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ABSTRACT 

ASSESSING THE PREDICTABILITY OF CONVECTION INITIATION USING AN 

OBJECT-BASED APPROACH 

by 

Brock Burghardt 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professors Clark Evans and Paul Roebber 

 

Improvements in numerical forecasts of deep, moist convection have been notable in 

recent years and are in large part due to increased computational power allowing for the 

explicit numerical representation of convection. Accurately forecasting the timing and 

location of convection initiation (CI), however, remains a substantial forecast challenge. 

This is attributed to the inherently limited intrinsic predictability of CI due to its 

dependence on highly non-linear moist physics and fine-scale atmospheric processes that 

are poorly represented in observations. Because CI is the starting point of deep, moist 

convection that grows upscale, even small errors in initial convective development can 

rapidly spread to larger scales, having potentially significant impacts on downstream 

forecasts. This study investigates the practical predictability of CI using the Advanced 

Research Weather Research and Forecasting (WRF-ARW) model with a horizontal grid 

spacing of 429 meters. A unique object-based method is used to evaluate very high-

resolution model performance for twenty-five cases of CI across the west-central High 

Plains of the United States from the 2010 convective season. CI objects are defined as 

areas of higher observed or model simulated radar reflectivity that develop and remain 
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sustained for a sufficient period of time. Model simulations demonstrate an average 

probability of detection of 0.835, but due to significant overproduction of CI, an average 

false alarm ratio of 0.664 and bias ratio of 2.49. The average critical success index 

through all simulations is 0.315. Model CI objects that are matched with observed CI 

objects show, on average, an early bias of about 7 minutes and distance errors of around 

62 kilometers. The operational utility and inherent biases of such high-resolution 

simulations are discussed. 
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Introduction 

The development of deep, moist convection (DMC), known as convection 

initiation, hereafter CI, refers to the process in which convectively unstable air reaches 

and exceeds a critical thermodynamic level through a series of cumulus plumes to 

buoyantly accelerate and develop a mature deep, moist updraft. Conversely, failed CI is 

the process in which CI is not fully achieved (shallow or non-sustained deep updraft). 

Failures of forecast CI (false positive), or the less frequent unexpected CI (false 

negative), are two of the most perplexing occurrences in operational meteorology and 

their impacts on later forecasts can be significant. Once deep, moist convection has 

initiated in a favorable atmospheric environment, it may become severe, producing flash 

flooding, damaging straight-line winds, large hail, and tornadoes. The societal and 

economic impacts of severe convection are enormous, resulting in more than $4 billion in 

damage annually across the United States (Weiss et al. 2011). Still, forecasting CI and the 

intensity and evolution of convection remains difficult, therefore serving as motivation 

for further research on the topic. 

Deep, moist convection can be initiated by a large array of different atmospheric 

circulations, oftentimes referred to as triggering mechanisms. This is one of three basic 

elements to develop convection, in addition to the presence of convective available 

potential energy (CAPE)  and a sufficient moist layer at low- to mid-levels of the 

troposphere (Doswell 1987; Johns and Doswell 1992). The most common triggering 

mechanisms, as summarized by Jorgensen and Weckwerth (2003) and Weckwerth and 

Parsons (2006), include frontal boundaries, drylines, elevated convergence zones, gust 

fronts, sea breezes, orographic circulations, undular bores, and horizontal convective 
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roles. Further, inhomogeneities in land-surface characteristics can produce sufficient 

vertical motion to force CI, particularly under strong surface heating (Kang and Bryan 

2011). 

The complexity of CI occurrence, however, is far greater than just the presence of 

a triggering mechanism. Rather, a favorable interaction between phenomena on multiple 

atmospheric scales is required to establish an environment favorable for deep, moist 

convection and then force CI. In general, the three scales most influential on CI are the 

synoptic-, meso- and micro- scales. The synoptic- to meso-alpha scales, on the spatial 

order of 10-100 km, are responsible for the creation of an environment favorable for 

convection (e.g., Doswell 1987; Schumann and Roebber 2010). This is accomplished 

through the advection of higher potential energy air at low levels and ascent that acts to 

increase CAPE and reduce CIN. The meso-gamma to micro- scales, on the spatial order 

of 1 km and smaller, are responsible for the local deepening and moistening of the 

convective boundary layer (CBL) through ascent that can ultimately eliminate CIN (e.g., 

Wilson et al. 1992; Doswell 1987; Markowski et al. 2006; Weckwerth et al. 2008, among 

others). This is accomplished through local moisture convergence, connected to upward 

vertical motion associated with triggering mechanisms, which results in localized 

preferred areas of CI where parcels are most likely to reach their level of free convection 

(LFC).  

The sensitivity and predictability of CI has been exclusively studied in three past 

field campaigns. The first, the Severe Environmental Storms and Mesoscale Experiment 

(SESAME; e.g., Hill et al. 1979), investigated the influence of meso- to synoptic- scale 

features on CI. The second, the Convection Initiation and Downburst Experiment 
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(CINDE; e.g., Wilson et al. 1988), observed mesoscale features and their influence on 

storm environment and initiation. Most recently, the International   O Project (IHOP; 

e.g., Weckwerth et al. 2004), investigated meso- to micro- scale features and their 

influences on CI. Fine-scale data obtained during IHOP has permitted investigations of 

several observed CI events and failed CI events that have greatly helped to illuminate the 

crucial finer-scale processes that largely influence CI. For instance, confirming what 

Ziegler and Rasmussen (1998) found from a CI case along a dryline in Oklahoma, 

Markowski et al. (2006) found that CI is highly dependent upon initial low-level 

potentially unstable parcels remaining within a zone of mesoscale ascent with higher 

relative humidity until they have reached their LFC. This suggests that CI is most likely 

when deep CBL plumes become superposed with regions of mesoscale ascent associated 

with triggering mechanisms. This, however, still does not fully explain the occurrence of 

CI as cloud-scale processes such as dry air entrainment (Houston and Niyogi 2007) and 

momentum flux remain crucial.  

Furthermore, the occurrence of CI is remarkably sensitive to the environment in 

which it occurs (e.g., Lee et al. 1991; Crook 1996; Weckwerth 2000; Houston and Niyogi 

2007). This is especially true regarding the low-level thermodynamic state as 

demonstrated by Crook (1996), who showed that a temperature change of 1C in a mixed 

surface layer determined whether CI did or did not occur. Furthermore, if CI did occur, a 

1 g 1kg change in low-level moisture content resulted in considerable variability in storm 

intensity. This is one of the leading factors that limit the practical predictability of CI 

since such variability falls into the range of observational uncertainty and local variability 

(e.g., Zhang et al. 2002, 2003; Weckwerth and Parsons 2006). 
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With the occurrence of CI being so sensitive to the environmental state, including 

small scale details that most observational networks cannot resolve, it can be difficult to 

numerically model our atmosphere with sufficient accuracy to predict CI. This is related 

to the fact that forecast skill is strongly dependent upon the accuracy of the initial and 

lateral boundary conditions used in a numerical weather model (e.g. Lorenz 1969; Liu 

and Xue 2008; Hsiao et al. 2009). Although our current observational network can 

resolve synoptic- and, to a degree, meso- scale features, we are unable to properly resolve 

(if at all) smaller-scale details that are known to be crucial to CI (Weckwerth et al. 1999; 

Weckwerth and Parsons 2006). Several recent studies have demonstrated the importance 

of fine-scale observations on the skill of convection-allowing model (CAM) forecasts. 

Liu and Xue (2008) demonstrated this sensitivity through the use of a 3 km grid spacing 

CAM to simulate an observed CI case that occurred during the IHOP field program. They 

showed that the best short-range (0-7 h) forecasts were achieved when the most amount 

of fine-scale observations were included in model initialization, and also demonstrated 

strong sensitivity to the placement of the lateral boundaries. Further supporting this 

finding, Sun et al. (2012) analyzed multiple 0-12 h CAM forecasts of convection during 

the IHOP field program with varying amounts of fine-scale observations incorporated 

during model initialization. They found that convective precipitation forecasts were most 

skillful when the most fine-scale observations were incorporated into the model. This is 

attributed to the fine spatial resolution observations aiding in the faster spin up of 

smaller-scale processes that strongly control CI and DMC evolution. Both studies found 

that the inclusion of the most fine-scale observations had a negligible impact on boosting 
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forecast performance beyond 7-9 h from model start time, when larger meso-alpha to 

synoptic- scale features become more influential upon DMC evolution. 

Notable improvements in numerical forecasts of DMC have been seen in recent 

years due in large part to increased computational power and advances in model 

initialization and ensemble techniques. Such improvements have especially helped to 

improve our practical predictability on the synoptic scale (e.g., Roebber and Bosart 

1998). Predictability on the meso-gamma to convective- scales intrinsically remains 

lower, however, because of its greater sensitivity to non-linear processes (Zhang et al. 

2003; Melhauser and Zhang 2012). For example, although the evolution and upscale 

growth of deep, moist convection in a convective outbreak is often strongly dependent on 

synoptic-scale forcing (e.g., Roebber et al. 2002; Fowle and Roebber 2003; Schumann 

and Roebber 2009; Houston and Wilhelmson 2011), the exact location and timing of CI 

is strongly tied to meso-alpha (referring to scales of order 10 km) and finer-scale physical 

processes (e.g. Weckwerth and Parsons 2006; Weisman et al. 2008) that we do not fully 

understand and that are highly non-linear in nature (e.g., moist processes).  

It is well documented that CAM forecasts typically demonstrate better short-range 

(0-24 h) prediction of DMC compared to their convection-parameterizing counterparts 

regarding rainfall amounts, storm mode, and mesoscale circulations (e.g., Weisman et al. 

1997; Mass et al. 2002; Fowle and Roebber 2003; Done et al. 2004; Roebber et al. 2004; 

Wilson and Roberts 2006; Kain et al. 2008; Weisman et al. 2008; Clark et al. 2010). 

However, beyond 24 h, and sometimes sooner, error growth and spread tend to increase 

faster in CAMs than in coarser convection-parameterizing models (e.g. Zhang et al. 2003; 

Clark et al. 2010). This issue was well described by the works of Zhang et al. (2002, 
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2003) that demonstrated how small-scale errors, in the form of misplaced and 

misrepresented DMC, quickly spread and amplified through the convective- to meso- 

scales before growing up scale to the synoptic-scale, playing a strong role in the poor 

forecast of an east coast snowstorm in 2000. This places a stricter intrinsic time limit of 

predictability in CAMs than in coarser convection-parameterizing models. One way of 

visualizing this error growth is to envision a forecast scenario where one or a series of 

convective cells are incorrectly placed in space. Errors in representing the convectively-

impacted environment increase through time as the volume of space impacted grows, but 

further, these errors are essentially doubled, given that the model incorrectly depicts the 

location of both convection activity and inactivity. The upscale growth of this error then 

results from differences in the geostrophic adjustment to diabatic forcing from DMC in 

the simulated and observed environments. 

Although grid spacings in operational CAMs allow for the resolution of at least 

larger storm-scale features, they remain too coarse to truly resolve all scales of motion in 

DMC. Bryan et al. (2003) demonstrated, through theoretical scale analysis, that a spatial 

grid spacing of 0.1 mm is needed to fully resolve all turbulent components of a 

geophysical fluid. They also show that horizontal grid spacing on the order of 100 m is 

necessary to adequately resolve the structure and dynamics of squall lines. However, 

better resolving DMC may not be as simple as decreasing grid spacing to order 100 m. 

This was demonstrated by Adlerman and Droegemeier (2002), who found that the 

dynamics of an idealized modeled supercell change drastically as horizontal grid spacing 

is decreased from 2 km to 0.5 km, but, that results are very sensitive to only minor 

changes in physical parameter constants such that results become nearly interchangeable. 
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Although the implementation of horizontal grid spacings suggested to adequately resolve 

DMC remain far from operationally practical for regional model applications, current 

CAM grid spacings (1-4 km) still provide added value for short-range convective 

forecasts in conjunction with coarser resolution operational models. Deterministic CAM 

forecasts are most useful in providing insight into storm mode and structure (e.g. Done et 

al. 2004; Roebber et al. 2004; Weisman et al. 2008) that coarser operational models 

cannot. For instance, Fowle and Roebber (2003) found that warm season model forecasts 

in the Lake Michigan region using 6 km grid spacing scored quite well for the occurrence 

of CI and even more so for the forecasted storm mode. Recently, Duda and Gallus (2013) 

showed that 3 km grid spacing WRF simulations for convective events across the U.S. 

demonstrated good skill in matching observed CI objects prior to upscale growth of 

convection. They found that on average model simulations showed no discernible timing 

error in forecasted CI with a mean spatial displacement error of 105 km. In addition, 

higher resolution models can provide guidance on the types and intensity of severe 

weather phenomena (i.e. hail, damaging winds, tornadoes, etc.) with rather simple post 

processing techniques, as demonstrated by Sobash et al. (2011). 

An additional tool that has proved invaluable to forecasting is the ensemble model 

system, a suite of different model configurations run in parallel with changes in at least 

one of the following: initial and/or lateral boundary conditions, different physical 

parameterizations, and different model cores. This is especially true for convective-scale 

ensembles that utilize an ensemble of CAM simulations to give a probabilistic 

perspective upon forecast occurrence and represent (to first order) the sensitivity and 

confidence in a forecast (Roebber et al. 2004; Kong et al. 2006; Schwartz et al. 2009; 
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Schwartz et al. 2010; Kain et al. 2013; Coniglio et al. 2013). Because of their greater 

computational demand, such forecasts tend to use horizontal grid spacings that can 

explicitly resolve convection but are greater than those used in some deterministic CAM 

applications. As already mentioned, higher resolution models with grid spacings of 4-12 

km typically yield better forecast skill at short ranges than coarser model configurations; 

however, it is uncertain if there is added skill for even higher resolution models with 

horizontal grid spacings of less than 4 km (e.g., Kain et al. 2008; Schwartz et al. 2009; 

Coniglio et al. 2010; Clark et al. 2011; Clark et al. 2012a). Because CAM ensemble 

means tend to outperform deterministic CAM models (e.g. Coniglio et al. 2010; Clark et 

al. 2011), further improvement in convective model forecasts will require the 

optimization of adequate grid resolution and computational resources, as illustrated by 

Clark et al. (2011). 

Advances in computing power have resulted in model grid spacings that have 

decreased at a rate faster than updates to many of the utilized physical parameterizations. 

Resultantly, physical parameterizations that have been tuned to best compliment models 

with horizontal grid spacings of 4-10 km or greater are not best fit for higher resolution 

CAMs. This has been particularly apparent with planetary boundary layer (PBL) physical 

parameterizations that emulate turbulent heat, moisture and momentum transports. The 

parameterization of turbulent energy in the PBL can be approximated via two methods. 

One is a “local” closure solution that allows for the growth of the PBL and turbulent 

energy transport through adjacent vertical model levels (Stull 1991; Hong et al. 2006). A 

second method is a “non-local” closure solution where the depth of the PBL is pre-

determined to assess the layer that turbulent energy transport is applied (Hong et al. 
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2006). At horizontal grid spacings that are near or smaller than the depth of the PBL, 

larger overturning circulations often are beginning to be explicitly resolved by the model 

while still being parameterized by a PBL scheme. This interaction occurs in a “grey area” 

where model horizontal grid spacings of approximately 1-3 km crudely resolve large 

wavelength PBL structures yet still require the parameterization of eddy circulations on 

scales of tens to thousands of meters (e.g., Agee and Gluhovsky 1999; Stevens et al. 

2005; Stensrud 2007). In such cases, the crudely-resolved large-scale PBL features begin 

to blend and possibly superpose with features handled by the PBL scheme, analogous to 

convection-parameterizing mesoscale models at horizontal grid spacings of 4-10 km that 

can begin to resolve large convective systems. Breaking such processes into components 

of model resolved and physically parameterized is difficult (Stensrud 2007), but will be 

necessary when updating or developing PBL parameterizations for higher resolution 

applications. 

In addition to the issue of PBL parameterizations being improperly tuned for 

convection resolving grid spacings, they also contain noticeable and unique errors and 

biases. In turn, these errors and biases are likely to amplify through model integration 

time. Demonstrating this, Romine et al. (2013) found that in a cycled ensemble model 

system, biases and errors with different physical parameterization schemes that develop 

by a given model simulation’s initialization time subsequently amplify while typically 

retaining initial bias characteristics. This issue was also recently investigated by Coniglio 

et al. (2013), wherein they found noticeable errors and biases in the low-level 

thermodynamic fields downstream of DMC episodes with both “local” and “non-local” 

PBL schemes. Specifically, “local” schemes tend to be too shallow in PBL depth and too 
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moist near the surface, which tends to overproduce CAPE. The “non-local” schemes tend 

to be too dry near the surface with slightly under biased CAPE, but have little bias in 

PBL depth. Because of CI’s strong dependence on the low-level thermodynamic state, 

this undoubtedly results in biases and amplified error in CI prediction within CAMs, as 

has been alluded to in past work (e.g., Weisman et al. 2008; Coniglio et al. 2013). 

The central issue of the CI problem is thus two-fold. It is an issue that, on one 

hand, is the result of inadequate observational density and frequency and, on the other, is 

the result of inadequate knowledge, leading to the inadequate modeling of finer-scale 

processes that dictate CI occurrence. Future research on the topic of CI is necessary in 

order to acquire better understanding of the convective-scale processes influencing its 

occurrence and to aid the improvement of the physical parameterization packages, 

particularly PBL schemes that play a large role in bias and error development in 

numerical forecasts of DMC. Also warranted is the continued advancement in ensemble 

modeling techniques that can help quantify uncertainty in the smaller-scale (meso-

gamma-scale and finer) details that strongly control CI occurrence. 

Given the realization that error growth is typically greater in higher resolution, 

convection-allowing models than in coarser convection-parameterizing models beyond 

day 1 forecasts (e.g. Clark et al. 2010; Zhang et al. 2002, 2003), this study will focus on 

examining and quantifying the short-range (0-12 h) forecast skill of a very high-

resolution model in predicting CI across the west-central High Plains of the United 

States.  
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Methodology 

 In this research, we investigate CI events that occurred during the 2010 

convective season across the west-central High Plains of the United States with very 

high-resolution numerical simulations (Figure 1). This region is chosen for two primary 

reasons. First, the west-central High Plains contain a diverse set of topographic features 

that, through synoptic flow interaction and sensible heating, develop mesoscale 

circulations that are capable of priming the environment for and, in some cases, initiating 

DMC (Figure 2). The most notable topographic features in this region are the Black Hills 

in western South Dakota and the Front Range of the Rocky Mountains across central and 

eastern Colorado and Wyoming. Two additional smaller-scale topographic features 

adjacent to the Front Range include the Palmer Divide and Cheyenne Ridge that are 

responsible for developing the Denver convergence vorticity zone (e.g., DCVZ; Denver 

cyclone) and Chugwater circulation, respectively (Abbs and Pielke 1986; Wilczak and 

Christian 1990; Schreiber-Abshire and Rodi 1991; Davis 1997). Second, the 2010 

convective season from mid-May through mid-August was anomalously active across the 

selected region (Blunden et al. 2011; personal accounts), with numerous cases of CI 

forced by a large variety of triggering mechanisms. 

 We focus on quantifying the ability of a high-resolution numerical model to 

accurately forecast CI when only synoptic- to meso-alpha-scale features are resolved 

within its initial and lateral boundary conditions. Both observed and simulated CI objects 

are objectively defined through radar reflectivity-based methods (e.g., Gremillion and 
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Orville 1999). Model performance is evaluated by the ability to replicate CI occurrence 

within realistic time and distance constraints.  

a.  Model description and data 

A sample set of CI cases is created by selecting twenty-five days between May 15 

and August 15, 2010 that exhibited a noticeable CI event across the west-central High 

Plains. Most cases of CI are essentially “clean slate” events with CI occurring either 

during or after the late morning hours without prior ongoing convection. Several cases 

however, involve the observed development of isolated convection before a more 

pronounced CI event later in the day. Cases are chosen such that a variety of triggering 

mechanisms and synoptic-scale forcing is incorporated in the sample set. Two “null” 

cases of CI, in which CI was expected in operational forecasts 6-12 hours prior but was 

not observed, are included in the sample of 25 cases. Table 1 shows the selected dates of 

CI events with the approximate time of the first observed CI event as well as the 

suspected triggering mechanisms. DMC development was assessed utilizing the Storm 

Prediction Center’s (SPC) storm events archive 

(http://www.spc.noaa.gov/exper/archive/events) and the University Corporation for 

Atmospheric Research’s (UCAR) archive (http://locust.mmm.ucar.edu) of composite 

radar reflectivity, satellite and surface observations. 

 Hindcasts of CI events are simulated using version 3.3.1 of the Advanced 

Research version of the Weather Research and Forecasting model (WRF-ARW; 

Skamarock et al. 2008). To resolve CI triggering mechanisms down to spatial scales on 

the order of 1 km, simulations use 429 m horizontal grid spacing in a nested inner grid 
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across the western High Plains. This inner domain is embedded within an outer domain 

with 3 km horizontal grid spacing that extends across the western two thirds of North 

America (Figure 1). Model performance of CI is only assessed in the very high-resolution 

inner domain with the outer domain serving the purpose of providing lateral boundary 

conditions with mesoscale resolved details. Two-way feedback is permitted between the 

outer and inner model domains. Both domains use a hybrid sigma-pressure vertical 

coordinate with 35 vertical levels. Each simulation is initialized at 1200 UTC on the day 

of a CI event to specifically investigate the short-range (0-12 h) forecast performance of 

the high-resolution model configuration. Model simulations are initialized with a cold 

start using NAM (North American Mesoscale) model 0-h analysis. Lateral boundary 

conditions on the outer domain are provided by subsequent NAM 0-h analyses at 6 hour 

intervals. This is not believed to give an unfair advantage to model performance in 

hindcast simulations as these lateral boundary updates are only utilized at 1800 UTC and 

0000 UTC and because the inner domain’s lateral boundaries are sufficiently removed 

(approximately 1,000-1,500 km) from the outer domain’s lateral boundaries.   

Because of the grid spacing chosen for both model domains, no cumulus 

parameterization is used. The RRTM (Mlawer et al. 1997) and Dudhia (Dudhia 1989) 

schemes are used to parameterize longwave and shortwave radiation, respectively. The 

Noah land surface model (Ek et al. 2003) is used with four soil levels. Microphysical 

species are handled using the Thompson et al. (2008) bulk microphysical 

parameterization which includes the mixing ratio of six different microphysical species 

and number concentration for cloud water and ice. Planetary boundary layer (PBL) 

circulations are parameterized using the local mixing Mellor-Yamada-Janjic (MYJ) 
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scheme (Janjic 2001). While a horizontal grid spacing of 429 m is able to crudely resolve 

the largest eddies within the PBL, a PBL parameterization is nevertheless necessary to 

reasonably represent the presence and impacts of smaller-scale PBL eddies. The high 

spatial resolution of the model configuration is complimented with five minute interval 

output on the inner domain to analyze the evolution of convective-scale features and 

verify simulated reflectivity at the sampling frequency of observed radar reflectivity.  

 Analysis and verification of the model is primarily based upon radar reflectivity at 

the -10C level. Radar reflectivity at the -10C level is chosen to remove bright branding 

effects that may falsely amplify the occurrence and areal coverage of DMC (e.g., 

Gremillion and Orville 1999; Kain et al. 2008). For the numerical simulations, this data 

was obtained using version 4 of the Read/Interpolate/Plot (RIP; 

http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm) post-processing software. It should 

be noted that the radar reflectivity calculation used in RIP does not utilize the second-

moment number concentration provided by model output, although this calculation is 

now experimentally included in the WRF-ARW model since the release of version 3.4.1 

in Fall 2012 (http://www.mmm.ucar.edu/wrf/users/wrfv3.4/updates-3.4.1.html). Although 

such differences in calculation method will impact the post-processed representation of 

radar reflectivity to some degree, the general characteristics of and the ability to produce 

CI objects are expected to be meaningfully represented by the chosen simulated 

reflectivity calculation algorithm. 

  Calculating observed reflectivity at an approximate -10C height required several 

steps. First, three-dimensional radar data on a 0.01° latitude by 0.01° longitude grid is 

obtained from the National Mosaic & QPE (NMQ) project at the National Severe Storms 
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Laboratory (Zhang et al. 2005; Langston et al. 2007) and trimmed to fit the area of the 

inner model domain. Second, hourly Rapid Update Cycle (e.g., RUC; Benjamin et al. 

2004) model analysis data is obtained and interpolated to the NMQ grid. Third, linear 

interpolation is used to find the approximate height of the -10°C isotherm at each 

observed grid point in the RUC data, to which the observed reflectivity data is 

subsequently interpolated. Note that both observed and model -10°C radar reflectivity 

data is up-interpolated to a slightly coarser 1.29 km grid spacing common grid. Using this 

common grid simplifies the comparison of characteristics of CI between observations and 

model simulations, as described below. 

b.  CI object algorithm  

 In order to examine the holistic performance of CI in our model configuration 

both in time and space, we use an object-based approach to verify CI. The horizontal grid 

spacing used here invalidates the use of standard grid-to-grid verification techniques as 

they will likely yield very poor model performance. Following the work of Clark et al. 

(2012a, b, 2013) and Kain et al. (2013), where an algorithm was created to track objects 

in post-processed model fields such as updraft helicity and simulated reflectivity in time 

and space, we develop an algorithm to identify convectively-active (CA) objects based 

upon radar reflectivity and track them through time. This idea stems from initial work by 

Davis et al. (2006a, b; 2009), who developed a method to verify precipitation forecasts 

through the characteristics of observed and forecast rainfall objects. Our algorithm starts 

by interpolating the observed and the simulated reflectivity fields to a common 1.29 km 

grid. Then, a Gaussian smoothing operator is applied to the interpolated model and 

observed fields. A sigma value (smoothing factor) of 1.25 is chosen based upon 
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sensitivity testing to ensure enough smoothing  to eliminate spurious grid cells with high 

reflectivity but to still preserve the overall shape and intensity of actual convective 

objects, even if small. Any grid cells that do not have both an interpolated reflectivity ≥ 

35 dBz and smoothed reflectivity ≥ 25 dBz are filtered out, further helping to remove 

very small, borderline CA objects (i.e. localized, transient ≥ 35 dBz cells in stratiform 

precipitation). From here, an expanding radial search function is used to cluster CA grid 

cells that are within two grid points (~ 2.58 km) from the last cell clustered into an object. 

This radial distance threshold of two grid points is found to group cells into an object that 

may contain a small discontinuity in 35 dBz reflectivity but still properly separates close 

neighboring objects. To ensure these groupings of CA grid cells (objects) are resolvable 

features, they must have an area equal to or greater than the length scale of resolvability 

(approximately eight model grid point lengths; Skamarock 2004) squared, where an 8 × 8 

model grid cell area is ~ 12    . Although lesser values, say of 4-6 grid point lengths on 

the common analysis grid, can be sufficient to resolve features of interest, we choose 8 

grid point lengths to create a proxy length scale of resolvability between the model and 

coarser observed reflectivity. Objects with areas less than the size threshold are 

considered poorly resolved or altogether unresolved by the model and/or by radar 

observations and thus not indicative of true, sustained DMC features. This series of steps 

is performed on every five minutes of observed and model simulated -10°C radar 

reflectivity data. Figure 3 shows the beginning and end results of the CI algorithm for a 

representative example from 1 August 2010. 

After each 5 minute period, the CI algorithm attempts to match each CA object to 

CA objects present at previous times. CA objects are matched to previous objects when 
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they are within 10 minutes of each other and their centroids are within ten interpolated 

grid points (~ 13 km) distance. If there are multiple matches at some time to one object 

from the previous time, the spatially-closest object is matched. The distance matching 

requirement helps to properly match objects through time by constraining how far the 

algorithm should search, but is within the realistic bounds of distance covered by very 

fast storm movement in five to ten minutes (i.e., less than 78 km hr
-1

). CI is declared once 

an object has been matched for 30 minutes, demonstrating a mature and sustained deep, 

moist convective updraft that is precipitating. The timing and location (centroid) of CI is 

then set from when the object was first identified as CA with the CI object area size 

averaged over the 30 minute interval. 

c.  Verifying CI objects 

Once a list of observed and modeled CI objects is created for a case, the set of 

objects are compared to each other for model verification purposes. A verification 

algorithm goes through each observed CI object in a case, creating a sorted list of model 

CI objects that are closest in time and space. The closeness of modeled and observed CI 

objects is ordered based upon a flow-dependent error metric. We use an error metric that 

depends on the spatial and temporal errors of a modeled CI object from an observed CI 

object, as well as the characteristic flow, or velocity, of that object. This    error metric is 

given as:                                                                                                

                    
                                      

  (1) 

For simplicity, we represent this spatio-temporal error as C with units of km. The 

characteristic velocity to first order, approximates the storm object motion due to 

advection from the magnitude of the mean flow. We approximate this characteristic 
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velocity by taking the difference of the horizontal wind between the 4
th

 and 16
th

 vertical 

levels in the model at hourly intervals, representing roughly the magnitude of shear in the 

850-450 hPa layer. Distance and time error thresholds are applied to matching as done in 

similar studies (e.g. Fowle and Roebber 2003; Weisman et al. 2008; Duda and Gallus 

2013), albeit more strictly so in this study, such that if a modeled CI object exceeds either 

a timing error of three hours or a distance error of 200 km, it is unmatched and classified 

as a false negative. In such a case, this means that the closest model CI object cannot be 

matched to an observed CI object and demonstrates the model’s inability to reasonably 

produce a CI object in time and space to an observed one. These error thresholds 

correspond to an approximate C error of about 294 km for a characteristic velocity 

average from all cases of around 20 m/s.  

Because we are specifically focusing on the spatio-temporal character of CI 

objects, rather than just its occurrence alone, a potential issue arises near the lateral 

boundaries of the common verification grid. That is, the possibility that CI objects that 

develop outside of the common verification grid and move into this grid may incorrectly 

be flagged as CI. Given the climatological mean westerly flow across our domain area, 

this potential issue is greatest near the western lateral boundary of the common grid 

domain. Since there are inherently cases with a meridional component of the mean flow 

due to synoptic-scale wave disturbances, this possibility also exists near the southern and 

northern common grid lateral boundaries. For consistency, we also consider the less 

likely possibility of storms propagating westward through the eastern domain boundary 

(i.e. case of a cut-off low or negatively-titled synoptic short-wave trough). To mitigate 

this problem, we apply a “buffer zone” near all lateral boundaries of the common grid 
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domain in which all CI objects occurring within the buffer zone are discarded. 

Accounting for potentially fast storm motions (up to 43 m/s), a buffer zone of ten 

interpolated-grid points (~13 km) inward from the lateral boundaries is applied. Say for 

example, a very fast traveling storm initially located outside of the common grid domain 

moves 10 km into the common grid domain in a five minute interval. Further say, that 

this storm is considered convectively active in the common grid domain for sufficient 

time and resultantly flagged CI. Applying this buffer zone would discard this CI object 

because its true start time and location (defined when first flagged CA) is not captured 

within our high-resolution domain area of interest (common grid). This buffer zone is 

applied in all cases for deriving model CI performance results. 
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Table 1. Selected dates, start times and apparent triggering mechanisms of CI events. 

Date Approx. CI start Initiating Mechanism (s) 

5/21 20:30 UTC Frontal boundary, orographic 

5/26 19:00 UTC Outflow boundary, orographic 

5/29 20:30 UTC Frontal boundary 

6/3 "null" event N/A 

6/4 22:00 UTC Frontal boundary 

6/9 19:00 UTC Frontal boundary, orographic 

6/10 19:00 UTC Frontal boundary, orographic 

6/13 21:00 UTC Frontal boundary 

6/16 19:30 UTC Dryline, orographic 

6/21 19:00 UTC Frontal boundary, orographic 

6/24 "null" event N/A 

6/26 18:30 UTC Frontal boundary, orographic 

7/2 18:00 UTC Orographic 

7/3 17:30 UTC Frontal boundary, orographic 

7/4 14:00 UTC Frontal boundary, orographic 

7/6 19:30 UTC Frontal boundary, orographic 

7/9 19:00 UTC Orographic 

7/10 18:00 UTC Frontal boundary, orographic 

7/15 21:00 UTC Orographic, wind shift line 

7/17 21:00 UTC Frontal boundary 

7/21 19:00 UTC Frontal boundary, orographic 

7/27 20:00 UTC Frontal boundary, orographic 

7/29 18:30 UTC Frontal boundary, orographic 

8/1 19:00 UTC Frontal boundary, orographic 

8/9 14:30 UTC Orographic, outflow boundary 
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Figure 1. Outer domain with inner domain (d02) shown in white 

box. 
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Figure 2. Surface elevation (m) above sea level in inner model domain. The 

Front Range of the Rocky Mountains is not labeled but encompasses the 

western third of the domain. Arrows denote typical low-level flow direction 

with notable terrain-induced circulations.  
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Figure 3. An example of CI algorithm output from 2300 UTC 

1 August 2010 showing (a) interpolated observed reflectivity 

and (b) identified CA objects. 
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Results 

 This section will analyze the performance of all simulations of our model 

configuration in three ways. First, we use some standard error metrics on the occurrence 

of CI based upon a contingency-based classification of CI objects. In conjunction, model 

performance is assessed via an evaluation of temporal and spatial errors associated with 

model forecast CI objects. Second, notable model biases and tendencies that limit model 

performance are addressed. Third, results of sensitivity testing accomplished by varying 

physical parameterizations are discussed for a small sample of CI events. 

a. Model verification 

Although we cannot realistically verify all aspects of CI by standard skill scores, 

as has been done with coarser grid spacing CAM studies (e.g. Fowle and Roebber 2003; 

Weisman et al. 2008; Stratman et al. 2013), we are able to verify the occurrence of CI 

with some standard skill scores through the use of a contingency table (Wilks 1995; 

Fowle and Roebber 2003). Through all 25 cases, model simulations produce a total of 

717 CI objects compared to only 272 observed CI objects. A total of 208 model CI 

objects are successfully matched with observed CI objects that are within the spatial and 

temporal error thresholds mentioned above, and are considered true positives (Figure 4, 

“a”). Another 411 modeled CI objects are considered false positives that the model 

overproduces in excess of actual CI objects observed (Figure 4, “b”). This overproduction 

of modeled CI objects will be further discussed later in this paper. An additional 41 

model CI objects are considered for matching, but fail the temporal and spatial error 

thresholds described in the Methodology section, and thus are not successful matches. 
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These objects are considered false negatives, in which CI objects are observed, but the 

model does not produce CI objects that are physically representative in time and/or space 

(Figure 4, “c”). A fourth classification in the contingency table is the true negative, which 

on a grid-to-grid verification, is when forecast occurrence is correctly negative (Figure 4, 

“d”). In an object-based study, however, this classification is inapplicable as there is no 

way of forecasting a non-existent object. 

The collection of classified objects on a contingency table can then be used to 

calculate summary measures, quantifying the overall model performance in forecasting 

the occurrence of some feature (Murphy 1993; Roebber 2008), here being CI. One metric 

is the probability of detection (POD), a ratio that ranges from 0 to 1 representing the ratio 

of correctly forecasted objects to the total number of observed CI objects. A POD of 1 

indicates all observed CI objects are forecast (Eq. 2). A second metric is the false alarm 

ratio (FAR), a ratio of overproduced forecast CI objects to the total number of CI objects 

forecasted that also ranges from 0 to 1. A value of 1 indicates that CI objects are 

forecasted but none are observed (Eq. 3). A third metric is the bias score, which is the 

ratio of the number of overforecast CI objects to the number of underforecast CI objects 

(Eq. 4). The bias score can be any real number, with a value of 1 indicating equal POD 

and FAR scores. The final metric used is the critical success index (CSI), which is the 

ratio of correctly forecasted objects to the total number of CI objects correctly and 

incorrectly forecasted (Eq. 5). 

      
 

     
      (2)   

      
 

     
      (3) 
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      (5) 

The model’s ability to develop CI objects through all cases, as constrained by the 

spatio-temporal thresholds mentioned earlier, reveals a probability of detection (POD) 

score of 0.835. This however, comes at the expense of a false alarm ratio (FAR) of 0.664, 

a result of the significant overproduction of modeled CI, quantitatively given by a bias of 

2.49 model CI objects per 1 observed CI object. Further, the model produces a critical 

success index (CSI) score of 0.315. Although these performance measures generally fall 

short of the performance of both operational and non-operational models alike (e.g., 

Fowle and Roebber 2003; Roebber 2009; Duda and Gallus 2013; Kain et al. 2013), we 

emphasize that they should be viewed in light of the rather strict spatio-temporal 

thresholds used to match forecast to observed CI objects and determine the dichotomous 

outcome of model CI objects. To put in context the scores of model CI occurrence, the 

duality of error, as mentioned in Doswell (2004), demonstrates that in order to, say, 

decrease the FAR of model CI occurrence, the POD consequently will also need to 

decrease as false positive occurrences are converted to false negatives. 

 It should be noted that, for the two observed “null” cases, model simulations 

developed at least one CI object, thus giving a POD of 0 and FAR of 1 for those cases. 

Results from the 23 cases in which CI was observed are plotted (Figure 5) on a Roebber 

performance diagram (Roebber 2009), showing the performance of CI occurrence as well 

as average object C errors. This diagram visualizes multiple measures of forecast quality, 

including POD, success ratio (SR; 1-FAR), bias, and CSI. For this study, we also add in 

coloring to denote the average object C error for each case. In general, better performing 
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forecasts will fall towards the top-right portion of the diagram near the y = x line, 

indicating high POD and SR and near unity bias. Most points on this diagram are skewed 

to the top-left, indicating higher values of POD and bias, coinciding with the model 

overproduction of CI objects. Several points are seen along the right y-axis, indicating a 

FAR of 0, but relatively lower values in POD. These points represent four cases in which 

model simulations actually underforecast the number of observed CI objects. 

As mentioned earlier, we use a flow-dependent error metric to quantify the spatial 

and temporal errors of a modeled CI object. The flow dependence is represented in the 

temporal error term, where a characteristic velocity that represents an approximate deep-

layer shear or storm motion vector is multiplied to the timing error. The derivation of this 

characteristic velocity is further defined in the Methodology section. This flow 

dependence serves two purposes. One is to allow for consistency in dimensional units 

between the spatial and temporal errors, and two, to correctly characterize timing errors 

associated differences in storm motion. For the 208 model CI objects matched, an 

average early error of 7.48 minutes is seen, with the distribution of timing errors near 

normally distributed about zero time error. The average distance error for modeled CI 

objects is 62.1 km. The average C error, incorporating the distance and timing errors of 

matched CI objects, is approximately 91.5 km per object. CI occurrence and spatial-

temporal error results are shown in Table 2. Both the average object timing and distance 

errors are similar to results of Duda and Gallus (2013), who found average model object 

errors of -0.56 min (earlier than observed) and 105 km for CI occurring prior to the 

subsequent upscale growth of DMC. Average object C errors for all cases range from 

about 55 km to 150 km. Also of note, we find for all cases the matched model CI objects 
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on average are larger than their observed counterparts in areal coverage by about 16    . 

These results coincide well with those of Davis et al. (2006b), who found convective 

rainfall objects were too numerous and large in areal coverage in a 4 km CAM study. It is 

interesting to see such common tendencies within CAM studies with horizontal grid 

spacing differences of one full order of magnitude, suggesting that such biases simply do 

not go away with the use of finer horizontal grid spacings and are likely an artifact of a 

more general issue with the explicit handling of DMC.  

Cases of CI are broken into categories of weak and strong synoptic-scale forcing 

to investigate any possible correlation between large-scale forcing and model 

performance. The strength of synoptic forcing is subjectively determined from the 

presence of any synoptic-scale frontal boundaries and/or notable mid-level geostrophic 

vorticity advection during a CI event. Moderate-to-strong event classification required at 

least one of the two mentioned synoptic factors to be strong or both to be moderately 

strong. Not surprisingly, a majority (17) of the CI cases and matched CI objects 

(145/208) are characterized by moderate to strong synoptic-scale forcing, a notable 

characteristic of the active convective season across this region in 2010. Cases involving 

stronger synoptic forcing did show slightly lower average object errors in distance (55.5 

km) and time (-6.52 min) compared to cases of weaker synoptic forcing, which had 

average errors of 77.2 km and -9.68 min in distance and time, respectively. Note, that 

negative timing errors indicate model CI objects occurring earlier than those observed.  

Similar results are seen in the average spatio-temporal C errors, with the stronger 

synoptic forcing cases scoring an average C error of 85.6 km and the weaker synoptic 

cases scoring 103.8 km. These C error differences occur despite stronger synoptic forcing 
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cases having a slightly stronger average characteristic velocity magnitude (19.4 m/s 

versus 15.5 m/s), which amplifies the temporal error term in the    error equation. 

Interestingly, the weaker synoptic forcing cases on average scored better for the 

occurrence of CI, with a CSI score of 0.360 compared to 0.299 with the stronger 

synoptically-forced cases. To test the significance of these results we use the bootstrap 

method to simulate a large sample set of the difference in average object C error and 

average CSI scores in all cases of strong versus weak synoptic forcing. Results show that 

neither the improved average object C error in stronger synoptic forcing cases nor the 

improved average CSI score in weaker synoptic forcing cases are statistically significant 

at the 75% confidence level.  

These results are similar to those of Duda and Gallus (2013), who found no 

identifiable relationship between large-scale forcing and forecast model skill of CI in 

their 3 km CAM simulations. However, the weak relationship we find between model 

performance (average C error) and synoptic forcing compared to Duda and Gallus 

(2013), who use different model domain placements across the U.S. to sample CI events, 

may be because our inner domain comparatively includes more topographically-induced 

circulations. These circulations, which are capable of promoting CI, are partially driven 

by the more predictable large-scale background flow, as noted by Mass et al. (2002). This 

suggests that although the occurrence of CI is more strongly influenced by meso- to 

micro- scale features, the predictability of CI may be enhanced if these features are more 

dependent upon larger-scale forcing. Additionally, intuition would suggest that stronger 

synoptic forcing would aid in the predictability of convection in a CAM, or any 

numerical weather model, since CI is expected to be more dependent upon larger-scales 
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when larger-scale forcing is stronger. Although synoptic forcing plays a large role in 

modulating DMC type and evolution (Schumann and Roebber 2010, among others), its 

role in supporting CI appears mainly to be in producing a more thermodynamically 

favorable environment, as the precise occurrence of CI is still ultimately dictated by the 

smaller, meso-gamma- to micro- scale features (Weckwerth et al. 2004, Markowski et al. 

2006). However, if synoptic-scale forcing can help to reduce CIN and lower the height of 

a parcel’s LCL and LFC, then theoretically the ascent with smaller-scale features would 

not need to be as strong.  

b.  Model tendencies and biases of CI 

 As previously mentioned and evident in the forecast bias, the model overproduces 

CI objects by a factor of approximately 2.5. Although matched CI objects on average 

demonstrate good model performance, they are ‘buried’, in a sense, by numerous falsely 

produced model CI objects. From an operational forecasting standpoint, having a model 

that produces CI objects that closely matches what is observed is significantly degraded 

in utility if those objects are surrounded by many other false modeled CI objects both in 

time and space. Upon further investigation, these overproduced model CI objects show 

certain tendencies that highlight, in time and space, where overproduction is more likely, 

and also shed light on potential reasons for model CI overproduction.  

 To illustrate the bias and tendencies of all model CI objects, we analyze their 

temporal and spatial distributions in comparison to observations. For the temporal 

distribution, the time of all – and not just matched – CI objects are binned in 5 minute 

intervals spanning the range of all CI times from 1330 to 0100 UTC (Figure 6, top). We 
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fit a high order polynomial to the CI time distributions to better illustrate the difference, 

or spread, in CI frequency per time between model simulations and observations (Figure 

6, middle). We also fit a high order polynomial to the ratio of model CI objects to 

observed CI objects to visually demonstrate the times of greatest overproduction relative 

to the observed CI count (Figure 6, bottom).  This shows that the greatest model 

overproduction of CI occurs during the peak times of CI occurrence roughly between 

1800 UTC and 2200 UTC. On average, model forecast CI objects (matched and 

unmatched) form 43 minutes too early compared to observed CI objects (Figure 6, top).  

To best illustrate the spatial distribution of all CI objects, a weighted CI density 

field is created. We first sum the CI count at each grid point from all 25 cases on the 1.29 

km common verification grid. Then, similar to Davis et al. (2006a, b), we apply a 

Gaussian-like weighting function that is summed at each grid cell to smooth the total CI 

count, 

                        
- (

  

   
)
     (6) 

Where “c” is the number of CI events in any grid cell and “d” is the distance from any 

grid cell with ‘count’ CI events to the cell in which the weighting is being applied. The 

numerator in the exponential function represents the decaying scale factor, which we 

choose as 10 interpolated grid lengths. This smoothing factor of 10 grid cell lengths, a 

similar value to that used in Davis et al. (2006a), is subjectively chosen by testing varying 

values and determining that it best visually demonstrates areas of local maxima and 

minima without entirely eliminating small-scale maxima and minima. The differenced 
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spatial CI density between the model and observations helps to show areas in which the 

model produces too many, and too few, CI objects (Figure 7).  

At first sight, two widespread biases are apparent in the model minus observed 

spatial density image (Figure 7). The most noticeable difference is the spatial coverage of 

overproduction (red shading) of model CI across much of the inner domain area. In 

general, a slight model underproduction of 1-2 CI objects (blue shading) is seen across 

much of western Nebraska with several other smaller-scale areas of model CI 

underproduction across the inner model domain. 

The overproduction of CI objects in the model relative to observations is most 

notable near the western inner domain boundary extending east to the Front Range of 

central and eastern Wyoming and Colorado. Several reasons for CI object overproduction 

in the model are possible. One is that the observed radar sampling is more limited across 

far west portions of the inner model domain near the peaks of the Front Range 

Mountains. In these areas, radar data from the Denver and Cheyenne WSR-88D sites is 

partially obscured by terrain, thus likely limiting to (some extent) the number of observed 

CI objects across western portions of the domain. See Figure 8 for an illustrative 

example. Another potential reason for this overproduction is the location of our western 

inner domain boundary near steep gradients in elevation height. We attempt to mitigate 

this issue by placing the western lateral boundary away from the steepest gradients of 

topography within the Rocky Mountains (e.g., along the Continental Divide rather than to 

its east or west). Further, outer-inner domain interface blending of orography in the 

WRF-ARW model that helps to smoothly ramp up or down topography height within the 

first 5 grid points of the inner domain from domain interface (Skamarock et al. 2008) is 
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hypothesized to mitigate most, if not all, possible spurious, short-wavelength energy 

development from strong topography gradients near the domain interface. The third 

potential reason is the propagation of explicitly-resolved DMC with strong perturbations 

to the thermodynamic and kinematic fields from the outer domain into the inner domain. 

Although CI objects that move into the inner domain area, whether modeled or observed, 

are discounted, it is speculated that such convective objects may promote low-frequency 

spurious wave growth near the lateral boundary that may aid in forcing additional CI 

events. However, we speculate that this should be mitigated with the use of an odd outer-

inner domain grid spacing ratio (7:1) on the WRF-ARW default Arakawa-C grid, which 

allows for variables to have the same physical point at the interface between the outer and 

inner domain (Skamarock et al. 2008). Conditions from the outer domain moving into the 

inner domain then only need to be down interpolated to fit the first row or column of 

inner domain grid cells. This simple downscaling does not allow for gradients in 

meteorological variables in the outer domain, say associated with DMC, to be amplified 

(at least initially) as they move into the inner domain. Additionally, we note that there are 

no significant visual signs of such wave activity influencing DMC near the lateral 

boundaries through the analysis of derived simulated radar reflectivity. 

To first order, the possible lack of radar observed CI over higher terrain would 

appear to be the more likely reason for model overproduction of CI relative to observed 

CI. All of the mentioned potential reasons for overproduction near the western lateral 

boundary, however, should be at least partially mitigated with the use of a ten grid point 

(common grid) buffer zone along each directional lateral boundary. 

c.  Physical parameterization scheme sensitivity and case analyses 
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 Many recent high-resolution modeling studies have suggested that physical 

parameterizations are not best fit for horizontal grid spacings that are capable of 

explicitly resolving DMC (e.g., Mass et al. 2002; Done et al. 2004, Skamarock 2004; 

Davis et al. 2006b; Stensrud 2007; Weisman et al. 2008; Schwartz et al. 2009; Coniglio et 

al. 2010 ; Coniglio et al. 2013; Kain et al. 2013) . This has been most suggested for PBL 

schemes, where CAMs are capable of resolving some of the larger-scale PBL circulations 

that may superpose with those parameterized in a PBL scheme (Stensrud 2007). This may 

be especially true in this study with the use of 429 m horizontal grid spacing. High-

resolution CAM studies have also shown a large forecast sensitivity and ensemble spread 

to different microphysical parameterization schemes (Clark et al. 2010; Coniglio et al. 

2010; Schwartz et al. 2010), related particularly to the strength of cold pools produced by 

simulated DMC. These findings motivate the testing forecast of forecast performance for 

different PBL and microphysics schemes. 

In addition to the overall early and overproduction bias of CI in model 

simulations, many simulations tend to show numerous small, pulsing convective objects 

in radar reflectivity, including at the -10°C level. We refer to these small spatial and 

temporal objects as plumes, seeming to be the model’s representation of deepening 

cumulus clouds associated with local maxima of ascent extending from the PBL. These 

pluming objects often develop collectively in fields, sometimes as early as 1-2 hours 

before CI, like that of an observed cumulus congestus field aiding in the reduction of CIN 

prior to CI. It is uncertain if such objects directly impact the occurrence and tendency of 

modeled CI. However, because their spatial scale is typically on the order of several 

model grid point lengths (429 m), most if not all pluming objects are discarded as CA by 
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the area size threshold in our CI algorithm. One possible reason for these pluming objects 

is that they represent cumulus congestus towers that may be too fine-scale and/or weak to 

be detected and resolved by operational radars (WSR-88D). In observations, localized 

plumes, manifest as horizontal convective rolls, are frequently observed in pre-convective 

environments and can be identified via visible satellite imagery. However, they are often 

too weak in vertical height and cloud water content, to be meaningfully represented by 

land-based radars. Consequently, the presence of plumes within the numerical 

simulations presented herein is not unexpected, but the intensity of such plumes, 

particularly in the context of their simulated reflectivity structure, is unexpectedly high 

(35-45 dBz) compared to observations. Given the lack of literature on model performance 

at the horizontal grid spacing utilized here, and the noting of improper tuning of physical 

parameterizations for CAM applications, we speculate that shortcomings in physical 

parameterizations could be responsible for these plume objects. 

To investigate how different physical parameterizations impact model evolution 

and CI performance, we choose three cases and run several series of model simulations 

with different physical parameterizations. We specifically choose to investigate cases of 

CI on 26 May, 1 August, and 9 August 2010 that demonstrate numerous pluming objects 

in simulated radar reflectivity to see if the development of plumes is impacted by the 

choice of physical parameterization. Microphysical sensitivity is examined by utilizing 

the Morrison 5-class double-moment scheme (Morrison et al. 2005) in lieu of the 

Thompson et al. (2008) microphysical scheme. The Morrison scheme is specifically 

chosen to investigate how the added double-moment representation of more 

microphysical species (among differences in algorithm structure, empirical values, 
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physical assumptions, etc.) impacts model performance compared to the hybrid single-

moment control Thompson scheme, which is a double-moment scheme only for cloud 

water and ice.  

Planetary boundary layer sensitivity is examined by utilizing the Yonsei 

University (YSU; Hong et al. 2006) “non-local” scheme in lieu of the MYJ PBL scheme. 

The YSU PBL scheme is specifically chosen to compare its “non-local” representation of 

turbulent mixing to the MYJ’s “local” representation of turbulent mixing, as the two tend 

to have a comparative difference in PBL structure in CAM applications. Notably, “local” 

schemes such as the MYJ scheme tend to produce cooler, moister PBL structures, while 

“non-local” schemes such as the YSU scheme tend to produce warmer, drier PBL 

structures in DMC environments (Weisman et al. 2008; Coniglio et al. 2013). These 

differences may strongly impact the occurrence, timing, and location of CI, all of which 

can significantly alter the evolution of DMC. 

Although this sample of physical parameterization sensitivity testing is small, 

there are some weakly supported results that merit further investigation in later studies. In 

two out of the three simulations, the YSU PBL scheme has a reduced overproduction 

tendency as compared to the MYJ PBL, as exhibited by slightly lower bias scores. In all 

three cases, the Morrison microphysics scheme produces slightly lower CSI scores than 

the Thompson scheme, mainly due to an amplified overproduction of CI objects. Through 

all three cases, however, the control simulations produce slightly higher CSI scores than 

both the YSU PBL and Morrison microphysics runs. Statistics from the sensitivity runs 

can be seen in Table 3. Through all three cases, these pluming objects are noticeably 

weaker and fewer in number in YSU simulations compared to simulations using the MYJ 
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PBL scheme (Figure 9). Of note, the Morrison microphysics scheme tended to have 

larger areas of higher reflectivity in the strongest convective cells in comparison to the 

Thompson scheme, but visually appeared to be a closer representation to reflectivity 

values in observed convection. It should again be noted, however, that the simulated 

reflectivity calculation algorithm used here did not utilize the second-moment number 

concentration of the microphysical species.  

Analyzing vertical profile soundings at approximate locations of CI about 1 h 

prior to average CI timing between different physical parameterization shows no 

discernible difference in low-level temperature or PBL depth (not shown). However, 

visually comparing the near-surface distribution of dewpoint temperature values between 

simulations with different PBL schemes shows that in all three cases, the YSU scheme 

tends to produce dewpoint values that are consistently around 1° C lower than in the 

MYJ. This matches well with other studies showing the YSU scheme tends to be drier, 

while the MYJ scheme tends to be moister in the PBL (Coniglio et al. 2013). Although 

these differences in dewpoint are not drastic, slight differences in low level moisture can 

significantly impact CAPE, where a 1 g/kg change in surface mixing ratio can change 

surface based CAPE by up to 20% (Bluestein 1993). Again, however, given the small 

sample size, these results and their implications toward the use of widely-used physical 

parameterization packages for high-resolution CAM applications require further 

investigation.  
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Figure 4.  A 2 x 2 contingency table, with shaded boxes denoting 

correct forecasts.  
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Figure 5. Performance (Roebber) diagram for each CI case 

showing SR on the x-axis and POD on the y-axis. Bias is shown 

through dashed lines and CSI through curved, solid lines. Circles 

are filled based upon the case average object C error. Green 

denotes C errors less than 80 km, yellow 80-110 km and red 

greater than 110 km. 
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Table 2. Case average model performance ordered by CSI score. Average object C errors 

are color coded as mentioned in Figure 5. 

Date CSI C error(km) 

6/16 0.7143 63.66 

7/9 0.7143 72.41 

7/15 0.6667 84.45 

7/6 0.5417 72.62 

7/3 0.4545 90.69 

7/21 0.4490 97.03 

8/1 0.4483 91.60 

7/10 0.4444 71.70 

5/26 0.4375 147.44 

7/29 0.4063 71.05 

6/10 0.3800 82.62 

8/9 0.3111 125.00 

6/9 0.3077 82.82 

7/17 0.2857 67.03 

5/29 0.2800 96.09 

6/26 0.2769 96.28 

6/21 0.2222 68.88 

5/21 0.1667 118.23 

7/2 0.1563 66.64 

7/27 0.1379 55.20 

7/4 0.1224 107.36 

6/4 0.1000 132.63 

6/13 0.0968 55.69 

6/3 0.0000 NaN 

6/24 0.0000 NaN 
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Figure 6. (top) Temporal distribution of all CI objects in 5 minute bin intervals, (middle) 

its fitted polynomial distribution and (bottom) fitted polynomial of the ratio of modeled 

to observed object count. 
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Figure 7. Weighted spatial density difference in CI occurrence between 

model and observed, where positive (negative) values denote more modeled 

(observed) CI objects. 
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Figure 8. An example cross section of 3D data from the NSSL NMQ 

product. From right to left is the approximate Denver/Boulder, CO WSR-

88D location extending radially into north-central Colorado along the Front 

Range of the Rocky Mountains. Note the “Missing” dark grey shading 

beneath areas of reflectivity west of the highest terrain (light grey shading). 

The NMQ product accordingly weights reflectivity values from the 

neighboring Cheyenne, WY WSR-88D site for north-central Colorado (left 

portion of cross section). 
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Table 3. Physical parameterization scheme sensitivity results of CI occurrence. Following 

Table 1, “A” denotes the number of matched observed and model CI objects, “B” denotes 

the number of overproduced CI objects, and “C” denotes the number of observed objects 

that model simulations did not produce or match within specific thresholds. 

Date Scheme A B C FAR POD bias CSI 

26-May CONTROL 7 9 0 0.563 1 2.29 0.438 

  YSU 4 7 3 0.636 0.571 1.57 0.286 

  MORRISON 4 11 3 0.733 0.571 2.14 0.222 

1-Aug CONTROL 26 31 1 0.544 0.963 2.11 0.448 

  YSU 18 24 9 0.571 0.667 1.56 0.353 

  MORRISON 26 71 1 0.732 0.963 3.59 0.265 

9-Aug CONTROL 14 24 7 0.632 0.667 1.81 0.311 

  YSU 16 32 5 0.667 0.762 2.29 0.302 

  MORRISON 15 28 6 0.651 0.714 2.05 0.306 
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Figure 9. Simulated reflectivity at the -10°C level at 2000 UTC 26 May with the (a) MYJ 

PBL, Thompson microphysics control simulation, (b) Morrison microphysics simulation 

and (c) YSU PBL simulation. These images are zoomed in across NE CO, W NE and 

NW KS to better show small-scale details. 
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Discussion 

 Two topics, highlighting potential issues in high-resolution forecasting, are 

discussed: the use of PBL physical parameterization in CAM applications and the impact 

of incorporating non-standard observations into high-resolution simulations. 

A “grey zone” (Stensrud 2007) has been identified for PBL parameterization use 

in CAMs, where at horizontal grid spacings <4 km, some of the larger-scale PBL eddies 

are beginning to be resolved, a process that is traditionally handled in a PBL 

parameterization scheme. The horizontal grid spacing we use in our model simulations 

(429 m) would appear to be well into this “grey zone”, as we are resolving more finer-

scale details than in most CAMs with horizontal grid spacings of 2-4 km but are still not 

properly resolving most features in the PBL as in large-eddy simulations with horizontal 

grid spacings of order 1-10 m. This is analogous to the issue of whether to use a 

convective parameterization with horizontal grid spacings between 4 km and 10 km 

(Molinari and Dudek 1992) that are beginning to resolve the larger-scale structure of 

DMC. This complicates the decision of choosing explicit or parameterization of turbulent 

energy transport in the PBL. This, though, creates the concern of resolving turbulent 

energy at small wavelengths; i.e., too much if a PBL parameterization is utilized and too 

little if one is not utilized. Since it has been suggested that larger-scale PBL eddies are 

beginning to be crudely resolved in CAMs of grid spacing 2-4 km, therefore likely 

superposing with output from a PBL parameterization (Stensrud 2007), this issue is likely 

amplified to an extent in our model simulations. This highlights two critical points to be 

addressed regarding CAMs and PBL parameterizations. A threshold in horizontal and 

vertical grid spacing to adequately and accurately resolve all eddies within the PBL 
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responsible for turbulent energy transport needs to be identified. In other words, at what 

grid spacing should a PBL parameterization no longer be used? The second and more 

practical point is the need for the tuning or development of PBL schemes that are better 

suited for CAM applications, accounting for the ability of CAM simulations to resolve, at 

least crudely, larger-scale PBL circulations.  

 Incorporating more observations into ICs and LBCs for model simulations has 

been shown in many studies to improve model performance. This is especially true in 

CAMs for very short-range forecasts, as demonstrated in several studies incorporating 

non-standard observations through the utilization of advanced data assimilation 

techniques (e.g., Xue and Martin 2006; Liu and Xue 2008; Sun et al. 2012). These 

studies, however, incorporate numerous observations from the IHOP field program that 

both exceed the resolution of standard observational systems and focus on their impact 

upon numerical forecasts within nine hours of the forecast initialization time. Less 

studied is the impact of more observations that would slightly exceed the number of 

observations currently provided by observational systems, but could be realistically 

obtained without the means of a field program or similar construct. This is the one of the 

objectives for the Mesoscale Predictability EXperiment (MPEX; Weisman et al. 2012), 

which will investigate whether additional sub-synoptic-scale observations gathered in 

environments immediately upstream of where DMC is forecast to develop can improve 

day 1 (6-24 h) forecast skill of the formation, evolution, and impacts of DMC. 
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Summary 

Very high resolution WRF-ARW simulations with horizontal grid spacings of 429 

m are run for twenty-five CI case events across the west-central High Plains from the 

2010 convective season. Specifically, we investigate the period from 15 May to 15 

August 2010, which demonstrated numerous CI events as triggered by a diverse set of 

atmospheric and orographic triggering mechanisms. We investigate the ability of very 

high resolution model simulations to replicate observed CI by evaluating forecast skill in 

the context of that documented in previous CI-focused modeling studies. Model 

performance is assessed using an object-based approach, classifying CI as spatially- and 

temporally-sustained radar reflectivity-derived objects. The occurrence of CI is verified 

with traditional statistical scores. 

Objective matching of modeled and observed CI objects demonstrates an average 

early bias of 7.48 minutes per matched model object. The average distance error is 62.1 

km, with model objects tending to be slightly too large in areal coverage. The average 

spatio-temporal, flow-dependent C error is 91.5 km per object. Matching is only 

considered for model objects that are within three hours and 200 km of an observed 

object. The model’s ability to produce matched CI objects is given by a POD of 0.835. 

However, a significant overproduction of CI objects compared to observations (717:272) 

produces a FAR of 0.664 and bias ratio of 2.49 modeled CI objects to1 observed CI 

object. The overall CSI score for all cases is 0.315. For all CI objects, matched and 

unmatched, between model simulations and observations, model simulations show a 43 

minute early bias due to CI overproduction. Model overproduction in CI is most spatially 
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prevalent along and west of the Front Range of the Rocky Mountains and most 

temporally prevalent in the 1800-2200 UTC time range, during peak heating and peak 

observed CI frequency. This constrains the present operational utility of such a model 

configuration with positive performing matched CI objects being ‘buried’ in time and 

space by the model’s overproduced CI objects.  

Model performance is found to be slightly higher in regards to average spatio-

temporal C errors, albeit statistically-insignificantly, in CI cases with stronger synoptic 

forcing. The opposite is true for the occurrence scores of CI, with weaker synoptic 

forcing cases performing better. The average CSI score for stronger synoptic cases is 

0.299 versus 0.360 for weaker synoptic cases. In essence, model simulations with 

stronger synoptic forcing tend to produce more CI objects, and thus lower CSI scores due 

to amplified CI overproduction, but, the greater number of model CI objects yields 

slightly closer matches in time and space to observed CI objects. The average object 

distance and timing errors are improved by 21.7 km and 3.17 minutes in cases of stronger 

synoptic forcing, respectively. We hypothesize that this very slight added spatio-temporal 

CI skill in cases of stronger synoptic forcing may be due to the dependence of mesoscale 

topographic circulations (Mass et al. 2002) along the Front Range of the Rocky 

Mountains that can locally favor CI upon synoptic-scale details. 

Although a limited return in forecast skill improvement is expected for model 

simulations utilizing 429 m horizontal grid spacing compared to the more typical 3-4 km 

spacing in CAMs (Kain et al. 2008; Schwartz et al. 2009; Clark et al. 2011), since both 

can sufficiently resolve convective-scale details, there are a couple of specific reasons as 

to why such improvements are inherently limited in nature. One is the interaction and 
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superposing of explicitly resolved large-scale PBL turbulence with physically-

parameterized turbulent energy. Although the existence of this issue has been speculated 

by many (e.g., Skamarock 2004, Strensund 2007) in regards to CAMs with grid spacings 

of 3-4 km, how much this may be further amplified in simulations with grid spacing one 

full order of magnitude smaller is unknown. A second potential limiting factor is 

insufficient observations in the model initial conditions. Although mesoscale-resolving 

models are capable of developing mesoscale circulations with only large-scale 

atmospheric details provided, a “spin-up” time is required to resolve such features, 

limiting forecast performance in the first few hours of model integration. How the 

inclusion of non-standard observations, although not to the detail obtained in specialized 

field campaigns, impacts regional CAMs beyond very short-range forecast times (0-9 h) 

warrants further study.  
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