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ABSTRACT

THE NEUTRON-STAR EQUATION OF STATE AND
GRAVITATIONAL WAVES FROM COMPACT BINARIES

By

Benjamin D. Lackey

The University of Wisconsin–Milwaukee, 2012

Under the Supervision of Professor John L. Friedman

The equation of state (EOS) of matter above nuclear density is currently uncertain by

almost an order of magnitude. Fortunately, neutron stars (NS) provide an ideal laboratory

for studying high density matter. In order to systematize the study of the EOS from NS

observations, we introduce a parametrized high-density EOS that accurately fits theoretical

candidate EOSs. We then determine the ability of several recent and near-future electro-

magnetic observations to constrain the parameter space of our EOS. Recent observations

include measurements of masses, gravitational redshift, and spin period, and we find that

high mass observations are the most useful at constraining the EOS. Reliable simultaneous

mass–radius measurements or mass–moment of inertia measurements in the near future, on

the other hand, would provide a dramatically stronger constraint by requiring the allowed

parameters to lie on a hypersurface of the full parameter space.

In addition to electromagnetic observations, binary neutron star (BNS) and black hole-

neutron star (BHNS) coalescence events observed with gravitational-wave detectors offer

the potential to dramatically improve our understanding of the EOS. Information about

the EOS is encoded in the waveform through tidal interactions, and for BNS systems,

the inspiral waveform depends on the EOS through a single parameter called the tidal

deformability. Using recent numerical BHNS simulations we find that the entire BHNS

inspiral-merger-ringdown waveform also depends on the EOS exclusively through the same

tidal deformability parameter. Using these BNS and BHNS waveforms, we examine the

ability of second generation detectors now in construction and planned third generation

detectors to extract information about the EOS.
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1

Chapter 1

The equation of state and stellar

structure

At the most fundamental level, the nature of matter near nuclear density (2.8×1014 g/cm3)

and above is described in terms of an N-body system of quarks and leptons interacting

through electromagnetism and the strong and weak interactions. This computationally

intractable problem can, however, be simplified because up to a few times nuclear density,

quarks are in the form of nucleons (e.g. neutrons, protons, and hyperons) and mesons

(e.g. pions and kaons) interacting through nuclear interactions. As the density increases,

it becomes energetically favorable to have an increasing fraction of strange quarks, first

in hyperons or mesons, then in the form of free quarks when these composite particles

eventually dissolve at several times nuclear density. A wide range of approximations exist

for the interactions of these exotic particles, and the free parameters can be calibrated to

experimental data from, for example, heavy ion collisions. However, there remains much

uncertainty in extrapolating to bulk nuclear matter.

Unlike the matter in terrestrial experiments, the cores of neutron stars (NS), consisting

of bulk nuclear matter in its ground state with densities that can exceed 1015 g/cm3, are an

ideal subject for understanding ground-state matter as it is described through the equation

of state (EOS). This dissertation will focus on several methods for extracting information

about the EOS from electromagnetic observations of neutron stars as well as gravitational-

wave observations of neutron stars in coalescing compact binary systems, including binary

neutron star (BNS) and black hole-neutron star (BHNS) systems.

We will begin in this chapter by discussing several thermodynamic quantities related to

the EOS, and then describe how the EOS is related to observable properties of a neutron

star through the relativistic stellar structure equations. In the next chapter, we will discuss
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a parametrized phenomenological model for the EOS and how a wide range of observations

can be used to constrain the parameters of this model. Chapter 3 will focus on point-particle

interactions in coalescing binaries, and Chapter 4 will focus on tidal interactions in binaries

that contain at least one neutron star. Chapter 5 will then discuss how the parameters of

a binary inspiral can be extracted with gravitational-wave detectors. In Chapter 6, we will

examine the detectability of EOS information in BNS inspirals through a quantity known

as the tidal deformability λ. Finally, in the last two chapters we will examine the EOS

information that can be extracted from BHNS inspiral, merger, and ringdown for systems

with both nonspinning (Chapter 7) and aligned-spin (Chapter 8) black holes.

Conventions: Unless otherwise stated, we set G = c = 1.

1.1 Thermodynamic relations and the equation of state

For the applications in this dissertation, nuclear reactions occur on a timescale much smaller

than changes in the neutron-star configuration, and so neutron-star matter is well described

by a perfect fluid in equilibrium. The first law of thermodynamics for a fluid element

containing N baryons states that the total energy E, including the rest-mass energy of the

fluid element, is [1]

dE = −pdV + TdS + µdN. (1.1)

Here, p, V , T , S, and µ, are the pressure, volume, temperature, entropy, and baryon

chemical potential. The baryon chemical potential is defined as the increase in energy when

a baryon is added to the fluid element, and this includes the energy needed to, for example,

add other particles to conserve charge.

We can remove the last term in Eq. (1.1) by introducing the Gibbs free energy G =

E + pV − TS, and using the relation, derived in Ref. [2],

G = E + pV − TS = µN. (1.2)

In terms of the rest mass of the fluid element M0 and the specific Gibbs free energy g =

G/M0 = µ/mB, the last term in Eq. (1.1) becomes

µdN =
µ

mB
dM0 = gdM0, (1.3)

where mB = 1.66×10−24 g is the baryon rest mass. Because we will consider a fluid element

that adjusts so that the baryon number N is constant, the rest mass is conserved as well,

and this term is therefore zero [3].
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We will find it useful to rewrite the first law of thermodynamics in terms of only intensive

quantities. We will use baryon number density n = N/V , rest mass density ρ = M0/V =

mBn, energy density ε = E/V , and specific entropy s = S/M0. The first law becomes

d
ε

ρ
= −pd1

ρ
+ Tds, (1.4)

or equivalently

dε = hdρ+ ρTds, (1.5)

where the specific enthalpy h is

h =
E + pV

M0
=
ε+ p

ρ
. (1.6)

In addition to the first law, the various thermodynamic quantities are related by an

equation of state

ε = ε(ρ, s), p = p(ρ, s). (1.7)

For the neutron stars considered in this dissertation, the temperature will be far below the

Fermi temperature, and thus we will only need to consider the isentropic one-parameter

cold EOS

ε = ε(ρ), p = p(ρ). (1.8)

The above two expressions in Eq. (1.8) are not independent because the quantities ρ, ε, and

p are related by the first law with ds = 0. We thus only need to specify a relation between

two of the three quantities to get the third quantity using one of the following relations

p = ρ2d(ε/ρ)

dρ
,

ε

ρ
=
ε0
ρ0

+

∫ ρ

ρ0

p

ρ′2
dρ′, ρ = ρ0 exp

(∫ ε

ε0

dε′

ε′ + p

)
, (1.9)

where ε0 is the energy density at some rest-mass density ρ0. At the surface of the star

defined by p → 0, ε0 → 0 and ρ0 → 0 for a standard EOS, and the ratio ε0/ρ0 → 1. Also,

if the surface density is used for ρ0, then the last expression in Eq. (1.9) is undefined.

In the following chapters we will find it useful in solving stellar structure equations to

define two dimensionless, enthalpy-like quantities. The first quantity is the pseudo-enthalpy

H defined by [4, 5]

dH = d lnh =
dp

ε+ p
, (1.10)

and therefore

h = eH , H =

∫ p

0

dp′

ε+ p′
. (1.11)
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The second quantity η used in Ref. [5], which we will call the Newtonian specific enthalpy,

is defined in terms of the Newtonian energy ENewt = E −M0

η =
ENewt + pV

M0
= h− 1 = eH − 1. (1.12)

The stiffness of an EOS is often defined in terms of the polytropic exponent. For highly

degenerate matter, we distinguish between two types of polytropic exponents, Γ and γ,

defined by

Γ =
d ln p

d ln ρ
, γ =

d ln p

d ln ε
. (1.13)

We note that for a one-parameter EOS with constant entropy, Γ is the adiabatic index. The

two quantities can be related to each other using the first law of thermodynamics

Γ =
ε+ p

p

dp

dε
=
ε+ p

ε
γ. (1.14)

We define two types of polytropic EOS

p = Kρρ
Γ, p = Kεε

γ , (1.15)

where Kρ and Kε are constants. We note that the first type of polytrope is used far more

often in the literature because it is more closely associated with the underlying microphysics.

For example, a nonrelativistic degenerate Fermi gas has an EOS that scales as p ∝ ρ5/3,

and for a highly relativistic degenerate Fermi gas, p ∝ ρ4/3 [1].

Equations of state must satisfy the following two conditions. The first, thermodynamic

stability, requires the EOS be monotonic (dp/dρ ≥ 0 and dp/dε ≥ 0), and therefore the

adiabatic indices Γ and γ must be positive. The second, causality, requires the speed of

sound vs be less than the speed of light

vs =

√
dp

dε
≤ 1. (1.16)

In terms of the polytropic exponents

vs =

√
pΓ

ε+ p
=

√
pγ

ε
, (1.17)

and therefore in the limit of very high density, where the majority of the energy density

comes from pressure, the EOS is causal only when Γ ≤ 2 and γ ≤ 1.

1.2 Evaluating mass, radius, and moment of inertia

The moment of inertia of a rotating star is the ratio I = J/Ω, with J the asymptotically

defined angular momentum. In finding the moment of inertia of spherical models, we use
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Hartle’s slow-rotation equations [6], adapted to piecewise polytropes in a way we describe

below. The metric of a slowly rotating star has, to order Ω, the form

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 − 2ω(r)r2 sin2 θdφdt+ r2dθ2 + r2 sin2 θdφ2, (1.18)

where Φ and λ are the metric functions of the spherical star, given by

e2λ(r) =

(
1− 2m(r)

r

)−1

, (1.19)

dΦ

dr
= − 1

ε+ p

dp

dr
, (1.20)

dp

dr
= −(ε+ p)

m+ 4πr3p

r(r − 2m)
, (1.21)

dm

dr
= 4πr2ε. (1.22)

The frame-dragging ω(r) is obtained from the tφ component of the Einstein equation in the

form
1

r4

d

dr

(
r4j

dω

dr

)
+

4

r

dj

dr
ω = 0, (1.23)

where ω = Ω−ω is the angular velocity of the star measured by a zero-angular-momentum

observer and

j(r) = e−Φ

(
1− 2m

r

)1/2

. (1.24)

The angular momentum is obtained from ω, which has outside the star the form ω = 2J/r3.

In adapting these equations, we roughly follow Lindblom [4], replacing r as a radial

variable by a generalization η := h− 1 of the Newtonian enthalpy. Because η is monotonic

in r, one can integrate outward from its central value to the surface, where η = 0.

This replacement exploits the first integral heΦ =
√

1− 2M/R of the equation of hy-

drostatic equilibrium to eliminate the differential equation (1.20) for Φ; and the enthalpy,

unlike ε and p, is smooth at the surface for a polytropic EOS. Eqs. (1.21–1.23) are then

equivalent to the first-order set

dr

dη
= − r(r − 2m)

m+ 4πr3p(η)

1

η + 1
(1.25)

dm

dη
= 4πr2ε(η)

dr

dη
(1.26)

dω

dη
= α

dr

dη
(1.27)

dα

dη
=

[
−4α

r
+

4π(ε+ p)(rα+ 4ω)

1− 2m/r

]
dr

dη
(1.28)

where α := dω/dr.
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The integration to find the mass, radius, and moment of inertia for a star with given

central value η = ηc proceeds as follows: Use the initial conditions r(ηc) = m(ηc) = α(ηc) =

0 and arbitrarily choose a central value ω0 of ω. Integrate to the surface where η = 0, to

obtain the radius R = r(η = 0) and mass M = m(η = 0). The angular momentum J is

found from the radial derivative of the equation

ω = Ω− 2J

r3
, (1.29)

evaluated at r = R, namely

J =
1

6
R4α(R), (1.30)

and Ω is then given by

Ω = ω(R) +
2J

R3
. (1.31)

These values of Ω and J are each proportional to the arbitrarily chosen ω0, implying that

the moment of inertia J/Ω is independent of ω0.
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Chapter 2

Phenomenologically parametrized

EOS

2.1 Introduction

Because the temperature of neutron stars is far below the Fermi energy of their constituent

particles, neutron-star matter is accurately described by the one-parameter equation of

state (EOS) that governs cold matter above nuclear density. The uncertainty in that EOS,

however, is notoriously large, with the pressure p as a function of baryon mass density

ρ uncertain above nuclear density by as much as an order of magnitude. The phase of

the matter in the core of a neutron star is similarly uncertain: Current candidates for the

EOS include non-relativistic and relativistic mean-field models; models for which neutron-

star cores are dominated by nucleons, by hyperons, by pion or kaon condensates, and by

strange quark matter (free up, down, and strange quarks); and one cannot yet rule out the

possibility that the ground state of cold matter at zero pressure might be strange quark

matter and that the term “neutron star” is a misnomer for strange quark stars.

The correspondingly large number of fundamental parameters needed to accommodate

the models’ Lagrangians has meant that studies of astrophysical constraints (see, for exam-

ple, [7, 8, 9, 10, 11] and references therein) present constraints by dividing the EOS candi-

dates into an allowed and a ruled-out list. A more systematic study, in which astrophysical

constraints are described as constraints on the parameter space of a parametrized EOS, can

be effective only if the number of parameters is smaller than the number of neutron-star

properties that have been measured or will have been measured in the next several years. At

the same time, the number of parameters must be large enough to accurately approximate

the EOS candidates.
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A principal aim of this chapter is to show that, if one uses phenomenological rather

than fundamental parameters, one can obtain a parametrized EOS that meets these con-

ditions. We exhibit a parametrized EOS, based on specifying the stiffness of the star in

three density intervals, characterized by the adiabatic index Γ = d logP/d log ρ. A fourth

parameter translates the p(ρ) curve up or down, adding a constant pressure—equivalently

fixing the pressure at the endpoint of the first density interval. Finally, the EOS is matched

below nuclear density to the (presumed known) low-density EOS. An EOS for which Γ is

constant is a polytrope, and the parametrized EOS is then piecewise polytropic. A simi-

lar piecewise-polytropic EOS was previously considered by Vuille and Ipser [12]; and, with

different motivation, several other authors [13, 14, 5, 15] have used piecewise polytropes

to approximate neutron-star EOS candidates. In contrast to this previous work, we use

a small number of parameters chosen to fit a wide variety of fundamental EOSs, and we

systematically explore a variety of astrophysical constraints. Like most of the previous

work, we aim to model equations of state containing nuclear matter (possibly with various

phase transitions) rather than pure quark stars, whose EOS is predicted to be substantially

different.

As we have noted, enough uncertainty remains in the pressure at nuclear density, that

one cannot simply match to a fiducial pressure at ρnuc. Instead of taking as one parameter

the pressure at a fiducial density, however, one could match to the pressure of the known

subnuclear EOS at, say, 0.1 ρnuc and then use as one parameter a value of Γ0 for the interval

between 0.1ρnuc and ρnuc. Neutron-star observables are insensitive to the EOS below ρnuc,

because the fraction of mass at low density is small. But the new parameter Γ0 would

indirectly affect observables by changing the value of the pressure at and above nuclear

density, for fixed values of the remaining Γi. By choosing instead the pressure at a fixed

density ρ1 > ρnuc, we obtain a parameter more directly connected to physical observables. In

particular, as Lattimer and Prakash [8] have pointed out, neutron-star radii are closely tied

to the pressure somewhat above nuclear density, and the choice p1 = p(ρ1) is recommended

by that relation.

In general, to specify a piecewise polytropic EOS with three density intervals above

nuclear density, one needs six parameters: two dividing densities, three adiabatic indices

Γi, and a value of the pressure at an endpoint of one of the intervals. Remarkably, however,

we find (in Sec. 2.4) that the error in fitting the collection of EOS candidates has a clear

minimum for a particular choice of dividing densities. With that choice, the parametrized

EOS has three free parameters, Γ1,Γ2 and p1, for densities below 1015 g/cm3 (the density

range most relevant for masses ∼ 1.4M�), and four free parameters (an additional Γ3) for
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densities between 1015 g/cm3 and the central density of the maximum mass star for each

EOS.

With the parameterization in hand, we examine in Sect. 2.5 astrophysical constraints on

the EOS parameter space beyond the radius-p1 relation found by Lattimer and Prakash [8].

Our emphasis in this first study is on present and very near-future constraints: those as-

sociated with the largest observed neutron-star mass and spin, with a possible observation

(as yet unrepeated) of neutron-star redshift, with a possible simultaneous measurement of

mass and radius, and with the expected future measurement of the moment of inertia of

a neutron star with known mass. (We do not consider other observables, such as those

associated with glitches and cooling, which depend not only on the EOS but also on dy-

namics, transport coefficients, and thermodynamic derivatives. The latter quantities are

generally much more uncertain than the EOS and related observables such as the stellar

radius, and are always more model dependent.) Ref. [16] investigates constraints obtainable

with gravitational-wave observations in a few years.

The constraints associated with the largest observed mass, spin, and redshift have a

similar form, each restricting the parameter space to one side of a surface: For example, if

we take the largest observed mass to be 1.93 M�, then the allowed parameters correspond

to EOSs whose maximum mass is at least 1.93 M�. We can regard Mmax as a function on

the 4-dimensional EOS parameter space. The subspace of EOSs for which Mmax = 1.93M�

is then described by a 3-dimensional surface, and constraint is a restriction to the high-

mass side of the surface. Similarly, the observation of a 716 Hz pulsar restricts the EOS

parameter space to one side of a surface that describes EOSs for which the maximum spin is

716 Hz. Thus we can produce model-independent extended versions of the multidimensional

constraints seen in [17].

The potential simultaneous observation of two properties of a single neutron star (for

example, moment of inertia and mass) would yield a significantly stronger constraint: It

would restrict the parameter space not to one side of a surface but to the surface itself. And

a subsequent observation of two different parameters for a different neutron star would then

restrict one to the intersection of two surfaces. We exhibit the result of simultaneous obser-

vations of mass and moment of inertia (expected within the next decade for one member of

the binary pulsar J0737-3039 [18, 19]) and of mass and radius.

Conventions: We use cgs units, denoting rest-mass density by ρ, and (energy density)/c2

by ε. We define rest-mass density as ρ = mBn, where mB = 1.66 × 10−24 g and n is the

baryon number density. In Sec. 2.3, however, we set c = 1 to simplify the equations and

add a footnote on restoring c.
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2.2 Candidates

A test of how well a parametrized EOS can approximate the true EOS of cold matter

at high density is how well it approximates candidate EOSs. We consider a wide array of

candidate EOSs, covering many different generation methods and potential species. Because

the parametrized EOS is intended to distinguish the parts of parameter space allowed and

ruled out by present and future observations, the collection includes some EOSs that no

longer satisfy known observational constraints. Many of the candidate EOSs were considered

in Refs. [8, 19, 17]; and we call them by the names used in those papers.

For plain npeµ nuclear matter, we include:

• Two potential-method EOSs (PAL6 [20] and SLy [21]);

• eight variational-method EOSs (AP1-4 [22], FPS [23], and WFF1-3 [24]);

• one nonrelativistic (BBB2 [25]) and three relativistic (BPAL12 [26], ENG [7] and MPA1 [27])

Brueckner-Hartree-Fock EOSs; and

• three relativistic mean field theory EOSs (MS1-2 and one we call MS1b, which is identical

to MS1 except with a low symmetry energy of 25 MeV [28]).

We also consider models with hyperons, pion and kaon condensates, and quarks, and

will collectively refer to these EOSs as K/π/H/q models.

• One neutron-only EOS with pion condensates (PS [29]);

• two relativistic mean field theory EOSs with kaons (GS1-2 [30]);

• one effective potential EOS including hyperons (BGN1H1 [31]); eight relativistic mean

field theory EOSs with hyperons (GNH3 [32] and seven variants H1-7 [17]; one relativistic

mean field theory EOS with hyperons and quarks (PCL2 [33]); and

• four hybrid EOSs with mixed APR nuclear matter and colour-flavor-locked quark matter

(ALF1-4 with transition density ρc and interaction parameter c given by ρc = 2n0, c = 0;

ρc = 3n0, c = 0.3; ρc = 3n0, c = 0.0; and ρc = 4.5n0, c = 0.3 respectively [34]).

The tables are plotted in Fig. 1 to give an idea of the range of EOSs considered for this

parameterization.

2.3 Piecewise polytrope

A polytropic EOS has the form,

p(ρ) = KρΓ, (2.1)
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Figure 1 : Pressure versus rest mass density for the set of candidate EOS tables considered in the parame-

terization.

with ρ the rest-mass density and Γ the adiabatic index, and with energy density ε fixed by

the first law of thermodynamics,1 d
ε

ρ
= −p d1

ρ
. For p of the form (2.1), the first law has

the immediate integral
ε

ρ
= (1 + a) +

1

Γ− 1
KρΓ−1, (2.2)

where a is a constant; and the requirement lim
ρ→0

ε/ρ = 1 implies a = 0 and the standard

relation ε = ρ+
1

Γ− 1
p.

The parametrized EOSs we consider are piecewise polytropes above a density ρ0, satisfy-

ing Eqs. (2.1) and (2.2) on a sequence of density intervals, each with its own Ki and Γi: An

EOS is piecewise polytropic for ρ ≥ ρ0 if, for a set of dividing densities ρ0 < ρ1 < ρ2 < · · · ,
the pressure and energy density are everywhere continuous and satisfy

p(ρ) = Kiρ
Γi , d

ε

ρ
= −pd1

ρ
, ρi−1 ≤ ρ ≤ ρi. (2.3)

Then, for Γ 6= 1,

ε(ρ) = (1 + ai)ρ+
Ki

Γi − 1
ρΓi , (2.4)

1In this section, for simplicity of notation, c = 1. To rewrite the equations in cgs units, replace p and K

in each occurrence by p/c2 and K/c2. Both ε and ρ have units g/cm3.
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with ai =
ε(ρi−1)

ρi−1
− 1− Ki

Γi − 1
ρΓi−1
i−1 .

The specific enthalpy2 h := (ε+ p)/ρ, sound velocity vs =
√
dp/dε, and internal energy

e := ε/ρ− 1, are given in each density interval by

h(ρ) = 1 + ai +
Γi

Γi − 1
Kiρ

Γi−1, (2.5)

vs(ρ) =

√
Γip

ε+ p
, (2.6)

e(ρ) = ai +
Ki

Γi − 1
ρΓi−1. (2.7)

Each piece of a piecewise polytropic EOS is specified by three parameters: the initial

density, the coefficient Ki, and the adiabatic index Γi. However, when the EOS at lower

density has already been specified up to the chosen ρi, continuity of pressure determines

the value of Ki+1:

Ki+1 =
p(ρi)

ρ
Γi+1

i

. (2.8)

Thus each additional region requires only two additional parameters, ρi and Γi+1. Further-

more, if the initial density of an interval is chosen to be a fixed value for the parameterization,

specifying the EOS on the density interval requires only a single additional parameter.

2.4 Fitting the candidate EOSs

To fit the true neutron-star EOS, we must ensure that a wide variety of candidate EOSs

are well fit by some set of parameter values of our parametrized EOS. In this section we

describe the fit we use and the results of that fit.

There is general agreement on the low-density EOS for cold matter, and we adopt

the version (SLy) given by Douchin and Haensel [21]. Substituting an alternative low-

density EOS from, for example, Negele and Vautherin [35], alters by only a few percent the

observables we consider in examining astrophysical constraints, both because of the rough

agreement among the candidate EOSs and because the low density crust contributes little

to the mass, moment of inertia, or radius of the star.

Each choice of a piecewise polytropic EOS above nuclear density is matched to this low-

density EOS as follows: The lowest-density piece of the piecewise polytropic p(ρ) curve is

extended to lower densities until it intersects the low-density EOS, and the low-density EOS

2A note on terminology: When the entropy vanishes, the specific enthalpy, h = (ε+ p)/ρ, and Gibbs free

energy, g = (ε + p)/ρ − Ts, coincide. For nonzero entropy, it is the term gdM0 = µdN that appears in the

first law of thermodynamics, where µ = g/mB is the chemical potential.
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is used at densities below the intersection point. This matching method yields a monotically

increasing p = p(ρ) without introducing additional parameters. It omits EOSs with values

of p1 and Γ1 that are incompatible, i.e. for which the slope of the log p vs log ρ curve is

too shallow to reach the pressure p1 from the low-density part of the EOS. However it still

accommodates a much larger region of parameter space than that spanned by the candidate

EOSs. (The precise choice of matching algorithm has little influence on the final fit for the

reasons given in the previous paragraph.)

The accuracy with which a piecewise polytrope {ρi,Ki,Γi}, approximates a candidate

EOS is measured by the rms residual of the fit to m tabulated points (ρj , pj):√√√√√√ 1

m

∑
i

∑
j

ρi<ρj≤ρi+1

[
log

(
pj

Kiρ
Γi
j

)]2

. (2.9)

In each case, we compute the residual only up to ρmax, the central density of the maximum

mass nonrotating model based on the candidate EOS. Because astrophysical observations

can depend on the high-density EOS only up to the value of ρmax for that EOS, only the

accuracy of the fit below ρmax is relevant.

The accuracy of a choice of parameter space is measured by the average residual of its

fits to each EOS in the collection. For each EOS, we use a Levenberg-Marquardt algorithm

to minimize the residual (2.9) over the parameter space. Even with a robust algorithm, the

nonlinear fitting with varying dividing densities is sensitive to initial conditions. Multiple

initial parameters for free fits are constructed using fixed-region fits of several possible

dividing densities, and the global minimum of the resulting residuals is taken to indicate

the best fit for the candidate EOS.

We begin with a single polytropic region in the core, specified by two parameters: the

index Γ1 and a pressure p1 at some fixed density. Here, with a single polytrope, the choice

of that density is arbitrary; for more than one polytropic piece, we will for convenience take

that density to be the dividing density ρ1 between the first two polytropic regions. Changing

the value of p1 moves the polytropic p(ρ) curve up or down, keeping the logarithmic slope

Γ1 = d log p/d log ρ fixed. The low-density SLy EOS is fixed, and the density ρ0 where

the polytropic EOS intersects SLy changes as p1 changes. The polytropic index K1 is

determined by Eq. (2.8). This is referred to as a one free piece fit. We then consider

two-piece and three-piece fits: two polytropic regions within the core, specified by the four

parameters {p1,Γ1, ρ1,Γ2}, as well as three polytropic regions specified by the six parameters

{p1,Γ1, ρ1,Γ2, ρ3,Γ3}, where, in each case, p1 ≡ p(ρ1). Again changing p1 translates the

piecewise-polytropic EOS of the core up or down, keeping its shape fixed.
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The accuracy of each parametization (one, two, or three pieces), measured by the rms

residual of Eq. (2.9), is portrayed in Table 1. The Table lists the average and maximum

rms residuals over the set of 34 candidate EOSs. (The “fixed” fit is described below.)

Table 1 : Average residuals resulting from fitting the set of candidate EOSs with various types of piece-

wise polytropes. Free fits allow dividing densities between pieces to vary. The fixed three piece fit uses

1014.7 g/cm3 or roughly 1.85ρnuc and 1015.0 g/cm3 or 3.70ρnuc for all EOSs. Tabled are the RMS residuals of

the best fits averaged over the set of candidates. The set of 34 candidates includes 17 candidates containing

only npeµ matter and 17 candidates with hyperons, pion or kaon condensates, and/or quark matter. Fits

are made to tabled points in the high density region between 1014.3 g/cm3 or 0.74ρnuc and the central density

of a maximum mass TOV star calculated using that table.

Type of fit All npeµ K/π/h/q

Mean RMS residual

One free piece 0.0386 0.0285 0.0494

Two free pieces 0.0147 0.0086 0.0210

Three fixed pieces 0.0127 0.0098 0.0157

Three free pieces 0.0071 0.0056 0.0086

Standard deviation of RMS residual

One free piece 0.0213 0.0161 0.0209

Two free pieces 0.0150 0.0060 0.0188

Three fixed pieces 0.0106 0.0063 0.0130

Three free pieces 0.0081 0.0039 0.0107

For nucleon EOSs, the four-parameter fit of two free polytropic pieces models the be-

haviour of candidates well; but this kind of four-parameter EOS does not accurately fit

EOSs with hyperons, kaon or pion condensates, and/or quark matter. Many require three

polytropic pieces to capture the stiffening around nuclear density, a subsequent softer phase

transition, and then final stiffening. On the other hand, the six parameters required to

specify three free polytropic pieces exceeds the bounds of what may be reasonably con-

strained by the small set of model-independent astrophysical measurements. An alternative

four parameter fit can be made to all EOSs if the transition densities are held fixed for all

candidate EOSs (see below).

The hybrid quark EOS ALF3, which incorporates a QCD correction parameter for quark

interactions, exhibits the worst-fit to a one-piece polytropic EOS with residual 0.111, to the

three-piece fixed region EOS with residual 0.042, and to the three-piece varying region EOS

with residual 0.042. It has a residual from the two-piece fit of 0.044, somewhat less than
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the worst fit EOS, BGN1H1, an effective-potential EOS that includes all possible hyperons

and has a two-piece fit residual of 0.056.

A good fit is found for three polytropic pieces with fixed divisions: between the first and

second pieces at ρ1 = 1014.7 g/cm3 = 1.85ρnuc and a division between the second and third

pieces fixed at ρ2 = 1015.0 g/cm3. The EOS is specified by choosing the adiabatic indices

{Γ1,Γ2,Γ3} in each region, and the pressure p1 at the first dividing density, p1 = p1(ρ1).

A diagram of this parameterization is shown in Fig. 2. For this 4-parameter EOS, best

fit parameters for each candidate EOS give a residual of 0.043 or better, with the average

residual over 34 candidate EOSs of 0.013. Note that the density of departure from the fixed

low-density EOS is still a fitted parameter for this scheme.
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Figure 2 : The fixed-region fit is parametrized by adiabatic indices {Γ1,Γ2,Γ3} and by the pressure p1 at

the first dividing density.

The dividing densities for our parametrized EOS were chosen by minimizing the rms

residuals over the set of 34 candidate EOSs. For two dividing densities, this is a two-

dimensional minimization problem, which was solved by alternating between minimizing

average rms residual for upper or lower density while holding the other density fixed. The

location of the best dividing points is fairly robust over the subclasses of EOSs, as illustrated

in Fig. 3.

With the dividing points fixed, taking the pressure p1 to be the pressure at ρ1 = 1.85ρnuc,
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Figure 3 : Subsets of EOSs with and without kaons, hyperons, meson condensates, or quarks, show a fairly

robust choice of dividing densities whose fit to the candidate EOSs minimizes residual error. The mean

plus one standard deviation of residuals for each subset of candidate EOSs is plotted against the choice of

lower and upper dividing densities ρ1 and ρ2. The left curves show mean residual versus ρ1 with ρ2 fixed at

1015.0 g/cm3. The right three curves show mean residual versus ρ2, with ρ1 fixed at 1014.7 g/cm3.

is indicated by empirical work of Lattimer and Prakash [8] that finds a strong correlation

between pressure at fixed density (near this value) and the radius of 1.4M� neutron stars.

This choice of parameter allows us to examine (in Sec. 2.5.5) the relation between p1 and the

radius; and we expect a similar correlation between p1 and the frequency at which neutron-

star inspiral dramatically departs from point-particle inspiral for neutron stars near this

mass.

Since there are not many astrophysical constraints on the EOS, it is desirable to use

one of the four-parameter fits (two free pieces or three fixed). Observations of pulsars that

are not accreting indicate masses below 1.45 M� (see Sec. 2.5), and the central density of

these stars is below ρ2 for almost all EOSs. Then only the three parameters {p1,Γ1,Γ2}
of the fixed piece parameterization are required to specify the EOS for moderate mass

neutron stars. This class of observations can then be treated as a set of constraints on a

3-dimensional parameter space. Similarly, because maximum-mass neutron stars ordinarily

have most matter in regions with densities greater than the first dividing density, their

structure is insensitive to the first adiabatic index. The three piece parameterization does

a significantly better job above ρ2 because phase transitions above that density require a

third polytropic index Γ3. If the remaining three parameters can be determined by pulsar
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observations, then observations of more massive, accreting stars can constrain Γ3.

The best fit parameter values of the candidate EOSs are shown in Fig. 4 and listed in

Table 8 of Appendix A. The worst fits of the fixed region fit are the hybrid quark EOSs ALF1

and ALF2, and the hyperon-incorporating EOS BGN1H1. For BGN1H1, the relatively large

residual is due to the fact that the best fit dividing densities of BGN1H1 differ strongly

from the average best dividing densities. Although BGN1H1 is well fit by three pieces with

floating densities, the reduction to a four-parameter fit limits the resolution of EOSs with

such structure. The hybrid quark EOSs, however, have more complex structure that is

difficult to resolve accurately with a small number of polytropic pieces. Still, the best-fit

polytrope EOS is able to reproduce the neutron star properties predicted by the hybrid

quark EOS.
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Figure 4 : parametrized EOS fits to the set of 34 candidate EOS tables. There are 17 EOSs with only

ordinary nuclear matter (n,p,e,µ); 9 have only hyperons in addition to ordinary matter; 3 include meson

condensates plus ordinary matter; 5 include quarks plus other matter (PCL2 also has hyperons). Γ2 < 3.5

and Γ3 < 2.5 for all EOSs with hyperons, meson condensates, and/or quark cores. The shaded region

corresponds to incompatible values of p1 and Γ1, as discussed in the text.

In Appendix A, Table 8 compares neutron-star properties for each EOS to their val-

ues for the best-fit piecewise polytrope. The mean error and standard deviation for each

characteristic is also listed.
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2.5 Astrophysical constraints on the parameter space

Adopting a parametrized EOS allows one to phrase each observational constraint as a

restriction to a subset of the parameter space. In sections 2.5.1–2.5.4 we find the constraints

imposed by causality, by the maximum observed neutron-star mass and the maximum

observed neutron-star spin, and by a possible observation of gravitational redshift. We

then examine, in section 2.5.5, constraints from the simultaneous measurement of mass

and moment of inertia and of mass and radius. We exhibit in section 2.5.6 the combined

constraint imposed by causality, maximum observed mass, and a future moment-of-inertia

measurement of a star with known mass.

In exhibiting the constraints, we show a region of the 4-dimensional parameter space

large enough to encompass the 34 candidate EOSs considered above. The graphs in Fig. 4

display the ranges 1033.5dyne/cm2 < p1 < 1035.5dyne/cm2, 1.4 < Γ1 < 5.0, 1.0 < Γ2 < 5.0,

and 1.0 < Γ3 < 5.0. Also shown is the location in parameter space of the best fit to each

candidate EOS. The shaded region in the left graph corresponds to incompatible values of

p1 and Γ1 mentioned in Sect. 2.4.

To find the constraints on the parametrized EOS imposed by the maximum observed

mass and spin, one finds the maximum mass and spin of stable neutron stars based on

the EOS associated with each point of parameter space. A subtlety in determining these

maximum values arises from a break in the sequence of stable equilibria—an island of

unstable configurations—for some EOSs. The unstable island is typically associated with

phase transitions in a way we now describe.

Spherical Newtonian stars described by EOSs of the form p = p(ρ) are unstable when

an average value Γ̄ of the adiabatic index falls below 4/3. The stronger-than-Newtonian

gravity of relativistic stars means that instability sets in for larger values of Γ̄, and it is

ordinarily this increasing strength of gravity that sets an upper limit on neutron-star mass.

EOSs with phase transitions, however, temporarily soften above the critical density and

then stiffen again at higher densities. As a result, configurations whose inner core has

density just above the critical density can be unstable, while configurations with greater

central density can again be stable. Models with this behavior are considered, for example,

by Glendenning and Kettner [36], Bejger et al. [14] and by Zdunik et al. [13] (these latter

authors, in fact, use piecewise polytropic EOSs to model phase transitions).

For our parametrized EOS, instability islands of this kind can occur for Γ2 . 2, when

Γ1 & 2 and Γ3 & 2. A slice of the four-dimensional parameter space with constant Γ1 and

Γ3 is displayed in Fig. 5. The shaded region corresponds to EOSs with islands of instability.
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Contours are also shown for which the maximum mass for each EOS has the constant value

1.7M� (lower contour) and 2.0M� (upper contour).

An instability point along a sequence of stellar models with constant angular momentum

occurs when the mass is maximum. On a mass-radius curve, stability is lost in the direction

for which the curve turns counterclockwise about the maximum mass, regained when it turns

clockwise. In the right graph of Fig. 5, mass-radius curves are plotted for six EOSs, labeled

A–F, associated with six correspondingly labeled EOSs in the left figure. The sequences

associated with EOSs B, C and E have two maximum masses (marked by black dots in

the lower figure) separated by a minimum mass. As one moves along the sequence from

larger to smaller radius – from lower to higher density, stability is temporarily lost at the

first maximum mass, regained at the minimum mass, and permanently lost at the second

maximum mass.

It is clear from each graph in Fig. 5 that either of the two local maxima of mass can be

the global maximum. On the lower boundary (containing EOSs A and D), the lower density

maximum mass first appears, but the upper-density maximum remains the global maximum

in a neighborhood of the boundary. Above the upper boundary (containing EOS F), the

higher-density maximum has disappeared, and near the upper boundary the lower-density

maximum is the global maximum.
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Figure 5 : The region in parameter space where two stable neutron-star sequences can occur is shaded in

the left figure. Contours of constant maximum mass are also shown. The higher central density maximum

mass contour is solid while the lower central density maximum mass contour is dashed. Mass-radius curves

are plotted for several EOSs in the right figure. Although difficult to see, EOS C does in fact have a second

stable sequence.
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2.5.1 Causality

For an EOS to be considered physically reasonable, the adiabatic speed of sound vs cannot

exceed the speed of light. An EOS is ruled out by causality if vs > 1 for any density below

the central density ρmax of the maximum-mass neutron star for that EOS. (If vs > 1 only

above ρmax, the EOS is astrophysically indistinguishable from one altered to have vs < 1

above ρmax and thus should not be ruled out.)

We exhibit the causality constraint in two ways, first by simply requiring that each

piecewise polytrope be causal at all densities and then by requiring only that it be causal

below ρmax. The first, unphysically strong, constraint, shown in Fig. 6, is useful for an

intuitive understanding of the constraint: The speed of sound is a measure of the stiffness

of the EOS, and requiring causality eliminates the largest values of Γi and p1.

Fig. 7 shows the result of restricting the constraint to densities below ρmax, with the

speed of sound given by Eq. (2.6). A second surface is shown to account for the inaccuracy

with which a piecewise polytropic approximation to an EOS represents the speed of sound.

In all but one case (BGN1H1) the fits to the candidate EOSs overpredict the maximum speed

of sound, but none of the fits to the candidate EOSs mispredict whether the candidate EOS

is causal or acausal by more than 11% (fractional difference between fit and candidate).

We adopt as a suitable causality constraint a restriction to a region bounded by the surface

vs,max = 1+mean+1σ = 1.12, corresponding to the mean plus one standard deviation in

the error between vs,max for the candidate and best fit EOSs.

In the lower parts of each graph in Fig. 7, where p1 < 1035 dyne/cm2, the bounding

surface has the character of the first causality constraint, with the restriction on each of

the three variables p1,Γ2 and Γ3 becoming more stringent as the other parameters increase,

and with Γ3 restricted to be less than about 3. In this low-pressure part of each graph, the

surface is almost completely independent of the value of Γ1: Because the constraint takes

the form Γ1p/(ε+ p) ≤ c2 (for p� ε) and p < p1 is so low, the constraint rules out values

of Γ1 only at or beyond the maximum Γ1 we consider.

In the upper part of each graph, where p1 > 1035 dyne/cm2, unexpected features arise

from the fact that we impose the causality constraint only below the maximum density of

stable neutron stars – below the central density of the maximum-mass star.

The most striking feature is the way the constraint surface turns over in the upper part

of the top graph, where p1 > 1035 dyne/cm2, in a way that allows arbitrarily large values of

p1. This occurs because, when p1 is large, the density of the maximum-mass star is small,

and a violation of causality typically requires high density. That is, when the density is

low, the ratio p/(ε+ p) in Eq. (2.6) is small. As a result, in the left graph, vs remains too
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small to violate causality before the maximum density is reached. In the right graph, with

Γ1 = 3.8, Γ1 is now large enough in Eq. (2.6) that the EOS becomes acausal just below the

transition to Γ2. This is the same effect that places the upper limit on p1 seen in the second

graph of Fig. 6.

A second feature of the upper parts of each graph is the exact independence of the

bounding surface on Γ3. The reason is simply that in this part of the parameter space the

central density of the maximum mass star is below ρ2, implying that no stable neutron stars

see Γ3.

Finally, we note that in both graphs, for small Γ2 (the right of the graph), the EOSs

yield the sequences mentioned above, in which an island of instability separates two stable

sequences, each ending at a local maximum of the mass. Requiring vs,max to satisfy causality

for both stable regions rules out EOSs below the lower part of the bifurcated surface.

Figure 6 : Causality constraints are shown for two values of Γ1. For each EOS in the parameter space the

maximum speed of sound over all densities is used. The shaded surface separates the EOS parameter space

into a region behind the surface allowed by causality (labeled vs,max < 1) and a region in which corresponding

EOSs violate causality at any density (labeled vs,max > 1).

2.5.2 Maximum Mass

A stringent observational constraint on the EOS parameter space is set by the largest

observed neutron-star mass. Unfortunately, the highest claimed masses are also subject

to the highest uncertainties and systematic errors. The most reliable measurements come

from observations of radio pulsars in binaries with neutron star companions. The masses

with tightest error bars (about 0.01 M�) cluster about 1.4 M� [37]. Recent observations

of millisecond pulsars in globular clusters with non-neutron star companions have yielded
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Figure 7 : Causality constraint as in Fig. 6. However, here, only the maximum speed of sound up to

the central density of the maximum mass star is considered. A second, outlined surface shows a weaker

constraint to accommodate the expected error in the speed of sound associated with a piecewise polytropic

approximation to an EOS. With σ the standard deviation in vs,max between an EOS and its parametrized

representation, as measured by the collection of candidate EOSs, the outlined surface depicts vs,max =

1+mean+1σ = 1.12 constraint.

higher masses: Ter 5I and Ter 5J [38], M5B [39], PSR J1903+0327 [40], and PSR J0437-

4715 [41] all have 95% confidence limits of about 1.7 M�, and the corresponding limit for

NGC 6440B [42] is about 2.3 M�. However these systems are more prone to systematic

errors: The pulsar mass is obtained by assuming that the periastron advance of the orbit is

due to general relativity. Periastron advance can also arise from rotational deformation of

the companion, which is negligible for a neutron star but could be much greater for pulsars

which have white dwarf or main sequence star companions. Also the mass measurement

is affected by inclination angle, which is known only for the very nearby PSR J0437-4715.

And with the accumulation of observations of these eccentric binary systems (now about

a dozen) it becomes more likely that the anomalously high figure for NGC 6440B is a

statistical fluke. Recently, however, a secure measurement was made of a 1.97 ± 0.04 M�

neutron star from the Shapiro delay [43]. Fig. 8 shows the constraint on the EOS placed

by the existence of 1.93 M� neutron stars, which we regard as secure. Also shown in the

figure are the surfaces associated with maximum masses of 1.7 M� and 2.3 M�.

Since all of the candidate high-mass pulsars are spinning slowly enough that the ro-

tational contribution to their structure is negligible, the constraint associated with their

observed masses can be obtained by computing the maximum mass of nonrotating neutron

stars. Corresponding to each point in the parameter space is a sequence of neutron stars

based on the associated parametrized EOS; and a point of parameter space is ruled out

if the corresponding sequence has maximum mass below the largest observed mass. We
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exhibit here the division of parameter space into regions allowed and forbidden by given

values of the largest observed mass.

We plot contours of constant maximum mass in Fig. 8. Because EOSs below a maximum

mass contour produce stars with lower maximum masses, the parameter space below these

surfaces is ruled out. The error in the maximum mass between the candidate and best fit

piecewise polytropic EOSs is |mean| + 1σ = 1.7% (the magnitude of the mean error plus

one standard deviation in the error over the 34 candidate EOSs), so the parameters that

best fit the true EOS are unlikely to be below this surface.

The surfaces of Fig. 8 have minimal dependence on Γ1, indicating that the maximum

mass is determined primarily by features of the EOS above ρ1. In Fig. 8 we have set Γ1 to

the least constraining value in the range we consider – to the value that gives the largest

maximum mass at each point in {p1,Γ2,Γ3} space. Varying Γ1 causes the contours to

shift up, constraining the parameter space further, by a maximum of 100.2 dyne/cm2. The

dependence of the contour on Γ1 is most significant for large values of p1 where the average

density of a star is lower. The dependence on Γ1 decreases significantly as p1 decreases.

Figure 8 : The above surfaces represent the set of parameters that result in a constant maximum mass. An

observation of a massive neutron star constrains the equation of state to lie above the corresponding surface.

Γ1 is set to the least constraining value at each point. The lower shaded surface represents Mmax = 1.7 M�;

the middle and upper (outlined) surfaces represent Mmax = 1.93 M� and Mmax = 2.3 M� respectively.

As discussed above, some of the EOSs produce sequences of spherical neutron stars with

an island of instability separating two stable sequences, each with a local maximum of the

mass. As shown in Fig. 5, this causes a contour in parameter space of constant maximum

mass to split into two surfaces, one surface of parameters which has this maximum mass at

the lower ρc local maximum and another surface of parameters which has this maximum
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mass at higher ρc branches. Since such EOSs allow stable models up to the largest of their

local maxima, we use the least constraining surface (representing the global maximum mass)

when ruling out points in parameter space.

2.5.3 Gravitational redshift

We turn next to the constraint set by an observed redshift of spectral lines from the surface

of a neutron star. We consider here only stars for which the broadening due to rotation

is negligible and restrict our discussion to spherical models. The redshift is then z =

(1− 2M/R)−1/2 − 1, and measuring it is equivalent to measuring the ratio M/R. With no

independent measurement of mass or radius, the associated constraint again restricts the

parameter space to one side of a surface, to the EOSs that allow a redshift as large as the

largest observed shift.3 For spherical models, the configuration with maximum redshift for

a given EOS is ordinarily the maximum-mass star. By increasing p1,Γ2 or Γ3, one stiffens

the core, increasing the maximum mass, but also increasing the radius at fixed mass. The

outcome of the competition usually, but not always, yields increased redshift for larger

values of these three parameters; that is, the increased maximum mass dominates the effect

of increased radius at fixed mass for all but the largest values of p1.

Cottam, Paerels, and Mendez [45] claim to have observed spectral lines from EXO 0748-

676 with a gravitational redshift of z = 0.35. With three spectral lines agreeing on the

redshift, the identification of the spectral features with iron lines is better founded than

other claims involving only a single line. The identification remains in doubt, however,

because the claimed lines have not been seen in subsequent bursts [46], and the subsequent

observation of a 552 Hz period makes it unlikely that the observed lines originated at the

NS surface [47]. There is also a claim of a simultaneous mass-radius measurement of this

system using Eddington-limited photospheric expansion x-ray bursts [48] which would rule

out many EOSs. This claim is controversial, because the 95% confidence interval is too

wide to rule out much of the parameter space, and we believe the potential for systematic

error is understated. However, the gravitational redshift is consistent with the earlier claim

of 0.35. Thus we treat z = 0.35 as a tentative constraint. We also exhibit the constraint

that would be associated with a measurement of z = 0.45.

Our parameterization can reproduce the maximum redshift of tabulated EOSs to 3.2%

(mean+1σ). Figure 9 displays surfaces of constant redshift z = 0.35 and z = 0.45 for the

3One could also imagine a measured redshift small enough to rule out a class of EOSs. The minimum

redshift for each EOS, however, occurs for a star whose central density is below nuclear density. Its value,

z ≈ 5× 10−4, thus depends only on the EOS below nuclear density. (See, for example Haensel et al.[44].)
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least constraining value of Γ1 = 5 in the range we consider. Surfaces with different values of

Γ1 are virtually identical for p1 < 1034.8 dyne/cm2, but diverge for higher pressures when Γ1

is small (. 2.5). In the displayed parameter space, points in front of the z = 0.35 surface,

corresponding to stiffer EOSs in the inner core, are allowed by the potential z = 0.35

measurement. From the location of the z = 0.35 and z = 0.45 surfaces, it is clear that,

without an upper limit on Γ1 . 2.5, an observed redshift significantly higher than 0.35 is

needed to constrain the parameter space. In particular, most of the parameter space ruled

out by z = 0.35 is already ruled out by the Mmax = 1.93 M� constraint displayed in Fig. 8.

Figure 9 : Surfaces in the EOS parameter space for which the maximum redshift of stable spherical neutron

stars has the values 0.35 (shaded surface) and 0.45 (outlined surface). A measured redshift from the surface

of a neutron star would exclude the region of parameter space behind the corresponding surface. Γ1 is fixed

at 5.0, the least constraining in the range we considered.

2.5.4 Maximum Spin

Observations of rapidly rotating neutron stars can also constrain the EOS. The highest

uncontroversial spin frequency is observed in pulsar Ter 5AD at 716 Hz [49]. There is a

claim of 1122 Hz inferred from oscillations in x-ray bursts from XTE J1239-285 [50], but

this is controversial because the statistical significance is relatively low, the signal could be

contaminated by the details of the burst mechanism such as fallback of burning material,

and the observation has not been repeated.

The maximum angular velocity of a uniformly rotating star occurs at the Kepler or mass-

shedding limit, ΩK, with the star rotating at the speed of a satellite in circular orbit at the

equator. For a given EOS, the configuration with maximum spin is the stable configuration

with highest central density along the sequence of stars rotating at their Kepler limit. An
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EOS thus maximizes rotation if it maximizes the gravitational force at the equator of a

rotating star – if it allows stars of large mass and small radius. To allow high mass stars,

the EOS must be stiff at high density, and for the radius of the high-mass configuration to

be small, the EOS must be softer at low density, allowing greater compression in the outer

part of the star [51, 52]. In our parameter space, a high angular velocity then restricts one

to a region with large values of Γ2 and Γ3, and small values of p1 and Γ1.

As with the maximum mass, the maximum frequency is most sensitive to the parameter

p1, but the frequency constraint complements the maximum mass constraint by placing an

upper limit on p1 over the parameter space, rather than a lower limit.

To calculate the maximum rotation frequencies for our parametrized EOS, we used the

open-source code rns for axisymmetric rapid rotation in the updated form rns2.0 [53]. For

a given EOS, the model with maximum spin is ordinarily close to the model with maximum

mass, but that need not be true for EOSs that yield two local mass maxima. The resulting

calculation of maximum rotation requires some care, and the method we use is described

in Appendix B of Ref. [54]. The error incurred in using the parametrized EOS instead of a

particular model is 2.7% (mean+1σ).

Spin frequencies of 716 Hz and even the possible 1122 Hz turn out to be very weak

constraints because both are well below the Kepler frequencies of most EOSs. Thus we plot

surfaces of parameters giving maximum rotation frequencies of 716 Hz in Fig. 10 and 1300 Hz

and 1500 Hz in Fig. 11. The region of parameter space above the maximum observed spin

surface is excluded. In the top figure, maximum mass stars have central densities below ρ2

so there is no dependence on Γ3. In the bottom figure the least constraining value of Γ1 = 5

is fixed. The surface corresponding to a rotation of 716 Hz only constrains the parameter

space that we consider (p1 < 1035.5 dyne/cm3) if Γ1 . 2.5. The minimum observed rotation

rate necessary to place a firm upper limit on p1 is roughly 1200 Hz for Γ1 = 5. The surface

fmax = 1500 Hz for Γ1 = 5 is also displayed in Fig. 11 to demonstrate that much higher

rotation frequencies must be observed in order to place strong limits on the parameter space.

Because it is computationally expensive to use rns to evaluate the maximum rotation

frequency for a wide range of values in a 4-parameter space, one can also use an empirical

formula. Haensel and Zdunik [55] found that the maximum stable rotation for a given EOS

can be found from the maximum-mass spherically symmetric model for that EOS with mass

Ms and radius Rs : (
Ωmax

104 s−1

)
≈ κ

(
Ms

M�

) 1
2
(

Rs

10 km

)− 3
2

. (2.10)

In other words the maximum rotation is proportional to the square root of the average
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Figure 10 : The above surface represents the set of parameters that result in a maximum spin frequency of

716 Hz for the top surface. For high values of p1 there is no dependence on Γ3. The wedge at the back right

is the shaded region of Fig. 4, corresponding to incompatible values of p1 and Γ1.

Figure 11 : The above surfaces represent the set of parameters that result in a maximum spin frequency of

1200 Hz for the top surface and 1500 Hz for the bottom surface. That is, observations of such high spin

frequencies would constrain the EOS to lie below the corresponding surface. For these surfaces Γ1 = 5, the

least constraining value.

density of the star.

The original calculation of Haensel and Zdunik gave κ = 0.77. An overview of subsequent

calculations is given by Haensel et al. in [56], reporting values of κ = 0.76 − 0.79 for a

range of EOS sets and calculation methods including those of [57, 58, 59]. If we calculate

maximum rotations with rns as described above, using the 34 tabulated EOSs, we find

κ = 0.786± 0.030. The corresponding best fit parametrized EOSs give κ = 0.779± 0.027.
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2.5.5 Moment of inertia or radius of a neutron star of known mass

The moment of inertia of the more massive component, pulsar A, in the double pulsar

PSR J0737-3039 may be determined to an accuracy of 10% within the next few years [18]

by measuring the advance of the system’s periastron, and implications for candidate EOSs

have been examined in [19, 18, 60]. As noted earlier, by finding both mass and moment of

inertia of the same star one imposes a significantly stronger constraint on the EOS parameter

space than the constraints associated with measurements of mass or spin alone: The latter

restrict the EOS to the region of parameter space lying on one side of a surface, the region

associated with the inequality Mmax(p1,Γi) > Mobserved or with Ωmax(p1,Γi) > Ωobserved.

The simultaneous measurement, on the other hand, restricts the EOS to a single surface.

That is, in an n-dimensional parameter space, the full n-dimensional set of EOSs which allow

a 1.338 M� model, and those EOSs for which that model has moment of inertia Iobserved

form the (n−1)-dimensional surface in parameter space given by I(p1,Γi,M = 1.338M�) =

Iobserved. (We use here the fact that the 44 Hz spin frequency of pulsar A is slow enough

that the moment of inertia is nearly that of the spherical star.) Moreover, for almost all

EOSs in the parameter space, the central density of a 1.338 M� star is below the transition

density ρ2. Thus the surfaces of constant moment of inertia have negligible dependence on

Γ3, the adiabatic index above ρ2, and the EOS is restricted to the two-dimensional surface

in the p1-Γ1-Γ2 space given by I(p1,Γ1,Γ2,M = 1.338M�) = Iobserved.

This difference in dimensionality means that, in principle, the simultaneous equali-

ties that give the constraint from observing two features of the same star are dramati-

cally stronger than the inequalities associated with measurements of mass or spin alone.

In practice, however, the two-dimensional constraint surface is thickened by the error

of the measurement. The additional thickness associated with the error with which the

parametrized EOS can reproduce the moment of inertia of the true EOS is smaller, because

the parametrized EOS reproduces the moment of inertia of the 34 candidate EOSs to within

2.8% (|mean|+ 1σ).

In Fig. 12 we plot surfaces of constant moment of inertia that span the range associated

with the collection of candidate EOSs. The lower shaded surface represents I = 1.0 ×
1045 g cm2. This surface has very little dependence on Γ1 because it represents a more

compact star, and thus for a fixed mass, most of the mass is in a denser state ρ > ρ1. The

structures of these stars do depend on Γ3, and the corresponding dependence of I on Γ3

is shown by the separation between the surfaces in Fig. 12. The middle outlined surface

represents I = 1.5 × 1045 g cm2, and is almost a surface of constant p1. The top outlined

surface represents I = 2.0× 1045 g cm2. This surface has little dependence on Γ2, because
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a star with an EOS on this surface would be less compact and thus most of its mass would

be in a lower density state ρ < ρ1.

Figure 12 : The above surfaces represent the set of parameters that result in a star with a mass of 1.338 M�

and a fixed moment of inertia, i.e. possible near-future measurements of PSR J0737-3039A. I = 1.0 ×
1045 g cm2 for the shaded surfaces, whose separation corresponds to varying Γ3. I = 1.5 × 1045 g cm2 for

the middle outlined surface. I = 2.0× 1045 g cm2 for the top outlined surface. The wedge at the back right

is the shaded region of Fig. 4, corresponding to incompatible values of p1 and Γ1.

If the mass of a neutron star is already known, a measurement of the radius constrains the

EOS to a surface of constant mass and radius, R(p1,Γi) = Robserved,M(p1,Γi) = Mobserved

in the 4-dimensional parameter space. The thickness of the surface is dominated by the

uncertainty in the radius and mass measurements, since our parameterization produces

the same radius as the candidate EOSs to within 1.7% (|mean| + 1σ). We plot in Fig. 13

surfaces of constant radius for a 1.4 M� star that span the range of radii associated with the

collection of candidate EOSs. As with the moment of inertia, the radius depends negligibly

on Γ3 as long as the radius is greater than 11 km. For smaller radii, the variation with Γ3

is shown by the separation between the surfaces in Fig. 13.

Very recently analyses of time-resolved spectroscopic data during thermonuclear bursts

from two neutron stars in low-mass x-ray binaries were combined with distance estimates

to yield M = 1.4 M� and R = 11 km or M = 1.7 M� and R = 9 km for EXO 1745-248 [61]

and M = 1.8 M� and R = 10 km for 4U 1608-52 [62], both with error bars of about 1 km in

R. These results are more model dependent than the eventual measurement of the moment

of inertia of PSR J0737-6069A, but the accuracy of the measurement of I remains to be

seen.
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Figure 13 : The above surfaces represent the set of parameters that result in a star with a mass of 1.4 M� and

a fixed radius. R = 9 km for the shaded surfaces, whose separation corresponds to varying Γ3. R = 12 km

for the middle outlined surface. R = 16 km for the top outlined surface. The wedge at the back right is the

shaded region of Fig. 4, corresponding to incompatible values of p1 and Γ1.

2.5.6 Combining constraints

The simultaneous constraints imposed by causality, a maximum observed mass of 1.93M�,

and a future measurement of the moment of inertia of PSR J0737-3039A, restrict the pa-

rameter space to the intersection of the allowed regions of Figs. 7, 8, and 12. We show in

Fig. 14 the projection of the joint constraint from causality and maximum observed mass

on the p1−Γ2−Γ3 subspace, and we show in Fig. 15 the joint constraint from including the

moment of inertia of PSR J0737-3039A as well. This allows one to see the cutoffs imposed

by causality that eliminate large values of Γ2 and Γ3 and (in the left of Fig. 15) the cutoffs

imposed by the existence of a 1.93M� model that eliminates small values of Γ2 and Γ3.

We noted above that measuring the moment of inertia of a 1.338M� star restricts the

EOS at densities below ρ2 to a two-dimensional surface in the p1−Γ1−Γ2 space. In the full

4-dimensional parameter space, the corresponding surfaces of constant M and I of Fig. 15

are then three dimensional and independent of Γ3. Their projections onto the p1 − Γ2 − Γ3

subspace are again three-dimensional and independent of Γ3, their thickness due to the

unseen dependence of the mass and moment of inertia on Γ1. For small moments of inertia

there is negligible dependence on Γ1 so the allowed volume in Fig. 15 is thin. The thickness

of the allowed volume increases as the moment of inertia increases because the dependence

on Γ1 also increases.

In Fig. 16 we explore a relation between the moment of inertia I(1.338) of PSR J0737-

3039A and the maximum neutron star mass, in spite of the fact that the maximum mass is

significantly greater than 1.338 M�. For three values of the moment of inertia that span the
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Figure 14 : The figure portrays the joint constraint imposed by causality (vs,max < 1+mean+1σ) and the

existence of a 1.93 M� neutron star. The dark shaded region is the volume in Γ2 − Γ3 − p1 space ruled

out by the requirement that the EOS be causal, and the light shaded region is the volume ruled out by the

1.93 M� neutron star.

Figure 15 : The figure portrays the joint constraint imposed by causality (vs,max < 1+mean+1σ), the

existence of a 1.93 M� neutron star, and by a future measurement of the moment of inertia I of J0737-

3039A. Each thick shaded surface is the volume in Γ2−Γ3− p1 space allowed by the joint constraint for the

labeled value of I.

full range associated with our collection of candidate EOSs, we show joint constraints on Γ2

and Γ3 including causality and maximum neutron star mass. For I(1.338) = 1.0×1045 g cm2,

Γ2 is nearly unconstrained, while Γ3 is required to lie in a small range between the causality

constraint and the reliable observations of stars with mass 1.7 M�. However, for the recently

measured 1.93 M� neutron star, this value for the moment of inertia is completely ruled

out. For larger values of I(1.338), Γ2 is more constrained and Γ3 is less constrained.

The allowed range for p1 as a function of the moment of inertia of J0737-3039A is shown

in Fig. 17. The entire shaded range is allowed for a 1.7 M� maximum mass. The medium

and darker shades are allowed for a 2.0 M� maximum mass. Only the range with the darker
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Figure 16 : The allowed values of Γ2 and Γ3 depend strongly on the moment of inertia of PSR J0737-3039A.

In top left, top right, and bottom figures, respectively, I has the values 1.0×1045 g cm2, I = 1.5×1045 g cm2

and I = 2.0 × 1045 g cm2. In each figure the upper curves are the vs,max = 1 (dotted) and vs,max =

1+mean+1σ = 1.12 (solid) causality constraints. Shading indicates a range of possible maximum mass

constraints, with increasing maximum mass leading to a smaller allowed area. All shaded areas are allowed

for a 1.7 M� maximum neutron star mass. The medium and dark shades are allowed if a 2.0 M� star is

confirmed. Only the darkest shade is allowed if a 2.3 M� star is confirmed.

shade is allowed if a 2.3 M� star is confirmed. It should be noted that for small moments

of inertia, this plot overstates the uncertainty in the allowed parameter range. As shown in

Fig. 15, the allowed volume in Γ2−Γ3− p1 space for a small moment of inertia observation

is essentially two dimensional. If the moment of inertia is measured to be this small, then

the EOS would be better parametrized with the linear combination α log(p1) +βΓ2 instead

of two separate parameters log(p1) and Γ2. We also note that the recent 1.97 ± 0.04 M�

NS observation essentially rules out values of I(1.338) < 1.0× 1045 g cm2.

2.6 Discussion

We have shown how one can use a parametrized piecewise polytropic EOS to systematize

the study of observational constraints on the EOS of cold, high-density matter. We think
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Figure 17 : The allowed range of p1 as a function of the moment of inertia of J0737-3039A when combined

with causality (vs,max = 1+mean+1σ) and observed mass constraints. All shaded areas are allowed by a

1.7 M� maximum mass. The medium and dark shades are allowed if a 2.0 M� star is confirmed. Only the

darkest shade is allowed if a 2.3 M� star is confirmed.

that our choice of a 4-parameter EOS strikes an appropriate balance between the accuracy

of approximation that a larger number of parameters would provide and the number of

observational parameters that have been measured or are likely to be measured in the

next several years. The simple choice of a piecewise polytrope, with discontinuities in the

polytropic index, leads to suitable accuracy in approximating global features of a star. But

the discontinuity reduces the expected accuracy with which the parametrized EOS can

approximate the local speed of sound. One can largely overcome the problem by using a

minor modification of the parametrized EOS in which a fixed smoothing function near each

dividing density is used to join the two polytropes.

We see that high-mass neutron stars are likely to provide the strongest constraints from

a single measurement. The work dramatizes the significantly more stringent constraints

associated with measurements like this, if two (or more) physical features of the same

star can be measured, and an n-dimensional parameter space is reduced by one (or more)

dimension(s), to within the error of measurement. In particular, a moment of inertia mea-

suremement for PSR J0737-3039 (whose mass is already precisely known) could strongly

constrain the maximum neutron star mass.

Finally, we note that the constraints from observations of different neutron star popula-

tions constrain different density regions of the EOS. For moderate mass stars such as those
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found in binary pulsar systems, the EOS above ρ2 = 1015.0 g/cm3 is unimportant. For near-

maximum mass stars, the EOS below ρ1 = 1014.7 g/cm3 has little effect on neutron star

properties. This general behavior is independent of the details of our parameterization.
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Chapter 3

Point-particle waveform

approximations

The available electromagnetic observations presented in the last chapter offer useful, but still

weak, constraints on the equation of state. Claimed mass–radius measurements offer the

potential to provide significantly stronger constraints if they can be confirmed, and mass–

moment of inertia measurements will offer similar constraints if they can be measured.

Only recently, however, has the potential for gravitational-wave detectors to measure EOS-

dependent information from binary inspiral received much attention.

In this chapter we state the results of the post-Newtonian (PN) approximation to the

inspiral stage of coalescing binary black hole (BBH) systems, and discuss several methods

for obtaining time and frequency domain inspiral waveforms. A more detailed review of the

PN formalism can be found in Refs. [63, 64]. We then describe two methods for extending

the PN approximation to the merger and ringdown stages of coalescence. In the next

chapter we describe how the presence of matter in binary neutron star (BNS) and black

hole-neutron star (BHNS) systems modifies the BBH waveform via tidal interactions. First,

however, we discuss the general features of a binary waveform.

3.1 Description of a binary waveform

In general relativity, a gravitational wave far from a source is a linear perturbation hµν

of a flat background spacetime ηµν such that the metric is gµν = ηµν + hµν . The gauge

symmetry of general relativity allows one to choose the Lorenz gauge condition

∂ν h̄µν = 0, (3.1)
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where h̄µν = hµν − 1
2ηµνh is the trace reversed perturbation [64]. In the Lorenz gauge, the

Einstein equation Rµν − 1
2gµνR = 8πTµν becomes

�h̄µν = −16πTµν . (3.2)

Outside the source, where the stress energy tensor Tµν = 0 and therefore �h̄µν = 0, an

additional coordinate transformation that still preserves the Lorenz gauge condition can be

made such that h̄ is transverse and traceless, and the waveform therefore satisfies [64]

h0µ = 0, hii = 0, ∂ihij = 0. (3.3)

In general, the transverse traceless projection hTT
ij of a generic perturbation hij is given

by hTT
ij = Λijklhkl, where Λijkl = PikPjl − 1

2PijPkl is the transverse traceless projection

operator and Pij = δij − ninj is the standard projection operator used to project tensors

orthogonal to ni.

The four constraint equations from the Lorenz gauge condition and the additional four

equations from the transverse traceless condition reduce the 10 components of the symmetric

perturbation hµν to two degrees of freedom. The waveform can therefore be written in terms

of the two polarization tensors (e+)ij and (e×)ij

hTT
ij = h+e

+
ij + h×e

×
ij . (3.4)

As can be seen by Eq. (3.3), for a source centered at the origin, the + and × polarization

tensors in spherical coordinates (r, ι, φ) are

e+
ij = ι̂iι̂j − φ̂iφ̂j , (3.5)

e×ij = ι̂iφ̂j + ι̂jφ̂i. (3.6)

For a binary in the x–y plane, the polar angle ι is called the inclination angle.

The components of the waveform can be combined into the complex scalar h = h+−ih×,

which is related to the Weyl scalar Ψ4
1 by Ψ4 = ḧ for asymptotic values of r. This scalar

can be decomposed in terms of spin-weighted spherical harmonics2 of spin s = −2

h = h+ − ih× =

∞∑
`=2

∑̀
m=−`

−2Y`m(ι, φ)h`m(t, r), (3.7)

1The 10 independent components of the Weyl tensor Cαβγδ can be represented in terms of 5 complex

scalars Ψ0–Ψ4. These scalars are defined by contracting the Weyl tensor with the basis vectors of a null

tetrad which can be written in terms of the spherical coordinates used here as (ˆ̀= 1√
2
(t̂+ r̂), n̂ = 1√

2
(t̂− r̂),

m̂ = 1√
2
(ι̂ + iφ̂), m̂∗ = 1√

2
(ι̂ − iφ̂)). Ψ4 represents outgoing gravitational radiation and is defined by

Ψ4 = −Cαβγδn̂αm̂∗βn̂γm̂∗δ [65].
2Under a rotation of angle ψ about the radial vector r̂, the vector m̂ in S2 transforms as m̂′ = eiψm̂.

A function η which transforms as η′ = esiψη is said to have spin weight s [66]. The Weyl scalar Ψ4, which

transforms as Ψ′4 = −Cαβγδn̂αm̂′∗βn̂γm̂′∗δ = e−2iψΨ4 where m̂′∗ = e−iψm̂∗, therefore has spin weight −2.
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where a general expression for sY`m and a table for the first few spin weight −2 harmonics is

given in Ref. [67]. These spin weighted spherical harmonics are orthogonal over the 2-sphere

∫
S2

sY`m(ι, φ)sY
∗
`′m′(ι, φ)dΩ = δ``′δmm′ , (3.8)

where dΩ = dφ sin ιdι, and satisfy the following completeness relation

∞∑
`=|s|

∑̀
m=−`

sY`m(ι, φ)sY
∗
`m(ι′, φ′) = δ(φ− φ′)δ(cos ι− cos ι′). (3.9)

From these relations we see that a generic gravitational waveform, can be decomposed into

harmonics with

h`m(t, r) =

∫
S2

h(t, r, ι, φ)−2Y`m(ι, φ)dΩ, (3.10)

and we also note that h`,m = (−1)`h∗`,−m.

For circular orbits in the low-velocity, weak-field approximation, the only nonzero modes

are the h2,±2 modes with corresponding spin weighted spherical harmonics

−2Y2,±2 =

√
5

64π
(1± cos ι)2e±2iφ. (3.11)

Assuming the observer is in the x–z plane, φ = 03, and the waveform is given by

h = h2,−2 −2Y2,−2 + h2,2 −2Y2,2 (3.12)

=

√
5

64π
[(1− cos ι)2h∗2,2 + (1 + cos ι)2h2,2], (3.13)

and in the special case of an optimally oriented binary (ι = 0), h = 4
√

5
64πh2,2. Later in

the inspiral, higher modes will begin to contribute. However, for the circular non-precessing

orbits that we will consider in this dissertation, the higher modes are usually significantly

smaller than the ` = |m| = 2 modes, and we will therefore focus mainly on this mode for

the remainder of the dissertation. Future work will need to incorporate these higher modes.

3.2 Post-Newtonian approximation

The post-Newtonian formalism re-expresses the general relativistic description of a system

of particles, given in terms of the Einstein field equations and geodesic equation, into the

standard equations of motion of Newtonian physics, given in terms of the acceleration of

3As we will see, the waveform of a binary has an overall phase constant, and this condition is equivalent

to redefining the phase constant.
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particles through flat Euclidean space. Although far more involved than what is presented

here, the equations of motion are found by systematically expanding the metric and the

Einstein field equations in powers of the dimensionless parameter ε ∼
√
GM/c2d ∼ v/c,

where M is the total mass of the system, d is the scale of the system, and v is the character-

istic velocity of particles in the system. The metric is then solved iteratively in powers of ε,

and the equations of motion are evaluated from the metric using the geodesic equation.4 An

expansion containing terms up to εn or equivalently (1/c)n is denoted an n
2 PN expansion.

3.2.1 Energy and luminosity

The equations of motion that result from this expansion will have terms containing even

powers of 1/c and terms containing odd powers of 1/c. The terms with even powers of 1/c

are time reversal invariant, and therefore admit a Lagrangian with an associated conserved

energy. For a binary system of total mass M = M1 + M2 in circular orbit with angular

velocity Ω, the energy in terms of the gauge independent quantity

x = (MΩ)2/3, (3.14)

is given to 3.5PN order by [63, 64]

E = −1

2
Mηx

{
1 +

(
−3

4
− η

12

)
x+

(
−27

8
+

19η

8
− η2

24

)
x2

+

[
−675

64
+

(
34445

576
− 205π2

96

)
η − 155η2

96
− 35η3

5184

]
x3

}
,

(3.15)

where η = M1M2/M
2 is the symmetric mass ratio.

Terms with odd powers of 1/c in the equations of motion, which begin at 2.5PN (1/c5)

order, on the other hand, determine the radiation reaction and are associated with the

gravitational-radiation luminosity L. For an expansion up to the currently known 3.5PN

order, only the 2.5 and 3.5PN terms contribute to the luminosity, and this means that the

expression for L is only known explicitly to 1PN beyond the leading order. To obtain the

luminosity to the same PN order as the energy, we must apply a different method. Although

only known to be true to 1PN order, we can reasonably assume that the energy balance

equation
dE

dt
= −L (3.16)

4See, for example, Ref. [63] for a review of the post-Newtonian expansion, and Ref. [67] for an explicit

derivation of the 1PN equations of motion and waveform.
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holds at each PN order [63]. Far from the source, where the gravitational perturbation is

linear, the luminosity can be calculated from

L =
r2

32π

∫
dΩ〈ḣTT

ij ḣ
TT
ij 〉. (3.17)

We now need to find the waveform in terms of the source. Ignoring significant details in the

derivation, which are outlined more thoroughly in Refs. [63, 64], the waveform hTT
ij can be

matched to the post-Newtonian metric by performing a multipole decomposition of both

the waveform and PN metric in a shell with inner radius outside the source and outer radius

much less than a wavelength from the source. The metric will contain contributions from

the instantaneous mass and current multipoles as well as contributions from hereditary tail

terms that depend on the past history of the multipoles and result in logarithmic terms.

The final result for the luminosity sourced by a binary system in circular orbit is [63, 64]

L =
32

5
η2x5

{
1 +

(
−1247

336
− 35η

12

)
x+ 4πx3/2 +

(
−44711

9072
+

9271η

504
+

65η2

18

)
x2

+

(
−8191

672
− 583η

24

)
πx5/2 +

[
6643739519

69854400
+

16π2

3
− 1712γE

105
− 856

105
ln(16x)

+

(
−134543

7776
+

41π2

48

)
η − 94403η2

3024
− 775η3

324

]
x3

+

(
−16285

504
+

214745η

1728
+

193385η2

3024

)
πx7/2

}
,

(3.18)

where γE ≈ 0.5772 is Euler’s constant. The dominant mode of the waveform, decomposed

into spin weighted spherical harmonics, is [68, 69]

h22 = −8

√
π

5

Mη

D
e−2iφx

{
1 +

(
−107

42
+

55η

42

)
x+ 2πx3/2

+

(
−2173

1512
− 1069η

216
+

2047η2

1512

)
x2 +

[
−107π

21
+

(
34π

21
− 24i

)
η

]
x5/2

+

[
27027409

646800
− 856γE

105
+

2π2

3
+

428iπ

105
− 428

105
ln(16x)

+

(
41π2

96
− 278185

33264

)
η − 20261η2

2772
+

114635η3

99792

]
x3

}
,

(3.19)

where φ is the phase of the binary orbit. Although not needed for this dissertation, higher

order modes are listed in Refs. [68, 69].

3.2.2 Orbital phase of the binary

From the energy balance equation we can find the phase φ of the orbit by performing a

change of variable

L = −dE
dt

= −dE/dx
dt/dx

. (3.20)
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Since x =
(
M dφ

dt

)2/3
, the phase is found by integrating the following two equations

dx

dt
= − L

dE/dx
, (3.21)

dφ

dt
=
x3/2

M
. (3.22)

There are several methods to integrate this system of equations, the four most common of

which are labeled TaylorT1–TaylorT4 [67]. In the TaylorT1 method, Eqs. (3.15) and (3.18)

are simply plugged into Eq. (3.21), and the system is then integrated numerically starting

with the initial conditions x0 = (MΩ0)2/3 and φ0. In the TaylorT2 approach, the equations

are written

t(x) = tc +

∫ xc

x

dE/dx′

L(x′)
dx′, (3.23)

φ(x) = φc +
1

M

∫ xc

x
x′3/2

dE/dx′

L(x′)
dx′ (3.24)

The integrands are reexpanded and truncated at the appropriate PN order, then integrated

to give analytical series solutions for t(x) and φ(x). The TaylorT3 method starts with

the TaylorT2 result, then inverts the series to obtain x and φ as explicit functions of the

auxiliary variable Θ(t) = η
5M (tc − t). To do this, the series solution to t(x) is inverted to

obtain a series solution for x(Θ(t)). This solution is then plugged into the series solution for

φ(x) and reexpanded to give φ(Θ(t)). Finally, in the TaylorT4 method, which appears to

agree best with equal mass BBH simulations at 3.5PN order [70], the right side of Eq. (3.21)

is reexpanded in a Taylor series and then truncated at 3.5PN order [71]:

dx

dt
=

64

5

ηx5

M

{
1 +

(
−743

336
− 11η

4

)
x+ 4πx3/2 +

(
34103

18144
+

13661η

2016
+

59η2

18

)
x2

+

(
−4159

672
− 189η

8

)
πx5/2 +

[
16447322263

139708800
− 1712γE

105
+

16π2

3
− 856

105
ln(16x)

+

(
451π2

48
− 56198689

217728

)
η +

541η2

896
− 5605η3

2592

]
x3

+

(
−4415

4032
+

358675η

6048
+

91495η2

1512

)
πx7/2

}
.

(3.25)

Eqs. 3.25 and 3.22 are then integrated numerically as in the TaylorT1 approach. The

waveform can now be evaluated by plugging the solutions for x(t) and φ(t) into the waveform

h22 (Eq. 3.19).
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3.2.3 Stationary phase approximation

As we shall see in later chapters, we will often need the Fourier transform of a waveform.

For a generic waveform

h`m(t) = A`m(t)e−imφ(t) dt, (3.26)

the Fourier transform is given by

h̃`m(f) =

∫ ∞
−∞

A`m(t)eiΦ(t) dt, (3.27)

where Φ(t) = 2πft − mφ(t). The Fourier transform can be evaluated numerically; how-

ever, when the amplitude and frequency are slowly varying with time (d lnA/dt � dφ/dt

and d2φ/dt2 � (dφ/dt)2), it is possible to use the stationary phase approximation (SPA).

When the SPA conditions hold, the main contribution to the integral comes from the re-

gion centered on the stationary phase time tsp when the integrand is not changing with

time [Φ̇(tsp) = 2πf − mφ̇(tsp) = 0], while far from the stationary point the integrand is

rapidly oscillating and contributes little to the integral. Around this point the phase can

be approximated with a Taylor series

Φ(t) ≈ 2πftsp −mφ(tsp)− 1

2!
mφ̈(tsp)(t− tsp)2. (3.28)

The Fourier transform now becomes

h̃`m(f) ≈ A`m(tsp)

√
2π

mφ̈(tsp)
eiψ`m(f),

ψ`m(f) = 2πftsp −mφ(tsp)− π

4
,

(3.29)

where
∫∞
−∞ exp[−ia(t−tsp)2] dt =

√
π/a exp(−iπ/4). The quantities tsp, φ(tsp), andA`m(tsp)

can be written as functions of f using x(tsp) = (Mφ̇(tsp))2/3 = (2πMf/m)2/3, and as with

time domain post-Newtonian waveforms there are several ways to do this. The most com-

mon version known as TaylorF2 closely follows the time domain TaylorT2 approach. The

time and phase are written as parametric functions of x

tsp = tc +

∫ xc

x(tsp)

dE/dx

L(x)
dx, (3.30)

φ(tsp) = φc +
1

M

∫ xc

x(tsp)
x3/2dE/dx

L(x)
dx, (3.31)

and as in the TaylorT2 approach the ratios in the integral are reexpanded then truncated

at the appropriate PN order. The term in the square root of Eq. (3.29) can be written

using φ̈(tsp) = 3
2M x

1/2(tsp)
dx(tsp)
dt , and dx

dt can be rewritten with the TaylorT1 method, the
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TaylorT4 method (3.25), or the entire amplitude term can be reexpanded then truncated.

The method that gives the best agreement with the Fourier transform of BBH simulations

during the late inspiral is the TaylorT4 method [72]. The TaylorF2 waveform (with TaylorT4

amplitude) is then

h̃`m(f) = A`m(x(tsp))

√√√√ 4πM

3mx1/2(tsp)
dx(tsp)
dt

∣∣∣
T4

eiψ`m(f), (3.32)

ψ`m(f) = 2πftc −mφc −
π

4
+
m

M

∫ xc

x(tsp)
[x3/2(tsp)− x3/2]

dE/dx

L(x)
dx. (3.33)

The ` = m = 2 harmonic is, for example,

ψ22(f) = 2πftc − 2φc −
π

4
+

3

128η
(πMf)−5/3

{
1 +

(
3715

756
+

55η

9

)
(πMf)2/3 − 16π(πMf)

+

(
15293365

508032
+

27145η

504
+

3085η2

72

)
π(πMf)4/3

+ [1 + ln(πMf)]

(
38645

756
− 65η

9

)
π(πMf)5/3

+

[
11583231236531

4694215680
− 640π2

3
− 6848γE

21
− 6848

63
ln(64πMf)

+

(
−15737765635

3048192
+

2255π2

12

)
η +

76055η2

1728
− 127825η3

1296

]
(πMf)2

+

(
77096675

254016
+

378515η

1512
− 74045η2

756

)
π(πMf)7/3

}
.

(3.34)

3.3 Frequency-domain phenomenological waveforms

During the late inspiral, the assumptions of slow motion (v � c) and weak gravitational

field (GM
c2d
� 1) used in the post-Newtonian formalism no longer hold, and new methods

are needed for constructing the waveform. Several methods have been developed to join

the post-Newtonian formalism during the inspiral to the results of numerical relativity and

perturbation theory during the merger and ringdown stages. In this section we will discuss a

frequency-domain phenomenological model which joins numerical waveforms for the merger

and ringdown of BBH systems to the stationary phase approximation PN waveform and then

constructs an analytic fit to this hybridized waveform. This phenomenological waveform

will be used as a starting point for constructing an analytic inspiral-merger-ringdown (IMR)

BHNS waveform in Chapter 8. In the next section we will discuss another approach, known

as the effective one body (EOB) formalism, for extending the post-Newtonian results to the

late inspiral and merger. The EOB formalism will be used in Chapter 7.
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Several frequency domain phenomenological models are now available for the complete

IMR BBH waveform. These models include the PhenomA [73] model for nonspinning BBH

systems, as well as the PhenomB [74] model and improved PhenomC [72] model for aligned-

spin BBH systems. Below, we will discuss the PhenomC waveform, which is fit to a wide

range of BBH simulations and places an emphasis on controlling errors due to matching the

numerical to the PN waveform.

In the models PhenomA–C, the Fourier transform of the waveform is decomposed into

an amplitude Aphen(f) and phase Φphen(f) as

h̃phen(f) = Aphen(f)eiΦphen(f). (3.35)

The inspiral is described by the TaylorF2 post-Newtonian waveform with the amplitude

given by |h̃22(f)| as in Eq. (3.32), and the phase given by ψ22(f) as in Eq. (3.34)5. For

aligned-spin waveforms, the spin of both black holes is parametrized by the single parameter

χ =
M1

M
χ1 +

M2

M
χ2, (3.36)

where χA = aA/MA ∈ (−1, 1) is the dimensionless spin parameter for black hole A.

During the premerger stage, defined as 0.1fRD < f < fRD where fRD is the mass and

spin dependent ringdown frequency of the dominant mode given explicitly in Ref. [72], the

TaylorF2 waveform will no longer be an accurate description. Instead, the amplitude can

be written in terms of the PN amplitude APN, but with an additional phenomenological

3PN correction γ1f
5/6 fit to numerical waveforms

APM(f) = APN(f) + γ1f
5/6. (3.37)

The phenomenological phase is written in a form similar to the TaylorF2 expansion (Eq. 3.34)

ψ22
PM(f) =

1

η
(α1f

−5/3 + α2f
−1 + α3f

−1/3 + α4 + α5f
2/3 + α6f), (3.38)

and the coefficients α1–α6 correspond to phenomenological 0PN, 1PN, 2PN, 2.5PN, 3.5PN,

and 4 PN corrections respectively.

During the ringdown stage (f > fRD), the amplitude is written as a product of a

Lorentzian(
L(f, f0, σ) = σ2

(f−f0)2+σ2/4

)
and the leading f−7/6 PN amplitude term,

ARD(f) = δ1L(f, fRD(a,M), δ2Q(a))f−7/6, (3.39)

5Note that A22(x) in Eq. (3.32) also has a small phase which is negligible during the inspiral and can be

ignored.
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where Q is the ringdown quality factor defined in [72], and δ1 and δ2 are phenomenological

parameters. The phase during ringdown, which grows roughly linearly, is written

ψ22
PM(f) = β1 + β2f. (3.40)

The parameters β1 and β2 are determined analytically by matching the value and slope of

the premerger phase at fRD.

The transitions between the inspiral, premerger, and ringdown regimes are smoothed by

means of windowing functions [72]. The 9 phenomenological parameters {α1, . . . , α6, γ1, δ1, δ2}
are found by maximizing the overlap with numerical waveforms. Each of the phenomeno-

logical parameters are then related to the physical parameters {η, χ} by a polynomial fit

with 5 parameters each [72].

3.4 Effective one body formalism

In this section we introduce another method for extending the validity of the post-Newtonian

formalism to the late inspiral, merger, and ringdown, known as the effective one body (EOB)

formalism and first introduced in Ref. [75]. The version used here is exactly that of Ref. [76],

and is described in more detail in a review [77]. The only ingredients not listed here are

terms for the re-sumed waveform in Ref. [78] and coefficients to determine the ringdown

waveform found in Ref. [79].

3.4.1 Hamiltonian dynamics

In the EOB formalism the two-body dynamics are replaced by a test particle of reduced mass

µ = M1M2/M moving in a modified Schwarzschild metric of total mass M = M1 +M2. In

the expressions below, we will use dimensionless coordinates rescaled by the total mass M ,

and the dynamical expressions will be rescaled by the test particle mass µ6. The modified

Schwarzschild metric has the form

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2 θdφ2). (3.41)

6The coordinates (T,R, φ) and conjugate momenta (PR, Pφ) have been rescaled to dimensionless co-

ordinates (t, r, φ) and momenta (pr, pφ) given by: t = T/M and r = R/M for the coordinates, and

pr = PR/µ, pφ = Pφ/µM for the conjugate momenta. Other quantities are then rescaled in the follow-

ing way: ω = MΩ = Mdφ/dT is the angular velocity, D̂ = D/M is the distance to the source, Ĥ = H/µ

and Ĥeff = Heff/µ are the Hamiltonian and effective Hamiltonian, and F̂φ = Fφ/µ is the radiation reaction

force.
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The metric potentials A and B can be calculated from post-Newtonian theory. The first

function is

A(u) = P 1
5

[
1− 2u+ 2ηu3 +

(
94

3
− 41π2

32

)
ηu4 + a5ηu

5 + a6ηu
6

]
, (3.42)

where u = 1/r and Pmn [·] denotes a Padé approximant of order m in the numerator and

n in the denominator. The 4 and 5 PN coefficients, a5 and a6, are fit to numerical BBH

waveforms. The values that give the optimal fit form a degenerate curve in the a5–a6

parameter space, and the specific values chosen here are (a5, a6) = (0,−20). The second

potential is rewritten as

D(r) = B(r)A(r), (3.43)

and has been calculated to 2PN order

D(u) = P 0
3 [1− 6ηu2 + 2(3η − 26)ηu3]. (3.44)

The motion of the EOB particle of mass µ is determined by the Hamiltonian

Ĥ =
1

η

√
1 + 2η(Ĥeff − 1), (3.45)

where

Ĥeff =

√√√√A(1/r)

(
1 +

p2
φ

r2
+
p2
r

B
+ 2η(4− 3η)

p4
r

r2

)
(3.46)

is the effective Hamiltonian. The equations of motion given this conservative Hamiltonian

Ĥ and a dissipative radiation-reaction force F̂i are

dr

dt
=

∂Ĥ

∂pr
(3.47)

dφ

dt
=

∂Ĥ

∂pφ
= ω (3.48)

dpr
dt

= −∂Ĥ
∂r

+ F̂r (3.49)

dpφ
dt

= −∂Ĥ
∂φ

+ F̂φ. (3.50)

Here, ∂Ĥ
∂φ = 0 because the EOB Hamiltonian does not have an explicit φ dependence. In

addition, for circularized binary inspiral the radial component of the radiation-reaction force

F̂r is of higher post-Newtonian order than the tangential component, so it is set to zero.

To increase resolution near the black hole, the radial coordinate can be rewritten in

terms of a tortoise coordinate [80] defined by

dr∗
dr

=

(
B

A

)1/2

. (3.51)
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The new radial momentum is then pr∗ = (A/B)1/2pr. Using this definition, the effective

Hamiltonian becomes

Ĥeff =

√√√√p2
r∗ +A(1/r)

(
1 +

p2
φ

r2
+ 2η(4− 3η)

p4
r∗

r2

)
(3.52)

where the parts that are 4PN and higher are neglected. (The 4 and 5 PN terms are however

accounted for in the free parameters a5 and a6 which were fit to numerical waveforms). The

equations of motion become

dr

dt
=

A√
D

∂Ĥ

∂pr∗
(3.53)

dφ

dt
=

∂Ĥ

∂pφ
= ω (3.54)

dpr∗
dt

= − A√
D

∂Ĥ

∂r
(3.55)

dpφ
dt

= F̂φ. (3.56)

3.4.2 Radiation reaction

For the radiation reaction term F̂φ, which is written in terms of the PN parameter x, we

will need a way to write x in terms of the dynamical variables. The usual method is to use

the Newtonion potential 1/r and velocity squared (ωr)2 as PN counting parameters and

then rewrite them in terms of the gauge invariant angular velocity ω using the Kepler law

ω2r3 = 1 which holds in the Newtonian limit, and for circular orbits, in the Schwarzschild

(η → 0) limit. The Kepler relation can be extended to circular orbits in the EOB metric

by defining a new radial parameter, rω = rψ1/3, where

ψ(r, pφ) =
2

r2

(
dA

dr

)−1
1 + 2η


√√√√A(r)

(
1 +

p2
φ

r2

)
− 1

 , (3.57)

for which ω2r3
ω = 1 holds for all circular orbits. In addition, for noncircular orbits (in par-

ticular for the plunge), this relation also relaxes the quasicircular condition by not requiring

that the Kepler relation hold. The specific choice of PN parameter used here is

x = (ωrω)2. (3.58)

See Ref. [81] for an extensive discussion.
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The radiation reaction term F̂φ used in Ref. [76] takes the form of a summation over all

multipoles

F̂φ = − 1

8πηω

8∑
`=2

∑̀
m=1

(mω)2|D̂h`m|2. (3.59)

Instead of using the standard Taylor expanded version of h`m which can be found in Ref. [69],

Ref. [78] decomposes the waveform into a product of terms

h22 = hNewt
22 ŜeffT22e

iδ22f22(x)fNQC
22 (3.60)

for ` = m = 2, and

h`m = hNewt
`m ŜeffT`me

iδ`mρ``m(x) (3.61)

for the other values of ` and m. The leading Newtonian part hNewt
`m is given in the usual

form as a function of x

hNewt
`m =

η

D̂
n`mc`+ε(η)x(`+ε)/2Y `−ε,−m

(π
2
, φ
)

(3.62)

where the coefficients n`m and c`+ε(η) are defined by Eqs. (5–7) of Ref. [78], and the parity

ε is 0 for `+m even and 1 for `+m odd.

The PN terms in the resummation which had been written as functions of x in Ref. [78]

are now written in terms of the dynamical variables. The effective source term Ŝeff be-

comes [82]

Ŝeff(r, pr∗ , pφ) =

{
Ĥeff(r, pr∗ , pφ) ε = 0
pφ
r2
ωω

ε = 1
. (3.63)

The tail term is

T`m(r, pr∗ , pφ) =
Γ(`+ 1− 2i

ˆ̂
k)

Γ(`+ 1)
eπ

ˆ̂
ke2i

ˆ̂
k ln 2kr0 , (3.64)

where
ˆ̂
k = ηmĤ(r, pr∗ , pφ)ω(r, pr∗ , pφ), k = mω(r, pr∗ , pφ), and r0 = 2. The phase of this tail

term is corrected with a term of the form eiδ`m . The first ten δ`m are given in Eqs. (20–29)

of Ref. [78]. The first one is

δ22 =
7

3
y3/2 +

428π

105
y3 − 24ηȳ5/2, (3.65)

where y = (ηĤ(r, pr∗ , pφ)ω(r, pr∗ , pφ))2/3 and ȳ, which has several possible forms, is chosen

to be ȳ = ω2/3 [82]. Finally, the remainder term of the resummation f`m is expanded in

powers of x. For ` = m = 2 this is then re-summed with a Padé approximant

f22(x) = P 3
2 [fTaylor

22 (x)], (3.66)
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where

fTaylor
22 (η, x) = 1 +

55η − 86

42
x+

2047η2 − 6745η − 4288

1512
x2

+

(
114635η3

99792
− 227875η2

33264
+

41π2η

96
− 34625η

3696
− 856

105
eulerln2(x) +

21428357

727650

)
x3

+

(
36808

2205
eulerln2(x)− 5391582359

198648450

)
x4

+

(
458816

19845
eulerln2(x)− 93684531406

893918025

)
x5,

(3.67)

and the eulerlnm(x) = γE+ln 2+ 1
2 lnx+lnm terms are treated as constants when calculating

the Padé approximant. For the other values of ` and m, f`m is re-summed in the form

f`m = ρ``m. The quantity ρ`m is given in Eqs. (C1–C35) of Ref. [78]. ρ21 is for example

ρ21 = 1 +

(
23η

84
− 59

56

)
x+

(
617η2

4704
− 10993η

14112
− 47009

56448

)
x2

+

(
7613184941

2607897600
− 107

105
eulerln1(x)

)
x3

+

(
6313

5880
eulerln1(x)− 1168617473883

911303737344

)
x4.

(3.68)

The final product in the resummation of h22 is a next-to-quasicircular (NQC) correction

term that is used to correct the dynamics and waveform amplitude during the plunge

fNQC
22 (a1, a2) = 1 +

a1p
2
r∗

(rω)2
+
a2r̈

rω2
. (3.69)

The free parameters a1 and a2 are determined by the following conditions: (i) the time

when the orbital frequency ω is a maximum (the EOB merger time tM ) coincides with the

time when the amplitude |h22| is a maximum, and (ii) the value of the maximum amplitude

is equal to a fitting function that was fit to several BBH simulations, given by [76]

|h22|max(η) = 1.575η(1− 0.131(1− 4η)), (3.70)

and is accurate to ∼1%.

3.4.3 Integrating the equations of motion

The equations of motion are solved by starting with initial conditions {r0, φ0, pr∗0, pφ0} and

numerically integrating the equations of motion. In this paper we are interested in long,
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zero-eccentricity orbits. This can be achieved in the EOB framework by starting the inte-

gration with large r, where radiation reaction effects are small, and using the quasicircular

condition pr∗ = 0. Eq. (3.55) then becomes

∂H

∂r
(r, pr∗ = 0, pφ) = 0 (3.71)

and results in the condition

p2
φ = −

d
duA(u)

d
du(u2A(u))

(3.72)

for pφ. If this quasicircular initial condition is used for smaller r, the radiation reaction term

is no longer negligable, and this initial condition will result in eccentric orbits. If desired, one

can use an initial condition that more accurately approximates a zero eccentricity inspiral

such as post-circular or post-post-circular initial conditions with nonzero pr∗ [83].

To numerically solve Eqs. (3.53–3.56), they must be written as a system of first order

equations. However, the term F̂φ in Eq. (3.56) which is constructed from Eqs. (3.59–3.69),

contains the square of r̈ from the NQC term fNQC
22 (Eq. 3.69). Since fNQC

22 gives a small

correction of order 10% during the plunge, the easiest method, and that used in Ref. [76],

is iteration [82]: (i) First solve the system of equations with fNQC
22 set to one. (ii) Use the

solution of Eqs. (3.53–3.56) to evaluate r̈ and the other quantities in fNQC
22 . (iii) Re-solve

the equations of motion with the NQC coefficients no longer set to one. (iv) Repeat steps

(ii) and (iii) until the solution converges to the desired accuracy. In practice this iteration

only needs to be done 2–5 times.

A second method is to directly rewrite Eq. (3.56) as a first order equation. This can

be done by replacing r̈ in the NQC term (Eq. 3.69), contained in the expression for F̂ on

the right hand side of Eq. (3.56), with an expression containing ṗφ and then solving for ṗφ.

The equations of motion (3.53–3.56) and the chain rule give

r̈ =
d

dt

(
A√
D

∂Ĥ

∂pr∗

)
= L+M +Nṗφ, (3.73)

where

L =
1

2

∂

∂r

A2

D

(
∂Ĥ

∂pr∗

)2
 (3.74)

M = −A
2

D

∂Ĥ

∂r

∂2Ĥ

∂p2
r∗

(3.75)

N =
A√
D

∂2Ĥ

∂pr∗∂pφ
. (3.76)
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Plugging Eq. (3.73) into the expression for F̂ in Eq. (3.56) yields an equation quadratic

in ṗφ which can be solved exactly if desired. To first order in the NQC correction term,

Eq. (3.56) now becomes the first order equation

dpφ
dt

=
F̂φ,Higher + F̂QC

φ,22

[
1 + 2

a1p2
r∗

(rω)2 + 2 a2
rω2 (L+M)

]
1− 2F̂QC

φ,22
a2
rω2N

, (3.77)

where

F̂φ,Higher = − 1

8πηω

8∑
`=2

∑̀
m=1

(`,m) 6=(2,2)

(mω)2|D̂h`m|2 (3.78)

includes just the higher order terms (`,m) 6= (2, 2), and

F̂QC
φ,22 = − 1

8πηω
(2ω)2|D̂hQC

22 |
2. (3.79)

Here, hQC
22 = h22/f

NQC
22 is the portion of h22 that does not contain the NQC term.

The solution to the equations of motion {r(t), φ(t), pr∗(t), pφ(t)} are then plugged back

into Eqs. (3.60–3.61) to give the waveform hinspiral
`m (t).

3.4.4 Ringdown

In the EOB formalism the ringdown waveform of the final Kerr black hole is smoothly

matched onto the inspiral waveform at the EOB merger time tM . The mass of the black

hole remnant is given by the energy of the EOB particle at the merger time tM

MBH ≡ µĤ(tM ) = M

√
1 + 2η(Ĥeff(tM )− 1), (3.80)

and the Kerr parameter is given by the final angular momentum of the EOB particle [84]

âBH ≡
Pφ(tM )

M2
BH

=
ηpφ(tM )

1 + 2η(Ĥeff(tM )− 1)
. (3.81)

The ringdown waveform is given by the first five positive quasinormal modes (QNM)

for a black hole of mass MBH and spin âBH:

hringdown
22 (t) =

1

D̂

4∑
n=0

C+
22ne

−σ+
22n(t−tM ), (3.82)

where σ+
22n = α22n+iω22n is the nth complex ` = m = 2 QNM frequency for a Kerr BH with

mass M̂BH and spin âBH, and C+
22n are complex constants that determine the magnitude

and phase of each QNM. The amplitude of the negative frequency modes is small [80]. The
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first three QNMs have been tabulated in Ref. [79], and fitting formuli are also provided.

The QNM frequency ω22n can be approximated by

MBHω22n = f1 + f2(1− âBH)f3 , (3.83)

and the inverse damping time α22n is given in terms of the quality factor approximated by

1

2

ω22n

α22n
= q1 + q2(1− âBH)q3 . (3.84)

The coefficients for n = 0–2 can be found in table VIII of Ref. [79]. For n = 3–4, α22n and

ω22n can be linearly extrapolated from the values for n = 1 and 2 as was done in Ref. [83].

The constants C+
22n are determined by requiring that the inspiral and ringdown wave-

forms be continuous on a “matching comb” centered on the EOB merger time tM . Specifi-

cally, at the times {tM −2δ, tM −δ, tM , tM +δ, tM +2δ} we require hinspiral
22 (t) = hringdown

22 (t).

In Ref. [76], δ was chosen to be equal to 2.3MBH/M . This gives 5 complex equations for

the 5 unknown complex coefficients C+
22n.

The full inspiral plus ringdown waveform is then given by

h22(t) =

{
hinspiral

22 (t) t < tM

hringdown
22 (t) t > tM

. (3.85)
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Chapter 4

Tidal interactions during binary

inspiral

For BNS and BHNS inspiral, tidal interactions are the primary correction to the point-

particle dynamics described in the last chapter. These interactions, which to leading order

are Newtonian effects, have not received much attention because they are O
[(

R
M

)5
x5
]

corrections to the leading point-particle interactions where M is the total mass, and R

is the NS radius, and thus appear to be 5PN effects. However, the additional (R/M)5

dependence means that they will dominate all PN corrections for systems such as the Earth

and Moon, while for BNS systems where (R/M)5 ∼ O(104), we will find they have effects

of similar magnitude to 3.5PN point-particle terms during the inspiral.

For widely separated relativistic sources, the problem of tidal interactions can be solved

by breaking spacetime into two regions as shown in Fig. 18. In the weak-field vacuum region

away from a source, the post-Newtonian expansion can be used. However, in the strong-

field region containing the source, the full Einstein equations must be solved. The results

can then be matched in a buffer region surrounding each source. In the following section we

describe tidal interactions in Newtonian gravity based on the discussion in Refs. [85, 86];

then, in the final section using the method developed in Ref. [87], we solve the perturbed

Einstein equations for the compact objects in the strong-field region and describe how the

solution is matched in a buffer region to the Newtonian description of tidal interactions.
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Figure 18 : As shown in Ref. [88], spacetime is decomposed into a weak-field region and a strong-field region

surrounding each compact object (gray). The strong-field and weak-field solutions can be matched in a

buffer region.

4.1 Newtonian tidal interactions

4.1.1 Gravitational potential, multipoles, and tidal fields

In Newtonian gravity the gravitational potential due to a system of extended bodies (Fig. 18)

with density ρ is1

φ(~x) = −
∫
d3x′

ρ(t, ~x′)

|~x− ~x′|
. (4.1)

To calculate the dynamics of this system, we will find it useful to decompose this potential,

in each domain, into an internal part φint
A sourced by the matter in that domain, which we

will write as a sum over multipoles ML
A , and an external part φext

A sourced by the matter

from other bodies, which we will write as a sum over tidal fields GLA. The total potential in

domain will therefore be φ = φint
A + φext

A .

We can expand a multivariate function f(xi) using a Taylor series

f(xi) =
∞∑
`=0

1

`!
(x− a)L[∂Lf(xi)]xi=ai , (4.2)

where L is a multi-index representing the ` indices L = a1a2 · · · a`, xL = xa1xa2 · · ·xa` ,
and ∂L = ∂`

∂xL
= ∂`

∂xa1∂xa2 ···∂xa` . Using this, we can expand the denominator of the internal

1The gravitational potential energy of a test mass with mass m in this potential is U = mφ. The

gravitational potential energy of the entire system will be given by Eq. (4.14).
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potential about the center of mass (COM) of the star ziA
2 by expanding in the variable x′i

1

|~x− ~x′|
=

∞∑
`=0

1

`!
(x′ − z)L

[
∂`

∂x′L
1

|~x− ~x′|

]
~x′=~zA

=
∞∑
`=0

(−1)`

`!
(x′ − z)L∂L

1

|~x− ~zA|
, (4.3)

where ∂L = ∂`

∂xL
. We note that ∂L

1
|~x−~zA| is a symmetric trace free (STF) tensor for ~x 6= ~zA

because the trace of any pair of indices involves ∂i∂i
1

|~x−~zA| = ∇2 1
|~x−~zA| = −4πδ(3)(~x − ~zA)

is zero unless ~x coincides with the COM. The internal potential at a point ~x can now be

written in terms of the integral over body A,

φint
A (t, ~x) = −

∫
A
d3x′

ρ(t, ~x′)

|~x− ~x′|

= −
∞∑
`=0

(−1)`

`!
ML
A(t)∂L

1

|~x− ~zA(t)|
, (4.4)

where ML
A is the `th multipole of the body defined by

ML
A(t) =

∫
A
d3xρ(t, ~x)(x− zA(t))〈L〉. (4.5)

The notation T 〈L〉 denotes the STF part of a tensor TL. Using the fact that for any two

tensors SL and TL, SLT 〈L〉 = S〈L〉T 〈L〉, we have defined ML
A as STF because ∂L

1
|~x−~zA|

is already STF. The first four moments are the mass, dipole, quadrupole, and octopole,

defined in terms of x̄i = xi − zi by

M =

∫
d3xρ, (4.6)

M i =

∫
d3xρx̄i = 0, (4.7)

M ij =

∫
d3xρ(x̄ix̄j − 1

3
δij |x̄|2) = Qij , (4.8)

M ijk =

∫
d3xρ[x̄ix̄j x̄k − 1

5
(δij x̄k + δjkx̄i + δkj x̄i)|x̄|2] = Oijk. (4.9)

The dipole is zero because zi is the COM.

We similarly can expand the external potential about the COM of body A

φext
A (t, ~x) =

∞∑
`=0

1

`!
(x− zA(t))L[∂Lφ

ext
A (t, ~x)]~x=~zA

= −
∞∑
`=0

1

`!
GLA(t)(x− zA(t))L, (4.10)

2The COM of body A is defined by ziA(t) = 1
MA

∫
A
d3xρ(t, ~x).
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where the `th order tidal field GLA due to the potential from body B is

GLA(t) = −[∂Lφ
ext
A (t, ~x)]~x=~zA

= −[∂Lφ
int
B (t, ~x)]~x=~zA

= −

[
∂L

(
−
∞∑
k=0

(−1)k

k!
MK
B (t)∂K

1

|~x− ~zB(t)|

)]
~x=~zA

=

∞∑
k=0

(−1)k

k!
MK
B (t)∂

(A)
KL

1

|~zA(t)− ~zB(t)|
, (4.11)

and ∂
(A)
KL = ∂k+`

∂zKLA
. As an example, the ` = 2 tidal field GijA leads to a quadratic potential

relative to the COM of body A. This tidal field includes contributions from the monopole,

quadrupole, octopole, ... moments of body B, and these contributions scale with the sepa-

ration r of the two bodies as 1/r3, 1/r5, 1/r6, ... respectively.

4.1.2 Lagrangian and energy

Given the above expressions for the matter distribution and gravitational potential, we

can determine the kinetic and potential energy of the system and then write down the

corresponding Lagrangian L = T − U . The Lagrangian can then be used to find the

equations of motion (EOM) via the Euler-Lagrange equations.

The total kinetic energy of the system can be decomposed into contributions from the

COM of each body as well as from the internal kinetic energy from motion about the COM

of each body

T (t) =
1

2

∫
d3xρ(t, ~x)v2(t, ~x)

=
∑
A

1

2

∫
A
d3xρ(t, ~x)v2(t, ~x)

=
∑
A

1

2

∫
A
d3xρ[żiA + (v − żA)i][żiA + (v − żA)i]

=
∑
A

(
1

2
MAż

2
A + T int

)
, (4.12)

where we used the definition of the COM, and the internal kinetic energy is defined as

T int
A (t) =

1

2

∫
A
d3xρ(t, ~x)[v(t, ~x)− żA(t)]2. (4.13)

For a closed system of gravitationally interacting, extended bodies, the total potential
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energy is

U(t) =
1

2

∫
d3xρ(t, ~x)φ(t, ~x)

=
∑
A

1

2

∫
A
d3xρ(t, ~x)φ(t, ~x)

=
∑
A

(U int
A (t) + U ext

A (t)). (4.14)

We have broken up the potential at each body A into a contribution φint
A due to sources

inside the body and a contribution φext
A due to sources outside the body. The corresponding

internal and external contributions to the potential energy associated with each body are

therefore

U int
A (t) =

1

2

∫
A
d3xρ(t, ~x)φint

A (t, ~x), (4.15)

and

U ext
A (t) =

1

2

∫
A
d3xρ(t, ~x)φext

A (t, ~x)

= −1

2

∞∑
`=0

1

`!

∫
A
d3xρ(t, ~x)[x− zA(t)]LGLA(t)

= −1

2

∞∑
`=0

1

`!
ML
A(t)GLA(t). (4.16)

In the last line we again used the fact that GLA is STF to rewrite the integral as a STF

multipole.

The Lagrangian for the system can now be written

L =
∑
A

(
1

2
MAż

2
A +

1

2

∞∑
`=0

1

`!
ML
AG

L
A + Lint

A

)
, (4.17)

where the internal Lagrangian for each body is defined as Lint
A = T int

A − U int
A .

The internal dynamics of body A can be determined from the Poisson, Euler, and

continuity equations as well as the equation of state (EOS), or for relativistic stars, the

Einstein equation, conservation of stress-energy, and the EOS. However, we would like

instead to describe the dynamics in terms of a set of canonical variables so that we can

use the Lagrangian formalism. To do this, we use the fact that perturbations of a stable

spherical star (both nonrelativistic and relativistic) can be decomposed into modes n, each

belonging to a single spherical harmonic, and each oscillating with a characteristic frequency

ωAn. The EOM for the contribution to the `th multipole of body A due to mode n (ML
An)

is

M̈L
An + ω2

AnM
L
An = 0. (4.18)
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The quantities ML
An can therefore be the canonical variables. The Lagrangian that produces

this EOM via the Euler-Lagrange equations is, up to a constant αA`n,

Lint
A`n = αA`n(ṀL

AnṀ
L
An − ω2

AnM
L
AnM

L
An), (4.19)

so that the total internal Lagrangian of body A is Lint
A =

∑∞
`=0

∑
n L

int
A`n. Since this La-

grangian is derived from the kinematic assumption of simple harmonic motion and not from

Newtonian dynamics, it will be true for relativistic stars as well, (assuming the complete-

ness of outgoing modes for describing the fluid, and ignoring additional gravitational wave

degrees of freedom).

The constant can be found by assuming a situation in which the modes of body A evolve

adiabatically [89]—driven by the motion of body B at a frequency much slower than the

mode frequency. The time derivatives ṀL
An will therefore be zero, and the Euler-Lagrange

equation for the entire Lagrangian will be

d

dt

∂L

∂ṀL
An

=
∂L

∂ML
An

0 =
∂

∂ML
An

∑
A

[
1

2
MAż

2
A +

1

2

∞∑
`=0

1

`!

(∑
n

ML
An

)
GLA −

∞∑
`=0

∑
n

αA`nω
2
AnM

L
AnM

L
An

]

=
1

`!
GLA − 2αA`nω

2
AnM

L
An, (4.20)

where the multipoles MK
A are hidden in the definition of GLB, and we used the fact that

1

2

∑
A

∞∑
`=0

1

`!
ML
AG

L
A =

∞∑
`=0

1

`!
ML

1 G
L
1 =

∞∑
`=0

1

`!
ML

2 G
L
2 (4.21)

for a two body system as can be shown by writing GLA explicitly in terms of ML
B using

Eq. (4.11). Eq. (4.20) demonstrates that the `th multipole ML
An can be written explicitly

in terms of the `th tidal field GLA with only a single EOS dependent constant

ML
An = λA`nG

L
A. (4.22)

Summing over n we obtain3

ML
A = λA`G

L
A, (4.23)

where λA` =
∑

n λA`n is called the tidal deformability of star A, and λA`n is the component

that contributes to ML
An. We will derive this quantity from the perturbed Einstein equations

3We emphasize that this relation holds only for adiabatic changes in the tidal field. When the tidal field

changes at a rate close to the mode frequency, resonance can occur as will be discussed below.
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and an EOS model in the next section. The constant αA`n in the Lagrangian can finally be

written

αA`n =
1

2`!λA`nωAn
. (4.24)

In general, the energy of a system with canonical variables qα is

E =
∂L

∂q̇α
q̇α − L. (4.25)

For the Lagrangian here, this is equivalent to reversing the sign on the potential energy

terms, so that the total energy is

E =
∑
A

[
1

2
MAż

2
A −

1

2

∞∑
`=0

1

`!
ML
AG

L
A +

∞∑
`=0

∑
n

1

2`!λA`nω
2
An

(ṀL
AnṀ

L
An + ω2

AnM
L
AnM

L
An)

]
.

(4.26)

4.1.3 Tidal Corrections to the post-Newtonian waveform

In order to derive the lowest order corrections to the post-Newtonian waveform, we now

specialize to the case of circular orbits and include only monopole–monopole and monopole–

quadrupole interactions. We also assume that for body A the majority of the quadrupole

oscillates with a natural frequency ωA . The Lagrangian for such a system is

L =
1

2
µż2 +

µM

r
+

1

2!
Qij1 M2∂ij

1

r
+O

(
1

r4

)
+

1

4λ1ω2
1

(Q̇ij1 Q̇
ij
1 − ω

2
1Q

ij
1 Q

ij
1 ), (4.27)

where zi = zi2− zi1, µ = M1M2/M is the reduced mass, and we have moved to the center of

mass frame of the system (M1z
i
1+M2z

i
2 = 0). We have also simplified notation by redefining

λA as the ` = 2 tidal deformability of body A, and we have suppressed the contribution

from the quadrupole of body 2 which will have the same form as that from body 1 and can

simply be added to the final results. The Euler-Lagrange equations now give the following

equations of motion

Q̈ij1 + ω2
1Q

ij
1 = M2λ1ω

2
1∂ij

1

r
, (4.28)

z̈i = −Mni

r2
+
M2

2µ
Qjk1 ∂ijk

1

r
. (4.29)

The first equation represents forced oscillations. Under the assumption of circular orbits

zi(t) = rni(t) where ni = (cosφ, sinφ, 0), and using the fact that

∂L
1

r
= (−1)`(2`− 1)!!

n〈L〉

r`+1
, (4.30)
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we find that the forcing function has a frequency of twice the orbital frequency Ω where

φ(t) = Ωt because

n〈ij〉 = ninj − 1

3
δij =


1
2 cos 2φ+ 1

6
1
2 sin 2φ 0

1
2 sin 2φ −1

2 cos 2φ+ 1
6 0

0 0 −1
3

 . (4.31)

The solution to the quadrupole is

Qij1 (t) =
3M2λ1

r3


1
2

1
1−4ξ2 cos 2φ+ 1

6
1
2

1
1−4ξ2 sin 2φ 0

1
2

1
1−4ξ2 sin 2φ −1

2
1

1−4ξ2 cos 2φ+ 1
6 0

0 0 −1
3

 , (4.32)

where ξ = Ω/ω1. Note that resonance will occur if the orbital frequency approaches half

the mode frequency.

Using this result and z̈i = −rΩ2ni for circular orbits, the second equation becomes

−rΩ2ni = −Mni

r2
− 9

4

M2
2λ1

µr7

(
1 +

3

1− 4ξ2

)
ni. (4.33)

To first order in λ we find

r(x) = Mx−1

[
1 +

3

4

(
1 +

3

1− 4ξ2

)
M2

M1

λ1x
5

M5
+ 1↔ 2

]
, (4.34)

where x = (MΩ)2/3 is the standard post-Newtonian parameter.

With these solutions, the energy can be found from the Lagrangian by reversing the

sign on the potential energy terms. The result is

E(x) = −1

2
Mηx

[
1− 9

4

(
1 +

3− 4ξ2

(1− 4ξ2)2

)
M2

M1

λ1x
5

M5
+ 1↔ 2

]
. (4.35)

The rate of energy loss due to gravitational radiation can be found from the quadrupole

formula Ė = −1
5〈

...
Q
ij
T

...
Q
ij
T 〉. The quantity QijT is the total quadrupole of the system, and can

be calculated using the parallel-axis theorem for the total quadrupole of the system

QijT (t) =

∫
d3xρ(t, ~x)x〈ij〉 (4.36)

=
∑
A

∫
A
d3xρ(t, ~x)x〈ij〉 (4.37)

=
∑
A

[MAz
〈ij〉
A (t) +QijA(t)], (4.38)

where the first term in the sum is the multipole due to the monopole of body A, and the

second term QijA is the multipole about the COM of body A as defined in Eq. (4.5). (The
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parallel-axis theorem does not hold for higher multipoles, and in general, the expression for

the total multipole ML
T in terms of the individual multipoles ML

A will be more complicated.)

The total radiated energy is then

Ė = −32

5
η2x5

[
1 + 6

(
M/M2 + 2− 2ξ2

1− 4ξ2

)
M2

M1

λ1x
5

M5
+ 1↔ 2

]
. (4.39)

The post-Newtonian waveforms incorporating tidal interactions can now be readily eval-

uated from the above expressions for the energy of the binary E and the luminosity L = −Ė.

The TaylorT1 expressions are obtained by simply adding the point-particle PN and tidal

corrections together

E(x) = −1

2
Mηx

[
1 + (PP-PN)− 9

m2

m1

λ1

M5
x5 + 1↔ 2

]
, (4.40)

L(x) =
32

5
η2x5

[
1 + (PP-PN) + 6

m1 + 3m2

m1

λ1

M5
x5 + 1↔ 2

]
, (4.41)

then evaluating dE/dx to obtain dx
dt = − L

dE/dx . The TaylorT4 waveform expands this ratio

to obtain
dx

dt
=

64

5

ηx5

M

[
1 + (PP-PN)− 156

λ̃

M5
x5

]
, (4.42)

and λ̃ is the mass weighted total tidal deformability defined by

λ̃ =
1

26

(
M1 + 12M2

M1
λ1 +

M2 + 12M1

M2
λ2

)
, (4.43)

which has the property that λ̃ = λ1 = λ2 when M1 = M2. The TaylorF2 phase correction

can be found by using the methods of Section 3.2.3. The phase can then be written

ψ22(f) = 2πftc − 2φc −
π

4
+

3

128η
(πMf)−5/3

[
1 + (PP-PN)− 624

λ̃

M5
(πMf)10/3

]
. (4.44)

4.2 The tidal deformability for relativistic stars

We will now describe the method used in Ref. [87] for determining the ` = 2 tidal deforma-

bility λ of a star from the equation of state. As in [87], we consider a static, spherically

symmetric star, placed in a static external quadrupolar tidal field Gij . To linear order, we

define the tidal deformability λ relating the star’s induced quadrupole moment Qij to the

external tidal field,

Qij = λGij . (4.45)

The coefficient λ is related to the l = 2 dimensionless tidal Love number k2 by

k2 =
3

2
λR−5. (4.46)
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The star’s quadrupole moment Qij and the external tidal field Gij are defined to be

coefficients in an asymptotic expansion of the total metric at large distances r from the

star. This expansion includes, for the metric component gtt in asymptotically Cartesian,

mass-centered coordinates, the standard gravitational potential M/r, plus two leading order

terms arising from the perturbation, one describing an external tidal field growing with r2

and one describing the resulting tidal distortion decaying with r−3:

−(1 + gtt)

2
= φint + φext (4.47)

= −M
r
− 3Qij

2r3
ninj +O

(
1

r4

)
+
Gij

2
r2ninj , (4.48)

where ni = zi/r and both Qij and Gij are symmetric and traceless. The relative size of

these multipole components of the perturbed spacetime gives the constant λ relating the

quadrupole deformation to the external tidal field as in Eq. (4.45).

To compute the metric (4.48), we use the method discussed in [87]. We consider the

problem of a linear static perturbation expanded in spherical harmonics following [90].

In the quasiequilibrium limit, the tidal deformation will be axisymmetric around the line

connecting the two stars which we take as the axis for the spherical harmonic decomposition.

The only azimuthal number will therefore be m = 0.

A static (zero-frequency) linear ` = 2 perturbation of a spherically symmetric star is

associated with an even-parity perturbation of the metric, which in the Regge-Wheeler

gauge [91] can be simplified [87] to give

ds2 = −e2Φ(r) [1 +H(r)Y20(θ, φ)] dt2 + e2Λ(r) [1−H(r)Y20(θ, φ)] dr2

+ r2 [1−K(r)Y20(θ, φ)]
(
dθ2 + sin2 θdφ2

)
,

(4.49)

where K(r) is related to H(r) by K ′(r) = H ′(r) + 2H(r)Φ′(r). Here primes denote deriva-

tives with respect to r. The corresponding perturbations of the perfect fluid stress-energy

tensor components are δT 0
0 = −δε(r)Y20(θ, φ) and δT i

i = δp(r)Y20(θ, φ), where ε is the

energy density and p the pressure. The function H(r) satisfies the differential equation(
−6e2Λ

r2
− 2(Φ′)2 + 2Φ +

3

r
Λ′ +

7

r
Φ′ − 2Φ′Λ′ +

f

r
(Φ′ + Λ′)

)
+

(
2

r
+ Φ′ − Λ′

)
H ′+H ′′ = 0.

(4.50)

Here f is given by

δε = fδp (4.51)

which for slow changes in matter configurations corresponds to f = dε/dp.
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The method of calculating the tidal perturbation for a general equation of state table

is similar to the method of calculating moment of inertia in the slow rotation approxima-

tion [92]. The specific implementation we use follows the moment of inertia calculation in

Appendix A of [54], via an augmentation of the OV system of equations4:

e2Λ =

(
1− 2m

r

)−1

, (4.52)

dΦ

dr
= − 1

ε+ p

dp

dr
, (4.53)

dp

dr
= −(ε+ p)

m+ 4πr3p

r(r − 2m)
, (4.54)

dm

dr
= 4πr2ε. (4.55)

The second-order differential equation for H is separated into a first-order system of ODEs

in terms of the usual OV quantities m(r), p(r), and ε(p), as well as the additional functions

H(r), β(r) = dH/dr, and the equation of state function f(p) = dε/dp

dH

dr
= β (4.56)

dβ

dr
= 2

(
1− 2

m

r

)−1
H

{
−2π [5ε+ 9p+ f(ε+ p)] +

3

r2
+ 2

(
1− 2

m

r

)−1 (m
r2

+ 4πrp
)2
}

+
2β

r

(
1− 2

m

r

)−1 [
−1 +

m

r
+ 2πr2(ε− p)

]
.

(4.57)

These are combined with Eqs. (4.52)–(4.55), and the augmented system is solved simul-

taneously. The system is integrated outward starting just outside the center using the

expansions H(r) = a0r
2 and β(r) = 2a0r as r → 0. The constant a0 determines how much

the star is deformed and can be chosen arbitrarily as it cancels in the expression for the

Love number.

The ODE for H(r) outside the star, where Tµν = 0, has a general solution in terms of

associated Legendre functions of the first Pmn (x) and second Qmn (x) kind for n = m = 2

and x > 1 given by

H = c1Q
2
2 (r/M − 1) + c2P

2
2 (r/M − 1) . (4.58)

These functions are defined by

P 2
2 (x) = 3(1− x2) (4.59)

Q2
2(x) =

3

2
(x2 − 1) ln

(
x+ 1

x− 1

)
− 3x3 − 5x

z2 − 1
(4.60)

4Here we present the equations in terms of the radial coordinate r; the extension to the enthalpy variable

η used in [54] is straightforward.



63

and have the asymptotic properties Q2
2

(
r
M − 1

)
∼ 8

5

(
M
r

)3
and P 2

2

(
r
M − 1

)
∼ −3

(
r
M

)2
at large r. We can now compare this solution to the asymptotic behavior of gtt given

in Eq. (4.48) to relate the coefficients c1 and c2 to the external tidal field. Writing the

tidal field and quadrupole moments in terms of the corresponding ` = 2,m = 0 spherical

harmonic coefficients, G0Y20(θ, φ) = Gijninj , and Q0Y20(θ, φ) = Qijninj = −λGijninj =

−λG0Y20(θ, φ), as was done in [87], we obtain the result

c1 =
15

8

λG0

M3
, c2 = −1

3
M2G0. (4.61)

We can now determine the strength of the tidal field G0 that caused the perturbation by

matching the solution for H and its derivative at the boundary of the star r = R. This will

then give us an expression for the tidal Love number k2. Defining the quantity

y =
Rβ(R)

H(R)
(4.62)

for the internal solution, the l = 2 Love number is finally

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]

×
{

2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1− 2C)2[2− y + 2C(y − 1)] ln(1− 2C)

}−1

,

(4.63)

where C = m/R is the compactness of the star.

For stars with a nonzero density at the surface (for example strange quark matter or

an incompressible n = 0 polytrope), the term (f/r)(Φ′ + Λ′) in Eq. (4.50) blows up at the

surface r = R and H ′(r) is no longer continuous across the surface. Following the discussion

in [93] for an n = 0 polytrope, this discontinuity leads to an extra term in the expression

above for y

y =
Rβ(R)

H(R)
− 4πR3ε−

M
, (4.64)

where ε− is the density just inside the surface.
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Chapter 5

Gravitational-wave data analysis

The interpretation of data in gravitational-wave astronomy differs in many ways from that

in other fields. In particle physics, for example, one can often perform an ensemble of

experiments with carefully controlled parameters. A frequentist interpretation of probability

can then be used: in the limit of a large number of experiments the probability P (A) of

outcome A is the ratio of the number of times A was the outcome to the total number of

outcomes. Gravitational-wave astronomy is fundamentally different in that we cannot set

up an ensemble of identical binary inspiral events, for example, and we are often interested

in estimating the parameters themselves (sky location, binary orientation, masses, spins,

and tidal parameters) of individual events. A natural method for answering such a question

is that of Bayesian inference.

5.1 Bayesian inference

The key theorem in Bayesian inference is Bayes’ theorem

P (B|A) =
P (B)P (A|B)

P (A)
, (5.1)

where P (A|B) denotes the conditional probability that A is true given that B is true. This

theorem can be used for performing parameter estimation in the following way. Given a data

set D from a detector and prior information I, the posterior probability density function

(PDF) for the parameters ~θ of a model H are given by [94]

p(~θ|D,H, I) =
p(~θ|H, I)p(D|~θ,H, I)

p(D|H, I)
. (5.2)

The quantity p(D|~θ,H, I) is known as the likelihood, and can be calculated in the frequen-

tist sense; given a hypothetical ensemble of events with parameters in the volume d~θ, the
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likelihood is the probability density of obtaining the data D from a detector. The prior

distribution of the parameters p(~θ|H, I) is determined by the hypothesis and prior informa-

tion. In the denominator, the evidence Z = p(D|H, I) is a normalization constant, and if

needed, can be evaluated explicitly by integrating Eq. (5.2) over the parameter space and

using the fact that the integral over the left hand side is 1

Z = p(D|H, I) =

∫
p(~θ|H, I)p(D|~θ,H, I) d~θ. (5.3)

Because Z is the prior weighted integral over the likelihood, it is also called the marginal-

ized likelihood. For a high dimensional parameter space this integration is computationally

challenging, although there exist methods such as nested sampling and thermodynamic inte-

gration that can perform it (see for example Refs. [95] and [96] for their use in gravitational

wave data analysis).

If one is only interested in a subset of the parameters ~θA where ~θ = {~θA, ~θB}, the other

parameters ~θB can be integrated out to obtain a marginalized PDF over only the parameters

of interest

p(~θA|D,H, I) =

∫
p(~θ|D,H, I) d~θB. (5.4)

This is done, as we shall see, if we are only concerned with the PDF for the intrinsic

parameters of a binary system such as masses and tidal parameters, and are not concerned

with the extrinsic parameters such as sky location and orientation relative to Earth.

In addition to estimating the parameters of a specific model, we can also in principle cal-

culate the posterior probability P (Hi|D, I) that model Hi is true using the model selection

form of Bayes’ theorem

P (Hi|D, I) =
P (Hi|I)P (D|Hi, I)

P (D|I)
. (5.5)

The quantity Z = P (D|Hi, I) is the evidence or marginalized likelihood given by Eq. (5.3).

P (Hi|I) is the prior probability of Hi which is sometimes a subjective measure of one’s

prior belief that hypothesis Hi is true. The quantity in the denominator P (D|I) is the

marginalized probability of obtaining the data D. It can be calculated if there exists a

complete set of independent hypotheses (
∑

i P (Hi|D, I) = 1 and Hi ∩ Hj = ∅ for i 6= j).

The marginalized probability is then1

P (D|I) =
∑
i

P (Hi|I)P (D|Hi, I). (5.6)

1The prior was left out of the corresponding expression in Ref. [94].
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In practice we don’t always have a complete set of hypotheses, so we cannot calculate the

posterior for each model. We can, however, calculate the ratio of posteriors for two models

known as the odds ratio

Oi,j =
P (Hi|D, I)

P (Hj |D, I)

=
P (Hi|I)

P (Hj |I)
Λi,j , (5.7)

where

Λi,j =
P (D|Hi, I)

P (D|Hj , I)
(5.8)

is the Bayes factor or likelihood ratio.

5.2 Statistical properties of the output of gravitational-wave detectors

We will now briefly describe in this section the output of gravitational-wave detectors in

the possible presence of a gravitational wave as well as detector noise, and then derive the

probability that a gravitational wave is present. In the remainder of the chapter we will

then apply the above Bayesian techniques to address the questions of parameter estimation.

As discussed in Chapter 3 the gravitational wave hij = h+e
+
ij +h×e

×
ij has two transverse

polarizations e+
ij and e×ij . In the X̂–Ŷ –n̂ coordinate system of a gravitational wave traveling

in the n̂ direction, the polarization tensors are

e+
ij = X̂iX̂j − Ŷ iŶ j (5.9)

e×ij = X̂iŶ j + Ŷ iX̂j . (5.10)

The response of the detector arms of length L, expressed in terms of the scalar strain

h = ∆L/L, can be expressed by contracting the waveform with a tensor Dij

h = Dijhij . (5.11)

For a Michelson interferometer with arms in the p̂ and q̂ directions [67]

Dij =
1

2
(p̂ip̂j − q̂iq̂j). (5.12)

In terms of the components h+ and h×, the strain can be written

h = F+h+ + F×h×, (5.13)

where F+ and F× are the response functions for the two polarizations. For a detector with a

90◦ opening angle between the arms, they can be expressed as functions of the sky position
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(θ, φ) relative to the detector and polarization angle ψ (see Fig. 19) as [97]

F+ = Dije
+
ij

=
1

2
(p̂ip̂j − q̂iq̂j)(X̂iX̂j − Ŷ iŶ j)

= −1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (5.14)

F× = Dije
×
ij

=
1

2
(p̂ip̂j − q̂iq̂j)(X̂iŶ j + Ŷ iX̂j)

=
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ. (5.15)

As an example, in the optimally oriented θ = 0 configuration, a waveform written as the

complex quantity h+(t)− ih×(t) = A(t)e−iΦ(t) results in the strain h(t) = −A(t) cos[2(φ−
ψ)− Φ(t)].

Figure 19 : For detector arms in the p̂ and q̂ directions, the sky location of a source −n̂ is given by the

usual spherical coordinates (θ, φ), where θ is the polar angle from the axis normal to the detector, φ is the

azimuthal angle from the p̂ direction, and n̂ = (−θ, φ+π) is the direction of propagation of the gravitational

wave. The polarization angle ψ is the angle measured counterclockwise about the direction of propagation

n̂ from the line of nodes (k̂ × n̂) to x̂.

In addition to the GW signal h(t), a real detector will have noise n(t) such that the

output s(t) of the detector is

s(t) = n(t) + h(t), (5.16)

where we have assumed the noise is additive (the presence of a GW does not affect the

statistical properties of the noise). We will also assume that the noise is stationary, which

means the statistical properties of the noise do not change with time.
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An important property of the noise is its power spectrum. The power in the noise is

defined as the time average of n2(t) over some large time interval T :

〈n2〉 = lim
T→∞

1

T

∫ T/2

−T/2
n2(t) dt. (5.17)

For stationary noise, this average will be independent of the time. The power can be

reexpressed in terms of the power spectral density (PSD) Sn(f) by [67]

〈n2〉 =

∫ ∞
0

Sn(f) df, (5.18)

where the PSD

Sn(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2
n(t)e−2πift dt

∣∣∣∣∣
2

(5.19)

is the absolute square of the Fourier transform of the signal. The PSD can equivalently be

expressed in terms of the Fourier transform R̃n(f) of the autocorrelation function Rn(τ) =

〈n(t)n(t+ τ)〉 as

Sn(f) = 2

∫ ∞
−∞

Rn(τ)e−2πifτ dτ = 2R̃n(f). (5.20)

Another equivalent expression is

〈ñ∗(f ′)ñ(f)〉 =
1

2
Sn(f)δ(f − f ′). (5.21)

Another assumption that we will make is that the noise is Gaussian. For Gaussian noise

n(t), the discretely sampled noise time series is a sequence of correlated Gaussian random

variables {ni} measured at times i∆t. In the limit ∆t→ 0, the joint probability distribution

for this noise sequence is given by [67]

pn[n(t)] ∝ e−(n,n)/2, (5.22)

where

(a, b) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
df (5.23)

is an inner product weighted by the noise PSD.

5.3 Detection

To determine if there is a gravitational wave present in the data, we can compare the two

mutually exclusive hypotheses

H0 : s(t) = n(t) (There is no gravitational wave),

H1 : s(t) = n(t) + h(t) (There is a gravitational wave).
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The probability that there is a gravitational wave is given by

P (H1|D, I) =
P (H1|I)P (D|H1, I)

P (D|I)

=
Λ1,0

Λ1,0 + P (H0|I)/P (H1|I)
, (5.24)

where P (D|I) = P (H0|I)P (D|H0, I) +P (H1|I)P (D|H1, I) and Λ1,0 is the Bayes factor (or

likelihood ratio) defined in Eq. (5.8). In addition, when assigning priors we must obey the

constraint P (H0|I) +P (H1|I) = 1. For a GW signal that can be described by the unknown

parameters ~θ and noise which in this case has no unknown parameters, the Bayes factor

can be reexpressed as [98]

Λ1,0 =

∫
Λ(~θ) d~θ, (5.25)

where

Λ(~θ) =
p(~θ|H1, I)p(D|~θ,H1, I)

p(D|H0, I)

=
p(~θ|H1, I)pn[s(t)− h(t; ~θ)]

pn[s(t)]

= p(~θ|H1, I)e(s,h(~θ))e−(h(~θ),h(~θ))/2. (5.26)

Another quantity that we will be interested in is the signal to noise ratio (SNR), which

is defined as the ratio of the matched filter (s, h) (a Gaussian random variable) when a

GW is present to the standard deviation of the matched filter when a GW is not present

(
√

(h, h)):

ρ =
(s, h)√
(h, h)

. (5.27)

When a GW is not present, ρ is a Gaussian random variable with 〈ρ〉 = 0 and Var(ρ) = 1,

while when a GW is present, 〈ρ〉 =
√

(h, h) and Var(ρ) = 1. The quantity 〈ρ〉 =
√

(h, h) is

sometimes referred to as the characteristic SNR of the signal, and describes the characteristic

strength of a GW for a given detector configuration [67].

5.4 Fisher matrix approximation

Although we now have in principle all the tools necessary to estimate the parameters of

a binary, this task is still computationally challenging. In this section we will discuss

an analytical approximation for estimating the parameters known as the Fisher matrix

approximation which applies to signals with high SNR, and then discuss in the next section

a more general method known as Markov Chain Monte Carlo (MCMC).
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For a binary event with actual parameters θ̃, we can choose as our best estimate of

the parameters θ̂ the value, known as the mode, that maximizes Λ(~θ) and is given by the

solution to ∂iΛ(~θ) = 0. It is possible for there to be multiple local maxima, however for

signals with high SNR, Λ(~θ) will be a narrowly peaked function and the mode θ̂ will be

close to the actual parameters θ̃. Using the fact that the log of a function has the same

mode as the function, the relation s = n+ h(θ̃), and the shorthand p0(~θ) = p(~θ|H1, I), the

mode can be found from Eq. (5.26) [98]

0 = ∂i ln Λ(θ̂)

= ∂i

[
ln p0(θ̂) + (n+ h(θ̃), h(θ̂)− 1

2
(h(θ̂), h(θ̂))

]
−vi = ∂i ln p0(θ̂) + (h(θ̃)− h(θ̂), ∂ih(θ̂)), (5.28)

where

vi = (n, ∂ih(θ̂)). (5.29)

Because n(t) is a sequence of zero mean (〈n(t)〉 = 0) Gaussian random variables, each vi is

a zero mean Gaussian as well. The joint distribution of vi over all parameters will therefore

be a multivariate Gaussian with covariance Γij known as the Fisher matrix

Γij = Cov(vi, vj) = 〈(vi − 〈vi〉)(vj − 〈vj〉)〉

= 〈vivj〉

= 〈(n, ∂ih(θ̂))(n, ∂jh(θ̂))〉

= (∂ih(θ̂), ∂jh(θ̂)), (5.30)

where we used Eq. (5.21) in going to the last line.

If the signal has high SNR and is narrowly peaked, the true parameters θ̃ will be close

to the mode θ̂, and we can linearize the difference in the corresponding waveforms

h(θ̃) = h(θ̂) + ∂ih(θ̂)∆θi +O(∆θ2), (5.31)

where ∆θi = θ̃i − θ̂i. Eq. (5.28) can now be used to provide an explicit expression for θ̃

∆θi = −Γ−1
ij (vj + ∂j ln p). (5.32)

The random variables ∆θi have means

〈∆θi〉 = −Γ−1
ij ∂j ln p(θ̂) (5.33)
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and covariance

Σij = Cov(∆θi,∆θj) = 〈(∆θi − 〈∆θi〉)(∆θj − 〈∆θj〉)〉

= Γ−1
ij . (5.34)

Note that when the prior is uniform, 〈∆θi〉 = 0 and Σij = Cov(∆θi,∆θj) = 〈∆θi∆θj〉. The

joint probability distribution for ∆θi given the mode θ̂i is therefore

p(∆θi|θ̂i) =
1√

(2π)Ndet(Σij)
e−

1
2

Σ−1
ij (∆θi−〈∆θi〉)(∆θj−〈∆θj〉). (5.35)

The n-σ error ellipsoid which is a contour of p(∆θi|θ̂i) is defined by

(∆θi − 〈∆θi〉)(∆θj − 〈∆θj〉)Σ−1
ij = n2. (5.36)

The variance in ∆θi is

σ2
i = 〈(∆θi − 〈∆θi〉)2〉 = Σii, (5.37)

and the correlation coefficients rij are

rij =
〈(∆θi − 〈∆θi〉)(∆θj − 〈∆θj〉)〉

σiσj
=

Σij

σiσj
. (5.38)

The correlation rij ranges from -1 to 1, with rij = 0 indicating no correlation between the

parameters and rij = ±1 indicating the parameters are completely degenerate.

5.5 Markov Chain Monte Carlo

In general, the PDF for the parameters of a gravitational-wave event cannot be approxi-

mated as a multivariate Gaussian centered on the maximum likelihood (for some parameters

the marginalized PDF is even multimodal), and so the Fisher matrix will fail to give an

accurate estimate of the uncertainty in the parameters. What we need to understand the

overall structure of the PDF is to sufficiently sample the entire PDF instead of just the

region around the maximum likelihood. Sampling a D dimensional parameter space with

N points in each parameter requires O(ND) evaluations of the posterior, and this rapidly

becomes an intractable problem. Fortunately there are adaptive techniques for sampling

more finely regions where the PDF is larger. One such technique is known as Markov

Chain Monte Carlo (MCMC). The essential idea of MCMC is to sample each point in the

parameter space with a probability proportional to the PDF itself. If this is done, then the

marginalized PDF over the parameters θB is found by simply binning the sampled points

and making a histogram over the remaining 1 or 2 parameters of interest θA.



72

The algorithm is as follows2. Begin at the point ~θi−1 and draw a new point ~θi from

a distribution p(~θi|~θi−1). (Because the new point depends on only the previous point, the

sequence of points that results from repeating this process is called a Markov Chain.) If

the distribution p(~θi|~θi−1) satisfies the detailed balance equation

π(~θi−1)p(~θi|~θi−1) = π(~θi)p(~θi−1|~θi), (5.39)

then each point ~θi will eventually be visited with probability π(~θ). This can be seen by

integrating both sides of Eq. (5.39) over all possible choices for the previous point ~θi−1 in

the chain to obtain ∫
π(~θi−1)p(~θi|~θi−1) d~θi−1 = π(~θi). (5.40)

This indicates that if ~θi−1 is drawn from π(θi−1) then so is ~θi.

There are several possible ways to draw the new point ~θi such that the transition prob-

ability function p(~θi|~θi−1) satisfies the detailed balance equation (5.39). The most common

is given by the Metropolis-Hastings algorithm. In this algorithm a new point is drawn

from some proposal distribution q(~θi|~θi−1) for example a Gaussian. This new point will be

accepted with probability

α(~θi−1, ~θi) = min

(
1,

π(~θi)q(~θi−1|~θi)
π(~θi−1)q(~θi|~θi−1)

)
. (5.41)

If this new point is not accepted, then set ~θi = ~θi−1 instead. The transition probability will

therefore be

p(~θi−1|~θi) = q(~θi|~θi−1)α(~θi−1, ~θi). (5.42)

This can be shown to satisfy the detailed balance equation.

There are many methods available to find proposal distributions q that efficiently sample

the entire parameter space. Furthermore, the proposal q can be changed after each itera-

tion and still satisfy the detailed balance equation. In addition, methods such as parallel

tempering [100] are available which make it easier for a chain to jump between different

modes of a PDF.

2The discussion in this section is based on that in Section 15.8 of Ref. [99].
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Chapter 6

Detectability of tidal parameters

from the early inspiral of BNS

systems

6.1 Introduction and summary

The observation of inspiraling binary neutron stars (NSs) with ground-based gravitational-

wave detectors such as LIGO and Virgo may provide significantly more information about

neutron-star structure and the highly uncertain equation of state (EOS) of neutron-star

matter than is currently available. The available electromagnetic observations of neutron

stars provide weak constraints from properties such as the star’s mass, spin, and gravita-

tional redshift (see for example [37, 54]). Simultaneous measurements of both the mass and

radius of a neutron star [48, 101, 61, 62, 102], on the other hand, have the potential to

make significantly stronger constraints. These measurements, however, depend on detailed

modeling of the radiation mechanisms at the neutron-star surface and absorption in the

interstellar medium, and they are subject to systematic uncertainties.

In contrast, information about the neutron star EOS obtained from gravitational-wave

observations of binary inspiral is model independent. The tidal distortion of neutron stars

in a binary system links the EOS describing neutron-star matter to the gravitational-wave

emission during the inspiral. Initial estimates showed that for LIGO, tidal effects change

the phase evolution only at the end of inspiral, and that point particle post-Newtonian

waveforms can be used for template-based detection [103, 104, 105]. With the projected

sensitivities of later-generation detectors, however, effects which can be neglected for the

purpose of detection may become measurable in the strongest observed signals.
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While EOS effects are largest during the late inspiral and merger of two neutron stars

where numerical simulations must be used to predict the signal, Flanagan and Hinderer

showed that a small but clean tidal signature arises in the inspiral below 400 Hz [86].

This signature amounts to a phase correction which can be described in terms of a single

EOS-dependent tidal deformability parameter λ, namely the ratio of each star’s induced

quadrupole to the tidal field of its companion. The fact that the EOS-dependence enters

only via a single parameter was worked out previously in the context of Newtonian gravity

in Refs. [103, 106]. The parameter λ depends on the EOS via both the NS radius R and a

dimensionless quantity k2, called the Love number [107, 108, 109]: λ = 2/(3G)k2R
5.

The relativistic Love numbers of polytropic1 EOS were examined first by Flanagan and

Hinderer [86, 87] and later by others in more detail [93, 110]. Flanagan and Hinderer

also examined the measurability of the tidal deformability of polytropes and suggested that

Advanced LIGO could start to place interesting constraints on λ for nearby events. However,

they used incorrect values for k2, which overestimated λ by a factor of ∼ 2 − 3 and were

therefore overly optimistic about the potential measurability. In addition, polytropes are

known to be a poor approximation to the neutron star equation of state, and there may be

significant differences in the tidal deformability between polytropes and realistic candidates

for the neutron-star EOS. In this paper, we calculate the deformability for candidate EOS,

and show that a tidal signature is actually only marginally detectable with Advanced LIGO

from the early-inspiral waveform.

In Sec. 4.2 we described a method based on Ref. [87] for calculating the relativistic Love

number and tidal deformability for an arbitrary EOS. In Sec. 6.2 we calculate k2 and λ

as a function of mass for several EOS commonly found in the literature. We find that, in

contrast to the Love number, the tidal deformability has a wide range of values, spanning

roughly an order of magnitude over the observed mass range of neutron stars in binary

systems.

As discussed above, the direct practical importance of the stars’ tidal deformability for

gravitational wave observations of NS binary inspirals is that it encodes the EOS influence

on the waveform’s phase evolution during the early portion of the signal, where it is ac-

curately modeled by post-Newtonian (PN) methods. In this regime, the influence of tidal

1Polytropes are often written in two forms. The first form is expressed as p = Kε1+1/n, where p is the

pressure, ε is the energy density, K is a pressure constant, and n is the polytropic index. The second form,

is given by p = Kρ1+1/n, where ρ is the rest-mass density, defined as the baryon number density times the

baryon rest mass. The first form was mainly used in the recent papers [87, 93, 110]. However, the second

form is more commonly used in the neutron-star literature and is more closely tied to the thermodynamics

of a Fermi gas. We will use both forms as was done in Ref. [93].
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effects is only a small correction to the point-particle dynamics. However, when the signal

is integrated against a theoretical waveform template over many cycles, even a small con-

tribution to the phase evolution can be detected and could give information about the NS

structure.

Following [86], we calculate in Sec. 6.3 the measurability of the tidal deformability for

a wide range of equal- and unequal- mass binaries, covering the entire expected range

of NS masses and EOS, and with proposed detector sensitivity curves for second- and

third- generation detectors. We show that the tidal signature is optimistically detectable in

Advanced LIGO only for binaries with neutron star masses below 1.4 M� for gravitational

frequencies below 450 Hz. In third-generation detectors, however, the tenfold increase in

sensitivity allows a finer discrimination between equations of state leading to potential

measurability of a large portion of proposed EOSs over most of the expected neutron star

mass range.

We conclude by briefly considering how the errors could be improved with a more care-

ful analysis of the detectors and extension of the understanding of EOS effects to higher

frequencies.

Finally, in Appendix B we compute the leading order EOS-dependent corrections to our

model of the tidal effect and derive explicit expressions for the resulting corrections to the

waveform’s phase evolution, extending the analysis of Ref. [86]. Estimates of the size of

the phase corrections show that the main source of error are post-1 Newtonian corrections

to the Newtonian tidal effect itself, which are approximately twice as large as other, EOS-

dependent corrections at a frequency of 450 Hz. Since these point-particle corrections do

not depend on unknown NS physics, they can easily be incorporated into the analysis. A

derivation of the explicit post-Newtonian correction terms is the subject of Ref. [85, 111].

Conventions: We set G = c = 1.

6.2 Love numbers and tidal deformabilities for candidate EOS

Differences between candidate EOS can have a significant effect on the tidal interactions of

neutron stars. In this paper we consider a sample of EOS from Refs. [8, 54] with a variety

of generation methods and particle species. The sample is chosen to include EOS with the

largest range of behaviors for k2(M/R), k2(M) and λ(M) rather than to fairly represent

the different generation methods. We also restrict ourselves to stars with a maximum

mass greater than 1.5 M�, which is conservatively low given recent neutron-star mass

observations [112, 39, 40, 41, 42, 43]. We consider 7 EOS with just normal npeµ matter

(SLY [21], AP1 and AP3 [22], FPS [23], MPA1 [27], MS1 and MS2 [28]), 8 EOS that
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also incorporate some combination of hyperons, pion condensates, and quarks (PS [29],

BGN1H1 [31], GNH3 [32], H1 and H4 [17], PCL2 [33], ALF1 and ALF2 [34]), and 3 self-

bound strange quark matter EOS (SQM1–3 [33]). A brief description of these EOS and

their properties can be found in [8, 54].
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Figure 20 : Left panel: Love number as a function of compactness. Gray dotted curves are energy density

polytropes (p = Kε1+1/n), and gray solid curves are rest-mass density polytropes (p = Kρ1+1/n). Both

polytropes are the same for n = 0. EOS with only npeµ matter are solid and those that also incorporate

π/hyperon/quark matter are dot-dashed. The three SQM EOS are dashed and overlap. They approach the

n = 0 curve at low compactness, where k2 has a maximum value of 0.75 as M/R → 0. Right panel: Love

number as a function of mass for the same set of realistic EOS. Note that there is more variation in k2

between different EOS for fixed mass than for fixed compactness.

The generic behavior of the Love number k2 is shown in the left panel of Fig. 20 as

a function of compactness M/R for different types of EOS. The two types of polytropes,

energy and rest-mass density polytropes, are shown in gray. They coincide in the limit

M/R→ 0 where ε→ ρ as the star’s density goes to zero, and in the limit n→ 0 where ε(p)

and ρ(p) are both constant. This can be seen from the first law of thermodynamics,

d
ε

ρ
= −pd1

ρ
, (6.1)

which relates ε to ρ.

The sequences labeled “Normal” correspond to the 15 EOS with a standard nuclear

matter crust, and the 3 sequences labeled “SQM” correspond to the crustless EOS SQM1-3

where the pressure is zero below a few times nuclear density. Within these two classes,

there is little variation in behavior, so we do not explicitly label each candidate EOS.
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The left panel of Fig. 20 shows k2(M) for the realistic EOS, which is more astrophys-

ically relevant because mass, not compactness, is the measurable quantity during binary

inspiral. Unlike the quantity k2(M/R), k2(M) depends on the constant K for polytropes,

so polytropic EOS are not shown. There is more variation in k2 for fixed mass than for

fixed compactness.

The behavior of these curves can be understood as follows: The Love number k2 mea-

sures how easily the bulk of the matter in a star is deformed. If most of the star’s mass

is concentrated at the center (centrally condensed), the tidal deformation will be smaller.

For polytropes, matter with a higher polytropic index n is softer and more compressible,

so these polytropes are more centrally condensed. As a result, k2 decreases as n increases.

The limiting case n = 0 represents a uniform density star and has the largest Love number

possible. The Love number also decreases with increasing compactness, and from Eq. (4.63)

it can be seen that k2 vanishes at the compactness of a black hole (M/R = 0.5) regardless

of the EOS dependent quantity y [93, 110].

Normal matter EOS behave approximately as polytropes for large compactness. How-

ever, for smaller compactness, the softer crust becomes a greater fraction of the star, so

the star is more centrally condensed and k2 smaller. For strange quark matter, the EOS

is extremely stiff near the minimum density, and the star behaves approximately as an

n = 0 polytrope for small compactness. As the central density and compactness increase,

the softer, higher density part of the EOS has a larger effect, and the star becomes more

centrally condensed.

The parameter that is directly measurable by gravitational wave observations of a binary

neutron star inspiral is proportional to the tidal deformability λ, which is shown for each

candidate EOS in Fig. 21. The values of λ for the candidate EOS show a much wider range

of behaviors than for k2 because λ is proportional to k2R
5, and the candidate EOS produce

a wide range of radii (9.4–15.5 km for a 1.4 M� star for normal EOS and 8.9–10.9 km for

the SQM EOS). See Table 2.

For normal matter, λ becomes large for stars near the minimum mass configuration at

roughly 0.1 M� because they have a large radius. For masses in the expected mass range

for binary inspirals, there are several differences between EOS with only npeµ matter and

those with condensates. EOS with condensates have, on average, a larger λ, primarily

because they have, on average, larger radii. The quark hybrid EOS ALF1 with a small

radius (9.9 km for a 1.4 M� star) and the nuclear matter only EOSs MS1 and MS2 with

large radii (14.9 km and 14.5 km, respectively, at 1.4 M�) are exceptions to this trend.

For strange quark matter stars, there is no minimum mass, so the radius (and therefore



78

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

m HM
�

L

Λ
H1

036
g

cm
2
s2

L

npeΜ matter only

A
dv

. L
IG

O

Ein
st

ei
n

Te
le

sc
op

e

AP1 AP3

FPS
SLy

MPA1

MS1

MS2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

m HM
�

L

Λ
H1

036
g

cm
2
s2

L

Π�H�q

A
dv

. L
IG

O

Ein
st

ei
n

Te
le

sc
op

e

PS

ALF1

ALF
2

GNH3

H1
H4

BGN1H1

PC
L2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

m HM
�

L

Λ
H1

036
g

cm
2
s2

L
strange quark matter

A
dv

. L
IG

O

Ein
st

ei
n

Te
le

sc
op

e

SQM1
SQM2

SQM3

Figure 21 : Tidal deformability λ of a single neutron star as a function of neutron-star mass for a range

of realistic EOS. The top left figure shows EOS that only include npeµ matter; the top right figure shows

EOS that also incorporate π/hyperon/quark matter; the bottom figure shows strange quark matter EOS.

The dashed lines between the various shaded regions represent the expected uncertainties in measuring λ

for an equal-mass binary inspiral at a distance of D = 100 Mpc as it passes through the gravitational wave

frequency range 10 Hz–450 Hz. Observations with Advanced LIGO will be sensitive to λ in the unshaded

region, while the Einstein Telescope will be able to measure λ in the unshaded and light shaded regions. See

text below.

λ) approaches zero as the mass approaches zero. At larger masses, the tidal deformability

of SQM stars remains smaller than most normal matter stars because, despite having large

Love numbers, the radii of SQM stars are typically smaller.

Error estimates ∆λ for an equal-mass binary inspiral at 100 Mpc are also shown in

Fig. 21 for both Advanced LIGO and the Einstein Telescope. They will be discussed in the

next section.

In addition to these candidate EOS, we also calculate tidal deformability for the piece-

wise polytrope EOS introduced in Chapter 2. As shown in Fig. 22, the constraint imposed
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Table 2 : Properties of a 1.4 M� neutron star for the 18 EOS discussed in the text.

EOS R(km) M/R k2 λ(1036 g cm2 s2)

SLY 11.74 0.176 0.0763 1.70

AP1 9.36 0.221 0.0512 0.368

AP3 12.09 0.171 0.0858 2.22

FPS 10.85 0.191 0.0663 1.00

MPA1 12.47 0.166 0.0924 2.79

MS1 14.92 0.139 0.110 8.15

MS2 13.71 0.151 0.0883 4.28

PS 15.47 0.134 0.104 9.19

BGN1H1 12.90 0.160 0.0868 3.10

GNH3 14.20 0.146 0.0867 5.01

H1 12.86 0.161 0.0738 2.59

H4 13.76 0.150 0.104 5.13

PCL2 11.76 0.176 0.0577 1.30

ALF1 9.90 0.209 0.0541 0.513

ALF2 13.19 0.157 0.107 4.28

SQM1 8.86 0.233 0.098 0.536

SQM2 10.03 0.206 0.136 1.38

SQM3 10.87 0.190 0.166 2.52

by a measurement of λ is very similar to that of a radius (Fig. 13) or moment of inertia

(Fig. 12) observation. This occurs because λ ∝ k2R
5 is strongly dependent on the neutron

star radius.

6.3 Measuring effects on gravitational radiation

We wish to calculate the contribution from realistic tidal effects to the phase evolution and

resulting gravitational wave spectrum of an inspiraling neutron star binary. In the secular

limit, where the orbital period is much shorter than the gravitational radiation reaction

timescale, we consider the tidal contribution to the energy E and energy flux dE/dt for a

quasi-circular inspiral using the formalism developed by Flanagan and Hinderer [86], which

adds the following leading-order terms to the post-Newtonian point-particle corrections
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Figure 22 : The above surfaces represent the set of parameters that result in a star with a mass of 1.4 M�

and a fixed tidal deformability. λ = 6× 1035 g cm2 s2 for the bottom surface. λ = 2× 1036 g cm2 s2 for the

middle surface. λ = 1× 1037 g cm2 s2 for the top surface. The wedge at the back right is the shaded region

of Fig. 4, corresponding to incompatible values of p1 and Γ1.

(PN-PP corr.):

E(x) = −1

2
Mηx

[
1 + (PN-PP corr.)− 9

M2

M1

λ1

M5
x5 + 1↔ 2

]
, (6.2)

Ė(x) = −32

5
η2x5

[
1 + (PN-PP corr.) + 6

M1 + 3M2

M1

λ1

M5
x5 + 1↔ 2

]
. (6.3)

Here λ1 = λ(M1) and λ2 = λ(M2) are the tidal deformabilities of stars 1 and 2, respectively.

M = M1 + M2 is the total mass, η = M1M2/M
2 is the symmetric mass ratio, and x is

the post-Newtonian dimensionless parameter given by x = (ΩM)2/3, where Ω is the orbital

angular frequency. One can then use

dx/dt =
Ė

dE/dx
(6.4)

to estimate the evolution of the quadrupole gravitational wave phase Φ via dΦ/dt = 2Ω =

2x3/2/M . The effect of the tidal distortion on these quantities was previously computed in

Refs. [104, 103, 106] in terms of the gauge-dependent orbital separation. When these results

are converted to the gauge invariant quantity x, taking into account the tidal correction to

the radius-frequency relation, the expressions obtained in the previous studies agree with

our Eqs. (6.2) and (6.3).

Each equation of state gives in this approximation a known phase contribution as a

function of M1 and M2, or as a function of the total mass M = M1 + M2 and the mass

ratio M2/M1, via λ(M1) and λ(M2) for that EOS. Although we calculated λ for individual

neutron stars, the universality of the neutron star core equation of state allows us to predict
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Figure 23 : Weighted λ̃ for a range of chirp mass M and symmetric mass ratio η, for three of the EOSs

considered above. The values of η equal to {0.25, 0.242, 0.222} correspond to the mass ratios M2/M1 =

{1.0, 0.7, 0.5}. Also plotted (as in Fig. 21) are the uncertainties ∆λ̃ in measuring λ̃ for a binary at 100 Mpc

between 10 Hz–450 Hz. The solid, dashed, and dotted curves correspond to ∆λ̃ for η = 0.25, 0.242, and

0.222 respectively.

the tidal phase contribution for a given binary system from each EOS. Following [86], we

discuss the constraint on the weighted average

λ̃ =
1

26

[
M1 + 12M2

M1
λ1 +

M2 + 12M1

M2
λ2

]
, (6.5)

which reduces to λ in the equal mass case. The contribution to dΦ/dx from the tidal

deformation, which adds linearly to the known point particle phase evolution, is

dΦ

dx

∣∣∣∣
T

= −195

8

x3/2λ̃

M5η
. (6.6)

The weighted average λ̃ is plotted as a function of chirp mass M = (M1M2)3/5/M1/5 in

Fig. 23 for three of the EOS and for three values of η: equal mass (η = 0.25), large but

plausible mass ratio [113] (η = 0.242), and extremely large mass ratio (η = 0.222).

We can determine the significance of the tidal effect on gravitational waveforms in a given

frequency range by considering the resulting change in phase accumulated as a function of

frequency. In the case of template-based searches, for example, a drift in phase of half a cycle

leads to destructive interference between the signal and template, halting the accumulation

of signal to noise ratio. The phase contributions to binary neutron stars of various masses

from a range of realistic tidal deformabilities are plotted in Fig. 24.
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Figure 24 : The reduction in accumulated gravitational wave phase due to tidal effects, Φ3.5,PP (fGW ) −
Φ3.5,λ(fGW ), is plotted with thick lines as a function of gravitational wave frequency, for a range of λ

appropriate for realistic neutron star EOS and the masses considered. The 3.5 post-Newtonian TaylorT4 PN

specification is used as the point-particle reference for the phase calculations. For reference, the difference in

accumulated phase between 3.0 and 3.5 post-Newtonian orders of T4 (thin dashed line), and the difference

between 3.5 post-Newtonian T4 and 3.5 post-Newtonian T1 (thin dotted line) are also shown. Phase

accumulations are integrated from a starting frequency of 10 Hz.

The post-Newtonian formalism itself is sensitive to high-order corrections at the fre-

quencies at which the tidal effect becomes significant; as reference, we show in Fig. 24 the

phase difference between the 3.0PN and 3.5PN expansions, as well as that from varying

the form of the post-Newtonian Taylor expansion from T4 to T1.2 An accurate knowledge

of the underlying point-particle dynamics will be important to resolve the effects of tidal

deformation on the gravitational wave phase evolution at these frequencies.

The half-cycle or more contribution to the gravitational wave phase at relatively low

frequencies suggests that this effect could be measurable. Flanagan and Hinderer [86]

2For an explanation of the differences between T4 and T1, see Chapter 3.
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first calculated the measurability for frequencies below 400 Hz, where the approximations

leading to the tidal phase correction are well-justified. We extend the same computation of

measurability to a range of masses and mass ratios. We take noise curves from the projected

NS-NS optimized Advanced LIGO configuration [114], as well as a proposed noise spectrum

of the Einstein Telescope [115]. These noise curves are representative of the anticipated

sensitivities of the two detectors. Our results do not change significantly for alternate

configurations which have similar sensitivities in the frequency range of interest.

We also extend the computation to a slightly higher cutoff frequency. As estimated in

Appendix B, our calculation should still be fairly robust at 450 Hz, as the contributions

to the phase evolution from various higher order effects are O(10%) of the leading order

tidal contribution. The uncertainty in the phase contribution from a given EOS is therefore

significantly smaller than the order of magnitude range of phase contributions over the full

set of realistic EOS.

The rms uncertainty ∆λ̃ in the measurement of λ̃ is computed using the standard

Fisher matrix formalism [116]. Assuming a strong signal h and Gaussian detector noise, the

signal parameters θi have probability distribution p
(
θi
)
∝ exp

(
−(1/2) Γijδθ

iδθj
)
, where

δθi = θi − θ̂i is the difference between the parameters and their best-fit values θ̂i and

Γij = (∂h/∂θi , ∂h/∂θj) is the Fisher information matrix. The parentheses denote the

inner product defined in [116]. The rms measurement error in θi is given by a diagonal

element of the inverse Fisher, or covariance, matrix: ∆θi =
√

(Γ−1)ii.

Using the stationary phase approximation and neglecting post-Newtonian corrections

to the amplitude, the Fourier transform of the waveform for spinning point masses is given

by h̃(f) = Af−7/6exp (iΨ), where the point-mass contribution to the phase Ψ is given to

3.5 post-Newtonian order in Ref. [63]. The tidal term

δΨtidal = −117λ̃x5/2

8ηM5
(6.7)

obtained from Eq. (B.5) adds linearly to this, yielding a phase model with 7 parameters

(tc, φc,M, η, β, σ, λ̃), where β and σ are spin parameters. We incorporate the maximum

spin constraint for the NSs by assuming a Gaussian prior for β and σ as in [116]. The

uncertainties computed will depend on the choice of point-particle phase evolution, but we

assume this to be exactly the 3.5PN form for the current analysis.

The rms measurement uncertainty of λ̃, along with the uncertainties in chirp mass M
and symmetric mass ratio η, are given in Table 3 and plotted in Figs. 21 and 23, from a

single-detector observation of a binary at 100 Mpc distance with amplitude averaged over

inclinations and sky positions. If the best-fit λ̃ is zero, this represents a 1-σ upper bound
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on the physical λ̃. A signal with best-fit λ̃ ≥ ∆λ̃ would allow a measurement rather than a

constraint of λ̃, with 1-σ uncertainty of ∆λ̃.

We obtain the following approximate formula for the rms measurement uncertainty ∆λ̃,

which is accurate to better than 4% for the range of masses 0.1 M� ≤ m1,m2 ≤ 3.0 M�

and cutoff frequencies 400 Hz ≤ fend ≤ 500 Hz:

∆λ̃ ≈ α
(
M

M�

)2.5(m2

m1

)0.1(fend

Hz

)−2.2( D

100 Mpc

)
, (6.8)

where α = 1.0 × 1042 g cm2 s2 for a single Advanced LIGO detector and α = 8.4 ×
1040 g cm2 s2 for a single Einstein Telescope detector.

Our results show that the measurability of tidal effects decreases steeply with the total

mass of the binary. Estimates of the measurement uncertainty for an equal-mass binary

inspiral in a single detector with projected sensitivities of Advanced LIGO and the Einstein

Telescope, at a volume-averaged distance of 100 Mpc and using only the portion of the

signal between 10 − 450 Hz, are shown in Fig. 21, together with the values of λ predicted

by various EOS models. Measurability is less sensitive to mass ratio, as seen in Fig. 23.

Comparing the magnitude of the resulting upper bounds on λ with the expected range for

realistic EOS, we find that the predicted λ are greatest and the measurement uncertainty

∆λ is smallest for neutron stars at the low end of the expected mass range for NS-NS

inspirals of (1 M� − 1.7 M�) [117].

In a single Advanced LIGO detector, only extremely stiff EOS could be constrained with

a typical 100 Mpc observation. However, a rare nearby event could allow more interesting

constraints, as the uncertainty scales as the distance to the source. Rate estimates for

detection of binary neutron stars are often given in terms of a minimum signal-to-noise

ρc = 8; a recent estimate [118] is between 2 and 64 binary neutron star detections per year

for a single Advanced LIGO interferometer with a volume averaged range of 187 Mpc. The

rate of binaries with a volume averaged distance smaller than 100 Mpc translates to roughly

(100/187)3 ' 15% of this total detection rate, but over multiple years of observation a rare

event could give measurements of λ̃ with uncertainties smaller than the values in Table 3

(e.g. with half the tabled uncertainty at 1.9% the total NS-NS rate).

Using information from a network of N detectors with the same sensitivity decreases the

measurement uncertainty by approximately a factor of 1/
√
N [119], giving more reason for

optimism. However, we should also note that, in some ways, our estimates of uncertainty

are already too optimistic. First, ∆λ only represents a 68% confidence in the measurement;

a 2∆λ error bar would give a more reasonable 95% confidence. In addition, our Fisher

matrix estimates are likely to somewhat underestimate the measurement uncertainty in
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real non-Gaussian noise.

In contrast to Advanced LIGO, an Einstein Telescope detector with currently projected

noise would be sensitive to tidal effects for typical binaries, using only the signal below

450 Hz at 100 Mpc. The tidal signal in this regime would provide a clean signature of the

neutron star core equation of state. However, an accurate understanding of the underlying

point-particle phase evolution is still important to confidently distinguish EOS effects.

Table 3 : The rms measurement error in various binary parameters (chirp mass M, symmetric mass ratio

η, and weighted average λ̃ of the tidal deformabilities) for a range of total mass M and mass ratio M2/M1,

together with the signal to noise ratio ρ, using only the information in the portion of the inspiral signal

between 10 Hz ≤ f ≤ 450 Hz. The distance is set at 100 Mpc, and the amplitude is averaged over sky

position and relative inclination.

Advanced LIGO

M (M�) M2/M1 ∆M/M ∆η/η ∆λ̃(1036 g cm2 s2) ρ

2.0 1.0 0.00028 0.073 8.4 27

2.8 1.0 0.00037 0.055 19.3 35

3.4 1.0 0.00046 0.047 31.3 41

2.0 0.7 0.00026 0.058 8.2 26

2.8 0.7 0.00027 0.058 18.9 35

3.4 0.7 0.00028 0.055 30.5 41

2.8 0.5 0.00037 0.06 17.8 33

Einstein Telescope

M (M�) M2/M1 ∆M/M ∆η/η ∆λ̃(1036 g cm2 s2) ρ

2.0 1.0 0.000015 0.0058 0.70 354

2.8 1.0 0.000021 0.0043 1.60 469

3.4 1.0 0.000025 0.0038 2.58 552

2.0 0.7 0.000015 0.0058 0.68 349

2.8 0.7 0.000021 0.0045 1.56 462

3.4 0.7 0.000025 0.0038 2.52 543

2.8 0.5 0.000020 0.0048 1.46 442

Expected measurement uncertainty will decrease if we can extend the calculation later

into the inspiral. From Eq. (6.8), ∆λ̃ at 500 Hz is approximately 79% of its value at 450 Hz.

The dominant source of error in the tidal phasing at these frequencies are post-Newtonian

effects which scale as λx7/2 and do not depend on any additional EOS parameters. These
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terms are computed in Refs. [85, 111], and when they are incorporated into the analysis,

the resulting phase evolution model can be used at slightly higher frequencies. These terms

also add ∼ 10%(f/450 Hz)2/3 to the strength of the tidal signature.

Higher-order tidal effects and nonlinear hydrodynamic couplings, which depend on un-

known NS microphysics, are smaller than post-Newtonian effects by factors of ∼ x and

∼ x2, so they become important later in the inspiral, where the adiabatic approximation

that the mode frequency is large compared to the orbital frequency also breaks down. At

this point we can no longer measure only λ̃, but an EOS- dependent combination of effects

including higher multipoles, nonlinearity, and tidal resonances.

However, information in the late inspiral could also constrain the underlying neutron-

star EOS. Read et al. [16] estimated potential measurability of EOS effects in the last few

orbits of binary inspiral, where the gravitational wave frequency is above 500 Hz, using

full numerical simulations. The EOS used for the simulation was systematically varied by

shifting the pressure in the core while keeping the crust fixed. The resulting models were

parameterized, either by a fiducial pressure or by the radius of the isolated NS model, and

measurability in Advanced LIGO was estimated. Such numerical simulations include all

the higher order EOS effects described above, but the l = 2 tidal deformability parameter λ

should remain the dominant source of EOS-dependent modification of the phase evolution.

We therefore expect it to be a better choice for a single parameter to characterize EOS

effects on the late inspiral.

The numerically simulated models of [16] can be re-parameterized by the λ of the 1.35

M� neutron stars considered3. The uncertainty of measurement for the new parameter

λ can be estimated from Tables II-V of [16]. In the broadband Advanced LIGO config-

uration of Table IV, it is between 0.3 and 4×1036 g cm2 s2 for an optimally oriented 100

Mpc binary, or between 0.7 and 9×1036 g cm2 s2 averaged over sky position and orientation.

However, in the NS-NS optimized LIGO configuration of Table III, which is most similar

to the Advanced LIGO configuration considered in this paper, the expected measurement

uncertainty is more than several times λ for all models. These estimates should be con-

sidered order-of-magnitude, as numerical simulation errors are significant, and the discrete

sampling of a parameter space allows only a coarse measurability estimate which neglects

parameter correlations. In contrast to the perturbative/post-Newtonian estimate of EOS

effects calculated in this paper, EOS information in the signal before the start of numerical

simulations is neglected. The estimate is complementary to the measurability below 450 Hz

3The piecewise polytrope EOS {2B, B, HB, H, 2H} have λ1.35M� of {0.588, 1.343, 1.964, 2.828,

10.842}×1036 g cm2 s2, respectively.
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estimated in this paper.

6.4 Conclusion

We have calculated the relativistic l = 2 Love number k2 and resulting tidal deformability λ

for a wide range of realistic EOS in addition to polytropes. These EOS have tidal deforma-

bilities that differ by up to an order of magnitude in the mass range relevant for binary

neutron stars. However, the estimated uncertainty ∆λ̃ for a binary neutron star inspiral

at 100 Mpc using the Advanced LIGO sensitivity below 450 Hz is greater than the largest

values of λ̃ except for very low-mass binaries. The uncertainty for the Einstein Telescope, on

the other hand, is approximately an order of magnitude smaller than for Advanced LIGO,

and a measurement of λ̃ will rule out a significant fraction of the EOS.

Advanced LIGO can place a constraint on the space of possible EOS by obtaining a 95%

confidence upper limit of λ̃(M, η) . 2∆λ̃(M, η). The tables in Sec. 6.3 can also be scaled

as follows: For a network of N detectors the uncertainty scales roughly as ∆λ̃/
√
N , and for

a closer signal we have ∆λ̃(D/100 Mpc).
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Chapter 7

Detectability of tidal parameters

from nonspinning BHNS systems

7.1 Introduction

Construction of the second-generation Advanced LIGO (aLIGO) detectors is underway and

will soon begin for Advanced VIRGO and LCGT, making it likely that gravitational wave-

forms from compact binaries will be observed in this decade. Plans are also in development

for the third generation Einstein Telescope (ET) detector with an order-of-magnitude in-

crease in sensitivity over aLIGO. Population synthesis models predict that with a single

aLIGO detector binary neutron star (BNS) systems will be observed with a signal-to-noise

ratio (SNR) of 8, at an event rate between 0.4 and 400 times per year and with a most likely

value of 40 per year [120]. Black hole–neutron star (BHNS) systems are also expected, but

with a more uncertain rate of between 0.2 and 300 events per year at the same SNR and

with a most likely value of 10 events per year for a canonical 1.4 M�–10 M� system [120].

The expected mass ratios Q = MBH/MNS of BHNS systems are also highly uncertain and

may range from just under 3 to more than 20 [121, 122].

A major goal of the gravitational-wave (GW) program is to extract from observed wave-

forms the physical characteristics of their sources and, in particular, to use the waveforms of

inspraling and merging BNS and BHNS systems to constrain the uncertain EOS of neutron-

star matter. During inspiral the tidal interaction between the two stars leads to a small drift

in the phase of the gravitational waveform relative to a point particle system. Specifically

the tidal field Eij of one star will induce a quadrupole moment Qij in the other star given

by Qij = −λEij where λ1 is an EOS dependent quantity that describes how easily the star

1The tidal deformability for the `th multipole is often defined in terms of the NS radius R and its
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is distorted. A method for determining λ for relativistic stars was found by Hinderer [87];

its effect on the waveform was calculated to Newtonian order (with the relativistic value

of λ) by Flanagan and Hinderer [86] and to first post-Newtonian (PN) order by Vines,

Flanagan, and Hinderer [85, 111]. This tidal description has also been extended to higher

order multipoles [93, 110].

The detectability of EOS effects have been examined for both BNS and BHNS systems

using this analytical description of the inspiral. For BNS systems, the detectability of λ

with aLIGO was examined for polytropic EOS [86] as well as a range of theoretical EOS

commonly found in the NS literature for aLIGO and ET [123]. These studies considered

only the waveform up to frequencies of 400–500 Hz (∼30–20 GW cycles before merger for

1.4 M� equal-mass NSs). For this early part of inspiral, they find that the tidal deformabil-

ity is detectable by aLIGO only for an unusually stiff EOS and for low neutron-star masses

(< 1.2 M�). ET on the other hand would have an order of magnitude improvement in esti-

mating λ, allowing ET to distinguish between different classes of EOS. For BHNS systems,

using the recently calculated 1PN corrections, Pannarale et al. [124] examined detectability

for a range of mass ratios, finding that aLIGO will be able to distinguish between BHNS and

binary black hole (BBH) systems only for low mass ratios and stiff EOS when considering

the full inspiral waveform up to the point of tidal disruption.

In sharp contrast to these analytic post-Newtonian results, analysis of just the last few

orbits of BNS inspiral from numerical simulations has shown that the NS radius may be

extracted to a higher accuracy, of O(10%) with aLIGO [16], and this is confirmed by a study

based on a set of longer and more accurate waveforms from two different codes [125]. In

addition, comparisons between the analytical tidal description and BNS quasiequilibrium

sequences [126] as well as long BNS numerical waveforms [127, 128] suggest that corrections

beyond the 1PN quadrupole description are significant and substantially increase the tidal

effect during the late inspiral.

Numerical BHNS simulations have also been done to examine the dependence of the

waveform on mass ratio, BH spin, NS mass, and the neutron-star EOS [129, 130, 131,

132, 133, 134, 135, 136, 137, 138, 139, 140]. However, an analysis of the detectability

of EOS information with GW detectors using these simulations has not yet been done,

and the present chapter presents the first results of this kind. EOS information from

tidal interactions is present in the inspiral waveform. For BHNS systems, however, the

stronger signal is likely to arise from a sharp drop in the GW amplitude arising from tidal

dimensionless `th Love number k` by λ` = 2
(2`−1)!!G

k`R
2`+1. Here we will discuss only the ` = 2 term so we

write λ := λ2.
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disruption prior to merger or, when there is negligible disruption, from the cutoff frequency

at merger [141].

We find from simulations of the last few orbits, merger, and ringdown of BHNS systems

with varying EOS that, to within numerical accuracy, the EOS parameter extracted from

the waveform is the same tidal parameter Λ that determines the departure from point

particle behavior during inspiral; here Λ is a dimensionless version of the tidal parameter:

Λ := Gλ

(
c2

GMNS

)5

=
2

3
k2

(
c2R

GMNS

)5

, (7.1)

where k2 is the quadrupole Love number. This parameter is similar to the dimensionless

parameter κT2 introduced in Eq. (26) of Ref. [126]. However, we have chosen to make Λ

independent of the mass ratio so that it depends on only the neutron star mass and EOS.

The constraint on the EOS imposed by gravitational-wave observations of BHNS inspiral

and merger is essentially a restriction of the space of EOS p = p(ρ) to a hypersurface of

constant Λ, thickened by the uncertainty in the measurement (that is, a restriction to the

set of EOS for which a spherical neutron star of the mass observed in the inspiral has

tidal parameter Λ). We use a parametrized EOS based on piecewise polytropes [54], to

delineate this region in the EOS space, but the result can be used to constrain any choice

of parameters for the EOS space.

In Sec. 7.2 we discuss the parametrized EOS used in the simulations. We give in Sec. 7.3

an overview of the numerical methods used and, in Sec. 7.4, a description of the waveforms

from the simulations. We then discuss the analytical waveforms used for the early inspiral

and issues related to joining the analytical and numerical waveforms to create hybrids in

Sec. 8.3, and we then estimate the uncertainty in extracting EOS parameters in Sec. 7.6.

Finally, we discuss in Sec. 7.7 remaining work, including spinning black holes, which will

be addressed in Chapter 8. In an appendix we describe methods for numerically evaluating

the Fisher matrix.

Conventions: Unless otherwise stated we set G = c = 1. Base 10 and base e logarithms

are denoted log and ln respectively. We define the Fourier transform x̃(f) of a function x(t)

by

x̃(f) =

∫ ∞
−∞

x(t)e−2πift dt, (7.2)

and the inverse Fourier transform by

x(t) =

∫ ∞
−∞

x̃(f)e2πift df. (7.3)
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7.2 Parametrized EOS

To understand the dependence of the BHNS waveform on the EOS we systematically vary

the free parameters of a parametrized EOS and then simulate a BHNS inspiral for each

set of parameters. We choose the piecewise polytropic EOS introduced in Ref [54]. Within

each density interval ρi−1 < ρ < ρi, the pressure p is given in terms of the rest mass density

ρ by

p(ρ) = Kiρ
Γi , (7.4)

where the adiabatic index Γi is constant in each interval, and the pressure constant Ki is

chosen so that the EOS is continuous at the boundaries ρi between adjacent segments of

the EOS. The energy density ε is found using the first law of thermodynamics,

d
ε

ρ
= −pd1

ρ
. (7.5)

Ref. [54] uses a fixed low density EOS for the NS crust. The parametrized high density

EOS is then joined onto the low density EOS at a density ρ0 that depends on the values of

the high-density EOS parameters. The high-density EOS consists of a three-piece polytrope

with fixed dividing densities ρ1 = 1014.7 g/cm3 and ρ2 = 1015 g/cm3 between the three

polytropes. The resulting EOS has four free parameters. The first parameter, the pressure

p1 at the first dividing density ρ1, is closely related to the radius of a 1.4 M� NS [8]. The

other three parameters are the adiabatic indices {Γ1,Γ2,Γ3} for the three density intervals.

This parametrization accurately fits a wide range of theoretical EOS and reproduces the

corresponding NS properties such as radius, moment of inertia, and maximum mass to a

few percent [54].

Following previous work on BNS [16] and BHNS simulations [137, 140] we use a simplified

two-parameter version of the piecewise-polytrope parametrization and uniformly vary each

of these parameters. For our two parameters we use the pressure p1 as well as a single

fixed adiabatic index Γ = Γ1 = Γ2 = Γ3 for the core. The crust EOS is given by a single

polytrope with the constants K0 = 3.5966× 1013 in cgs units and Γ0 = 1.3569 so that the

pressure at 1013 g/cm3 is 1.5689× 1031 dyne/cm2. (For most values of p1, Γ1, and Γ2, the

central density of a 1.4 M� star is below or just above ρ2, so the parameter Γ3 is irrelevant

anyway for BNS before merger and BHNS for all times.)

We list in Table 4 the 21 EOS used in the simulations along with some of the NS

properties. In addition, we plot the EOS as points in parameter space in Fig. 25 along

with contours of constant radius, tidal deformability Λ, and maximum NS mass. The

1.93 M� maximum mass contour corresponds to the recently observed pulsar with a mass
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of 1.97±0.04 M� measured using the Shapiro delay [43]. In this two-parameter cross section

of the full four-parameter EOS space, parameters below this curve are ruled out because

the corresponding EOS cannot support the observed NS with M > 1.93 M�.

Table 4 : Neutron star properties for the 21 EOS used in the simulations. The original EOS names [16,

137, 140] are also listed. p1 is given in units of dyne/cm2, maximum mass is in M�, and neutron star

radius R is in km. R, k2, and Λ are given for the two masses used: {1.20, 1.35} M�. The values listed

for log p1 are rounded to three digits. The exact values used in the simulations can be found by adding

log(c/cm s−1)2 − 20.95 ≈ 0.00364 (e.g. 34.3 becomes 34.30364).

EOS log p1 Γ Mmax R1.20 k2,1.20 Λ1.20 R1.35 k2,1.35 Λ1.35

p.3Γ2.4 Bss 34.3 2.4 1.566 10.66 0.0765 401 10.27 0.0585 142

p.3Γ2.7 Bs 34.3 2.7 1.799 10.88 0.0910 528 10.74 0.0751 228

p.3Γ3.0 B 34.3 3.0 2.002 10.98 0.1010 614 10.96 0.0861 288

p.3Γ3.3 34.3 3.3 2.181 11.04 0.1083 677 11.09 0.0941 334

p.4Γ2.4 HBss 34.4 2.4 1.701 11.74 0.0886 755 11.45 0.0723 301

p.4Γ2.7 HBs 34.4 2.7 1.925 11.67 0.1004 828 11.57 0.0855 375

p.4Γ3.0 HB 34.4 3.0 2.122 11.60 0.1088 872 11.61 0.0946 422

p.4Γ3.3 34.4 3.3 2.294 11.55 0.1151 903 11.62 0.1013 454

p.5Γ2.4 34.5 2.4 1.848 12.88 0.1000 1353 12.64 0.0850 582

p.5Γ2.7 34.5 2.7 2.061 12.49 0.1096 1271 12.42 0.0954 598

p.5Γ3.0 H 34.5 3.0 2.249 12.25 0.1165 1225 12.27 0.1029 607

p.5Γ3.3 34.5 3.3 2.413 12.08 0.1217 1196 12.17 0.1085 613

p.6Γ2.4 34.6 2.4 2.007 14.08 0.1108 2340 13.89 0.0970 1061

p.6Γ2.7 34.6 2.7 2.207 13.35 0.1184 1920 13.32 0.1051 932

p.6Γ3.0 34.6 3.0 2.383 12.92 0.1240 1704 12.97 0.1110 862

p.6Γ3.3 34.6 3.3 2.537 12.63 0.1282 1575 12.74 0.1155 819

p.7Γ2.4 34.7 2.4 2.180 15.35 0.1210 3941 15.20 0.1083 1860

p.7Γ2.7 34.7 2.7 2.362 14.26 0.1269 2859 14.25 0.1144 1423

p.7Γ3.0 1.5H 34.7 3.0 2.525 13.62 0.1313 2351 13.69 0.1189 1211

p.7Γ3.3 34.7 3.3 2.669 13.20 0.1346 2062 13.32 0.1223 1087

p.9Γ3.0 2H 34.9 3.0 2.834 15.12 0.1453 4382 15.22 0.1342 2324
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Figure 25 : The 21 EOS used in the simulations are represented by blue points in the parameter space. For a

NS of mass 1.35 M�, contours of constant radius are solid blue and contours of constant tidal deformability

Λ are dashed red. Also shown are dotted contours of maximum NS mass. The shaded region does not allow

the 1.35 M� NS used in our simulations, while the region below the 1.93 M� contour is inconsistent with

high-mass NS observations.

7.3 Numerical methods

We employ BHNS binaries in quasiequilibruim states for the initial conditions of our nu-

merical simulations. We compute a quasiequilibrium state of the BHNS binary as a solution

of the initial value problem of general relativity, employing the piecewise polytopic EOS de-

scribed in the previous section. The details of the formulation and numerical methods are

described in Refs. [142, 137]. Computations of the quasiequilibrium states are performed

using the spectral-method library LORENE [143].

Numerical simulations are performed using an adaptive-mesh refinement code SACRA [144].

SACRA solves the Einstein evolution equations in the BSSN formalism with the moving punc-

ture gauge, and solves the hydrodynamic equations with a high-resolution central scheme.

The formulation, the gauge conditions, and the numerical scheme are the same as those

described in Ref. [137]. For the EOS, we decompose the pressure and energy density into

cold and thermal parts as

p = pcold + pth , ε = εcold + εth, (7.6)

as was done in, for example, [145] and references therein. We calculate the cold parts of

both variables using the piecewise polytropic EOS from ρ, and then the thermal part of the

energy density is defined from ε as εth = ε − εcold. Because εth vanishes in the absence of

shock heating, εth is regarded as the finite temperature part. In our simulations, we adopt
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a Γ-law ideal gas EOS

pth = (Γth − 1)εth, (7.7)

to determine the thermal part of the pressure, and choose Γth equal to the adiabatic index

in the crust region, Γ0, for simplicity.

In our numerical simulations, gravitational waves are extracted by calculating the out-

going part of the Weyl scalar Ψ4 at finite coordinate radii ∼ 400M�, and by integrating Ψ4

twice in time as

h+(t)− ih×(t) =

∫ t

−∞
dt′
∫ t′

−∞
dt′′Ψ4(t′′), (7.8)

where we will focus on the (`,m) = (2, 2) multipole evaluated on the orbital axis. Other

multipoles measured along the axis are one or two orders of magnitude smaller. In this work,

we perform this time integration with a “fixed frequency integration” method to eliminate

unphysical drift components in the waveform [146]. In this method, we first perform a

Fourier transformation of Ψ4 as

Ψ̃4(f) =

∫ ∞
−∞

dtΨ4(t)e−2πift. (7.9)

Using this, Eq. (7.8) is rewritten as

h+(t)− ih×(t) = − 1

(2π)2

∫ ∞
−∞

df
Ψ̃4(f)

f2
e2πift. (7.10)

We then replace 1/f2 of the integrand with 1/f2
0 for |f | < f0, where f0 is a free parameter

in this method. By appropriately choosing f0, this procedure suppresses unphysical, low-

frequency components of gravitational waves. As proposed in Ref. [146], we choose f0 to be

∼ 0.8mΩ0/2π, where Ω0 is the initial orbital angular velocity and m(= 2) is the azimuthal

quantum number.

7.4 Description of waveforms

Using the 21 EOS described in Table 4, we have performed 30 BHNS inspiral and merger

simulations with different mass ratios Q = MBH/MNS and neutron star masses MNS. A

complete list of these simulations is given in Table 6. For the mass ratio Q = 2 and NS

mass MNS = 1.35 M�, we performed a simulation for each of the 21 EOS. In addition, we

performed simulations of a smaller NS mass (Q = 2, MNS = 1.20 M�) and a larger mass

ratio (Q = 3, MNS = 1.35 M�), in which we only varied the pressure p1 over the range

34.3 ≤ log(p1/(dyne cm−2)) ≤ 34.9 while holding the core adiabatic index fixed at Γ = 3.0.
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Table 5 : Data for the 30 BHNS simulations. NS mass is in units of M�, and Ω0M is the angular velocity

used in the initial data where M = MBH +MNS.

Q MNS EOS Ω0M Q MNS EOS Ω0M

2 1.35 p.3Γ2.4 0.028 2 1.35 p.6Γ3.3 0.025

2 1.35 p.3Γ2.7 0.028 2 1.35 p.7Γ2.4 0.025

2 1.35 p.3Γ3.0 0.028 2 1.35 p.7Γ2.7 0.025

2 1.35 p.3Γ3.3 0.025 2 1.35 p.7Γ3.0 0.028

2 1.35 p.4Γ2.4 0.028 2 1.35 p.7Γ3.3 0.025

2 1.35 p.4Γ2.7 0.028 2 1.35 p.9Γ3.0 0.025

2 1.35 p.4Γ3.0 0.028 2 1.20 p.3Γ3.0 0.028

2 1.35 p.4Γ3.3 0.025 2 1.20 p.4Γ3.0 0.028

2 1.35 p.5Γ2.4 0.025 2 1.20 p.5Γ3.0 0.028

2 1.35 p.5Γ2.7 0.025 2 1.20 p.9Γ3.0 0.022

2 1.35 p.5Γ3.0 0.028 3 1.35 p.3Γ3.0 0.030

2 1.35 p.5Γ3.3 0.025 3 1.35 p.4Γ3.0 0.030

2 1.35 p.6Γ2.4 0.025 3 1.35 p.5Γ3.0 0.030

2 1.35 p.6Γ2.7 0.025 3 1.35 p.7Γ3.0 0.030

2 1.35 p.6Γ3.0 0.025 3 1.35 p.9Γ3.0 0.028

Two of the gravitational waveforms are shown in Fig. 26 below. The waveforms are

compared with EOB BBH waveforms of the same mass ratio and NS mass which are also

shown. Specifically we use the EOB formalism discussed in Sec. 3.4. The most significant

differences begin just before the merger of the black hole and neutron star. For neutron

stars with a small radius, the black hole does not significantly distort the neutron star which

crosses the event horizon intact. As a result, the merger and ringdown of these waveforms

are very similar to the BBH waveform. However, a larger NS may be completely tidally

disrupted just before merger resulting in a supressed merger and ringdown waveform. Dis-

ruption suppresses the ringdown for two reasons related to the spreading of the matter:

The ringdown is primarily a superposition of nonaxisymmetric quasinormal modes, domi-

nated by the l = m = 2 mode (axisymmetric modes are more than an order of magnitude

smaller [147]), while the disrupted matter is roughly axisymmetric as it accretes onto the

black hole; and the accretion timescale of the spread-out matter is long compared to the

periods of the dominant modes decreasing the amplitude further.
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Figure 26 : h+ and |h| = |h+ − ih×| for BHNS waveforms for (Q = 2,MNS = 1.35 M�) with two different

EOS are represented by solid red and blue curves respectively. The softest EOS p.3Γ2.4 is on top and

the stiffest EOS p.9Γ3.0 is on bottom. An EOB BBH waveform (dashed) with the same values of Q and

MNS is matched to each numerical waveform within the matching window TI < t < TF bounded by solid

vertical lines. A hybrid EOB BBH–Numerical BHNS waveform is generated by splicing the waveforms

together within a splicing window SI < t < SF bounded by dotted vertical lines. The matching window

is 12 ms long and ends at the numerical merger time tNR
M (time when the numerical waveform reaches its

maximum amplitude), while the splicing window is 4 ms long and begins at the start of the matching window

(SI = TI).

The dependence of the waveform on the EOS can be seen more clearly by decomposing

each waveform into amplitude A(t) and phase Φ(t) with the relation h+(t) − ih×(t) =

A(t)e−iΦ(t). In Fig. 27, the amplitude as a function of time for each BHNS waveform

is compared to a BBH waveform of the same value of Q and MNS. At early times, the

waveform is almost identical to the BBH waveform. However, a few ms before the maximum

amplitude is reached, the amplitude begins to depart from the BBH case. For each Q and

MNS, this departure from the BBH waveform is approximately monotonic in Λ and R.

Neutron stars with large values of Λ merge earlier, and as a result the waveforms reach a

smaller maximum amplitude. The phase of each waveform is compared to that of the EOB

BBH waveform ΦEOB in Fig. 28. At early times the phase oscillates about the EOB phase

due to initial eccentricity in the numerical waveform discussed in Sec. 7.5.2. At later times,

closer to the merger, tidal interactions lead to a higher frequency orbit; this, together with
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correspondingly stronger gravitational wave emission, means the BHNS phase accumulates

faster than the EOB phase. This continues for 1–2 ms after the waveform reaches its

maximum amplitude (indicated by the dot on each curve). Eventually the amplitude drops

significantly, and numerical errors dominate the phase. We truncate the curves when the

amplitude drops below 0.01.
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Figure 27 : (Color online) Amplitude of the complex waveform h = h+ − ih×. Solid black curves are EOB

waveforms with the same Q and MNS. Matching and splicing conventions are those of Fig. 26. Top right

panel: color indicates the value of log(p1) while the line style indicates the value of Γ. With the exception of

the four closely spaced waveforms where log(p1/(dyne cm−2)) = 35.5 and the difference in Λ and R between

waveforms is small, the BHNS waveforms monotonically approach the EOB waveform as Λ and R decrease.

The monotonic dependence of the waveform on Λ can again be seen in its Fourier

transform h̃, shown in Figs. 29 and 30, which is decomposed into amplitude and phase by

h̃(f) = A(f)e−iΦ(f). The predicted EOS dependent frequency cutoff in the waveform [141]

is clearly shown in the amplitude2. Neutron stars that are more easily disrupted (larger

Λ) result in an earlier and lower frequency drop in their waveform amplitude than NS

2Tidal disruption occurs after the onset of mass shedding of the neutron star. The frequency at the

onset of mass shedding is usually much lower than that of tidal disruption for BHNS binaries [132]. In

Ref. [141], mass-shedding frequency was identified as the cutoff frequency but this underestimates the true

cutoff frequency. See also Refs. [148, 106] for a discussion of dynamical mass transfer.
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Figure 28 : (Color online) Cumulative phase difference Φ−ΦEOB between BHNS waveform and EOB BBH

waveform with the same Q and MNS. The phase is defined by breaking up each complex waveform into

amplitude and cumulative phase h+(t)− ih×(t) = A(t)e−iΦ(t). The black point on each curve indicates the

BHNS merger time tNR
M defined as the time of maximum amplitude A(tNR

M ). The curve is truncated when

the amplitude AD/M drops below 0.01. Matching and splicing conventions are those of Fig. 26. Ordering

of waveforms are those of Fig. 27.

with smaller Λ. The phase Φ(f) relative to the corresponding BBH waveform has a much

smoother behavior than the phase of the time domain waveform. This feature will be useful

in evaluating the Fisher matrix in Sec. 7.6. The noise that is seen at frequencies above

∼ 3000 Hz is the result of numerical errors in the simulation and has no effect on the error

estimates below.

7.5 Hybrid Waveform Construction

Since our numerical simulations typically begin ∼5 orbits before merger, it is necessary to

join the numerical waveforms to analytic waveforms representing the earlier inspiral. There

is a substantial literature comparing analytic and phenomenological waveforms with numer-

ical waveforms extracted from simulations of BBH coalescence. For example, it has been

shown that the 3.5 post-Newtonian (TaylorT4) waveform agrees well with equal mass BBH

waveforms up to the last orbit before merger [70]. For unequal mass systems, the EOB
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Figure 29 : (Color online) Weighted Fourier transform 2f1/2|h̃(f)| of numerical waveforms where h̃ =
1
2
(h̃+ + h̃×). Solid black curves are EOB waveforms with the same Q and MNS. The left axis is scaled to

a distance of 100 Mpc, and the noise S
1/2
n (f) for broadband aLIGO and ET-D are shown for comparison.

In each plot the numerical waveform monotonically approaches the EOB waveform as the tidal parameter

Λ decreases. Matching and splicing conventions are those of Fig. 26. Ordering of waveforms are those of

Fig. 27.

formalism (see Ref. [77] for a review) has proven to be a powerful tool to generate analytic

waveforms that agree with numerical simulations. Free parameters in the EOB formalism

have been fit to numerical BBH waveforms to provide analytic (phenomenological) wave-

forms that extend to the late, non-adiabatic inspiral as well as the ringdown. These EOB

waveforms appear to be in good agreement with numerical BBH waveforms for mass ratios

at least up to Q = 4 [76]. Although we have not explored them in this context, other ap-

proaches have also been taken for constructing phenomenological inspiral-merger-ringdown

waveforms [73, 74, 72, 149, 150].

For equal-mass BNS, Read et al. [16] compared the numerical BNS waveform during

inspiral to a point particle post-Newtonian waveform. Specifically, they used the 3.5 post-

Newtonian (TaylorT4) waveforms matched on to the numerical waveforms to study the
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Figure 30 : (Color online) Cumulative phase difference Φ − ΦEOB of the Fourier transform between BHNS

waveform and EOB BBH waveform of the same mass and mass ratio. The phase is defined by breaking

up the Fourier transform h̃ = 1
2
(h̃+ + h̃×) of each waveform into amplitude and cumulative phase h̃(f) =

A(f)e−iΦ(f). Matching and splicing conventions are those of Fig. 26. Ordering of waveforms are those of

Fig. 27.

measurability of EOS parameters. They found that differences between the analytic and

numerical waveforms become apparent 4− 8 cycles before the post-Newtonian coalescence

time.

The leading and post-1-Newtonian quadrupole tidal effects have recently been incor-

porated into the post-Newtonian formalism and used to compute corrections to the point-

particle gravitational waveforms [86, 85, 111]. These post-Newtonian contributions along

with a fit to the 2PN tidal contribution have also been incorporated into the EOB formalism

and compared to long simulations (∼ 20 GW cycles), where they find agreement with the

simulations to ±0.15 rad over the full simulation up to merger [128].

For the BHNS systems discussed here, we have matched the numerical waveforms

to EOB waveforms that include inspiral, merger, and ringdown phases instead of post-

Newtonian waveforms which are often not reliable during the last few cycles for higher

mass ratios. This choice also allows us to use longer matching windows that average over
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numerical noise and the effects of eccentricity as shown in Sec. 7.5.2. We have chosen to

use the EOB formalism to generate inspiral-merger-ringdown waveforms, although we note

that other phenomenological waveforms would probably work. For simplicity, and because

it appears that an accurate description of the late inspiral dynamics just before merger

requires 2PN tidal corrections [126, 127, 128] which are not yet known, we will use the

EOB waveforms without tidal corrections. Our results will therefore be lower limits on

the measurability of EOS parameters since the EOS dependence is coming solely from the

numerical waveforms.

7.5.1 Matching procedure

We use a method similar to that described by Read et al. [16] to join each of the numer-

ical BHNS waveforms to a reference EOB waveform, generating a hybrid EOB–numerical

waveform. Denote a complex numerical waveform by hNR(t) = hNR
+ (t) − ihNR

× (t) and an

EOB waveform with the same Q and MNS by hEOB(t) = hEOB
+ (t) − ihEOB

× (t). A constant

time-shift τ and phase-shift Φ can be applied to the EOB waveform to match it to a sec-

tion of the numerical waveform by rewriting it as hEOB(t− τ)e−iΦ. We hold the numerical

waveform fixed because we must specify a matching window TI < t < TF , and as discussed

below, there is only a small region of the numerical waveforms over which a valid match can

be performed. Once the values of τ and Φ are determined, we will then choose to instead

hold the EOB waveform fixed and shift the numerical waveform in the opposite direction

by rewriting it as hshift
NR (t) = hNR(t + τ)e+iΦ. This is done so that all of the numerical

waveforms with the same Q and MNS are aligned relative to a single fixed reference EOB

waveform.

Over a matching window TI < t < TF (bounded by solid vertical lines in Fig. 26), the

normalized match between the waveforms is defined as

m(τ,Φ) =
Re
[
z(τ)eiΦ

]
σNRσEOB(τ)

, (7.11)

where

z(τ) =

∫ TF

TI

hNR(t)h∗EOB(t− τ) dt (7.12)

and the normalizations for each waveform in the denomenator are defined as

σ2
NR =

∫ TF

TI

|hNR(t)|2 dt (7.13)

and

σ2
EOB(τ) =

∫ TF

TI

|hEOB(t− τ)|2 dt. (7.14)
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The time-shift τ and phase Φ are chosen to maximize the match m(τ,Φ) for a fixed matching

window. Explicitly, the phase is determined analytically to be Φ = − arg[z(τ)]; plugging

this result back into Eq. (7.11), the time-shift is given by maximizing |z(τ)|/[σNRσEOB(τ)]

over τ . As stated above, once τ and Φ are found we shift the numerical waveform in the

opposite direction to generate hshift
NR (t) = hNR(t+ τ)e+iΦ.

A hybrid waveform is generated by smoothly turning off the EOB waveform and smoothly

turning on the shifted numerical waveform over a splicing window SI < t < SF (bounded by

dotted vertical lines in Fig. 26) which can be chosen independently of the matching window.

As in Ref. [16], we employ Hann windows

woff(t) =
1

2

[
1 + cos

(
π[t− SI ]
SF − SI

)]
(7.15)

won(t) =
1

2

[
1− cos

(
π[t− SI ]
SF − SI

)]
. (7.16)

The hybrid waveform is then written

hhybrid(t) =


hEOB(t) t < SI

woff(t)hEOB(t) + won(t)hshift
NR (t) SI < t < SF

hshift
NR (t) t > SF

. (7.17)

As shown in Fig. 26, we choose the start of the splicing interval to be the same as the

start of the matching window SI = TI and choose the end of the splicing window to be

SF = TI + 4 ms. It is also necessary to use these windows to smoothly turn on the hybrid

waveform at low frequency when performing a discrete Fourier transform to avoid the Gibbs

phenomenon. Unlike the case for BNS waveforms, it is not necessary to window the end of

the hybrid waveform as the amplitude rapidly decays to zero anyway during the ringdown.

For concreteness we define t = 0 as the EOB BBH merger time tEOB
M when the EOB

waveform reaches its maximum amplitude. After matching to the EOB waveform, the time

when the numerical BHNS waveform reaches its maximum amplitude is tNR
M .

7.5.2 Dependence on matching window

Because the numerical BHNS waveforms are close but not identical to the EOB BBH wave-

form during the inspiral and because there is some noise in the BHNS waveforms, the time

shift that maximizes the match depends on the choice of matching window. The matching

window should exclude the first couple of cycles of the numerical waveform during which

time the simulation is settling down from the initial conditions. It should also exclude the

merger/ringdown which are strongly dependent on the presence of matter. The window
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must also be wide enough to average over numerical noise and, as we shall see below, the

effects of eccentricity in the simulations.

The numerical merger time tNR
M relative to the EOB BBH merger time tEOB

M as a function

of the end of the matching window TF − tNR
M provides a useful diagnostic of the matching

procedure. Results for matching two Q = 2,MNS = 1.35M� waveforms with different

equations of state to an EOB waveform are shown in Fig. 31. The horizontal axis is the end

time TF of the matching window relative to the numerical merger time tNR
M . For negative

values, the matching window contains the BHNS inspiral only. For positive values, the

matching window also contains part of the BHNS ringdown. The vertical axis is the location

of the shifted numerical merger time tNR
M after finding the best match. Four different window

durations ∆t = TF−TI are shown. The drift in the best fit merger time tNR
M most likely arises

from the neglect of tidal effects in the EOB waveform which lead to an accumulating phase

shift in the waveform. This is consistent with the fact that the amount of drift increases with

the tidal deformability, although some of the drift may also arise from numerical angular

momentum loss from finite resolution of the simulations. Further work is in progress to

understand this issue [125]. We also note that the amount of offset from the tNR
M = 0 line

depends monotonically on the tidal deformability, and arises from the fact that stars with

a large value of Λ will be tidally disrupted a few ms before stars with small Λ.
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Figure 31 : Dependence of time shift between numerical and EOB waveform on the end time TF − tNR
M

and width ∆t of the matching window. Q = 2 and MNS = 1.35M� for each waveform. The EOS used are

p.3Γ2.4 (left panel), and p.9Γ3.0 (right panel). The EOB waveform has zero eccentricity.

When the matching window duration is approximately one orbital period or shorter, the

time-shift oscillates as a function of TF − tNR
M . We attribute this effect to the eccentricity

in the numerical waveform that results from initial data with no radial velocity. For larger

matching-window durations, the effect of eccentricity is averaged out.

To demonstrate concretely that the decaying oscillations for ∆t = 4 ms are the result

of eccentricity, we matched an EOB BBH waveform with eccentricity to the equivalent zero
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eccentricity EOB BBH waveform. EOB waveforms can be generated with small eccentricity

by starting the EOB equations of motion with quasicircular (zero radial velocity) initial

conditions late in the inspiral. The result is shown in Fig. 32 for an EOB waveform with

the same quasicircular initial conditions as the simulation for the EOS p.3Γ2.4 shown in

Fig. 31. The oscillations take exactly the form of those shown in Fig. 31, except without

the drift and offset.

We estimate that the initial eccentricities in the simulations used in this chapter are

e0 ∼ 0.03. Decreasing the initial eccentricity by about an order of magnitude, possibly

using an iterative method that adjusts the initial radial velocity [151], will remove this issue

and allow one to determine the phase shift due to tidal interactions during the inspiral part

of the simulation.
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Figure 32 : Same as Fig. 31, but matching an eccentric EOB BBH waveform with the quasicircular initial

condition MΩ0 = 0.028 to a zero eccentricity EOB BBH waveform.

7.6 Parameter estimation

The output of a gravitational-wave detector s(t) = n(t) + h(t) is the sum of detector noise

n(t) and a possible gravitational-wave signal h(t). Stationary, Gaussian noise is character-

ized by its power spectral density (PSD) Sn(|f |) defined by

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)Sn(|f |) . (7.18)

The gravitational wave signal is given in terms of the two polarizations of the gravitational

wave by

h(t) = F+h+(t) + F×h×(t), (7.19)

where F+,× are the detector response functions and depend on the location of the binary

and the polarization angle of the waves. We assume the binary is optimally located at the
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zenith of the detector and optimally oriented with its orbital plane parallel to that of the

detector. This condition is equivalent to averaging h+ and h× (F+ = F× = 1/2).

It is well known [152] that the optimal statistic for detection of a known signal h(t) in

additive Gaussian noise is

ρ =
(h|s)√
(h|h)

(7.20)

where the inner product between two signals h1 and h2 is given by

(h1|h2) = 4Re

∫ ∞
0

h̃1(f)h̃∗2(f)

Sn(f)
df. (7.21)

In searches for gravitational-wave signals from compact binary mergers, a parametrized

signal h(t; θA) is known in advance of detection, and the parameters θA must be estimated

from the measured detector output s(t). The parameters θA of an inspiral are estimated

by maximizing the inner product of the signal s(t) over the template waveforms h(t; θA).

In the high signal-to-noise limit, the statistical uncertainty in the estimated parameters θ̂A

arising from the instrumental noise can be estimated using the Fisher matrix

ΓAB =

(
∂h

∂θA

∣∣∣∣ ∂h∂θB
)∣∣∣∣

θ̂A
. (7.22)

Note that θ̂A are the parameter values that maximize the signal-to-noise. The variance

σ2
A = σAA = 〈(∆θA)2〉 and covariance σAB = 〈∆θA∆θB〉 of the parameters are then given

in terms of the Fisher matrix by

〈∆θA∆θB〉 = (Γ−1)AB. (7.23)

For hybrid waveforms, the partial derivatives in the Fisher matrix must be approximated

with finite differences. It is most robust to compute the derivatives of the Fourier transforms

used in the inner product. We rewrite the Fourier transform of each waveform in terms of

the amplitude A and phase Φ as exp[lnA − iΦ] as given in Eq. (C.9). The derivatives

∂ lnA/∂θA and ∂Φ/∂θA are then evaluated with finite differencing. More details of this

and the other methods we tested are given in Appendix C.

In general, errors in the parameters θA are correlated with each other forming an er-

ror ellipsoid in parameter space determined by the Fisher matrix ΓAB. The uncorrelated

parameters that are best extracted from the signal are found by diagonalizing ΓAB. These

new parameters are linear combinations of the original parameters θA. We focus attention

below on the two parameters log(p1) and Γ, and fix all other parameters as follows. We use

the masses and spins determined from the numerical simulations and fix the time and phase

shifts as determined during the hybrid waveform construction. We therefore construct the
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error ellipses in {log(p1),Γ} parameter space and identify the parameter with the smallest

statistical errors. We will leave an analysis of correlations due to uncertainty in masses and

BH spin to future work.

7.6.1 Broadband aLIGO and ET

For the BHNS systems discussed here, the greatest departure from BBH behavior occurs for

gravitational-wave frequencies in the range 500–5000 Hz. As a result, detector configurations

optimized for detection of BHNS systems with low noise in the region below 500 Hz are not

ideal for estimating EOS parameters. We therefore present results for the broadband aLIGO

noise curve [114] and the ET-D noise curve [153] shown in Fig. 33. The broadband aLIGO

configuration uses zero-detuning of the signal recycling mirror and a high laser power,

resulting in significantly lower noise above 500 Hz at the expense of slightly higher noise

at lower frequencies. Several noise curves have been considered for the Einstein Telescope

denoted ET-B [115], ET-C [154], and ET-D [153]. We will use the most recent ET-D

configuration, and note that in the 500–5000 Hz range all of the ET configurations have

a similar sensitivity. The published noise curves, and those used in this chapter, are for a

single interferometer of 10 km with a 90◦ opening angle. The current ET proposal is to

have three individual interferometers each with a 60◦ opening angle. This will shift the

noise curve down appoximately 20% [153].
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Figure 33 : Noise PSD for broadband aLIGO, ET-D, and various configurations of narrowband aLIGO. The

minima of the narrowband configuration are labeled fR.

In Figs. 34 and 35, we show the resulting 1-σ error ellipses in the 2-dimensional parameter

space {log(p1),Γ} for an optimally oriented BHNS with Q = 2 and MNS = 1.35M� at a

distance of 100 Mpc. Surfaces of constant Λ1/5 and NS radius, which are almost parallel
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to each other, are also shown. One can see that the error ellipses are aligned with these

surfaces. This indicates that, as expected, Λ1/5 is the parameter that is best extracted from

BHNS gravitational-wave observations. Because Λ1/5 and R are so closely aligned we will

use these two parameters interchangeably.
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Figure 34 : Two 1–σ error ellipses for broadband aLIGO. Evenly spaced contours of constant Λ1/5 are also

shown. Each ellipse is centered on the estimated parameter θ̂A denoted by a ×. The semimajor axes are

significantly longer than the width of the figure, so each ellipse appears as a pair of parallel lines. Matching

and splicing conventions are those of Fig. 26.
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Figure 35 : 1–σ error ellipses for ET-D. Evenly spaced contours of constant Λ1/5 (R) are also shown on the

left (right). Matching and splicing conventions are those of Fig. 26.

As mentioned above, there is some freedom in construction of the hybrid waveforms.

The size and orientation of the error ellipses also depend on the details of this construc-

tion. We find that as long as the matching window is longer than approximately four
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gravitational-wave cycles to average out the effects of eccentricity and does not include the

first two gravitational-wave cycles, the orientation of the error ellipses does not change sig-

nificantly. As expected, the size of the ellipses decreases as more of the numerical waveform

is incorporated into the hybrid waveform. We therefore adopt the last 12 ms before merger

of each numerical waveform as the matching window and the first 4 ms of the matching

window for splicing as shown in Fig. 26.

We have emphasized that, to within present numerical accuracy, the late-inspiral wave-

form is determined by the single parameter Λ1/5. This implies that, by using countours of

constant Λ in the EOS space, one could have obtained the constraint on the EOS, summa-

rized in Figs. 34 and 35 by varying only a single EOS parameter. For the simulations with

other mass ratios and neutron star masses, we have used as our single parameter log(p1)

and not Γ because countours of constant p1 more closely coincide with contours of con-

stant Λ and because Λ is a one to one function of log(p1) throughout the parameter space.

The one-parameter Fisher matrix can then be evaluated with finite differencing using the

waveforms and values of Λ at two points in EOS parameter space with different log(p1).

The uncertainties in Λ1/5 and R are shown in Figs. 36 and 37 for broadband aLIGO and

for ET respectively. The uncertainty in these quantities is ∼ 10–50% for broadband aLIGO

and ∼ 1–5% for ET-D. The uncertainties for the higher mass ratio Q = 3 are somewhat

larger than for Q = 2, but not significantly so. It is not clear how rapidly the uncertainty

in Λ1/5 and R will increase as the mass ratio is increased toward more realistic values. On

the one hand the tidal distortion is likely to be much smaller for larger Q. On the other

hand the overall signal will be louder, and the merger and ringdown will occur at lower

frequencies where the noise is lower. Additional simulations for higher Q are needed to

address this question.
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Figure 36 : 1-σ uncertainty σΛ1/5 and σR as a function of the parameters Λ1/5 or R for the broadband

aLIGO noise PSD. Matching and splicing conventions are those of Fig. 26.
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Figure 37 : Same as Fig. 36, but with the ET-D noise PSD. Error estimates are an order of magnitude

smaller than for broadband aLIGO.

7.6.2 Narrowband aLIGO

The presence of a signal-recycling cavity in the aLIGO instruments will allow them to be

tuned to have improved narrowband sensitivity at the expense of bandwith. Two parameters

control the narrowband capabilities of the instruments [155, 156, 67]: the signal recycling

mirror transmissivity effectively sets the frequency bandwidth of the instrument, while the

length of the signal recycling cavity (or equivalently the signal-recycling cavity tuning phase)

controls the central frequency fR of the best sensitivity. By tuning one or more of the aLIGO

detectors to operate in narrowband mode, it may be possible to improve estimates of the

EOS parameters.

We have examined several narrowband tunings with central frequencies that vary be-

tween approximately fR = 500 Hz and 4000 Hz. These noise curves use a signal recycling

mirror transmissivity of 0.011 and a signal-recycling cavity tuning phase ranging from 10◦

down to 1◦, and were generated using the program gwinc [157]. Three of these noise curves

are shown in Fig. 33. In Fig. 38 we plot the 1–σ uncertainty in NS radius σR as a function

of the narrowband central frequency fR. For the waveforms considered in this chapter the

optimal narrowband frequency is in the range 1000 Hz . fR . 2500 Hz and depends on the

mass ratio, NS mass, and EOS. Narrowband configurations usually give smaller errors than

the broadband configuration if fR happens to be tuned to within a few hundred Hz of the

minimum for that BHNS event. In Ref. [158], Hughes discussed a method for determining

the best frequency fR to tune a narrowbanded detector to extract an EOS dependent cutoff

frequency from a sequence of identical BNS inspirals. While this technique is not directly

applicable to BHNS systems, which have different masses and spins, a similar approach

could be used to combine multiple BHNS observations.
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Figure 38 : 1–σ uncertainty in R for different configurations of narrowband aLIGO and for different EOS.

fR defines the frequency where Sn is a minimum as shown in Fig. 33. Horizontal lines on the left and right

indicate the corresponding 1–σ errors for broadband aLIGO and ET-D respectively. Matching and splicing

conventions are those of Fig. 26.

7.7 Discussion

7.7.1 Results

Using a large set of simulations incorporating a two-parameter EOS, we have found that

the tidal deformability Λ1/5, or equivalently the NS radius R, is the parameter that will be

best extracted from BHNS waveforms. These parameters can be estimated to 10–50% with

broadband aLIGO for an optimally oriented BHNS binary at 100 Mpc. The narrowband

aLIGO configuration can do slightly better if it is tuned to within a few hundred Hz of

the ideal frequency for a given BHNS event. The proposed Einstein Telescope will have an

order-of-magnitude better sensitivity to the EOS parameters.

Although we have used a particular EOS parametrization to show that Λ is the param-

eter that is observed during BHNS coalescence, this result can be used to constrain any

EOS model—an EOS based on fundamental nuclear theory in addition to a parametrized
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phenomenological EOS. In particular, several parametrizations have recently been devel-

oped, including a spectral representation [159], a reparametrization of the piecewise poly-

trope [160], and a generalization that also includes nuclear parameters [161].

The results presented here can be compared with recent work to determine the mass and

radius of individual NS in Type-1 X-ray bursts. Özel et al. [162] have obtained mass and

radius measurements from several systems by simultaneously measuring the flux F , which is

likely close to the Eddington value, and the blackbody temperature T during X-ray bursts

of systems with accurately determined distances. During the burst, the emission area of

the photosphere F/(σT 4) expands, contracts, then reaches a constant value, and Özel et al.

have argued that the final area corresponds to that of the NS surface. They obtain estimates

of NS mass and radii with O(10%) 1–σ uncertainty. Steiner et al. [161] have also considered

these systems, but argue that the final emission area does not necessarily correspond to that

of the NS surface, and as a result obtain slightly smaller NS radii and larger uncertainties

in the mass and radius. These radius error estimates are slightly smaller than those for

the BHNS systems we have considered at 100 Mpc. However, we note that binary inspiral

observations are subject to less systematic uncertainty due to questions of composition of

the photosphere and associating it with the NS surface.

The uncertainty in NS radius for the merger and ringdown of BHNS systems examined

here is of roughly the same size as that found for the last few orbits up to merger of

BNS systems at the same 100 Mpc distance [16, 125]. BNS inspirals, however, will likely

occur more frequently, and, including a tidally corrected inspiral–numerical hybrid, BNS

systems are likely to have uncertainties that are smaller than BHNS systems by a factor of

a few. Considering the post-merger phase for BNS waveforms may also provide additional

information. Expected NS masses in both BNS and BHNS systems are slightly smaller

than those measured for X-ray bursters which have accreted matter from their companion,

so BNS and BHNS GW observations may complement X-ray burst observations by better

constraining the lower density range of the EOS which is not well constained from X-ray

burst observations [160, 162].

7.7.2 Remaining work

We have used in this chapter several simplifications and conventions which can significantly

effect the accuracy to which EOS parameters can be extracted. We list them below and

describe how changing them would effect the parameter error estimates.

1. Finite length of numerical waveforms
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The BHNS waveforms used here include only the last ∼10 GW cycles of inspiral as

well as the merger and ringdown, of which the first few cycles of inspiral are unreliable

due to inexact initial data. Matching the numerical waveform to a tidally corrected

inspiral waveform instead of just the point-particle waveform will increase the overall

departure from point-particle behavior by (i) creating a phase shift during the early

inspiral, and more importantly (ii) adding to the phase of the late inspiral and merger

the accumulated phase shift from the early inspiral – a phase shift that is not already

included in the stronger signal of the late inspiral. The tidal corrections are now known

up to 1PN order during inspiral, and using the 1PN corrections, the distinguishability

between BHNS and BNS waveforms during the inspiral was calculated in [124]. We

estimate that for a mass ratio of Q = 3 the distinguishability between BHNS and BNS

waveforms is roughly (to within a factor of two) the same when tidal information is

incorporated into only the inspiral versus only the merger-ringdown, indicating that

uncertainty in Λ may be decreased by a factor of two or more using a full inspiral-

merger-ringdown BHNS waveform. We leave the issue of generating these tidally

corrected inspiral-merger-ringdown waveforms to the next chapter.

2. Event rates

Estimates of the detectability of EOS parameters in BNS systems are often given for an

event at a distance of 100 Mpc, and we have used the same convention here to state the

results above. The relevant event rate is, therefore, the expected number of detected

events that will have an effective distance Deff ≤ 100 Mpc. (The effective distance

Deff depends on the location of the binary and its inclination relative to the detector.

For an optimally oriented and located binary, one finds D = Deff while typically

D ≤ Deff .) The aLIGO inspiral rates for BNS systems are highly uncertain with {low,

most likely, high} estimates of {0.01, 1, 10}Mpc−3 Myr−1 [120] or {0.004, 0.4, 4} yr−1

with effective distance Deff ≤ 100 Mpc. Rates are even more uncertain for BHNS

systems with rate estimates of {0.0002, 0.01, 0.4} yr−1 with effective distance Deff ≤
100 Mpc [120]. Since the uncertainty in EOS parameters scales linearly with distance

[σΛ1/5 = σΛ1/5,100Mpc(D/100Mpc)] and the event rate scales as D3, the estimated

detection rates of systems with effective distanceDeff ≤ 400 Mpc are {0.01, 1, 30} yr−1

with a four-fold increase in uncertainty of Λ1/5. Fortunately, for Nobs identical events

and Ndet identical detectors, the uncertainty also scales as σΛ1/5/
√
NobsNdet.

3. Expected NS masses and mass ratios

The simulations we used included realistic mass neutron stars of 1.2 and 1.35 M�. On
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the other hand, black hole masses are expected to be many times larger [122], with

likely mass ratios closer to Q ∼ 7 (for the canonical 10 M�–1.4 M� system) than the

Q = 2 and 3 systems we examined here. Additional simulations for mass ratios of 4

and 5 are in progress.

4. Spinning BH

In this chapter we have not examined the effect of a spinning BH. The analytic results

of Ref. [124] indicated that spin does not significantly improve the sensitivity to Λ for

the inspiral up to the point of tidal disruption. However, numerical simulations [134,

139, 140] have shown that spin can strongly affect the dynamics near tidal disruption

and the amount of matter left over in an accretion disk. We have performed several

tens of simulations of non-precessing BHNS systems with spinning BH with various

BH spins, mass ratios, NS masses, and EOS parameters, and an analysis of how BH

spin affects the detectability of EOS parameters will be the subject of the next chapter.

5. Correlations between parameters

In our Fisher analysis we have assumed that the mass ratio, NS mass, and BH spin

will be determined to sufficient accuracy during the inspiral to separate them from

EOS effects during the merger and ringdown. A full Fisher analysis using all of the

BHNS parameters should be done to find the extent to which uncertainties in the

other parameters alter measurability estimates of the EOS parameters.

Because BHNS waveforms smoothly deviate from corresponding BBH waveforms as Λ

increases, it should be expected that one can find a good analytical approximation for

the full inspiral, merger, and ringdown waveform by modifying analytical BBH waveforms.

Accurate waveforms for non-spinning BBH systems using the EOB approach have been

developed [76, 163], and work to find EOB waveforms for spinning BBH systems is in

progress [164, 165]. Tidal interactions have also been incorporated into the EOB approach

for BNS systems with good agreement with the inspiral waveform from numerical simula-

tions when parametrized 2PN tidal interactions are fit to the numerical waveform [127, 128].

Another approach is to use phenomenological waveforms that fit the frequency domain post-

Newtonian inspiral waveform to a phenomenological merger and ringdown for both spinning

and non-spinning BBH systems [72]. Both of these approaches may work for generating full

analytic BHNS waveforms as well. A complete description of the BHNS waveform will likely

include corrections for the l = 3 tidal field and other higher order corrections. However, it

is not clear given the current set of simulations that these effects would be observable with

either aLIGO or a third generation detector such as ET.
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Chapter 8

Detectability of tidal parameters

from aligned-spin BHNS systems

8.1 Introduction

By the end of the decade a network of second generation gravitational-wave detectors,

including the two Advanced LIGO (aLIGO) detectors, Advanced Virgo, KAGRA (formerly

LCGT), and possibly LIGO-India, will likely be making routine detections. Future ground

based detectors such as the third generation Einstein Telescope (ET), with an order of

magnitude higher sensitivity, are also in the planning stages, and may be operational in

the next decade. A primary goal of these detectors is extracting from the gravitational

waveform information about the sources. Of particular interest are compact binaries whose

waveform encodes the sky location, orientation, distance, masses, spins, and for compact

binaries containing neutron stars (NS), information about the neutron-star equation of state

(EOS).

The study of EOS effects during binary inspiral has focused mainly on binary neutron

star (BNS) systems. Work by [103, 106, 108, 109] showed that EOS information could be

imprinted in the gravitational waveform through monopole–quadrupole interactions that

depended on the equation of state through the tidal Love number of the neutron stars. The

leading (` = 2) relativistic tidal Love number was first calculated in Ref. [87], and its effect

on the binary inspiral including the contribution due to tidally excited modes was calculated

to leading order [86], and later extended to 1PN order [85, 111]. The gravitoelectric and

gravitomagnetic tidal Love numbers for higher multipoles were calculated in [93, 110], and

the waveform has now been calculated to 2PN order in the tidal corrections, including

` = 2 and 3 gravitoelectic interactions and the ` = 2 gravitomagnetic interaction, using the



115

effective action approach [166, 167].

The measurability of tidal parameters was examined for BNS inspiral for gravitational

wave frequencies below 450Hz [86] using polytropic EOS, and this was extended to include

theoretical nuclear and strange quark matter EOS [123]. They found that tidal interactions

were only observable during this early inspiral stage (ignoring the last ∼ 20 gravitational

wave cycles before merger) for stiff EOS and NS masses below 1.4 M�. On the other hand,

using 2PN accurate tidal corrections in the effective one body approach, it was found that

tidal parameters are in fact observable when including the extra ∼ 20 gravitational wave

cycles up to the point of contact [167].

Numerical simulations have also been used to study tidal interactions during the late

inspiral. The measurability of EOS information has been examined during the last few orbits

using numerical simulations assuming that non EOS parameters were known to sufficient

accuracy that they did not couple significantly with EOS parameters [16, 125]. They found

that the NS radius could be measured using only the last few orbits to an accuracy of

∼ 10%. Other numerical simulations using both quasiequilibrium sequences [126] and full

hydrodynamic simulations [127, 128, 168] have shown that by fitting effective one body

(EOB) waveforms with parametrized higher order PN corrections to the simulations, the

higher order PN corrections can significantly increase the strength of tidal interactions

during the late inspiral. These results were confirmed by the analytic 2PN calculation [166,

167].

Comparably little work has been done to understand the measurability of tidal param-

eters in black hole-neutron star (BHNS) systems. Using the inspiral waveform with tidal

corrections up to 1PN order, it was found that BHNS waveforms were not distinguishable

from BBH waveforms during the inspiral before the point of tidal disruption [124]. Fur-

thermore, this result did not improve for spinning black holes which tidally disrupt later.

On the other hand, early work examining a possible cutoff in the gravitational wave am-

plitude due to tidal disruption of the neutron star by the black hole suggested that the NS

radius may, in fact, be measurable [141] with second generation detectors. In Chapter 7 we

examined numerical simulations of the last few orbits, merger, and ringdown for systems

with non-spinning black holes and low mass ratios of Q = 2 and 3. We found that when

considering only the merger and ringdown, the tidal deformability was the best measured

EOS parameter and was marginally measurable for second generation detectors.

We have now run simulations with mass ratios up to Q = 5, which is closer to the

canonical 10 M�–1.4 M� (Q = 7.1) BHNS system; and, we have also run simulations

for black holes with spin aligned with the orbital angular momentum axis with values
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from χBH = a/MBH = −0.5 to 0.75. In this chapter we will also address many of the

simplifications used in Chapter 7 that can have a dramatic impact on the detectability

of EOS parameters. Previously, we considered only the tidal information that could be

obtained from the merger and ringdown, ignoring the small accumulating phase drift during

the inspiral that results from tidal interactions. We will find that coherently adding the

slow tidal phase drift from the inspiral to the tidal effect during the merger and ringdown

can improve the measurability of tidal parameters by as much as a factor of 4 over just the

merger and ringdown.

In the previous chapter we also ignored possible correlations between the tidal param-

eter Λ and the other binary parameters when estimating the measurability of Λ using the

Fisher matrix. We have addressed this problem by developing a frequency domain analytic

BHNS waveform, fitted to our BHNS simulations, and based on the phenomenological BBH

waveform developed in Ref. [72]. This allows us to accurately evaluate derivatives in the

Fisher matrix and evaluate correlations between the tidal parameter and the other param-

eters. We find that although these correlations are not nearly as strong as with other pairs

of parameters, they can increase uncertainty by up to a factor of ∼ 4. Overall, we find that

the estimates of measurability of tidal parameters using the improvements presented in this

paper are about the same as those presented in the previous chapter where only the merger

and ringdown was considered and the uncertainty in the other parameters was presumed to

be negligible.

Conventions: We use the following sign convention for the Fourier transform of a signal

x(t)

x̃(f) =

∫ ∞
−∞

x(t)e+2πift dt, (8.1)

and we will decompose the complex Fourier transform into amplitude and phase as h̃(f) =

|h̃(f)|e+iΦ(f). These conventions are opposite those of Chapter 7, and are chosen to agree

with those of the PhenomC waveform model [72]. In addition, we set G = c = 1 unless

otherwise stated.

8.2 Simulations

Following the previous chapter on nonspinning BHNS systems, we perform a large set of

simulations where we systematically vary the parameters of a parametrized EOS, then

look for the combination of parameters that are best extracted from gravitational wave

observations. Specifically we choose a simplified two-parameter version of the piecewise

polytrope introduced in [54]. For this EOS, the pressure p in the rest-mass density interval
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ρi−1 < ρ < ρi is

p(ρ) = Kiρ
Γi , (8.2)

Where Ki is a constant, and Γi is the adiabatic index. We fix the crust EOS defined by

densities below the transition density ρ0. In the crust, K0 = 3.5966× 1013 in cgs units and

Γ0 = 1.3569, such that the pressure at 1013 g/cm3 is 1.5689 × 1031 dyne/cm2. Above the

transition density ρ0 the core EOS is parametrized by the two parameters p1 and Γ1. The

pressure p1 is defined as the pressure at ρ1 = 1014.7 g/cm3 and the adiabatic index Γ1 of

the core will, for simplicity, be written Γ. The constant K1 for the core is then given by

K1 = p1/ρ
Γ
1 . Once the two parameters p1 and Γ are set, the dividing density ρ0 between

the crust and the core is given by the density where the crust and core EOS intersect:

ρ0 = (K0/K1)1/(Γ−Γ0). Finally, given this EOS, the energy density ε can be evaluated by

integrating the first law of thermodynamics

d
ε

ρ
= −pd1

ρ
. (8.3)

As discussed in more detail in [169], quasiequilibrium configurations are used as initial

data for the simulations, and are computed using the spectral-method library LORENE [143].

The numerical simulations are performed using the adaptive-mesh refinement code SACRA [144].

To obtain the gravitational waveform h+ − ih×, the outgoing part of the Weyl scalar

Ψ4 = ḧ+ − iḧ× is extracted from these simulations at a finite coordinate radius, and is

then integrated twice using a method known as Fixed Frequency Integration [146]. Specif-

ically, we take the Fourier transform of Ψ4, then integrate twice in time by dividing by

(2πif)2. Low frequency components are filtered out as in [169], and the inverse Fourier

transform is then taken to find h+ − ih× in the time domain.

We have performed 90 simulations of the late inspiral, merger, and ringdown of BHNS

systems, using 21 sets of parameters for our two-parameter EOS. We have also varied the

mass ratio from Q = 2 to 5, the neutron star mass from 1.20 M� to 1.45 M�, and the

spin of the black hole from χBH = −0.5 to 0.75. The EOS parameters used as well as the

corresponding NS radius, Love number, and tidal deformability can be found in Table 4. A

list of all the simulations is given in Table 6.

Because trends in the BHNS waveform are most apparent in terms of the amplitude and

phase of the Fourier transform, and because data analysis is usually done in the frequency

domain, we will focus our discussion of the waveforms below on the frequency domain.

Several representative waveforms with varying tidal deformability Λ, mass ratio Q, and

spin χBH are shown in Figs. 39–41.
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Table 6 : Data for the 90 BHNS simulations. NS mass is in units of M�.

χBH Q MNS EOS χBH Q MNS EOS χBH Q MNS EOS

-0.5 2 1.35 p.3Γ3.0 0 3 1.35 p.3Γ3.0 0.5 4 1.35 p.3Γ3.0

-0.5 2 1.35 p.4Γ3.0 0 3 1.35 p.4Γ3.0 0.5 4 1.35 p.4Γ3.0

-0.5 2 1.35 p.5Γ3.0 0 3 1.35 p.5Γ3.0 0.5 4 1.35 p.5Γ3.0

-0.5 2 1.35 p.9Γ3.0 0 3 1.35 p.7Γ3.0 0.5 4 1.35 p.9Γ3.0

-0.5 3 1.35 p.4Γ3.0 0 3 1.35 p.9Γ3.0 0.75 2 1.2 p.3Γ3.0

0 2 1.2 p.3Γ3.0 0.5 2 1.35 p.3Γ3.0 0.75 2 1.2 p.4Γ3.0

0 2 1.2 p.4Γ3.0 0.5 2 1.35 p.4Γ3.0 0.75 2 1.2 p.5Γ3.0

0 2 1.2 p.5Γ3.0 0.5 2 1.35 p.5Γ3.0 0.75 2 1.2 p.9Γ3.0

0 2 1.2 p.9Γ3.0 0.5 2 1.35 p.7Γ3.0 0.75 2 1.35 p.3Γ3.0

0 2 1.35 p.3Γ2.4 0.5 2 1.35 p.9Γ3.0 0.75 2 1.35 p.4Γ3.0

0 2 1.35 p.3Γ2.7 0.5 3 1.35 p.3Γ2.4 0.75 2 1.35 p.5Γ3.0

0 2 1.35 p.3Γ3.0 0.5 3 1.35 p.3Γ2.7 0.75 2 1.35 p.7Γ3.0

0 2 1.35 p.3Γ3.3 0.5 3 1.35 p.3Γ3.0 0.75 2 1.35 p.9Γ3.0

0 2 1.35 p.4Γ2.4 0.5 3 1.35 p.3Γ3.3 0.75 2 1.45 p.3Γ3.0

0 2 1.35 p.4Γ2.7 0.5 3 1.35 p.4Γ2.4 0.75 2 1.45 p.4Γ3.0

0 2 1.35 p.4Γ3.0 0.5 3 1.35 p.4Γ2.7 0.75 2 1.45 p.5Γ3.0

0 2 1.35 p.4Γ3.3 0.5 3 1.35 p.4Γ3.0 0.75 2 1.45 p.9Γ3.0

0 2 1.35 p.5Γ2.4 0.5 3 1.35 p.4Γ3.3 0.75 3 1.35 p.3Γ3.0

0 2 1.35 p.5Γ2.7 0.5 3 1.35 p.5Γ2.4 0.75 3 1.35 p.4Γ3.0

0 2 1.35 p.5Γ3.0 0.5 3 1.35 p.5Γ2.7 0.75 3 1.35 p.5Γ3.0

0 2 1.35 p.5Γ3.3 0.5 3 1.35 p.5Γ3.0 0.75 3 1.35 p.7Γ3.0

0 2 1.35 p.6Γ2.4 0.5 3 1.35 p.5Γ3.3 0.75 3 1.35 p.9Γ3.0

0 2 1.35 p.6Γ2.7 0.5 3 1.35 p.6Γ2.4 0.75 4 1.35 p.3Γ3.0

0 2 1.35 p.6Γ3.0 0.5 3 1.35 p.6Γ2.7 0.75 4 1.35 p.4Γ3.0

0 2 1.35 p.6Γ3.3 0.5 3 1.35 p.6Γ3.3 0.75 4 1.35 p.5Γ3.0

0 2 1.35 p.7Γ2.4 0.5 3 1.35 p.7Γ2.4 0.75 4 1.35 p.9Γ3.0

0 2 1.35 p.7Γ2.7 0.5 3 1.35 p.7Γ2.7 0.75 5 1.35 p.3Γ3.0

0 2 1.35 p.7Γ3.0 0.5 3 1.35 p.7Γ3.0 0.75 5 1.35 p.4Γ3.0

0 2 1.35 p.7Γ3.3 0.5 3 1.35 p.7Γ3.3 0.75 5 1.35 p.5Γ3.0

0 2 1.35 p.9Γ3.0 0.5 3 1.35 p.9Γ3.0 0.75 5 1.35 p.9Γ3.0
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As was found in Chapter 7, the waveform monotonically departs from a BBH (Λ = 0)

waveform as Λ increases, and this is true for systems with spinning black holes as well,

as we see from Fig. 39 where χBH = 0.5. In particular, the cutoff frequency, where the

waveform begins a sharp drop in the amplitude, decreases monotonically with increasing Λ,

and the BHNS phase ΦBHNS monotonically departs from that of a BBH waveform ΦBBH

with increasing Λ. In Fig. 40, the difference in phase ∆Φ between the BHNS and BBH

waveform decreases as the mass ratio Q increases. However, in Fig. 41, ∆Φ increases with

increasing BH spin.
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Figure 39 : The difference between a BHNS waveform and a BBH waveform (solid black curve on left) grows

monotonically as Λ increases. For the EOS, the value of log(p1) is represented by the color of the curve, and

the value of Γ is represented by its line style.
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Figure 40 : As mass ratio Q increases, the dependence of the waveform on matter decreases.
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Figure 41 : As black hole spin χBH increases, the dependence of the waveform on matter increases.

8.3 Hybrid inspiral-merger-ringdown waveforms

To obtain as much information as possible about a BHNS coalescence, we will construct

a hybrid waveform that joins the analytic inspiral to the numerical merger and ringdown.

In the previous chapter, we constructed hybrid waveforms using effective one body (EOB)

BBH waveforms as an approximation for the inspiral. However, in order to take full ad-

vantage of the tidal interactions in the inspiral as well as the merger and ringdown, we will

need a tidally corrected inspiral waveform. Tidal corrections during the inspiral have been

computed for post-Newtonian [111] as well as EOB [166, 167] waveforms in both the time

and frequency domains. For BHNS systems with spinning BH, we will also need waveforms

that incorporate spin. Post-Newtonian waveforms include spin, but can be unreliable for

high mass ratios during the last few orbits where matching to numerical waveforms is done.

Recently, time domain EOB waveforms with aligned spin have been calculated, and are

currently being calibrated to numerical waveforms [164, 165]. Another approach, as dis-

cussed in Section 3.3, is to use frequency domain phenomenological waveforms that include

the complete inspiral-merger-ringdown (IMR), and are calibrated to aligned-spin numerical

waveforms [74, 72]. Tidal corrections can then be added to these phenomenological wave-

forms using the stationary phase approximation (SPA) [111] to generate BHNS inspiral

waveforms that have accurate point particle terms in the matching region.

In this chapter, we will choose the phenomenological IMR waveform referred to as

PhenomC [72] and a SPA tidal correction as our inspiral waveform for two main reasons.

The first reason is that, as we will find in Section 8.5, we can use this BBH waveform

model as a starting point for generating phenomenological BHNS IMR waveforms with

only minor corrections. The second reason is that data analysis is typically done in the



121

frequency domain. Since the waveform enters the detector band starting at frequencies as

low as 10 Hz for aLIGO and 1 Hz for ET, it is much easier to start in the frequency domain

instead of evaluate the Fourier transform for a long waveform. In particular, we have in

mind future parameter estimation studies where the waveform must be evaluated O(106)

times in the frequency domain.

The frequency domain PhenomC waveform is, in terms of the amplitude Aphen(f) and

phase Φphen(f), h̃phen(f) = Aphen(f)eΦphen(f), where the expressions for the amplitude and

phase are given explicitly in Ref. [72]. The 1PN accurate TaylorF2 tidal phase correction

is [111]

ψT (f) =
3

128η
(πMf)−5/3

[
− 24

XNS
(1 + 11XBH)

λ

M5
(πMf)10/3

− 5

28XNS
(3179XNS − 919X2

NS + 260X3
NS)

λ

M5
(πMf)12/3

]
,

(8.4)

where XBH = MBH/M and XNS = MNS/M . We then write the inspiral waveform as

h̃insp(f) = Aphen(f)eΦphen+T(f), where Φphen+T(f) = Φphen(f) + ψT (f).

To join our numerical waveforms to the frequency domain inspiral waveform, we follow

the least-squares method used in [72]. When matching waveforms, a time constant τ and

phase constant φ are free parameters that need to be fixed. For a generic waveform h(t), the

time and phase can be adjusted to produce a shifted waveform hshift(t; τ, φ) = h(t− τ)eiφ.

The Fourier transformed waveform, which can be written in terms of amplitude and phase as

h̃(f) = |h̃(f)|eiΦ(f), has a corresponding shifted waveform h̃shift(f ; τ, φ) = |h̃(f)|eiΦshift(f ;τ,φ),

where Φshift(f ; τ, φ) = Φ(f)+2πfτ+φ. When joining the inspiral and numerical waveforms,

we hold the phase of the inspiral waveform Φphen+T(f) fixed and adjust the phase of the

numerical waveform ΦNR(f), such that Φshift
NR (f ; τ, φ) = ΦNR(f)+2πfτ+φ. We then perform

a least-squares fit in the matching interval fl < f < fh by minimizing the quantity∫ fh

fl

[Φshift
NR (f ; τ, φ)− Φphen+T(f)]2 df (8.5)

with respect to the free parameters τ and φ. This minimization can be done analytically

up to two numerical integrals. The result is

τ =
3(fh + fl)I0 − 6I1

π(fh − fl)3
, (8.6)

φ =
−4(f2

h + fhfl + f2
l )I0 + 6(fh + fl)I1

(fh − fl)3
, (8.7)



122

where

I0 =

∫ fh

fl

[ΦNR(f)− Φphen+T(f)] df, (8.8)

I1 =

∫ fh

fl

[ΦNR(f)− Φphen+T(f)]f df. (8.9)

Once the time and phase shifts are found, we smoothly turn on the numerical waveform

and smoothly turn off the phenomenological waveform within a splicing window sl < f < sh

using Hann windows

woff(f) =
1

2

[
1 + cos

(
π[f − si]
sf − si

)]
, (8.10)

won(f) =
1

2

[
1− cos

(
π[f − si]
sf − si

)]
. (8.11)

The amplitude of the hybrid waveform is then

|h̃hybrid(f)| =


|h̃phen(f)| f < si

woff(f)|h̃phen(f)|+ won(f)|h̃NR(f)| si < f < sf

|h̃NR(f)| f > sf

, (8.12)

and the phase is

Φhybrid(f) =


Φphen+T(f) f < si

woff(f)Φphen+T(f) + won(f)[ΦNR(f) + 2πfτ + φ] si < f < sf

ΦNR(f) + 2πfτ + φ f > sf

. (8.13)

A hybrid waveform for the system (χBH = 0.75, Q = 2,MNS = 1.35 M�,EOS = p.9Γ3.0)

is shown in Fig. 42. We note that the linear matching term 2πfτ + φ in the hybrid phase

can have a large effect on the post-splice waveform. In particular, as shown in the left panel

of Fig. 42, the inclusion of the tidal term ψT in the inspiral waveform leads to an additional

linearly growing deviation in the phase ∆Φ = Φhybrid−ΦBBH which would not be present if

we simply ignored the small tidal term ψT (f) during the inspiral as was done in Chapter 7.

As we will see below, this has a large impact on the measurability of tidal parameters.

8.4 Parameter estimation

As discussed in Chapters 5 and 7, for Gaussian noise and high signal to noise ratio, the

uncertainties in the parameters θA can be calculated from the Fisher matrix

ΓAB =

(
∂h

∂θA

∣∣∣∣ ∂h∂θB
)∣∣∣∣

θ̂A
, (8.14)
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Figure 42 : Amplitude
∣∣∣Deff
M

h̃(Mf)
∣∣∣ (left) and phase Φ(Mf) (right) for a numerical BHNS waveform matched

to the PhenomC BBH waveform with and without the tidal correction ψT . The waveform parameters are

(χBH = 0.75, Q = 2,MNS = 1.35 M�,EOS = p.9Γ3.0). The matching window fi < f < ff is bounded

by solid vertical lines, and the splicing window si < f < sf , which begins at si = fi, is bounded by

dotted vertical lines. Note that matching the numerical BHNS waveform to a BBH waveform without

tidal corrections, as was done in Chapter 7, results in a phase error that accumulates linearly even after

the matching region, and underestimates the effect of matter. The amplitude and phase of the numerical

waveform are unreliable for Mf & 0.05.

where we note that θ̂A are the parameter values that maximize the signal-to-noise ratio.

The variance σ2
A = σAA = 〈(∆θA)2〉 and covariance σAB = 〈∆θA∆θB〉 of the parameters

are then given in terms of the Fisher matrix by

〈∆θA∆θB〉 = (Γ−1)AB. (8.15)

In Chapter 7 we evaluated the two-parameter Fisher matrix for the EOS parameters

log(p1) and Γ using hybrid waveforms that ignored the inspiral tidal correction ψT and

only included EOS information from the merger and ringdown of the numerical part of the

waveform. We also assumed that uncertainties in the non-EOS parameters did not correlate

with the EOS parameters. In the remainder of this section we will compare the estimates

of EOS parameters for only the merger and ringdown to a waveform that includes EOS

information in the full IMR hybrid waveform. In the next two sections we will address

the issue of correlations between all of the parameters by constructing an analytic BHNS

waveform and calculating the complete Fisher matrix.

As in Chapter 7, we can evaluate the measurability of EOS effects from just the merger

and ringdown by matching each numerical BHNS waveform to an inspiral waveform that

does not include tidal corrections. We can then evaluate the Fisher matrix by differentiating

the waveform with respect to each EOS parameter using finite differencing with two or

more waveforms for each parameter. Specifically we follow the third method in Appendix C
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which results in the greatest accuracy given the sometimes large phase difference between

waveforms. Specifically, we break up each Fourier transformed waveform into the log of the

amplitude lnA(f ; θA) and accumulated phase Φ(f ; θA)

h̃(f ; θA) = elnA(f ;θA)+iΦ(f ;θA). (8.16)

The derivative is now approximated by

∂h̃

∂θA
= elnA+iΦ

(
∆ lnA

∆θA
+ i

∆Φ

∆θA

)
. (8.17)

where ∆/∆θA represents finite differencing, and lnA and Φ are evaluated at the midpoint

using interpolation.

The 1-σ uncertainty contours in the EOS parameter space, ∆θA∆θBΓAB = 1, are shown

in Fig. 43 for the ET-D noise PSD for both spinning and nonspinning simulations. As in

Chapter 7 we find the uncertainty contours are aligned with tidal deformability contours

Λ1/5, and this holds for systems with spinning black holes as well. In contrast, when the

tidal correction ψT is added to the inspiral of the hybrid waveform, there is an improvement

of roughly a factor of 3 in the measurability of Λ as shown in Fig. 44. The majority of the

improvement arises because, as discussed above, the inspiral tidal correction also adds a

linearly growing term to the merger and ringdown which is not present when the numerical

waveform is joined to an inspiral waveform without tidal corrections.

´́

´́

´́

´́

´́

´́

´́

2.0 2.5 3.0 3.5 4.0
34.0

34.2

34.4

34.6

34.8

35.0

G

lo
gH

p 1
L@

dy
ne

�cm
2

D

L 1�5
=3.0

L
1�5 =4.0

L
1�5 =5.0

´́

´́

´́

´́

´́

´́

´́

2.0 2.5 3.0 3.5 4.0
34.0

34.2

34.4

34.6

34.8

35.0

G

lo
gH

p 1
L@

dy
ne

�cm
2

D

L 1�5
=3.0

L
1�5 =4.0

L
1�5 =5.0

Figure 43 : 1-σ error ellipses using the ET-D noise curve when only tidal effects during the merger-ringdown

are included, and assuming non-EOS parameters are known exactly as was done in [169]. Binary is optimally

oriented and at a distance of 100 Mpc. Left: χBH = 0, Q = 2, and MNS = 1.35M�. Right: χBH = 0.5,

Q = 3, and MNS = 1.35M�. Evenly spaced contours of constant Λ1/5 are also shown. Each ellipse is

centered on the estimated parameter θ̂A denoted by a ×.
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Figure 44 : Same as Fig. 43, but including tidal information from the inspiral in addition to the merger-

ringdown. Left: χBH = 0, Q = 2, and MNS = 1.35M�. Right: χBH = 0.5, Q = 3, and MNS = 1.35M�.

8.5 Phenomenological BHNS waveform

In the previous chapter and in Section 8.4 we assumed that the correlation between EOS pa-

rameters and the other parameters is negligible. To test this assumption, we must calculate

the complete Fisher matrix for all parameters, and this requires us to evaluate partial deriva-

tives with respect to all parameters at a single point. For an aligned-spin BHNS system with

negligible NS spin and a single detector, there are 7 parameters. The 4 intrinsic parameters

are the chirp mass M = (MBHMNS)3/5/M1/5, symmetric mass ratio η = MBHMNS/M
2,

black hole spin χBH
1, and tidal deformability Λ. The 3 extrinsic parameters, which can

be differentiated analytically, are time of coalescence tc, phase of coalescence φc, and an

effective distance Deff that incorporates the true distance D as well as the orientation and

sky location of the binary. For an optimally oriented binary, Deff = D. If using central

differencing, this requires 8 waveforms for the 4 numerical derivatives at each point in the

waveform parameter space, and is computationally expensive. Also, in contrast to the EOS

parameters, small changes in M, η, and χBH can result in a large change in the phase of

the waveform. This means that the simulations must be closely spaced in parameter space

in order to accurately calculate derivatives. However, closely spaced waveforms which have

1The NS spin will likely have a negligible effect on the waveform because the NS mass is smaller than

the BH mass by a factor of Q, and the angular velocity of the NS is bounded by the Kepler frequency. In

addition, NS are expected to spin down to a small fraction of the Kepler frequency by the time the binary

reaches the detector band. Furthermore, there is a strong degeneracy between the two spins in a binary, so

we can simply treat the total spin as an effective BH spin, and ignoring the NS spin as a separate parameter

is therefore justified.
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numerical errors can lead to large subtraction errors in the finite differences.

Another approach is to construct an analytic BHNS waveform model, then fit the free

parameters of the model to the hybridized numerical simulations. This will allow us to

interpolate between the available simulations as well as evaluate derivatives used in the

Fisher matrix. For aligned-spin BBH systems, significant work has gone into developing

phenomenological waveforms that include the complete inspiral, merger, and ringdown. We

will use the most modern version of these waveforms, PhenomC [72], as the basis for our

BHNS waveform model.

As found in Section 8.4 (Figs. 43 and 44) and hinted at in Fig. 39, a BHNS waveform

is well approximated by a one-parameter deformation from a BBH waveform where Λ =

0 [110]. As shown in Fig. 39, throughout the inspiral, merger, and ringdown, both the

amplitude and phase of the Fourier transformed waveform monotonically decrease with

respect to a BBH waveform as frequency increases and as Λ increases. We thus write the

BHNS waveform as a modification to a BBH waveform

h̃BHNS(Mf ; θA) = h̃BBH(Mf ; θA)e[∆ lnA(Mf ;θA)+i∆Φ(Mf ;θA)], (8.18)

where ∆ lnA(Mf) = ln |h̃BHNS(Mf)| − ln |h̃BBH(Mf)| is an amplitude correction factor,

∆Φ(Mf) = ΦBHNS(Mf) − ΦBBH(Mf) is a phase correction factor, and the 3 physical pa-

rameters that we will fit our waveforms to are θA = {η, χBH,Λ}. In the next two subsections,

we will fit the quantities ∆ lnA(Mf) and ∆Φ(Mf) to the 90 hybrid waveforms listed in

Table 6.

8.5.1 Amplitude fit

During the inspiral, parameter estimation is much more sensitive to the phase of the wave-

form than to the amplitude, so we ignore the very small amplitude correction from tidal

interactions. During the merger and ringdown, however, they are important. We therefore

write the amplitude correction as

∆ lnA(Mf ; θA) =

{
0 Mf ≤Mf0

−ηΛB(Mf ; θA) Mf > Mf0

, (8.19)

where Mf0 is the boundary, chosen below, between the inspiral and merger, and we have

extracted the quantity ηΛ because as η → 0 (extreme mass ratio limit) or Λ → 0, the

waveform should approach that of a BBH waveform. We now impose two requirements on

the function B(Mf ; θA). (i) The amplitude must be continuous at the frequency Mf0, so

B(Mf0; θA) = 0. (ii) Because the amplitude of the BHNS waveform is always less than that
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of the corresponding BBH waveform, we require B(Mf ; θA) ≥ 0 for Mf ≥Mf0 and for all

physical values of the parameters: η ∈ [0, 0.25], χBH ∈ [−1, 1], and Λ ≥ 0.

Given the above restrictions, we find that a useful fitting function for the amplitude

correction is B(Mf ; θA) = C(Mf − Mf0)D, where C and D are free parameters, and

Mf0 = 0.01. With this ansatz, we then do a least-squares fit to determine the parameters

C and D. We find that over the 90 simulations, D has a mean and standard deviation of

D ∼ 3± 0.7, and because these parameters are highly correlated, we fix D = 3 so that B =

C(Mf −Mf0)3. We then fit each waveform with the single parameter C. The parameter

C is then fit to the physical parameters with the function C(η, χBH,Λ) = c0Λe1+c1η+c2χBH ,

where the parameters c0, c1, and c2 are found with a least-squares fit, and we note that this

function is positive for all physical values of the parameters η, χBH, and Λ. Another useful

feature of the exponential form of this function is that it is nonlinear and allows for coupling

between η and χBH while still having a small number of parameters. In other words, when

expanded, it leads to nonlinear terms (e.g. terms proportional to χ2
BH) and cross terms (e.g.

terms proportional to ηχBH). The final form of B can therefore be written

B(Mf ; θA) = c0Λe1+c1η+c2χBH(Mf −Mf0)3, (8.20)

and the best-fit parameters are {c0, c1, c2} = {2.09650× 10−5, 35.4859, 1.12893}.

8.5.2 Phase fit

For the phase of the waveform we choose the following ansatz

∆Φ(Mf ; θA) =

{
ψT (Mf ; θA) Mf ≤Mf0

−ηΛE(Mf ; θA) + ψT (Mf0; θA) + (Mf −Mf0)ψ′T (Mf0; θA) Mf > Mf0

,

(8.21)

where ψT is the frequency domain tidal phase correction for the inspiral, and a ′ denotes

a derivative with respect to Mf . In this paper we will use the 1PN accurate TaylorF2

tidal correction (Eq. 8.4) for thi inspiral. However, a key feature of this ansatz is that an

improved inspiral tidal phase term ψT can be swapped in without requiring one to redo

the hybridization or the following phase fit. This is because the hybridization procedure of

Section 8.3 matches the phase and derivative of the inspiral and numerical waveforms by

adjusting the parameters φ and τ to generate a shifted numerical waveform with a linear

correction term: Φshift
NR (f ; τ, φ) = ΦNR(f) + 2πfτ + φ. By explicitly pulling out the linear

quantity ψT (Mf0) + (Mf −Mf0)ψ′T (Mf0) in the phenomenological fit, the hybridization

procedure will not need to be repeated for an improved inspiral tidal correction, and the

coefficients given below for the fit will remain the same. As in the amplitude fit, we have
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extracted the quantity ηΛ in the first term because the phase of the BHNS waveform should

approach that of a BBH waveform as η → 0 or Λ→ 0. The above discussion then demands

the remaining function E(Mf ; θA) satisfy the following conditions: (i) E(Mf0; θA) = 0, (ii)

E′(Mf0; θA) = 0, and (iii) E(Mf ; θA) ≥ 0 for Mf ≥ Mf0 and for all physical values of η,

χBH, and Λ.

We find that each waveform can be accurately fit with a function of the form E =

G(Mf−Mf0)H , where G and H are free parameters, and unlike the amplitude fit, we choose

Mf0 = 0.015 for the phase fit. For the 90 BHNS waveforms the best fit for the parameter H

has a relatively narrow range of approximately 5/3±0.3 which is consistent with the leading

frequency dependence of the tidal correction in Eq. (8.4). In addition, the free parameters

G and H in this fit are highly correlated. We thus rewrite E = G(Mf −Mf0)5/3 and fit

each waveform with the single parameter G. The parameter G is then fit to the physical

parameters with the positive function G(η, χBH,Λ) = g0e
1+g1η+g2χBH , where G has only a

weak dependence on Λ. The function E can then be written

E(Mf ; η, χBH) = g0e
1+g1η+g2χBH(Mf −Mf0)5/3, (8.22)

and the best-fit parameters are {g0, g1, g2} = {0.078655, 16.35086, 0.730279}. As with the

amplitude fit, this parametrization is well defined for all possible values of η, χBH, and Λ.

8.6 Results

Using the analytic IMR waveform developed in the previous section, we can now evaluate

the Fisher matrix for a single gravitational-wave detector using the complete set of waveform

parameters {lnDeff , f1tc, φc, lnM, ln η, χBH, Λ1/5}, where f1 is some fiducial frequency

such as 1 Hz, and as in Chapter 7 we use Λ1/5 because it is closely related to the more

familiar NS radius. We have calculated the 1-σ uncertainty in Λ1/5 for both the broadband

aLIGO [114] and ET-D detector configurations [153] shown in Fig. 33. Errors are shown in

Figs. 45 and 46 for broadband aLIGO and ET-D respectively, and are scaled to an effective

distance of 100 Mpc as was done in Chapter 7. We note that the results shown here for the

Q = 2 and 3 nonspinning waveforms are similar to those presented in the previous chapter

(Figs. 36 and 37). This indicates that including tidal interactions in the inspiral as well as

the merger and ringdown and considering correlations between Λ and the other parameters

roughly cancel each other.

There are several trends to notice in the uncertainty σΛ1/5 . In general, σΛ1/5 increases

with increasing mass ratio Q. This is not surprising since the tidal contribution to the phase

ψT (Eq. 8.4) is a strongly decreasing function of the mass ratio. In addition, the amount
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of tidal disruption before the plunge, as well as its imprint on the waveform, decreases as

the mass ratio increases. However, there are two additional competing effects. First, the

amplitude during the inspiral which scales as |h̃(f)| ∝ M5/6f−7/6 increases as the mass ratio

increases for a fixed NS mass. Second, for higher mass ratios, the EOS dependent merger

dynamics occur at a lower frequency closer to the minimum of the noise PSD (Fig. 33).

These two effects help to minimize the increase in uncertainty σΛ1/5 as Q increases.

On the other hand, as the black hole spin χBH increases σΛ1/5 decreases. This effect

can be understood from Fig. 41. As the BH spin increases, the phase difference ∆Φ =

ΦBHNS − ΦBBH increases and the amplitude cutoff occurs at a lower frequency where the

detector is more sensitive.
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Figure 45 : 1-σ error σΛ1/5 for various values of the mass ratio, BH spin, and tidal deformability. NS mass

is fixed at 1.35 M�. PSD is broadband aLIGO.

8.7 Discussion

We have examined the ability of gravitational wave detectors to extract information about

the equation of state from observations of BHNS coalescence for black holes with aligned

spin. As in Chapter 7, we found that the EOS parameter that is best measured is the

tidal deformability Λ. This is true for spinning as well as nonspinning black holes, and it

is true for the merger and ringdown as well as for the inspiral. Furthermore, coherently
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Figure 46 : Same as Fig. 45, but with ET-D noise curve. Uncertainty σΛ1/5 is an order of magnitude

smaller.

combining the EOS information for the complete IMR waveform dramatically improves the

measurability Λ by up to a factor of ∼ 3 in some cases over just the merger and ringdown.

In order to examine the correlations between Λ and the other parameters, we constructed

an analytic IMR waveform based on the frequency domain PhenomC aligned-spin waveform

model [72], and we calibrated this waveform model to our hybridized numerical waveforms.

Although Λ does correlate with the other parameters, the correlations are not nearly as

strong as correlations between the other parameters.

The frequency domain analytic waveform presented here can be, without too much

difficulty, incorporated into Markov Chain Monte Carlo and Nested Sampling algorithms

used for Bayesian parameter estimation for networks of gravitational-wave detectors. A full

Bayesian analysis will then make it possible to assess the true nature of the probability

distribution for the waveform parameters as well as the accuracy of the Fisher matrix

approximation.
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Appendix A

Analytic fits to tabulated EOS

A.1 Low-density equation of state

We use an analytic form of the (SLy) low-density EOS that closely matches its tabulated val-

ues. With rms residual less than 0.03, p(ρ) for SLy is approximated between ρ = 103 g/cm3

and ρ = 1014 g/cm3 by four polytropic pieces. The four regions correspond roughly to a

nonrelativistic electron gas, a relativistic electron gas, neutron drip, and the density range

from neutron drip to nuclear density. Using the notation of Sect. 2.3, the analytic form of

the SLy EOS is set by the values of Ki,Γi and ρi listed in Table 7.

Table 7 : An analytic representation of p(ρ) for the SLy EOS below nuclear density uses polytropes specified

by the constants listed here. Γi is dimensionless, ρi is in g/cm3, and Ki is in cgs units for which the

corresponding value of p is in units of dyne/cm2. The last dividing density is the density where the low

density EOS matches the high density EOS and depends on the parameters p1 and Γ1 of the high density

EOS.

Ki/c
2 Γi ρi

6.80110e-09 1.58425 2.44034e+07

1.06186e-06 1.28733 3.78358e+11

5.32697e+01 0.62223 2.62780e+12

3.99874e-08 1.35692 –

A.2 Comparison table

Table 8 compares neutron-star properties for each EOS to their values for the best-fit piece-

wise polytrope. The parameters for the three-piece polytropic core EOS, the corresponding
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residuals, as well as the observable properties of these EOSs and the error in using the best

fit parameterized EOS instead of the tabulated EOS are listed in Table 8. The parameter-

ized EOS systematically overestimates the maximum speed of sound.
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Appendix B

Accuracy of the tidal correction

model

To assess the accuracy of the simple phase evolution model, we compute the corrections to

the tidal phase perturbation due to several EOS-dependent effects: the leading order finite

mode-frequency terms, higher order tidal effects, and nonlinear hydrodynamic couplings.

For simplicity, we will only derive the phase corrections for one star with internal degrees

of freedom coupled to a point mass. The terms for the other star simply add. For such a

binary system, the Lagrangian can then be written as

L =
1

2
ηMṙ2 +

1

2
ηMr2ϕ̇2 +

ηM2

r
− 1

2
QijEij +

1

4λω2
0

(
Q̇ijQ̇ij − ω2

0QijQij

)
− 1

6
QijkEijk +

1

12λ3ω2
03

(
Q̇ijkQ̇ijk − ω2

03QijkQijk

)
− α

λ3
QijQjkQki. (B.1)

Here, the star’s static mass quadrupole Qij parameterizes the l = 2 modes of the star,

which can be treated as harmonic oscillators that are driven below their resonant frequency

by the companion’s tidal field. The tensor Qijk parameterizes the star’s mass octupole

degrees of freedom, and Eij and Eijk are the l = 2 and l = 3 tidal tensors respectively,

which are given by Eij = ∂i∂j(−m2/r) and Eijk = ∂i∂j∂k(−m2/r) in Newtonian gravity.

The l = 3 deformability constant λ3 is defined by Qijk = −λ3Eijk. The quantities ω0 and

ω03 are the l = 2 and l = 3 f -mode frequencies, and α is a coupling constant for the leading

order nonlinear hydrodynamic interactions. In general, one would need to sum over the

contributions from all the modes, but other modes contribute negligibly in the regime of

interest for the above model (see [86]). Post-Newtonian effects on the Lagrangian for the

binary are derived in Refs. [85, 111] and can simply be added to those derived here.

We will be interested in finding an effective description of the dynamics of the system



136

for quasi-circular inspirals in the adiabatic limit, where the radiation reaction timescale is

long compared to the orbital timescale. From equilibrium solutions to the Euler-Lagrange

equations derived from this Lagrangian, the following radius-frequency relation is obtained:

r(ω) = M1/3ω−2/3

[
1 +

3λm2ω
10/3

M5/3m1
+

9λm2ω
10/3

M5/3m1

ω2

ω2
0

+
20λ3m2ω

14/3

M7/3m1
− 27αm2

2ω
16/3

2M8/3m1
− 27λ2m2

2ω
20/3

M10/3m2
1

]
,

(B.2)

The equilibrium energy, obtained by reversing the signs of the potential energy terms in the

Lagrangian, is given by:

E = −1

2
ηM5/3ω2/3

[
1− 9λm2ω

10/3

M5/3m1
− 45λm2ω

10/3

M5/3m1

ω2

ω2
0

−65λ3m2ω
14/3

M7/3m1
+

42αm2
2ω

16/3

M8/3m1
+

63λ2m2
2ω

20/3

M10/3m2
1

]
.

(B.3)

The energy flux Ė = −1
5〈

...
Q
T
ij

...
Q
T
ij〉, where QTij = µr2(ninj− 1

3δij)+Qij is the total quadrupole

moment, is

Ė = −32

5
η2M10/3ω10/3

[
1 +

6λω10/3

M2/3m1

(
2
m2

M
+ 1
)

+
12λω10/3

M2/3m1

ω2

ω2
0

(
3
m2

M
+ 2
)

+
80λ3m2ω

14/3

M7/3m1
− 36αm2ω

16/3

M5/3m1

(
3m2

2M
+ 1

)
+

9λ2ω20/3

M4/3m2
1

(
1− 2m2

M
− 6m2

2

M2

)]
.

(B.4)

Using the formula d2Ψ/dω2 = 2(dE/dω)/Ė in the stationary phase approximation and

integrating twice leads to the final expression for the tidal phase correction:

δΨ = − 9λx5/2

16ηM5

(
m1 + 12m2

m1

)
− 45λx5/2

1408ηM5

ω2

ω2
0

(
8m1 + 155m2

m1

)
− 125

12

λ3x
9/2

ηM7

m2

m1

+
135αm2x

11/2

352ηM8

(
m1 + 13m2

m1

)
− 3λ2x5

64ηM10

(
M2 − 2m2M − 83m2

2

m2
1

)
.

(B.5)

We will analyze the information contained in the portion of the signal at frequencies

f ≤ 450 Hz. This is slightly higher than previously considered, and we now argue that in this

frequency band, the simple model of the phase correction is still sufficiently accurate for our

purposes. We will evaluate all of the corrections for the case of equal masses m1 = m2 ≡ m.

An estimate of the fractional errors for the case of m = 1.4 M� and R = 15 km is given in

parentheses.
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1. Post-1-Newtonian corrections (∼ 10%).

These corrections give rise to terms ∝ λx7/2 that add to those in Eq. (B.5). The

explicit form of these terms is computed in Refs. [85, 111] and they depend on the

NS physics only via the same parameter λ as the Newtonian tidal terms, so they can

easily be incorporated into the data analysis method. Preliminary estimates indicate

that for equal masses, these post-1 Newtonian effects will increase the tidal signal.

2. Adiabatic approximations ( ∼ 1%).

The approximation that the radiation reaction time is much longer than the orbital

time is extremely accurate, to better than 1%; see Fig. 2 of Ref. [86], which compares

the phase error obtained from numerically integrating the equations of motion supple-

mented with the leading order gravitational wave dissipation terms to that obtained

analytically using the adiabatic approximation.

The accuracy of the approximation ω � ω0 can be estimated from the fractional

correction to (B.5), which is ∼ (815/1144)(ω/ω0)2 ∼ 0.18(f/f0)2, where f = ω/π and

f0 = ω0/(2π). For typical NS models the l = 2 f -mode frequency is [170]

f0

kHz
≈ 0.78 + 1.64

(
m

1.4 M�

)1/2( R

10 km

)−3/2

, (B.6)

so that the fractional correction is ∼ 0.012 for f = 450 Hz and for a conservatively

low f -mode frequency of f0 = 1700 Hz.

3. Higher order tidal effects (∼ 0.7%).

The l = 3 correction to the gravitational wave phase (B.5) is smaller than the l = 2

contribution by a factor of ∼ (25/351)(k3/k2)(m/R)−2x2 ∼ 0.007, for m/R = 0.14

and a stiff n = 0.5 polytrope. Here, we have defined the l = 3 Love number k3 =

(15/2)λ3R
−7 and used the values k2 = 0.17 and k3 = 0.06 from Ref. [110].

4. Nonlinear hydrodynamic corrections (∼ 0.1%).

The leading nonlinear hydrodynamic corrections are characterized by the coupling co-

efficient α/λ3 in the action. The size of this parameter can be estimated by comparing

the Newtonian k2 to the coupling constants in Lai’s ellipsoidal models (e.g. Table 1

of [171]) to be ω2α/λ ∼ 2 × 10−3. The nonlinear self-coupling term in Eq. (B.5) is

smaller than the leading l = 2 term by a factor −285αω2/(572λ) ∼ 0.001.

5. Spin corrections (. 0.3%).

Fractional corrections to the tidal signal due to spin scale as

δΨspin

δΨtidal
∝
(
ωspin

ωmax

)2

, (B.7)
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where ωmax is the maximum rotational frequency the star can have before breakup,

which for most NS models is > 2π(1000 Hz). The observed NS-NS binaries which

will merge within a Hubble time have spin periods of ∼ 23 − 104 ms, and near the

coalescence they will have slowed down due to e.g. magnetic braking, with final spin

periods of ∼ 50 − 130 ms. The fractional corrections to the tidal signal due to the

spin are then . 0.3%.

If the stars have spin, there will also be a spin-induced correction to the phase, as

discussed in Refs. [104, 106]. In the slow rotation limit (which is likely to be the

relevant regime for the binaries we consider), the effect of spin on the phasing can

be computed using similar methods as for the tidal corrections. The resulting spin-

induced phase correction scales as δΨs ∼ 345n2R
2/(32ηM2x1/2)ω2

spin/(m1/R
3), where

ωspin the spin frequency and n2 is the rotational Love number, which for Newtonian

stars is the same as the tidal Love number k2. The scaling of the spin term as

∝ x−1/2 shows that only at large separation do spin effects dominate over tidal effects,

which scale as ∝ x5/2. For spin periods of ∼ 50 ms and R ∼ 5m, the spin-induced

phase correction δΨs becomes smaller than the tidal correction at frequencies above

∼ 170 Hz. This agrees with the results of the more detailed analysis of the relative

importance of spin and tidal effects in Ref. [106].

6. Nonlinear response to the tidal field (∼ 3%).

We have linearized in λ. Including terms ∝ λ2 gives a fractional correction in Eq. (B.5)

of−(83/7488)k2R
5x5/2/m5 = −4.8×10−11k2(m/M�)−10/3(R/km)5(f/Hz)5/3 = −0.31k2.

7. Viscous dissipation (negligible).

There have been several analytical and numerical studies of the effect of viscosity dur-

ing the early part of the inspiral, e.g. [103, 104]. They found that viscous dissipation

is negligible during the early inspiral if the volume-averaged shear viscosity ηshear is

ηshear . 1029
( r
R

)2
g cm−1s−1. (B.8)

The expected microscopic viscosity of NSs is [172]

ηmicr ∼ 1022

(
ρ

1014 g cm−3

)9/4( T

106 K

)−2

g cm−1s−1, (B.9)

which is orders of magnitude too small to lead to any significant effect. A variety of

other likely sources of viscosity, e. g. the breaking or crumpling of the crust, are also

insignificant [104, 103] in the regime of interest to us.
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Thus, systematic errors in the measured value of λ due to errors in the model should be

O(10%), which is small compared to the current uncertainty of an order of magnitude in λ.
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Appendix C

Numerically evaluating the Fisher

matrix

When an analytical representation of a waveform is not available, the partial derivatives

in the Fisher matrix Eq. (8.14) must be evaluated numerically. There are several possible

methods one can use, and we will examine their accuracy below.

C.1 Finite differencing of h(t; θ)

The simplest method, and that used in Ref. [16], is straightforward finite differencing of

the signal h = F+h+ + F×h×. For example, for five waveforms with values of an EOS

parameter θ given by {θ−2, θ−1, θ0, θ1, θ2} with equal spacing ∆θ, the three and five point

central differences are given by

dh

dθ
=

∆2h

∆θ
+O((∆θ)2), where

∆2h

∆θ
:=

−1
2h(t; θ−1) + 1

2h(t; θ1)

∆θ
(C.1)

dh

dθ
=

∆4h

∆θ
+O((∆θ)4), where

∆4h

dθ
:=

1
12h(t; θ−2)− 2

3h(t; θ−1) + 2
3h(t; θ1)− 1

12h(t; θ2)

∆θ
.

(C.2)

This finite differencing method is useful when waveforms differ only slightly: at each time

t, on the scale ∆θ the function h(t; θ) is well approximated by the low order interpolating

polynomials used to generate the finite differencing formulas.

This assumption fails when the waveforms used in the finite differencing are significantly
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out of phase with each other1. The tidal interaction leads to a monotonically accumulating

phase difference relative to a BBH waveform, implying that at a fixed time t the function

h(θ; t) is an oscillating function of θ. Now if an oscillating function h[Φ(θ)] = cos[Φ(θ)] has

wavenumber k = Φ′(θ) that varies slowly compared to Φ, then h′(θ) is better approximated

by − sin(Φ)∆Φ/∆θ than by ∆ cos[Φ(θ)]/∆θ. The assumption that k is slowly varying is

k′ � k2, k′′ � k3, and the error in, for example, each of the two second-order discretizations

is given to order ∆θ2 by

dh

dθ
− ∆2h

∆θ
= h(θ)[

1

6
k3 +O(kk′, k′′)]∆θ2,

dh

dθ
+ sin[Φ(θ)]

∆2Φ

∆θ
= h(θ)

1

6
k′′∆θ2, (C.3)

with the error in the second expression much smaller than that in the first. We consider

two ways to take advantage of this difference in accuracy.

C.2 Finite differencing of amplitude and phase

The first is to decompose each complex waveform into an amplitude A and accumulated

phase Φ

h+(t; θ)− ih×(t; θ) = A(t; θ)e−iΦ(t;θ), (C.4)

where the accumulated phase of each waveform is a continuous function defined by Φ =

− arg(h+−ih×)±2nπ for some integer n, and at the starting time ti the accumulated phase

of each waveform is chosen to be on the branch n = 0. The advantage of this method is

that, at a fixed time, the functions A(t; θ) and Φ(t; θ) are non-oscillatory functions of θ even

when the accumulated phase difference between two waveforms is significantly more than a

radian.

With this decomposition the gravitiational wave signal is

h(t; θ) = A(t; θ)(F+ cos Φ(t; θ) + F× sin Φ(t; θ)), (C.5)

and the derivative of h is approximated by

dh

dθ
=

∆A

∆θ
(F+ cos Φ + F× sin Φ)

+A(−F+ sin Φ + F× cos Φ)
∆Φ

∆θ
. (C.6)

1The dephasing of numerical waveforms is even more significant for BNS inspiral. We believe that Ref. [16]

which used this method underestimated the derivatives in some cases by a factor of ∼2 or more, and thus

overestimated the uncertainty in EOS parameters by the same factor.
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If an intermediate waveform is not available to provide the functions A(t; θ0) and Φ(t; θ0),

they can be evaluated by e.g. A(t; θ0) = (A(t; θ−1) +A(t; θ1))/2.

We have found that this method works reasonably well for the inspiral waveform. If,

however, the amplitude of one of the numerical waveforms drops to zero, then the phase of

the waveform becomes undefined. Because the amplitude of the numerical BHNS waveforms

fall to zero at different times for different EOS, as shown in Fig. 27, the finite difference

∆Φ/∆θ becomes meaningless towards the end when the average amplitude is still nonzero.

It is likely one could work around this difficulty. However, we choose instead to use another

more robust method.

C.3 Finite differencing of Fourier transform

Because we will need to calculate the Fourier transform of the derivative ∂h/∂θA to find the

Fisher matrix, we first Fourier transform each waveform and then evaluate the numerical

derivative. Since the derivative ∂/∂θA commutes with the Fourier transform, the Fisher

matrix can be written explicitly as(
∂h

∂θA

∣∣∣∣ ∂h∂θB
)

= 4Re

∫ ff

fi

∂h̃
∂θA

∂h̃∗

∂θB

Sn(f)
df, (C.7)

where the contribution to the integral below fi and above ff is negligable.

As in the second method we break up each Fourier transformed waveform into amplitude

A(f ; θ) and accumulated phase Φ(f ; θ)

h̃(f ; θ) = A(f ; θ)e−iΦ(f ;θ), (C.8)

where the phase of each waveform at fi is on the n = 0 branch cut. As demonstrated by

Figs. 29 and 30, both the amplitude and phase are non-oscillatory functions of θ at a fixed

frequency f , and can be well approximated by a low-order polynomial. In contrast to the

accumulated phase of the complex numerical waveform h+− ih×, the accumulated phase of

the Fourier transform of the strain h̃ is always well defined for numerical BHNS waveforms

in the frequency range fi to ff .

Finally, we find that one obtains better accuracy by differentiating lnA instead of A,

decomposing h̃ as

h̃(f ; θ) = elnA(f ;θ)−iΦ(f ;θ). (C.9)

The derivative is now approximated by

dh̃

dθ
= elnA−iΦ

(
∆ lnA

∆θ
− i∆Φ

∆θ

)
. (C.10)
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interpolating when needed to evaluate lnA and Φ at the midpoint.

We find that methods 1–3 for calculating uncertainties in Λ1/5 and R agree with each

other to∼ 10% when the EOS parameters are closely separated by ∆ log(p1/(dyne cm−2)) =

0.1. However, for larger EOS spacing, when the accumulated phase difference between two

waveforms is as large as 2 radians (see Fig. 28), method 1 will give a result as much

as 50% larger than for the smaller spacing while method 2 may fail completely for the

reasons discussed above. Method 3, however, gives the same result to within ∼ 20% when

∆ log(p1/(dyne cm−2)) is varied between 0.1 and 0.4. We also note that errors in the

quadrature in Eq. C.7 from discrete sampling are negligible compared to the errors from

the finite differencing.

C.4 Parameter spacing and numerical resolution

Finally, we note that the EOS parameter spacing must be carefully chosen. If two waveforms

are too close in parameter space, the error in each waveform will dominate over the trun-

cation error due to finite differencing. The most significant source of this error comes from

the spurius oscillations in the amplitude of the Fourier transform in the frequency range

∼ 500–800 Hz (see Fig. 29) that result from joining the EOB and numerical waveforms

which are not exactly the same in the matching window. We find that the integrand of the

Fisher matrix is often erratic in the range ∼ 500–800 Hz when using the smallest parameter

spacing available. However, when the spacing is increased, the integrand is smoother in this

frequency range and its contribution to the integral is significantly reduced. For the mass

ratio Q = 2, we find that a spacing between waveforms of ∆ log(p1/(dyne cm−2)) = 0.1 for

the first EOS parameter is often sufficiently large to reduce this problem, while a spacing of

∆Γ = 0.6 for the second EOS parameter is the minimum spacing one can use. For Q = 3,

we have found that a spacing of ∆ log(p1/(dyne cm−2)) ≥ 0.2 is necessary to reduce this

problem.

In addition, if the EOS parameters of two waveforms lie near the same degenerate

contour where waveforms are identical (e.g. a contour of constant Λ which can be nearly

identical to a line of constant Γ), the error in each waveform will again dominate the

truncation error even if the EOS parameters are widely spaced. For our two-dimensional

EOS parameter space, this problem can be solved by transforming the parameter space

such that points that originally formed a × pattern now form a + pattern, and in the

transformed parameter space the new axes are not alligned with a degenerate contour. The

Fisher matrix can be calculated in the transformed parameter space then transformed back

to the original parameter space.



144

We find that as long as these two requirements are met, the uncertainties in σΛ1/5 and

σR have only an ∼ 20% fractional dependence on the EOS parameter spacing. However,

the dependence of the orientation of the error ellipses on the EOS parameter spacing does

not allow one to distinguish between Λ and R as the best extracted parameter.

The resolution in the simulation also has an effect on the Fisher matrix. For the two

waveforms {Q = 2, MNS = 1.35M�, p.4Γ3.0} and {Q = 3, MNS = 1.35M�, p.5Γ3.0} we

performed three different resolution runs with N = {36, 42, 50} as defined in Ref. [137],

where the grid size is proportional to 1/N. All other simulations used N = 50. We find that

when using the N = 42 resolution simulation instead of N = 50, the uncertainties σΛ1/5

and σR change by no more than ∼ 25%.
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P. Mösta, D. Pollney, C. Reisswig, E. L. Robinson, J. Seiler, and B. Krishnan. Match-

ing post-Newtonian and numerical relativity waveforms: Systematic errors and a

new phenomenological model for nonprecessing black hole binaries. Phys. Rev. D,

82(6):064016, September 2010.

[73] P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan, A. M. Sintes, J. T. Whelan,
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statistic for detection of burst sources of gravitational radiation. Phys. Rev. D,

63(4):042003, February 2001.

[98] L. S. Finn and D. F. Chernoff. Observing binary inspiral in gravitational radiation:

One interferometer. Phys. Rev. D, 47:2198–2219, March 1993.

[99] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

recipes: the art of scientific computing. Cambridge University Press, Cambridge, UK,

2007.

[100] M. van der Sluys, V. Raymond, I. Mandel, C. Röver, N. Christensen, V. Kalogera,
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