bochum, respectively.  

 

 

 

Figure 4.10 Cost benefit results of GHG mitigation through clean energy supply  

 

As calculated on the amount of CO2 reduction per unit amount of economic 

investment, figure 4 shows that the high cost benefits of wind power systems are 

obtained at Bochum, Shanghai, and Detroit, for a reduction of GHGs at 18.04, 16.85, 
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and 13.67 tons CO2,eq per $1000 cost. In comparison, the cost benefits of solar PV and 

fuel cells power systems are only between 0~5 tons CO2,eq reduction per $1000 cost at 

the selected six locations with feasible application potential. 

 

From the analysis, it is found that even though the high costs associated with current 

hydrogen-based fuel cell power system, it demonstrates very good cost benefit 

performance, only next to wind power system. In the analysis, the cost benefit 

performance of hydrogen-based fuel cells power system is higher than that of solar 

PV at Shanghai (5.18 vs. 4.7 tons/$1000), Bochum (3.12 vs. 2.00 tons/$1000), Detroit 

(4.06 vs.3.33 tons/$1000). This is because hydrogen fuel cell power system only 

generates H2O as the chemical reaction byproduct, without any CO2 emission during 

the power generation process. While in such location as Cairo which has high solar 

energy intensity, solar PV has better cost benefit performance than hydrogen fuel cells 

power system (3.04 vs. 2.41 tons/$1000). Based on the statistical data, Cairo has an 

averaged solar insolation 1929.23 kWh/m
2
/year [NASA 2008], which is the highest 

among these six selected locations. 

 

By comparison, the natural gas fuel cell power system has the worst cost benefit 

performance because it consumes natural gas during its operations. All the carbons 

contained in the consumed natural gases are converted into CO2 emissions from the 

fuel oxidation process. Considering the large volume of natural gas consumption (i.e., 

2050 scf/hr for the selected UTC PureCell 200 model), the CO2 emissions from 
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natural gas fuel cell operations are significant. In the cost benefit analysis using 

equation (3-11), the GHG reduction potential of natural gas fuel cell power system are 

negative in the selected cities except in Shanghai which means that employing the 

natural gas fuel cell power supply will generate more GHG emissions than current 

grid power supply at the selected five locations (except Shanghai), due to the higher 

GHG emission intensity of the natural gas fuel cell stationary power system than that 

of local grid power supply. 

 

In order to support strategic decision-making, here the economic costs of using such 

clean energy power systems for GHG mitigation are also calculated on GM’s 

manufacturing facilities at the selected global locations. The cost is calculated for a 

strategic reduction of 5%~30% of GHG emissions from GM’s manufacturing 

facilities in the base year of 2009 which has a total amount of 6.75 million metric tons 

of GHG emissions [GM 2010]. The calculated results are shown in Figure 4.11 below. 

The analysis results demonstrate that for reducing a fixed amount of CO2 emissions, 

the lowest cost is with wind power system in Bochum. The economic costs of wind 

power supply for GHG reduction in Bochum is $18.7 million for 5% GHG reduction, 

$37.4 million for 10% GHG reduction, and $112 million for 30% GHG reduction. 

The economic costs of wind power supply for GHG mitigations in Shanghai and 

Detroit are at $20.0 and $24.7 million respectively for 5% GHG reduction from GM’s 

2009 facility emissions. 
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Figure 4.11 Costs of clean energy supply for reducing 5%~30% of GM’s GHG 

emissions  

 

The analysis results indicate that the highest cost of clean energy supply for GHG 

reductions is in Sao Paulo because Sao Paulo has the lowest GHG emission factor 

from grid power supply (only 93 g CO2eq /kWh) among the six selected locations. In 

the analysis, the highest cost for reducing 5% of GHGs from GM’s manufacturing 

facilities on the base year of 2009 is obtained at $4.96 Billion on hydrogen fuel cell 

power supply in Sao Paulo, which is about 265 times of the lowest cost option 

($18.7million) on wind power supply in Bochum. The second most expensive option 
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is using solar PV for GHG reduction in Sao Paulo, at a cost of $2.25 billion for 5% 

GHG emission reduction from GM’s 2009 facility emissions. 

 

Overall, the economic costs of using wind power systems for reducing 5% of GHGs 

from GM’s 2009 facility emissions range between $18.7 million in Bochum and $888 

million in Sao Paulo, while solar PV between $71.7 million in Shanghai and $2.25 

billion in Sao Paulo, hydrogen fuel cells between $65.1 million in Shanghai and $4.96 

billion in Sao Paulo. Natural gas fuel cell power system is only feasible in Shanghai, 

with a cost of $169 million for reducing 5% of GHGs from GM’s 2009 facility 

emissions. 

 

As there are technical variations among the selected clean energy power systems, the 

cost benefit of using a specific clean energy technology might be different from each 

other. In order to characterize the sensitivity and uncertainty of using a specific power 

system among the selected models for each clean energy technology, the range of 

GHG reduction, in the unit of tons/$1,000, for the selected clean energy power 

systems are calculated for their applications at the six selected locations. The results 

are shown in Figure 4.12 below, with the median value indicated for each mitigation 

range.  
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Figure 4.12 Range of GHG mitigation potential through clean energy supply at 

the selected six locations. 

 

Figure 4.12 demonstrates that the selected wind power systems have the highest GHG 

mitigation potential among the three clean energy technologies, in particular for 

application in Detroit, Shanghai and Bochum. The highest GHG reduction from wind 

application in Shanghai can reach 30 tons per $1,000 economic input. Wind power 

supply in Bochum and Detroit can achieve up to 29 tons and 24 tons of reduction, 

respectively, per $1,000 economic input. As quantitatively indicated, the minimum 

amounts of GHG reduction from adoption of the selected wind turbines in Detroit, 

Shanghai and Bochum are still more than 13, 15, and 17 tons, respectively, per $1,000 
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economic input. When compared, the application of the selected solar PV models can 

only reduce an amount of GHG emissions less than 6 tons per $1,000 economic input. 

Fuel cell power systems are almost at the same level of GHG mitigation effect with 

solar PV systems. If using natural gas based fuel cell power systems, GHG mitigation 

is only feasible in Shanghai, China.  

 

4.7.2 Cost Benefit Range of GHG Mitigation through Clean Energy Supply at the Six 

Countries 

 

The above analysis results are on applications of the selected representative clean 

power systems at specific geographical locations (cities). In order to understand the 

GHG mitigation potential of clean energy supply for broader areas, the analysis 

results are extended to the country-wide geographical area, and assessed for the range 

of GHG mitigation potential in the six countries selected for this study. The range of 

GHG mitigation potential are calculated for solar PV and wind power systems based 

on the selected average technical parameters. 

 

The range of GHG mitigations from solar PV power supply is calculated by 

considering the best and worst power generation scenarios under the highest and 

lowest solar insolation conditions within the geographical boundary of the selected 

country. The range of GHG mitigation from wind power supply is calculated by 

considering the best and worst power generation scenarios under the highest wind 
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energy density of that country and the minimum wind speed (4.47 m/s) required for 

wind turbine installation [AWEA 2010].  

 

The range of GHG mitigation from fuel cell power supply is calculated by 

considering the fuel differences of the power systems based on the technical 

parameters collected for the modules. The calculated range of GHG mitigation 

potential gives the maximum and minimum amount of GHGs which can be mitigated 

through each clean energy supply pattern in these six countries on the basis of the 

same economic input. The results are shown in Figure 4.13 below, with the median 

value indicated for each mitigation range.  

 

  

Figure 4.13 Range of GHG mitigation potential through clean energy supply in the 

selected six countries 
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The calculated results in Figure 4.13 demonstrate that the best GHG mitigation 

opportunity is in China. With $1,000 economic investment, the maximum amount of 

GHG reduction can be as high as 60 tons, while application of wind power systems in 

the United States and Germany can also obtain a maximum GHG reduction of 

between 40 and 50 tons. When compared with the wind supply pattern, application of 

solar and fuel cell power systems has much less potential for GHG mitigation in each 

country. The median values of GHG mitigation range from fuel cells and wind power 

supply are almost at the same level. 

 

The maximum reduction of GHG emissions through clean energy supply depends on 

many factors. From the results of the analysis, the most important factors for an optimal 

GHG mitigation are on the selection of the clean energy technology and the 

geographical location for system installation. In this analysis, the technical differences 

of the selected power systems in each clean energy category are not fully assessed and 

benchmarked, but such differences are believed having very small influences on the 

decision-making in clean energy technology selections. 

 

4.7.3 Cost Benefit Map for the Lower 48 States of U.S 

 

The GHG reduction potential through solar PV and wind energy supply within the US 

nationwide is discussed in this section. The potential distribution will help the 

automotive manufactures comparatively understand the GHG reduction potential within 
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the US nationwide area, as well as to understand the dependence of the GHG reduction 

potential on geographic characteristics. Here the solar insolation distribution, as well as 

the calculated wind power density distribution is presented in Figure 4.14 and Figure 

4.15, because the solar insolation and wind power density are the most factors to decide 

the GHG reduction potential through solar PV and wind energy, specifically.  

 

The meteorological data are collected for each single geographical point within the 48 

US lower states. Each individual geographic point is defined by its longitude and 

latitude. The contour plots of US nationwide GHG mitigations through solar PV and 

wind power supplies are generated by including the calculation result at each 

individual geographic point. The GHG emission reduction potential distributions 

through solar PV and wind for the US 48 lower states are presented in Figure 4.16 and 

Figure 4.17.  

 

 

Figure 4.14 Solar insolation distributions in the US lower 48 states 
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Figure 4.15 Wind power density contour plots of US lower 48 states 

 

Figure 4-16 indicates that among the US 48 lower states, through solar PV energy 

supply, the GHG emission reduction potential is as high as 5.6 tons, with $1000 

economic input. Through the northeast to the southwest, the GHG emission reduction 

potential shows an ascending trend. This distribution pattern is roughly similar with 

the pattern of the solar insolation distribution pattern, which indicates that the GHG 

emission reduction potential through solar PV energy supply is positively associated 

with the local solar insolation. 

 

Figure 4.17 demonstrates the GHG emission reduction distribution within the US 48 

lower states, through wind energy supply. The calculated results indicate that the best 

opportunities to reduce GHG emission through wind energy supply are roughly 

distributed with the range from Longitude -110 to -95. Figure 4.14 shows in this range 

of area, the wind power densities are also higher than the rest of the geographical area. 
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These results indicate that the GHG emission reduction potential through wind energy 

supply has a positive dependence on the local wind power densities. 

 

 

Figure 4.16 GHG emission reduction potential through PV in the US lower 48 states 

 

 

Figure 4.17 GHG emission reduction potential through wind energy in the US lower 48 states 
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4.8 Trend Analysis of GHG Emission Reduction Cost Benefit from year 

2010-2035 

 

As the clean energy supply is targeting a future deployment, a trend analysis will be 

useful for decision support in the strategic planning of clean energy supply for 

automotive and similar large-scale manufacturing facilities. Here the analysis results 

are presented on the future trend of cost benefits for solar PV, wind, natural gas and 

hydrogen-based fuel cell power systems till year 2035. 

 

The cost benefit projections were calculated in the virtual scenario of reference case 

and decreasing cost case, as defined by U.S. EIA [US EIA 2011]. For the reference 

case, initial overnight costs for all technologies were updated to be consistent with 

costs estimates for 2010 [US EIA 2011]. Based on the scenario, a cost adjustment 

factor based on the projected producer price index for metals and metal products is 

also applied throughout the forecast, allowing the overnight costs to fall in the future 

if this index drops or rise further if the index increases [US EIA 2011]. In the 

decreasing cost case, base overnight costs for electric generating technologies are 

assumed to fall more rapidly than in the reference case. The base overnight costs are 

assumed to be 20 percent below the reference case, through a reduction in the annual 

cost index. Costs are also assumed to decline more rapidly, so that by 2035 the cost 

factor is assumed to be 40 percentage points below the reference case value [US EIA 

2011]. 
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Besides the cost benefit results shown in for year 2010, the future cost benefit trends 

are calculated for the year 2020 and 2035 based on the U.S. EIA cost prediction data 

for solar PV, wind and natural gas fuel cells [US EIA 2011], while the cost data for 

hydrogen fuel cell power systems in the year 2020 and 2035 are converted from the 

projected cost data in [Gerboni 2008].  

 

For reference case and decreasing cost case, the calculated cost benefit trend results 

are shown in Figure 4.18 and Figure 4.19 respectively, for each location with different 

types of clean energy supply patterns. The calculated results indicate that solar PV, 

wind and hydrogen-based fuel cell power systems are feasible for GHG mitigations at 

all six selected locations, while the natural-gas-based fuel cell power system is only 

feasible in Shanghai, as shown in figure 4.18(d) and Figure 4.19(d). 

 

Overall, the cost benefits of all these clean energy supply for GHG mitigation are 

increasing from 2010 to 2035, for both the reference case and decreasing cost case 

scenarios. In terms of the amount of GHG mitigation through unit economic input 

(tons CO2,eq/$1000), wind technology is still the best option at five selected locations, 

except in Mexico City where solar PV is the best option.  

 

For reference case scenario, in year 2020, the expected cost benefits of wind supply 

for GHG mitigation can reach 16.83 and 18.02 tons CO2,eq/$1000 in Shanghai, and 

Bochum, respectively, while in 2035, the cost benefits can be expected to be increased 
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to 20.85 and 22.33 tons CO2,eq/$1000, respectively. Among the six global locations, 

hydrogen-based fuel cell power system has better cost benefit performance than solar 

PV in Detroit, Shanghai and Bochum, while a little bit lower performance in Mexico 

City, Sao Paulo and Cairo.  

 

For decreasing cost case scenario, in year 2020, the projected cost benefits of wind 

supply for GHG mitigation can reach 23.19 and 24.83 tons CO2,eq/$1000 in Shanghai, 

and Bochum, respectively, while in 2035, the cost benefits can be expected to be 

increased to 34.63 and 37.08 tons CO2,eq/$1000, respectively. Among all the six 

global locations, hydrogen-based fuel cell power system has more significant 

increasing rates than solar PV and wind energies. 
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Figure 4.18 Cost benefit trend of clean energy supply for GHG mitigations from 

2010-2035 (reference case) 

 

Year Year 

Year Year 

Year Year 
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Figure 4.19 Cost benefit trend of clean energy supply for GHG mitigations from 

2010-2035 (Decreasing Cost Case) 

Year Year 

Year Year 

Year Year 
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4.9 Sensitivity Analysis 

 

As discussed in the above chapter, the mathematical methodology developed in this 

study involves quite a few parameters, including both meteorological and economic 

parameters. The importance strength is analyzed for different variables, by ordering 

their Pearson’s correlation coefficient. This strength indicates the linearity relevance 

of the inputs and output, namely, the meteorological characteristics, the economic 

parameters and the cost benefits. The sensitivity analysis will also help with decision 

making by increasing understanding or quantification of the model. 

 

The sensitivity analysis is conducted in this study by applying Pearson's correlation 

coefficient method with equation (3-12, 3-13). Where X stands for input variables; Y 

stands for output variables. The geographical sensitivity analysis is objected to help 

understand the relevance of the geographic parameters and the GHG emission 

reduction cost benefit through clean energy supplies for different geographic locations. 

The economic sensitivity analysis is objected to help understand the relevance of 

economic parameters and the GHG emission reduction cost benefits through clean 

energy supplies for a specific location. The calculation results of geographic 

sensitivity analysis for wind energy and economic sensitivity analysis for Detroit are 

presented in Figure 4.20 and Figure 4.21, respectively. For solar PV energy supply, 

since the most important geographic parameters are mainly solar insolation and local 

grid GHG emission factor, the relevance between inputs and outputs is less 
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complicated than wind energy, so the sensitivity analysis for solar PV energy is not 

presented here. 

 

Figure 4.20 demonstrates that, for the GHG emission reduction cost benefit model of 

wind energy supply, all the observed geographic parameters are significantly 

determining the performance of cost benefit. The calculation results indicate wind 

speed and wind power density are the most two significantly linear relevant input 

parameters with cost benefit, with the correlation coefficient as high as above 0.9. 

Temperature and local GHG emission factor are also highly linear relevant with the 

cost benefit, with the correlation coefficients as high as 0.8 and 0.7. As a local 

geographic parameter, altitude is less significantly linear relevant than the other 

geographic parameters, with the correlation coefficient 0.6.  

 

 

Figure 4.20 Geographic parameter sensitivity analyses 
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Figure 4.21 presents the linear relevance between economic parameters and GHG 

emission reduction cost benefits through different clean energy supplies. This analysis 

is objected to investigate the changes of GHG emission reduction according to the 

changes of clean energy technology supply. Hence, this analysis is also a sensitivity 

analysis for technological parameters. Figure 4.21 demonstrate that both the emission 

factor and the economic costs are significantly linear relevant with the cost benefits, 

except for the Fixed O&M. The correlation coefficients of emission factor and 

overnight cost are as high as 0.6. The correlation coefficient of variable O&M is also 

as high as above 0.5. The correlation coefficient of Fixed O&M is less than 0.2. These 

results demonstrate that the changes of emission factor, overnight cost and variable 

O&M will significantly change the output, namely the GHG emission reduction cost 

benefit, by using the mathematic model developed in this study. 

 

 

Figure 4.21 Technical parameter sensitivity analyses (Detroit) 
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Both the above sensitivity analyses provide guidelines for decision making by 

ordering the significance of the different input parameters, namely the geographic and 

the economic parameters. 
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CHAPTER 5 CONCLUSIONS 

 

GHGs emission reduction has to be appropriately conducted globally, as it drives the 

global warming effect continuously, more and more significantly. Manufacturing 

industry, as a one of the large scale GHGs emission contributors, should play a role in 

the global GHGs emission reduction effort. However, there is lack of neither 

systematic decision making supporting tools for manufacturing company’s decision 

makers. The researched work in this dissertation is a contribution to the research on 

how to qualitatively and quantitatively investigate the GHGs reduction strategy from 

a company scale. 

 

5.1 Main contributions to knowledge 

 

A systematic mathematic approach is successfully developed to qualitatively and 

quantitatively investigate the application potential of solar PV, wind and Fuel cells 

technologies in GHGs emission reduction. This systematic approach contains a set of 

mathematic analyses including the analyses of technological feasibility, capacity 

factor, Feed- in strength, Levelized Energy Cost, cost benefit and sensitivity. In this 

approach, both the clean energy’s technological characteristics and the geographical 

conditions where this clean technology could be potentially implemented are included 

into the analysis process. 
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This systematic approach is successfully applied for the application potential analysis 

of solar PV, wind and fuel cells at six global locations, including Detroit, Mexico City, 

Cairo, Shanghai, Sao Paulo and Bochum. The application potentials of solar PV, wind 

and fuel cells are successfully investigated at the six selected global locations. The 

systematic approach is successfully applied for the cost benefit range analysis of solar 

PV, wind and fuel cells in the six selected countrywide area. The main findings 

through the case study are summarized as follows: 

 

1). Solar PV, wind, and hydrogen-based fuel cell technologies all have certain 

potentials for practical applications as clean energy supply for GHG mitigations at all 

these six locations, while the natural gas-based fuel cell power system is only 

technically feasible in Shanghai (China) because of the high local GHG emission 

factor from the conventional grid. Among all these six locations, wind energy has the 

highest potential in terms of absolute amount of GHG mitigation when compared with 

the other clean power systems.  

 

2). For the selected solar PV power systems, the actual capacity factors are all below 

20% at these six selected locations; while the capacity factor of wind can reach up to 

47% at these locations. Cairo has the largest capacity factor for solar PV at 17.98%, 

followed by Mexico City (17.62%) and Sao Paulo (15.48%). The capacity factors for 

solar PV in Shanghai, Detroit and Bochum are 13.15%, 11.84% and 9.19%, 

respectively. 
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3). A case study on FIT strength benchmarking among seven countries including 

United States, Germany, South Africa, China, Italy, Iran, and South Korea is 

quantitatively conducted. According to the analysis, for solar PV, Iran has the highest 

FIT strength in terms of the GHGs emission reduction on the same economic 

incentive base among the selected seven countries. For wind energy, China and South 

Africa are the two countries which have the highest mitigation benefits on the same 

amount of economic incentive input. 

 

4). LEC calculation is successfully conducted for solar PV, wind and fuel cells in the 

six selected locations. For solar PV, it has the smallest LEC in Cairo (16.29 

cents/kWh). The LEC is the minimum required price for the electricity to be retailed, 

therefore the smaller the LEC, the larger the application potential. For wind energy, 

Mexico City has the largest LEC and Bochum has the smallest one. In this regard, 

Cairo has the largest economic application potential of solar PV and Bochum has the 

best economic application potential of wind energy. 

 

5). The systematic approach is successfully applied for the cost benefit analysis of 

solar PV, wind and fuel cells at the six selected global locations. The cost benefits of 

the different location and technology combinations are successfully calculated and 

compared. The mathematic cost benefit analysis approach is applied for the cost 

benefit range analysis within the nationwide range of the six selected countries. By 

using this method, cost benefit maps for the US 48 down states area are plotted based 
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on the calculation results. This mathematic model is also successfully applied for the 

cost benefit trend analysis from 2010-2035. 

 

6). As a part of this systematic approach, the sensitivity analysis is successfully 

conducted for the cost benefit model. The linear relevance of different key geographic 

parameters, as well as technological parameters with the cost benefit is successfully 

calculated. The linear relevance of these parameters with the cost benefit is 

successfully used in revealing the priority in considering the selection of a specific 

clean technology at a specific location for GHG emission reduction application. 

 

The researched work in this dissertation concludes with the following suggestions, 

should a decision be made on the selection of clean energy technologies for GHGs 

emission reduction: 

 

5.2 Suggestions for practical applications 

 

First, at the beginning of the GHGs emission reduction goal set up, a comprehensive 

GHGs inventory analysis should be conducted. Through this inventory analysis, the 

GHGs emission sub-sources within the complete product life cycle should be clearly 

outlined and listed. With this inventory analysis as a reference, the GHGs emission 

reduction potential should be defined within in the feasible stage of the product life 

cycle. 
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Second, the application potential of clean energy technologies should be 

comprehensively investigated; both the specificity of technological characteristics and 

the geographic varieties should be involved into the application potential verification. 

 

Third, GHGs emission reduction is such a long term project for a manufacturing 

company that a long term performance projection analysis should be conducted before 

the practical application project is set up at a specific location. 

 

Finally, a sensitivity analysis for all the involved input parameters, including 

geographic and technological parameters should be conducted, so as to find out the 

priorities of different parameters to be considered. 

 

5.3 Future research directions 

 

Through the researched dissertation work, a systematic mathematic approach is 

developed to quantitatively analyze the application potential of solar PV, wind and 

fuel cells in reducing GHGs emissions. In practice, in order to improve the application 

range and its scientific merits, the following research focuses are presented.  

 

5.3.1 Development of the GHGs emissions related database 
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Through this researched work, a wide range of data has been used; there data are 

collected from a few kinds of sources, including publications, released governmental 

documentations, online database, etc. A comprehensive database of the available 

useful data, including statistic historic data, projection data, and analyzed results will 

be of great support for the researchers. This database should be updated promptly with 

the availability of new data release. 

 

5.3.2 The research and development of cost benefit analysis tools 

 

A systematic approach is developed for the application potential analysis. The 

mathematic principles and key element of this systematic method is presented in this 

research. During the conduction of the case study, a large amount of calculation work 

is performed, which is a huge consumption of time. For example, the calculation of 

the cost benefit map of US 48 down states is very time-consuming due to the large 

number of data. Different aspect of this systematic approach needs different 

calculation method and involves repeating data input, which is also not time economic. 

In the future, all the aspects of the developed mathematic method can be integrated 

into specific tools, such as software. All the useful data could be read from the 

database discussed in the above section, which will save the researchers a huge 

amount of time. The interested indicator, such as FIT strength, cost benefit will be 

calculated within the software and output. 
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