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ABSTRACT
THE NEUTRON-STAR EQUATION OF STATE AND
GRAVITATIONAL WAVES FROM COMPACT BINARIES
By
Benjamin D. Lackey

The University of Wisconsin—Milwaukee, 2012

Under the Supervision of Professor John L. Friedman

The equation of state (EOS) of matter above nuclear density is currently uncertain by
almost an order of magnitude. Fortunately, neutron stars (NS) provide an ideal laboratory
for studying high density matter. In order to systematize the study of the EOS from NS
observations, we introduce a parametrized high-density EOS that accurately fits theoretical
candidate EOSs. We then determine the ability of several recent and near-future electro-
magnetic observations to constrain the parameter space of our EOS. Recent observations
include measurements of masses, gravitational redshift, and spin period, and we find that
high mass observations are the most useful at constraining the EOS. Reliable simultaneous
mass-radius measurements or mass—moment of inertia measurements in the near future, on
the other hand, would provide a dramatically stronger constraint by requiring the allowed
parameters to lie on a hypersurface of the full parameter space.

In addition to electromagnetic observations, binary neutron star (BNS) and black hole-
neutron star (BHNS) coalescence events observed with gravitational-wave detectors offer
the potential to dramatically improve our understanding of the EOS. Information about
the EOS is encoded in the waveform through tidal interactions, and for BNS systems,
the inspiral waveform depends on the EOS through a single parameter called the tidal
deformability. Using recent numerical BHNS simulations we find that the entire BHNS
inspiral-merger-ringdown waveform also depends on the EOS exclusively through the same
tidal deformability parameter. Using these BNS and BHNS waveforms, we examine the
ability of second generation detectors now in construction and planned third generation

detectors to extract information about the EOS.
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Chapter 1

The equation of state and stellar

structure

At the most fundamental level, the nature of matter near nuclear density (2.8 x 1014 g/cm?)
and above is described in terms of an N-body system of quarks and leptons interacting
through electromagnetism and the strong and weak interactions. This computationally
intractable problem can, however, be simplified because up to a few times nuclear density,
quarks are in the form of nucleons (e.g. neutrons, protons, and hyperons) and mesons
(e.g. pions and kaons) interacting through nuclear interactions. As the density increases,
it becomes energetically favorable to have an increasing fraction of strange quarks, first
in hyperons or mesons, then in the form of free quarks when these composite particles
eventually dissolve at several times nuclear density. A wide range of approximations exist
for the interactions of these exotic particles, and the free parameters can be calibrated to
experimental data from, for example, heavy ion collisions. However, there remains much
uncertainty in extrapolating to bulk nuclear matter.

Unlike the matter in terrestrial experiments, the cores of neutron stars (NS), consisting
of bulk nuclear matter in its ground state with densities that can exceed 10'° g/cm?, are an
ideal subject for understanding ground-state matter as it is described through the equation
of state (EOS). This dissertation will focus on several methods for extracting information
about the EOS from electromagnetic observations of neutron stars as well as gravitational-
wave observations of neutron stars in coalescing compact binary systems, including binary
neutron star (BNS) and black hole-neutron star (BHNS) systems.

We will begin in this chapter by discussing several thermodynamic quantities related to
the EOS, and then describe how the EOS is related to observable properties of a neutron

star through the relativistic stellar structure equations. In the next chapter, we will discuss



a parametrized phenomenological model for the EOS and how a wide range of observations
can be used to constrain the parameters of this model. Chapter 3 will focus on point-particle
interactions in coalescing binaries, and Chapter 4 will focus on tidal interactions in binaries
that contain at least one neutron star. Chapter 5 will then discuss how the parameters of
a binary inspiral can be extracted with gravitational-wave detectors. In Chapter 6, we will
examine the detectability of EOS information in BNS inspirals through a quantity known
as the tidal deformability A. Finally, in the last two chapters we will examine the EOS
information that can be extracted from BHNS inspiral, merger, and ringdown for systems
with both nonspinning (Chapter 7) and aligned-spin (Chapter 8) black holes.

Conventions: Unless otherwise stated, we set G = ¢ = 1.

1.1 Thermodynamic relations and the equation of state

For the applications in this dissertation, nuclear reactions occur on a timescale much smaller
than changes in the neutron-star configuration, and so neutron-star matter is well described
by a perfect fluid in equilibrium. The first law of thermodynamics for a fluid element
containing N baryons states that the total energy F, including the rest-mass energy of the
fluid element, is [I]

dE = —pdV +TdS + pdN. (1.1)

Here, p, V, T, S, and u, are the pressure, volume, temperature, entropy, and baryon
chemical potential. The baryon chemical potential is defined as the increase in energy when
a baryon is added to the fluid element, and this includes the energy needed to, for example,
add other particles to conserve charge.

We can remove the last term in Eq. by introducing the Gibbs free energy G =
E + pV — TS, and using the relation, derived in Ref. [2],

G=E+pV —TS=puN. (1.2)

In terms of the rest mass of the fluid element My and the specific Gibbs free energy g =
G /My = p/mp, the last term in Eq. (1.1]) becomes

udN = 2 amy = gdMy, (1.3)
mp

where mp = 1.66 x 10724 g is the baryon rest mass. Because we will consider a fluid element
that adjusts so that the baryon number N is constant, the rest mass is conserved as well,

and this term is therefore zero [3].



We will find it useful to rewrite the first law of thermodynamics in terms of only intensive
quantities. We will use baryon number density n = N/V, rest mass density p = My/V =
mpn, energy density e = E/V, and specific entropy s = S/My. The first law becomes

1
dS = —pd= + Tds, (1.4)
P P
or equivalently
de = hdp + pTds, (1.5)

where the specific enthalpy h is

_E+pV  e+p

h
My p

(1.6)

In addition to the first law, the various thermodynamic quantities are related by an

equation of state
6:6(/)78)7 pzp(p,s) (17)

For the neutron stars considered in this dissertation, the temperature will be far below the
Fermi temperature, and thus we will only need to consider the isentropic one-parameter
cold EOS

e=e€(p), p=0pp). (1.8)

The above two expressions in Eq. (|1.8]) are not independent because the quantities p, €, and
p are related by the first law with ds = 0. We thus only need to specify a relation between

two of the three quantities to get the third quantity using one of the following relations

dle/p) € e /p P (/E de’ )
2 /
p=p ——>, —=—+ [ =dp, = po exp , 1.9
P dp popo Sy PP poP=P w €D (1.9)

where €y is the energy density at some rest-mass density pg. At the surface of the star
defined by p — 0, ¢g — 0 and py — 0 for a standard EOS, and the ratio €y/pg — 1. Also,
if the surface density is used for pg, then the last expression in Eq. is undefined.

In the following chapters we will find it useful in solving stellar structure equations to
define two dimensionless, enthalpy-like quantities. The first quantity is the pseudo-enthalpy

H defined by [4, 5]
dp

dH =dlnh = ,
€E+p

(1.10)
and therefore
P dy

h=ell, H= -
0o €+P

(1.11)



The second quantity 1 used in Ref. [5], which we will call the Newtonian specific enthalpy,
is defined in terms of the Newtonian energy Fnewt = F — M)

o ENewt +pV
n= —"——

=h—-1=¢e" -1, 1.12
My e (1.12)

The stiffness of an EOS is often defined in terms of the polytropic exponent. For highly
degenerate matter, we distinguish between two types of polytropic exponents, I' and -,

defined by i i
p_ dlp _dlnp

T dlnp | dlne
We note that for a one-parameter EOS with constant entropy, I is the adiabatic index. The

(1.13)

two quantities can be related to each other using the first law of thermodynamics

e+pdp e+p

T = = 1.14
p de € ( )

We define two types of polytropic EOS
p=Kyp", p=Kc, (1.15)

where K, and K, are constants. We note that the first type of polytrope is used far more
often in the literature because it is more closely associated with the underlying microphysics.
For example, a nonrelativistic degenerate Fermi gas has an EOS that scales as p o p°/3,
and for a highly relativistic degenerate Fermi gas, p oc p*/3 .

Equations of state must satisfy the following two conditions. The first, thermodynamic
stability, requires the EOS be monotonic (dp/dp > 0 and dp/de > 0), and therefore the
adiabatic indices I' and + must be positive. The second, causality, requires the speed of

sound vs be less than the speed of light

d
vs =1/ L <1. (1.16)
de
In terms of the polytropic exponents

[ pIl /
’US = p = m7 (117)
€E+Dp €

and therefore in the limit of very high density, where the majority of the energy density

comes from pressure, the EOS is causal only when I' < 2 and v < 1.

1.2 Evaluating mass, radius, and moment of inertia

The moment of inertia of a rotating star is the ratio I = J/€, with J the asymptotically

defined angular momentum. In finding the moment of inertia of spherical models, we use



Hartle’s slow-rotation equations [6], adapted to piecewise polytropes in a way we describe

below. The metric of a slowly rotating star has, to order €2, the form
ds? = —e**Mdi? + 22 dr? — 20 (r)r? sin? dpdt + r2d6? + r? sin? 0d¢?, (1.18)

where ® and X are the metric functions of the spherical star, given by

Q2 (1_27”(’"))_1’ (1.19)

r

4 1 dp

27 - i 1.20
dr e+pdr’ (1.20)
dp m + 4mr3p

-y _ _ - = 1.21
dr (e +p) r(r—2m)’ ( )
Z—T = drrle (1.22)

The frame-dragging w(r) is obtained from the ¢¢ component of the Einstein equation in the

form

1 d 4. dw 4dj

— 2 () 2 Y = 1.2
rd dr (r]dr> w=0, (1.23)

rdr
where w = ) — w is the angular velocity of the star measured by a zero-angular-momentum

jlr)y=e® (1 — 2m> 1/2- (1.24)

The angular momentum is obtained from w, which has outside the star the form w = 2.J/73.

observer and

In adapting these equations, we roughly follow Lindblom [4], replacing r as a radial
variable by a generalization 1 := h — 1 of the Newtonian enthalpy. Because 7 is monotonic
in 7, one can integrate outward from its central value to the surface, where n = 0.

This replacement exploits the first integral he® = \/m of the equation of hy-
drostatic equilibrium to eliminate the differential equation for ®; and the enthalpy,
unlike € and p, is smooth at the surface for a polytropic EOS. Egs. are then

equivalent to the first-order set

dr r(r —2m) 1

— = - 1.25
dn m + 4rr3p(n) n+ 1 (1.25)
dm dr
— = dmr’e(n)— 1.26
an )y, (1.26)
dw dr

= 1.27
dn adn ( )
do _ |4 N dm(e + p)(ra+4w) | dr (1.28)
dn r 1—2m/r dn

where « := dw/dr.



The integration to find the mass, radius, and moment of inertia for a star with given
central value n = 7. proceeds as follows: Use the initial conditions 7(n.) = m(n.) = a(n.) =
0 and arbitrarily choose a central value wy of w. Integrate to the surface where n = 0, to
obtain the radius R = r(n = 0) and mass M = m(n = 0). The angular momentum J is

found from the radial derivative of the equation

_ 2J
w=0- PR (1.29)
evaluated at r = R, namely
1
J= 6R4O‘(R)’ (1.30)
and € is then given by
_ 2J

These values of €2 and J are each proportional to the arbitrarily chosen @y, implying that

the moment of inertia J/€2 is independent of wy.



Chapter 2

Phenomenologically parametrized

EOS

2.1 Introduction

Because the temperature of neutron stars is far below the Fermi energy of their constituent
particles, neutron-star matter is accurately described by the one-parameter equation of
state (EOS) that governs cold matter above nuclear density. The uncertainty in that EOS,
however, is notoriously large, with the pressure p as a function of baryon mass density
p uncertain above nuclear density by as much as an order of magnitude. The phase of
the matter in the core of a neutron star is similarly uncertain: Current candidates for the
EOS include non-relativistic and relativistic mean-field models; models for which neutron-
star cores are dominated by nucleons, by hyperons, by pion or kaon condensates, and by
strange quark matter (free up, down, and strange quarks); and one cannot yet rule out the
possibility that the ground state of cold matter at zero pressure might be strange quark
matter and that the term “neutron star” is a misnomer for strange quark stars.

The correspondingly large number of fundamental parameters needed to accommodate
the models’ Lagrangians has meant that studies of astrophysical constraints (see, for exam-
ple, [7, 18, 9] 10, 11] and references therein) present constraints by dividing the EOS candi-
dates into an allowed and a ruled-out list. A more systematic study, in which astrophysical
constraints are described as constraints on the parameter space of a parametrized EOS, can
be effective only if the number of parameters is smaller than the number of neutron-star
properties that have been measured or will have been measured in the next several years. At
the same time, the number of parameters must be large enough to accurately approximate
the EOS candidates.



A principal aim of this chapter is to show that, if one uses phenomenological rather
than fundamental parameters, one can obtain a parametrized EOS that meets these con-
ditions. We exhibit a parametrized EOS, based on specifying the stiffness of the star in
three density intervals, characterized by the adiabatic index I' = dlog P/dlog p. A fourth
parameter translates the p(p) curve up or down, adding a constant pressure—equivalently
fixing the pressure at the endpoint of the first density interval. Finally, the EOS is matched
below nuclear density to the (presumed known) low-density EOS. An EOS for which I is
constant is a polytrope, and the parametrized EOS is then piecewise polytropic. A simi-
lar piecewise-polytropic EOS was previously considered by Vuille and Ipser [12]; and, with
different motivation, several other authors [13, [I4) [5, I5] have used piecewise polytropes
to approximate neutron-star EOS candidates. In contrast to this previous work, we use
a small number of parameters chosen to fit a wide variety of fundamental EOSs, and we
systematically explore a variety of astrophysical constraints. Like most of the previous
work, we aim to model equations of state containing nuclear matter (possibly with various
phase transitions) rather than pure quark stars, whose EOS is predicted to be substantially
different.

As we have noted, enough uncertainty remains in the pressure at nuclear density, that
one cannot simply match to a fiducial pressure at p,,.. Instead of taking as one parameter
the pressure at a fiducial density, however, one could match to the pressure of the known
subnuclear EOS at, say, 0.1 pnyc and then use as one parameter a value of I'g for the interval
between 0.1ppye and ppue. Neutron-star observables are insensitive to the EOS below ppyc,
because the fraction of mass at low density is small. But the new parameter I'g would
indirectly affect observables by changing the value of the pressure at and above nuclear
density, for fixed values of the remaining I';. By choosing instead the pressure at a fixed
density p1 > pnuc, we obtain a parameter more directly connected to physical observables. In
particular, as Lattimer and Prakash [8] have pointed out, neutron-star radii are closely tied
to the pressure somewhat above nuclear density, and the choice p; = p(p1) is recommended
by that relation.

In general, to specify a piecewise polytropic EOS with three density intervals above
nuclear density, one needs six parameters: two dividing densities, three adiabatic indices
I';, and a value of the pressure at an endpoint of one of the intervals. Remarkably, however,
we find (in Sec. that the error in fitting the collection of EOS candidates has a clear
minimum for a particular choice of dividing densities. With that choice, the parametrized
EOS has three free parameters, I't, T’y and py, for densities below 10'® g/cm? (the density

range most relevant for masses ~ 1.4Mg), and four free parameters (an additional I's) for



densities between 10'® g/cm? and the central density of the maximum mass star for each
EOS.

With the parameterization in hand, we examine in Sect. astrophysical constraints on
the EOS parameter space beyond the radius-p; relation found by Lattimer and Prakash [§].
Our emphasis in this first study is on present and very near-future constraints: those as-
sociated with the largest observed neutron-star mass and spin, with a possible observation
(as yet unrepeated) of neutron-star redshift, with a possible simultaneous measurement of
mass and radius, and with the expected future measurement of the moment of inertia of
a neutron star with known mass. (We do not consider other observables, such as those
associated with glitches and cooling, which depend not only on the EOS but also on dy-
namics, transport coefficients, and thermodynamic derivatives. The latter quantities are
generally much more uncertain than the EOS and related observables such as the stellar
radius, and are always more model dependent.) Ref. [16] investigates constraints obtainable
with gravitational-wave observations in a few years.

The constraints associated with the largest observed mass, spin, and redshift have a
similar form, each restricting the parameter space to one side of a surface: For example, if
we take the largest observed mass to be 1.93 Mg, then the allowed parameters correspond
to EOSs whose maximum mass is at least 1.93 M. We can regard Mp.x as a function on
the 4-dimensional EOS parameter space. The subspace of EOSs for which M.« = 1.93M
is then described by a 3-dimensional surface, and constraint is a restriction to the high-
mass side of the surface. Similarly, the observation of a 716 Hz pulsar restricts the EOS
parameter space to one side of a surface that describes EOSs for which the maximum spin is
716 Hz. Thus we can produce model-independent extended versions of the multidimensional
constraints seen in [17].

The potential simultaneous observation of two properties of a single neutron star (for
example, moment of inertia and mass) would yield a significantly stronger constraint: It
would restrict the parameter space not to one side of a surface but to the surface itself. And
a subsequent observation of two different parameters for a different neutron star would then
restrict one to the intersection of two surfaces. We exhibit the result of simultaneous obser-
vations of mass and moment of inertia (expected within the next decade for one member of
the binary pulsar J0737-3039 [18, [19]) and of mass and radius.

Conventions: We use cgs units, denoting rest-mass density by p, and (energy density)/c?
by €. We define rest-mass density as p = mpn, where mg = 1.66 x 1072* g and n is the
baryon number density. In Sec. however, we set ¢ = 1 to simplify the equations and

add a footnote on restoring c.



2.2 Candidates

A test of how well a parametrized EOS can approximate the true EOS of cold matter
at high density is how well it approximates candidate EOSs. We consider a wide array of
candidate EOSs, covering many different generation methods and potential species. Because
the parametrized EOS is intended to distinguish the parts of parameter space allowed and
ruled out by present and future observations, the collection includes some EOSs that no
longer satisfy known observational constraints. Many of the candidate EOSs were considered
in Refs. [8, 19, [I7]; and we call them by the names used in those papers.

For plain npep nuclear matter, we include:
e Two potential-method EOSs (PAL6 [20] and SLy [21]);
e cight variational-method EOSs (AP1-4 [22], FPS [23], and WFF1-3 [24]);
e one nonrelativistic (BBB2 [25]) and three relativistic (BPAL12 [26], ENG [7] and MPA1 [27])
Brueckner-Hartree-Fock EOSs; and
e three relativistic mean field theory EOSs (MS1-2 and one we call MS1b, which is identical
to MS1 except with a low symmetry energy of 25 MeV [28§]).

We also consider models with hyperons, pion and kaon condensates, and quarks, and
will collectively refer to these EOSs as K/7/H /q models.
e One neutron-only EOS with pion condensates (PS [29]);
e two relativistic mean field theory EOSs with kaons (GS1-2 [30]);
e one effective potential EOS including hyperons (BGN1H1 [31]); eight relativistic mean
field theory EOSs with hyperons (GNH3 [32] and seven variants H1-7 [I7]; one relativistic
mean field theory EOS with hyperons and quarks (PCL2 [33]); and
e four hybrid EOSs with mixed APR nuclear matter and colour-flavor-locked quark matter
(ALF1-4 with transition density p. and interaction parameter ¢ given by p. = 2ng, ¢ = 0;
pe = 3ng, ¢ = 0.3; pc = 3ng, ¢ = 0.0; and p. = 4.5n¢, ¢ = 0.3 respectively [34]).

The tables are plotted in Fig. [I] to give an idea of the range of EOSs considered for this

parameterization.

2.3 Piecewise polytrope

A polytropic EOS has the form,
p(p) = Ko, (2.1)
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Figure 1 : Pressure versus rest mass density for the set of candidate EOS tables considered in the parame-

terization.

with p the rest-mass density and I' the adiabatic index, and with energy density € fixed by
1

the first law of thermodynamics as = —p d—. For p of the form 1j the first law has
p P

the immediate integral

1
; = (1 + a) —+ prF_l, (22)

where a is a constant; and the requirement lin%) ¢/p = 1 implies a = 0 and the standard
p—

relation € = p + T

The parametrized EOSs we consider are piecewise polytropes above a density pg, satisfy-
ing Eqgs. and on a sequence of density intervals, each with its own K; and I';: An
EOS is piecewise polytropic for p > pg if, for a set of dividing densities pg < p1 < p2 < ---,

the pressure and energy density are everywhere continuous and satisfy
T, € 1
p(p) = Kip'?, d; = —Pd;, pi-1 < p < pi (2.3)

Then, for I" # 1,

K; .
e(p) = (1+a)p + ———pT, (2.4)
I',—1

'In this section, for simplicity of notation, ¢ = 1. To rewrite the equations in cgs units, replace p and K

in each occurrence by p/c® and K/c?. Both ¢ and p have units g/cm?®.
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. f(Pz‘—l) K; 1,1
with a; = —-1- T
Ho i Pi—1 I, — 1p171

7
The specific enthalp h := (e + p)/p, sound velocity vs = \/dp/de, and internal energy

e:=¢€/p— 1, are given in each density interval by

T .,
hip) =1+ai+ & - 1K¢pr’ L (2.5)
(2
Lip
— 2.6
Us(p) 6—}-])’ ( )
K; ._
e(p) = a; + T, _7’ 1prl L (2.7)

Each piece of a piecewise polytropic EOS is specified by three parameters: the initial
density, the coefficient K;, and the adiabatic index I';. However, when the EOS at lower
density has already been specified up to the chosen p;, continuity of pressure determines

the value of K 1:

)

Thus each additional region requires only two additional parameters, p; and I';;1. Further-
more, if the initial density of an interval is chosen to be a fixed value for the parameterization,

specifying the EOS on the density interval requires only a single additional parameter.

2.4 Fitting the candidate EOSs

To fit the true neutron-star EOS, we must ensure that a wide variety of candidate EOSs
are well fit by some set of parameter values of our parametrized EOS. In this section we
describe the fit we use and the results of that fit.

There is general agreement on the low-density EOS for cold matter, and we adopt
the version (SLy) given by Douchin and Haensel [2I]. Substituting an alternative low-
density EOS from, for example, Negele and Vautherin [35], alters by only a few percent the
observables we consider in examining astrophysical constraints, both because of the rough
agreement among the candidate EOSs and because the low density crust contributes little
to the mass, moment of inertia, or radius of the star.

Each choice of a piecewise polytropic EOS above nuclear density is matched to this low-
density EOS as follows: The lowest-density piece of the piecewise polytropic p(p) curve is
extended to lower densities until it intersects the low-density EOS, and the low-density EOS

2 A note on terminology: When the entropy vanishes, the specific enthalpy, h = (e + p)/p, and Gibbs free
energy, g = (e + p)/p — T's, coincide. For nonzero entropy, it is the term gdMo = pudN that appears in the

first law of thermodynamics, where p = g/mg is the chemical potential.
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is used at densities below the intersection point. This matching method yields a monotically
increasing p = p(p) without introducing additional parameters. It omits EOSs with values
of p; and I'y that are incompatible, i.e. for which the slope of the logp vs logp curve is
too shallow to reach the pressure p; from the low-density part of the EOS. However it still
accommodates a much larger region of parameter space than that spanned by the candidate
EOSs. (The precise choice of matching algorithm has little influence on the final fit for the
reasons given in the previous paragraph.)

The accuracy with which a piecewise polytrope {p;, K;,I';}, approximates a candidate

EOS is measured by the rms residual of the fit to m tabulated points (pj,p;):

bex (i )]- 29

Pi<pi<pi+1

In each case, we compute the residual only up to pmax, the central density of the maximum
mass nonrotating model based on the candidate EOS. Because astrophysical observations
can depend on the high-density EOS only up to the value of ppax for that EOS, only the
accuracy of the fit below ppax is relevant.

The accuracy of a choice of parameter space is measured by the average residual of its
fits to each EOS in the collection. For each EOS, we use a Levenberg-Marquardt algorithm
to minimize the residual over the parameter space. Even with a robust algorithm, the
nonlinear fitting with varying dividing densities is sensitive to initial conditions. Multiple
initial parameters for free fits are constructed using fixed-region fits of several possible
dividing densities, and the global minimum of the resulting residuals is taken to indicate
the best fit for the candidate EOS.

We begin with a single polytropic region in the core, specified by two parameters: the
index I'1 and a pressure p; at some fixed density. Here, with a single polytrope, the choice
of that density is arbitrary; for more than one polytropic piece, we will for convenience take
that density to be the dividing density p; between the first two polytropic regions. Changing
the value of p; moves the polytropic p(p) curve up or down, keeping the logarithmic slope
I'1 = dlogp/dlogp fixed. The low-density SLy EOS is fixed, and the density py where
the polytropic EOS intersects SLy changes as p; changes. The polytropic index K is
determined by Eq. . This is referred to as a one free piece fit. We then consider
two-piece and three-piece fits: two polytropic regions within the core, specified by the four
parameters {p1,'1, p1, 2}, as well as three polytropic regions specified by the six parameters
{p1,T1, p1,T2, p3, T3}, where, in each case, p; = p(p1). Again changing p; translates the
piecewise-polytropic EOS of the core up or down, keeping its shape fixed.
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The accuracy of each parametization (one, two, or three pieces), measured by the rms
residual of Eq. (2.9)), is portrayed in Table The Table lists the average and maximum
rms residuals over the set of 34 candidate EOSs. (The “fixed” fit is described below.)

Table 1 : Average residuals resulting from fitting the set of candidate EOSs with various types of piece-
wise polytropes. Free fits allow dividing densities between pieces to vary. The fixed three piece fit uses
10147 g/cm3 or roughly 1.85pn4c and 10150 g/cm3 or 3.70pnyc for all EOSs. Tabled are the RMS residuals of
the best fits averaged over the set of candidates. The set of 34 candidates includes 17 candidates containing
only npeu matter and 17 candidates with hyperons, pion or kaon condensates, and/or quark matter. Fits

14.:
0 3

are made to tabled points in the high density region between 1 g/cm?® or 0.74pnuc and the central density

of a maximum mass TOV star calculated using that table.

Type of fit All npen  K/m/h/q
Mean RMS residual
One free piece 0.0386 0.0285  0.0494

Two free pieces 0.0147 0.0086 0.0210
Three fixed pieces 0.0127 0.0098  0.0157
Three free pieces  0.0071 0.0056 0.0086

Standard deviation of RMS residual

One free piece 0.0213 0.0161 0.0209
Two free pieces 0.0150 0.0060  0.0188
Three fixed pieces 0.0106 0.0063  0.0130
Three free pieces  0.0081 0.0039  0.0107

For nucleon EOSs, the four-parameter fit of two free polytropic pieces models the be-
haviour of candidates well; but this kind of four-parameter EOS does not accurately fit
EOSs with hyperons, kaon or pion condensates, and/or quark matter. Many require three
polytropic pieces to capture the stiffening around nuclear density, a subsequent softer phase
transition, and then final stiffening. On the other hand, the six parameters required to
specify three free polytropic pieces exceeds the bounds of what may be reasonably con-
strained by the small set of model-independent astrophysical measurements. An alternative
four parameter fit can be made to all EOSs if the transition densities are held fixed for all
candidate EOSs (see below).

The hybrid quark EOS ALF3, which incorporates a QCD correction parameter for quark
interactions, exhibits the worst-fit to a one-piece polytropic EOS with residual 0.111, to the
three-piece fixed region EOS with residual 0.042, and to the three-piece varying region EOS
with residual 0.042. It has a residual from the two-piece fit of 0.044, somewhat less than

14



the worst fit EOS, BGN1H1, an effective-potential EOS that includes all possible hyperons
and has a two-piece fit residual of 0.056.

A good fit is found for three polytropic pieces with fixed divisions: between the first and
second pieces at p; = 10147 g/ cm? = 1.85pnuc and a division between the second and third
pieces fixed at py = 1050 g/cm3. The EOS is specified by choosing the adiabatic indices
{I'1,T2,T'3} in each region, and the pressure p; at the first dividing density, p1 = p1(p1).
A diagram of this parameterization is shown in Fig. For this 4-parameter EOS, best
fit parameters for each candidate EOS give a residual of 0.043 or better, with the average
residual over 34 candidate EOSs of 0.013. Note that the density of departure from the fixed
low-density EOS is still a fitted parameter for this scheme.
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Figure 2 : The fixed-region fit is parametrized by adiabatic indices {I'1,T'2,I's} and by the pressure p; at
the first dividing density.

The dividing densities for our parametrized EOS were chosen by minimizing the rms
residuals over the set of 34 candidate EOSs. For two dividing densities, this is a two-
dimensional minimization problem, which was solved by alternating between minimizing
average rms residual for upper or lower density while holding the other density fixed. The
location of the best dividing points is fairly robust over the subclasses of EOSs, as illustrated
in Fig. [3]

With the dividing points fixed, taking the pressure p; to be the pressure at p; = 1.85pnyc,

15



0-05_' | —— all tables, mean + 1 o T
————— npeu only, mean + 1 o

........ K/n/H/q, mean + 1 o

004

_0.03

T L

>

o

n

< F RN 1
0.02f R E
0.01f k

lower division varying upper division varying
0.00" 1 PR PR PR PR PR 1 I-
145 14.6 14.7 14.8 14.9 15.0 15.1

log(p in g/cm®?)

Figure 3 : Subsets of EOSs with and without kaons, hyperons, meson condensates, or quarks, show a fairly
robust choice of dividing densities whose fit to the candidate EOSs minimizes residual error. The mean
plus one standard deviation of residuals for each subset of candidate EOSs is plotted against the choice of
lower and upper dividing densities p1 and p2. The left curves show mean residual versus p; with p2 fixed at

10'%° g/em®. The right three curves show mean residual versus p2, with p; fixed at 10'*7 g/cm?®.

is indicated by empirical work of Lattimer and Prakash [§] that finds a strong correlation
between pressure at fixed density (near this value) and the radius of 1.4M neutron stars.
This choice of parameter allows us to examine (in Sec. the relation between p; and the
radius; and we expect a similar correlation between p; and the frequency at which neutron-
star inspiral dramatically departs from point-particle inspiral for neutron stars near this
mass.

Since there are not many astrophysical constraints on the EOS, it is desirable to use
one of the four-parameter fits (two free pieces or three fixed). Observations of pulsars that
are not accreting indicate masses below 1.45 Mg (see Sec. , and the central density of
these stars is below pg for almost all EOSs. Then only the three parameters {p;,I'1,T'2}
of the fixed piece parameterization are required to specify the EOS for moderate mass
neutron stars. This class of observations can then be treated as a set of constraints on a
3-dimensional parameter space. Similarly, because maximum-mass neutron stars ordinarily
have most matter in regions with densities greater than the first dividing density, their
structure is insensitive to the first adiabatic index. The three piece parameterization does
a significantly better job above py because phase transitions above that density require a

third polytropic index I's. If the remaining three parameters can be determined by pulsar
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observations, then observations of more massive, accreting stars can constrain I's.

The best fit parameter values of the candidate EOSs are shown in Fig. 4] and listed in
Table[8|of Appendix[A] The worst fits of the fixed region fit are the hybrid quark EOSs ALF1
and ALF2, and the hyperon-incorporating EOS BGN1H1. For BGN1H]1, the relatively large
residual is due to the fact that the best fit dividing densities of BGN1H1 differ strongly
from the average best dividing densities. Although BGN1H1 is well fit by three pieces with
floating densities, the reduction to a four-parameter fit limits the resolution of EOSs with
such structure. The hybrid quark EOSs, however, have more complex structure that is
difficult to resolve accurately with a small number of polytropic pieces. Still, the best-fit
polytrope EOS is able to reproduce the neutron star properties predicted by the hybrid
quark EOS.
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Figure 4 : parametrized EOS fits to the set of 34 candidate EOS tables. There are 17 EOSs with only
ordinary nuclear matter (n,p,e,); 9 have only hyperons in addition to ordinary matter; 3 include meson
condensates plus ordinary matter; 5 include quarks plus other matter (PCL2 also has hyperons). I's < 3.5
and I's < 2.5 for all EOSs with hyperons, meson condensates, and/or quark cores. The shaded region

corresponds to incompatible values of p; and I'1, as discussed in the text.

In Appendix [A] Table [§] compares neutron-star properties for each EOS to their val-
ues for the best-fit piecewise polytrope. The mean error and standard deviation for each

characteristic is also listed.
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2.5 Astrophysical constraints on the parameter space

Adopting a parametrized EOS allows one to phrase each observational constraint as a
restriction to a subset of the parameter space. In sections[2.5.1H2.5.4 we find the constraints
imposed by causality, by the maximum observed neutron-star mass and the maximum
observed neutron-star spin, and by a possible observation of gravitational redshift. We
then examine, in section [2.5.5 constraints from the simultaneous measurement of mass
and moment of inertia and of mass and radius. We exhibit in section 2.5.6] the combined
constraint imposed by causality, maximum observed mass, and a future moment-of-inertia
measurement of a star with known mass.

In exhibiting the constraints, we show a region of the 4-dimensional parameter space
large enough to encompass the 34 candidate EOSs considered above. The graphs in Fig. []
display the ranges 1033'5dyne/cm2 <p1 < 1035'5dyne/cm2, 14 <T'1 <5.0,1.0<Ty <5.0,
and 1.0 < TI's < 5.0. Also shown is the location in parameter space of the best fit to each
candidate EOS. The shaded region in the left graph corresponds to incompatible values of
p1 and I'; mentioned in Sect. [2.4]

To find the constraints on the parametrized EOS imposed by the maximum observed
mass and spin, one finds the maximum mass and spin of stable neutron stars based on
the EOS associated with each point of parameter space. A subtlety in determining these
maximum values arises from a break in the sequence of stable equilibria—an island of
unstable configurations—for some EOSs. The unstable island is typically associated with
phase transitions in a way we now describe.

Spherical Newtonian stars described by EOSs of the form p = p(p) are unstable when
an average value I of the adiabatic index falls below 4/3. The stronger-than-Newtonian
gravity of relativistic stars means that instability sets in for larger values of I, and it is
ordinarily this increasing strength of gravity that sets an upper limit on neutron-star mass.
EOSs with phase transitions, however, temporarily soften above the critical density and
then stiffen again at higher densities. As a result, configurations whose inner core has
density just above the critical density can be unstable, while configurations with greater
central density can again be stable. Models with this behavior are considered, for example,
by Glendenning and Kettner [36], Bejger et al. [14] and by Zdunik et al. [I3] (these latter
authors, in fact, use piecewise polytropic EOSs to model phase transitions).

For our parametrized EOS, instability islands of this kind can occur for T's < 2, when
I't 2 2and I's 2 2. A slice of the four-dimensional parameter space with constant I'y and

I'5 is displayed in Fig. [5l The shaded region corresponds to EOSs with islands of instability.
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Contours are also shown for which the maximum mass for each EOS has the constant value
1.7M¢, (lower contour) and 2.0Mg (upper contour).

An instability point along a sequence of stellar models with constant angular momentum
occurs when the mass is maximum. On a mass-radius curve, stability is lost in the direction
for which the curve turns counterclockwise about the maximum mass, regained when it turns
clockwise. In the right graph of Fig. 5| mass-radius curves are plotted for six EOSs, labeled
A-F, associated with six correspondingly labeled EOSs in the left figure. The sequences
associated with EOSs B, C and E have two maximum masses (marked by black dots in
the lower figure) separated by a minimum mass. As one moves along the sequence from
larger to smaller radius — from lower to higher density, stability is temporarily lost at the
first maximum mass, regained at the minimum mass, and permanently lost at the second
maximum mass.

It is clear from each graph in Fig. [5| that either of the two local maxima of mass can be
the global maximum. On the lower boundary (containing EOSs A and D), the lower density
maximum mass first appears, but the upper-density maximum remains the global maximum
in a neighborhood of the boundary. Above the upper boundary (containing EOS F), the

higher-density maximum has disappeared, and near the upper boundary the lower-density

maximum is the global maximum.
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Figure 5 : The region in parameter space where two stable neutron-star sequences can occur is shaded in
the left figure. Contours of constant maximum mass are also shown. The higher central density maximum
mass contour is solid while the lower central density maximum mass contour is dashed. Mass-radius curves

are plotted for several EOSs in the right figure. Although difficult to see, EOS C does in fact have a second
stable sequence.
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2.5.1 Causality

For an EOS to be considered physically reasonable, the adiabatic speed of sound vs cannot
exceed the speed of light. An EOS is ruled out by causality if vs > 1 for any density below
the central density pmax of the maximum-mass neutron star for that EOS. (If v > 1 only
above pmax, the EOS is astrophysically indistinguishable from one altered to have vy < 1
above pmax and thus should not be ruled out.)

We exhibit the causality constraint in two ways, first by simply requiring that each
piecewise polytrope be causal at all densities and then by requiring only that it be causal
below pmax. The first, unphysically strong, constraint, shown in Fig. [6] is useful for an
intuitive understanding of the constraint: The speed of sound is a measure of the stiffness
of the EOS, and requiring causality eliminates the largest values of I'; and p;.

Fig. [7] shows the result of restricting the constraint to densities below ppax, with the
speed of sound given by Eq. . A second surface is shown to account for the inaccuracy
with which a piecewise polytropic approximation to an EOS represents the speed of sound.
In all but one case (BGN1H1) the fits to the candidate EOSs overpredict the maximum speed
of sound, but none of the fits to the candidate EOSs mispredict whether the candidate EOS
is causal or acausal by more than 11% (fractional difference between fit and candidate).
We adopt as a suitable causality constraint a restriction to a region bounded by the surface
Us,max = l4+mean+1lo = 1.12, corresponding to the mean plus one standard deviation in
the error between vs max for the candidate and best fit EOSs.

In the lower parts of each graph in Fig. E where p; < 10% dyne/cm?, the bounding
surface has the character of the first causality constraint, with the restriction on each of
the three variables p;,I's and I's becoming more stringent as the other parameters increase,
and with I's restricted to be less than about 3. In this low-pressure part of each graph, the
surface is almost completely independent of the value of I';: Because the constraint takes
the form T'1p/(e + p) < ¢ (for p < €) and p < p1 is so low, the constraint rules out values
of I'1 only at or beyond the maximum I'; we consider.

In the upper part of each graph, where p; > 103 dyne/cm?, unexpected features arise
from the fact that we impose the causality constraint only below the maximum density of
stable neutron stars — below the central density of the maximum-mass star.

The most striking feature is the way the constraint surface turns over in the upper part
of the top graph, where p; > 103° dyne/cm?, in a way that allows arbitrarily large values of
p1. This occurs because, when p; is large, the density of the maximum-mass star is small,
and a violation of causality typically requires high density. That is, when the density is
low, the ratio p/(e + p) in Eq. is small. As a result, in the left graph, vs remains too
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small to violate causality before the maximum density is reached. In the right graph, with
I'y = 3.8, I'1 is now large enough in Eq. that the EOS becomes acausal just below the
transition to I's. This is the same effect that places the upper limit on p; seen in the second
graph of Fig. [6]

A second feature of the upper parts of each graph is the exact independence of the
bounding surface on I's. The reason is simply that in this part of the parameter space the
central density of the maximum mass star is below ps, implying that no stable neutron stars
see I's.

Finally, we note that in both graphs, for small 'y (the right of the graph), the EOSs
yield the sequences mentioned above, in which an island of instability separates two stable
sequences, each ending at a local maximum of the mass. Requiring vs max to satisfy causality

for both stable regions rules out EOSs below the lower part of the bifurcated surface.
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Figure 6 : Causality constraints are shown for two values of I'1. For each EOS in the parameter space the
maximum speed of sound over all densities is used. The shaded surface separates the EOS parameter space
into a region behind the surface allowed by causality (labeled vsmax < 1) and a region in which corresponding

EOSs violate causality at any density (labeled vs max > 1).

2.5.2 Maximum Mass

A stringent observational constraint on the EOS parameter space is set by the largest
observed neutron-star mass. Unfortunately, the highest claimed masses are also subject
to the highest uncertainties and systematic errors. The most reliable measurements come
from observations of radio pulsars in binaries with neutron star companions. The masses
with tightest error bars (about 0.01 Mg) cluster about 1.4 Mg [37]. Recent observations

of millisecond pulsars in globular clusters with non-neutron star companions have yielded
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Figure 7 : Causality constraint as in Fig. []] However, here, only the maximum speed of sound up to
the central density of the maximum mass star is considered. A second, outlined surface shows a weaker
constraint to accommodate the expected error in the speed of sound associated with a piecewise polytropic
approximation to an EOS. With o the standard deviation in vsmax between an EOS and its parametrized
representation, as measured by the collection of candidate EOSs, the outlined surface depicts vsmax =

1+mean+1c = 1.12 constraint.

higher masses: Ter 5I and Ter 5J [38], M5B [39], PSR J1903+4-0327 [40], and PSR J0437-
4715 [41] all have 95% confidence limits of about 1.7 Mg, and the corresponding limit for
NGC 6440B [42] is about 2.3 Ms. However these systems are more prone to systematic
errors: The pulsar mass is obtained by assuming that the periastron advance of the orbit is
due to general relativity. Periastron advance can also arise from rotational deformation of
the companion, which is negligible for a neutron star but could be much greater for pulsars
which have white dwarf or main sequence star companions. Also the mass measurement
is affected by inclination angle, which is known only for the very nearby PSR, J0437-4715.
And with the accumulation of observations of these eccentric binary systems (now about
a dozen) it becomes more likely that the anomalously high figure for NGC 6440B is a
statistical fluke. Recently, however, a secure measurement was made of a 1.97 4+ 0.04 M
neutron star from the Shapiro delay [43]. Fig. [8| shows the constraint on the EOS placed
by the existence of 1.93 My neutron stars, which we regard as secure. Also shown in the
figure are the surfaces associated with maximum masses of 1.7 Mg and 2.3 M.

Since all of the candidate high-mass pulsars are spinning slowly enough that the ro-
tational contribution to their structure is negligible, the constraint associated with their
observed masses can be obtained by computing the maximum mass of nonrotating neutron
stars. Corresponding to each point in the parameter space is a sequence of neutron stars
based on the associated parametrized EOS; and a point of parameter space is ruled out

if the corresponding sequence has maximum mass below the largest observed mass. We
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exhibit here the division of parameter space into regions allowed and forbidden by given
values of the largest observed mass.

We plot contours of constant maximum mass in Fig.[§] Because EOSs below a maximum
mass contour produce stars with lower maximum masses, the parameter space below these
surfaces is ruled out. The error in the maximum mass between the candidate and best fit
piecewise polytropic EOSs is |mean| + 1o = 1.7% (the magnitude of the mean error plus
one standard deviation in the error over the 34 candidate EOSs), so the parameters that
best fit the true EOS are unlikely to be below this surface.

The surfaces of Fig. |8 have minimal dependence on I'y, indicating that the maximum
mass is determined primarily by features of the EOS above p;. In Fig. [§| we have set I'; to
the least constraining value in the range we consider — to the value that gives the largest
maximum mass at each point in {p1,I'2,I's} space. Varying I'; causes the contours to
shift up, constraining the parameter space further, by a maximum of 10°2 dyne/cm?. The
dependence of the contour on I'7 is most significant for large values of p; where the average

density of a star is lower. The dependence on I'; decreases significantly as p; decreases.

Figure 8 : The above surfaces represent the set of parameters that result in a constant maximum mass. An
observation of a massive neutron star constrains the equation of state to lie above the corresponding surface.
T'y is set to the least constraining value at each point. The lower shaded surface represents Mmax = 1.7 Mg;

the middle and upper (outlined) surfaces represent Mmax = 1.93 Mo and Mmax = 2.3 Mg respectively.

As discussed above, some of the EOSs produce sequences of spherical neutron stars with
an island of instability separating two stable sequences, each with a local maximum of the
mass. As shown in Fig. [5| this causes a contour in parameter space of constant maximum
mass to split into two surfaces, one surface of parameters which has this maximum mass at

the lower p. local maximum and another surface of parameters which has this maximum
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mass at higher p. branches. Since such EOSs allow stable models up to the largest of their
local maxima, we use the least constraining surface (representing the global maximum mass)

when ruling out points in parameter space.

2.5.3 Gravitational redshift

We turn next to the constraint set by an observed redshift of spectral lines from the surface
of a neutron star. We consider here only stars for which the broadening due to rotation
is negligible and restrict our discussion to spherical models. The redshift is then z =
(1 —2M/R)~Y/? — 1, and measuring it is equivalent to measuring the ratio M/R. With no
independent measurement of mass or radius, the associated constraint again restricts the
parameter space to one side of a surface, to the EOSs that allow a redshift as large as the
largest observed shiftE| For spherical models, the configuration with maximum redshift for
a given EOS is ordinarily the maximum-mass star. By increasing p1,1's or I's, one stiffens
the core, increasing the maximum mass, but also increasing the radius at fixed mass. The
outcome of the competition usually, but not always, yields increased redshift for larger
values of these three parameters; that is, the increased maximum mass dominates the effect
of increased radius at fixed mass for all but the largest values of p;.

Cottam, Paerels, and Mendez [45] claim to have observed spectral lines from EXO 0748-
676 with a gravitational redshift of z = 0.35. With three spectral lines agreeing on the
redshift, the identification of the spectral features with iron lines is better founded than
other claims involving only a single line. The identification remains in doubt, however,
because the claimed lines have not been seen in subsequent bursts [46], and the subsequent
observation of a 552 Hz period makes it unlikely that the observed lines originated at the
NS surface [47]. There is also a claim of a simultaneous mass-radius measurement of this
system using Eddington-limited photospheric expansion x-ray bursts [48] which would rule
out many EOSs. This claim is controversial, because the 95% confidence interval is too
wide to rule out much of the parameter space, and we believe the potential for systematic
error is understated. However, the gravitational redshift is consistent with the earlier claim
of 0.35. Thus we treat z = 0.35 as a tentative constraint. We also exhibit the constraint
that would be associated with a measurement of z = 0.45.

Our parameterization can reproduce the maximum redshift of tabulated EOSs to 3.2%

(mean+10). Figure |§| displays surfaces of constant redshift z = 0.35 and z = 0.45 for the

30ne could also imagine a measured redshift small enough to rule out a class of EOSs. The minimum
redshift for each EOS, however, occurs for a star whose central density is below nuclear density. Its value,

2z~ 5 x 107, thus depends only on the EOS below nuclear density. (See, for example Haensel et al.[44].)
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least constraining value of I'y = 5 in the range we consider. Surfaces with different values of
I'; are virtually identical for p; < 10348 dyne/cm?, but diverge for higher pressures when I'y
is small (< 2.5). In the displayed parameter space, points in front of the z = 0.35 surface,
corresponding to stiffer EOSs in the inner core, are allowed by the potential z = 0.35
measurement. From the location of the z = 0.35 and z = 0.45 surfaces, it is clear that,
without an upper limit on I'; < 2.5, an observed redshift significantly higher than 0.35 is

needed to constrain the parameter space. In particular, most of the parameter space ruled

out by z = 0.35 is already ruled out by the Mp,x = 1.93 Mg constraint displayed in Fig.
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Figure 9 : Surfaces in the EOS parameter space for which the maximum redshift of stable spherical neutron
stars has the values 0.35 (shaded surface) and 0.45 (outlined surface). A measured redshift from the surface
of a neutron star would exclude the region of parameter space behind the corresponding surface. I'; is fixed

at 5.0, the least constraining in the range we considered.

2.5.4 Maximum Spin

Observations of rapidly rotating neutron stars can also constrain the EOS. The highest
uncontroversial spin frequency is observed in pulsar Ter 5AD at 716 Hz [49]. There is a
claim of 1122 Hz inferred from oscillations in x-ray bursts from XTE J1239-285 [50], but
this is controversial because the statistical significance is relatively low, the signal could be
contaminated by the details of the burst mechanism such as fallback of burning material,
and the observation has not been repeated.

The maximum angular velocity of a uniformly rotating star occurs at the Kepler or mass-
shedding limit, Qk, with the star rotating at the speed of a satellite in circular orbit at the
equator. For a given EOS, the configuration with maximum spin is the stable configuration

with highest central density along the sequence of stars rotating at their Kepler limit. An
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EOS thus maximizes rotation if it maximizes the gravitational force at the equator of a
rotating star — if it allows stars of large mass and small radius. To allow high mass stars,
the EOS must be stiff at high density, and for the radius of the high-mass configuration to
be small, the EOS must be softer at low density, allowing greater compression in the outer
part of the star [51, 52]. In our parameter space, a high angular velocity then restricts one
to a region with large values of I'y and I'3, and small values of p; and I'y.

As with the maximum mass, the maximum frequency is most sensitive to the parameter
p1, but the frequency constraint complements the maximum mass constraint by placing an
upper limit on p; over the parameter space, rather than a lower limit.

To calculate the maximum rotation frequencies for our parametrized EOS, we used the
open-source code rns for axisymmetric rapid rotation in the updated form rns2.0 [53]. For
a given EOS, the model with maximum spin is ordinarily close to the model with maximum
mass, but that need not be true for EOSs that yield two local mass maxima. The resulting
calculation of maximum rotation requires some care, and the method we use is described
in Appendix B of Ref. [54]. The error incurred in using the parametrized EOS instead of a
particular model is 2.7% (mean+10).

Spin frequencies of 716 Hz and even the possible 1122 Hz turn out to be very weak
constraints because both are well below the Kepler frequencies of most EOSs. Thus we plot
surfaces of parameters giving maximum rotation frequencies of 716 Hz in Fig.[10jand 1300 Hz
and 1500 Hz in Fig. The region of parameter space above the maximum observed spin
surface is excluded. In the top figure, maximum mass stars have central densities below po
so there is no dependence on I's. In the bottom figure the least constraining value of I'y =5
is fixed. The surface corresponding to a rotation of 716 Hz only constrains the parameter
space that we consider (p; < 1035 dyne/cm?) if I'y < 2.5. The minimum observed rotation
rate necessary to place a firm upper limit on p; is roughly 1200 Hz for I'y = 5. The surface
fmax = 1500 Hz for 'y = 5 is also displayed in Fig. to demonstrate that much higher
rotation frequencies must be observed in order to place strong limits on the parameter space.

Because it is computationally expensive to use rns to evaluate the maximum rotation
frequency for a wide range of values in a 4-parameter space, one can also use an empirical
formula. Haensel and Zdunik [55] found that the maximum stable rotation for a given EOS
can be found from the maximum-mass spherically symmetric model for that EOS with mass
M and radius Ry :

3
2

1
Qmax MS 5 RS B
~ . 2.10
<1O4s_1> ﬁ(M@> <10km) (2.10)

In other words the maximum rotation is proportional to the square root of the average
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Figure 10 : The above surface represents the set of parameters that result in a maximum spin frequency of
716 Hz for the top surface. For high values of p; there is no dependence on I's. The wedge at the back right
is the shaded region of Fig. 4] corresponding to incompatible values of p; and I'y.
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Figure 11 : The above surfaces represent the set of parameters that result in a maximum spin frequency of
1200 Hz for the top surface and 1500 Hz for the bottom surface. That is, observations of such high spin
frequencies would constrain the EOS to lie below the corresponding surface. For these surfaces I'y = 5, the

least constraining value.

density of the star.

The original calculation of Haensel and Zdunik gave k = 0.77. An overview of subsequent
calculations is given by Haensel et al. in [56], reporting values of k = 0.76 — 0.79 for a
range of EOS sets and calculation methods including those of [57, 58, 59]. If we calculate
maximum rotations with rns as described above, using the 34 tabulated EOSs, we find

Kk = 0.786 + 0.030. The corresponding best fit parametrized EOSs give k = 0.779 4+ 0.027.
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2.5.5 Moment of inertia or radius of a neutron star of known mass

The moment of inertia of the more massive component, pulsar A, in the double pulsar
PSR J0737-3039 may be determined to an accuracy of 10% within the next few years [18]
by measuring the advance of the system’s periastron, and implications for candidate EOSs
have been examined in [19] 18, [60]. As noted earlier, by finding both mass and moment of
inertia of the same star one imposes a significantly stronger constraint on the EOS parameter
space than the constraints associated with measurements of mass or spin alone: The latter
restrict the EOS to the region of parameter space lying on one side of a surface, the region
associated with the inequality Mpax(p1,1) > Mobserved O With Qmax(p1, 1) > Qobserved-
The simultaneous measurement, on the other hand, restricts the EOS to a single surface.
That is, in an n-dimensional parameter space, the full n-dimensional set of EOSs which allow
a 1.338 My model, and those EOSs for which that model has moment of inertia I pserved
form the (n—1)-dimensional surface in parameter space given by I(p1,I';, M = 1.338Mg) =
Iopserved- (We use here the fact that the 44 Hz spin frequency of pulsar A is slow enough
that the moment of inertia is nearly that of the spherical star.) Moreover, for almost all
EOSs in the parameter space, the central density of a 1.338 M, star is below the transition
density po. Thus the surfaces of constant moment of inertia have negligible dependence on
I'3, the adiabatic index above pg, and the EOS is restricted to the two-dimensional surface
in the p1-I'1-T'y space given by I(p1,T'1, Ty, M = 1.338M¢) = Iobserved-

This difference in dimensionality means that, in principle, the simultaneous equali-
ties that give the constraint from observing two features of the same star are dramati-
cally stronger than the inequalities associated with measurements of mass or spin alone.
In practice, however, the two-dimensional constraint surface is thickened by the error
of the measurement. The additional thickness associated with the error with which the
parametrized EOS can reproduce the moment of inertia of the true EOS is smaller, because
the parametrized EOS reproduces the moment of inertia of the 34 candidate EOSs to within
2.8% (|mean| + 10).

In Fig. [I2] we plot surfaces of constant moment of inertia that span the range associated
with the collection of candidate EOSs. The lower shaded surface represents I = 1.0 x
10* gecm?. This surface has very little dependence on I'y because it represents a more
compact star, and thus for a fixed mass, most of the mass is in a denser state p > p;. The
structures of these stars do depend on I's, and the corresponding dependence of I on I's
is shown by the separation between the surfaces in Fig. The middle outlined surface

0% gcm?, and is almost a surface of constant p;. The top outlined

045

represents [ = 1.5 x 1

surface represents I = 2.0 x 1 gcm?. This surface has little dependence on I's, because
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a star with an EOS on this surface would be less compact and thus most of its mass would

be in a lower density state p < p;.

log (p; in dyne/cm?)

Figure 12 : The above surfaces represent the set of parameters that result in a star with a mass of 1.338 Mg
and a fixed moment of inertia, i.e. possible near-future measurements of PSR J0737-3039A. I = 1.0 x
10*® gem? for the shaded surfaces, whose separation corresponds to varying I's. I = 1.5 x 10%*® gcem? for
the middle outlined surface. I = 2.0 x 10%*® gcm? for the top outlined surface. The wedge at the back right
is the shaded region of Fig. 4l corresponding to incompatible values of p; and I';.

If the mass of a neutron star is already known, a measurement of the radius constrains the
EOS to a surface of constant mass and radius, R(p1,1;) = Robserveds M (p1, 1) = Mobserved
in the 4-dimensional parameter space. The thickness of the surface is dominated by the
uncertainty in the radius and mass measurements, since our parameterization produces
the same radius as the candidate EOSs to within 1.7% (|mean| + 1o). We plot in Fig.
surfaces of constant radius for a 1.4 My star that span the range of radii associated with the
collection of candidate EOSs. As with the moment of inertia, the radius depends negligibly
on I's as long as the radius is greater than 11 km. For smaller radii, the variation with I's
is shown by the separation between the surfaces in Fig.

Very recently analyses of time-resolved spectroscopic data during thermonuclear bursts
from two neutron stars in low-mass x-ray binaries were combined with distance estimates
to yield M = 1.4 Mg and R =11 km or M = 1.7 Mg and R = 9 km for EXO 1745-248 [61]
and M = 1.8 Mg and R = 10 km for 4U 1608-52 [62], both with error bars of about 1 km in
R. These results are more model dependent than the eventual measurement of the moment
of inertia of PSR J0737-6069A, but the accuracy of the measurement of I remains to be

seen.
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Figure 13 : The above surfaces represent the set of parameters that result in a star with a mass of 1.4 Mg and
a fixed radius. R = 9 km for the shaded surfaces, whose separation corresponds to varying I's. R = 12 km
for the middle outlined surface. R = 16 km for the top outlined surface. The wedge at the back right is the

shaded region of Fig. [ corresponding to incompatible values of p; and I'y.

2.5.6 Combining constraints

The simultaneous constraints imposed by causality, a maximum observed mass of 1.93M),
and a future measurement of the moment of inertia of PSR J0737-3039A, restrict the pa-
rameter space to the intersection of the allowed regions of Figs. [7], [8] and We show in
Fig. the projection of the joint constraint from causality and maximum observed mass
on the p; —I's — '3 subspace, and we show in Fig.[15|the joint constraint from including the
moment of inertia of PSR J0737-3039A as well. This allows one to see the cutoffs imposed
by causality that eliminate large values of I'y and I's and (in the left of Fig. the cutoffs
imposed by the existence of a 1.93Mg model that eliminates small values of I'y and T's.

We noted above that measuring the moment of inertia of a 1.338M(, star restricts the
EOS at densities below ps to a two-dimensional surface in the p; —I'y — 'y space. In the full
4-dimensional parameter space, the corresponding surfaces of constant M and I of Fig.
are then three dimensional and independent of I's. Their projections onto the p; — I'o — '
subspace are again three-dimensional and independent of I's, their thickness due to the
unseen dependence of the mass and moment of inertia on I';. For small moments of inertia
there is negligible dependence on I'y so the allowed volume in Fig. [15|is thin. The thickness
of the allowed volume increases as the moment of inertia increases because the dependence
on I'; also increases.

In Fig. [L6| we explore a relation between the moment of inertia 7(1.338) of PSR J0O737-
3039A and the maximum neutron star mass, in spite of the fact that the maximum mass is

significantly greater than 1.338 M. For three values of the moment of inertia that span the
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Figure 14 : The figure portrays the joint constraint imposed by causality (vsmax < l+mean+1o) and the
existence of a 1.93 Mg neutron star. The dark shaded region is the volume in I'y — I's — p1 space ruled
out by the requirement that the EOS be causal, and the light shaded region is the volume ruled out by the

1.93 My neutron star.

log (p1) (dyne/cm?)
log (p1) (dyne/cm®)

Figure 15 : The figure portrays the joint constraint imposed by causality (vsmax < l4+mean+1o), the
existence of a 1.93 Mg neutron star, and by a future measurement of the moment of inertia I of JO737-
3039A. Each thick shaded surface is the volume in I's — I's — p1 space allowed by the joint constraint for the
labeled value of I.

full range associated with our collection of candidate EOSs, we show joint constraints on I'y
and I'3 including causality and maximum neutron star mass. For I(1.338) = 1.0x10* gcm?,
I'y is nearly unconstrained, while I's is required to lie in a small range between the causality
constraint and the reliable observations of stars with mass 1.7 M. However, for the recently
measured 1.93 Mg neutron star, this value for the moment of inertia is completely ruled
out. For larger values of 1(1.338), I's is more constrained and I's is less constrained.

The allowed range for p; as a function of the moment of inertia of JO737-3039A is shown
in Fig. The entire shaded range is allowed for a 1.7 Mg maximum mass. The medium

and darker shades are allowed for a 2.0 My maximum mass. Only the range with the darker

31



5.0 T : : T T T : 5.0 : : T T T T T
_ 45 2 _ 45 2
a5k |(l.338MO)—1.0X10 gcm ] a5k I(1.338MO)—1.5x10 gcm ]
4.0F g 4.0F g
3.5¢ Vs, max=1+mean+1 o 1 3.5¢ Vs, max=1+mean+1 o 1
= 3.0F 2 3.0 E

2.5k 25
2.0F ] 2.0
1.5F ] 1.5

30 35 40 45 50
I,

15 20 25 30 35 40 45 50 15 20 25

15 20 25 30 35 40 45 50
I,

Figure 16 : The allowed values of I'z and I's depend strongly on the moment of inertia of PSR J0737-3039A.
In top left, top right, and bottom figures, respectively, I has the values 1.0 x 10%*® gem?, I = 1.5 x 10%° gcm?
and I = 2.0 x 10%° gch. In each figure the upper curves are the vsmax = 1 (dotted) and vsmax =
l1+mean+1lo = 1.12 (solid) causality constraints. Shading indicates a range of possible maximum mass
constraints, with increasing maximum mass leading to a smaller allowed area. All shaded areas are allowed
for a 1.7 M» maximum neutron star mass. The medium and dark shades are allowed if a 2.0 My star is

confirmed. Only the darkest shade is allowed if a 2.3 My star is confirmed.

shade is allowed if a 2.3 M, star is confirmed. It should be noted that for small moments
of inertia, this plot overstates the uncertainty in the allowed parameter range. As shown in
Fig. the allowed volume in I's — I's — p; space for a small moment of inertia observation
is essentially two dimensional. If the moment of inertia is measured to be this small, then
the EOS would be better parametrized with the linear combination «log(p;) + ST's instead
of two separate parameters log(p;) and I's. We also note that the recent 1.97 + 0.04 Mg
NS observation essentially rules out values of 1(1.338) < 1.0 x 10% gcm?.

2.6 Discussion

We have shown how one can use a parametrized piecewise polytropic EOS to systematize

the study of observational constraints on the EOS of cold, high-density matter. We think
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Figure 17 : The allowed range of p; as a function of the moment of inertia of J0737-3039A when combined
with causality (vs,max = 14+mean+1c) and observed mass constraints. All shaded areas are allowed by a
1.7 Mo maximum mass. The medium and dark shades are allowed if a 2.0 Mg star is confirmed. Only the

darkest shade is allowed if a 2.3 Mg star is confirmed.

that our choice of a 4-parameter EOS strikes an appropriate balance between the accuracy
of approximation that a larger number of parameters would provide and the number of
observational parameters that have been measured or are likely to be measured in the
next several years. The simple choice of a piecewise polytrope, with discontinuities in the
polytropic index, leads to suitable accuracy in approximating global features of a star. But
the discontinuity reduces the expected accuracy with which the parametrized EOS can
approximate the local speed of sound. One can largely overcome the problem by using a
minor modification of the parametrized EOS in which a fixed smoothing function near each
dividing density is used to join the two polytropes.

We see that high-mass neutron stars are likely to provide the strongest constraints from
a single measurement. The work dramatizes the significantly more stringent constraints
associated with measurements like this, if two (or more) physical features of the same
star can be measured, and an n-dimensional parameter space is reduced by one (or more)
dimension(s), to within the error of measurement. In particular, a moment of inertia mea-
suremement for PSR J0737-3039 (whose mass is already precisely known) could strongly
constrain the maximum neutron star mass.

Finally, we note that the constraints from observations of different neutron star popula-

tions constrain different density regions of the EOS. For moderate mass stars such as those
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found in binary pulsar systems, the EOS above ps = 100 g/cm? is unimportant. For near-
maximum mass stars, the EOS below p; = 1017 g/cm3 has little effect on neutron star

properties. This general behavior is independent of the details of our parameterization.
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Chapter 3

Point-particle waveform

approximations

The available electromagnetic observations presented in the last chapter offer useful, but still
weak, constraints on the equation of state. Claimed mass-radius measurements offer the
potential to provide significantly stronger constraints if they can be confirmed, and mass—
moment of inertia measurements will offer similar constraints if they can be measured.
Only recently, however, has the potential for gravitational-wave detectors to measure EOS-
dependent information from binary inspiral received much attention.

In this chapter we state the results of the post-Newtonian (PN) approximation to the
inspiral stage of coalescing binary black hole (BBH) systems, and discuss several methods
for obtaining time and frequency domain inspiral waveforms. A more detailed review of the
PN formalism can be found in Refs. [63] [64]. We then describe two methods for extending
the PN approximation to the merger and ringdown stages of coalescence. In the next
chapter we describe how the presence of matter in binary neutron star (BNS) and black
hole-neutron star (BHNS) systems modifies the BBH waveform via tidal interactions. First,

however, we discuss the general features of a binary waveform.

3.1 Description of a binary waveform

In general relativity, a gravitational wave far from a source is a linear perturbation h,,
of a flat background spacetime ), such that the metric is g,, = nu + hyu. The gauge

symmetry of general relativity allows one to choose the Lorenz gauge condition

0" by =0, (3.1)
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where Ry, = hyy — %nwh is the trace reversed perturbation [64]. In the Lorenz gauge, the

Einstein equation R, — % 9uv R = 87T}, becomes
Ohyw = —167T ). (3.2)

Outside the source, where the stress energy tensor 7, = 0 and therefore DEW =0, an
additional coordinate transformation that still preserves the Lorenz gauge condition can be

made such that h is transverse and traceless, and the waveform therefore satisfies [64]

hoy =0, hi=0, Oh;j=0. (3.3)

(2

In general, the transverse traceless projection hiTjT of a generic perturbation h;; is given
by hiTjT = Ajjrihr, where Ay = PPy — %Piijl is the transverse traceless projection
operator and F;; = d;; — n;n; is the standard projection operator used to project tensors
orthogonal to n’.

The four constraint equations from the Lorenz gauge condition and the additional four
equations from the transverse traceless condition reduce the 10 components of the symmetric
perturbation A, to two degrees of freedom. The waveform can therefore be written in terms

of the two polarization tensors (ey);; and (ex);;
TT
As can be seen by Eq. (3.3)), for a source centered at the origin, the + and x polarization
tensors in spherical coordinates (r, ¢, ¢) are
62—-; = fiZj — ¢i¢ja (35)
6;;- = Zi(ﬁj + Z]‘bz (3.6)
For a binary in the z—y plane, the polar angle ¢ is called the inclination angle.

The components of the waveform can be combined into the complex scalar h = hy —ihy,

which is related to the Weyl scalar Wy || by Uy = h for asymptotic values of r. This scalar

can be decomposed in terms of spin-weighted spherical harmonicsﬂ of spin s = —2
[e's) 0
h = th —ihx = Z Z fZYVZm(Lv ¢)h€m(t’r)a (37)
(=2 m=—/(

'The 10 independent components of the Weyl tensor Cy g5 can be represented in terms of 5 complex
scalars Wo—W,4. These scalars are defined by contracting the Weyl tensor with the basis vectors of a null

tetrad which can be written in terms of the spherical coordinates used here as ({ = % (t47), A= %({, 7),

m = %(i + i), m* = %(Z — i¢)). W, represents outgoing gravitational radiation and is defined by
Uy = —Clapysn®m P m*® [65].
2Under a rotation of angle ¢ about the radial vector #, the vector m in S? transforms as 1/ = Y.

A function 1 which transforms as /' = e**¥7 is said to have spin weight s [66]. The Weyl scalar ¥4, which

A IkS

transforms as U} = — amﬁ“m’*ﬁmm e~ 2" W, where m/* = e~ m*, therefore has spin weight —2.
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where a general expression for Yy, and a table for the first few spin weight —2 harmonics is

given in Ref. [67]. These spin weighted spherical harmonics are orthogonal over the 2-sphere

/S Vit 8)5Y (1, 0)A2 = G0t (3.8)

where df) = d¢ sin tde, and satisfy the following completeness relation

0 l
D0 V(s 0)sYin (', ¢) = 6(6 — ¢/)d(cost — cos ). (3.9)
{=|s| m=—4
From these relations we see that a generic gravitational waveform, can be decomposed into

harmonics with

binltr) = [ h(t.7,1.6) Vi )2 (310)

and we also note that hy,, = (—1)£h;77m.
For circular orbits in the low-velocity, weak-field approximation, the only nonzero modes

are the hg 42 modes with corresponding spin weighted spherical harmonics

5 .
—2Yo 40 = @(1 + cos 1)2et 9, (3.11)

Assuming the observer is in the x—z plane, ¢ = dﬂ and the waveform is given by

h="ho_9 2Ys _o+hoo 2Yoo (3.12)
5
=1/ @[(1 — cos L)Zh;? + (1 + cost)*hg 2], (3.13)

5
641

the inspiral, higher modes will begin to contribute. However, for the circular non-precessing

and in the special case of an optimally oriented binary (: = 0), h = 4 hao. Later in
orbits that we will consider in this dissertation, the higher modes are usually significantly
smaller than the ¢ = |m| = 2 modes, and we will therefore focus mainly on this mode for

the remainder of the dissertation. Future work will need to incorporate these higher modes.

3.2 Post-Newtonian approximation

The post-Newtonian formalism re-expresses the general relativistic description of a system
of particles, given in terms of the Einstein field equations and geodesic equation, into the

standard equations of motion of Newtonian physics, given in terms of the acceleration of

3As we will see, the waveform of a binary has an overall phase constant, and this condition is equivalent

to redefining the phase constant.
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particles through flat Euclidean space. Although far more involved than what is presented
here, the equations of motion are found by systematically expanding the metric and the
Einstein field equations in powers of the dimensionless parameter ¢ ~ \/GT/CQCZ ~ v/e,
where M is the total mass of the system, d is the scale of the system, and v is the character-
istic velocity of particles in the system. The metric is then solved iteratively in powers of e,
and the equations of motion are evaluated from the metric using the geodesic equationE] An

expansion containing terms up to " or equivalently (1/c)" is denoted an §PN expansion.

3.2.1 Energy and luminosity

The equations of motion that result from this expansion will have terms containing even
powers of 1/c¢ and terms containing odd powers of 1/c. The terms with even powers of 1/¢
are time reversal invariant, and therefore admit a Lagrangian with an associated conserved
energy. For a binary system of total mass M = Mj + M> in circular orbit with angular

velocity €2, the energy in terms of the gauge independent quantity
z = (MQ)?3, (3.14)
is given to 3.5PN order by [63] [64]
1 3 27 19n  *\ ,
E=——M 1 —— — = -t — - =
2 772;{Jr<4 12>x+< s TR )"

[675 (34445 2057r2> 15502 35773] 3}
pe— ;U s

64 576 96 96 5184

(3.15)

where n = MMy /M? is the symmetric mass ratio.

Terms with odd powers of 1/c in the equations of motion, which begin at 2.5PN (1/¢%)
order, on the other hand, determine the radiation reaction and are associated with the
gravitational-radiation luminosity £. For an expansion up to the currently known 3.5PN
order, only the 2.5 and 3.5PN terms contribute to the luminosity, and this means that the
expression for £ is only known explicitly to 1PN beyond the leading order. To obtain the
luminosity to the same PN order as the energy, we must apply a different method. Although
only known to be true to 1PN order, we can reasonably assume that the energy balance
equation

dE
— = 1
: L (3.16)

4See, for example, Ref. [63] for a review of the post-Newtonian expansion, and Ref. [67] for an explicit

derivation of the 1PN equations of motion and waveform.
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holds at each PN order [63]. Far from the source, where the gravitational perturbation is

linear, the luminosity can be calculated from

2

r . .
£= g [ aOGETHED, 17

We now need to find the waveform in terms of the source. Ignoring significant details in the
derivation, which are outlined more thoroughly in Refs. [63] [64], the waveform hZTjT can be
matched to the post-Newtonian metric by performing a multipole decomposition of both
the waveform and PN metric in a shell with inner radius outside the source and outer radius
much less than a wavelength from the source. The metric will contain contributions from
the instantaneous mass and current multipoles as well as contributions from hereditary tail
terms that depend on the past history of the multipoles and result in logarithmic terms.

The final result for the luminosity sourced by a binary system in circular orbit is [63] [64]

2 124 44711 271 2
£—3n2:p5{1—|—<—7—35n>x+47rx3/2+<— 7 +9777+6577>$2

5 336 12 9072 504 18
191 4 19 1672 1712
8191 583y w252 4 66437395 9+ 67°  1712vg —@m(mx)
672 24 69854400 3 105 105 (3.18)
134543 N 4172 94403n% 775037 4 ‘
- — - T
7776 48 3024 324
16285 2147451 19338572 7/2
+< 504 T 1TR 3024 )7 [

where vg ~ 0.5772 is Euler’s constant. The dominant mode of the waveform, decomposed

into spin weighted spherical harmonics, is [68] 69

TMY i 107 55 3/2
h22 8\/;D (& 1‘{ +< 42 + 19 T+ 2nx

2173 1 204772 1 4
+< 73 10697 N 0477 >%2+ {_ 07 I (3”_24¢> TI] 2%/?

1512 216 1512 21 21

, _ (3.19)
[27027409 8567p 2% | 428im 428

sl T
646300 105 3 105 105 m(167)

417% 278185\  20261n°  1146357° 3
96 33264 2772 99792 ’
where ¢ is the phase of the binary orbit. Although not needed for this dissertation, higher

order modes are listed in Refs. [68] [69].

3.2.2 Orbital phase of the binary

From the energy balance equation we can find the phase ¢ of the orbit by performing a

change of variable
_dE _ dE /dx
dt —  dt/dz’

L= (3.20)
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2/3
Since z = (M %) , the phase is found by integrating the following two equations

dx L

dt ~ dE/dz’ (3:21)
do 73/2

There are several methods to integrate this system of equations, the four most common of
which are labeled TaylorT1-TaylorT4 [67]. In the TaylorT1 method, Eqgs. and
are simply plugged into Eq. , and the system is then integrated numerically starting
with the initial conditions z¢ = (M 90)2/ 3 and ¢g. In the TaylorT2 approach, the equations

are written

O df(/x ‘f;”l da’, (3.23)
_ R Y dE/dx"
o(x) = ¢e + M/z x L) dx (3.24)

The integrands are reexpanded and truncated at the appropriate PN order, then integrated
to give analytical series solutions for ¢(x) and ¢(x). The TaylorT3 method starts with
the TaylorT2 result, then inverts the series to obtain x and ¢ as explicit functions of the
auxiliary variable ©(t) = =17 (t. —t). To do this, the series solution to t(z) is inverted to
obtain a series solution for z(©(t)). This solution is then plugged into the series solution for
¢(x) and reexpanded to give ¢(O(t)). Finally, in the TaylorT4 method, which appears to
agree best with equal mass BBH simulations at 3.5PN order [70], the right side of Eq.

is reexpanded in a Taylor series and then truncated at 3.5PN order [71]:

5 2
dr  64nz® {1 ( 743 11n) A (34103 | 13661y , 59 )3:2

dat 5 M 336 4 18144 © 2016 18

41 1 164473222 1712 1672

4159 189p e 6447322263  1712yg 167 _@me)

672 8 139708800 105 3 105 (3.25)

45172 56198689 541n%  5605m3] ‘

— — x

48 217728 ) 1T T896 2592
2

_4415+358675n 914957 el

4032 6048 1512

Eqgs. and are then integrated numerically as in the TaylorT1 approach. The

waveform can now be evaluated by plugging the solutions for z(¢) and ¢(t) into the waveform

ho2 (Eq.[3.19).
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3.2.3 Stationary phase approximation

As we shall see in later chapters, we will often need the Fourier transform of a waveform.
For a generic waveform

B (£) = Agp (£)e™ ™90 dt. (3.26)

the Fourier transform is given by
)
Fom(f) = / Apm (0620 i, (3.27)
—o0
where ®(t) = 2w ft — m¢(t). The Fourier transform can be evaluated numerically; how-
ever, when the amplitude and frequency are slowly varying with time (dln A/dt < d¢/dt
and d?¢/dt? < (d¢/dt)?), it is possible to use the stationary phase approximation (SPA).
When the SPA conditions hold, the main contribution to the integral comes from the re-
gion centered on the stationary phase time ts, when the integrand is not changing with
time [®(tsp) = 27f — m(typ) = 0], while far from the stationary point the integrand is
rapidly oscillating and contributes little to the integral. Around this point the phase can

be approximated with a Taylor series

l'm(b(tsp)(t — top)?. (3.28)

O(t) = 27 ftyp — mo(tsp) — 51

The Fourier transform now becomes

_ om
Bum (F) = Apm(ts - “/}Zm(f)’
) Aonlto) e -

wém(f) = 27Tftsp - m¢(tsp) -

)

N

where [ exp[—ia(t—tsp)?] dt = \/7/aexp(—im/4). The quantities tp, ¢(tsp), and Ay, (tsp)
can be written as functions of f using z(ts,) = (M@(tsp))?® = (2 M f/m)?/3, and as with
time domain post-Newtonian waveforms there are several ways to do this. The most com-
mon version known as TaylorF2 closely follows the time domain TaylorT2 approach. The

time and phase are written as parametric functions of z

Te  dE/dx
te = tc+/ dz, 3.30
P a(ty) L(T) (3.30)
typ) = ot — RO b, 31
¢(tsp) bet M/x(tsp)x L) (3:31)

and as in the TaylorT2 approach the ratios in the integral are reexpanded then truncated

at the appropriate PN order. The term in the square root of Eq. (3.29) can be written

3 1/2(tsp)d$(t5p)

using é(tsp) = 5y —i=, and % can be rewritten with the TaylorT1 method, the
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TaylorT4 method , or the entire amplitude term can be reexpanded then truncated.
The method that gives the best agreement with the Fourier transform of BBH simulations
during the late inspiral is the TaylorT4 method [72]. The TaylorF2 waveform (with TaylorT4
amplitude) is then

= 4 M i
hﬁm(f) = Aﬁm(l‘(tsp)) da(ten) e d)em(f), (332)
3mat/2(ts,) g -
T m [ dE/dx
Ve (f :27rftc—m¢c—+/ 232 (tg,) — 23/ dx. 3.33

The ¢ = m = 2 harmonic is, for example,

T 3 3715 55
Voo (f) = 27 fte — 2¢c — i %(wa)“”/3 {1 - (756 - 977) (wM f)?/3 — 167 (x M f)

(15293365 27145 308572

4/3
508032 | 504 72 >7T(”Mf )

+ [+ In(wMA)] <3§§§5 _ 63“) (M )3

115832312 1 4072 4 4
583231236531  6407> 6848y 68 81n(647TMf)
4694215680 3 21 3

15737765635 N 225572 7605512 B 12782573

3048192 12 1728 1296

1 4045n?
(77096675 378515 740451 )W(WMfy/g}

| aty

254016 1512 756
(3.34)

3.3 Frequency-domain phenomenological waveforms

During the late inspiral, the assumptions of slow motion (v < ¢) and weak gravitational
field (% < 1) used in the post-Newtonian formalism no longer hold, and new methods
are needed for constructing the waveform. Several methods have been developed to join
the post-Newtonian formalism during the inspiral to the results of numerical relativity and
perturbation theory during the merger and ringdown stages. In this section we will discuss a
frequency-domain phenomenological model which joins numerical waveforms for the merger
and ringdown of BBH systems to the stationary phase approximation PN waveform and then
constructs an analytic fit to this hybridized waveform. This phenomenological waveform
will be used as a starting point for constructing an analytic inspiral-merger-ringdown (IMR)
BHNS waveform in Chapter[8 In the next section we will discuss another approach, known
as the effective one body (EOB) formalism, for extending the post-Newtonian results to the

late inspiral and merger. The EOB formalism will be used in Chapter
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Several frequency domain phenomenological models are now available for the complete
IMR BBH waveform. These models include the PhenomA [73] model for nonspinning BBH
systems, as well as the PhenomB [74] model and improved PhenomC [72] model for aligned-
spin BBH systems. Below, we will discuss the PhenomC waveform, which is fit to a wide
range of BBH simulations and places an emphasis on controlling errors due to matching the
numerical to the PN waveform.

In the models PhenomA—C, the Fourier transform of the waveform is decomposed into

an amplitude Appen(f) and phase @phen(f) as

ilphen(f) = Aphen(f)ei(bphen(f)- (335)

The inspiral is described by the TaylorF2 post-Newtonian waveform with the amplitude
given by \ﬁgg( f)] as in Eq. (3.32), and the phase given by t95(f) as in Eq. 1) For

aligned-spin waveforms, the spin of both black holes is parametrized by the single parameter

M, Mo

=1 -2 3.36
X=Xt e (3.36)

where x4 = aa/Ma € (—1,1) is the dimensionless spin parameter for black hole A.
During the premerger stage, defined as 0.1fgrp < f < frp where frp is the mass and
spin dependent ringdown frequency of the dominant mode given explicitly in Ref. [72], the
TaylorF2 waveform will no longer be an accurate description. Instead, the amplitude can
be written in terms of the PN amplitude Apy, but with an additional phenomenological

3PN correction 7, f%/6 fit to numerical waveforms

Apni(f) = Apn(f) + 7118 (3.37)

The phenomenological phase is written in a form similar to the TaylorF2 expansion (Eq.|3.34))

1
Ba(f) = E(a1f_5/3 +aof TV asf TV 4+ ay 4 asfPP + agf), (3.38)

and the coeflicients a1—ag correspond to phenomenological OPN, 1PN, 2PN, 2.5PN, 3.5PN,
and 4 PN corrections respectively.

During the ringdown stage (f > frp), the amplitude is written as a product of a
Lorentzian

2

<£(f, fo,0) = (f—foj‘W) and the leading f~7/¢ PN amplitude term,

Arp(f) = 81.L(f, fan(a, M), 62Q(a)) f~7/°, (3.39)
®Note that Az (z) in Eq. also has a small phase which is negligible during the inspiral and can be

ignored.
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where @ is the ringdown quality factor defined in [72], and §; and J2 are phenomenological

parameters. The phase during ringdown, which grows roughly linearly, is written

2u(f) = 81+ Baf. (3.40)

The parameters 51 and [ are determined analytically by matching the value and slope of
the premerger phase at frp.

The transitions between the inspiral, premerger, and ringdown regimes are smoothed by
means of windowing functions [72]. The 9 phenomenological parameters {1, . .., ag, V1, 01,92}
are found by maximizing the overlap with numerical waveforms. Each of the phenomeno-
logical parameters are then related to the physical parameters {7, x} by a polynomial fit

with 5 parameters each [72].

3.4 Effective one body formalism

In this section we introduce another method for extending the validity of the post-Newtonian
formalism to the late inspiral, merger, and ringdown, known as the effective one body (EOB)
formalism and first introduced in Ref. [75]. The version used here is exactly that of Ref. [70],
and is described in more detail in a review [77]. The only ingredients not listed here are
terms for the re-sumed waveform in Ref. [78] and coefficients to determine the ringdown

waveform found in Ref. [79].

3.4.1 Hamiltonian dynamics

In the EOB formalism the two-body dynamics are replaced by a test particle of reduced mass
= My Ms/M moving in a modified Schwarzschild metric of total mass M = M; + Ms. In
the expressions below, we will use dimensionless coordinates rescaled by the total mass M,
and the dynamical expressions will be rescaled by the test particle mass uﬁ The modified

Schwarzschild metric has the form

ds® = —A(r)dt* + B(r)dr? + r*(d6? + sin® §d¢?). (3.41)

5The coordinates (T, R,¢) and conjugate momenta (Pg, P,) have been rescaled to dimensionless co-
ordinates (t,7,¢) and momenta (pr,py) given by: t = T/M and r = R/M for the coordinates, and
pr = Pr/p, pp = Py/puM for the conjugate momenta. Other quantities are then rescaled in the follow-
ing way: w = MQ = Md¢/dT is the angular velocity, D= D/M is the distance to the source, H= H/u
and Heg = Hegr /v are the Hamiltonian and effective Hamiltonian, and _7:'4) = Fy/p is the radiation reaction

force.
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The metric potentials A and B can be calculated from post-Newtonian theory. The first
function is
94 412

A(u) = P |1 —2u + 2nu® + <3 — 32> nu + asnu® + agnub| (3.42)

where u = 1/r and P}'[-] denotes a Padé approximant of order m in the numerator and
n in the denominator. The 4 and 5 PN coefficients, a5 and ag, are fit to numerical BBH
waveforms. The values that give the optimal fit form a degenerate curve in the as—ag
parameter space, and the specific values chosen here are (as,ag) = (0,—20). The second
potential is rewritten as

D(r) = B(r)A(r), (3.43)
and has been calculated to 2PN order
D(u) = PY[1 — 6nu® + 2(3n — 26)nu?]. (3.44)

The motion of the EOB particle of mass p is determined by the Hamiltonian

N 1 N
jig 77\/1 o Hag — 1), (3.45)
where
2
R D 2 4
Hoz = | A(1/r) (1 + 7;" + % +2n(4 — 377)17?;) (3.46)

is the effective Hamiltonian. The equations of motion given this conservative Hamiltonian

H and a dissipative radiation-reaction force JF; are

% _ gﬁ (3.47)
% _ SZZW (3.48)
g —‘?f#T (3.49)
s _ -%I;+ﬁ¢. (3.50)

Here, % = 0 because the EOB Hamiltonian does not have an explicit ¢ dependence. In

addition, for circularized binary inspiral the radial component of the radiation-reaction force

F, is of higher post-Newtonian order than the tangential component, so it is set to zero.
To increase resolution near the black hole, the radial coordinate can be rewritten in

terms of a tortoise coordinate [80] defined by

dr B\ /2
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The new radial momentum is then p,, = (A/B)'/2?p,. Using this definition, the effective

Hamiltonian becomes

2 4
R P 4
Heg = | P2, + A(1/r) (1 + 7‘5 + 2n(4 — 377)p ) (3.52)

r2

where the parts that are 4PN and higher are neglected. (The 4 and 5 PN terms are however
accounted for in the free parameters a5 and ag which were fit to numerical waveforms). The

equations of motion become

% _ \%gﬁ (3.53)
% = gz—w (3.54)
dz;* - —\%%ﬁl (3.55)
% = Fy. (3.56)

3.4.2 Radiation reaction

For the radiation reaction term ]:*¢, which is written in terms of the PN parameter x, we
will need a way to write x in terms of the dynamical variables. The usual method is to use
the Newtonion potential 1/r and velocity squared (wr)? as PN counting parameters and
then rewrite them in terms of the gauge invariant angular velocity w using the Kepler law
w?r3 = 1 which holds in the Newtonian limit, and for circular orbits, in the Schwarzschild
(n — 0) limit. The Kepler relation can be extended to circular orbits in the EOB metric

by defining a new radial parameter, r, = r)}/3, where

dA\ ;
U(r,py) = % <dr> 14 2n A(r) (1 + ii) -1 , (3.57)

for which w?r3 = 1 holds for all circular orbits. In addition, for noncircular orbits (in par-
ticular for the plunge), this relation also relaxes the quasicircular condition by not requiring

that the Kepler relation hold. The specific choice of PN parameter used here is
z = (wry,)?. (3.58)

See Ref. [81] for an extensive discussion.

46



The radiation reaction term ]:'(,5 used in Ref. [76] takes the form of a summation over all

multipoles
8

4
= LSS () D (3.59)

87”70')6 2 m=1

Instead of using the standard Taylor expanded version of hy,, which can be found in Ref. [69],

Ref. [78] decomposes the waveform into a product of terms
hag = BYS™ SeTaoe™22 fon (1) o (3.60)

for £ = m = 2, and
P = WY S Tyme®m pb () (3.61)

for the other values of £ and m. The leading Newtonian part th;LWt is given in the usual

form as a function of z
hNewt n (€+e)/2yi—e,—m ™ 9
Dnﬁmcf—i— (77)95 97 ¢ (36 )

where the coefficients ng, and cp1.(n) are defined by Egs. (5-7) of Ref. [78], and the parity
€ is 0 for £ +m even and 1 for £ + m odd.
The PN terms in the resummation which had been written as functions of = in Ref. [7§]

are now written in terms of the dynamical variables. The effective source term S’eﬁr be-

comes [82]
A ﬁ ff(rap wp ) €= O
Seﬁ(/np’f‘ampd)) = { pZ " ¢ . (363)
2w c=1
The tail term is )
T(6+1—2ik) 1} oim
Ty (7, pr*ap¢) = (F<€+1>)€ﬂk621kl rio’ (3.64)

where k = nmH (r, Dros Pg)W (T Dr. s Dg)s K = mw(r, pr,, pe), and 1o = 2. The phase of this tail
term is corrected with a term of the form e¢?m. The first ten &g, are given in Egs. (20-29)
of Ref. [7§]. The first one is

428 .

— 24ny?/?, 3.65
o5 Y ny (3.65)

where y = (nH(r,p,,, pg)w(r, pr., py))?/? and g, which has several possible forms, is chosen
to be § = w?/3 [82]. Finally, the remainder term of the resummation fy,, is expanded in

powers of x. For £ = m = 2 this is then re-summed with a Padé approximant

fa2(z) = P3[fs ()], (3.66)
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where

. 550 — 86 2047Tn? — 67451 — 4288
e R 1512 : v
1146351  227875n?  4lw?n 346257 856 21428357\ 4
— — — —eulerlng(z) + ————
99792 33264 96 3696 105 727650
N 36808 . (z) 5391582359\ ,

2205 2 198648450
458816 (2) - 93684531406
19845 2 893918025 ’

(3.67)

and the eulerln,, (z) = yg+In 2+% In x+1Inm terms are treated as constants when calculating
the Padé approximant. For the other values of ¢ and m, fs, is re-summed in the form

fom = pgm. The quantity pg,, is given in Eqs. (C1-C35) of Ref. [78]. p2; is for example

23n 59 617> 109937 47009\
=1+ (-2 - -
81 56 4704 14112 56448
7613184941 107
——————— — —eulerl 3 3.68
(2607897600 105 " nl(m)) v (3.68)
1 (5313 e (o) — LLOSOLTATISS
5380 ! 011303737344 ) *

The final product in the resummation of hgg is a next-to-quasicircular (NQC) correction

term that is used to correct the dynamics and waveform amplitude during the plunge

2 .
aipy,, = aof

o2y, a9) = 1+ (3.69)

(rw)? ' rw?’

The free parameters a; and as are determined by the following conditions: (i) the time
when the orbital frequency w is a maximum (the EOB merger time ¢)s) coincides with the
time when the amplitude |hgs| is a maximum, and (ii) the value of the maximum amplitude

is equal to a fitting function that was fit to several BBH simulations, given by [76]
|h22|max(n) = 1.575n(1 — 0.131(1 — 4n)), (3.70)
and is accurate to ~1%.

3.4.3 Integrating the equations of motion

The equations of motion are solved by starting with initial conditions {rg, ¢o, pr.0, Pso} and

numerically integrating the equations of motion. In this paper we are interested in long,



zero-eccentricity orbits. This can be achieved in the EOB framework by starting the inte-
gration with large r, where radiation reaction effects are small, and using the quasicircular
condition p,, = 0. Eq. (3.55)) then becomes

OH
— -, = 0, =0 3.71
(e, = 0,1y) (371)
and results in the condition ;
JuA(u)
pi = du V7 (3.72)

(W A(u))
for py. If this quasicircular initial condition is used for smaller r, the radiation reaction term
is no longer negligable, and this initial condition will result in eccentric orbits. If desired, one
can use an initial condition that more accurately approximates a zero eccentricity inspiral
such as post-circular or post-post-circular initial conditions with nonzero p,, [83].

To numerically solve Egs. , they must be written as a system of first order
equations. However, the term .}% in Eq. which is constructed from Egs. ,
contains the square of # from the NQC term fQI\;QC (Eq. [3.69). Since le\;QC gives a small
correction of order 10% during the plunge, the easiest method, and that used in Ref. [76],
is iteration [82]: (i) First solve the system of equations with f32C set to one. (i) Use the
solution of Egs. to evaluate 7 and the other quantities in fQI\;QC. (iii) Re-solve
the equations of motion with the NQC coefficients no longer set to one. (iv) Repeat steps
(ii) and (iii) until the solution converges to the desired accuracy. In practice this iteration
only needs to be done 2-5 times.

A second method is to directly rewrite Eq. as a first order equation. This can
be done by replacing # in the NQC term (Eq. , contained in the expression for F on
the right hand side of Eq. , with an expression containing pg and then solving for pg.

The equations of motion (3.53H3.56|) and the chain rule give

i 4 A0H
o dt VD Opr,

= L+ M+ Npy, (3.73)
where
1o | a2 (ofr\’
sl -
2 T 92 1
Mo _% ‘98[:‘;; (3.75)
N - A oH (3.76)

ﬁ apr* 8p¢, .
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Plugging Eq. |) into the expression for F in Eq. 1) yields an equation quadratic
in py which can be solved exactly if desired. To first order in the NQC correction term,

Eq. (3.56) now becomes the first order equation

2 ~QC aip?,
dpy _ Fovaver + 7l [V 20555 + 25 (L + )|

_ 3.77)
qC ’ (
dt 1—2F o005 N
where
1 8 l
Fp Higher = — 2| Dhygpn|? 3.78
¢,Higher 87w gmzl (mw) ’ fm‘ ( )
(£;m)#(2,2)
includes just the higher order terms (¢, m) # (2,2), and
~ 1 .
C C
i = gy (2 IDRE P (3.79)

Here, h%c = haa/ fQI\;QC is the portion of hoo that does not contain the NQC term.
The solution to the equations of motion {r(t), ¢(t), pr, (t),ps(t)} are then plugged back

into Egs. (3.60/{3.61) to give the waveform hiﬁzpiral (t).

3.4.4 Ringdown

In the EOB formalism the ringdown waveform of the final Kerr black hole is smoothly
matched onto the inspiral waveform at the EOB merger time tj;. The mass of the black

hole remnant is given by the energy of the EOB particle at the merger time ¢,

M = pB(tar) = My/1 + 29(Hag(tar) — 1), (3.80)
and the Kerr parameter is given by the final angular momentum of the EOB particle [84]

- Py(tar) _ npe(tar)
Mgy 1+ 2n(Heg(ta) — 1)

(3.81)

The ringdown waveform is given by the first five positive quasinormal modes (QNM)

for a black hole of mass Mgy and spin apy:
i 1 o +
HSE() = =30 O, (352)
n=0

where 0;271 = 9oy, +1iwogy, is the nth complex £ = m = 2 QNM frequency for a Kerr BH with
mass MBH and spin ay, and C’;“Qn are complex constants that determine the magnitude

and phase of each QNM. The amplitude of the negative frequency modes is small [80]. The
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first three QNMs have been tabulated in Ref. [79], and fitting formuli are also provided.
The QNM frequency wso, can be approximated by

Mgnwaan = f1 + f2(1 — agn)”?, (3.83)

and the inverse damping time as9, is given in terms of the quality factor approximated by

1 waon

_ 1—4q a3 84
5 oy @1+ q2(1 — agn) (3.84)

The coefficients for n = 0-2 can be found in table VIII of Ref. [79]. For n = 3-4, a2, and
wagy, can be linearly extrapolated from the values for n = 1 and 2 as was done in Ref. [83].

The constants 02+2n are determined by requiring that the inspiral and ringdown wave-
forms be continuous on a “matching comb” centered on the EOB merger time ¢;;. Specifi-
cally, at the times {tps — 20, tpr — 0, tar, tar + 9, tar + 20} we require hg;Spiml(t) = hgizngdown(t).
In Ref. [76], 6 was chosen to be equal to 2.3Mpy/M. This gives 5 complex equations for
the 5 unknown complex coefficients C’;En.

The full inspiral plus ringdown waveform is then given by

hinspiral ¢ t<t
h22<t>={ 2 o) " (3.85)

hESEIOVN () s
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Chapter 4

Tidal interactions during binary

inspiral

For BNS and BHNS inspiral, tidal interactions are the primary correction to the point-
particle dynamics described in the last chapter. These interactions, which to leading order
are Newtonian effects, have not received much attention because they are O [(%)5375]
corrections to the leading point-particle interactions where M is the total mass, and R
is the NS radius, and thus appear to be 5PN effects. However, the additional (R/M)5
dependence means that they will dominate all PN corrections for systems such as the Earth
and Moon, while for BNS systems where (R/M)® ~ O(10%), we will find they have effects
of similar magnitude to 3.5PN point-particle terms during the inspiral.

For widely separated relativistic sources, the problem of tidal interactions can be solved
by breaking spacetime into two regions as shown in Fig. In the weak-field vacuum region
away from a source, the post-Newtonian expansion can be used. However, in the strong-
field region containing the source, the full Einstein equations must be solved. The results
can then be matched in a buffer region surrounding each source. In the following section we
describe tidal interactions in Newtonian gravity based on the discussion in Refs. [85] [86];
then, in the final section using the method developed in Ref. [87], we solve the perturbed
Einstein equations for the compact objects in the strong-field region and describe how the

solution is matched in a buffer region to the Newtonian description of tidal interactions.
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Buffer 1 Buffer 2
Strongfield %, Weakfield / ./  Strongfield
-qsmt-_"_ ¢ext‘__.-‘ ’ ¢ .¢1nt- ext‘__.-'/

Figure 18 : As shown in Ref. [88], spacetime is decomposed into a weak-field region and a strong-field region
surrounding each compact object (gray). The strong-field and weak-field solutions can be matched in a

buffer region.

4.1 Newtonian tidal interactions

4.1.1 Gravitational potential, multipoles, and tidal fields

In Newtonian gravity the gravitational potential due to a system of extended bodies (Fig.

with density p isEl
o@) = - [ LT (4.1)

|¥— &
To calculate the dynamics of this system, we will find it useful to decompose this potential,
in each domain, into an internal part qﬁmt sourced by the matter in that domain, which we
will write as a sum over multipoles M~ %, and an external part ¢5* sourced by the matter
from other bodies, which we will write as a sum over tidal fields Gf‘. The total potential in

domain will therefore be ¢ = ¢t 4 ¢,

We can expand a multivariate function f(x?) using a Taylor series

— 1
=> gl —a) Llop (e yigis (4.2)
=0 "
where L is a multi-index representing the ¢ indices L = ajas---ay, ¥ = z¥ 2% ... z%,
and 01, = ao% = Wimaxae' Using this, we can expand the denominator of the internal

!The gravitational potential energy of a test mass with mass m in this potential is U = m¢. The

gravitational potential energy of the entire system will be given by Eq. .
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potential about the center of mass (COM) of the star 2% E| by expanding in the variable z’*

1 = , oot 1
el Z ‘(x—z) [ax’LL’E ]z,

| =

{=0
00 ¢
(_1) ! L 1
=3 (' — 2)to, : (4.3)
, —

— 14 |Z — Z4|
where 07, = 8 ~_—. We note that 9, |4 = is a symmetric trace free (STF) tensor for & #£ Z4
because the trace of any pair of indices involves 0; &W = V21— |x ] = — 4753 )(w — Z4)

is zero unless & coincides with the COM. The internal potential at a point Z can now be

written in terms of the integral over body A,

int/, - s s Pt ')
P (t,7) = /Ad 17— |

(=) 1

S ME®o 4.4
a MAWoE—Z (4:4)
=0
where M j is the /th multipole of the body defined by
ME(t / Pap(t,T)(z — 24(t) ). (4.5)

The notation T denotes the STF part of a tensor TX. Using the fact that for any two
tensors ST and TE, SLTL) = SLTE) | we have defined Mf:; as STF because 8Lﬁ
is already STF. The first four moments are the mass, dipole, quadrupole, and octopole,

defined in terms of #* = ¢ — 2* by

M = /d?’xp, (4.6)
M= / dBrpzt =0, (4.7)
ij 3, o—izj  Lcij)op2 ij
sz/d:cp(mxj—?)éjm ) = QY, (4.8)
M7 = / daplris (5” + 7z + Mat) |z ) = O, (4.9)

The dipole is zero because z* is the COM.
We similarly can expand the external potential about the COM of body A

o)

U6 = D 50— 2a )05 (. Do,
=0
= -3 4Gk @ — za), (4.10)
=0




where the fth order tidal field Gf‘ due to the potential from body B is

Gh(t) = —[0005" (t, D))z=z,

S L )

and 8}?2 = g:%i. As an example, the £ = 2 tidal field GZ leads to a quadratic potential

relative to the COM of body A. This tidal field includes contributions from the monopole,

quadrupole, octopole, ... moments of body B, and these contributions scale with the sepa-

ration 7 of the two bodies as 1/r3, 1/r%, 1/r5, ... respectively.

4.1.2 Lagrangian and energy

Given the above expressions for the matter distribution and gravitational potential, we
can determine the kinetic and potential energy of the system and then write down the
corresponding Lagrangian L. = T — U. The Lagrangian can then be used to find the
equations of motion (EOM) via the Euler-Lagrange equations.

The total kinetic energy of the system can be decomposed into contributions from the
COM of each body as well as from the internal kinetic energy from motion about the COM
of each body

1

T(t) = 5 /d?’mp(t,f)vQ(t,f)

Bxp(t, B)v?(t, T)

4+ (= 2a)][Eh + (v = 24)]

\\

1
2
1
2
<A@z+Tm> (4.12)

%2,
2,
>

where we used the definition of the COM, and the internal kinetic energy is defined as

mwn:;éfm@m@@@—@@ﬂ (4.13)

For a closed system of gravitationally interacting, extended bodies, the total potential
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energy is

Ut) = ;/d?’mp(t, Z)o(t, L)

:Zgéfwm@Wﬁ>
Z mt eXt(t)). (4.14)

We have broken up the potential at each body A into a contribution gbijft due to sources
inside the body and a contribution ¢%* due to sources outside the body. The corresponding
internal and external contributions to the potential energy associated with each body are

therefore
: 1 . .
U ) = 5 [ daplt. D)6 0.3, (4.15)
A

and
Uext / d3 T p @eXt ( —»)
:_5 E /A dPap(t, )z — 2a(t)] "G4 (2)

- Z % L. (4.16)

In the last line we again used the fact that Gf‘ is STF to rewrite the integral as a STF

N)—‘

multipole.

The Lagrangian for the system can now be written

L= Z ( Myz4 + = Z elMﬁGA +Lmt> (4.17)

E_O
where the internal Lagrangian for each body is defined as Lijft = Ti‘nt Ui int,

The internal dynamics of body A can be determined from the Poisson, Euler, and
continuity equations as well as the equation of state (EOS), or for relativistic stars, the
Einstein equation, conservation of stress-energy, and the EOS. However, we would like
instead to describe the dynamics in terms of a set of canonical variables so that we can
use the Lagrangian formalism. To do this, we use the fact that perturbations of a stable
spherical star (both nonrelativistic and relativistic) can be decomposed into modes n, each
belonging to a single spherical harmonic, and each oscillating with a characteristic frequency
wan- The EOM for the contribution to the £th multipole of body A due to mode n (M%)
is

M%, + WA, ME =0, (4.18)
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The quantities M ﬁn can therefore be the canonical variables. The Lagrangian that produces

this EOM via the Euler-Lagrange equations is, up to a constant a.agp,
i L 7L L asL
L%En = aAen(MAnMAn - wzlnMAnMAn)v (419)

so that the total internal Lagrangian of body A is L'}* = Yoo Lij&n. Since this La-
grangian is derived from the kinematic assumption of simple harmonic motion and not from
Newtonian dynamics, it will be true for relativistic stars as well, (assuming the complete-
ness of outgoing modes for describing the fluid, and ignoring additional gravitational wave
degrees of freedom).

The constant can be found by assuming a situation in which the modes of body A evolve
adiabatically [89]—driven by the motion of body B at a frequency much slower than the
mode frequency. The time derivatives M f{n will therefore be zero, and the Euler-Lagrange
equation for the entire Lagrangian will be

d oL 0L
dtomk oMk

0 1. ITox1 0
0= OMEL Z [2MAZ‘24 T 9 Z E <Z Mj") G - Z Z O‘Aénwian{an{n
An A =0 " n =0 n
1

where the multipoles M ff are hidden in the definition of Gé, and we used the fact that
Lyy 1MLGL—OO 1MLGL—OO Larkah 4.2
32D gMAGh =) SM{Gl =) MG (4.21)
A £=0 =0 =0

for a two body system as can be shown by writing G% explicitly in terms of M Jg using

Eq. (4.11). Eq. (4.20) demonstrates that the ¢th multipole M ﬁn can be written explicitly
in terms of the ¢th tidal field Gﬁ with only a single EOS dependent constant

Summing over n we obtairﬁ
Mj = AaGY, (4.23)

where Mgy = > Aagy, is called the tidal deformability of star A, and A4y, is the component

that contributes to M jn. We will derive this quantity from the perturbed Einstein equations

3We emphasize that this relation holds only for adiabatic changes in the tidal field. When the tidal field

changes at a rate close to the mode frequency, resonance can occur as will be discussed below.
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and an EOS model in the next section. The constant a4y, in the Lagrangian can finally be

written
1
= — 4.24
A Aln 2 im0 An ( )
In general, the energy of a system with canonical variables ¢*

6L
E = — L. (4.25)

g

For the Lagrangian here, this is equivalent to reversing the sign on the potential energy

terms, so that the total energy is

E= Z MA ZA T Z Z'MﬁGA + Z Z f')\ MﬁnMﬁn + wzlnMﬁnMﬁn)
200\ apn, wA

(4.26)

4.1.3 Tidal Corrections to the post-Newtonian waveform

In order to derive the lowest order corrections to the post-Newtonian waveform, we now
specialize to the case of circular orbits and include only monopole-monopole and monopole—
quadrupole interactions. We also assume that for body A the majority of the quadrupole

oscillates with a natural frequency w4 . The Lagrangian for such a system is

uM 1

1 1
I — M ; 1] z] 2 4.9
2uz +7r + !Q 20i;— +(’)< >+4)\1w%( Q ) (4.27)

where z¢ = 24 — 2%, = My Ms/M is the reduced mass, and we have moved to the center of
mass frame of the system (M;z% 4+ Myz4 = 0). We have also simplified notation by redefining
A4 as the £ = 2 tidal deformability of body A, and we have suppressed the contribution
from the quadrupole of body 2 which will have the same form as that from body 1 and can
simply be added to the final results. The Euler-Lagrange equations now give the following

equations of motion

. . 1
7 +wiQy = MMM%@';’;, (4.28)
P=o—pt ﬂQl Oijie - (4.29)

The first equation represents forced oscillations. Under the assumption of circular orbits
2H(t) = rn’(t) where n’ = (cos ¢,sin ¢, 0), and using the fact that

nt®

oL = (-1 (2~

(4.30)
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we find that the forcing function has a frequency of twice the orbital frequency 2 where
¢(t) = Qt because

) o %cost)—l—% %sin2¢ 0
n{) = nin — gd” = $sin2¢  —1cos2¢+¢ 0 |. (4.31)
0 0 —1

The solution to the quadrupole is

1 1 1 1 1 :
B ML, 214 congzH-g §m51n2¢ 0
P ="3 s Sin2¢  —gigmcos20+g 0 |, (4.32)
1
0 0 -1

where £ = Q/w;. Note that resonance will occur if the orbital frequency approaches half

the mode frequency.

Using this result and 3! = —rQ?n’ for circular orbits, the second equation becomes

: Mn' 9 M3\ 3 :
—rQ?n’ = — - =221 g 4.33
men r2 4 < —1—1_452)71 (433)

To first order in A we find
_ 3 3 M2 )\1.%5

=Mzt 1+ (1 —= 12 4.34
rie) = Mz [+4<+1—452>MlM5+ “e (4:34)

where 2 = (MQ)?/? is the standard post-Newtonian parameter.
With these solutions, the energy can be found from the Lagrangian by reversing the

sign on the potential energy terms. The result is

3 — 452 > M2 )\1.%'5

1 9

+14 2} . (4.35)

The rate of energy loss due to gravitational radiation can be found from the quadrupole

formula E = —%(Qf??) The quantity Qf} is the total quadrupole of the system, and can

be calculated using the parallel-axis theorem for the total quadrupole of the system

HOE / d*zp(t, )t (4.36)
=D /A dap(t, )z (4.37)

A
= > IMazi (1) + Q4 ®)), (4.38)

A

where the first term in the sum is the multipole due to the monopole of body A, and the
second term Qi‘j is the multipole about the COM of body A as defined in Eq. 1’ (The
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parallel-axis theorem does not hold for higher multipoles, and in general, the expression for
the total multipole M% in terms of the individual multipoles M ﬁ will be more complicated.)
The total radiated energy is then

M/Msy + 2 — 262\ My \ab
5[1+6</2+ f) 2 T

o B M,
1 1—4¢2 M, M

5

+1¢2]. (4.39)

The post-Newtonian waveforms incorporating tidal interactions can now be readily eval-
uated from the above expressions for the energy of the binary E and the luminosity £ = —E.
The TaylorT1 expressions are obtained by simply adding the point-particle PN and tidal

corrections together

1 A
B(z) = —5Mna [1 + (PP-PN) — 9@ﬁ15 +1e 2] , (4.40)
mi
my + 3ma A\

mi M5

32 5 5

L(x)= =N [1 + (PP-PN) + 6 P41 2] (4.41)

then evaluating dE/dx to obtain & = ﬁ. The TaylorT4 waveform expands this ratio
to obtain ~
dz 64 m: )\
1+ (PP-PN) — 156— 4.42

and \ is the mass weighted total tidal deformability defined by

1 M1 —+ 12M2 M2 + 12M1
— A A
2 ( M1 1+ M2 2) ;

A= (4.43)

which has the property that A = A\; = Ay when M; = M,. The TaylorF2 phase correction
can be found by using the methods of Section The phase can then be written

Yoo f) = 2m fte — 2¢p. — — + i(7rM £)7°3 |1 + (PP-PN) — 624Mi(7rM f)10/3] . (4.44)

128n

4.2 The tidal deformability for relativistic stars

We will now describe the method used in Ref. [87] for determining the ¢ = 2 tidal deforma-
bility A of a star from the equation of state. As in [87], we consider a static, spherically
symmetric star, placed in a static external quadrupolar tidal field G¥. To linear order, we
define the tidal deformability A relating the star’s induced quadrupole moment Q% to the
external tidal field,

QY = \GY. (4.45)

The coefficient A is related to the [ = 2 dimensionless tidal Love number ks by

ko = g)\R_5. (4.46)
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The star’s quadrupole moment Q% and the external tidal field G¥ are defined to be
coefficients in an asymptotic expansion of the total metric at large distances r from the
star. This expansion includes, for the metric component g4 in asymptotically Cartesian,
mass-centered coordinates, the standard gravitational potential M /r, plus two leading order
terms arising from the perturbation, one describing an external tidal field growing with 72

and one describing the resulting tidal distortion decaying with 7—3:

1 .
( +2 git) _ it 4 gext (4.47)
M 309 . . 1 GY o

where n' = 2'/r and both Q;j and G;; are symmetric and traceless. The relative size of
these multipole components of the perturbed spacetime gives the constant A relating the
quadrupole deformation to the external tidal field as in Eq. (4.45)).

To compute the metric ([4.48)), we use the method discussed in [87]. We consider the
problem of a linear static perturbation expanded in spherical harmonics following [90].
In the quasiequilibrium limit, the tidal deformation will be axisymmetric around the line
connecting the two stars which we take as the axis for the spherical harmonic decomposition.
The only azimuthal number will therefore be m = 0.

A static (zero-frequency) linear ¢ = 2 perturbation of a spherically symmetric star is
associated with an even-parity perturbation of the metric, which in the Regge-Wheeler

gauge [91] can be simplified [87] to give

ds? = —e**) [1 + H(r)Yao(0, ¢)] dt* + €** ) [1 — H(r)Yao(0, ¢)] dr*

20y ) . ) (4.49)
+r?[1 — K(r)Ya0(0, ¢)] (d9° + sin” 6do*)

where K (r) is related to H(r) by K'(r) = H'(r) + 2H (r)®'(r). Here primes denote deriva-
tives with respect to r. The corresponding perturbations of the perfect fluid stress-energy
tensor components are 6T = —de(r)Yao (0, ) and 6T, = dp(r)Yao(0, ¢), where € is the

energy density and p the pressure. The function H(r) satisfies the differential equation

(_GiZA —2(P)? + 20 + gA' + %@' —20'AN + %(‘I)/ + A’)> + <i P — A’) H' +H" = 0.
(4.50)

Here f is given by
de = fop (4.51)

which for slow changes in matter configurations corresponds to f = de/dp.
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The method of calculating the tidal perturbation for a general equation of state table
is similar to the method of calculating moment of inertia in the slow rotation approxima-
tion [92]. The specific implementation we use follows the moment of inertia calculation in

Appendix A of [54], via an augmentation of the OV system of equationsﬂ

e = (1—2m>_1, (4.52)

”
4D 1 dp
ekl . 4.53
dr e+pdr’ (4.53)
dp m + 47r3p
—_— = - _ 4.54
dr (e+p) r(r—2m)’ (4.54)
d
d—T = 4rrle (4.55)

The second-order differential equation for H is separated into a first-order system of ODEs
in terms of the usual OV quantities m(r), p(r), and €(p), as well as the additional functions
H(r), B(r) = dH/dr, and the equation of state function f(p) = de/dp

%I:ﬁ (4.56)
% =21 —27:)_1}1{—% [5¢ +9p + f(e+p)] + % +2(1- 2%)_1 (% +47rrp)2}
+ ? (1 - 2%>_1 [—1 + % + 2712 (e —p)} :
(4.57)

These are combined with Eqgs. —, and the augmented system is solved simul-
taneously. The system is integrated outward starting just outside the center using the
expansions H(r) = aor? and B(r) = 2aor as 7 — 0. The constant ag determines how much
the star is deformed and can be chosen arbitrarily as it cancels in the expression for the
Love number.

The ODE for H(r) outside the star, where T, = 0, has a general solution in terms of
associated Legendre functions of the first P (x) and second Q)'(x) kind for n = m = 2
and x > 1 given by

H=c1Q3(r/M —1) + coPF (r/M —1). (4.58)

These functions are defined by

Pi(z) = 3(1 — 2?) (4.59)
X .T3 — o
Q%(m):g( 2 1)In <xi> 7322_f (4.60)

“Here we present the equations in terms of the radial coordinate r; the extension to the enthalpy variable

1 used in [54] is straightforward.
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and have the asymptotic properties Q3 (ﬁ — 1) ~ % (%)3 and PZ (ﬁ — 1) ~ —3 (ﬁ)2
at large r. We can now compare this solution to the asymptotic behavior of g, given
in Eq. to relate the coefficients ¢; and co to the external tidal field. Writing the
tidal field and quadrupole moments in terms of the corresponding ¢ = 2,m = 0 spherical
harmonic coefficients, GoYa20(6,¢) = Gnin?, and QoYa0(0,d) = Q¥nin! = —\GUnin/ =

—AGoYa(6, ¢), as was done in [87], we obtain the result

N al’) = —ZM?*G,. 4.61

a=gap @ 3 Go (4.61)
We can now determine the strength of the tidal field Gy that caused the perturbation by
matching the solution for H and its derivative at the boundary of the star » = R. This will

then give us an expression for the tidal Love number k. Defining the quantity

RB(R)
= 4.62
Y= TR (4.62)
for the internal solution, the [ = 2 Love number is finally
8C°
by = ——(1- 20)%[242C(y — 1) — y]
X {20[6 — 3y + 3C(5y — 8)] +4C3[13 — 11y + C(3y — 2) + 2C?%(1 + 3] (4.63)

+3(1-2C)*2 -y +2C(y — 1)]In(1 — 20)}_1,

where C' = m/R is the compactness of the star.

For stars with a nonzero density at the surface (for example strange quark matter or
an incompressible n = 0 polytrope), the term (f/r)(®" + A’) in Eq. blows up at the
surface r = R and H'(r) is no longer continuous across the surface. Following the discussion
in [93] for an n = 0 polytrope, this discontinuity leads to an extra term in the expression

bove f
ey _RB(R) 4T R3e_
 H(R) M

where e_ is the density just inside the surface.

(4.64)
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Chapter 5
Gravitational-wave data analysis

The interpretation of data in gravitational-wave astronomy differs in many ways from that
in other fields. In particle physics, for example, one can often perform an ensemble of
experiments with carefully controlled parameters. A frequentist interpretation of probability
can then be used: in the limit of a large number of experiments the probability P(A) of
outcome A is the ratio of the number of times A was the outcome to the total number of
outcomes. Gravitational-wave astronomy is fundamentally different in that we cannot set
up an ensemble of identical binary inspiral events, for example, and we are often interested
in estimating the parameters themselves (sky location, binary orientation, masses, spins,
and tidal parameters) of individual events. A natural method for answering such a question

is that of Bayesian inference.

5.1 Bayesian inference

The key theorem in Bayesian inference is Bayes’ theorem

P(B)P(A|B)

P(BIA) = =25

(5.1)

where P(A|B) denotes the conditional probability that A is true given that B is true. This
theorem can be used for performing parameter estimation in the following way. Given a data
set D from a detector and prior information I, the posterior probability density function
(PDF) for the parameters § of a model H are given by [94]

p(O1H, I)p(D|0,H, 1)

6|D,H,1I) =
p(OID, 1, 1) (DI, 1)

(5.2)

The quantity p(D\@j H, I) is known as the likelihood, and can be calculated in the frequen-

tist sense; given a hypothetical ensemble of events with parameters in the volume clH_’7 the
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likelihood is the probability density of obtaining the data D from a detector. The prior
distribution of the parameters p(6|H, I) is determined by the hypothesis and prior informa-
tion. In the denominator, the evidence Z = p(D|H, I) is a normalization constant, and if
needed, can be evaluated explicitly by integrating Eq. over the parameter space and
using the fact that the integral over the left hand side is 1

Z = p(D|H,I) = /p(eﬂH,I)p(D\é’,H,I) de. (5.3)

Because Z is the prior weighted integral over the likelihood, it is also called the marginal-
ized likelihood. For a high dimensional parameter space this integration is computationally
challenging, although there exist methods such as nested sampling and thermodynamic inte-
gration that can perform it (see for example Refs. [95] and [96] for their use in gravitational
wave data analysis).

If one is only interested in a subset of the parameters 64 where § = {gA, B }, the other
parameters 68 can be integrated out to obtain a marginalized PDF over only the parameters
of interest

p(04|D,H, 1) = /p(§|p, H,1)d6". (5.4)

This is done, as we shall see, if we are only concerned with the PDF for the intrinsic
parameters of a binary system such as masses and tidal parameters, and are not concerned
with the extrinsic parameters such as sky location and orientation relative to Earth.

In addition to estimating the parameters of a specific model, we can also in principle cal-
culate the posterior probability P(H;|D, I) that model H; is true using the model selection
form of Bayes’ theorem
P(HA1)P(D[Hi, 1)

P(H;|D,I) = PO

(5.5)

The quantity Z = P(D|H;, I) is the evidence or marginalized likelihood given by Eq. .
P(H;|I) is the prior probability of H; which is sometimes a subjective measure of one’s
prior belief that hypothesis H; is true. The quantity in the denominator P(D|I) is the
marginalized probability of obtaining the data D. It can be calculated if there exists a
complete set of independent hypotheses (3>, P(H;|D,I) = 1 and H; N H; = 0 for i # j).
The marginalized probability is therﬂ

P(D|I) =) P(H:|I)P(D|H;,1). (5.6)

!The prior was left out of the corresponding expression in Ref. [04].
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In practice we don’t always have a complete set of hypotheses, so we cannot calculate the
posterior for each model. We can, however, calculate the ratio of posteriors for two models
known as the odds ratio

P(H; ]D I)
P(H,;|D,I)
_ P(H|I)

~ P(H,[T)

Ol,j
———A\; j, (5.7)

where

is the Bayes factor or likelihood ratio.

5.2 Statistical properties of the output of gravitational-wave detectors

We will now briefly describe in this section the output of gravitational-wave detectors in
the possible presence of a gravitational wave as well as detector noise, and then derive the
probability that a gravitational wave is present. In the remainder of the chapter we will
then apply the above Bayesian techniques to address the questions of parameter estimation.

As discussed in Chapterlthe gravitational wave h;; = h+e + hxe has two transverse

polarizations e’ i and e . In the X-Y—7 coordinate system of a grav1tat10nal wave traveling

in the n direction, the polarlzatlon tensors are
e = X'X7 - Y'Y (5.9)
el =XV 4YiIXI, (5.10)

The response of the detector arms of length L, expressed in terms of the scalar strain

h = AL/L, can be expressed by contracting the waveform with a tensor D;;
For a Michelson interferometer with arms in the p and ¢ directions [67]

L.
Dyj = 5(pibj — didy)- (5.12)

In terms of the components hy and hy, the strain can be written
h:F+h++F><h><, (5.13)

where F, and Fy are the response functions for the two polarizations. For a detector with a

90° opening angle between the arms, they can be expressed as functions of the sky position
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(0, ¢) relative to the detector and polarization angle 1 (see Fig. as [97]
FJr = Dije;-;
1
= S — @) (XX -7V
1
= —5(1 + cos? ) cos 2¢ cos 21 — cos O sin 2¢ sin 24, (5.14)
FX = Dijeixj
1
= S — )XV 4V X)
1
= 5(1 + cos? 6) cos 2¢sin 2¢) — cos A sin 2¢ cos 2. (5.15)
As an example, in the optimally oriented § = 0 configuration, a waveform written as the
complex quantity h(t) — ihy (t) = A(t)e*®*® results in the strain h(t) = —A(t) cos[2(¢ —
¥) — ®(t)].

Figure 19 : For detector arms in the p and ¢ directions, the sky location of a source —n is given by the
usual spherical coordinates (6, ¢), where 6 is the polar angle from the axis normal to the detector, ¢ is the
azimuthal angle from the p direction, and 7 = (—6, ¢+ ) is the direction of propagation of the gravitational
wave. The polarization angle 1 is the angle measured counterclockwise about the direction of propagation

f from the line of nodes (k x ) to Z.

In addition to the GW signal h(t), a real detector will have noise n(t) such that the
output s(t) of the detector is
s(t) = n(t) + h(t), (5.16)

where we have assumed the noise is additive (the presence of a GW does not affect the
statistical properties of the noise). We will also assume that the noise is stationary, which

means the statistical properties of the noise do not change with time.



An important property of the noise is its power spectrum. The power in the noise is

defined as the time average of n?(t) over some large time interval T
1 [T/
(n*) = lim — / n?(t) dt. (5.17)

For stationary noise, this average will be independent of the time. The power can be

reexpressed in terms of the power spectral density (PSD) S, (f) by [67]

(n?) = /Ooo Sn(f)df, (5.18)

where the PSD )

T/2 .
/ n(t)e” 2t i
~T/2

(5.19)

is the absolute square of the Fourier transform of the signal. The PSD can equivalently be
expressed in terms of the Fourier transform R, (f) of the autocorrelation function R, (7) =

(n(t)n(t+ 7)) as

Sn(f) =2 /OO Ry (1)e ™7 dr = 2R, (f). (5.20)
Another equivalent expression is
1
(A" (SR = 59(HO(f = f)- (5.21)

Another assumption that we will make is that the noise is Gaussian. For Gaussian noise
n(t), the discretely sampled noise time series is a sequence of correlated Gaussian random
variables {n;} measured at times ¢A¢. In the limit At — 0, the joint probability distribution

for this noise sequence is given by [67]

pn[n(t)] oc e~ (/2] (5.22)
where  a(f)(f)
(a,b) = 4Re/0 —5.0) df (5.23)

is an inner product weighted by the noise PSD.

5.3 Detection

To determine if there is a gravitational wave present in the data, we can compare the two

mutually exclusive hypotheses

Ho @ s(t) = n(t) (There is no gravitational wave),

Hi :s(t)

n(t) + h(t) (There is a gravitational wave).
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The probability that there is a gravitational wave is given by

P(H\|I)P(D[Hy, 1)
P(DII)

_ A1

N ALOJrP(/}'lou)/P(/)L[l|I)7

P(H.|D,I) =

(5.24)

where P(DI|I) = P(Ho|I)P(D|Ho, )+ P(H1|I)P(D|H1,I) and A o is the Bayes factor (or
likelihood ratio) defined in Eq. . In addition, when assigning priors we must obey the
constraint P(Ho|l)+ P(H1|I) = 1. For a GW signal that can be described by the unknown
parameters 6 and noise which in this case has no unknown parameters, the Bayes factor

can be reexpressed as [9§]

Arg = /A(”) de, (5.25)

where
~ p(0|H1, )p(D|G, H1, I)
A(9) =
©) p(DIHo,T)
_ p(01H, I)pals(t) — h(t;0)]
puls(t)]
= p(O]Hy, I)elsMO) = (OMO)/2, (5.26)

Another quantity that we will be interested in is the signal to noise ratio (SNR), which
is defined as the ratio of the matched filter (s,h) (a Gaussian random variable) when a

GW is present to the standard deviation of the matched filter when a GW is not present

(V/(h, h)):

N
VR

When a GW is not present, p is a Gaussian random variable with (p) = 0 and Var(p) =1,
while when a GW is present, (p) = \/(h,h) and Var(p) = 1. The quantity (p) = \/(h, h) is

sometimes referred to as the characteristic SNR of the signal, and describes the characteristic

(5.27)

strength of a GW for a given detector configuration [67].

5.4 Fisher matrix approximation

Although we now have in principle all the tools necessary to estimate the parameters of
a binary, this task is still computationally challenging. In this section we will discuss
an analytical approximation for estimating the parameters known as the Fisher matrix
approximation which applies to signals with high SNR, and then discuss in the next section

a more general method known as Markov Chain Monte Carlo (MCMC).
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For a binary event with actual parameters 6, we can choose as our best estimate of
the parameters 0 the value, known as the mode, that maximizes A(é) and is given by the
solution to &;A(f) = 0. It is possible for there to be multiple local maxima, however for
signals with high SNR, A(f) will be a narrowly peaked function and the mode 6 will be
close to the actual parameters 6. Using the fact that the log of a function has the same
mode as the function, the relation s = n + h(6), and the shorthand po(8) = p(A|H1, I), the

mode can be found from Eq. (5.26)) [98]

0= 8;In A(6)

= 0 {Inpo() + (n + (@), h(d) — 1 ((9), h(B))
—vi = 0;Inpo(0) + (h(0) — h(B), Dih(D)), (5.28)
where
v; = (n, B;h(0)). (5.29)

Because n(t) is a sequence of zero mean ((n(t)) = 0) Gaussian random variables, each v; is
a zero mean Gaussian as well. The joint distribution of v; over all parameters will therefore

be a multivariate Gaussian with covariance I';; known as the Fisher matrix

[ij = Cov(vi,vj) = ((vi — (vi)) (v — (7))

d;h(0),0;h(0)), (5.30)

where we used Eq. (5.21]) in going to the last line.
If the signal has high SNR and is narrowly peaked, the true parameters 6 will be close

to the mode 6, and we can linearize the difference in the corresponding waveforms

h() = h(B) + 8;h(0)A0; + O(AH?), (5.31)
where AG; = 0; — 6;. Eq. 1’ can now be used to provide an explicit expression for 6
AG; = =T (v + 9;Inp). (5.32)

The random variables Af; have means

(A6;) = —T;;'9; Inp(0) (5.33)
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and covariance

Eij = Cov(Ab;, Adj) = ((Ab; — (Ab;))(AG; — (Ab))))
Tt (5.34)

Note that when the prior is uniform, (A6;) = 0 and ¥;; = Cov(A;, Af;) = (AO;Ab;). The
joint probability distribution for A#; given the mode 0; is therefore

p(AGi]6;) = ! o355 (A0i—(A6:))(A0;—(A6;)) (5.35)
(27r)Ndet(Eij)

The n-o error ellipsoid which is a contour of p(A;]6;) is defined by
(AG; — (A0:))(A0; — (A0;))" = n®. (5.36)
The variance in A6; is
o7 = ((A9; — (A6:))%) = T, (5.37)
and the correlation coefficients r;; are

rij = <(A01 - <A912—)(0—A03 - <A0]>)> _ UZ;J ] (5.38)

The correlation r;; ranges from -1 to 1, with 7;; = 0 indicating no correlation between the

parameters and r;; = £1 indicating the parameters are completely degenerate.

5.5 Markov Chain Monte Carlo

In general, the PDF for the parameters of a gravitational-wave event cannot be approxi-
mated as a multivariate Gaussian centered on the maximum likelihood (for some parameters
the marginalized PDF is even multimodal), and so the Fisher matrix will fail to give an
accurate estimate of the uncertainty in the parameters. What we need to understand the
overall structure of the PDF is to sufficiently sample the entire PDF instead of just the
region around the maximum likelihood. Sampling a D dimensional parameter space with
N points in each parameter requires O(NP) evaluations of the posterior, and this rapidly
becomes an intractable problem. Fortunately there are adaptive techniques for sampling
more finely regions where the PDF is larger. One such technique is known as Markov
Chain Monte Carlo (MCMC). The essential idea of MCMC is to sample each point in the
parameter space with a probability proportional to the PDF itself. If this is done, then the
marginalized PDF over the parameters 67 is found by simply binning the sampled points

and making a histogram over the remaining 1 or 2 parameters of interest 6.
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The algorithm is as follow Begin at the point 0_;,1 and draw a new point 0_; from
a distribution p(f;]f;_1). (Because the new point depends on only the previous point, the
sequence of points that results from repeating this process is called a Markov Chain.) If

the distribution p(@\gi,l) satisfies the detailed balance equation

m(0;-1)p(03|0:—1) = 7(0;)p(0i—1105), (5.39)
then each point 0; will eventually be visited with probability W(g) This can be seen by
integrating both sides of Eq. 1) over all possible choices for the previous point 9_;-_1 in
the chain to obtain

/ w (B )p(Bi\F ) dBs_y = n(B)). (5.40)

This indicates that if §;,_; is drawn from m(0;—1) then so is 0;.

There are several possible ways to draw the new point 9_; such that the transition prob-
ability function p(§i|0_;,1) satisfies the detailed balance equation . The most common
is given by the Metropolis-Hastings algorithm. In this algorithm a new point is drawn
from some proposal distribution q(9_;-|0_;-_1) for example a Gaussian. This new point will be

accepted with probability

a(fi-1,0;) = min <1, W(?)Q(g"f@g) . (5.41)

If this new point is not accepted, then set 02 = @_1 instead. The transition probability will
therefore be

— —

p(0:-110;) = q(0:10;_1) (0,1, 65). (5.42)

This can be shown to satisfy the detailed balance equation.

There are many methods available to find proposal distributions g that efficiently sample
the entire parameter space. Furthermore, the proposal ¢ can be changed after each itera-
tion and still satisfy the detailed balance equation. In addition, methods such as parallel
tempering [100] are available which make it easier for a chain to jump between different
modes of a PDF.

2The discussion in this section is based on that in Section 15.8 of Ref. [99].
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Chapter 6

Detectability of tidal parameters
from the early inspiral of BNS

systems

6.1 Introduction and summary

The observation of inspiraling binary neutron stars (NSs) with ground-based gravitational-
wave detectors such as LIGO and Virgo may provide significantly more information about
neutron-star structure and the highly uncertain equation of state (EOS) of neutron-star
matter than is currently available. The available electromagnetic observations of neutron
stars provide weak constraints from properties such as the star’s mass, spin, and gravita-
tional redshift (see for example [37,[54]). Simultaneous measurements of both the mass and
radius of a neutron star [48, 101, [61) [62], 102], on the other hand, have the potential to
make significantly stronger constraints. These measurements, however, depend on detailed
modeling of the radiation mechanisms at the neutron-star surface and absorption in the
interstellar medium, and they are subject to systematic uncertainties.

In contrast, information about the neutron star KOS obtained from gravitational-wave
observations of binary inspiral is model independent. The tidal distortion of neutron stars
in a binary system links the EOS describing neutron-star matter to the gravitational-wave
emission during the inspiral. Initial estimates showed that for LIGO, tidal effects change
the phase evolution only at the end of inspiral, and that point particle post-Newtonian
waveforms can be used for template-based detection [103, [104], 105]. With the projected
sensitivities of later-generation detectors, however, effects which can be neglected for the

purpose of detection may become measurable in the strongest observed signals.
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While EOS effects are largest during the late inspiral and merger of two neutron stars
where numerical simulations must be used to predict the signal, Flanagan and Hinderer
showed that a small but clean tidal signature arises in the inspiral below 400 Hz [86].
This signature amounts to a phase correction which can be described in terms of a single
EOS-dependent tidal deformability parameter A, namely the ratio of each star’s induced
quadrupole to the tidal field of its companion. The fact that the EOS-dependence enters
only via a single parameter was worked out previously in the context of Newtonian gravity
in Refs. [103] [106]. The parameter A depends on the EOS via both the NS radius R and a
dimensionless quantity ks, called the Love number [107, 108, 109]: A\ = 2/(3G)ksR°.

The relativistic Love numbers of polytropicﬂ EOS were examined first by Flanagan and
Hinderer [86 R7] and later by others in more detail [03, 110]. Flanagan and Hinderer
also examined the measurability of the tidal deformability of polytropes and suggested that
Advanced LIGO could start to place interesting constraints on A for nearby events. However,
they used incorrect values for ko, which overestimated A by a factor of ~ 2 — 3 and were
therefore overly optimistic about the potential measurability. In addition, polytropes are
known to be a poor approximation to the neutron star equation of state, and there may be
significant differences in the tidal deformability between polytropes and realistic candidates
for the neutron-star EOS. In this paper, we calculate the deformability for candidate EOS,
and show that a tidal signature is actually only marginally detectable with Advanced LIGO
from the early-inspiral waveform.

In Sec. we described a method based on Ref. [87] for calculating the relativistic Love
number and tidal deformability for an arbitrary EOS. In Sec. we calculate ko and A
as a function of mass for several EOS commonly found in the literature. We find that, in
contrast to the Love number, the tidal deformability has a wide range of values, spanning
roughly an order of magnitude over the observed mass range of neutron stars in binary
systems.

As discussed above, the direct practical importance of the stars’ tidal deformability for
gravitational wave observations of NS binary inspirals is that it encodes the EOS influence
on the waveform’s phase evolution during the early portion of the signal, where it is ac-

curately modeled by post-Newtonian (PN) methods. In this regime, the influence of tidal

1Polytropes are often written in two forms. The first form is expressed as p = Ke' /"

, where p is the
pressure, € is the energy density, K is a pressure constant, and n is the polytropic index. The second form,
is given by p = Klerl/"7 where p is the rest-mass density, defined as the baryon number density times the
baryon rest mass. The first form was mainly used in the recent papers [87, 93] [I10]. However, the second
form is more commonly used in the neutron-star literature and is more closely tied to the thermodynamics

of a Fermi gas. We will use both forms as was done in Ref. [93].
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effects is only a small correction to the point-particle dynamics. However, when the signal
is integrated against a theoretical waveform template over many cycles, even a small con-
tribution to the phase evolution can be detected and could give information about the NS
structure.

Following [86], we calculate in Sec. the measurability of the tidal deformability for
a wide range of equal- and unequal- mass binaries, covering the entire expected range
of NS masses and EOS, and with proposed detector sensitivity curves for second- and
third- generation detectors. We show that the tidal signature is optimistically detectable in
Advanced LIGO only for binaries with neutron star masses below 1.4 Mg for gravitational
frequencies below 450 Hz. In third-generation detectors, however, the tenfold increase in
sensitivity allows a finer discrimination between equations of state leading to potential
measurability of a large portion of proposed EOSs over most of the expected neutron star
mass range.

We conclude by briefly considering how the errors could be improved with a more care-
ful analysis of the detectors and extension of the understanding of EOS effects to higher
frequencies.

Finally, in Appendix [B| we compute the leading order EOS-dependent corrections to our
model of the tidal effect and derive explicit expressions for the resulting corrections to the
waveform’s phase evolution, extending the analysis of Ref. [86]. Estimates of the size of
the phase corrections show that the main source of error are post-1 Newtonian corrections
to the Newtonian tidal effect itself, which are approximately twice as large as other, EOS-
dependent corrections at a frequency of 450 Hz. Since these point-particle corrections do
not depend on unknown NS physics, they can easily be incorporated into the analysis. A
derivation of the explicit post-Newtonian correction terms is the subject of Ref. [85, [TT1].

Conventions: We set G = ¢ = 1.

6.2 Love numbers and tidal deformabilities for candidate EOS

Differences between candidate EOS can have a significant effect on the tidal interactions of
neutron stars. In this paper we consider a sample of EOS from Refs. [8, [54] with a variety
of generation methods and particle species. The sample is chosen to include EOS with the
largest range of behaviors for ka(M/R), ko(M) and A(M) rather than to fairly represent
the different generation methods. We also restrict ourselves to stars with a maximum
mass greater than 1.5 M, which is conservatively low given recent neutron-star mass
observations [112 39, 40l [41], 42, [43]. We consider 7 EOS with just normal npeu matter
(SLY [21], AP1 and AP3 [22], FPS [23], MPA1 [27], MS1 and MS2 [28]), 8 EOS that
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also incorporate some combination of hyperons, pion condensates, and quarks (PS [29],
BGN1H1 [31], GNH3 [32], H1 and H4 [17], PCL2 [33], ALF1 and ALF2 [34]), and 3 self-
bound strange quark matter EOS (SQM1-3 [33]). A brief description of these EOS and
their properties can be found in [8] [54].

0.15 0-15

< <
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0.00 ! ! ! ! ! ! 0.00+
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Figure 20 : Left panel: Love number as a function of compactness. Gray dotted curves are energy density
polytropes (p = Ke'*1/™), and gray solid curves are rest-mass density polytropes (p = Kp'**/™). Both
polytropes are the same for n = 0. EOS with only npep matter are solid and those that also incorporate
m/hyperon/quark matter are dot-dashed. The three SQM EOS are dashed and overlap. They approach the
n = 0 curve at low compactness, where k2 has a maximum value of 0.75 as M /R — 0. Right panel: Love
number as a function of mass for the same set of realistic EOS. Note that there is more variation in ko

between different EOS for fixed mass than for fixed compactness.

The generic behavior of the Love number ks is shown in the left panel of Fig. as
a function of compactness M/R for different types of EOS. The two types of polytropes,
energy and rest-mass density polytropes, are shown in gray. They coincide in the limit
M/R — 0 where € — p as the star’s density goes to zero, and in the limit n — 0 where €(p)
and p(p) are both constant. This can be seen from the first law of thermodynamics,
< = —pdt, (6.1)
p p
which relates € to p.
The sequences labeled “Normal” correspond to the 15 EOS with a standard nuclear
matter crust, and the 3 sequences labeled “SQM” correspond to the crustless EOS SQM1-3
where the pressure is zero below a few times nuclear density. Within these two classes,

there is little variation in behavior, so we do not explicitly label each candidate EOS.



The left panel of Fig. [20[ shows k2 (M) for the realistic EOS, which is more astrophys-
ically relevant because mass, not compactness, is the measurable quantity during binary
inspiral. Unlike the quantity ko(M/R), ko(M) depends on the constant K for polytropes,
so polytropic EOS are not shown. There is more variation in ks for fixed mass than for
fixed compactness.

The behavior of these curves can be understood as follows: The Love number ky mea-
sures how easily the bulk of the matter in a star is deformed. If most of the star’s mass
is concentrated at the center (centrally condensed), the tidal deformation will be smaller.
For polytropes, matter with a higher polytropic index n is softer and more compressible,
so these polytropes are more centrally condensed. As a result, ko decreases as n increases.
The limiting case n = 0 represents a uniform density star and has the largest Love number
possible. The Love number also decreases with increasing compactness, and from Eq.
it can be seen that k2 vanishes at the compactness of a black hole (M /R = 0.5) regardless
of the EOS dependent quantity y [93], 110].

Normal matter EOS behave approximately as polytropes for large compactness. How-
ever, for smaller compactness, the softer crust becomes a greater fraction of the star, so
the star is more centrally condensed and ks smaller. For strange quark matter, the EOS
is extremely stiff near the minimum density, and the star behaves approximately as an
n = 0 polytrope for small compactness. As the central density and compactness increase,
the softer, higher density part of the EOS has a larger effect, and the star becomes more
centrally condensed.

The parameter that is directly measurable by gravitational wave observations of a binary
neutron star inspiral is proportional to the tidal deformability A, which is shown for each
candidate EOS in Fig. The values of A for the candidate EOS show a much wider range
of behaviors than for ks because \ is proportional to ko R®, and the candidate EOS produce
a wide range of radii (9.4-15.5 km for a 1.4 Mg star for normal EOS and 8.9-10.9 km for
the SQM EOS). See Table

For normal matter, A\ becomes large for stars near the minimum mass configuration at
roughly 0.1 Mg because they have a large radius. For masses in the expected mass range
for binary inspirals, there are several differences between EOS with only npep matter and
those with condensates. EOS with condensates have, on average, a larger A, primarily
because they have, on average, larger radii. The quark hybrid EOS ALF1 with a small
radius (9.9 km for a 1.4 Mg star) and the nuclear matter only EOSs MS1 and MS2 with
large radii (14.9 km and 14.5 km, respectively, at 1.4 Mg) are exceptions to this trend.

For strange quark matter stars, there is no minimum mass, so the radius (and therefore
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Figure 21 : Tidal deformability A of a single neutron star as a function of neutron-star mass for a range
of realistic EOS. The top left figure shows EOS that only include npey matter; the top right figure shows
EOS that also incorporate 7/hyperon/quark matter; the bottom figure shows strange quark matter EOS.
The dashed lines between the various shaded regions represent the expected uncertainties in measuring A\
for an equal-mass binary inspiral at a distance of D = 100 Mpc as it passes through the gravitational wave
frequency range 10 Hz—450 Hz. Observations with Advanced LIGO will be sensitive to A in the unshaded

region, while the Einstein Telescope will be able to measure A in the unshaded and light shaded regions. See

text below.

A) approaches zero as the mass approaches zero. At larger masses, the tidal deformability
of SQM stars remains smaller than most normal matter stars because, despite having large
Love numbers, the radii of SQM stars are typically smaller.

Error estimates A\ for an equal-mass binary inspiral at 100 Mpc are also shown in
Fig. [21] for both Advanced LIGO and the Einstein Telescope. They will be discussed in the
next section.

In addition to these candidate EOS, we also calculate tidal deformability for the piece-

wise polytrope EOS introduced in Chapter [2. As shown in Fig. the constraint imposed

78



Table 2 : Properties of a 1.4 Mg neutron star for the 18 EOS discussed in the text.

EOS R(km) M/R ko  A10%¢gcem?s?)
SLY 11.74  0.176 0.0763 1.70
AP1 9.36  0.221 0.0512 0.368
AP3 12.09 0.171 0.0858 2.22
FPS 10.85 0.191 0.0663 1.00
MPA1 12.47  0.166 0.0924 2.79
MS1 14.92  0.139  0.110 8.15
MS2 13.71  0.151 0.0883 4.28
PS 1547 0.134  0.104 9.19
BGN1H1 12.90 0.160 0.0868 3.10
GNH3 1420 0.146 0.0867 5.01
H1 12.86 0.161 0.0738 2.59
H4 13.76  0.150 0.104 5.13
PCL2 11.76  0.176 0.0577 1.30
ALF1 9.90  0.209 0.0541 0.513
ALF2 13.19  0.157  0.107 4.28
SQM1 8.86  0.233  0.098 0.536
SQM2 10.03  0.206 0.136 1.38
SQM3 10.87  0.190 0.166 2.52

by a measurement of \ is very similar to that of a radius (Fig. or moment of inertia

(Fig. observation. This occurs because A o< ko R? is strongly dependent on the neutron

star radius.

6.3 Measuring effects on gravitational radiation

We wish to calculate the contribution from realistic tidal effects to the phase evolution and

resulting gravitational wave spectrum of an inspiraling neutron star binary. In the secular

limit, where the orbital period is much shorter than the gravitational radiation reaction

timescale, we consider the tidal contribution to the energy E and energy flux dE/dt for a

quasi-circular inspiral using the formalism developed by Flanagan and Hinderer [86], which

adds the following leading-order terms to the post-Newtonian point-particle corrections
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Figure 22 : The above surfaces represent the set of parameters that result in a star with a mass of 1.4 Mg
and a fixed tidal deformability. A = 6 x 10%® gem?s? for the bottom surface. A = 2 x 10*% gecm? s? for the
middle surface. A = 1 x 107 gem?s? for the top surface. The wedge at the back right is the shaded region

of Fig. ] corresponding to incompatible values of p1 and T';.

(PN-PP corr.):

1 My M\
E(x) = _§M77x [1 + (PN-PP corr.) — 9—]\41 e P +1 2] , (6.2)
: 32 M, +3My A
B(z) = - [1 + (PN-PP corr.) + G%V{S:& +1¢ 2]. (6.3)

Here A1 = A(M7) and A\g = A(M>) are the tidal deformabilities of stars 1 and 2, respectively.
M = Mj + My is the total mass, 7 = MjM,/M? is the symmetric mass ratio, and z is
the post-Newtonian dimensionless parameter given by = = (QM)?/3, where Q is the orbital
angular frequency. One can then use

E
dE /dx

dx/dt = (6.4)

to estimate the evolution of the quadrupole gravitational wave phase ® via d®/dt = 2Q =
22%/2 /M. The effect of the tidal distortion on these quantities was previously computed in
Refs. [104} 103} 106] in terms of the gauge-dependent orbital separation. When these results
are converted to the gauge invariant quantity x, taking into account the tidal correction to
the radius-frequency relation, the expressions obtained in the previous studies agree with
our Egs. and .

Each equation of state gives in this approximation a known phase contribution as a
function of M7 and Ms, or as a function of the total mass M = M; + My and the mass
ratio My /My, via A(M;) and A(Mz) for that EOS. Although we calculated A for individual

neutron stars, the universality of the neutron star core equation of state allows us to predict
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Figure 23 : Weighted X for a range of chirp mass M and symmetric mass ratio 7, for three of the EOSs
considered above. The values of 7 equal to {0.25, 0.242, 0.222} correspond to the mass ratios My/M; =
{1.0, 0.7, 0.5}. Also plotted (as in Fig. are the uncertainties A\ in measuring X for a binary at 100 Mpc
between 10 Hz-450 Hz. The solid, dashed, and dotted curves correspond to A for n = 0.25, 0.242, and
0.222 respectively.

the tidal phase contribution for a given binary system from each EOS. Following [86], we

discuss the constraint on the weighted average

~ 1 [ M+ 12M, My + 12M,
A= — A A .
%6 [ M 1+ 72 2 (6.5)

which reduces to A in the equal mass case. The contribution to d®/dz from the tidal

deformation, which adds linearly to the known point particle phase evolution, is

195 23/2 )\
=TS ey (6:6)
T n

@
dzx

The weighted average A is plotted as a function of chirp mass M = (M;My)3/5/M'/5 in
Fig. for three of the EOS and for three values of 7: equal mass (n = 0.25), large but
plausible mass ratio [113] (n = 0.242), and extremely large mass ratio (n = 0.222).

We can determine the significance of the tidal effect on gravitational waveforms in a given
frequency range by considering the resulting change in phase accumulated as a function of
frequency. In the case of template-based searches, for example, a drift in phase of half a cycle
leads to destructive interference between the signal and template, halting the accumulation
of signal to noise ratio. The phase contributions to binary neutron stars of various masses

from a range of realistic tidal deformabilities are plotted in Fig.
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Figure 24 : The reduction in accumulated gravitational wave phase due to tidal effects, ®3.5 pp(foaw) —
D352 (faw), is plotted with thick lines as a function of gravitational wave frequency, for a range of A
appropriate for realistic neutron star EOS and the masses considered. The 3.5 post-Newtonian TaylorT4 PN
specification is used as the point-particle reference for the phase calculations. For reference, the difference in
accumulated phase between 3.0 and 3.5 post-Newtonian orders of T4 (thin dashed line), and the difference

between 3.5 post-Newtonian T4 and 3.5 post-Newtonian T1 (thin dotted line) are also shown. Phase

accumulations are integrated from a starting frequency of 10 Hz.

The post-Newtonian formalism itself is sensitive to high-order corrections at the fre-
quencies at which the tidal effect becomes significant; as reference, we show in Fig. [24] the
phase difference between the 3.0PN and 3.5PN expansions, as well as that from varying
the form of the post-Newtonian Taylor expansion from T4 to T1E| An accurate knowledge
of the underlying point-particle dynamics will be important to resolve the effects of tidal
deformation on the gravitational wave phase evolution at these frequencies.

The half-cycle or more contribution to the gravitational wave phase at relatively low

frequencies suggests that this effect could be measurable. Flanagan and Hinderer [30]

2For an explanation of the differences between T4 and T1, see Chapter
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first calculated the measurability for frequencies below 400 Hz, where the approximations
leading to the tidal phase correction are well-justified. We extend the same computation of
measurability to a range of masses and mass ratios. We take noise curves from the projected
NS-NS optimized Advanced LIGO configuration [114], as well as a proposed noise spectrum
of the Einstein Telescope [115]. These noise curves are representative of the anticipated
sensitivities of the two detectors. Our results do not change significantly for alternate
configurations which have similar sensitivities in the frequency range of interest.

We also extend the computation to a slightly higher cutoff frequency. As estimated in
Appendix [B] our calculation should still be fairly robust at 450 Hz, as the contributions
to the phase evolution from various higher order effects are O(10%) of the leading order
tidal contribution. The uncertainty in the phase contribution from a given EOS is therefore
significantly smaller than the order of magnitude range of phase contributions over the full
set of realistic EOS.

The rms uncertainty AX in the measurement of X is computed using the standard
Fisher matrix formalism [I16]. Assuming a strong signal h and Gaussian detector noise, the
signal parameters §* have probability distribution p (0’) o exp (—(1 /2)T;;60%609 ), where
50" = 0" — @' is the difference between the parameters and their best-fit values 0% and
Ty = (0h/06, Oh/067) is the Fisher information matrix. The parentheses denote the
inner product defined in [I16]. The rms measurement error in €’ is given by a diagonal
element of the inverse Fisher, or covariance, matrix: Ag? = /(T—1).

Using the stationary phase approximation and neglecting post-Newtonian corrections
to the amplitude, the Fourier transform of the waveform for spinning point masses is given
by h(f) = Af~"/Sexp (i¥), where the point-mass contribution to the phase ¥ is given to
3.5 post-Newtonian order in Ref. [63]. The tidal term

B 117252

5\I/tidal _
8nM>

(6.7)

obtained from Eq. adds linearly to this, yielding a phase model with 7 parameters
(te, e, Mym, B, 0, ;\), where $ and o are spin parameters. We incorporate the maximum
spin constraint for the NSs by assuming a Gaussian prior for § and o as in [I16]. The
uncertainties computed will depend on the choice of point-particle phase evolution, but we
assume this to be exactly the 3.5PN form for the current analysis.

The rms measurement uncertainty of 5\, along with the uncertainties in chirp mass M
and symmetric mass ratio 7, are given in Table [3| and plotted in Figs. and from a
single-detector observation of a binary at 100 Mpc distance with amplitude averaged over

inclinations and sky positions. If the best-fit A is zero, this represents a 1-o upper bound
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on the physical X\. A signal with best-fit A > AX would allow a measurement rather than a
constraint of \, with 1-o uncertainty of AX.

We obtain the following approximate formula for the rms measurement uncertainty AN,
which is accurate to better than 4% for the range of masses 0.1 Mg < mq,mo < 3.0 Mg
and cutoff frequencies 400 Hz < fonq < 500 Hz:

B M 2.5 0.1 —2.2 D
AM~a|— 2 Jend =), (6.8)
Mo mp Hz 100 Mpc

where o = 1.0 x 10*? gem?s? for a single Advanced LIGO detector and a = 8.4 x

10%° gem?s? for a single Einstein Telescope detector.

Our results show that the measurability of tidal effects decreases steeply with the total
mass of the binary. Estimates of the measurement uncertainty for an equal-mass binary
inspiral in a single detector with projected sensitivities of Advanced LIGO and the Einstein
Telescope, at a volume-averaged distance of 100 Mpc and using only the portion of the
signal between 10 — 450 Hz, are shown in Fig. together with the values of A\ predicted
by various EOS models. Measurability is less sensitive to mass ratio, as seen in Fig.
Comparing the magnitude of the resulting upper bounds on A with the expected range for
realistic EOS, we find that the predicted A are greatest and the measurement uncertainty
A\ is smallest for neutron stars at the low end of the expected mass range for NS-NS
inspirals of (1 Mg — 1.7 Mg) [117].

In a single Advanced LIGO detector, only extremely stiff EOS could be constrained with
a typical 100 Mpc observation. However, a rare nearby event could allow more interesting
constraints, as the uncertainty scales as the distance to the source. Rate estimates for
detection of binary neutron stars are often given in terms of a minimum signal-to-noise
pe = 8; a recent estimate [I18] is between 2 and 64 binary neutron star detections per year
for a single Advanced LIGO interferometer with a volume averaged range of 187 Mpc. The
rate of binaries with a volume averaged distance smaller than 100 Mpc translates to roughly
(100/ 187)3 ~ 15% of this total detection rate, but over multiple years of observation a rare
event could give measurements of A with uncertainties smaller than the values in Table
(e.g. with half the tabled uncertainty at 1.9% the total NS-NS rate).

Using information from a network of N detectors with the same sensitivity decreases the
measurement uncertainty by approximately a factor of 1/v/N [I19], giving more reason for
optimism. However, we should also note that, in some ways, our estimates of uncertainty
are already too optimistic. First, A\ only represents a 68% confidence in the measurement;
a 2A\ error bar would give a more reasonable 95% confidence. In addition, our Fisher

matrix estimates are likely to somewhat underestimate the measurement uncertainty in
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real non-Gaussian noise.

In contrast to Advanced LIGO, an Einstein Telescope detector with currently projected
noise would be sensitive to tidal effects for typical binaries, using only the signal below
450 Hz at 100 Mpc. The tidal signal in this regime would provide a clean signature of the
neutron star core equation of state. However, an accurate understanding of the underlying

point-particle phase evolution is still important to confidently distinguish EOS effects.

Table 3 : The rms measurement error in various binary parameters (chirp mass M, symmetric mass ratio
7, and weighted average X of the tidal deformabilities) for a range of total mass M and mass ratio My /M;,
together with the signal to noise ratio p, using only the information in the portion of the inspiral signal
between 10 Hz < f < 450 Hz. The distance is set at 100 Mpc, and the amplitude is averaged over sky

position and relative inclination.

Advanced LIGO
M (My) May/My AM/M  An/n  AXN10% gem?s?)  p

2.0 1.0 0.00028  0.073 8.4 27
2.8 1.0 0.00037  0.055 19.3 35
3.4 1.0 0.00046  0.047 31.3 41
2.0 0.7 0.00026  0.058 8.2 26
2.8 0.7 0.00027  0.058 18.9 35
3.4 0.7 0.00028  0.055 30.5 41
2.8 0.5 0.00037  0.06 17.8 33

Einstein Telescope
M (My) May/My AM/M  An/n  AXN100gem?s?)  p

2.0 1.0 0.000015 0.0058 0.70 354
2.8 1.0 0.000021  0.0043 1.60 469
3.4 1.0 0.000025 0.0038 2.58 552
2.0 0.7 0.000015 0.0058 0.68 349
2.8 0.7 0.000021  0.0045 1.56 462
3.4 0.7 0.000025 0.0038 2.52 543
2.8 0.5 0.000020 0.0048 1.46 442

Expected measurement uncertainty will decrease if we can extend the calculation later
into the inspiral. From Eq. , AN at 500 Hz is approximately 79% of its value at 450 Hz.

The dominant source of error in the tidal phasing at these frequencies are post-Newtonian

7/2

effects which scale as Az‘/“ and do not depend on any additional EOS parameters. These
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terms are computed in Refs. [85, [I11], and when they are incorporated into the analysis,
the resulting phase evolution model can be used at slightly higher frequencies. These terms
also add ~ 10%(f/450 Hz)*/? to the strength of the tidal signature.

Higher-order tidal effects and nonlinear hydrodynamic couplings, which depend on un-
known NS microphysics, are smaller than post-Newtonian effects by factors of ~ = and
~ 2, so they become important later in the inspiral, where the adiabatic approximation
that the mode frequency is large compared to the orbital frequency also breaks down. At
this point we can no longer measure only ), but an EOS- dependent combination of effects
including higher multipoles, nonlinearity, and tidal resonances.

However, information in the late inspiral could also constrain the underlying neutron-
star EOS. Read et al. [16] estimated potential measurability of EOS effects in the last few
orbits of binary inspiral, where the gravitational wave frequency is above 500 Hz, using
full numerical simulations. The EOS used for the simulation was systematically varied by
shifting the pressure in the core while keeping the crust fixed. The resulting models were
parameterized, either by a fiducial pressure or by the radius of the isolated NS model, and
measurability in Advanced LIGO was estimated. Such numerical simulations include all
the higher order EOS effects described above, but the [ = 2 tidal deformability parameter A
should remain the dominant source of EOS-dependent modification of the phase evolution.
We therefore expect it to be a better choice for a single parameter to characterize EOS
effects on the late inspiral.

The numerically simulated models of [16] can be re-parameterized by the A of the 1.35
Mg neutron stars consideredﬁ The uncertainty of measurement for the new parameter
A can be estimated from Tables II-V of [I6]. In the broadband Advanced LIGO config-
uration of Table IV, it is between 0.3 and 4x10%6 gcm?s? for an optimally oriented 100
Mpc binary, or between 0.7 and 9x 1036 g cm? s? averaged over sky position and orientation.
However, in the NS-NS optimized LIGO configuration of Table III, which is most similar
to the Advanced LIGO configuration considered in this paper, the expected measurement
uncertainty is more than several times A for all models. These estimates should be con-
sidered order-of-magnitude, as numerical simulation errors are significant, and the discrete
sampling of a parameter space allows only a coarse measurability estimate which neglects
parameter correlations. In contrast to the perturbative/post-Newtonian estimate of EOS
effects calculated in this paper, EOS information in the signal before the start of numerical

simulations is neglected. The estimate is complementary to the measurability below 450 Hz

3The piecewise polytrope EOS {2B, B, HB, H, 2H} have A1ssmg of {0.588, 1.343, 1.964, 2.828,
10.842} x10%¢ gcm? s?, respectively.
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estimated in this paper.

6.4 Conclusion

We have calculated the relativistic [ = 2 Love number k5 and resulting tidal deformability A
for a wide range of realistic EOS in addition to polytropes. These EOS have tidal deforma-
bilities that differ by up to an order of magnitude in the mass range relevant for binary
neutron stars. However, the estimated uncertainty A for a binary neutron star inspiral
at 100 Mpc using the Advanced LIGO sensitivity below 450 Hz is greater than the largest
values of \ except for very low-mass binaries. The uncertainty for the Einstein Telescope, on
the other hand, is approximately an order of magnitude smaller than for Advanced LIGO,
and a measurement of A will rule out a significant fraction of the EOS.

Advanced LIGO can place a constraint on the space of possible EOS by obtaining a 95%
confidence upper limit of A\(M,n) < 2AX(M, 7). The tables in Sec. can also be scaled
as follows: For a network of IV detectors the uncertainty scales roughly as AS\/ VN, and for
a closer signal we have AX(D/100 Mpc).
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Chapter 7

Detectability of tidal parameters

from nonspinning BHNS systems

7.1 Introduction

Construction of the second-generation Advanced LIGO (aLIGO) detectors is underway and
will soon begin for Advanced VIRGO and LCGT, making it likely that gravitational wave-
forms from compact binaries will be observed in this decade. Plans are also in development
for the third generation Einstein Telescope (ET) detector with an order-of-magnitude in-
crease in sensitivity over aLIGO. Population synthesis models predict that with a single
aLIGO detector binary neutron star (BNS) systems will be observed with a signal-to-noise
ratio (SNR) of 8, at an event rate between 0.4 and 400 times per year and with a most likely
value of 40 per year [120]. Black hole-neutron star (BHNS) systems are also expected, but
with a more uncertain rate of between 0.2 and 300 events per year at the same SNR and
with a most likely value of 10 events per year for a canonical 1.4 Mg—10 Mg system [120].
The expected mass ratios Q = Mpy/Mns of BHNS systems are also highly uncertain and
may range from just under 3 to more than 20 [121], 122].

A major goal of the gravitational-wave (GW) program is to extract from observed wave-
forms the physical characteristics of their sources and, in particular, to use the waveforms of
inspraling and merging BNS and BHNS systems to constrain the uncertain EOS of neutron-
star matter. During inspiral the tidal interaction between the two stars leads to a small drift
in the phase of the gravitational waveform relative to a point particle system. Specifically
the tidal field &;; of one star will induce a quadrupole moment @);; in the other star given

by Qij = —AE&;; where )EI is an EOS dependent quantity that describes how easily the star

!The tidal deformability for the ¢th multipole is often defined in terms of the NS radius R and its
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is distorted. A method for determining A for relativistic stars was found by Hinderer [87];
its effect on the waveform was calculated to Newtonian order (with the relativistic value
of A\) by Flanagan and Hinderer [86] and to first post-Newtonian (PN) order by Vines,
Flanagan, and Hinderer [85] [I11]. This tidal description has also been extended to higher
order multipoles [93, [110].

The detectability of EOS effects have been examined for both BNS and BHNS systems
using this analytical description of the inspiral. For BNS systems, the detectability of A
with alLIGO was examined for polytropic EOS [86] as well as a range of theoretical EOS
commonly found in the NS literature for aLIGO and ET [123]. These studies considered
only the waveform up to frequencies of 400-500 Hz (~30-20 GW cycles before merger for
1.4 Mg equal-mass NSs). For this early part of inspiral, they find that the tidal deformabil-
ity is detectable by aLLIGO only for an unusually stiff EOS and for low neutron-star masses
(< 1.2 Mg). ET on the other hand would have an order of magnitude improvement in esti-
mating A, allowing ET to distinguish between different classes of EOS. For BHNS systems,
using the recently calculated 1PN corrections, Pannarale et al. [124] examined detectability
for a range of mass ratios, finding that alLIGO will be able to distinguish between BHNS and
binary black hole (BBH) systems only for low mass ratios and stiff EOS when considering
the full inspiral waveform up to the point of tidal disruption.

In sharp contrast to these analytic post-Newtonian results, analysis of just the last few
orbits of BNS inspiral from numerical simulations has shown that the NS radius may be
extracted to a higher accuracy, of O(10%) with aLIGO [16], and this is confirmed by a study
based on a set of longer and more accurate waveforms from two different codes [125]. In
addition, comparisons between the analytical tidal description and BNS quasiequilibrium
sequences [126] as well as long BNS numerical waveforms [127], [128] suggest that corrections
beyond the 1PN quadrupole description are significant and substantially increase the tidal
effect during the late inspiral.

Numerical BHNS simulations have also been done to examine the dependence of the
waveform on mass ratio, BH spin, NS mass, and the neutron-star EOS [129, [130] 131,
132, 133] 134}, [135], 1306, 137, 138, 139, 140]. However, an analysis of the detectability
of EOS information with GW detectors using these simulations has not yet been done,
and the present chapter presents the first results of this kind. EOS information from
tidal interactions is present in the inspiral waveform. For BHNS systems, however, the

stronger signal is likely to arise from a sharp drop in the GW amplitude arising from tidal

dimensionless ¢th Love number k; by A\, = q keR?**t!. Here we will discuss only the £ = 2 term so we

2
20— )G
write A := Aa.
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disruption prior to merger or, when there is negligible disruption, from the cutoff frequency
at merger [141].

We find from simulations of the last few orbits, merger, and ringdown of BHNS systems
with varying EOS that, to within numerical accuracy, the EOS parameter extracted from
the waveform is the same tidal parameter A that determines the departure from point

particle behavior during inspiral; here A is a dimensionless version of the tidal parameter:

2 5 2 AR 5
A= G (GMNS> —3k2<GMNs> , (7.1)

where ko is the quadrupole Love number. This parameter is similar to the dimensionless

parameter x4 introduced in Eq. (26) of Ref. [I26]. However, we have chosen to make A
independent of the mass ratio so that it depends on only the neutron star mass and EOS.

The constraint on the EOS imposed by gravitational-wave observations of BHNS inspiral
and merger is essentially a restriction of the space of EOS p = p(p) to a hypersurface of
constant A, thickened by the uncertainty in the measurement (that is, a restriction to the
set of EOS for which a spherical neutron star of the mass observed in the inspiral has
tidal parameter A). We use a parametrized EOS based on piecewise polytropes [54], to
delineate this region in the EOS space, but the result can be used to constrain any choice
of parameters for the EOS space.

In Sec. we discuss the parametrized EOS used in the simulations. We give in Sec.
an overview of the numerical methods used and, in Sec. a description of the waveforms
from the simulations. We then discuss the analytical waveforms used for the early inspiral
and issues related to joining the analytical and numerical waveforms to create hybrids in
Sec. and we then estimate the uncertainty in extracting EOS parameters in Sec.
Finally, we discuss in Sec. [7.7] remaining work, including spinning black holes, which will
be addressed in Chapter |8] In an appendix we describe methods for numerically evaluating
the Fisher matrix.

Conventions: Unless otherwise stated we set G = ¢ = 1. Base 10 and base e logarithms
are denoted log and In respectively. We define the Fourier transform Z(f) of a function z(t)
by

oo
() = / s(t)e=2m0t gt (7.2)
—o0

and the inverse Fourier transform by

z(t) = / h Z(f)ermift qf. (7.3)
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7.2 Parametrized EOS

To understand the dependence of the BHNS waveform on the EOS we systematically vary
the free parameters of a parametrized EOS and then simulate a BHNS inspiral for each
set of parameters. We choose the piecewise polytropic EOS introduced in Ref [54]. Within
each density interval p,_1 < p < p;, the pressure p is given in terms of the rest mass density
p by

p(p) = Kip", (7.4)

where the adiabatic index I'; is constant in each interval, and the pressure constant K; is
chosen so that the EOS is continuous at the boundaries p; between adjacent segments of
the EOS. The energy density ¢ is found using the first law of thermodynamics,

1
d< = —pd-. (7.5)
p p

Ref. [54] uses a fixed low density EOS for the NS crust. The parametrized high density
EOS is then joined onto the low density EOS at a density pg that depends on the values of
the high-density EOS parameters. The high-density EOS consists of a three-piece polytrope
with fixed dividing densities p; = 107 g/cm?® and py = 10'® g/cm? between the three
polytropes. The resulting EOS has four free parameters. The first parameter, the pressure
p1 at the first dividing density p1, is closely related to the radius of a 1.4 Mg NS [§]. The
other three parameters are the adiabatic indices {I'1,T'2, '3} for the three density intervals.
This parametrization accurately fits a wide range of theoretical EOS and reproduces the
corresponding NS properties such as radius, moment of inertia, and maximum mass to a
few percent [54].

Following previous work on BNS [16] and BHNS simulations [137, [140] we use a simplified
two-parameter version of the piecewise-polytrope parametrization and uniformly vary each
of these parameters. For our two parameters we use the pressure p; as well as a single
fixed adiabatic index I' = 'y = 'y = I's for the core. The crust EOS is given by a single
polytrope with the constants Ky = 3.5966 x 10'3 in cgs units and I'y = 1.3569 so that the
pressure at 10 g/cm? is 1.5689 x 103! dyne/cm?. (For most values of py, 'y, and T's, the
central density of a 1.4 My, star is below or just above p2, so the parameter I'5 is irrelevant
anyway for BNS before merger and BHNS for all times.)

We list in Table {4 the 21 EOS used in the simulations along with some of the NS
properties. In addition, we plot the EOS as points in parameter space in Fig. along
with contours of constant radius, tidal deformability A, and maximum NS mass. The

1.93 My maximum mass contour corresponds to the recently observed pulsar with a mass
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of 1.97+0.04 Mg measured using the Shapiro delay [43]. In this two-parameter cross section
of the full four-parameter EOS space, parameters below this curve are ruled out because

the corresponding EOS cannot support the observed NS with M > 1.93 M.

Table 4 : Neutron star properties for the 21 EOS used in the simulations. The original EOS names [16]
137, [140] are also listed. p; is given in units of dyne/cm2, maximum mass is in My, and neutron star
radius R is in km. R, k2, and A are given for the two masses used: {1.20,1.35} Mg. The values listed
for logp1 are rounded to three digits. The exact values used in the simulations can be found by adding
log(c/cm s71)? — 20.95 = 0.00364 (e.g. 34.3 becomes 34.30364).

EOS logpr TI' Mpyax | Ri20 k2120 A120 | Ri3s k2135 A1ss
p.3I'2.4 Bss 34.3 2.4 1.566 | 10.66 0.0765 401 | 10.27 0.0585 142
p-3I'2.7 Bs 34.3 2.7 1.799 | 10.88 0.0910 528 | 10.74 0.0751 228
p.3I'3.0 B 34.3 3.0 2.002 | 10.98 0.1010 614 | 10.96 0.0861 288
p-3'3.3 34.3 3.3 2.181 | 11.04 0.1083 677 | 11.09 0.0941 334
p4l'2.4 HBss 344 2.4 1.701 | 11.74 0.0886 755 | 11.45 0.0723 301
p.4I'2.7 HBs 34.4 277 1925 | 11.67 0.1004 828 | 11.57 0.0855 375
p-4I'3.0 HB 34.4 3.0 2.122 | 11.60 0.1088 872 | 11.61 0.0946 422

p4I'3.3 344 3.3 2294 | 11.55 0.1151 903 | 11.62 0.1013 454
p-5l'2.4 34.5 24 1.848 | 12.88 0.1000 1353 | 12.64 0.0850 582
p.5I'2.7 34.5 2.7 2061 | 12.49 0.1096 1271 | 12.42 0.0954 598
p-5I'3.0 H 345 3.0 2249 | 12.25 0.1165 1225 | 12.27 0.1029 607
p-5I'3.3 34.5 3.3 2413 | 12.08 0.1217 1196 | 12.17 0.1085 613
p.6I'2.4 346 24 2007 | 14.08 0.1108 2340 | 13.89 0.0970 1061
p.6I'2.7 34.6 2.7 2207 | 13.35 0.1184 1920 | 13.32 0.1051 932
p-6I'3.0 34.6 3.0 2383|1292 0.1240 1704 | 12.97 0.1110 862
p.6I'3.3 34.6 3.3 2537 | 12.63 0.1282 1575 | 12.74 0.1155 819
p.711'2.4 347 24 2180 | 15.35 0.1210 3941 | 15.20 0.1083 1860
p.7112.7 347 2.7 2362 | 14.26 0.1269 2859 | 14.25 0.1144 1423
p.7I'3.0 1.5H 347 3.0 2525 | 13.62 0.1313 2351 | 13.69 0.1189 1211
p-11'3.3 34.7 3.3 2669 | 13.20 0.1346 2062 | 13.32 0.1223 1087

p-9I'3.0 2H 349 3.0 2.834 | 15.12 0.1453 4382 | 15.22 0.1342 2324
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Figure 25 : The 21 EOS used in the simulations are represented by blue points in the parameter space. For a
NS of mass 1.35 Mg, contours of constant radius are solid blue and contours of constant tidal deformability
A are dashed red. Also shown are dotted contours of maximum NS mass. The shaded region does not allow
the 1.35 M NS used in our simulations, while the region below the 1.93 M contour is inconsistent with

high-mass NS observations.

7.3 Numerical methods

We employ BHNS binaries in quasiequilibruim states for the initial conditions of our nu-
merical simulations. We compute a quasiequilibrium state of the BHNS binary as a solution
of the initial value problem of general relativity, employing the piecewise polytopic EOS de-
scribed in the previous section. The details of the formulation and numerical methods are
described in Refs. [142, 137]. Computations of the quasiequilibrium states are performed

using the spectral-method library LORENE [143].

Numerical simulations are performed using an adaptive-mesh refinement code SACRA [144].

SACRA solves the Einstein evolution equations in the BSSN formalism with the moving punc-
ture gauge, and solves the hydrodynamic equations with a high-resolution central scheme.
The formulation, the gauge conditions, and the numerical scheme are the same as those
described in Ref. [137]. For the EOS, we decompose the pressure and energy density into

cold and thermal parts as

P = Pcold + Pth s € = €cold + €th, (7.6)

as was done in, for example, [145] and references therein. We calculate the cold parts of
both variables using the piecewise polytropic EOS from p, and then the thermal part of the
energy density is defined from € as €1, = € — €.o1q. Because €, vanishes in the absence of

shock heating, €, is regarded as the finite temperature part. In our simulations, we adopt
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a I-law ideal gas EOS
pih = (Ctn — 1)étn, (7.7)

to determine the thermal part of the pressure, and choose I'y, equal to the adiabatic index
in the crust region, I'y, for simplicity.
In our numerical simulations, gravitational waves are extracted by calculating the out-

going part of the Weyl scalar ¥4 at finite coordinate radii ~ 400M,, and by integrating Wy

tl
hai(t) — ihy / dt’ / dt" Uy (t") (7.8)

where we will focus on the (¢, m) = (2,2) multipole evaluated on the orbital axis. Other

twice in time as

multipoles measured along the axis are one or two orders of magnitude smaller. In this work,
we perform this time integration with a “fixed frequency integration” method to eliminate
unphysical drift components in the waveform [I146]. In this method, we first perform a
Fourier transformation of W, as

Uy(f) = / Car Wy (t)e=2mift, (7.9)

—00

Using this, Eq. ((7.8) is rewritten as

ho(t) — ihy ) g2t (7.10)

We then replace 1/f2 of the integrand with 1/ f02 for | f| < fo, where fy is a free parameter
in this method. By appropriately choosing fy, this procedure suppresses unphysical, low-
frequency components of gravitational waves. As proposed in Ref. [146], we choose fy to be
~ 0.8m$ /2w, where € is the initial orbital angular velocity and m(= 2) is the azimuthal

quantum number.

7.4 Description of waveforms

Using the 21 EOS described in Table [4] we have performed 30 BHNS inspiral and merger
simulations with different mass ratios Q = Mpg/Mys and neutron star masses Mys. A
complete list of these simulations is given in Table [l For the mass ratio @ = 2 and NS
mass Mg = 1.35 My, we performed a simulation for each of the 21 EOS. In addition, we
performed simulations of a smaller NS mass (Q = 2, Mys = 1.20 M) and a larger mass
ratio (Q = 3, Mns = 1.35 My), in which we only varied the pressure p; over the range
34.3 < log(p1/(dyne cm™?2)) < 34.9 while holding the core adiabatic index fixed at T' = 3.0.
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Table 5 : Data for the 30 BHNS simulations. NS mass is in units of Mg, and QoM is the angular velocity
used in the initial data where M = Mg + Mns.

Q Mys EOS QoM |Q Mys EOS QoM
2 135 p.3r2.4 0028 | 2 135 p.6l3.3 0.025
2 1.35 p.ar2.7 0028 | 2 135 p.7r24 0.025
2 135 p.303.0 0.028| 2 135 p.7r2.7 0.025
2 135 p.303.3 0.025| 2 135 p.7r3.0 0.028
2 135 pdl24 0.028| 2 135 p.703.3 0.025
2 135 pdl2.7 0028 | 2 135 p.9r3.0 0.025
2 135 pdl3.0 0.028| 2 120 p.303.0 0.028
2 135 pd3.3 0.025| 2 120 p4dl3.0 0.028
2 135 p5l2.4 0.025| 2 120 p.5L3.0 0.028
2 135 p5U2.7 0.025| 2 120 p.9r3.0 0.022
2 1.35 p503.0 0028 |3 135 pal3.0 0.030
2 135 p503.3 0025|3 135 pdAl3.0 0.030
2 135 p.6l2.4 0.025| 3 135 p.503.0 0.030
2 135 p.6l2.7 0.025| 3 135 p.703.0 0.030
2 135 p.6L3.0 0.025|3 135 por3.0 0.028

Two of the gravitational waveforms are shown in Fig. below. The waveforms are
compared with EOB BBH waveforms of the same mass ratio and NS mass which are also
shown. Specifically we use the EOB formalism discussed in Sec. The most significant
differences begin just before the merger of the black hole and neutron star. For neutron
stars with a small radius, the black hole does not significantly distort the neutron star which
crosses the event horizon intact. As a result, the merger and ringdown of these waveforms
are very similar to the BBH waveform. However, a larger NS may be completely tidally
disrupted just before merger resulting in a supressed merger and ringdown waveform. Dis-
ruption suppresses the ringdown for two reasons related to the spreading of the matter:
The ringdown is primarily a superposition of nonaxisymmetric quasinormal modes, domi-
nated by the [ = m = 2 mode (axisymmetric modes are more than an order of magnitude
smaller [147]), while the disrupted matter is roughly axisymmetric as it accretes onto the
black hole; and the accretion timescale of the spread-out matter is long compared to the

periods of the dominant modes decreasing the amplitude further.
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Figure 26 : h4 and |h| = |h4 — ihx| for BHNS waveforms for (Q = 2, Mxs = 1.35 Mg) with two different
EOS are represented by solid red and blue curves respectively. The softest EOS p.31'2.4 is on top and
the stiffest EOS p.9T'3.0 is on bottom. An EOB BBH waveform (dashed) with the same values of @) and
Mns is matched to each numerical waveform within the matching window 77 < t < Tr bounded by solid
vertical lines. A hybrid EOB BBH—Numerical BHNS waveform is generated by splicing the waveforms
together within a splicing window S; < t < Sp bounded by dotted vertical lines. The matching window
is 12 ms long and ends at the numerical merger time ty}* (time when the numerical waveform reaches its

maximum amplitude), while the splicing window is 4 ms long and begins at the start of the matching window

(Sr =Tr).

The dependence of the waveform on the EOS can be seen more clearly by decomposing
each waveform into amplitude A(t) and phase ®(t) with the relation hy(t) — ihy(t) =
A(t)e="®®_ In Fig. the amplitude as a function of time for each BHNS waveform
is compared to a BBH waveform of the same value of Q and Myg. At early times, the
waveform is almost identical to the BBH waveform. However, a few ms before the maximum
amplitude is reached, the amplitude begins to depart from the BBH case. For each @) and
Mng, this departure from the BBH waveform is approximately monotonic in A and R.
Neutron stars with large values of A merge earlier, and as a result the waveforms reach a
smaller maximum amplitude. The phase of each waveform is compared to that of the EOB
BBH waveform ®gop in Fig. At early times the phase oscillates about the EOB phase
due to initial eccentricity in the numerical waveform discussed in Sec. At later times,

closer to the merger, tidal interactions lead to a higher frequency orbit; this, together with
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correspondingly stronger gravitational wave emission, means the BHNS phase accumulates
faster than the EOB phase. This continues for 1-2 ms after the waveform reaches its
maximum amplitude (indicated by the dot on each curve). Eventually the amplitude drops
significantly, and numerical errors dominate the phase. We truncate the curves when the

amplitude drops below 0.01.

0.25, 0.25,
0.20F Q=2, Mys=1.20 M| 1

015/

|h|D/M
|h|D/M

0.200 Q=3, Mys=1.35M_ ]

|h|ID/M

Figure 27 : (Color online) Amplitude of the complex waveform h = hy — ihy. Solid black curves are EOB
waveforms with the same Q and Mys. Matching and splicing conventions are those of Fig. Top right
panel: color indicates the value of log(p1) while the line style indicates the value of I". With the exception of
the four closely spaced waveforms where log(p1/(dyne cm~2)) = 35.5 and the difference in A and R between

waveforms is small, the BHNS waveforms monotonically approach the EOB waveform as A and R decrease.

The monotonic dependence of the waveform on A can again be seen in its Fourier
transform h, shown in Figs. and which is decomposed into amplitude and phase by
h(f) = A(f)e "®(). The predicted EOS dependent frequency cutoff in the waveform [141]
is clearly shown in the amplitudeﬂ Neutron stars that are more easily disrupted (larger

A) result in an earlier and lower frequency drop in their waveform amplitude than NS

2Tidal disruption occurs after the onset of mass shedding of the neutron star. The frequency at the
onset of mass shedding is usually much lower than that of tidal disruption for BHNS binaries [132]. In
Ref. [141], mass-shedding frequency was identified as the cutoff frequency but this underestimates the true

cutoff frequency. See also Refs. [I48], [I06] for a discussion of dynamical mass transfer.
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Figure 28 : (Color online) Cumulative phase difference ® — ®gop between BHNS waveform and EOB BBH

waveform with the same @Q and Myns. The phase is defined by breaking up each complex waveform into

amplitude and cumulative phase h () — ihx (t) = A(t)e *®®). The black point on each curve indicates the

BHNS merger time 37 defined as the time of maximum amplitude A(tIX/IR). The curve is truncated when
the amplitude AD/M drops below 0.01. Matching and splicing conventions are those of Fig. Ordering

of waveforms are those of Fig. 27

with smaller A. The phase ®(f) relative to the corresponding BBH waveform has a much
smoother behavior than the phase of the time domain waveform. This feature will be useful

in evaluating the Fisher matrix in Sec. The noise that is seen at frequencies above

~ 3000 Hz is the result of numerical errors in the simulation and has no effect on the error

estimates below.

7.5 Hybrid Waveform Construction

Since our numerical simulations typically begin ~5 orbits before merger, it is necessary to
join the numerical waveforms to analytic waveforms representing the earlier inspiral. There
is a substantial literature comparing analytic and phenomenological waveforms with numer-
ical waveforms extracted from simulations of BBH coalescence. For example, it has been
shown that the 3.5 post-Newtonian (TaylorT4) waveform agrees well with equal mass BBH

waveforms up to the last orbit before merger [70]. For unequal mass systems, the EOB
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Figure 29 : (Color online) Weighted Fourier transform 2f/2|h(f)| of numerical waveforms where h =
%(iur + iLx) Solid black curves are EOB waveforms with the same @@ and Mns. The left axis is scaled to
a distance of 100 Mpc, and the noise S}L/Q(f) for broadband alLIGO and ET-D are shown for comparison.
In each plot the numerical waveform monotonically approaches the EOB waveform as the tidal parameter

A decreases. Matching and splicing conventions are those of Fig. Ordering of waveforms are those of

Fig. 27]

formalism (see Ref. [77] for a review) has proven to be a powerful tool to generate analytic
waveforms that agree with numerical simulations. Free parameters in the EOB formalism
have been fit to numerical BBH waveforms to provide analytic (phenomenological) wave-
forms that extend to the late, non-adiabatic inspiral as well as the ringdown. These EOB
waveforms appear to be in good agreement with numerical BBH waveforms for mass ratios
at least up to @ = 4 [76]. Although we have not explored them in this context, other ap-
proaches have also been taken for constructing phenomenological inspiral-merger-ringdown
waveforms [73, [74), [72], 149, [150].

For equal-mass BNS, Read et al. [16] compared the numerical BNS waveform during
inspiral to a point particle post-Newtonian waveform. Specifically, they used the 3.5 post-

Newtonian (TaylorT4) waveforms matched on to the numerical waveforms to study the
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Figure 30 : (Color online) Cumulative phase difference ® — ®gop of the Fourier transform between BHNS
waveform and EOB BBH waveform of the same mass and mass ratio. The phase is defined by breaking
up the Fourier transform h = %(fu + hyx) of each waveform into amplitude and cumulative phase h(f) =
A(f)e*“p(f). Matching and splicing conventions are those of Fig. Ordering of waveforms are those of

Fig.

measurability of EOS parameters. They found that differences between the analytic and
numerical waveforms become apparent 4 — 8 cycles before the post-Newtonian coalescence
time.

The leading and post-1-Newtonian quadrupole tidal effects have recently been incor-
porated into the post-Newtonian formalism and used to compute corrections to the point-
particle gravitational waveforms [86], 85, I11]. These post-Newtonian contributions along
with a fit to the 2PN tidal contribution have also been incorporated into the EOB formalism
and compared to long simulations (~ 20 GW cycles), where they find agreement with the
simulations to £0.15 rad over the full simulation up to merger [12§].

For the BHNS systems discussed here, we have matched the numerical waveforms
to EOB waveforms that include inspiral, merger, and ringdown phases instead of post-
Newtonian waveforms which are often not reliable during the last few cycles for higher

mass ratios. This choice also allows us to use longer matching windows that average over
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numerical noise and the effects of eccentricity as shown in Sec. [7.5.2] We have chosen to
use the EOB formalism to generate inspiral-merger-ringdown waveforms, although we note
that other phenomenological waveforms would probably work. For simplicity, and because
it appears that an accurate description of the late inspiral dynamics just before merger
requires 2PN tidal corrections [126, 127, 128] which are not yet known, we will use the
EOB waveforms without tidal corrections. Our results will therefore be lower limits on
the measurability of EOS parameters since the EOS dependence is coming solely from the

numerical waveforms.

7.5.1 Matching procedure

We use a method similar to that described by Read et al. [16] to join each of the numer-
ical BHNS waveforms to a reference EOB waveform, generating a hybrid EOB—numerical
waveform. Denote a complex numerical waveform by hng(t) = hYR(t) — ihYR(¢) and an
EOB waveform with the same Q and Mys by hgop(t) = hFOB(t) — ihEOB(¢). A constant
time-shift 7 and phase-shift ® can be applied to the EOB waveform to match it to a sec-
tion of the numerical waveform by rewriting it as hgop(t — 7)e *®. We hold the numerical
waveform fixed because we must specify a matching window 77 < t < T, and as discussed
below, there is only a small region of the numerical waveforms over which a valid match can
be performed. Once the values of 7 and ® are determined, we will then choose to instead
hold the EOB waveform fixed and shift the numerical waveform in the opposite direction
by rewriting it as A (t) = hngr(t + 7)e™™®. This is done so that all of the numerical
waveforms with the same @) and Myg are aligned relative to a single fixed reference EOB
waveform.

Over a matching window 77 < ¢t < T (bounded by solid vertical lines in Fig. , the

normalized match between the waveforms is defined as

_ Re [z(r)ei‘b]

m(r,P) = , 7.11
(. ) ONROEOB(T) (7.11)
where
Tr
z(7) = / hxg () hgop(t — 7) dt (7.12)
Tr
and the normalizations for each waveform in the denomenator are defined as
Tr
oxR = / |hNr ()] dt (7.13)
17
and
Tr
ofon(T) = / |hgos(t — 7)|* dt. (7.14)
Tr
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The time-shift 7 and phase ® are chosen to maximize the match m(r, ®) for a fixed matching
window. Explicitly, the phase is determined analytically to be ® = — arg[z(7)]; plugging
this result back into Eq. (7.11), the time-shift is given by maximizing |z(7)|/[oxroEOB(T)]
over 7. As stated above, once 7 and ® are found we shift the numerical waveform in the
opposite direction to generate A4 (1) = hng (t + 7)e 2.

A hybrid waveform is generated by smoothly turning off the EOB waveform and smoothly
turning on the shifted numerical waveform over a splicing window S; < t < Sr (bounded by
dotted vertical lines in Fig. which can be chosen independently of the matching window.

As in Ref. [16], we employ Hann windows

1 _
weg(t) = 3 [1 + cos <M)] (7.15)
_ 1 7T[t — S]]
Won(t) = 5 [1 Cos <SF —3, )] . (7.16)
The hybrid waveform is then written

heog(t) t < S;
huybrid(t) = wo(t)hEoB (1) + won ()AL (1) S; <t < Sp . (7.17)

AUt (1) t> Sp

As shown in Fig. 26, we choose the start of the splicing interval to be the same as the
start of the matching window S; = T7 and choose the end of the splicing window to be
Sr =15+ 4 ms. It is also necessary to use these windows to smoothly turn on the hybrid
waveform at low frequency when performing a discrete Fourier transform to avoid the Gibbs
phenomenon. Unlike the case for BNS waveforms, it is not necessary to window the end of
the hybrid waveform as the amplitude rapidly decays to zero anyway during the ringdown.

For concreteness we define ¢ = 0 as the EOB BBH merger time t]]?/[OB when the EOB
waveform reaches its maximum amplitude. After matching to the EOB waveform, the time

when the numerical BHNS waveform reaches its maximum amplitude is tT/[R.

7.5.2 Dependence on matching window

Because the numerical BHNS waveforms are close but not identical to the EOB BBH wave-
form during the inspiral and because there is some noise in the BHNS waveforms, the time
shift that maximizes the match depends on the choice of matching window. The matching
window should exclude the first couple of cycles of the numerical waveform during which
time the simulation is settling down from the initial conditions. It should also exclude the

merger/ringdown which are strongly dependent on the presence of matter. The window
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must also be wide enough to average over numerical noise and, as we shall see below, the
effects of eccentricity in the simulations.

The numerical merger time tJ\N/IR relative to the EOB BBH merger time t%/IOB as a function
of the end of the matching window Tr — tYR provides a useful diagnostic of the matching
procedure. Results for matching two @ = 2, Mns = 1.35Mg waveforms with different
equations of state to an EOB waveform are shown in Fig. The horizontal axis is the end
time T of the matching window relative to the numerical merger time tff‘. For negative
values, the matching window contains the BHNS inspiral only. For positive values, the
matching window also contains part of the BHNS ringdown. The vertical axis is the location
of the shifted numerical merger time tI]\\I/[R after finding the best match. Four different window
durations At = Tr—T7 are shown. The drift in the best fit merger time tf/[R most likely arises
from the neglect of tidal effects in the EOB waveform which lead to an accumulating phase
shift in the waveform. This is consistent with the fact that the amount of drift increases with
the tidal deformability, although some of the drift may also arise from numerical angular
momentum loss from finite resolution of the simulations. Further work is in progress to
understand this issue [125]. We also note that the amount of offset from the tiF* = 0 line
depends monotonically on the tidal deformability, and arises from the fact that stars with

a large value of A will be tidally disrupted a few ms before stars with small A.
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Figure 31 : Dependence of time shift between numerical and EOB waveform on the end time Tr — thE
and width At of the matching window. @ = 2 and Mns = 1.35M for each waveform. The EOS used are
p-3I'2.4 (left panel), and p.91'3.0 (right panel). The EOB waveform has zero eccentricity.

When the matching window duration is approximately one orbital period or shorter, the
time-shift oscillates as a function of TF — t%R. We attribute this effect to the eccentricity
in the numerical waveform that results from initial data with no radial velocity. For larger
matching-window durations, the effect of eccentricity is averaged out.

To demonstrate concretely that the decaying oscillations for At = 4 ms are the result

of eccentricity, we matched an EOB BBH waveform with eccentricity to the equivalent zero
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eccentricity EOB BBH waveform. EOB waveforms can be generated with small eccentricity
by starting the EOB equations of motion with quasicircular (zero radial velocity) initial
conditions late in the inspiral. The result is shown in Fig. 32| for an EOB waveform with
the same quasicircular initial conditions as the simulation for the EOS p.3I'2.4 shown in
Fig. The oscillations take exactly the form of those shown in Fig. except without
the drift and offset.

We estimate that the initial eccentricities in the simulations used in this chapter are
eg ~ 0.03. Decreasing the initial eccentricity by about an order of magnitude, possibly
using an iterative method that adjusts the initial radial velocity [I51], will remove this issue
and allow one to determine the phase shift due to tidal interactions during the inspiral part

of the simulation.
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Figure 32 : Same as Fig. but matching an eccentric EOB BBH waveform with the quasicircular initial
condition My = 0.028 to a zero eccentricity EOB BBH waveform.

7.6 Parameter estimation

The output of a gravitational-wave detector s(t) = n(t) + h(t) is the sum of detector noise
n(t) and a possible gravitational-wave signal h(¢). Stationary, Gaussian noise is character-

ized by its power spectral density (PSD) S, (|f]) defined by

G () = 307 ~ )Sa(1f]) - (71)

The gravitational wave signal is given in terms of the two polarizations of the gravitational

wave by

h(t) = Fyhy(t) + Fyhy (1), (7.19)

where F « are the detector response functions and depend on the location of the binary

and the polarization angle of the waves. We assume the binary is optimally located at the
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zenith of the detector and optimally oriented with its orbital plane parallel to that of the
detector. This condition is equivalent to averaging hy and hy (Fy = Fy =1/2).
It is well known [I52] that the optimal statistic for detection of a known signal A(t) in

additive Gaussian noise is

h
p= 9 (7.20)
(hlh)
where the inner product between two signals h; and hs is given by
* ha(f)h3(f)
hi|he) = 4Re/ —2==~ df. 7.21
it =48 J - S0) 2l

In searches for gravitational-wave signals from compact binary mergers, a parametrized
signal h(t;04) is known in advance of detection, and the parameters 4 must be estimated
from the measured detector output s(t). The parameters 64 of an inspiral are estimated
by maximizing the inner product of the signal s(t) over the template waveforms h(t; 84).
In the high signal-to-noise limit, the statistical uncertainty in the estimated parameters 64

arising from the instrumental noise can be estimated using the Fisher matrix

oh | Oh
I‘AB = < W)

904 (7.22)
Note that 64 are the parameter values that maximize the signal-to-noise. The variance

A

0% = oaa = ((A01)?) and covariance o 45 = (AG4AHP) of the parameters are then given

in terms of the Fisher matrix by
(AGAAGB) = (171H)4B, (7.23)

For hybrid waveforms, the partial derivatives in the Fisher matrix must be approximated
with finite differences. It is most robust to compute the derivatives of the Fourier transforms
used in the inner product. We rewrite the Fourier transform of each waveform in terms of
the amplitude A and phase ® as exp[ln A — i®| as given in Eq. . The derivatives
Oln A/004 and 0P/004 are then evaluated with finite differencing. More details of this
and the other methods we tested are given in Appendix [C]

In general, errors in the parameters #4 are correlated with each other forming an er-
ror ellipsoid in parameter space determined by the Fisher matrix I'4g. The uncorrelated
parameters that are best extracted from the signal are found by diagonalizing I'45. These
new parameters are linear combinations of the original parameters #4. We focus attention
below on the two parameters log(p;) and I', and fix all other parameters as follows. We use
the masses and spins determined from the numerical simulations and fix the time and phase

shifts as determined during the hybrid waveform construction. We therefore construct the
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error ellipses in {log(p1),'} parameter space and identify the parameter with the smallest
statistical errors. We will leave an analysis of correlations due to uncertainty in masses and

BH spin to future work.

7.6.1 Broadband aLIGO and ET

For the BHNS systems discussed here, the greatest departure from BBH behavior occurs for
gravitational-wave frequencies in the range 500-5000 Hz. As a result, detector configurations
optimized for detection of BHNS systems with low noise in the region below 500 Hz are not
ideal for estimating EOS parameters. We therefore present results for the broadband aLLIGO
noise curve [114] and the ET-D noise curve [I53] shown in Fig. The broadband aLIGO
configuration uses zero-detuning of the signal recycling mirror and a high laser power,
resulting in significantly lower noise above 500 Hz at the expense of slightly higher noise
at lower frequencies. Several noise curves have been considered for the Einstein Telescope
denoted ET-B [115], ET-C [I54], and ET-D [I53]. We will use the most recent ET-D
configuration, and note that in the 500-5000 Hz range all of the ET configurations have
a similar sensitivity. The published noise curves, and those used in this chapter, are for a
single interferometer of 10 km with a 90° opening angle. The current ET proposal is to
have three individual interferometers each with a 60° opening angle. This will shift the

noise curve down appoximately 20% [153].

1x107%
5x10723}

10 50 100 500 1000 5000
f (Hz)

Figure 33 : Noise PSD for broadband aLIGO, ET-D, and various configurations of narrowband aLIGO. The

minima of the narrowband configuration are labeled fr.

In Figs.[34]and [35] we show the resulting 1-o error ellipses in the 2-dimensional parameter
space {log(p1),T'} for an optimally oriented BHNS with @ = 2 and Mys = 1.35Mg at a

distance of 100 Mpc. Surfaces of constant A/® and NS radius, which are almost parallel
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to each other, are also shown. One can see that the error ellipses are aligned with these
surfaces. This indicates that, as expected, A1/? is the parameter that is best extracted from
BHNS gravitational-wave observations. Because AY® and R are so closely aligned we will
use these two parameters interchangeably.

35.0

34.8

log(p,) [dyne/cm?]

34.2

34.8.

Figure 34 : Two 1-o error ellipses for broadband aLIGO. Evenly spaced contours of constant A'/® are also
shown. Each ellipse is centered on the estimated parameter §* denoted by a x. The semimajor axes are
significantly longer than the width of the figure, so each ellipse appears as a pair of parallel lines. Matching
and splicing conventions are those of Fig.
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Figure 35 : 1-o error ellipses for ET-D. Evenly spaced contours of constant A/ (R) are also shown on the
left (right). Matching and splicing conventions are those of Fig.

As mentioned above, there is some freedom in construction of the hybrid waveforms.
The size and orientation of the error ellipses also depend on the details of this construc-

tion. We find that as long as the matching window is longer than approximately four
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gravitational-wave cycles to average out the effects of eccentricity and does not include the
first two gravitational-wave cycles, the orientation of the error ellipses does not change sig-
nificantly. As expected, the size of the ellipses decreases as more of the numerical waveform
is incorporated into the hybrid waveform. We therefore adopt the last 12 ms before merger
of each numerical waveform as the matching window and the first 4 ms of the matching
window for splicing as shown in Fig.

We have emphasized that, to within present numerical accuracy, the late-inspiral wave-
form is determined by the single parameter A'/5. This implies that, by using countours of
constant A in the EOS space, one could have obtained the constraint on the EOS, summa-
rized in Figs. [34] and 35| by varying only a single EOS parameter. For the simulations with
other mass ratios and neutron star masses, we have used as our single parameter log(p;)
and not I' because countours of constant p; more closely coincide with contours of con-
stant A and because A is a one to one function of log(p;) throughout the parameter space.
The one-parameter Fisher matrix can then be evaluated with finite differencing using the
waveforms and values of A at two points in EOS parameter space with different log(p1).

The uncertainties in AY® and R are shown in Figs. 36| and [37| for broadband aLIGO and
for ET respectively. The uncertainty in these quantities is ~ 10-50% for broadband aLIGO
and ~ 1-5% for ET-D. The uncertainties for the higher mass ratio @ = 3 are somewhat
larger than for () = 2, but not significantly so. It is not clear how rapidly the uncertainty
in A'/5 and R will increase as the mass ratio is increased toward more realistic values. On
the one hand the tidal distortion is likely to be much smaller for larger (. On the other
hand the overall signal will be louder, and the merger and ringdown will occur at lower
frequencies where the noise is lower. Additional simulations for higher @ are needed to

address this question.
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Figure 36 : 1-o0 uncertainty o,1/5 and or as a function of the parameters A% or R for the broadband

aLIGO noise PSD. Matching and splicing conventions are those of Fig. [26]
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Figure 37 : Same as Fig. but with the ET-D noise PSD. Error estimates are an order of magnitude
smaller than for broadband aLIGO.

7.6.2 Narrowband aLIGO

The presence of a signal-recycling cavity in the alLIGO instruments will allow them to be
tuned to have improved narrowband sensitivity at the expense of bandwith. Two parameters
control the narrowband capabilities of the instruments [I55] [156] 67]: the signal recycling
mirror transmissivity effectively sets the frequency bandwidth of the instrument, while the
length of the signal recycling cavity (or equivalently the signal-recycling cavity tuning phase)
controls the central frequency fgr of the best sensitivity. By tuning one or more of the alLIGO
detectors to operate in narrowband mode, it may be possible to improve estimates of the
EOS parameters.

We have examined several narrowband tunings with central frequencies that vary be-
tween approximately fr = 500 Hz and 4000 Hz. These noise curves use a signal recycling
mirror transmissivity of 0.011 and a signal-recycling cavity tuning phase ranging from 10°
down to 1°, and were generated using the program gwinc [I57]. Three of these noise curves
are shown in Fig. 33} In Fig. [3§ we plot the 1-¢ uncertainty in NS radius o as a function
of the narrowband central frequency fr. For the waveforms considered in this chapter the
optimal narrowband frequency is in the range 1000 Hz < fr < 2500 Hz and depends on the
mass ratio, NS mass, and EOS. Narrowband configurations usually give smaller errors than
the broadband configuration if fz happens to be tuned to within a few hundred Hz of the
minimum for that BHNS event. In Ref. [I58], Hughes discussed a method for determining
the best frequency fr to tune a narrowbanded detector to extract an EOS dependent cutoff
frequency from a sequence of identical BNS inspirals. While this technique is not directly
applicable to BHNS systems, which have different masses and spins, a similar approach

could be used to combine multiple BHNS observations.
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Figure 38 : 1-0 uncertainty in R for different configurations of narrowband aLIGO and for different EOS.

fr defines the frequency where S,, is a minimum as shown in Fig. [33] Horizontal lines on the left and right
indicate the corresponding 1-o errors for broadband alLIGO and ET-D respectively. Matching and splicing
conventions are those of Fig.

7.7 Discussion

7.7.1 Results

Using a large set of simulations incorporating a two-parameter EOS, we have found that
the tidal deformability A5, or equivalently the NS radius R, is the parameter that will be
best extracted from BHNS waveforms. These parameters can be estimated to 10-50% with
broadband aLLIGO for an optimally oriented BHNS binary at 100 Mpc. The narrowband
aLIGO configuration can do slightly better if it is tuned to within a few hundred Hz of
the ideal frequency for a given BHNS event. The proposed Einstein Telescope will have an
order-of-magnitude better sensitivity to the EOS parameters.

Although we have used a particular EOS parametrization to show that A is the param-
eter that is observed during BHNS coalescence, this result can be used to constrain any

EOS model—an EOS based on fundamental nuclear theory in addition to a parametrized
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phenomenological EOS. In particular, several parametrizations have recently been devel-
oped, including a spectral representation [I59], a reparametrization of the piecewise poly-
trope [160], and a generalization that also includes nuclear parameters [161].

The results presented here can be compared with recent work to determine the mass and
radius of individual NS in Type-1 X-ray bursts. Ozel et al. [I62] have obtained mass and
radius measurements from several systems by simultaneously measuring the flux F', which is
likely close to the Eddington value, and the blackbody temperature T' during X-ray bursts
of systems with accurately determined distances. During the burst, the emission area of
the photosphere F'/(cT*) expands, contracts, then reaches a constant value, and Ozel et al.
have argued that the final area corresponds to that of the NS surface. They obtain estimates
of NS mass and radii with O(10%) 1-o uncertainty. Steiner et al. [I61] have also considered
these systems, but argue that the final emission area does not necessarily correspond to that
of the NS surface, and as a result obtain slightly smaller NS radii and larger uncertainties
in the mass and radius. These radius error estimates are slightly smaller than those for
the BHNS systems we have considered at 100 Mpc. However, we note that binary inspiral
observations are subject to less systematic uncertainty due to questions of composition of
the photosphere and associating it with the NS surface.

The uncertainty in NS radius for the merger and ringdown of BHNS systems examined
here is of roughly the same size as that found for the last few orbits up to merger of
BNS systems at the same 100 Mpc distance [16], [125]. BNS inspirals, however, will likely
occur more frequently, and, including a tidally corrected inspiral-numerical hybrid, BNS
systems are likely to have uncertainties that are smaller than BHNS systems by a factor of
a few. Considering the post-merger phase for BNS waveforms may also provide additional
information. Expected NS masses in both BNS and BHNS systems are slightly smaller
than those measured for X-ray bursters which have accreted matter from their companion,
so BNS and BHNS GW observations may complement X-ray burst observations by better
constraining the lower density range of the EOS which is not well constained from X-ray
burst observations [160, [162].

7.7.2 Remaining work

We have used in this chapter several simplifications and conventions which can significantly
effect the accuracy to which EOS parameters can be extracted. We list them below and

describe how changing them would effect the parameter error estimates.

1. Finite length of numerical waveforms
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The BHNS waveforms used here include only the last ~10 GW cycles of inspiral as
well as the merger and ringdown, of which the first few cycles of inspiral are unreliable
due to inexact initial data. Matching the numerical waveform to a tidally corrected
inspiral waveform instead of just the point-particle waveform will increase the overall
departure from point-particle behavior by (i) creating a phase shift during the early
inspiral, and more importantly (ii) adding to the phase of the late inspiral and merger
the accumulated phase shift from the early inspiral — a phase shift that is not already
included in the stronger signal of the late inspiral. The tidal corrections are now known
up to 1PN order during inspiral, and using the 1PN corrections, the distinguishability
between BHNS and BNS waveforms during the inspiral was calculated in [124]. We
estimate that for a mass ratio of @) = 3 the distinguishability between BHNS and BNS
waveforms is roughly (to within a factor of two) the same when tidal information is
incorporated into only the inspiral versus only the merger-ringdown, indicating that
uncertainty in A may be decreased by a factor of two or more using a full inspiral-
merger-ringdown BHNS waveform. We leave the issue of generating these tidally

corrected inspiral-merger-ringdown waveforms to the next chapter.

. Bvent rates

Estimates of the detectability of EOS parameters in BNS systems are often given for an
event at a distance of 100 Mpc, and we have used the same convention here to state the
results above. The relevant event rate is, therefore, the expected number of detected
events that will have an effective distance Deg < 100 Mpc. (The effective distance
D.g depends on the location of the binary and its inclination relative to the detector.
For an optimally oriented and located binary, one finds D = D.g while typically
D < Dgg.) The aLIGO inspiral rates for BNS systems are highly uncertain with {low,
most likely, high} estimates of {0.01, 1, 10} Mpc—2 Myr—! [120] or {0.004, 0.4, 4} yr—*
with effective distance Deg < 100 Mpc. Rates are even more uncertain for BHNS
systems with rate estimates of {0.0002, 0.01, 0.4} yr~! with effective distance Deg <
100 Mpec [120]. Since the uncertainty in EOS parameters scales linearly with distance
[0p1/5 = 05175 1000pe (D/100Mpe)] and the event rate scales as D3, the estimated
detection rates of systems with effective distance Deg < 400 Mpc are {0.01, 1, 30} yr—!
with a four-fold increase in uncertainty of A/®. Fortunately, for Nops identical events
and Nyt identical detectors, the uncertainty also scales as o y1/5/v/Nobs Ndet -

. Expected NS masses and mass ratios

The simulations we used included realistic mass neutron stars of 1.2 and 1.35 M. On
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the other hand, black hole masses are expected to be many times larger [122], with
likely mass ratios closer to @ ~ 7 (for the canonical 10 Ma—1.4 Mg, system) than the
@ = 2 and 3 systems we examined here. Additional simulations for mass ratios of 4

and 5 are in progress.

4. Spinning BH
In this chapter we have not examined the effect of a spinning BH. The analytic results
of Ref. [124] indicated that spin does not significantly improve the sensitivity to A for
the inspiral up to the point of tidal disruption. However, numerical simulations [134]
139, [140] have shown that spin can strongly affect the dynamics near tidal disruption
and the amount of matter left over in an accretion disk. We have performed several
tens of simulations of non-precessing BHNS systems with spinning BH with various
BH spins, mass ratios, NS masses, and EOS parameters, and an analysis of how BH

spin affects the detectability of EOS parameters will be the subject of the next chapter.

5. Correlations between parameters
In our Fisher analysis we have assumed that the mass ratio, NS mass, and BH spin
will be determined to sufficient accuracy during the inspiral to separate them from
EOS effects during the merger and ringdown. A full Fisher analysis using all of the
BHNS parameters should be done to find the extent to which uncertainties in the

other parameters alter measurability estimates of the EOS parameters.

Because BHNS waveforms smoothly deviate from corresponding BBH waveforms as A
increases, it should be expected that one can find a good analytical approximation for
the full inspiral, merger, and ringdown waveform by modifying analytical BBH waveforms.
Accurate waveforms for non-spinning BBH systems using the EOB approach have been
developed [76, 163], and work to find EOB waveforms for spinning BBH systems is in
progress [164], [165]. Tidal interactions have also been incorporated into the EOB approach
for BNS systems with good agreement with the inspiral waveform from numerical simula-
tions when parametrized 2PN tidal interactions are fit to the numerical waveform [127, [12§)].
Another approach is to use phenomenological waveforms that fit the frequency domain post-
Newtonian inspiral waveform to a phenomenological merger and ringdown for both spinning
and non-spinning BBH systems [72]. Both of these approaches may work for generating full
analytic BHNS waveforms as well. A complete description of the BHNS waveform will likely
include corrections for the [ = 3 tidal field and other higher order corrections. However, it
is not clear given the current set of simulations that these effects would be observable with

either alLIGO or a third generation detector such as ET.
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Chapter 8

Detectability of tidal parameters
from aligned-spin BHNS systems

8.1 Introduction

By the end of the decade a network of second generation gravitational-wave detectors,
including the two Advanced LIGO (aLIGO) detectors, Advanced Virgo, KAGRA (formerly
LCGT), and possibly LIGO-India, will likely be making routine detections. Future ground
based detectors such as the third generation Einstein Telescope (ET), with an order of
magnitude higher sensitivity, are also in the planning stages, and may be operational in
the next decade. A primary goal of these detectors is extracting from the gravitational
waveform information about the sources. Of particular interest are compact binaries whose
waveform encodes the sky location, orientation, distance, masses, spins, and for compact
binaries containing neutron stars (NS), information about the neutron-star equation of state
(EOS).

The study of EOS effects during binary inspiral has focused mainly on binary neutron
star (BNS) systems. Work by [103], 106, 108, 109] showed that EOS information could be
imprinted in the gravitational waveform through monopole—quadrupole interactions that
depended on the equation of state through the tidal Love number of the neutron stars. The
leading (¢ = 2) relativistic tidal Love number was first calculated in Ref. [87], and its effect
on the binary inspiral including the contribution due to tidally excited modes was calculated
to leading order [86], and later extended to 1PN order [85, I11]. The gravitoelectric and
gravitomagnetic tidal Love numbers for higher multipoles were calculated in [93, [110], and
the waveform has now been calculated to 2PN order in the tidal corrections, including

¢ =2 and 3 gravitoelectic interactions and the £ = 2 gravitomagnetic interaction, using the
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effective action approach [166], [167].

The measurability of tidal parameters was examined for BNS inspiral for gravitational
wave frequencies below 450Hz [86] using polytropic EOS, and this was extended to include
theoretical nuclear and strange quark matter EOS [123]. They found that tidal interactions
were only observable during this early inspiral stage (ignoring the last ~ 20 gravitational
wave cycles before merger) for stiff EOS and NS masses below 1.4 M. On the other hand,
using 2PN accurate tidal corrections in the effective one body approach, it was found that
tidal parameters are in fact observable when including the extra ~ 20 gravitational wave
cycles up to the point of contact [167].

Numerical simulations have also been used to study tidal interactions during the late
inspiral. The measurability of EOS information has been examined during the last few orbits
using numerical simulations assuming that non EOS parameters were known to sufficient
accuracy that they did not couple significantly with EOS parameters [16, [125]. They found
that the NS radius could be measured using only the last few orbits to an accuracy of
~ 10%. Other numerical simulations using both quasiequilibrium sequences [126] and full
hydrodynamic simulations [127, [128] [168] have shown that by fitting effective one body
(EOB) waveforms with parametrized higher order PN corrections to the simulations, the
higher order PN corrections can significantly increase the strength of tidal interactions
during the late inspiral. These results were confirmed by the analytic 2PN calculation [166),
167].

Comparably little work has been done to understand the measurability of tidal param-
eters in black hole-neutron star (BHNS) systems. Using the inspiral waveform with tidal
corrections up to 1PN order, it was found that BHNS waveforms were not distinguishable
from BBH waveforms during the inspiral before the point of tidal disruption [124]. Fur-
thermore, this result did not improve for spinning black holes which tidally disrupt later.
On the other hand, early work examining a possible cutoff in the gravitational wave am-
plitude due to tidal disruption of the neutron star by the black hole suggested that the NS
radius may, in fact, be measurable [I41] with second generation detectors. In Chapter (7| we
examined numerical simulations of the last few orbits, merger, and ringdown for systems
with non-spinning black holes and low mass ratios of ) = 2 and 3. We found that when
considering only the merger and ringdown, the tidal deformability was the best measured
EOS parameter and was marginally measurable for second generation detectors.

We have now run simulations with mass ratios up to Q = 5, which is closer to the
canonical 10 Mg—1.4 My (Q = 7.1) BHNS system; and, we have also run simulations

for black holes with spin aligned with the orbital angular momentum axis with values
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from xpg = a/Mpg = —0.5 to 0.75. In this chapter we will also address many of the
simplifications used in Chapter [7| that can have a dramatic impact on the detectability
of EOS parameters. Previously, we considered only the tidal information that could be
obtained from the merger and ringdown, ignoring the small accumulating phase drift during
the inspiral that results from tidal interactions. We will find that coherently adding the
slow tidal phase drift from the inspiral to the tidal effect during the merger and ringdown
can improve the measurability of tidal parameters by as much as a factor of 4 over just the
merger and ringdown.

In the previous chapter we also ignored possible correlations between the tidal param-
eter A and the other binary parameters when estimating the measurability of A using the
Fisher matrix. We have addressed this problem by developing a frequency domain analytic
BHNS waveform, fitted to our BHNS simulations, and based on the phenomenological BBH
waveform developed in Ref. [72]. This allows us to accurately evaluate derivatives in the
Fisher matrix and evaluate correlations between the tidal parameter and the other param-
eters. We find that although these correlations are not nearly as strong as with other pairs
of parameters, they can increase uncertainty by up to a factor of ~ 4. Overall, we find that
the estimates of measurability of tidal parameters using the improvements presented in this
paper are about the same as those presented in the previous chapter where only the merger
and ringdown was considered and the uncertainty in the other parameters was presumed to
be negligible.

Conventions: We use the following sign convention for the Fourier transform of a signal
x(t)

0o
z(f) = / x(t)et2 It gt (8.1)
—0

and we will decompose the complex Fourier transform into amplitude and phase as iL( f) =
|h(f)|eT*®). These conventions are opposite those of Chapter [7, and are chosen to agree
with those of the PhenomC waveform model [72]. In addition, we set G = ¢ = 1 unless

otherwise stated.

8.2 Simulations

Following the previous chapter on nonspinning BHNS systems, we perform a large set of
simulations where we systematically vary the parameters of a parametrized EOS, then
look for the combination of parameters that are best extracted from gravitational wave
observations. Specifically we choose a simplified two-parameter version of the piecewise

polytrope introduced in [54]. For this EOS, the pressure p in the rest-mass density interval
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pi-1 < p<p;is
p(p) = K;p"', (8:2)

Where K; is a constant, and I'; is the adiabatic index. We fix the crust EOS defined by
densities below the transition density pg. In the crust, Ky = 3.5966 x 103 in cgs units and
[y = 1.3569, such that the pressure at 10'? g/cm3 is 1.5689 x 103! dyne/cm?. Above the
transition density po the core EOS is parametrized by the two parameters p; and I';. The
pressure p; is defined as the pressure at p; = 1047 g/cm? and the adiabatic index I'y of
the core will, for simplicity, be written I'. The constant K; for the core is then given by
K1 = p1/p}. Once the two parameters p; and I are set, the dividing density py between
the crust and the core is given by the density where the crust and core EOS intersect:
po = (Ko/K1)YT=To) Finally, given this EOS, the energy density e can be evaluated by
integrating the first law of thermodynamics

1
d= = —pd-. (8.3)
P p

As discussed in more detail in [169], quasiequilibrium configurations are used as initial

data for the simulations, and are computed using the spectral-method library LORENE [143].

The numerical simulations are performed using the adaptive-mesh refinement code SACRA [144].

To obtain the gravitational waveform h, — ihy, the outgoing part of the Weyl scalar
Uy = fur — th is extracted from these simulations at a finite coordinate radius, and is
then integrated twice using a method known as Fixed Frequency Integration [146]. Specif-
ically, we take the Fourier transform of ¥,, then integrate twice in time by dividing by
(2mif)?. Low frequency components are filtered out as in [169], and the inverse Fourier
transform is then taken to find h4 — ¢hy in the time domain.

We have performed 90 simulations of the late inspiral, merger, and ringdown of BHNS
systems, using 21 sets of parameters for our two-parameter EOS. We have also varied the
mass ratio from Q = 2 to 5, the neutron star mass from 1.20 My to 1.45 Mg, and the
spin of the black hole from ypg = —0.5 to 0.75. The EOS parameters used as well as the
corresponding NS radius, Love number, and tidal deformability can be found in Table |4l A
list of all the simulations is given in Table [6]

Because trends in the BHNS waveform are most apparent in terms of the amplitude and
phase of the Fourier transform, and because data analysis is usually done in the frequency
domain, we will focus our discussion of the waveforms below on the frequency domain.

Several representative waveforms with varying tidal deformability A, mass ratio ), and

spin xpu are shown in Figs. B9H41]
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Table 6 : Data for the 90 BHNS simulations. NS mass is in units of Mg.

xeg @ Mns EOS | xgp @ Mns EOS | xgp @ Myxs EOS
-0.5 2 1.35 p.3I'3.0 0 3 135 p3r3.0| 05 4 135 p.3l'3.0
-0.5 2 135 p.4I'3.0 0 3 135 pdl'3.0| 05 4 135 pdl'3.0
-0.5 2 135 p.bI'3.0 0 3 135 pbl3.0| 05 4 1.35 p.bI'3.0
-0.5 2 1.35 p.913.0 0 3 135 p.mMm3.0| 05 4 135 p.9r3.o
-0.5 3 1.35 p.4I'3.0 0 3 135 p.9r3.0| 0.7 2 1.2 p.J3r3.0
0 2 1.2 pd3l'3.0| 05 2 135 pJd3lr3.0]0.75 2 1.2 pdl'3.0
0 2 1.2 pdl'3.0| 0.5 2 135 pdl'3.0]0.75 2 1.2 p.5I'3.0
0 2 1.2 pbI'3.0| 0.5 2 135 p.bl3.0]075 2 1.2 p.9rs3.o
0 2 1.2 pI9r's.o | 0.5 2 135 p.mM3.0]075 2 135 p3l3.0
0 2 135 pJ3lr24| 05 2 135 por3.o0| 07 2 135 pd4l'3.0
0 2 135 pJ3r2.7| 05 3 135 p3l'24 |07 2 135 p.5I'3.0
0 2 135 pJ3r30| 05 3 1.35 pJdr2.7|07 2 135 p.7T3.0
0 2 135 pJ3r33| 05 3 135 pJ3l3.0|075 2 135 p.9r3.0
0 2 135 pdl'24| 05 3 135 p3I'3.3|0.75 2 145 p.3I'3.0
0 2 135 pdl'27| 05 3 135 pdl'24|0.75 2 145 p.d4l'3.0
0 2 135 pdl'3.0| 0.5 3 135 pdl'2.7|0.75 2 145 p.bI'3.0
0 2 135 pdl'33| 05 3 135 pdl'3.0|0.75 2 145 p.9r3.0
0 2 135 p.bl'24| 05 3 135 pdl'33 075 3 135 p.3I'3.0
0 2 135 p.bI'27| 05 3 135 p.bol'24 1075 3 135 pdl'3.0
0 2 135 p.bI30| 05 3 1.35 p.bI'2.7|075 3 135 p.bI'3.0
0 2 135 pbl'3d3| 05 3 135 p.bl'3.0]075 3 135 p.T3.0
0 2 135 p6I'24| 05 3 135 p.bI'3.3 |07 3 135 p.9r3.0
0 2 135 p6I'27| 05 3 135 p.6I'24|0.75 4 135 p.3I'3.0
0 2 135 p6I'3.0| 05 3 135 p.6I'2.7|0.75 4 135 p.dl'3.0
0 2 135 p6I'33| 05 3 135 p.o6I'3.3|0.75 4 135 p.bI'3.0
0 2 135 pm24| 05 3 135 p.mM24 |07 4 135 pIr3.o
0 2 135 p.ar27| 05 3 135 p.r2.7107 5 135 p.3I'3.0
0 2 135 p.m30| 05 3 135 p.mM3.0|075 5 135 p.d4l'3.0
0 2 135 pr33| 05 3 135 p.M33|07 5 135 p.ol'3.0
0 2 135 por3o| 05 3 1.35 por3.o0|07 5 135 p.9r3.o
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As was found in Chapter [7} the waveform monotonically departs from a BBH (A = 0)
waveform as A increases, and this is true for systems with spinning black holes as well
as we see from Fig. 39 where xgu = 0.5. In particular, the cutoff frequency, where the
waveform begins a sharp drop in the amplitude, decreases monotonically with increasing A,
and the BHNS phase ®gpng monotonically departs from that of a BBH waveform ®ppy
with increasing A. In Fig. [A0] the difference in phase A® between the BHNS and BBH

waveform decreases as the mass ratio () increases. However, in Fig. AP increases with
increasing BH spin.
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Figure 39 : The difference between a BHNS waveform and a BBH waveform (solid black curve on left) grows

monotonically as A increases. For the EOS, the value of log(p1) is represented by the color of the curve, and
the value of T is represented by its line style.
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Figure 40 : As mass ratio ) increases, the dependence of the waveform on matter decreases
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Figure 41 : As black hole spin xpu increases, the dependence of the waveform on matter increases.

8.3 Hybrid inspiral-merger-ringdown waveforms

To obtain as much information as possible about a BHNS coalescence, we will construct
a hybrid waveform that joins the analytic inspiral to the numerical merger and ringdown.
In the previous chapter, we constructed hybrid waveforms using effective one body (EOB)
BBH waveforms as an approximation for the inspiral. However, in order to take full ad-
vantage of the tidal interactions in the inspiral as well as the merger and ringdown, we will
need a tidally corrected inspiral waveform. Tidal corrections during the inspiral have been
computed for post-Newtonian [I11] as well as EOB [166, [167] waveforms in both the time
and frequency domains. For BHNS systems with spinning BH, we will also need waveforms
that incorporate spin. Post-Newtonian waveforms include spin, but can be unreliable for
high mass ratios during the last few orbits where matching to numerical waveforms is done.
Recently, time domain EOB waveforms with aligned spin have been calculated, and are
currently being calibrated to numerical waveforms [164] [I65]. Another approach, as dis-
cussed in Section is to use frequency domain phenomenological waveforms that include
the complete inspiral-merger-ringdown (IMR), and are calibrated to aligned-spin numerical
waveforms [74), [72]. Tidal corrections can then be added to these phenomenological wave-
forms using the stationary phase approximation (SPA) [111] to generate BHNS inspiral
waveforms that have accurate point particle terms in the matching region.

In this chapter, we will choose the phenomenological IMR waveform referred to as
PhenomC [72] and a SPA tidal correction as our inspiral waveform for two main reasons.
The first reason is that, as we will find in Section [8.5] we can use this BBH waveform
model as a starting point for generating phenomenological BHNS IMR waveforms with

only minor corrections. The second reason is that data analysis is typically done in the
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frequency domain. Since the waveform enters the detector band starting at frequencies as
low as 10 Hz for aLIGO and 1 Hz for ET, it is much easier to start in the frequency domain
instead of evaluate the Fourier transform for a long waveform. In particular, we have in
mind future parameter estimation studies where the waveform must be evaluated O(10°)
times in the frequency domain.

The frequency domain PhenomC waveform is, in terms of the amplitude Appen(f) and
phase ®phen(f), Bphen( f) = Aphen(f )e‘bphe“(f ), where the expressions for the amplitude and
phase are given explicitly in Ref. [72]. The 1PN accurate TaylorF2 tidal phase correction
is [111]

3 24 A
= " (aMf)? |- (1 4 11 Xpy) ——= (7 M f)10/3
A
~ 38X (3179Xns — 919X 3¢ + 260X§S)W(7TM HRB

(8.4)

where Xpgy = Mpp/M and Xns = Mys/M. We then write the inspiral waveform as
Finsp(f) = Apnen(F)e®er+7(), where ®yen st (f) = Gpnen(f) + Vr(f).

To join our numerical waveforms to the frequency domain inspiral waveform, we follow
the least-squares method used in [72]. When matching waveforms, a time constant 7 and
phase constant ¢ are free parameters that need to be fixed. For a generic waveform h(t), the
time and phase can be adjusted to produce a shifted waveform hShift(t; T,¢) = h(t — T)eid’.
The Fourier transformed waveform, which can be written in terms of amplitude and phase as
h(f) = |h(f)|e!®(), has a corresponding shifted waveform hshift( f; 7. @) = |h(f)[e!®™ " (i9),
where O (f: 7 ¢) = ®(f)+27f7+¢. When joining the inspiral and numerical waveforms,
we hold the phase of the inspiral waveform ®pnentr(f) fixed and adjust the phase of the
numerical waveform ®xg (f), such that @8 (f: 7, ¢) = Onr(f)+27mf7+¢. We then perform
a least-squares fit in the matching interval f; < f < fn by minimizing the quantity

In .
/f BHE(F17,0) — Dppens o ()] df ®5)

with respect to the free parameters 7 and ¢. This minimization can be done analytically

up to two numerical integrals. The result is

_ 3Un+ fi)lo— 64

(fu—fi)2
AR+ fufi 4 R o+ 6(fn + )T
B (fn—f1)? ’

¢
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where

fn
%Z/ [Oxr(f) — Poens ()] df, (8.8)

fn
hz/‘@mﬁ%@mmﬂﬂﬁﬁ (8.9)

Once the time and phase shifts are found, we smoothly turn on the numerical waveform
and smoothly turn off the phenomenological waveform within a splicing window s; < f < sy,

using Hann windows

vt = 3 [t s (=20 o0

Sf — 55
1 — 8
won(f) = 5 [1 — cos <Mﬂ . (8.11)
The amplitude of the hybrid waveform is then
) |hphen (f)] f<si
|Prybria ()l = wot ()| iphen(f)| + won (F)lAnr ()] 55 < f <s5 (8.12)
g (/)] f>s5
and the phase is
q)phen+T(f) f <85
Puybria(f) = § wort (f)Pphent(f) + won(FPNR(f) +27fT + @] si < f<sp . (813)
ONr(f) +2mfT+ ¢ f>s5

A hybrid waveform for the system (xpg = 0.75,Q = 2, Mns = 1.35 Mg, EOS = p.91'3.0)
is shown in Fig. We note that the linear matching term 27 f7 + ¢ in the hybrid phase
can have a large effect on the post-splice waveform. In particular, as shown in the left panel
of Fig. the inclusion of the tidal term 7 in the inspiral waveform leads to an additional
linearly growing deviation in the phase A® = &y, — Py which would not be present if
we simply ignored the small tidal term 7 (f) during the inspiral as was done in Chapter

As we will see below, this has a large impact on the measurability of tidal parameters.

8.4 Parameter estimation

As discussed in Chapters [p] and [7] for Gaussian noise and high signal to noise ratio, the
uncertainties in the parameters 4 can be calculated from the Fisher matrix

Oh | Oh

004

)
HA
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Figure 42 : Amplitude ‘%E(Mf)) (left) and phase ®(M f) (right) for a numerical BHNS waveform matched
to the PhenomC BBH waveform with and without the tidal correction ¥r. The waveform parameters are
(xa = 0.75,Q = 2, Mns = 1.35 Mg, EOS = p.9I'3.0). The matching window f; < f < fy is bounded
by solid vertical lines, and the splicing window s; < f < sy, which begins at s; = f;, is bounded by
dotted vertical lines. Note that matching the numerical BHNS waveform to a BBH waveform without
tidal corrections, as was done in Chapter m results in a phase error that accumulates linearly even after
the matching region, and underestimates the effect of matter. The amplitude and phase of the numerical

waveform are unreliable for M f > 0.05.

where we note that §4 are the parameter values that maximize the signal-to-noise ratio.
The variance 04 = o044 = ((A64)2) and covariance oap = (AGAAOP) of the parameters

are then given in terms of the Fisher matrix by
(AGAAGB) = (T71H)4B, (8.15)

In Chapter [7] we evaluated the two-parameter Fisher matrix for the EOS parameters
log(p1) and I' using hybrid waveforms that ignored the inspiral tidal correction 7 and
only included EOS information from the merger and ringdown of the numerical part of the
waveform. We also assumed that uncertainties in the non-EOS parameters did not correlate
with the EOS parameters. In the remainder of this section we will compare the estimates
of EOS parameters for only the merger and ringdown to a waveform that includes EOS
information in the full IMR hybrid waveform. In the next two sections we will address
the issue of correlations between all of the parameters by constructing an analytic BHNS
waveform and calculating the complete Fisher matrix.

As in Chapter [7], we can evaluate the measurability of EOS effects from just the merger
and ringdown by matching each numerical BHNS waveform to an inspiral waveform that
does not include tidal corrections. We can then evaluate the Fisher matrix by differentiating
the waveform with respect to each EOS parameter using finite differencing with two or

more waveforms for each parameter. Specifically we follow the third method in Appendix [C]
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which results in the greatest accuracy given the sometimes large phase difference between
waveforms. Specifically, we break up each Fourier transformed waveform into the log of the
amplitude In A(f; 64) and accumulated phase ®(f;64)

B(f:07) = e AT#D TR, (8.16)

The derivative is now approximated by

iﬁ_ In A+i® AIHA+»A‘I)
904 — ¢ AGA T UAGA )

(8.17)

where A/AG4 represents finite differencing, and In A and ® are evaluated at the midpoint
using interpolation.

The 1-¢ uncertainty contours in the EOS parameter space, AGAAOPT 45 = 1, are shown
in Fig. [43] for the ET-D noise PSD for both spinning and nonspinning simulations. As in
Chapter [7] we find the uncertainty contours are aligned with tidal deformability contours
AY? and this holds for systems with spinning black holes as well. In contrast, when the
tidal correction 7 is added to the inspiral of the hybrid waveform, there is an improvement
of roughly a factor of 3 in the measurability of A as shown in Fig. The majority of the
improvement arises because, as discussed above, the inspiral tidal correction also adds a
linearly growing term to the merger and ringdown which is not present when the numerical
waveform is joined to an inspiral waveform without tidal corrections.
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Figure 43 : 1-0 error ellipses using the ET-D noise curve when only tidal effects during the merger-ringdown
are included, and assuming non-EOS parameters are known exactly as was done in [I69]. Binary is optimally
oriented and at a distance of 100 Mpc. Left: xgu = 0, @ = 2, and Mys = 1.35Mg. Right: xga = 0.5,
Q = 3, and Mns = 1.35My. Evenly spaced contours of constant A'® are also shown. Each ellipse is

centered on the estimated parameter 64 denoted by a x.
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Figure 44 : Same as Fig. [f3] but including tidal information from the inspiral in addition to the merger-
ringdown. Left: xgu = 0, Q = 2, and Mns = 1.35Mg. Right: xgu = 0.5, Q = 3, and Mns = 1.35M.

8.5 Phenomenological BHNS waveform

In the previous chapter and in Section 8.4 we assumed that the correlation between EOS pa-
rameters and the other parameters is negligible. To test this assumption, we must calculate
the complete Fisher matrix for all parameters, and this requires us to evaluate partial deriva-
tives with respect to all parameters at a single point. For an aligned-spin BHNS system with
negligible NS spin and a single detector, there are 7 parameters. The 4 intrinsic parameters
are the chirp mass M = (MBHMNS)3/5/M1/5, symmetric mass ratio n = MpyMyns/M?,
black hole spin XBHEL and tidal deformability A. The 3 extrinsic parameters, which can
be differentiated analytically, are time of coalescence t., phase of coalescence ¢., and an
effective distance Dqg that incorporates the true distance D as well as the orientation and
sky location of the binary. For an optimally oriented binary, D.g = D. If using central
differencing, this requires 8 waveforms for the 4 numerical derivatives at each point in the
waveform parameter space, and is computationally expensive. Also, in contrast to the EOS
parameters, small changes in M, 1, and ypg can result in a large change in the phase of
the waveform. This means that the simulations must be closely spaced in parameter space

in order to accurately calculate derivatives. However, closely spaced waveforms which have

!The NS spin will likely have a negligible effect on the waveform because the NS mass is smaller than
the BH mass by a factor of @), and the angular velocity of the NS is bounded by the Kepler frequency. In
addition, NS are expected to spin down to a small fraction of the Kepler frequency by the time the binary
reaches the detector band. Furthermore, there is a strong degeneracy between the two spins in a binary, so
we can simply treat the total spin as an effective BH spin, and ignoring the NS spin as a separate parameter

is therefore justified.
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numerical errors can lead to large subtraction errors in the finite differences.

Another approach is to construct an analytic BHNS waveform model, then fit the free
parameters of the model to the hybridized numerical simulations. This will allow us to
interpolate between the available simulations as well as evaluate derivatives used in the
Fisher matrix. For aligned-spin BBH systems, significant work has gone into developing
phenomenological waveforms that include the complete inspiral, merger, and ringdown. We
will use the most modern version of these waveforms, PhenomC [72], as the basis for our
BHNS waveform model.

As found in Section (Figs. 43| and and hinted at in Fig. a BHNS waveform
is well approximated by a one-parameter deformation from a BBH waveform where A =
0 [I10]. As shown in Fig. throughout the inspiral, merger, and ringdown, both the
amplitude and phase of the Fourier transformed waveform monotonically decrease with
respect to a BBH waveform as frequency increases and as A increases. We thus write the

BHNS waveform as a modification to a BBH waveform
}NLBHNS(Mf; QA) _ FLBBH(Mfa gA)e[A lnA(Mf;@A)—&-iA‘I)(Mf;QA)]’ (818)

where Aln A(Mf) = In|hguns(Mf)| — In |hppu(M f)| is an amplitude correction factor,
AP(Mf) = Ppans(M f) — Ppau(M f) is a phase correction factor, and the 3 physical pa-
rameters that we will fit our waveforms to are #4 = {1, xpu, A}. In the next two subsections,
we will fit the quantities Aln A(M f) and AP(M f) to the 90 hybrid waveforms listed in
Table [61

8.5.1 Amplitude fit

During the inspiral, parameter estimation is much more sensitive to the phase of the wave-
form than to the amplitude, so we ignore the very small amplitude correction from tidal
interactions. During the merger and ringdown, however, they are important. We therefore

write the amplitude correction as

0 Mf < M fo

, (8.19)
—nAB(M f;04) Mf > M fo

Aln A(Mf;64) = {
where M fy is the boundary, chosen below, between the inspiral and merger, and we have
extracted the quantity nA because as 7 — 0 (extreme mass ratio limit) or A — 0, the
waveform should approach that of a BBH waveform. We now impose two requirements on
the function B(M f;64). (i) The amplitude must be continuous at the frequency M fo, so
B(M fo;64) = 0. (ii) Because the amplitude of the BHNS waveform is always less than that
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of the corresponding BBH waveform, we require B(M f;04) > 0 for M f > M fy and for all
physical values of the parameters: n € [0,0.25], xpu € [—1,1], and A > 0.

Given the above restrictions, we find that a useful fitting function for the amplitude
correction is B(M f;04) = C(Mf — M fy)P, where C and D are free parameters, and
M fo = 0.01. With this ansatz, we then do a least-squares fit to determine the parameters
C and D. We find that over the 90 simulations, D has a mean and standard deviation of
D ~ 3+0.7, and because these parameters are highly correlated, we fix D = 3 so that B =
C(Mf — Mfo)3. We then fit each waveform with the single parameter C. The parameter
C is then fit to the physical parameters with the function C(n, xgu, A) = coAelTcrmtexnn
where the parameters cg, ¢1, and ¢y are found with a least-squares fit, and we note that this
function is positive for all physical values of the parameters 1, xpm, and A. Another useful
feature of the exponential form of this function is that it is nonlinear and allows for coupling
between 1 and xpy while still having a small number of parameters. In other words, when
expanded, it leads to nonlinear terms (e.g. terms proportional to X2BH) and cross terms (e.g.

terms proportional to nxpm). The final form of B can therefore be written
B(M f;0%) = coAelTernreaxen (A f — M f,)3, (8.20)

and the best-fit parameters are {co, c1,ca} = {2.09650 x 107?,35.4859,1.12893}.

8.5.2 Phase fit

For the phase of the waveform we choose the following ansatz

Mf; 64 Mf<M
A(I)(Mf,GA): { wT( f7 ) B y / ., fS f()
—nAE(M f;07) + (M fo;07) + (M f — M fo)Yr(M fo;0°) Mf > M fo

(8.21)

where 97 is the frequency domain tidal phase correction for the inspiral, and a ’ denotes
a derivative with respect to M f. In this paper we will use the 1PN accurate TaylorF2
tidal correction (Eq. for thi inspiral. However, a key feature of this ansatz is that an
improved inspiral tidal phase term 7 can be swapped in without requiring one to redo
the hybridization or the following phase fit. This is because the hybridization procedure of
Section matches the phase and derivative of the inspiral and numerical waveforms by
adjusting the parameters ¢ and 7 to generate a shifted numerical waveform with a linear
correction term: @i%i{t( fi7m,¢0) = ONr(f) + 27 fT + ¢. By explicitly pulling out the linear
quantity (M fo) + (M f — M fo)y-(M fo) in the phenomenological fit, the hybridization
procedure will not need to be repeated for an improved inspiral tidal correction, and the

coefficients given below for the fit will remain the same. As in the amplitude fit, we have
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extracted the quantity nA in the first term because the phase of the BHNS waveform should
approach that of a BBH waveform as n — 0 or A — 0. The above discussion then demands
the remaining function E(M f;04) satisfy the following conditions: (i) E(M fo;64) = 0, (ii)
E'(M fo;64) = 0, and (iii) E(M f;04) > 0 for M f > M fy and for all physical values of 7,
XBH, and A.

We find that each waveform can be accurately fit with a function of the form E =
G(M f—M fo)", where G and H are free parameters, and unlike the amplitude fit, we choose
M fo = 0.015 for the phase fit. For the 90 BHNS waveforms the best fit for the parameter H
has a relatively narrow range of approximately 5/3+0.3 which is consistent with the leading
frequency dependence of the tidal correction in Eq. . In addition, the free parameters
G and H in this fit are highly correlated. We thus rewrite E = G(M f — M f)*/? and fit
each waveform with the single parameter G. The parameter G is then fit to the physical
parameters with the positive function G (1, xgu, A) = goe!T9171792X81  where G has only a

weak dependence on A. The function E can then be written
E(Mf;n, xgu) = goe' mr92xmi (M f — M f0)5/3, (8.22)

and the best-fit parameters are {go, 91,92} = {0.078655,16.35086,0.730279}. As with the

amplitude fit, this parametrization is well defined for all possible values of 1, xpm, and A.

8.6 Results

Using the analytic IMR waveform developed in the previous section, we can now evaluate
the Fisher matrix for a single gravitational-wave detector using the complete set of waveform
parameters {ln Deg, fite, ¢c, In M, Inn, xBH, AY 51, where f; is some fiducial frequency
such as 1 Hz, and as in Chapter [7] we use A'/® because it is closely related to the more
familiar NS radius. We have calculated the 1-o uncertainty in AY/® for both the broadband
aLIGO [I14] and ET-D detector configurations [I53] shown in Fig. Errors are shown in
Figs. [45] and [46] for broadband aLIGO and ET-D respectively, and are scaled to an effective
distance of 100 Mpc as was done in Chapter [/l We note that the results shown here for the
@ = 2 and 3 nonspinning waveforms are similar to those presented in the previous chapter
(Figs. 36 and [37). This indicates that including tidal interactions in the inspiral as well as
the merger and ringdown and considering correlations between A and the other parameters
roughly cancel each other.

There are several trends to notice in the uncertainty o,1/5. In general, 0,1/5 increases
with increasing mass ratio ). This is not surprising since the tidal contribution to the phase

Y1 (Eq. [8.4) is a strongly decreasing function of the mass ratio. In addition, the amount
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of tidal disruption before the plunge, as well as its imprint on the waveform, decreases as
the mass ratio increases. However, there are two additional competing effects. First, the
amplitude during the inspiral which scales as |B( )| x MP/6 £=7/6 increases as the mass ratio
increases for a fixed NS mass. Second, for higher mass ratios, the EOS dependent merger
dynamics occur at a lower frequency closer to the minimum of the noise PSD (Fig. .
These two effects help to minimize the increase in uncertainty o,1/5 as () increases.

On the other hand, as the black hole spin xpn increases o,1/5s decreases. This effect
can be understood from Fig. {1} As the BH spin increases, the phase difference AP =

®Ppuns — PppH increases and the amplitude cutoff occurs at a lower frequency where the

detector is more sensitive.
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Figure 45 : 1-0 error 0,15 for various values of the mass ratio, BH spin, and tidal deformability. NS mass

is fixed at 1.35 M. PSD is broadband al.LIGO.

8.7 Discussion

We have examined the ability of gravitational wave detectors to extract information about
the equation of state from observations of BHNS coalescence for black holes with aligned
spin. As in Chapter [7] we found that the EOS parameter that is best measured is the
tidal deformability A. This is true for spinning as well as nonspinning black holes, and it

is true for the merger and ringdown as well as for the inspiral. Furthermore, coherently
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Figure 46 : Same as Fig. A5 but with ET-D noise curve. Uncertainty o,1/5 is an order of magnitude

smaller.

combining the EOS information for the complete IMR waveform dramatically improves the
measurability A by up to a factor of ~ 3 in some cases over just the merger and ringdown.

In order to examine the correlations between A and the other parameters, we constructed
an analytic IMR waveform based on the frequency domain PhenomC aligned-spin waveform
model [72], and we calibrated this waveform model to our hybridized numerical waveforms.
Although A does correlate with the other parameters, the correlations are not nearly as
strong as correlations between the other parameters.

The frequency domain analytic waveform presented here can be, without too much
difficulty, incorporated into Markov Chain Monte Carlo and Nested Sampling algorithms
used for Bayesian parameter estimation for networks of gravitational-wave detectors. A full
Bayesian analysis will then make it possible to assess the true nature of the probability
distribution for the waveform parameters as well as the accuracy of the Fisher matrix

approximation.
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Appendix A

Analytic fits to tabulated EOS

A.1 Low-density equation of state

We use an analytic form of the (SLy) low-density EOS that closely matches its tabulated val-
ues. With rms residual less than 0.03, p(p) for SLy is approximated between p = 10 g/cm?
and p = 10 g/cm? by four polytropic pieces. The four regions correspond roughly to a
nonrelativistic electron gas, a relativistic electron gas, neutron drip, and the density range
from neutron drip to nuclear density. Using the notation of Sect. the analytic form of
the SLy EOS is set by the values of K;,I"; and p; listed in Table [7]

Table 7 : An analytic representation of p(p) for the SLy EOS below nuclear density uses polytropes specified
by the constants listed here. I'; is dimensionless, p; is in g/cmS, and K is in cgs units for which the
corresponding value of p is in units of dyne/ch. The last dividing density is the density where the low
density EOS matches the high density EOS and depends on the parameters p; and I'y of the high density
EOS.

K;/c? T; Pi
6.80110e-09  1.58425 2.44034e+07
1.06186e-06  1.28733 3.78358e+11
5.32697e+01 0.62223 2.62780e+12
3.99874e-08  1.35692 -

A.2 Comparison table

Table [§| compares neutron-star properties for each EOS to their values for the best-fit piece-

wise polytrope. The parameters for the three-piece polytropic core EOS, the corresponding
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residuals, as well as the observable properties of these EOSs and the error in using the best
fit parameterized EOS instead of the tabulated EOS are listed in Table [§. The parameter-

ized EOS systematically overestimates the maximum speed of sound.
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Appendix B

Accuracy of the tidal correction

model

To assess the accuracy of the simple phase evolution model, we compute the corrections to
the tidal phase perturbation due to several EOS-dependent effects: the leading order finite
mode-frequency terms, higher order tidal effects, and nonlinear hydrodynamic couplings.
For simplicity, we will only derive the phase corrections for one star with internal degrees
of freedom coupled to a point mass. The terms for the other star simply add. For such a

binary system, the Lagrangian can then be written as

_1 2 1 2.2 77M2 21 .
L_§7]MT +77]M"ﬂ 0+ — Qljglj+4)\ 2 Qz]Qz] WOQUQZ]

1 «
éQijkgijk + 12)\ (Qz]k@zgk wgng‘ijijk) - FQiijkai- (B.1)

Here, the star’s static mass quadrupole ();; parameterizes the [ = 2 modes of the star,
which can be treated as harmonic oscillators that are driven below their resonant frequency
by the companion’s tidal field. The tensor ();;x parameterizes the star’s mass octupole
degrees of freedom, and &;; and & are the [ = 2 and | = 3 tidal tensors respectively,
which are given by &; = 0;0;(—ma/r) and &, = 0;0;0,(—me/r) in Newtonian gravity.
The [ = 3 deformability constant A3 is defined by Q;jx = —A3&;j%. The quantities wy and
wos are the [ = 2 and [ = 3 f-mode frequencies, and « is a coupling constant for the leading
order nonlinear hydrodynamic interactions. In general, one would need to sum over the
contributions from all the modes, but other modes contribute negligibly in the regime of
interest for the above model (see [86]). Post-Newtonian effects on the Lagrangian for the
binary are derived in Refs. [85] [111] and can simply be added to those derived here.

We will be interested in finding an effective description of the dynamics of the system
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for quasi-circular inspirals in the adiabatic limit, where the radiation reaction timescale is
long compared to the orbital timescale. From equilibrium solutions to the Euler-Lagrange
equations derived from this Lagrangian, the following radius-frequency relation is obtained:

10/3 10/3 2

3Amow 9 Amow
M5/3m1 M5/3m1 wg

r(w) = MYB3w™2/3 [1 +
(B.2)

20 \3mgw /3 B 27am3w'6/3 - 27A2m3w?0/3
M73my 2M8/3my MW/3m2 |’

The equilibrium energy, obtained by reversing the signs of the potential energy terms in the

Lagrangian, is given by:

9)\m2w10/3 45)\m2w10/3 wa
M5/3m1 M5/3m1 w(2)

ORI VELIETE [1
2
(B.3)

65X3maw! /3 42am3w'/3 63)\2m3w?0/3
M7/3my MB8/3my MlO/Sm%

The energy flux E = —%(Q;‘;QZ;}, where QiTj = pr?(nin’ — %(51-3')4—@2-]- is the total quadrupole
moment, is
B= ot MR 1y QMH) Ao o Sr+2
(B.4)
80)\3m2w14/3 _ 36amow!®/3 [ 3my 1 9N\220/3 B 2mo _ Gm%
M7/3m, M Bmy  \2M M3 MM

Using the formula d?¥/dw? = 2(dE/dw)/E in the stationary phase approximation and

integrating twice leads to the final expression for the tidal phase correction:

sy — (ml + 12m2> 45N/ o2 (8m1 + 155m2> 125 M52 my

169 M5 mi 14080 M5 W2 mi 12 M7 my (B.5)
135am2x11/2 m1 + 13msy RS M? — 2moM — 83m% '
352n M8 my 64n M0 m? '

We will analyze the information contained in the portion of the signal at frequencies
f <450 Hz. This is slightly higher than previously considered, and we now argue that in this
frequency band, the simple model of the phase correction is still sufficiently accurate for our
purposes. We will evaluate all of the corrections for the case of equal masses m; = mo = m.
An estimate of the fractional errors for the case of m = 1.4 Mg and R = 15 km is given in

parentheses.
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1. Post-1-Newtonian corrections (~ 10%).
These corrections give rise to terms o< Az”/2 that add to those in Eq. . The
explicit form of these terms is computed in Refs. [85, [I11] and they depend on the
NS physics only via the same parameter A\ as the Newtonian tidal terms, so they can
easily be incorporated into the data analysis method. Preliminary estimates indicate

that for equal masses, these post-1 Newtonian effects will increase the tidal signal.

2. Adiabatic approzimations ( ~ 1%).

The approximation that the radiation reaction time is much longer than the orbital
time is extremely accurate, to better than 1%; see Fig. 2 of Ref. [86], which compares
the phase error obtained from numerically integrating the equations of motion supple-
mented with the leading order gravitational wave dissipation terms to that obtained
analytically using the adiabatic approximation.

The accuracy of the approximation w < wg can be estimated from the fractional
correction to , which is ~ (815/1144)(w/wo)? ~ 0.18(f/ fo)?, where f = w/7 and
fo = wo/(2m). For typical NS models the [ = 2 f-mode frequency is [170]

fo m 1/2 R -3/2
20 ~0.78 + 1.64 — B.
ki, 08 164 {7 M, 10 km ’ (B-6)

so that the fractional correction is ~ 0.012 for f = 450 Hz and for a conservatively

low f-mode frequency of fy = 1700 Hz.

3. Higher order tidal effects (~ 0.7%).
The | = 3 correction to the gravitational wave phase is smaller than the | = 2
contribution by a factor of ~ (25/351)(ks/k2)(m/R)~22% ~ 0.007, for m/R = 0.14
and a stiff n = 0.5 polytrope. Here, we have defined the | = 3 Love number k3 =
(15/2)A3R~7 and used the values ks = 0.17 and k3 = 0.06 from Ref. [T10].

4. Nonlinear hydrodynamic corrections (~ 0.1%).
The leading nonlinear hydrodynamic corrections are characterized by the coupling co-
efficient a/A3 in the action. The size of this parameter can be estimated by comparing
the Newtonian k2 to the coupling constants in Lai’s ellipsoidal models (e.g. Table 1
of [I71]) to be w?a/A ~ 2 x 1073, The nonlinear self-coupling term in Eq. is
smaller than the leading [ = 2 term by a factor —285aw?/(572\) ~ 0.001.

5. Spin corrections (S 0.3%).
Fractional corrections to the tidal signal due to spin scale as

5\I’spin <Wspin > 2
x , B.7
OV tidal Wmax ( )




where wmax is the maximum rotational frequency the star can have before breakup,
which for most NS models is > 27(1000 Hz). The observed NS-NS binaries which
will merge within a Hubble time have spin periods of ~ 23 — 104 ms, and near the
coalescence they will have slowed down due to e.g. magnetic braking, with final spin
periods of ~ 50 — 130 ms. The fractional corrections to the tidal signal due to the

spin are then < 0.3%.

If the stars have spin, there will also be a spin-induced correction to the phase, as
discussed in Refs. [104], 106]. In the slow rotation limit (which is likely to be the
relevant regime for the binaries we consider), the effect of spin on the phasing can
be computed using similar methods as for the tidal corrections. The resulting spin-
induced phase correction scales as Wy ~ 34519 R?/(32nM2z/?)w? . /(m1/R?), where

spin
wspin the spin frequency and ns is the rotational Love number, which for Newtonian

stars is the same as the tidal Love number ks. The scaling of the spin term as

~1/2 ghows that only at large separation do spin effects dominate over tidal effects,

5/2

X T
which scale as o« z°/%. For spin periods of ~ 50 ms and R ~ 5m, the spin-induced
phase correction Wy becomes smaller than the tidal correction at frequencies above
~ 170 Hz. This agrees with the results of the more detailed analysis of the relative

importance of spin and tidal effects in Ref. [106].

. Nonlinear response to the tidal field (~ 3%).
We have linearized in A. Including terms oc A? gives a fractional correction in Eq. (B.5))

of —(83/7488) ko ROx5/2 /m® = —4.8x 10~ M ko (m /M) '3 (R/km)®(f /Hz)"/3 = —0.31ks.

. Viscous dissipation (negligible).
There have been several analytical and numerical studies of the effect of viscosity dur-
ing the early part of the inspiral, e.g. [103] [I04]. They found that viscous dissipation

is negligible during the early inspiral if the volume-averaged shear viscosity 7shear is

~

2
Tshear < 10 <%> gem s (B.8)

The expected microscopic viscosity of NSs is [172]
9/4 -2
22 P T —-1 —1
Tmicr ~ 10 (1014g0m3> (106K> gem s, (B.9)

which is orders of magnitude too small to lead to any significant effect. A variety of
other likely sources of viscosity, e. g. the breaking or crumpling of the crust, are also

insignificant [104, [103] in the regime of interest to us.
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Thus, systematic errors in the measured value of A due to errors in the model should be

0(10%), which is small compared to the current uncertainty of an order of magnitude in A.
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Appendix C

Numerically evaluating the Fisher

matrix

When an analytical representation of a waveform is not available, the partial derivatives
in the Fisher matrix Eq. (8.14) must be evaluated numerically. There are several possible

methods one can use, and we will examine their accuracy below.

C.1 Finite differencing of h(t;0)

The simplest method, and that used in Ref. [16], is straightforward finite differencing of
the signal h = F1hy + Fxhyx. For example, for five waveforms with values of an EOS
parameter 6 given by {0_2,0_1,6p, 601,02} with equal spacing Af, the three and five point

central differences are given by

dh Ash

— = _c 2
do AD + O((A0)7), where
Aoh  —3h(t;0_1) + 3h(t;01)
N AD (C.1)
dh  A4h .
B = g TOUAI)?), where
Ash f5h(t;0_2) — 3h(t;0_1) + 3h(t; 01) — 15h(t; 02)
i A .
(C.2)

This finite differencing method is useful when waveforms differ only slightly: at each time
t, on the scale Af the function h(t;6) is well approximated by the low order interpolating
polynomials used to generate the finite differencing formulas.

This assumption fails when the waveforms used in the finite differencing are significantly



out of phase with each othelﬂ The tidal interaction leads to a monotonically accumulating
phase difference relative to a BBH waveform, implying that at a fixed time ¢ the function
h(6;t) is an oscillating function of . Now if an oscillating function h[®(0)] = cos[®(0)] has
wavenumber k = ®'(6) that varies slowly compared to @, then h'(6) is better approximated
by —sin(®)A®/A than by A cos[®(0)]/AH. The assumption that k is slowly varying is
k' < k2, K" < k3, and the error in, for example, each of the two second-order discretizations

is given to order A#? by

dh Azh - ]. 3 / 7 2
s~ oy = BONK + OkK K")]AG,
dh . AQ@ o 1 17 2
¥ —i—sm[@(@)]ﬁ = h(ﬁ)gk AV (C.3)

with the error in the second expression much smaller than that in the first. We consider

two ways to take advantage of this difference in accuracy.

C.2 Finite differencing of amplitude and phase

The first is to decompose each complex waveform into an amplitude A and accumulated
phase ®
ha (£,0) — ihy (£;0) = A(t; 0)e ") (C.4)

where the accumulated phase of each waveform is a continuous function defined by ® =
—arg(hy —ihy )£ 2n7 for some integer n, and at the starting time ¢; the accumulated phase
of each waveform is chosen to be on the branch n = 0. The advantage of this method is
that, at a fixed time, the functions A(¢;0) and ®(¢; 0) are non-oscillatory functions of 6 even
when the accumulated phase difference between two waveforms is significantly more than a
radian.

With this decomposition the gravitiational wave signal is
h(t;8) = A(t; 0)(F cos ®(t;0) + Fy sin ®(¢;0)), (C.5)

and the derivative of & is approximated by

dh AA
@ = M(F+COS¢+FX sin<I>)

+A(—F4sin® + Fy cos @)% (C.6)

!The dephasing of numerical waveforms is even more significant for BNS inspiral. We believe that Ref. [16]
which used this method underestimated the derivatives in some cases by a factor of ~2 or more, and thus

overestimated the uncertainty in EOS parameters by the same factor.
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If an intermediate waveform is not available to provide the functions A(t;6p) and ®(¢;6y),
they can be evaluated by e.g. A(t;6p) = (A(t;60-1) + A(t;61))/2.

We have found that this method works reasonably well for the inspiral waveform. If,
however, the amplitude of one of the numerical waveforms drops to zero, then the phase of
the waveform becomes undefined. Because the amplitude of the numerical BHNS waveforms
fall to zero at different times for different EOS, as shown in Fig. the finite difference
A® /A becomes meaningless towards the end when the average amplitude is still nonzero.
It is likely one could work around this difficulty. However, we choose instead to use another

more robust method.

C.3 Finite differencing of Fourier transform

Because we will need to calculate the Fourier transform of the derivative dh/964 to find the
Fisher matrix, we first Fourier transform each waveform and then evaluate the numerical

derivative. Since the derivative 9/064 commutes with the Fourier transform, the Fisher

df, (C.7)

matrix can be written explicitly as
oh_Oh*
oh ) _ Is o9 g7

Oh | Oh o
904 | 967 1 Sa(f)

where the contribution to the integral below f; and above f; is negligable.

As in the second method we break up each Fourier transformed waveform into amplitude
A(f;0) and accumulated phase ®(f;0)

h(f;0) = A(f;0)e "), (C.8)

where the phase of each waveform at f; is on the n = 0 branch cut. As demonstrated by
Figs. |29 and both the amplitude and phase are non-oscillatory functions of  at a fixed
frequency f, and can be well approximated by a low-order polynomial. In contrast to the
accumulated phase of the complex numerical waveform h, —ihy, the accumulated phase of
the Fourier transform of the strain & is always well defined for numerical BHNS waveforms
in the frequency range f; to f;.

Finally, we find that one obtains better accuracy by differentiating In A instead of A,
decomposing h as

;L(f, 0) = e A(f30)—1®(f;0) (C.9)

The derivative is now approximated by

dh  wa_ie (AlnA A
70— ¢ <A9 ixg ) (C.10)
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interpolating when needed to evaluate In A and ® at the midpoint.

We find that methods 1-3 for calculating uncertainties in A'/®> and R agree with each
other to ~ 10% when the EOS parameters are closely separated by A log(p1 /(dyne cm™2)) =
0.1. However, for larger EOS spacing, when the accumulated phase difference between two
waveforms is as large as 2 radians (see Fig. , method 1 will give a result as much
as 50% larger than for the smaller spacing while method 2 may fail completely for the
reasons discussed above. Method 3, however, gives the same result to within ~ 20% when
Alog(p1/(dyne cm™2)) is varied between 0.1 and 0.4. We also note that errors in the
quadrature in Eq. [C.7] from discrete sampling are negligible compared to the errors from

the finite differencing.

C.4 Parameter spacing and numerical resolution

Finally, we note that the EOS parameter spacing must be carefully chosen. If two waveforms
are too close in parameter space, the error in each waveform will dominate over the trun-
cation error due to finite differencing. The most significant source of this error comes from
the spurius oscillations in the amplitude of the Fourier transform in the frequency range
~ 500-800 Hz (see Fig. that result from joining the EOB and numerical waveforms
which are not exactly the same in the matching window. We find that the integrand of the
Fisher matrix is often erratic in the range ~ 500-800 Hz when using the smallest parameter
spacing available. However, when the spacing is increased, the integrand is smoother in this
frequency range and its contribution to the integral is significantly reduced. For the mass
ratio Q = 2, we find that a spacing between waveforms of Alog(p;/(dyne cm™2)) = 0.1 for
the first EOS parameter is often sufficiently large to reduce this problem, while a spacing of
AI' = 0.6 for the second EOS parameter is the minimum spacing one can use. For ) = 3,
we have found that a spacing of Alog(p;/(dyne cm™2)) > 0.2 is necessary to reduce this
problem.

In addition, if the EOS parameters of two waveforms lie near the same degenerate
contour where waveforms are identical (e.g. a contour of constant A which can be nearly
identical to a line of constant I'), the error in each waveform will again dominate the
truncation error even if the EOS parameters are widely spaced. For our two-dimensional
EOS parameter space, this problem can be solved by transforming the parameter space
such that points that originally formed a X pattern now form a + pattern, and in the
transformed parameter space the new axes are not alligned with a degenerate contour. The
Fisher matrix can be calculated in the transformed parameter space then transformed back

to the original parameter space.
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We find that as long as these two requirements are met, the uncertainties in o,:/5 and
or have only an ~ 20% fractional dependence on the EOS parameter spacing. However,
the dependence of the orientation of the error ellipses on the EOS parameter spacing does
not allow one to distinguish between A and R as the best extracted parameter.

The resolution in the simulation also has an effect on the Fisher matrix. For the two
waveforms {Q = 2, Mys = 1.35Mg, p.41'3.0} and {Q = 3, Mns = 1.35My, p.5I'3.0} we
performed three different resolution runs with N = {36,42,50} as defined in Ref. [137],
where the grid size is proportional to 1/N. All other simulations used N = 50. We find that
when using the N = 42 resolution simulation instead of N = 50, the uncertainties o ,1/s

and o change by no more than ~ 25%.
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