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ABSTRACT 

AN EFFICIENT METHODOLOGY FOR LEARNING BAYESIAN 
NETWORKS 

 

by 

Emmanuel Asante-Asamani 

 

The University of Wisconsin Milwaukee, 2012 
Under the Supervision of Professor Istvan Lauko 

 

Statistics from the National Cancer Institute indicate that 1 in 8 women will develop 

Breast cancer in their lifetime. Researchers have developed numerous statistical models 

to predict breast cancer risk however physicians are hesitant to use these models because 

of disparities in the predictions they produce. In an effort to reduce these disparities, we 

use Bayesian networks to capture the joint distribution of risk factors, and simulate 

artificial patient populations (clinical avatars) for interrogating the existing risk 

prediction models. The challenge in this effort has been to produce a Bayesian network 

whose dependencies agree with literature and are good estimates of the joint distribution 

of risk factors. In this work, we propose a methodology for learning Bayesian networks 

that uses prior knowledge to guide a collection of search algorithms in identifying an 

optimum structure.  Using data from the breast cancer surveillance consortium we have 

shown that our methodology produces a Bayesian network with consistent dependencies 

and a better estimate of the distribution of risk factors compared with existing methods.  
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Chapter 1: Introduction  

1.1 Background to Breast Cancer  

Breast Cancer is a cancer that is initiated from the tissues of the breast. There are two 

main types: Ductal carcinoma, which starts in the milk ducts and Lobular carcinoma 

which starts in the lobules. The most common form of breast cancer is ductal carcinoma. 

The disease may be invasive, which typically describes the stage where the cancer has 

spread to nearby tissues, or non invasive (in situ) which is when the disease is contained 

in a particular breast tissue. Breast cancer may be classified as being in stage I, II, III or 

IV. Usually stage I-III can be treated through procedures such as lumpectomy, 

mastectomy, hormone therapy, or chemotherapy to remove the cancerous cells. Stage IV 

cancer’s are generally incurable and can only be managed to prolong life.  

 

Statistics from the national cancer center indicates that 1 in every 8 women born in the 

US will develop breast cancer in their lifetime (Institute 2010). This makes it imperative 

for every woman to regularly examine herself for any symptoms of the disease and have 

it treated early before it becomes malignant. Common symptoms of breast cancer 

include: breast lumps, change in size, shape or feel of the breasts, unusual fluid coming 

from the nipple. 
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Figure 1-1: Normal breast with non–invasive ductal carcinoma in situ (DCIS) in an 

enlarged cross–section of the duct 

 

 An even more important preventive measure is for every woman to know her risk of 

getting breast cancer so physicians can perform regular examinations to detect any onset 

of the disease. There are a number of factors that tend to increase a woman’s risk for 

breast cancer namely age, family history of breast cancer, genes, menstrual cycle, alcohol 

use, childbirth, hormone replacement therapy (HRT) and radiation. Typically the disease 

is more prevalent in women over the age of 50 years and those who have close relatives 

with breast cancer (reference). Women with defective BRCA1 and BRCA2 genes are 

also at risk of getting breast cancer. These genes usually produce proteins that prevent 
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cancer. Any mutations can produce a counter effect. It has been reported that women who 

got their periods early (<12 years) or experienced a late menopause (>50 years) have an 

increased risk for breast cancer. Research also shows that having more than 1-2 glasses of 

alcohol a day may increase the incidence of breast cancer. Women who have received 

some form of hormone replacement therapy with estrogen also have an increased risk for 

breast cancer. Exposure to radiation around the chest area may also lead to higher risk for 

breast cancer.  

 

1.2 Risk prediction Models 

A number of statistical models have been developed to predict a woman’s risk for breast 

cancer. Gail in 1989 produced a model that gives a five year risk for breast cancer based 

on age at menarche, age at first live birth, number of previous biopsies, and number of 

first-degree relatives with breast cancer (Gail 1989). In 1999 he formulated an improved 

model by including history of atypical hyperplasia and in 2007 extended his model to an 

African American population. Other models have resulted from some modification of the 

Gail model either by including more risk factors or extending to a different population. 

For example the Tice model (Jeffrey A. Tice 2008) developed in 2008 included breast 

density and race into the Gail 1999 model and extended to a US mixed population.  

Chlebowski (Richard J Santeen 2007) also added alcohol, bmi, hrt, breast feeding, 

physical activity, parity and smoker to the Gail 1999 model and also extended to a US 
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mixed population. Similar models have been developed for Japanese, Korean, Italian and 

European mixed populations.  

 

1.3 Reducing Health disparities by simulated populations 

There are several risk prediction models out there, each developed with a different study 

population and data set. For the physician at the point of care, it is important to decide 

which model is suitable for a patient’s unique characteristics. Unfortunately, the lack of a 

comprehensive assessment of these predictive models makes that task difficult, 

occasionally resulting in inaccurate risk predictions. The center for Biomedical 

Informatics (HMS-at Harvard Medical School) and The Laboratory for Public Health 

Informatics and Genomics (LPHIG – at UWM) have begun efforts to reduce this 

disparity by interrogating currently existing risk prediction models to identify and 

document their strengths and weaknesses. The project begun with an extensive review of 

all currently existing risk prediction algorithms and the construction of a pedigree to 

illustrate the relationships between them. The project is currently in its second phase 

where a Bayesian network model describing the dependencies between the risk factors is 

required to simulate artificial patient populations (clinical avatars) for the interrogation 

of the risk prediction models. 

 

Bayesian networks have become the tool of choice by most researchers for knowledge 

discovery because of their facility in approximating complex multivariable distributions 
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and incorporating prior domain knowledge. Knowledge obtained from Bayesian networks 

have been used in a wide variety of applications. For instance, high level biological 

knowledge obtained from gene ontologies have been incorporated into Bayesian 

networks trained on protein interaction data for diagnostic reasoning and prediction of 

protein function.   (Jung Hun Oh 2011) also used Bayesian networks to predict local 

failure in lung cancer and recorded significant improvement in their predictions 

compared with standard dose-volume models.  Nurse researchers are now able to 

incorporate both clinical and theoretical knowledge in mining very large hospital 

information data bases using Bayesian networks (Sun-Mi Lee 2003).  Knowledge from 

Bayesian network have also been used in facilitating secondary use of EMR data for 

predicting study outcomes,  conducting  retrospective studies and simulating clinical 

trials. 

 

The literature is filled with a plethora of algorithms for training Bayesian networks 

(David Heckerman 1995; Peter Spirtes 2000; Chickering 2002), but as  pointed out by 

(Guoliang LI 2007) most of the learned networks produce edges which may be  

inconsistent with domain knowledge. The performance of Bayesian networks seems to 

rely heavily on characteristics of the problem domain making it difficult to rank one 

algorithm as preferable to others(Mozaherul Hoque Abul Hasanat 2010). 

 

In this work we propose a methodology for training Bayesian networks that harnesses the 

strengths of already existing algorithms to produce Bayesian networks which offer 
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improved estimation of the distribution of random variables.  We show that our 

methodology when applied to modeling breast cancer risk produces edges consistent with 

literature, making it ideal for simulating clinical avatars. 
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Chapter 2: Theoretical Background to Bayesian Networks 

2.1 Estimating Joint Probability 

DistributionEQUATION CHAPTER 2 SECTION 1 

Consider the random variables �, �, �, �, � for which we would like to obtain their joint 

probability distribution, ���, �, �, �, �	. By the chain rule of probability we can express 

the joint distribution in the form,   

 ( , , , , ) ( ) ( | ) ( | , ) ( | , , ) ( | , , , , )P X Y Z W T P X P Y X P Z X Y P W X Y Z P T X Y Z W T=  (2.1.1)                                          

What remains is be to estimate the conditional distribution of each of the terms on the 

RHS of (2.1.1). Suppose for simplicity and convenience of illustration that �, �, �, �, � 

are discrete binary random variables, then the conditional distributions would be relative 

frequencies of the different values of each variable. A total of 31 free parameters would 

need to be estimated to fully specify the joint distribution. The breakdown is as follows, 

����	 � 1;  ���|�	 � 2;  ���|�, �	 � 4; ���|�, �, �	 � 8; ���|�, �, �, �, �	 � 16�. 
Now suppose we knew the following conditional independence facts about the random 

variables:� � �, �|�, �; � � �|�, �; � � �, �|� and finally � � �, then the joint 

distribution (2.1.1) could be simplified to the form 

 ( , , , , ) ( ) ( ) ( | , ) ( | ) ( | , )P X Y Z W T P X P Y P Z X Y P W Y P T Z W=   (2.1.2) 

which reduces the number of free parameters to be estimated to 10. Thus by applying 

knowledge of conditional independence facts about the random variables we are able to 



8 

 

 

 

reduce the number of parameters by 21. This might not appear to present much savings in 

computation of the joint distribution however if instead of five binary variables we now 

have twenty multinomial variables, it becomes clear the significant amount of 

computational time saved, making the estimation process more tractable. 

2.1.1 DAG’s and Probability Distribution 

A Bayesian network is a probability graphical model which encodes knowledge of the 

conditional independence facts among a set of random variables. It consists of nodes 

which represent random variables and edges which indicate the independence relations 

between them. The presence of an edge between two nodes is an indication that the two 

random variables are directly dependent. The absence of an edge on the other hand is an 

indication of conditional independence. All edges in a Bayesian network are directed (i.e. 

they have an arrow head at one end which indicates the direction of the dependency). If 

two variables � and � have a directed edge between them as illustrated in Figure 2-1 then 

the probability distribution over � is dependent on �.The variable � is termed a parent of 

� and � a child of �.  

 

Any sequence of nodes and edges in a graph is called a path. If all the edges  in a path are 

in a particular direction then the path is said to be a directed path otherwise it is 

 Y  X 

Figure 2-1: Direct Dependence 
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undirected. For a sequence of nodes ����� on a directed path such that the path is out 

of X and into T, the nodes ��� are referred to as ancestors of �and � a descendant of �. 

If there is no directed path that starts from one node and ends in the same node, the graph 

is said to be acyclic. Bayesian networks are typically directed acyclic graphs. 

Given a Bayesian network whose structure correctly represents the conditional 

independence relationships among random variables, we are able to simplify the 

factorization of the joint distribution and conveniently estimate its parameters. 

2.1.2 The Markov Condition 

Suppose we have a Bayesian network whose structure is an accurate representation of the 

conditional independence relationships among a set of random variables, we are able, by 

mean of the Markov Condition, to extract all the conditional independence facts 

necessary to simplify the representation of the joint distribution. The Condition states: 

 Definition: (Markov Condition) 

 A directed acyclic graph (DAG) and a probability distribution satisfy the 

Markov condition if every node in the graph is conditionally independent of all 

its non-descendants given its parents (���	 i.e 

   1( | , ) ( | )j n j j jP X X X Pa P X Pa=L  

   Where �� � ��are non-descendants of �� 

Therefore if a Bayesian network and probability distribution satisfy the Markov 

Condition, then by identifying the parents of each node in the graph the conditional 
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independence relationships necessary to reduce the factorization of the joint distribution 

can be extracted. 

Consider the structure in Figure 2-2, by the chain rule of probability the joint distribution 

can be factorized as follows: 

( , , , , ) ( ) ( | ) ( | , ) ( | , , ) ( | , , , )P X Y Z W T P X P Y X P Z Y X P W X Y Z P T X Y Z W=   (2.1.3) 

 

From the DAG the parents of each variable are as indicated in (table) 

Now by applying the Markov condition the joint distribution (2.1.3) simplifies to, 

 ( , , , , ) ( ) ( | ) ( | ) ( | ) ( | )P X Y Z W T P X P Y X P Z Y P W Y P T Z= .  (2.1.4) 

From which we can estimate the parameters of the distribution more easily using standard 

methods of parameter estimation. One of the important questions we would like to 

 X 

 W 
 Z 

 Y 

 T 

Figure 2-2: Directed Acyclic Graph illustrating Markov Condition  
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answer is the existence of a DAG structure that contains all the independence relationship 

of a probability distribution. In the next section we attempt to answer this question by 

discussing faithfulness and Minimality.  

 

2.1.3 Faithfulness and Minimality Condition 

What we asserted in the previous section is that if a DAG satisfies the Markov condition 

then it could be used to reduce the factorization of the joint distribution over a set of 

random variables. But is satisfying the Markov condition enough to presume reducibility? 

A DAG can satisfy the Markov condition and yet not reflect all the conditional 

independence relationships true among the random variables. Consider the DAG in 

Figure 2-3, suppose for a distribution, P over {X,Y,Z} for which the DAG satisfies the 

Markov condition we have the relation � � �. This relation clearly, does not violate the 

Markov condition since X has no parents, yet the DAG does not reflect this constraint. 

The Markov condition though sufficient in reducing the factorization of the joint 

distribution may not entail all its dependencies.  
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A stronger requirement is the Minimality condition which may be defined as follows: 

 Definition: (Minimality Condition) 

 Let G, be a DAG with vertex set V and P a probability distribution on V 

generated by G. Then <G, P> satisfies the Minimality condition if and only if 

every proper sub graph H of G with vertex set V, the pair <H,P> does not 

satisfy the Markov condition.  

In other words, a DAG satisfies the Minimality condition if and only if it fails to satisfy 

the Markov condition by removing an edge. 

The Markov condition applied to a graph produces a set of independence relations that 

usually entail other dependencies. A probability distribution over a set of random 

variables may also have some dependencies that are not entailed in applying the Markov 

condition to a DAG. If however, all and only the conditional independence relations that 

are true in the probability distribution, P are entailed in applying the Markov condition to 

 Y  X 

 Z 

Figure 2-3: Illustrating Minimality condition 
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a DAG, G then the graph and the probability distribution are said to be faithful to each 

other. A formal definition is as follows: 

 Definition (Faithfulness) 

 Let G be a DAG and P, a probability distribution generated by G. then <G, P> 

satisfies the faithfulness condition if and only if every conditional independence 

relation true in P, is entailed by the Markov condition applied to G.  

If a DAG satisfies the Markov and faithfulness condition then it implies the Minimality 

condition is satisfied. The Markov and Minimality condition do not however imply 

faithfulness.  Ideally our goal would have been to learn faithful DAG’s but these are not 

always easy to find. So for the purpose of simulating clinical avatars we will be 

comfortable with DAG’s satisfying the Markov and Minimality condition. 

 

2.1.4 D Separation 

The Markov condition tells us the conditional independence relations necessary for 

reducing the factorization of the joint distribution of a set of random variables. However 

we may be interested in testing other dependencies which may not be obvious from a 

direct application of the Markov condition. For example consider the DAG in Figure 2-4, 

from the Markov condition we can detect the following independence relations, 
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( , , ) |

( , ) | ,

( , ) | ,

,

W

Y H Z W X

H Y W X Z

X

Z Y H X W

W X Y

⊥

⊥

⊥

⊥

⊥

  (2.1.5) 

 

  

Suppose we wanted to test the following independence relations which are not a direct 

consequence of the Markov condition, 

 |

|

W

Y W Z

Y

Y W H

⊥

⊥

⊥

  (2.1.6) 

It is not clear how to arrive at a conclusion. The d-separation criteria help us to draw such 

conclusions. The relations � � � is really asking if the path from � to � is blocked 

 X 

 Z  Y 

 H 

W 

Figure 2-4: Illustrating D-Separation 
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without conditioning on any node. We will now discuss how paths between nodes may be 

blocked after which a formal definition of D-separation will be given. An observed node 

is one that has been conditioned upon and an unobserved node is without conditioning. If 

a path between two nodes is not blocked we will refer to it as active. 

In the language of information theory, a path between two nodes is said to be blocked if 

information cannot flow from one node to another. Figure 2-5 presents a summary of 

different paths and the conditions under which they may be considered blocked. 
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The path between X and Y illustrating a head to head meeting at � Figure 2-5a is blocked 

when � is unobserved but active when � is observed. The head to tail meeting at � 

illustrated in Figure 2-5b is active when � is unobserved and becomes blocked when � is 

(c) tail to tail meeting 

 Z  Y  X  Z  Y  X 

 Z  Y  X 

 Z  Y  X 

 Z  X  Y 

 Z  Y  X 

(a) head to head meeting  (b) head to tail meeting 

Blocked Active 

Active Blocked 

Blocked 

Active 

Figure 2-5: Blocked and Active paths illustrating d-separation 
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observed. Similarly, the tail to tail meeting in Figure 2-5c is active when � is not 

observed and is blocked when � is observed. 

Suppose there is more than one node between � and � as illustrated in Figure 2-6 then 

the path is blocked if any of the intermediary nodes renders it blocked. 

 

 Definition: (D-separation) 

 Two nodes � and � in a directed acyclic graph are said to be d-separated by a 

non intersecting set of nodes � if all paths between � and � are blocked when 

the nodes in � are observed. 

Now returning to the independence relations in (2.1.6) we draw the following 

conclusions: 

1) � � �: The paths between � and � are � �, �, �, � �  and �
�, �, �, �, � � which are all blocked when either H or Z are unobserved. 

Hence � and � are d-separated without conditioning on any other node 

and the assertion holds 

  

 Z  W  X  Y 

Figure 2-6: Illustrating d--separation by more than one node 
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2) � � �|�: Conditioning on � activates the path � �, �, �, � � hence � 

and � are not d-separated given � and the conditional independence 

assertion fails to hold. 

 

3) � � �|�: Though conditioning on H activates the path � �, �, �, � � 

� still blocks the path  � �, �, �, �, � � and � �, �, �, � � hence � and 

� are d-separated given H and the conditional independence assertion 

holds. 

2.2 Learning Bayesian Networks EQUATION SECTION 2 

So far we have assumed that we had a Bayesian network from which we estimated the 

joint distribution of the random variables. In this section we describe how Bayesian 

networks can be constructed. Specifying a Bayesian network involves: 

1) Constructing the Directed Acyclic Graph 

2) Estimating the parameters of the network 

DAGs may be constructed directly from knowledge about the causal relationships 

between the random variables. These DAG’s are commonly known as causal 

graphs(Pearl 2000). For example, consider a house fitted with an alarm system which 

goes off if either a burglar breaks into the house or there is an earthquake. There is a dog 

in the house which barks either when the Alarm goes off or it has fever. Let the random 

variable of interest be A-Alarm, B-Burglar, E-earthquake, D-Dog, F-Fever. To construct 



19 

 

 

 

a causal graph we will work our way down from causes to effects. The resulting causal 

structure is illustrated in Figure 2-7 

 

The second approach which is the direction of this work is in learning the structure.There 

are two major approaches to learning Bayesian networks from data, the Bayesian 

approach and the constrained based approach. In the Bayesian approach a score is 

assigned to DAG’s in the space of possible Bayesian networks and the DAG with the 

highest score is returned. Constrained based algorithms on the other hand perform tests of 

conditional independence on all possible pairs of variables conditioned on every relevant 

subset of nodes, returning a structure which represents the independence relations that are 

true among the variables in the data set. We present a more detailed description of these 

methods in the next sections. 

 B  E 

 A 

 D 

Figure 2-7: A Bayesian network constructed from causal knowledge 
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2.2.1 Bayesian Learning 

Given a set of random variables  ��, �!, �" � �#$ % & and a dataset of examples of 

these variables ��, �!, �" � ��$ % ', suppose we wanted to determine���|', (	, which 

is the probability distribution of a new case �, given the database ' and our current state 

of information (. Assume also that the data ' is a random sample from a distribution P, 

specified by an unknown Bayesian network structure, )*. Let )*+ denote the hypothesis 

that the data is generated by network structure )* and that the hypotheses corresponding 

to all possible network structures form a mutually exclusive and collectively exhaustive 

set, then by laws of probability, 

 ( | , ( , | ,) )h
s

h
sB

P C D P C B Dξ ξ= ∑   (2.2.1) 

From Bayes rule, 

 
( | , ,

( ,
) ( , , )

)
( , )

| ,
h h

h s s
s

P C B D P B D
P C B

D
D

P

ξ ξ
ξ

ξ
=   (2.2.2) 

Expanding the RHS further by obtain, 

 ) ( | , , ) ( , )( , | , |h h h
s s sP C B D P DP BC B D ξ ξ ξ=   (2.2.3) 

Substituting (2.2.3) into (2.2.1) we have, 

 ) ( | , , )( | ), ( ,| h
s

h h
s sB

P C BP C D P BD Dξ ξ ξ=∑   (2.2.4) 

Obviously summing over all possible network structures may computationally 

impractical, hence we identify a subspace � containing Bayesian networks that account 
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for a high proportion of the hypotheses then posterior probability ���|', (	 can be 

approximated by, 

 ( | , ( |) ). ( |, , ),h
s

h h
s sB H

P C D P C D Bc P B Dξ ξ ξ
∈

≈ ∑   (2.2.5) 

Where, c is a normalizing constant defined by, 

 1

( | , )
h
s

h
s

B H

c
P B D ξ

∈

=
∑

  (2.2.6) 

Clearly, ���|', (	 largely depends on the relative posterior probability��)*+|', (	. 

Hence the Bayesian learning task is to identify the subset � of network structures with a 

high posterior probability. When |�| % 1 we learn a single network structure, and a 

collection for |�| � 1.  Equivalently we could search for the network structure with a 

high joint probability with the data set defined by, 

 ( , | ) ( ) ( | )| ,h h h
s s sP P B P D BD B ξ ξ ξ=   (2.2.7) 

Any formula which computes the relative posterior probability of a network-structure 

hypothesis is a Bayesian scoring metric which is discussed in more detail in section (2.3). 

Bayesian learning algorithms therefore comprise mainly of a scoring criterion which 

measures the relative posterior probability of a network hypothesis and search procedure 

for identifying such network structures.    

 In order the move sequentially through the search space the space must be divided into 

states. Each of the states will be represented by a DAG. The algorithms transition from 



22 

 

 

 

one state to another by removing an edge, adding an edge or reversing an edge. These 

edges are all directed edges. All operators are subject to the constraint that a cycle cannot 

be formed. Figure 2-8 illustrates how a search algorithm will move from one state to 

another using the operators mentioned. 

 

 

At state (0) the algorithm performs any of the operations in (1), (2), (3) but only 

transitions if the score of the DAG resulting from the operation is higher than the score of 

the initial state. By sequentially applying (1), (2), (3) the optimum structure is identified. 

 Z 

X 

 Y 

Initial State 

(0) 

 Z 

X 

 Y 

Add (XZ) 

(1) 

      Delete (YZ) 

 Z 

X 

 Y 

(2) 

 Z 

X 

 Y 

Reverse (XY) 

(3) 

Figure 2-8: Search States of a Bayesian Learning Algorithm 
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For a graph with many nodes the task of traversing the B-space becomes quickly 

computationally expensive. To reduce this task, current search algorithms search through 

the space of equivalence classes (E-Space) where each state is a representation of an 

equivalence class of Bayesian networks and not an individual DAG. The operators for 

traversing this space are different from those used in the B-Space. Details of this 

approach can be found in (Chickering 2002).  

The next important aspect of Bayesian learning is a scoring criterion by which each state 

will be evaluated. A scoring criterion takes as input a Bayesian network structure, a data 

set, and possibly some domain knowledge and returns a value indicating how well the 

structure fits the data. The more common scoring criteria interpret the Bayesian network 

as a set of assertions about the independence constraints that hold among a set of random 

variables. Such scoring criteria assign the same score to DAG’s in the same equivalence 

class a property known as score equivalence. An important property scoring criteria must 

possess to efficiently identify an optimum DAG in the search space is decomposability. 

 Definition: 

 A Bayesian network structure scoring criterion is decomposable if it can be 

written as a sum of measures, each of which is a function only of one node and 

its parents. i.e. 

  
1

( ) ( , )
n

i xi
i

S G s x π
=

= ∑   (2.2.8) 
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Where ,-. , represents parents of node /.. The property of being decomposable extremely 

simplifies the task of scoring each state in the search space. Instead of calculating the 

score of the entire DAG, decomposable scoring criteria would only need to score the 

nodes whose parents have changed as a result of the application of any of operations 

described. The more common scoring criteria used in the literature are, Bayesian 

information criteria, MDL criterion, AIC criterion, BDe criterion.  

Another property of scoring criteria is score equivalence. We say a scoring criterion is 

score equivalent if it assigns the same score to DAG’s in the same equivalence class. 

Since DAG’s in a particular equivalence class have the same assertion of independence 

constraints, it makes sense for scores based on independence interpretation of structures 

to be score equivalent. Score equivalent criteria are thus sufficient for identifying a DAG 

that correctly estimates the joint distribution of the random variables. When the learning 

task is about identifying a causal structure we need more than score equivalent criteria. 

Score equivalent criteria are not able to distinguish between different members of the 

same equivalence class. Because an equivalent class can contain a wide variety of DAG’s 

it is not sufficient to use score equivalent criteria when learning the causal network for a 

set of random variables More sensitive criteria have been developed that address this 

short fall and are able to distinguish DAG’s in the same equivalent class. They are 

sensitive to direction of edges in the same equivalence class. 
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2.2.2 Constraint Based Learning 

In constrained based learning, the structure of the Bayesian network is obtained by first 

performing test of conditional independence on different pairs of random variables to 

construct the skeleton (undirected graph) of the DAG. The edges in the skeleton are then 

oriented using a set of rules established by Christopher Meek. In this section we will 

provide a brief description of the construction of the skeleton and a summary of Meeks 

orientation rules.  

Consider the joint space of random variables & %  ��, �!, �", �0, �1$ and the database of 

cases ' %  ��, �!, � , �#$. Assume that the database was generated by the Bayesian 

network structure illustrated in Figure 2-9. The learning begins with the assumption that 

all the variables are dependent on each other, which is represented graphically by a 

complete undirected graph illustrated in Figure 2-10 
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Figure 2-9: Gold Standard Bayesian Network 

�� 

�" �! 

�0 

�1 

Figure 2-10: Complete Undirected Graph 
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Tests of conditional independence are then performed between pairs of variables. 

Initially, tests are performed directly without conditioning on any other variables. If any 

of the paired tests determine that two variables are independent the edge between them is 

removed. The next round of paired tests involves conditioning on a third node (variable). 

Suppose the test identified that �. � ��|�2 then �2 is said to separate �. and �� and is 

stored in Sepset (�., ��	 %  �2$ and the edge between �. and �� removed. Subsequent 

tests are performed by conditioning on larger sets until the size of the conditioning set 

exceeds the number of variables. At this point the first phase is complete and the skeleton 

is returned as illustrated in Figure 2-11 

 

 

 

 

 

 

 

 

 

 

 

�� 
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Figure 2-11: Skeleton of Gold Standard Network 
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With the complete separator set for each edge removed,    

  

 

1 5 4

2 5 4

3 5 4

1 4 2 3

2 3 1

( , ) { }

( , ) { }

( , ) { }

( , ) { , }

( , ) { }

Sep X X X

Sep X X X

Sep X X X

Sep X X X X

Sep X X X

=

=

=

=

=

  (2.2.9) 

  

Once the skeleton is obtained, the orientation phase begins by converting all triples to 

unshielded colliders where appropriate and following up with Meek’s orientation rules.  

Unshielded colliders are commonly known as head to head meetings in the artificial 

intelligence literature�� 3 � 4 �	. To orient these, the algorithm, indentifies all 

unshielded triples of the form �� � � � �	. If 5 is not in the 678��, �	 then an arrow 

heads are drawn to�, otherwise they are not oriented. Once all colliders are oriented the 

rest of the orientation is done to avoid the creation of more colliders and cycles. Figure 

2-12 summarizes Meek’s orientation rules. Orientation of colliders and the final 

orientation are illustrated in Figure 2-13. In Figure 2-13b the edges �" 3 �� seems to 

have been reversed compared with the Gold standard. This very typical of constrained 

based learning because the orientation of colliders the rest of the orientation allows for a 

number of possible orientations. The theory suggests that any of the possible structures 

should be able to sufficiently generate the data. Standard statistical techniques are usually 

used in performing conditional independence tests. Measure such as mutual information  
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(a) (b) 

�� 

�" �! 

�0 

�1 

�� 

�" �! 

�0 

�1 

Avoid Unshielded Collider 

R1 

Avoid Cycles 

R2 

Avoid Unshielded Collider 

Avoid Creation of Cycles 

R3 

R4 

Figure 2-12: Meeks Orientation Rules 

Figure 2-13: Orienting DAG's using Meeks rules, (a) Orienting colliders;  

(b) Applying Meeks rules 
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2.3 Model selection EQUATION SECTION 3 

In this section we present a derivation of the Bayesian scoring metric and the underlying 

assumptions that guide its use. Some other useful metrics for selecting high scoring 

Bayesian networks for density estimation are also discussed. 

2.3.1 Bayesian Scoring Metric (BDe) 

Given the domain & of random variables and database ' of cases, the Bayesian Scoring 

Metric as developed by (David Heckerman 1995) is a measure of the probability that a 

given dataset ' was generated by the Bayesian network hypothesis )*+ defined by,

    

 ( , | ) ( ) ( | )| ,h h h
s s sP P B P D BD B ξ ξ ξ=   (2.3.1) 

Where ��)*+|(	 is the prior probability of the network hypothesis and ��'|)*+, (	 is the 

likelihood of the dataset given the network hypothesis. 

Let, 

'9 denote the first �: � 1	cases in the database  

;., be the number of states of the variable /. 

<. % ∏->?@A;� be the total states of the parent set of /. 

��/. % B |Π. % D, (	, the probability that /. % B given the DE+state of the parents of /. 

Set, 

F.,�,2 % ��/. % B|Π. % D, (	 

F.� % G  F.,�,2$HA
2I� , the parameter set for /. over all its parents 
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F. % G  F.,�$JA
�I� , the parameter set for /.over all states of its parent set 

ΘLM % G F.�.I� , the parameter set over all variables. 

Consider also the following assumptions about the dataset ', and the network 

structure, )* 

1. (Multinomial Sample) For all network structures )* in & there exists 

positive parameters ΘLM such that, for N % 1 � , O and for B % B�, � B.P� 

 1 1 ( 1) 1 , ,( | , , , , ),h
il l i l i l BS s i j kP x k x k kx D B ξ θ− − Θ == = =L   (2.3.2) 

2. (Parameter Independence) Given a network structure BR if PTBRUVξX � 0 

then, 

a. ZTΘL[V)*+ , (X % ∏ Z�Θ.V)*+ , (	�.I�  

b. For N % 1, � , O:  Z�Θ.V)*+ , (	 % ∏ ZTΘ.�V)*+ , (XJA
�I�   

i.e. the parameters associated with variable in a network structure are independent as well 

as those associated with each parent. 

3.  (Parameter Modularity) Given two network structures )*� and )*! such 

that �T)*�+ V(X � 0 and �T)*!+ V(X � 0, if /. has the same parents in )*� 

and )*!then, 

 1 2( )| , | ,( )h h
ij s ij sB Bρ ξ ρ ξΘ = Θ   D % 1, � <.  (2.3.3) 
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         i.e. the parameters Θ.�depend only on the structure of the network that is local to  

the variable /. 

4. (Dirichlet Assumption) Given a network a structure )*such that 

��)*+|(	 � 0, ZTΘ.�V)*+, (X Dirichlet for all Θ.� ] ΘL*. That is there exists 

exponents ̂.,�,2_ , which depend on )*+ and (, that satisfy 

 1( , ) .| ijkNh
ij s k ijkcBρ ξ θ ′ −Θ = ∏   (2.3.4) 

Where ̀  is a normalizing constant. 

By the multinomial sample assumption and the assumption of no missing data, we obtain, 

 1

1 1 1

( | , , , )
i

lijk

qn ri
h

l l s ijk
i j k

P C BD ξ θ
= = =

Θ = ∏∏∏   (2.3.5) 

Extending this to the entire dataset and letting .̂�2denote the number of cases in database 

' such that /. % B and ,. % D we have, 

 
1 1 1

,( | , )
i

ijk

s

qn ri
h

l B s ijk
i j k

NP BD ξ θ
= = =

Θ = ∏∏∏   (2.3.6) 

Hence by parameter independence the posterior distribution over the parameters of the 

network hypothesis can be estimated by, 

 
1 1

, )( | , , , | ,· ( | ) ( )
i

S S

qn
h h h

B s B s ij s
i j

B c PD BD Bρ ξ ξ ρ θ ξ
= =

Θ = Θ ∏∏   (2.3.7) 

Where ̀  is some normalizing constant. Combining (2.3.7) and (2.3.6) we have, 
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1 1 1

( | , |) ),, · (
i

ij
i

k

S

qn
Nh h

B s ij s ijk
i j

r

k

B cD Bρ ξ ρ θ ξ θ
= = =

Θ =
 
 
 

∏∏ ∏   (2.3.8) 

By the assumption of i.i.d sample we have, 

 
1

, ) ( || , , )(
m

h h
s l l s

l

B P C DP D Bξ ξ
=

= ∏   (2.3.9) 

Conditioning on the parameters of the network structure )* we obtain, 

 ( | ) ( | )· ( |, ,, , , )
s s s

h h h
l l s l l B s B s BB BP C D P C D B dξ ξ ρ ξ= Θ Θ Θ∫   (2.3.10) 

Substituting (2.3.5) and (2.3.8)   

 1

1 1 1

( | ) (, , | , , )
i

lijk

qn ri
h h

l l s ijk ij l s
i j

j
k

iP B DC D dBξ θ ρ θ ξ θ
= = =

=   ∫∏∏ ∏   (2.3.11) 

When 1.�2 % 1 the integral in (2.3.11) is the expected value of F.�2 . consequently we 

have, 

 
1

1 1 1

, , )| ,( ,| ) (
i

ijk
qn ri

h h
l l s ij l s

i j k

P C D EB D Bξ θ ξ
= = =

  = ∏∏∏   (2.3.12) 

Substituting (2.3.12) into (2.3.9) we have   

 
1

1 1
1 1 1 1

( | | , , ,, ) ( )
i

ijk
mqn ri

h h
s ij l s

i j k l

P D C BB E Cξ θ ξ−
= = = =

=   ∏∏∏∏ L   (2.3.13) 

By the Dirichlet assumption, 
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 1

1

| ,( ) .,
i

ijk ijk

r
N Nh

ij s ijk
k

D cBρ θ ξ θ ′ + −

=

= ∏   (2.3.14) 

Where ̀  is a normalizing constant. ̂.�2 are a sufficient statistic for the database. The 

posterior distribution of each parameter F.� remains in the Dirichlet family. Setting  

: % a b 1, `#c� % � �Od '#c� % ' we obtain, 

 
1,1

1
11 1

( )| , ,
m ijk

ii rqn
ijk ijkh

m s
ji k ij ij

N
P C D

N

N N
B ξ

+

+
== =

 ′ +
=   ′ + 

∏∏ ∏   (2.3.15) 

Where, 

.̂�_ e f .̂�2_
HA

2I�
            .̂� e f .̂�2

HA

2I�
 

Finally we obtain the Bayesian Scoring Metric, 

 
1 1 1

( ) ( )
) ( )

( ) (
|

)
( , |

ii rqn
ij ijk ijkh h

s s
i j kij ij ijk

N
P D

N N
P B

N N
B

N
ξ ξ

′

′ ′
= = =

Γ Γ +
=

Γ + Γ∏∏ ∏   (2.3.16) 

     

2.3.2 Kullback-Leibler Distance (KLD) 

Let ��/�, /!, � /�	 denote the joint distribution of the gold-standard domain and 

<�/�, /!, � /�	 denote the joint distribution of the next case to be seen as predicted by the 

learned networks�N. 7. ���|', (		. The cross entropy ��8, <	 referred to as the Kullback-

Leibler distance is given by  
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, , ) log
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n
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H p q P
P x

x
x

x
q x x

= ∑
L

L
L

L
  (2.3.17) 

Low values of KL-distance typically correspond to a learned distribution that is close to 

the gold standard. Its discrete form can be computed using the following relation, 

 
11 1

( )
) l

|
og

( | )
( , ) ( ,

i iq r
i i

i i
j k i ii

P k
H p q P X

X j
j

q X k j
k

π
π

π= ==

=
= =

=

=
=

=∑∑∑   (2.3.18) 

The cross entropy measure reflects the degree to which the learned networks accurately 

predict the next unseen example in the data set or in other words how well it copies the 

true distribution. In chapter 3, we present a slight modification of this measure to 

facilitate model selection in our proposed methodology.  

 

2.3.3 Mutual information    

Mutual information is defined as a measure of the relationship between two 

random variables that are sampled simultaneously. You can also think of it as a measure 

of how much one random variable can tell you about another. The mutual information 

between two random variables is 0 if and only if they are independent i.e. they share no 

information. Consider two discrete random variables � and � defined jointly by the 

distribution ���, �	, then the mutual information can expressed by the relation, 

 
( , )

( , )
)

(
( )

)
(

;
x X y Y

P x y
P x y log

P x
I X Y

P y∈ ∈

= ∑∑   (2.3.19) 
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Where ��/	 and ��5	 represent the marginal distribution of the two random variables. 

By measuring the mutual information between each pair of variables in the gold standard 

network we able to compare this to a similar measure obtained using the learned 

networks and select a network that best preserves the interaction between variables. More 

details of this implementation of the mutual information for model selection are presented 

in chapter 3. 

 

2.3.4 Bayesian Information Criterion 

The Bayesian information criterion(Schwarz 1978) is a measure of the likelihood 

of the training data set given the associated parameters of a network structure i.e. 

��'|)*	. It is estimated using the method of maximum likelihood estimation. BIC 

contains a penalty term that punishes complex models that may be over fits of the 

distribution of the dataset.  It is defined according to(Mozaherul Hoque Abul Hasanat 

2010) as, 

 
1 1 1

( ( )) ( ) ( )
i iq rn

ijk
BIC s ij s

i j k ij

N
log P B N log Pen N Dim BQ

N= = =

= + −∑∑∑   (2.3.20) 

Where,
1

( ) ( )
2

Pen N log N=  and 
1

( ) ( 1)
n

s i i
i

Dim B q r
=

= −∑  together represent the penalty 

term.  
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2.4 Parameter EstimationEQUATION SECTION 4  

Once the structure of the Bayesian network has been obtained and the relevant 

conditional independence relationships extracted by either the Markov condition or D-

separation, it remain to estimate the respective conditional distributions. We will discuss 

two popular methods of estimating conditional distributions from data: maximum 

likelihood estimation and maximum a posterior estimation. 

2.4.1 Maximum Likelihood (ML) Estimation 

Consider a random variable X, distributed according to a known parametric distribution 

Dist with parameter g. Let ' %  /�, /!, � /�$ be a database of i.i.d cases of the random 

variable. Then the maximum likelihood estimate of the parameter g is the setting of g 

that maximizes the probability of the data set, often referred to as the likelihood function 

(L (g)) which is expresses as, 

 1( ) | )P(N
i iL xµ µ== Π   (2.4.1) 

Suppose � is a Bernoulli random variable and h defines the probability of a success. 

Then the likelihood function becomes, 

 1
1( ) ( )1i ix xN

iL µ µ µ −
== Π −   (2.4.2) 

It is usually much easier to maximize the log likelihood function which results in the 

same ML estimate by the monotonicity of the logarithm. It follows that, 
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1

log ( ln) (1 (1)ln )
n

i i
i

L x xµ µ µ
=

= + − −∑   (2.4.3) 

Differentiating the RHS and setting the result equal to zero we have, 

 
1 1

(1 )

1

n n
i i

i i

x x

µ µ= =

−
=

−∑ ∑   (2.4.4) 

Solving for h we have, 

 
1

1
1

n

i
i

u

u
x N

=

− + 
 

=∑   (2.4.5) 

which implies, 

 
1

1 n
ML

i
i

m
x

N N
µ

=

= =∑   (2.4.6) 

Where, m is the number of successes. Thus the maximum Likelihood estimate for the 

probability of a success of a Bernoulli random variable is the proportion of success. The 

maximum likelihood estimate is biased with insufficient data, however converges to the 

true distribution in the limit of large data 

2.4.2 Maximum a posterior Estimation 

When prior knowledge about the parameters of a conditional distribution is available, it is 

important to use these in estimating the true distribution. Maximum a posterior estimation 

seeks to maximize the posterior distribution over the parameters given data on a given set 

of random variables. 
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Again let � be a random variable and ' %  /�, /!, � /�$ a dataset of cases, then the 

posterior distribution is given by, 

 ( ). ( | )
| )

( )
(

P P D
D

P D
P

µ µ
µ =   (2.4.7) 

Where ��h	 denotes the prior distribution over the parameter h and ��'|h	 the 

likelihood. Since ��'	is independent of h we normally have the relation, 

�i6j7;Ni; k �;Ni; l mNB7:Nniid 

In order to simplify the estimation of the posterior distribution, we often choose priors 

that have a similar form as the likelihood function. These are usually referred to as 

conjugate priors. For example the Beta distribution is a conjugate prior the parameter of a 

Bernoulli random variable. Likewise, the Dirichlet distribution for the multinomial 

random variable. Suppose � is a Bernoulli random variable with probability of success h, 

and )7j���o, po	 prior, then the posterior distribution over h can be expressed as, 

 0 0 0 0| , , ) ( | ) ( | ,( )a b D cP D PP a bµ µ µ=   

 ( )1
1 (1 ) ( | , )i ix xN

i o oc Beta a bµ µ µ−
== Π −   

 ( )0 01 (1 10 0

0

)

0

( )
(1 )

( ) ( )
i ix bxaa b

c
a b

µ µ∑ + −+− ∑ −Γ +
= −

Γ Γ
  

Which is a beta distribution with number of success % a b �o �1 
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The maximum value of the posterior distribution is obtained at the maximum likelihood 

estimate of h, which has been show to be 
#
q. Hence the Map estimate for h would be, 

  

 0

0 0

1

2
MAP m a

N b a
µ

+ −
+ + −

=   (2.4.8) 
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Chapter 3: Iterative Knowledge Guided Search 

In this section we describe the main contribution of this work: The Iterative Knowledge 

Guided Search (IKGS).Though we are primarily interested in estimating the joint 

distribution of a given set of random variables, we would also like to extract as much 

causal knowledge (in this application statistical dependencies) from the dataset as 

possible to help increase our understanding of the domain. The performance of most 

search algorithms is largely domain dependant as explained in (Mozaherul Hoque Abul 

Hasanat 2010) making it difficult to identify a ‘best algorithm’. Algorithms that may 

correctly capture the joint distribution of the data set may not always present the true 

underlying causal network. The IKGS approach attempts to combine expert knowledge of 

a domain with the outputs of a collection of search algorithms to obtain a structure that 

accurately estimates the joint distribution as well as present us with substantial causal 

knowledge of the domain. We have explained this approach within the environment 

TETRAD(Clark Glymour), a software for constructing Bayesian networks. The method 

can however be easily implemented in other software packages. 
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Figure 3-1 is a workflow that describes how using IKGS we can transition from data on a 

set of random variables to a Bayesian network model. There are three major stages in this 

process: 

1. Preprocessing of Data 

2. Learning 

3. Validation 

3.1 Preprocessing of Data 

Before any attempt is made to learn a Bayesian network model it is important to improve 

the quality and workability of the data set. Search algorithms that learn Bayesian 

Figure 3-1: Workflow for Iterative Knowledge Guided Search 
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networks essentially look for dependencies among the random variables making it 

imperative to ensure that any factors that might distort possible dependencies are 

eliminated.  Common preprocessing tasks may include: data cleaning; dimension 

reduction and imputation of missing values. Missing values don’t usually affect the effort 

to train a Bayesian network however if the values are not missing at random and account 

for more that 30% of the data it would be advisable to impute the missing values. This 

will ensure that the correct distribution of variables is used in training the Bayesian 

network. Other preprocessing efforts will depend on the data set and the intended use of 

the Bayesian network. 70% of the data is sufficient for training and 30% for testing. This 

is however subject to the size of data available.  

 

3.2 Learning 

The learning phase is carried out in two stages. First, candidate Bayesian networks are 

trained using a collection of search algorithms and then we evaluate their performance in 

classifying unseen data (test data) to select a final model. 

3.2.1 Training 

 During training, prior knowledge of the dependencies (edges) between the random 

variables are entered into TETRAD in the form of tiers and edges. The tiers define which 

random variable can potentially influence others while the edges enforce dependencies 

that must appear in or be absent from all learned networks. Figure 3-2 provides an 
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illustration of this concept in TETRAD. Six search algorithms, based on both score and 

constrained based approaches  are used to train individual Bayesian networks. A 

summary of the algorithms used is illustrated in Table 3-1. Each candidate Bayesian 

network is scored using the Kullback- Leibler (KL) distance, Mutual Information (MI) 

and the Bayesian Information Criteria (BIC) as training metrics. These metrics evaluate 

how closely the Bayesian Network Model (BNM) approximates the true distribution.  

The models with the best scores are selected and their common edges are used to update 

the knowledge base. The process is repeated until no more common edges can be 

identified. 

(a) Tiers (b) Edges

 

Figure 3-2: TETRAD knowledge box illustrating tiers and edges. Variables in upper 

tiers can influence variables in lower tiers 
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 We use search algorithms with different heuristic approaches to ensure that edges in the 

final model are highly significant. By consistently updating our prior knowledge the 

search space is constrained and the algorithms are able to detect more significant edges.  

 

SEARCH ALGORITHM  DESCRIPTION  
PC (Peter Spirtes 2000) 
(Peter Clark)  

Basic Constraint based algorithm  

PCLINGAM  Takes the output of PC algorithm and the training data and 

attempts to improve orientation  

CPC  
(Conservative PC)  

Variant of PC algorithm that improves orientation  

JPC (Ramsey 2010) 
(Joseph’s version of PC)  

Runs iterations on the output of PC until convergence  

JCPC  
(Joseph’s Version of CPC)  

Same as JPC but with PC  

GES(Chickering 2002)  

(Greedy Equivalence Search)  

Score based Algorithm  

Table 3-1 : Summary of Search Algorithms 
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3.2.2 Performance Evaluation 

Once the training phase is over, the best resulting DAG’s are used in turn to 

classify each variable in the test data set. The proportion of correct classification defined 

as the ratio of correctly classified cases to the total cases, is computed and averaged out 

across all variables. This gives a measure of how well each of the candidate Bayesian 

networks can predict unseen data. The results are interpreted as the higher the proportion 

of correct classification the better the network. By comparing these results to those 

obtained in the final stage of training we select a final Bayesian network. 

3.3 Validation 

The validation stage involves a comparison of the edges identified by our final model 

with published dependencies between the random variables of interest.    

 We initially classify edges as being 

1. Validated by Literature 

2. Rejected by Literature 

3. Without Evidence 

For edges without evidence we consult with domain experts to determine their 

significance. Edges in the literature which are undetected by our model may be added and 

the performance of the model re-evaluated. The validity of our model is then measured as 

a ratio of the total number of edges validated by literature to the total number of edges 

learned from the dataset.  
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Chapter 4: Application to Breast Cancer Risk Prediction 

Our goal is to use data from the breast cancer surveillance consortium to develop a 

Bayesian network which would present the dependencies between breast cancer risk 

factors and from which we can simulate clinical avatars to interrogate already existing 

risk prediction algorithms.  

 

4.1 Data Description and Preprocessing  

Our data set originally contained 2,392,998 records of index screening mammograms 

from women included in the Breast Cancer Surveillance Consortium(Barlow WE 2006).  

There were a total of fourteen variables describing various pathological and 

mammography characteristics of the women. These variables have been determined to 

influence a woman’s risk for developing breast cancer and will henceforth be referred as 

risk factors. The variables include information on the women who developed breast 

cancer after a one year follow up. An extra training variable was included to determine 

which of the record was suitable for training and which for validation. The size of the 

data set was reduced to 302,355 records by introducing a count variable indicating the 

frequency of each combination of patient characteristics.  

The data set was reverted to its original size by using the count variable. A total of 

150,000 records were sample from original data for training (90%) and validating (10%) 

the Bayesian network, henceforth referred to as sample data. The data set was stratified 
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using the cancer variable and a simple random sample was taken from each stratum in 

proportion to the original distribution of the cancer variable. Histogram plots were used 

to ensure that sampled data did not distort the original distribution of the data as 

illustrated in Figure 4-2. A total of 21.44% of the data was missing with 12,375 complete 

records. Table 3-1 provides a brief description of the variables in the data set and the 

number of records that were missing. 

The training and count variables were removed from the data set after they had been 

used. Typically Bayesian networks can be trained using incomplete data (with missing 

values), however the distribution of missing values must be random and present no 

sample bias. To avoid errors that may result from data not being missing at random we 

imputed the missing values using multiple imputations. Figure 4-1 describes the multiple 

imputation process. 
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Figure 4-2: Comparison of sampled data with original data 

Figure 4-1: Multiple Imputations with Chained Equations 
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 Variables  Description  include  order  number.mis  all.mis  type  collinear  

1  Menopause  Menopausal status  Yes  1  11397  No  binary  No  

2  Agegrp  
Age group  Yes  NA  0  No  

positive-

continuous  
No  

3  Density  
Breast density  Yes  2  40755  No  

ordered-

categorical  
No  

4  Race  
Race  Yes  3  23725  No  

ordered-

categorical  
No  

5  Hispanic  Hispanic  Yes  4  30554  No  binary  No  

6  Bmi  
Body Mass Index  Yes  5  83732  No  

ordered-

categorical  
No  

7  Agefirst  
Age at first life birth  Yes  6  83408  No  

ordered-

categorical  
No  

8  Nrelbc  Number of relatives 

with first degree breast 

cancer  

Yes  7  22863  No  
ordered-

categorical  
No  

9  Brstproc  
Previous breast 

procedure  
Yes  8  15431  No  binary  No  

10  Lastmamm  Result of last 

mammogram before 

index mammogram  

Yes  9  34983  No  binary  No  

11  Surgmeno  Surgical menopause  Yes  10  78234  No  binary  No  

12  Hrt  
Current hormone 

therapy  
Yes  11  61514  No  binary  No  

13  Invasive  Diagnosis of Invasive 

Breast Cancer  
Yes  NA  0  No  binary  No  

14  Cancer  

Diagnosis of invasive or 

ductal carcinoma in situ 

breast cancer within one 

year of index screening 

mammogram  

Yes  NA  0  No  binary  No  

15  Training  Training/Testing  Yes  NA  0  No  binary  No  

 

Table4-1: Description of Variable
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We ensured that the distribution of imputed variables was similar to that of the actual 

variables. Histograms of the distribution of imputed data against observed data illustrated 

in Figure 4-3 show that the imputed data preserved the original distribution. Three 

Imputed data sets resulted from the imputation process and one was selected at random 

for training the Bayesian networks. 

 

 

 

 

 

 

Figure 4-3: Comparison of sampled data with imputed data 



52 

 

 

 

4.2 Learning 

4.2.1 Training 

Six search algorithms as described in chapter 3 were collectively used in training six 

Bayesian network models (BNM). For each iteration, the models with the highest BIC 

score, Mutual Information and KL Distance were selected as candidate Bayesian 

networks. The common edges in these graphs were added to the prior knowledge. The 

cycle of search and knowledge update continued until no more common edges were 

detected. The model generated by each algorithm is denoted by NAME-BNM. For 

example the model generated by the GES algorithm will be denoted GES-BNM.  The 

prior knowledge of the structure of the Bayesian network, used for the search, was 

obtained by interviewing experts in Breast Cancer research. This information was entered 

in TETRAD in the form of tiers and Edges as illustrated in Figure 4-4 



53 

 

 

 

 

Figure 4-4: Entering Prior Knowledge into TETRAD 

 

Out of the 135,000 (90%) of the sample data designated for training, 25,000 records were 

sampled successively to train the six Bayesian networks on each iteration. This was done 

primarily to reduce the learning time. A total of five iterations were performed after 

which no more common edges could be detected. The knowledge updates for each 

iteration are presented in Figure 4-5. Table 4-2 shows the results of metrics at each 

iteration. 
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ITERATION 1
ITERATION 2 ITERATION 3

ITERATION 4
ITERATION 5

 

Figure 4-5: Knowledge updates per Iteration 
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SEARCH  
 

ALGORITHM  
ITERATION 1  ITERATION 2  ITERATION 3  

BIC KL MI Edges BIC KL MI Edges BIC KL MI Edges 

PC  -220,987.52 30.22 0.023 23 -223,597.62 31.52 0.074 24 -223,542.43 32.21 0.072 27 

PCL  -222,424.35 27.28 0.023 23 -223,597.62 33.06 0.074 24 -226,289.56 30.41 0.012 27 

CPC  -223,611.83 29.06 0.019 25 -233,609.41 31.71 0.040 24 -223,839.50 31.10 0.046 23 

JPC  -219,784.52 28.31 0.035 24 -224,654.84 33.94 0.022 22 -225,538.82 36.82 0.074 27 

JCPC  -220,824.12 30.74 0.046 24 -221,273.39 34.83 0.046 24 -224,150.76 36.30 0.026 25 

GES  -217,873.28 33.13 0.035 12 -217,243.18 33.61 0.026 16 -217,617.16 34.10 0.026 15 

 ITERATION 4  ITERATION 5       BIC KL MI Edges BIC KL MI Edges 
    

PC  -223,876.30 35.00 0.017 24 -223,398.03 31.80 0.076 24     
PCL  -225,512.45 33.00 0.014 25 -225,814.30 33.00 0.079 26     
CPC  -223,162.39 31.40 0.018 22 -223,452.35 31.50 0.016 22     
JPC  -231,325.28 31.00 0.019 25 -224,882.59 33.50 0.075 25     

JCPC  -221,202.44 31.50 0.017 24 -227,768.35 32.70 0.017 25     
GES  -217,007.64 33.80 0.033 14 -217,174.09 36.80 0.031 16     

 

Table 4-2 : Results of metrics for each iteration 

At the end of the fifth iteration, the best performing models were CPC-BNM, JPC-BNM 

GES-BNM. GES-BNM had both the highest BIC score (-217,174.092) and KL distance 

(36.80). CPC-BNM had the highest mutual information (0.0164). We added JPC-BNM 
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which had the second highest KL distance (33.50) so we could have three models for 

performance evaluation. The DAG’s of these three models are illustrated in Figure 4-6.  

JPC CPC

GES

 

Figure 4-6: Best Performing DAG’s 

4.2.2 Performance Evaluation 

Each of the candidate Bayesian networks obtained from the training phase was used in 

turn to classify all the variables in the data set. The classification rates for each model 

were obtained by averaging the rates across all variables. CPC-BNM correctly classified 

75.65% of the data, while JPC-BNM and GES-BNM classified 75.27% and 74.99% 

respectively.   
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In selecting the final Bayesian network we were interested in a model which was 

parsimonious, had produced a relatively close estimation of the joint distribution of risk 

factors and performed relatively well in predicting unseen data. Although CPC-BNM had 

a relatively high classification rate (75.65%), its KL distance was relative low (31.50) and 

had a total of 22 edges. JPC-BNM and GES-BNM seemed to perform equally in 

classification (75.27%/74.99%), but GES-BNM’s higher KL distance (36.80/33.50) and 

fewer edges (16/25) make it the more desirable candidate of the two. Since the primary 

purpose of the learned network is to generate clinical avatars consistent with the 

distribution of the dataset and not for classification, we choose GES-BNM as our final 

model. 

 

4.3 Validation 

In order to validate our final model, we mined the literature on associations between 

breast cancer risk factors and constructed a Bayesian network whose edges were based on 

our findings. Figure 4-7 shows our final model and the mined model. 
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General opinion
Evidenced case

(a) (b)

 

Figure 4-7: Mined Model (a) and IKGS model (b) 

 

A total of nine risk factors each with directed edges to cancer and invasive, were absent 

from our model. We suspect that the very small proportion of women in our data set 

which developed cancer (0.04%) may have been insufficient to detect any reasonable 

correlation of cancer or invasive with the risk factors. We considered this a defect of our 

data set and not our learning approach. To create a more level playing field we removed 

all the edges to cancer and invasive in the mined network and compared the resulting 

graph with our final model. Figure 4-8 shows the reduced model. 
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Figure 4-8: Reduced mined model 

 

 While the reduced mined model had 14 edges the IKGS model had 16 edges. Seven of 

mined dependencies were correctly detected by the IKGS model. The directed edge 

between bmi and density was reversed in the IKGS model. The remaining seven were not 

detected by the IKGS model. There were also seven new edges detected by the IKGS 

model not supported by literature. We propose these as potential dependencies that 

should be investigated by domain expects. To assess how close the IKGS model was to 

the mined model, we computed the Kl-distance and BIC scores using the mined model 

and compared with the results we had with the IKGS model. The results as shown in 

Table 4-3 illustrate that IKGS had higher likelihood of generating the training data than 



60 

 

 

 

the mined model (BIC:-220093.98/-216617.90). The distribution estimated by the mined 

model was however closer to the true distribution than the IKGS model (KL: 

39.70/36.80). 

 

Model BIC KL NUM EDGES 

Mined-BNM -220,093.9879 39.74 14 

IKGS-BNM -216,617.90 36.80 16 

PC-BNM -220,987.5207 

 

30.22335 23 

PCL-BNM -222,424.3548 

 

27.28397 23 

CPC-BNM 223,611.8346 29.06333 25 

JPC-BNM -219,784.521 28.31646 24 

JCPC-BNM -220,824.1186 30.73635 24 

GES-BNM 217,243.1787 33.60531 12 

Table 4-3: Comparing metrics of Mined model and IKGS model 
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Chapter 5: Conclusion and Recommendation 

5.1  Conclusions 

We have developed a search approach that harnesses the strengths of already existing 

algorithms to learn a Bayesian network that produces an improved estimation of the joint 

distribution of a set of random variables. Using the Bayesian information criteria, 

Kullback-Leibler distance and Mutual information, we have selected a model that closely 

matches the distribution of a dataset. By consistently updating our prior knowledge of the 

true structure of the Bayesian network we are able to produce a model whose edges are 

consistent with the independence relations that hold in the true distribution. We have 

applied this approach to learn the Bayesian network for breast cancer risk factors, which 

will be used in simulating clinical avatars (artificial patient populations) for interrogating 

various risk prediction models. We have shown using the Kullback-Leibler distance and 

Bayesian information Criterion that our final model learned with the Iterative Knowledge 

Guided Search (IKGS) is a better estimate of the distribution of risk factors compared 

with the output of any single search algorithm. By comparing our IKGS model with a 

mined model constructed from published breast cancer studies, we have shown that our 

model agrees with literature on breast cancer. 
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5.2 Recommendations 

The Iterative Knowledge Guided Search (IKGS) approach to learning Bayesian networks 

is far from fully developed. For improved performance we have made the following 

recommendation: 

1. A more precise implementation of the Kullback-Leibler distance should be used 

in model selection. 

2. Search Algorithms that are likely to produce similar outputs should be removed 

from the algorithm set to reduce learning time. 

3. The methodology should be extended to learn Bayesian networks in causally 

insufficient domains. 

4. A more rigorous validation of the final learned model should be performed 

especially to assess the consistency of the learned dependencies with the true 

distribution. We suggest a direct checking of the independence relations obtained 

by d-separation with the conditional probability table. Chi-square tests could 
also be performed on the simulated avatars to check consistency. 

5. We also believe that using all the records with women who developed breast 
cancer for training and testing the Bayesian network may provide a better 
reflection of the dependencies between the risk factors. Better still, the 
original data set could be sampled to support current statistics of 12% of 
women at risk of developing cancer. 
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6. IKGS is still quite manual and would be considerably more efficient if a single 
algorithm was written for the entire process. 
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 Appendix 

 

A1:  Essential Algorithms 

 Pseudo code for PC algorithm (Constrained Based Algorithm) 

A) Form the complete undirected graph C on the vertex set V. 

B)  

   n=0, 

  repeat 

   repeat 

select an ordered pair of variables X and Y that are adjacent in C such that 

Adjacencies(C,X)\{Y} has cardinality greater than or equal to n, and a subset S of 

Adjacencies(C,X)\{Y} of cardinality n, and if X and Y are d-separated given S 

delete X-Y from C and record S in Sepset(X,Y) and Sepset(Y,X) until all ordered 

pairs of adjacent variables X and Y such that Adjacencies(C,X)\{Y} has 

cardinality greater than or equal to n and all subsets S of Adjacencies(C,X)\{Y} 

of cardinality n have been tested for d-separation; 

n = n+1; 

until for each ordered pair of adjacent vertices X,Y  Adjacencies(C,X)\{Y} is of 

cardinality less than n. 
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C) For each triple of vertices, X,Y,Z such that the pair X,Y and the pair Y,Z are each 

adjacent in C but the pair X,Z are not adjacent in C, orient X-Y-Z as X Y Z→ ←   

if and only if Y is not in Sepset(X,Z) 

D) Repeat 

If A B→ , B and C are adjacent, A and C are not adjacent, and there is no arrow 

head at B, then orient B-C as B C→ . 

If there is a directed path from A to B, and an edge between A and B, then orient 

A-B as A B→  . 

Until no more edges can be oriented. (Peter Spirtes 2000) 

 

Matlab codes for Data preprocessing 

% Algorithm to replace missing values  
  
for  i = 1: size(data,2)  
    if  i == 2  
        %do nothing  
    else  
        data(find(data(:,i)==11),i)= NaN;  
    end  
end  

 

 

% Produces normalized histogram of between variable s in two data sets  
  
%generate proportions  
n1=hist(data1(:,1));  
n1 = n1(:,find(n1));  
n2=hist(data2(:,1));  
n2 = n2(:,find(n2));  
y = unique(data1(:,1));  
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x =[(n1./sum(n1))' (n2./sum(n2))'];   
   
  set(0, 'defaultaxesfontsize' ,20);  
  subplot(2,2,1); bar(y,x,.25, 'hist' ); % <- percentage cum dist  
     ylabel( '\bf\fontsize{20} Proportion' );  
     xlabel( '\bf\fontsize{20} Values' )  
     title( '\bf\fontsize{20} Menopause' )  
     legend( 'Sampled Data' , 'Original Data' )  
     grid on 
      
     %% variable 2  
     n1=hist(data1(:,2));  
n1 = n1(:,find(n1));  
n2=hist(data2(:,2));  
n2 = n2(:,find(n2));  
y = unique(data1(:,2));  
x =[(n1./sum(n1))' (n2./sum(n2))'];   
   
  set(0, 'defaultaxesfontsize' ,20);  
  subplot(2,2,2); bar(y,x,.25, 'hist' ); % <- percentage cum dist  
     ylabel( '\bf\fontsize{20} Proportion' );  
     xlabel( '\bf\fontsize{20} Values' )  
     title( '\bf\fontsize{20} Agegrp' )  
     legend( 'Sampled Data' , 'Original Data' )  
grid on 
      
     %% Variable 3  
     n1=hist(data1(:,3));  
n1 = n1(:,find(n1));  
n2=hist(data2(:,3));  
n2 = n2(:,find(n2));  
y = unique(data1(:,3));  
x =[(n1./sum(n1))' (n2./sum(n2))'];   
   
  set(0, 'defaultaxesfontsize' ,20);  
  subplot(2,2,3); bar(y,x,.25, 'hist' ); % <- percentage cum dist  
     ylabel( '\bf\fontsize{20} Proportion' );  
     xlabel( '\bf\fontsize{20} Values' )  
     title( '\bf\fontsize{20} Race' )  
     legend( 'Sampled Data' , 'Original Data' )  
grid on 
      
     %% Variable 4  
     n1=hist(data1(:,14));  
n1 = n1(:,find(n1));  
n2=hist(data2(:,14));  
n2 = n2(:,find(n2));  
y = unique(data1(:,14));  
x =[(n1./sum(n1))' (n2./sum(n2))'];   
   
  set(0, 'defaultaxesfontsize' ,20);  
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  subplot(2,2,4); bar(y,x,.25, 'hist' ); % <- percentage cum dist  
     ylabel( '\bf\fontsize{20} Proportion' );  
     xlabel( '\bf\fontsize{20} Values' )  
     title( '\bf\fontsize{20} Cancer' )  
     legend( 'Sampled Data' , 'Original Data' )  
grid on 

 

% Algorithm to expand data set using count column  
  
% BCdata = importdata('BCdata.txt','\t',1)  % load Data  
BCexpand = zeros(2392998,16); %create new matrix for expanded data set  
numold = 1;  
for  i = 1: size(BCdata.data,1)  
    num = BCdata.data(i,16);  
    row = BCdata.data(i,:);  
    mat = repmat(row,num,1);  
    BCexpand(numold:numold+(num-1),:)= mat;  
    numold = numold+num;  
end 
 
 
 
% program to compute normed KL distance between two  data sets(joint  
% probability distributions  
  
function  [dnorm,dist] = normKLDiv(P,Q,maxbin)  
 clc  
 p = multprob(P,maxbin); % distribution of true distribution  
 q = multprob(Q,maxbin); % distribution of estimated distribution  
 m = size(p,2);  
 dist = zeros(1,m);  
 for  i = 1:m  
     p1 = p(:,i);  
     q1 = q(:,i);  
     pdist = p1(find(p1));  
     qdist = q1(find(q1));  
     dist(i) = sum(pdist.*log(pdist./qdist));  
 end  
 logdist = log(dist);  
 dnorm = norm(logdist,2); % computes the Euclidean norm of the 
distribution vector  
% program to compute the probability vector of a mu ltinomial 
distribution  probability distributions 

 
function  p = multprob(x,maxbin)  
% p = multprob(x1,x2) computes the probability dist ribution of the  
% multinomial random variable x  
% Input: x = n x m matrix of m random variables and  n cases of each  
%        maxbin: the maximum bins for all variables  in distribution  
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% Output: p: maxbin x m matrix containing probabili ty distribution of 
each  
% random variable  
  
m = size(x,2);  
p = zeros(maxbin,m); % zeros vector for probability distribution  
for  i = 1: size(x,2)  
   u = unique(x(:,i));  
    for  j= 1: length(u)  
        p(j,i) = length(find(x(:,i) == u(j)))/lengt h(x(:,i));  
    end  
end  
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