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ABSTRACT
AN EFFICIENT METHODOLOGY FOR LEARNING BAYESIAN

NETWORKS
by

Emmanuel Asante-Asamani

The University of Wisconsin Milwaukee, 2012

Under the Supervision of Professor Istvan Lauko
Statistics from the National Cancer Institute indicate that 8 women will develop
Breast cancer in their lifetime. Researchers have developedaousngatistical models
to predict breast cancer risk however physicians are hesitase these models because
of disparities in the predictions they produce. In an effort toceduese disparities, we
use Bayesian networks to capture the joint distribution of rislofactand simulate
artificial patient populations(clinical avatars) for interrogating the existing risk
prediction models. The challenge in this effort has been to produceesi8aynetwork
whose dependencies agree with literature and are good estiohdle joint distribution
of risk factors. In this work, we propose a methodology for learniange&8an networks
that uses prior knowledge to guide a collection of search algorithndentifying an
optimum structure. Using data from the breast cancer surveiloms®rtium we have
shown that our methodology produces a Bayesian network with consispemtdeéacies

and a better estimate of the distribution of risk factors compared witmgxiséthods.
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Chapter 1: Introduction

1.1 Background to Breast Cancer

Breast Cancer is a cancer that is initiated from theds®f the breast. There are two
main types: Ductal carcinoma, which starts in the milk ducts aaular carcinoma
which starts in the lobules. The most common form of breast cendactal carcinoma.
The disease may be invasive, which typically describes tige sthere the cancer has
spread to nearby tissues, or non invaginesitu) which is when the disease is contained
in a particular breast tissue. Breast cancer may befadsas being in stage I, II, Il or
IV. Usually stage I-lll can be treated through proceduresh sas lumpectomy,
mastectomy, hormone therapy, or chemotherapy to remove the canceltsuStage IV

cancer’s are generally incurable and can only be managed to prolong life.

Statistics from the national cancer center indicates thateYaery 8 women born in the
US will develop breast cancer in their lifetime (Institute 20IM)is makes it imperative

for every woman to regularly examine herself for any symptoitike disease and have
it treated early before it becomes malignant. Common symptimsreast cancer

include: breast lumps, change in size, shape or feel of the breastsaluiwid coming

from the nipple.
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Figure 1-1: Normal breast with non—invasive ductal carcinoman situ (DCIS) in an

enlarged cross—section of the duct

An even more important preventive measure is for every woman to kReowsk of
getting breast cancer so physicians can perform regudanigations to detect any onset
of the disease. There are a number of factors that tendreaggca woman'’s risk for
breast cancer namely age, family history of breast canagesgmenstrual cycle, alcohol
use, childbirth, hormone replacement therapy (HRT) and radiation. Tlypioa disease
is more prevalent in women over the age of 50 years and those wholdse/eetatives
with breast cancer (reference). Women with defective BRCA1 &R@A2 genes are

also at risk of getting breast cancer. These genes usuallycprpdoteins that prevent



cancer. Any mutations can produce a counter effect. It has beeretefi@t women who
got their periods early (<12 years) or experienced a late mes@gas0 years) have an
increased risk for breast cancer. Research also shows that having mdretgkasses of
alcohol a day may increase the incidence of breast cancer. Wlehzehave received
some form of hormone replacement therapy with estrogen also havereased risk for
breast cancer. Exposure to radiation around the chest area m#sadlso higher risk for

breast cancer.

1.2 Risk prediction Models

A number of statistical models have been developed to predict anisonsk for breast
cancer. Gail in 1989 produced a model that gives a five yeaforidkeast cancer based
on age at menarche, age at first live birth, number of previapsies, and number of
first-degree relatives with breast cancer (Gail 1989). In 199%8rheulated an improved
model by including history of atypical hyperplasia and in 200@redé¢d his model to an
African American population. Other models have resulted from somédicadidn of the
Gail model either by including more risk factors or extending tliffarent population.
For example the Tice model (Jeffrey A. Tice 2008) developed in 260&ded breast
density and race into the Gail 1999 model and extended to a US mixedtjpopula
Chlebowski (Richard J Santeen 2007) also added alcohol, bmi, hrt, beedsatgf

physical activity, parity and smoker to the Gail 1999 model andexdsgnded to a US



mixed population. Similar models have been developed for Japanesen Kaakan and

European mixed populations.

1.3 Reducing Health disparities by simulated population

There are several risk prediction models out there, each develdpea afferent study
population and data set. For the physician at the point of carejmpatant to decide
which model is suitable for a patient’s unique characteristicortimfately, the lack of a
comprehensive assessment of these predictive models makes thatiftesilt,
occasionally resulting in inaccurate risk predictions. The cefite Biomedical
Informatics (HMS-at Harvard Medical School) and The LaboraforyPublic Health
Informatics and Genomics (LPHIG — at UWM) have begun effastseduce this
disparity by interrogating currently existing risk predictiomodels to identify and
document their strengths and weaknesses. The project begun witleasivexteview of
all currently existing risk prediction algorithms and the constracof a pedigree to
illustrate the relationships between them. The project igewtly in its second phase
where a Bayesian network model describing the dependencies béthwaesk factors is
required to simulate artificial patient populatiomtinical avatarg for the interrogation

of the risk prediction models.

Bayesian networks have become the tool of choice by most reeesafor knowledge

discovery because of their facility in approximating complex inariable distributions



and incorporating prior domain knowledge. Knowledge obtained from Bayesian networks
have been used in a wide variety of applications. For instance,ldwgh biological
knowledge obtained from gene ontologies have been incorporated into dayesi
networks trained on protein interaction data for diagnostic reasamdgrediction of
protein function. (Jung Hun Oh 2011) also used Bayesian networksdictdozal
failure in lung cancer and recorded significant improvement inr tpegdictions
compared with standard dose-volume models. Nurse researchersovar@ble to
incorporate both clinical and theoretical knowledge in mining very ldrgepital
information data bases using Bayesian networks (Sun-Mi Lee 2003wl&dge from
Bayesian network have also been used in facilitating secongaryf EMR data for
predicting study outcomes, conducting retrospective studies andasnguclinical

trials.

The literature is filled with a plethora of algorithms foaiming Bayesian networks
(David Heckerman 1995; Peter Spirtes 2000; Chickering 2002), but asedout by
(Guoliang LI 2007) most of the learned networks produce edges whigh bma
inconsistent with domain knowledge. The performance of Bayesiavorks seems to
rely heavily on characteristics of the problem domain makirgjfficult to rank one

algorithm as preferable to others(Mozaherul Hoque Abul Hasanat 2010).

In this work we propose a methodology for training Bayesian netwoakhi#inesses the

strengths of already existing algorithms to produce Bayesiamoret which offer



improved estimation of the distribution of random variables. We shoi dba
methodology when applied to modeling breast cancer risk producescesigestent with

literature, making it ideal for simulating clinical avatars.



Chapter 2: Theoretical Background to Bayesian Networks

2.1 Estimating Joint Probability

Distribution

Consider the random variablgsY, Z, W, T for which we would like to obtain their joint
probability distributionP(X,Y,Z, W, T). By the chain rule of probability we can express

the joint distribution in the form,
P(X,Y,ZW, )= R XY RY X PZ XY PW X,Y)Z(P|IT ,X,Y,ZW(2.1.1)

What remains is be to estimate the conditional distribution df e&the terms on the
RHS of (2.1.1). Suppose for simplicity and convenience of illustratianXtig Zz, W, T
are discrete binary random variables, then the conditionalbdistins would be relative
frequencies of the different values of each variable. A tot8lldiree parameters would
need to be estimated to fully specify the joint distribution. The breakdown is@sdpll
[P(X)—1; P(Y|Z) —2; P(Z|X,Y) — 4, P(W|X,Y,Z) — 8 P(T|X,Y,X,W,T) — 16].

Now suppose we knew the following conditional independence facts aborgnithem
variablesT L X,Y|Z,W; Z LW|X,Y; W L Z,X|Y and finally X LY, then the joint

distribution (2.1.1) could be simplified to the form
P(X,Y,ZW = RXRYPZ XYPW))(PIT.Z] (2.1.2)

which reduces the number of free parameters to be estimafidll ithus by applying

knowledge of conditional independence facts about the random variables aflato



reduce the number of parameters by 21. This might not appear totpressh savings in
computation of the joint distribution however if instead of five binaagiables we now
have twenty multinomial variables, it becomes clear the sigmficamount of

computational time saved, making the estimation process more tractable.

2.1.1 DAG'’s and Probability Distribution

A Bayesian network is a probability graphical model which encodes lkdge of the
conditional independence facts among a set of random variables. isteasfsnodes
which represent random variables and edges which indicate theemdknce relations
between them. The presence of an edge between two nodes is atianditat the two
random variables are directly dependent. The absence of an edueaihdr hand is an
indication of conditional independence. All edges in a Bayesian netwarkracted (i.e.
they have an arrow head at one end which indicates the directiba dépendency). If
two variablesX andY have a directed edge between them as illustrated in Figureer1 t

the probability distribution ove¥ is dependent oX.The variableX is termed garentof

O

Figure 2-1: Direct Dependence

Y andY achild of X.

are

in a particular direction then the path is said to bdiracted pathotherwise it is



undirected. For a sequence of nod&<WT on a directed path such that the path is out
of X and into T, the nodesYZ are referred to asncestorof TandT adescendanof X.

If there is no directed path that starts from one node and emlds same node, the graph
is said to beacyclic Bayesian networks are typically directed acyclic graphs.

Given a Bayesian network whose structure correctly represdmats conditional
independence relationships among random variables, we are able tdafysitnel

factorization of the joint distribution and conveniently estimate its parameters

2.1.2 The Markov Condition

Suppose we have a Bayesian network whose structure is an acepragentation of the
conditional independence relationships among a set of random variable alde, by
mean of the Markov Condition, to extract all the conditional independeacts f

necessary to simplify the representation of the joint distribution. The Gondittes:

Definition: (Markov Condition)
A directed acyclic graph (DAG) and a probability distribution sfatithe
Markov condition if every node in the graph is conditionally independeall of

its non-descendants given its pareits;{ i.e
P(X; | XL X,,P3)= R X| Pp)

WhereX; --- X,are non-descendants &f

Therefore if a Bayesian network and probability distribution fyatihe Markov

Condition, then by identifying the parents of each node in the grapbotiditional
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independence relationships necessary to reduce the factorizationjonthdistribution
can be extracted.
Consider the structure in Figure 2-2, by the chain rule of probathktyoint distribution

can be factorized as follows:

POX,Y,ZW, )= RYRY X PZ Y XPW X,Y)Z(P|T ,X,Y,Z (2.1.3)

Figure 2-2: Directed Acyclic Graph illustrating Markov Condition
Now by applying the Markov condition the joint distribution (2.1.3) simplifies to,
P(X,Y,ZW, = RYRY XPZ YeW)PI. (2.1.4)

From which we can estimate the parameters of the distribution more @ssdystandard

methods of parameter estimation. One of the important questions we Vikmilto
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answer is the existence of a DAG structure that contaitisealhdependence relationship
of a probability distribution. In the next section we attempt to anghis question by

discussing faithfulness and Minimality.

2.1.3 Faithfulness and Minimality Condition

What we asserted in the previous section is that if a DAGfisa the Markov condition
then it could be used to reduce the factorization of the joint distibatver a set of
random variables. But is satisfying the Markov condition enough to presume retiibili
A DAG can satisfy the Markov condition and yet not reflect thk conditional
independence relationships true among the random variables. ConsideA@enD
Figure 2-3, suppose for a distribution, P over {X,Y,Z} for which the Dgdgisfies the
Markov condition we have the relatigh.L Y. This relation clearly, does not violate the
Markov condition since X has no parents, yet the DAG does not réflisctonstraint.
The Markov condition though sufficient in reducing the factorization of jtiet

distribution may not entail all its dependencies.
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Figure 2-3: lllustrating Minimality condition

A stronger requirement is the Minimality condition which may be defined asvsill

Definition: (Minimality Condition)

Let G, be a DAG with vertex set V and P a probability distrisuton V
generated by G. Then <G, P> satisfies the Minimality conditicand only if
every proper sub graph H of G with vertex set V, the pair <H,P>sdoat

satisfy the Markov condition.

In other words, a DAG satisfies the Minimality condition if amdy if it fails to satisfy
the Markov condition by removing an edge.

The Markov condition applied to a graph produces a set of independencansethat
usually entail other dependencies. A probability distribution over taosegandom
variables may also have some dependencies that are not entajgdyingathe Markov
condition to a DAG. If however, all and only the conditional independenagored that

are true in the probability distribution, P are entailed in apgl$fve Markov condition to
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a DAG, G then the graph and the probability distribution are said faithéul to each

other. A formal definition is as follows:

Definition (Faithfulness)
Let G be a DAG and P, a probability distribution generated by G. thenG,
satisfies the faithfulness condition if and only if every conditional inttkpee

relation true in P, is entailed by the Markov condition applied to G.

If a DAG satisfies the Markov and faithfulness condition then glies the Minimality
condition is satisfied. The Markov and Minimality condition do not howewugply
faithfulness. Ideally our goal would have been to learn faithAGE3 but these are not
always easy to find. So for the purpose of simulating clinicalaavatve will be

comfortable with DAG'’s satisfying the Markov and Minimality condition.

2.1.4 D Separation

The Markov condition tells us the conditional independence relations saegefor
reducing the factorization of the joint distribution of a set of rangtarmables. However
we may be interested in testing other dependencies which mayenabvious from a
direct application of the Markov condition. For example consider the DA&gure 2-4,

from the Markov condition we can detect the following independence relations,
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X LW
Y L(H, ZW)| X
HL(Y,W)| X Z
Z L(Y, H)| X,W
WL XY

(2.1.5)

Figure 2-4: lllustrating D-Separation

Suppose we wanted to test the following independence relations whiclotaa direct
consequence of the Markov condition,

Y LW
YLW|Z
Y LW[ H

(2.1.6)

It is not clear how to arrive at a conclusion. Theeparation criteria help us to draw such

conclusions. The relatio’s L W is really asking if the path frorii to W is blocked
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without conditioning on any node. We will now dissthow paths between nodes may be
blocked after which a formal definition of D-sepawa will be given. An observed node
is one that has been conditioned upon and an unaasaode is without conditioning. If

a path between two nodes is not blocked we widrréd it as active.

In the language of information theory, a path betwivo nodes is said to be blocked if
information cannot flow from one node to anothagufe 2-5 presents a summary of

different paths and the conditions under which tfmay be considered blocked.



16

Blocked Active
Active Blocked
7 2
@ O-@
(@) head to head meeting (b) head to tail meetir
Active
Blocked

On 20

(c) tail to tail meetin

Figure 2-5: Blocked and Active paths illustrating d-separation

The path between X and Y illustrating a head tallreaeting aZ Figure 2-5a is blocked
when Z is unobserved but active whehis observed. The head to tail meetingZat

illustrated in Figure 2-5b is active whé&nis unobserved and becomes blocked whés
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observed. Similarly, the tail to tail meeting ingltie 2-5c is active whed is not
observed and is blocked whgns observed.
Suppose there is more than one node betweandY as illustrated in Figure 2-6 then

the path is blocked if any of the intermediary nodenders it blocked.

Figure 2-6: lllustrating d--separation by more than one node

Definition: (D-separation)
Two nodest andY in a directed acyclic graph are said to be d-sgppad by a
non intersecting set of nodé€sif all paths betweelX andY are blocked when

the nodes i€ are observed.

Now returning to the independence relations in .@).lwe draw the following

conclusions:

1) Y LW: The paths betweery and W are <VY,X,Z,W > and <
Y,X,H,Z,W > which are all blocked when either H or Z are umobad.
HenceY andW are d-separated without conditioning on any otiwte

and the assertion holds
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2) Y L W|Z: Conditioning onZ activates the patk. Y, X,Z,W > henceY
and W are not d-separated giveh and the conditional independence

assertion fails to hold.

3) Y L W|H: Though conditioning on H activates the pattv,X,H,Z >
Z still blocks the path< Y, X,H,Z,W > and<Y,X,Z,W > henceY and
W are d-separated given H and the conditional inodgece assertion

holds.

2.2 Learning Bayesian Network:s

So far we have assumed that we had a Bayesian mhefwon which we estimated the
joint distribution of the random variables. In ttgsction we describe how Bayesian

networks can be constructed. Specifying a Bayestéwork involves:

1) Constructing the Directed Acyclic Graph

2) Estimating the parameters of the network

DAGs may be constructed directly from knowledge wbthe causal relationships
between the random variables. These DAG’'s are caryn&nown as causal
graphs(Pearl 2000). For example, consider a hatted fwith an alarm system which
goes off if either a burglar breaks into the hooisthere is an earthquake. There is a dog
in the house which barks either when the Alarm gifésr it has fever. Let the random

variable of interest be A-Alarm, B-Burglar, E-eaytiake, D-Dog, F-Fever. To construct
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a causal graph we will work our way down from cause effects. The resulting causal

structure is illustrated in Figure 2-7

Figure 2-7: A Bayesian network constructed from causal knowledge

The second approach which is the direction ofwhosk is in learning the structure.There
are two major approaches to learning Bayesian n&sv@rom data, the Bayesian
approach and the constrained based approach. IBdlyesian approach a score is
assigned to DAG'’s in the space of possible Bayes&mworks and the DAG with the
highest score is returned. Constrained based #igwmion the other hand perform tests of
conditional independence on all possible pairsasiables conditioned on every relevant
subset of nodes, returning a structure which remtsshe independence relations that are
true among the variables in the data set. We preserore detailed description of these

methods in the next sections.
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2.2.1 Bayesian Learning

Given a set of random variabl¢X,, X,, X5 - X,,} = U and a dataset of examples of
these variabldg€';, C,, C5 -+ C,,} = D, suppose we wanted to deternifG€|D, ¢), which

is the probability distribution of a new caSgegiven the databade and our current state
of information¢. Assume also that the dabais a random sample from a distribution P,
specified by an unknown Bayesian network structBgeLet B! denote the hypothesis
that the data is generated by network strucByrand that the hypotheses corresponding
to all possible network structures form a mutuatkglusive and collectively exhaustive

set, then by laws of probability,
P(C| D.£)=2.,, P(C, B | D£) (2.2.1)
From Bayes rule,

P(C| B, D) R B, Q¢)

P(C,B|D,S)= P0.2) (2.2.2)
Expanding the RHS further by obtain,

P(C,B| D,§)=P(C| B, D,¢)P(B; | D&) (2.2.3)
Substituting (2.2.3) into (2.2.1) we have,

P(C|D,&) =2 P(C| B, D,&)PE|D,&) (2.2.4)

Obviously summing over all possible network stroesu may computationally

impractical, hence we identify a subspdteontaining Bayesian networks that account
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for a high proportion of the hypotheses then pastgorobability P(C|D,¢) can be

approximated by,
P(CID.&)~c2, , P(CI D §.9).P(B| D) (2.2.5)

Where, c is a normalizing constant defined by,

1
“TSTR(E| D)

BleH

(2.2.6)

Clearly, P(C|D,§) largely depends on the relative posterior proftgi(B2|D,¢).
Hence the Bayesian learning task is to identifyghlesetd of network structures with a
high posterior probability. WhepH| =1 we learn a single network structure, and a
collection for|H| > 1. Equivalently we could search for the networlusture with a

high joint probability with the data set defined by
P(D,B; |£) = P(Bl|£) R D B.$) (2.2.7)

Any formula which computes the relative posterioolgability of a network-structure
hypothesis is a Bayesian scoring metwviuch is discussed in more detail in section (2.3).
Bayesian learning algorithms therefore compriseniyadf a scoring criterion which
measures the relative posterior probability of avoek hypothesis and search procedure
for identifying such network structures.

In order the move sequentially through the seapdte the space must be divided into

states. Each of the states will be represented D}@. The algorithms transition from



22

one state to another by removing an edge, addingdge or reversing an edge. These
edges are all directed edges. All operators aresuto the constraint that a cycle cannot
be formed. Figure 2-8 illustrates how a searchrélgo will move from one state to

another using the operators mentioned.

Initial State Add (XZ) Delete (YZ

Lod e

(0) (1) (2)

Reverse (XY

(3)
Figure 2-8: Search States of a Bayesian Learning Algorithm
At state (0) the algorithm performs any of the apiens in (1), (2), (3) but only

transitions if the score of the DAG resulting frdine operation is higher than the score of

the initial state. By sequentially applying (1)),(83) the optimum structure is identified.
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For a graph with many nodes the task of travershey B-space becomes quickly
computationally expensive. To reduce this taskrerursearch algorithms search through
the space of equivalence classes (E-Space) whele state is a representation of an
equivalence class of Bayesian networks and nondividual DAG. The operators for
traversing this space are different from those usedhe B-Space. Details of this
approach can be found in (Chickering 2002).

The next important aspect of Bayesian learninggsaing criterion by which each state
will be evaluated. A scoring criterion takes asuna Bayesian network structure, a data
set, and possibly some domain knowledge and rewmmwvalue indicating how well the
structure fits the data. The more common scoriftgra interpret the Bayesian network
as a set of assertions about the independenceaotsthat hold among a set of random
variables. Such scoring criteria assign the sammeedo DAG’s in the same equivalence
class a property known as score equivalence. Amiitapt property scoring criteria must

possess to efficiently identify an optimum DAG hetsearch space is decomposability.

Definition:
A Bayesian network structure scoring criterion iscdmposable if it can be
written as a sum of measures, each of which isatifon only of one node and

its parents. i.e.

(9= {x7,) (228)
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Wherer,; , represents parents of nogeThe property of being decomposable extremely
simplifies the task of scoring each state in tha&rde space. Instead of calculating the
score of the entire DAG, decomposable scoring raite/ould only need to score the
nodes whose parents have changed as a result a@pgleation of any of operations
described. The more common scoring criteria usedhm literature are, Bayesian
information criteria, MDL criterion, AIC criteriorBDe criterion.

Another property of scoring criteria is score e@lewnce. We say a scoring criterion is
score equivalent if it assigns the same score t&BAn the same equivalence class.
Since DAG's in a particular equivalence class hténesame assertion of independence
constraints, it makes sense for scores based ependence interpretation of structures
to be score equivalent. Score equivalent criteneatlaus sufficient for identifying a DAG
that correctly estimates the joint distributiontioé random variables. When the learning
task is about identifying a causal structure wedneere than score equivalent criteria.
Score equivalent criteria are not able to distisgubetween different members of the
same equivalence class. Because an equivalentoglassntain a wide variety of DAG’s

it is not sufficient to use score equivalent crégewhen learning the causal network for a
set of random variables More sensitive criteriaehbeen developed that address this
short fall and are able to distinguish DAG’s in th@me equivalent class. They are

sensitive to direction of edges in the same egence class.
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2.2.2 Constraint Based Learning

In constrained based learning, the structure oBidgesian network is obtained by first
performing test of conditional independence onedédht pairs of random variables to
construct the skeleton (undirected graph) of theGDAhe edges in the skeleton are then
oriented using a set of rules established by Gipistr Meek. In this section we will
provide a brief description of the constructiontloé skeleton and a summary of Meeks
orientation rules.

Consider the joint space of random varialifes {X;, X,, X5, X4, X5} and the database of
casesD = {C;,C,, -, Cp}. Assume that the database was generated by thesi2ay
network structure illustrated in Figure 2-9. Tharl@ng begins with the assumption that
all the variables are dependent on each other,hmsiaepresented graphically by a

complete undirected graph illustrated in Figured2-1



Figure 2-9: Gold Standard Bayesian Network

Figure 2-10: Complete Undirected Graph

26
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Tests of conditional independence are then perfdrinetween pairs of variables.
Initially, tests are performed directly without ebtioning on any other variables. If any
of the paired tests determine that two variablesradtependent the edge between them is
removed. The next round of paired tests involvexlitmning on a third node (variable).
Suppose the test identified thgt L X;|X, thenX, is said to separat€; andX; and is
stored in SepsetX{, X;) = {X} and the edge betweéf) andX; removed. Subsequent
tests are performed by conditioning on larger setd the size of the conditioning set
exceeds the number of variables. At this poinffitls¢ phase is complete and the skeleton

is returned as illustrated in Figure 2-11

Figure 2-11: Skeleton of Gold Standard Network
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With the complete separator set for each edge redov

Sef X, X)={ %

Se %, %) ={ %

Sef %, X)={ % (2.2.9)
Se X, %)={ % %

Sef %, %) ={ %

Once the skeleton is obtained, the orientation @heegins by converting all triples to
unshielded collidersvhere appropriate and following up with Meek’senitation rules.
Unshielded colliders are commonly known as headhead meetings in the artificial
intelligence literatur€X —» Y « Z). To orient these, the algorithm, indentifies all
unshielded triples of the forrgiX — Y — Z). If y is not in thesep(X, Z) then an arrow
heads are drawn Yo otherwise they are not oriented. Once all colidare oriented the
rest of the orientation is done to avoid the coeabf more colliders and cycles. Figure
2-12 summarizes Meek’s orientation rules. Orieatatiof colliders and the final
orientation are illustrated in Figure 2-13. In Figw®-13b the edge¥; — X; seems to
have been reversed compared with the Gold standard.very typical of constrained
based learning because the orientation of collitergest of the orientation allows for a
number of possible orientations. The theory suggsit any of the possible structures
should be able to sufficiently generate the datandard statistical techniques are usually

used in performing conditional independence tddéasure such as mutual information
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Avoid Unshielded Collider Avoid Unshielded Collider

R2 B B R4 <D [ /L>
Avoid Cycles Avoid Creation of Cycles

Figure 2-12: Meeks Orientation Rules

() (b)
Figure 2-13: Orienting DAG's using Meeks rules, (a) Orienting colliérs;

(b) Applying Meeks rules

29
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2.3 Model selectiori

In this section we present a derivation of the Baye scoring metric and the underlying
assumptions that guide its use. Some other useétitian for selecting high scoring

Bayesian networks for density estimation are alsoussed.

2.3.1 Bayesian Scoring Metric (BDe)

Given the domairt/ of random variables and databds®f cases, the Bayesian Scoring
Metric as developed by (David Heckerman 1995) measure of the probability that a

given datasetD was generated by the Bayesian network hypotiBsidefined by,

P(D,B; |£) = P(B[|£) R(D| B.,$) (2.3.1)

WhereP (B1|§) is the prior probability of the network hypotheaisd P (D|Bx, §) is the
likelihood of the dataset given the network hypstbe
Let,
D, denote the firs{l — 1)cases in the database
r;, be the number of states of the variable
q; = ijenl.rj be the total states of the parent set;of
P(x; = k |II; = j, &), the probability thak; = k given thejt"state of the parents of
Set,
Oijrx =P(x; = klIl; =j,&)

0;; = UL, {6; ik}, the parameter set fag over all its parents
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0; = U;?i .16, ;}, the parameter set fagover all states of its parent set

Ops = UL, 8;, the parameter set over all variables.
Consider also the following assumptions about tlaskt D, and the network

structure B,

1. (Multinomial Sample) For all network structurds in U there exists

positive parameter@zs such that, foi = 1---,n and fork = ky, - k;_4
POy =kl % = kL X, = k.0 G B, )=, (2.3.2)

2. (Parameter Independence) Given a network strud@yré P(B}[E) > 0

then,
a. p(0p,|Br &) =TT, p(©;|BL, &)
b. Fori=1,--,n: p(8BE,¢) =1L, p(8;|BE,€)
i.e. the parameters associated with variable iataark structure are independent as well
as those associated with each parent.

3. (Parameter Modularity) Given two network structuBg; andBg, such
that P(BZ|€) > 0 and P(BY|¢) > 0, if x; has the same parents By,

andB;,then,

p(®ij |Bsh1’§):p(®ij |Bszh $) j: 1;"'CIi (233)
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i.e. the paramete€s;depend only on the structure of the network thdoesl to

the variablex;

4. (Dirichlet Assumption) Given a network a structusuch that
P(B2€) > 0, p(0,;|B2, €) Dirichlet for all @;; S 0. That is there exists

exponentsV; ; ,, which depend o] and¢, that satisfy
p(®ij | Bshlg) = C.Hk eij’:'ijk71 (2'3'4)

Wherec is a normalizing constant.

By the multinomial sample assumption and the assompf no missing data, we obtain,

n ¢ i

P(C1D.0,.B.&)=T][]]]6: (2.3.5)

i=1 j=1k=1

Extending this to the entire dataset and letipgdenote the number of cases in database

D such thak; = k andm; = j we have,

n g ri

P(D| |®BS’ B: $)= HHHHi;\liijk (236)

i=1 j=1k=1

Hence by parameter independence the posteriofbditm over the parameters of the

network hypothesis can be estimated by,

n G

p(@g |D,B;,E)=cPD |0, BLE[[[0@;1B: &) (2.3.7)

i=1 j=1

Wherec is some normalizing constant. Combining (2.3.7) &h3.6) we have,
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n g

p(©g |D,B,&)= c-HH{p(eu |B:,§)1"[<9i,.“gk} (2.3.8)

i=1 j=1

By the assumption of i.i.d sample we have,
P(D|B;,&)=][P(C|D,B,%) (2.3.9)
=1
Conditioning on the parameters of the network stmedB, we obtain,

P(C | D,Bs“,§)=f P(G|D,0; B,&)p @p |B.E) Dy (2.3.10)

Substituting (2.3.5) and (2.3.8)

P 10, 8.&)=T T/ 1o [£(6, 1D B £)]d6, (2.3.11)

i=1 j=1 k=1

When 1,5, = 1 the integral in (2.3.11) is the expected valuedgf. consequently we

have,

n G i

PG ID.B.O)=TITIII[E® 1D.8.OT" (2.3.12)

i=1 j=1k=1

Substituting (2.3.12) into (2.3.9) we have

P18, =TI TIT[E@ IGL G..8 &]" (2.3.13)

i=1 j=1k=11=1

By the Dirichlet assumption,
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p(6,|D,B )= c]‘[b‘:,k L (2.3.14)

Wherec is a normalizing constand;; are a sufficient statistic for the database. The
posterior distribution of each paramefigr remains in the Dirichlet family. Setting

l=m+1,c¢y4 =Cand D,, = D we obtain,

n ri N Ik
P(Cyv, | D.BY &) = HHH{ N,kiN } (2.3.15)

i=1 k=1

Where,

T
l] - z szk Nij = z Nijk
k=1

Finally we obtain the Bayesian Scoring Metric,

noq T(N. (N ’
P(D,B:I§)=P(BQ|§)HHF(NF ::\4.)1.3 (llj(k’\;ll;‘]k)

(2.3.16)

2.3.2 Kullback-Leibler Distance (KLD)

Let P(xq,x,, - x,) denote the joint distribution of the gold-standatdmain and
q (x4, x4, -+ x,) denote the joint distribution of the next casbéoseen as predicted by the
learned network@.e. P(C|D,¢&)). The cross entropH (p, q) referred to as the Kullback-

Leibler distance is given by
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P(x.L ,x,)
H(p,q) = L ,x )log—2— "/ 2.3.17
(p,q) %F’(x ‘)qu(x,L,m ( )

Low values of KL-distance typically correspond tétearned distribution that is close to
the gold standard. Its discrete form can be congpuséng the following relation,

H(p,a)=> > > P(X =k, = j)log P(X; =K|7 = i)

i _ (2.3.18)
i=1 j=Lk=1 a(X = k|7 =)

G &

The cross entropy measure reflects the degree ichvitie learned networks accurately
predict the next unseen example in the data skt other words how well it copies the
true distribution. In chapter 3, we present a sligiodification of this measure to

facilitate model selection in our proposed methodyl

2.3.3 Mutual information

Mutual information is defined as a measure of temtionship between two
random variables that are sampled simultaneousiy. ¢an also think of it as a measure
of how much one random variable can tell you atamdther. The mutual information
between two random variables is O if and only étlare independent i.e. they share no
information. Consider two discrete random variabtesand Y defined jointly by the

distributionP (X, Y), then the mutual information can expressed byétaion,

1(X;Y) =S S P(x ) |og% (2.3.19)



36

WhereP (x) andP(y) represent the marginal distribution of the twod@m variables.

By measuring the mutual information between eac¢hgjavariables in the gold standard

network we able to compare this to a similar measoitained using the learned

networks and select a network that best preseheemteraction between variables. More
details of this implementation of the mutual infation for model selection are presented

in chapter 3.

2.3.4 Bayesian Information Criterion

The Bayesian information criterion(Schwarz 19783 imeasure of the likelihood
of the training data set given the associated petens of a network structure i.e.
P(D|By). It is estimated using the method of maximum Ihk@bd estimation. BIC
contains a penalty term that punishes complex nsottedt may be over fits of the
distribution of the dataset. It is defined accogdio(Mozaherul Hoque Abul Hasanat

2010) as,

n 9

Quc =log(P(B))+> > > N, Iog%— Pe( N Dirh B (2.3.20)

i=1 j=1k=1 i

Where Pen N):% log N and Dim(BS):Zq(ri—l) together represent the penalty

i=1

term.
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2.4 Parameter Estimaticin

Once the structure of the Bayesian network has bammmined and the relevant
conditional independence relationships extractecibyer the Markov condition or D-
separation, it remain to estimate the respectivelitional distributions. We will discuss
two popular methods of estimating conditional dsttions from data: maximum

likelihood estimation and maximum a posterior eation.

2.4.1 Maximum Likelihood (ML) Estimation

Consider a random variable X, distributed accordm@ known parametric distribution
Dist with parametepu. Let D = {x, x,, - x,} be a database of i.i.d cases of the random
variable. Then the maximum likelihood estimate lod parametep is the setting oju

that maximizes the probability of the data setemfteferred to as the likelihood function

(L (@) which is expresses as,
L(u) =T1Y, P(x | ) (2.4.1)

SupposeX is a Bernoulli random variable anddefines the probability of a success.

Then the likelihood function becomes,
L() =T (1= pa)" (2.4.2)

It is usually much easier to maximize the log likebd function which results in the

same ML estimate by the monotonicity of the lodpamit It follows that,



logL (1) =Y % In g+ (1 %) (1 1)
i=1
Differentiating the RHS and setting the result éqoaero we have,

n oy N (1—
Zﬁzz( X)

oM =T 1w

Solving foru we have,

which implies,

w_1sy_M
H _NZ)g N

i=1
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(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

Where, m is the number of successes. Thus the maxiinkelihood estimate for the

probability of a success of a Bernoulli random &kl is the proportion of success. The

maximum likelihood estimate is biased with insuéfit data, however converges to the

true distribution in the limit of large data

2.4.2 Maximum a posterior Estimation

When prior knowledge about the parameters of aitondl distribution is available, it is

important to use these in estimating the trueidigtion. Maximum a posterior estimation

seeks to maximize the posterior distribution ower parameters given data on a given set

of random variables.
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Again let X be a random variable ardl = {x,, x,, - x,,} a dataset of cases, then the

posterior distribution is given by,

P(u| D):W (2.4.7)

Where P(u) denotes the prior distribution over the parameteand P(D|u) the
likelihood. SinceP(D)is independent gi we normally have the relation,

Posterior « Prior X Likelihood
In order to simplify the estimation of the posterdbstribution, we often choose priors
that have a similar form as the likelihood functidrhese are usually referred to as
conjugate priors. For example the Beta distribuisoa conjugate prior the parameter of a
Bernoulli random variable. Likewise, the Dirichleistribution for the multinomial
random variable. Suppogeis a Bernoulli random variable with probability siiccesg,

andBeta(ay, by) prior, then the posterior distribution oyecan be expressed as,
P(ulay,1, D)= cP(D|x )P |a, b)
= c(T1Y, " (1- )" ™ ) Betau | &, b)

— r(ao + tb) 2% +ay—-1 1— ¥ (1% )+hy-1
T )

Which is a beta distribution with number of success + a, —1
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The maximum value of the posterior distributioroigained at the maximum likelihood

estimate of, which has been show to %eHence the Map estimate ferwould be,

wap M+ 3-1
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Chapter 3: Iterative Knowledge Guided Search

In this section we describe the main contributibthes work: Thelterative Knowledge
Guided Search(IKGS).Though we are primarily interested in estimating tloint

distribution of a given set of random variables, wauld also like to extract as much
causal knowledggin this application statistical dependencieBpm the dataset as
possible to help increase our understanding ofdibain. The performance of most
search algorithms is largely domain dependant ptaered in (Mozaherul Hoque Abul
Hasanat 2010) making it difficult to identify ‘Best algorithm. Algorithms that may
correctly capture the joint distribution of the alatet may not always present the true
underlying causal network. The IKGS approach attsrtgpcombine expert knowledge of
a domain with the outputs of a collection of seaatdorithms to obtain a structure that
accurately estimates the joint distribution as veallpresent us with substantial causal
knowledge of the domain. We have explained thisr@pgh within the environment
TETRAD(Clark Glymour), a software for constructiBgyesian networks. The method

can however be easily implemented in other softwarkages.
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LEARNING

OUOMILEDICIE SEARCH ALGORITHMS

- §

INFORMATION
METRICS

VALIDATION

BN LITERATURE
PERFORMANCE
METRICS

Figure 3-1: Workflow for Iterative Knowledge Guided Search

Figure 3-1 is a workflow that describes how usiK@G$6 we can transition from data on a
set of random variables to a Bayesian network mddedre are three major stages in this

process:

1. Preprocessing of Data
2. Learning

3. Validation

3.1 Preprocessing of Data

Before any attempt is made to learn a Bayesianar&tmodel it is important to improve

the quality and workability of the data set. Seastborithms that learn Bayesian
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networks essentially look for dependencies amorey rdmdom variables making it
imperative to ensure that any factors that mighdtodi possible dependencies are
eliminated. Common preprocessing tasks may inclutla cleaning; dimension
reduction and imputation of missing values. Missmaflies don’t usually affect the effort
to train a Bayesian network however if the valuesret missing at random and account
for more that 30% of the data it would be advisdblémpute the missing values. This
will ensure that the correct distribution of vated is used in training the Bayesian
network. Other preprocessing efforts will dependlos data set and the intended use of
the Bayesian network. 70% of the data is sufficfentraining and 30% for testing. This

is however subject to the size of data available.

3.2 Learning

The learning phase is carried out in two stagest,Ftandidate Bayesian networks are
trained using a collection of search algorithms @reth we evaluate their performance in

classifying unseen data (test data) to selected firodel.

3.2.1 Training

During training, prior knowledge of the dependesciedges) between the random
variables are entered into TETRAD in the form efgiand edges. The tiers define which
random variable can potentially influence otherslevthe edges enforce dependencies

that must appear in or be absent from all learnetvaorks. Figure 3-2 provides an
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illustration of this concept in TETRAD. Six searalgorithms, based on both score and
constrained based approaches are used to traividual Bayesian networks. A
summary of the algorithms used is illustrated irbl€a3-1. Each candidate Bayesian
network is scored using the Kullback- Leibler (Kdistance, Mutual Information (Ml)
and the Bayesian Information Criteria (BIC) asrtirag metrics. These metrics evaluate
how closely the Bayesian Network Model (BNM) approates the true distribution.
The models with the best scores are selected andctbmmon edges are used to update

the knowledge base. The process is repeated umtinare common edges can be

— — — —
(5] Knowledge1 (Tiers and Edges) =z X ] Knowledge1 (Tiers and Edges) = X
Tiers | Other Groups | Edges | Text
Notin tier: #riers=| 8- Forbidden and Required Edges
—— - = - IS
[ Hispanic_]|[Menopause| [ agefirst_|[_agegrp ][ bmi__ ][ brstproc | [~
‘ cancer density hrt invasive | [ lastmamm nrelbc. =
- = Add [Hispanic |
Tier1 [] Forbid Within Tier || Forbidden S ] e
Add
‘ \M‘
[Tier 2 ] Forbid Within Tier Source
Layout
Knowledge =
1 Layout
Tier 3 (] Forbid Within Tier | =|
‘
Tier4 [ Forbid Within Tier
‘
B H
[ier 5 [ Forbid within Tier =
£l I [Tl ]
<l Show Forbidden By Tiers [¥] Show Forbidden Explicitly ] Show Required Explicitly
Use shift key to Select multipie items. Show Required by Groups [] Show Forbidden by Groups

Figure 3-2: TETRAD knowledge box illustrating tiers and edgesVariables in upper

tiers can influence variables in lower tiers
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We use search algorithms with different heuriapproaches to ensure that edges in the
final model are highly significant. By consistentlypdating our prior knowledge the

search space is constrained and the algorithmebéedo detect more significant edges.

SEARCH ALGORITHM DESCRIPTION

PC (Peter Spirtes 2000) Basic Constraint based algorithm

(Peter Clark)

PCLINGAM Takes the output of PC algorithm and the training data and

attempts to improve orientation

CPC Variant of PC algorithm that improves orientation

(Conservative PC)

JPC (Ramsey 2010) Runs iterations on the output of PC until convergence

(Joseph’s version of PC)

JCPC Same as JPC but with PC

(Joseph’s Version of CPC)

GES(Chickering 2002) Score based Algorithm

(Greedy Equivalence Search)

Table 3-1 : Summary of Search Algorithms
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3.2.2 Performance Evaluation

Once the training phase is over, the best resullAg’s are used in turn to
classify each variable in the test data set. Thegrtion of correct classification defined
as the ratio of correctly classified cases to thal tcases, is computed and averaged out
across all variables. This gives a measure of h@l @ach of the candidate Bayesian
networks can predict unseen data. The resultsngggpreted as the higher the proportion
of correct classification the better the networky &mparing these results to those

obtained in the final stage of training we selefihal Bayesian network.

3.3 Validation

The validation stage involves a comparison of ttiges identified by our final model
with published dependencies between the randorablas of interest.

We initially classify edges as being

1. Validated by Literature
2. Rejected by Literature

3. Without Evidence

For edges without evidence we consult with domaxpeds to determine their

significance. Edges in the literature which areatadted by our model may be added and
the performance of the model re-evaluated. Theliglof our model is then measured as
a ratio of the total number of edges validateditgydture to the total number of edges

learned from the dataset.
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Chapter 4: Application to Breast Cancer Risk Prediction

Our goal is to use data from the breast cancereslamnce consortium to develop a
Bayesian network which would present the dependenbetween breast cancer risk
factors and from which we can simulate clinicaltava to interrogate already existing

risk prediction algorithms.

4.1 Data Description and Preprocessing

Our data set originally contained 2,392,998 recafilindex screening mammograms
from women included in the Breast Cancer Surveska@onsortium(Barlow WE 2006).

There were a total of fourteen variables describivgrious pathological and

mammography characteristics of the women. Thesahblas have been determined to
influence a woman'’s risk for developing breast earand will henceforth be referred as
risk factors. The variables include information the women who developed breast
cancer after a one year follow up. An extra tragnuariable was included to determine
which of the record was suitable for training anklick for validation. The size of the

data set was reduced to 302,355 records by intnogluec count variable indicating the
frequency of each combination of patient charasties.

The data set was reverted to its original size $ygithe count variable. A total of

150,000 records were sample from original datarining (90%) and validating (10%)

the Bayesian network, henceforth referred to asptanhata. The data set was stratified
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using the cancer variable and a simple random sampgt taken from each stratum in
proportion to the original distribution of the cancsariable. Histogram plots were used
to ensure that sampled data did not distort thgir@i distribution of the data as
illustrated in Figure 4-2. A total of 21.44% of tdata was missing with 12,375 complete
records. Table 3-1 provides a brief descriptiorthaf variables in the data set and the
number of records that were missing.

The training and count variables were removed ftbe data set after they had been
used. Typically Bayesian networks can be trainedgusicomplete data (with missing
values), however the distribution of missing valueast be random and present no
sample bias. To avoid errors that may result fr@ta chot being missing at random we
imputed the missing values using multiple imputagioFigure 4-1 describes the multiple

imputation process.
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Figure 4-2: Comparison of sampled data with original data
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Figure 4-1: Multiple Imputations with Chained Equations



50

Variables Description include order number.mis all.mis type collinear
1 Menopause Menopausal status Yes 1 11397 No binary No
positive-
Agegrp
2 Age group Yes NA 0 No . No
continuous
Densi ordered-
3 ensity 2 40755 N N
Breast density Yes ° . °
categorical
ordered-
Race
4 Race Yes 3 23725 No . No
categorical
5 Hispanic Hispanic Yes 4 30554 No binary No
ordered-
Bmi
6 Body Mass Index Yes > 83732 No ) No
categorical
; ordered-
Agefirst
/ Age at first life birth Yes 6 83408 No ) No
categorical
. ordered-
Nrelbc Number of relatives
8 with first degree breast Yes 7 22863 No ) No
categorical
cancer
Previous breast
9 Brstproc Yes 8 15431 No binary No
procedure
10 Lastmamm Result of last v 9 34983 No binary No
mammogram before es
index mammogram
11 Surgmeno Surgical menopause Yes 10 78234 No binary No
Current hormone
12 Hrt Ves 11 61514 No binary No
therapy
13 Invasive Diagnosis of Invasive Yes NA 0 No binary No
Breast Cancer
Diagnosis of invasive or
Cancer ductal carcinoma in situ .
14 breast cancer within one Yes NA 0 No binary No
year of index screening
mammogram
15 Training Training/Testing Yes NA 0 No binary No

Table4-1: Description of Variable
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We ensured that the distribution of imputed vagablvas similar to that of the actual
variables. Histograms of the distribution of imglittata against observed data illustrated
in Figure 4-3 show that the imputed data presenved original distribution. Three
Imputed data sets resulted from the imputation gg®@nd one was selected at random

for training the Bayesian networks.
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Figure 4-3: Comparison of sampled data with imputed data
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4.2 Learning

4.2.1 Training

Six search algorithms as described in chapter % welectively used in training six
Bayesian network models (BNM). For each iteratittve models with the highest BIC
score, Mutual Information and KL Distance were sild as candidate Bayesian
networks. The common edges in these graphs weredadthe prior knowledge. The
cycle of search and knowledge update continued onotimore common edges were
detected. The model generated by each algorithmdeioted by NAME-BNM. For
example the model generated by the GES algorithinbeidenoted GES-BNM. The
prior knowledge of the structure of the Bayesiatwoek, used for the search, was
obtained by interviewing experts in Breast Canesearch. This information was entered

in TETRAD in the form of tiers and Edges as illastd in Figure 4-4
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Figure 4-4: Entering Prior Knowledge into TETRAD

Out of the 135,000 (90%) of the sample data deseghfar training, 25,000 records were
sampled successively to train the six Bayesian orsvon each iteration. This was done
primarily to reduce the learning time. A total a¥e iterations were performed after
which no more common edges could be detected. Hosvledge updates for each
iteration are presented in Figure 4-5. Table 4-8wshthe results of metrics at each

iteration.
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Figure 4-5: Knowledge updates per Iteration
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SEARCH ITERATION 1 ITERATION 2 ITERATION 3
ALGORITHM
PC -220,987.52 30.22 0.023 23 -223,597.62 31.52 0.074 24 -223,542.43 32.21 0.072 27

-223,611.83 31.71 0.040 0.046

CPC -233,609.41 -223,839.50 31.10 23

JCPC 0.026

- o

PC -223,876.30 -223,398.03 31.80 0.076

-220,824.12 -221,273.39 -224,150.76  36.30 25

o -

-217,243.18

ITERATION 4 ITERATION 5

CPC -223,162.39 31.40 0.018 -223,452.35

JCPC -221,202.44 31.50 0.017 24 -227,768.35 32.70 0.017 25

-217,007.64 -217,174.09

Table 4-2 : Results of metrics for each iteration

At the end of the fifth iteration, the best perfamgpnmodels were CPC-BNM, JPC-BNM
GES-BNM. GES-BNM had both the highest BIC scorel-274.092) and KL distance

(36.80). CPC-BNM had the highest mutual informat{6r0164). We added JPC-BNM
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which had the second highest KL distance (33.50)veccould have three models for

performance evaluation. The DAG’s of these thredetware illustrated in Figure 4-6.

JPC _ CPC T

ccccc

Figure 4-6: Best Performing DAG’s

4.2.2 Performance Evaluation

Each of the candidate Bayesian networks obtainet the training phase was used in
turn to classify all the variables in the data Jéte classification rates for each model
were obtained by averaging the rates across alblas. CPC-BNM correctly classified
75.65% of the data, while JPC-BNM and GES-BNM dfeess 75.27% and 74.99%

respectively.
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In selecting the final Bayesian network we wereeliested in a model which was
parsimonious, had produced a relatively close ediim of the joint distribution of risk

factors and performed relatively well in predictimgseen data. Although CPC-BNM had
a relatively high classification rate (75.65%),Ktis distance was relative low (31.50) and
had a total of 22 edges. JPC-BNM and GES-BNM seetoegerform equally in

classification (75.27%/74.99%), but GES-BNM'’s higlkd. distance (36.80/33.50) and
fewer edges (16/25) make it the more desirableidatel of the two. Since the primary
purpose of the learned network is to generate cainavatars consistent with the
distribution of the dataset and not for classifmat we choose GES-BNM as our final

model.

4.3 Validation

In order to validate our final model, we mined fiterature on associations between
breast cancer risk factors and constructed a Bayestwork whose edges were based on

our findings. Figure 4-7 shows our final model &nel mined model.
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Figure 4-7: Mined Model (a) and IKGS model (b)

A total of nine risk factors each with directed esldo cancer and invasive, were absent
from our model. We suspect that the very small priopgn of women in our data set
which developed cancer (0.04%) may have been iogrif to detect any reasonable
correlation of cancer or invasive with the riskttas. We considered this a defect of our
data set and not our learning approach. To createra level playing field we removed
all the edges to cancer and invasive in the mirgdark and compared the resulting

graph with our final model. Figure 4-8 shows théueed model.
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Figure 4-8: Reduced mined model

While the reduced mined model had 14 edges theSIKtddel had 16 edges. Seven of
mined dependencies were correctly detected by Klé&S1 model. The directed edge
between bmi and density was reversed in the IKG8eaindhe remaining seven were not
detected by the IKGS model. There were also sewsn edges detected by the IKGS
model not supported by literature. We propose treseootential dependencies that
should be investigated by domain expects. To assessclose the IKGS model was to
the mined model, we computed the Kl-distance ard &lores using the mined model
and compared with the results we had with the IK@&lel. The results as shown in

Table 4-3 illustrate that IKGS had higher likeliltbof generating the training data than
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the mined model (BIC:-220093.98/-216617.90). Tharitiution estimated by the mined
model was however closer to the true distributidrant the IKGS model (KL:

39.70/36.80).

Model BIC KL NUM EDGES
Mined-BNM -220,093.9879 39.74 14
IKGS-BNM -216,617.90 36.80 16

PC-BNM -220,987.5207 30.22335 23
PCL-BNM -222,424.3548 27.28397 23
CPC-BNM 223,611.8346 29.06333 25
JPC-BNM -219,784.521 28.31646 24

JCPC-BNM -220,824.1186 30.73635 24
GES-BNM 217,243.1787 33.60531 12

Table 4-3: Comparing metrics of Mined model and IKGS model
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Chapter 5: Conclusion and Recommendation

5.1 Conclusions

We have developed a search approach that harnmsasrengths of already existing
algorithms to learn a Bayesian network that prodweimproved estimation of the joint
distribution of a set of random variables. Using tBayesian information criteria,
Kullback-Leibler distance and Mutual informatione Wwave selected a model that closely
matches the distribution of a dataset. By consiisteipdating our prior knowledge of the
true structure of the Bayesian network we are #@bleroduce a model whose edges are
consistent with the independence relations thatl nolthe true distribution. We have
applied this approach to learn the Bayesian netimrkreast cancer risk factors, which
will be used in simulating clinical avatars (adiél patient populations) for interrogating
various risk prediction models. We have shown usiregKullback-Leibler distance and
Bayesian information Criterion that our final motksirned with the Iterative Knowledge
Guided Search (IKGS) is a better estimate of tlstridution of risk factors compared
with the output of any single search algorithm. &mparing our IKGS model with a
mined model constructed from published breast qasitelies, we have shown that our

model agrees with literature on breast cancer.
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5.2 Recommendations

The lterative Knowledge Guided Search (IKGS) apginda learning Bayesian networks
is far from fully developed. For improved perforrcanwe have made the following

recommendation:

1. A more precise implementation of the Kullback-Leibtlistance should be used
in model selection.

2. Search Algorithms that are likely to produce simgatputs should be removed
from the algorithm set to reduce learning time.

3. The methodology should be extended to learn Bayes&works in causally
insufficient domains.

4. A more rigorous validation of the final learned reb&ghould be performed
especially to assess the consistency of the leadepéndencies with the true
distribution. We suggest a direct checking of tidependence relations obtained
by d-separation with the conditional probabilitypl&a Chi-square tests could
also be performed on the simulated avatars to check consistency.

5. We also believe that using all the records with women who developed breast
cancer for training and testing the Bayesian network may provide a better
reflection of the dependencies between the risk factors. Better still, the
original data set could be sampled to support current statistics of 12% of

women at risk of developing cancer.
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IKGS is still quite manual and would be considerably more efficient if a single

algorithm was written for the entire process.
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Appendix

Al: Essential Algorithms
Pseudo code for PC algorithm (Constrained Basgdrihm)

A) Form the complete undirected graph C on the vexgeX .

B)

n=0,

repeat

repeat
select an ordered pair of variables X and Y that adjacent in C such that
Adjacencies(C,X){Y} has cardinality greater thanemual to n, and a subset S of
Adjacencies(C,X){Y} of cardinality n, and if X an¥ are d-separated given S
delete X-Y from C and record S in Sepset(X,Y) aegset(Y,X) until all ordered
pairs of adjacent variables X and Y such that Aelj@mies(C,X)\{Y} has
cardinality greater than or equal to n and all sth$ of Adjacencies(C,X)\{Y}
of cardinality n have been tested for d-separation;
n=n+l1;
until for each ordered pair of adjacent vertice¥ XAdjacencies(C,X)\{Y} is of

cardinality less than n.
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C) For each triple of vertices, X,Y,Z such that th& paY and the pair Y,Z are each
adjacent in C but the pair X,Z are not adjacer@ jorient X-Y-Z asX ->Y « Z
if and only if Y is not in Sepset(X,2)

D) Repeat

If A— B, B and C are adjacent, A and C are not adjacedtflzere is no arrow
head at B, then orient B-C &— C.

If there is a directed path from A to B, and anestigtween A and B, then orient
A-BasA—>B.

Until no more edges can be oriented. (Peter Sp2@eg)

Matlab codes for Data preprocessing

% Algorithm to replace missing values

for i=1:size(data,2)
if i==
%do nothing
else
data(find(data(:;,i)==11),i)= NaN;
end
end

% Produces normalized histogram of between variable s in two data sets

%generate proportions
nl=hist(datal(;,1));
nl = nl(;,find(nl));
n2=hist(data2(:,1));
n2 = n2(:,find(n2));
y = unique(datal(:,1));



x =[(n1./sum(nl))' (n2./sum(n2));

set(0, 'defaultaxesfontsize' ,20);
subplot(2,2,1); bar(y,x,.25, 'hist” ); % <- percentage cum dist
ylabel( "\bf\fontsize{20} Proportion’ );
xlabel( \bf\fontsize{20} Values' )
title( ‘\bf\fontsize{20} Menopause' )
legend( 'Sampled Data' , 'Original Data' )
grid on

%% variable 2
nl=hist(datal(;,2));
nl = nl(;,find(nl));
n2=hist(data2(:,2));
n2 = n2(:,find(n2));
y = unique(datal(:,2));
X =[(n1./sum(nl))' (n2./sum(n2));

set(0, 'defaultaxesfontsize' ,20);
subplot(2,2,2); bar(y,x,.25, 'hist  ); % <- percentage cum dist
ylabel( "\bf\fontsize{20} Proportion' );
xlabel( \bf\fontsize{20} Values' )
title( "\bf\fontsize{20} Agegrp’ )
legend( 'Sampled Data' , 'Original Data' )
grid on

%% Variable 3
nl=hist(datal(;,3));
nl = nl(;,find(nl));
n2=hist(data2(:,3));
n2 = n2(;,find(n2));
y = unique(datal(:,3));
X =[(n1./sum(nl))' (n2./sum(n2));

set(0, ‘'defaultaxesfontsize' ,20);
subplot(2,2,3); bar(y,x,.25, 'hist” ); % <- percentage cum dist
ylabel( "\bf\fontsize{20} Proportion' );
xlabel( \bf\fontsize{20} Values' )
title( "\bf\fontsize{20} Race' )
legend( 'Sampled Data' , 'Original Data' )
grid on

%% Variable 4
nl=hist(datal(;,14));
nl = nl(;,find(nl));
n2=hist(data2(:,14));
n2 = n2(;,find(n2));
y = unique(datal(:,14));
X =[(n1./sum(nl))' (n2./sum(n2));

set(0, 'defaultaxesfontsize' ,20);

66
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subplot(2,2,4); bar(y,x,.25, 'hist ); % <- percentage cum dist
ylabel( \bf\fontsize{20} Proportion’ );
xlabel( \bf\fontsize{20} Values' )
title( \bf\fontsize{20} Cancer'
legend( 'Sampled Data' , 'Original Data' )
grid on

% Algorithm to expand data set using count column

% BCdata = importdata('BCdata.txt','\t',1) % load Data
BCexpand = zeros(2392998,16); %create new matrix for expanded data set
numold = 1;

for i=1:size(BCdata.data,1)
num = BCdata.data(i,16);
row = BCdata.data(i,:);
mat = repmat(row,num,1);
BCexpand(numold:numold+(num-1),:)= mat;
numold = numold+num;

end

% program to compute normed KL distance between two data sets(joint
% probability distributions

function  [dnorm,dist] = normKLDiv(P,Q,maxbin)
clc
p = multprob(P,maxbin); % distribution of true distribution
g = multprob(Q,maxbin); % distribution of estimated distribution
m = size(p,2);
dist = zeros(1,m);
for i=1:m
p1 = p(.i);
ql = q(.i);
pdist = p1(find(pl));
gdist = g1(find(ql));
dist(i) = sum(pdist.*log(pdist./qdist));

end

logdist = log(dist);

dnorm = norm(logdist,2); % computes the Euclidean norm of the
distribution vector
% program to compute the probability vector of a mu [tinomial
distribution probability distributions

function  p = multprob(x,maxbin)

% p = multprob(x1,x2) computes the probability dist ribution of the
% multinomial random variable x
% Input: x = n x m matrix of m random variables and n cases of each

% maxbin: the maximum bins for all variables in distribution



% Output: p: maxbin x m matrix containing probabili
each
% random variable

m = size(x,2);
p = zeros(maxbin,m); % zeros vector for probability distribution
for i=1:size(x,2)

u = unique(x(:,i));
for j=1: length(u)
p(,i) = length(find(x(:,i) == u(j)))/lengt
end
end

ty distribution of

h(x(.i));

68
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