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ABSTRACT
DEVELOPMENT AND VALIDATION OF A MATHEMATICAL MODEL FOR PREDICTING THE
PERFORMANCE OF ROTARY HAMMER DRILLS
by
Will R. Didier

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor John Reisel

Rotary hammer drills are specialized drills used by plumbers, electricians, and
other construction trades to drill holes in concrete. This type of tool employs a
mechanism driven by an electric motor to compress a column of air, generating an
impact on a drill bit to break the concrete work piece. Rotary hammer development
requires the ability to accurately predict tool performance to minimize the number of
prototype iterations required during the design phase and ensure the tool delivers a
satisfactory level of performance. In order to predict the performance of a rotary
hammer drill, a mathematical model was developed to simulate the response of the tool
under load, from the time the tool is activated until it achieves steady state. Inputs for
this model were taken from physical tool dimensions and motor performance data.
Validation of the model was carried out by simulating the performance of a Milwaukee
Electric Tool model 5262-20 rotary hammer and comparing the model outputs to actual
performance data, measured following the European Power Tool Association test
procedure 05/2009 — Measurement of single impact energy of rotary hammers and

breakers.
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1 Introduction

Rotary hammer drills are specialized power tools utilized by plumbers, electricians,
and other construction trades for drilling holes in concrete or masonry. Typical
applications include the drilling of pilot holes for installation of concrete fasteners or
anchors and creating through holes to pass plumbing, electrical conduit, or ductwork
through a wall. Additionally, when fitted with a chisel bit, rotary hammers can be used
for breaking concrete or other demolition work. Rotary hammers can frequently be
found in use during new construction of large high-rise buildings or warehouses,
residential foundation repair, or any other construction activities involving concrete or

masonry work.

Users of these tools consistently place the ability to drill holes quickly near the top
of their list of needs, along with tool durability and, in the case of cordless models, the
ability to complete a day’s worth of work with a minimum number of recharges. In
addition to meeting user needs with a new rotary hammer design, time to market is
critical in gaining a competitive advantage. In order to shorten development cycles, the
number of prototype iterations required to deliver the desired performance must be
minimized. To achieve these goals, the rotary hammer designer must be able to
accurately predict the tool’s performance under various loading conditions. To that
end, a mathematical model combining numerical integration techniques and FEA
simulation of component impact events was developed to simulate the response of a
rotary hammer from the time the tool is activated until it reaches steady state under

various loading conditions. The model was then validated by simulating a tool currently



available on the commercial market and comparing the simulation result to actual tool

performance data collected following an industry standard test procedure

1.1 Rotary Hammer Construction & Operation

Rotary hammers typically consist of a hammer mechanism driven by an electric
motor through one or more gear reductions. The hammer mechanism consists of a
reciprocating device that drives a piston. The piston compresses a column of air which
in turn accelerates a metal slug, referred to as a striker, resulting in an impact with
another component, the anvil. The impact generates a stress wave that travels through
the anvil, along the length of the drill bit, and into the concrete work piece, causing the

concrete to fracture.

The hammer mechanism, shown in Figure 1-1, begins operation as soon as the
trigger switch is closed, energizing the drive motor. Torque is transmitted from the
motor armature to the intermediate shaft via the first stage gear set. Mounted on the
intermediate shaft is a device known as a wobble bearing, seen in Figure 1-2. The
wobble bearing is a ball bearing consisting of a spherical shaft in which the bearing race
is cut into the surface at an oblique angle to the axis of rotation. The outer ring of the
bearing is constructed with a stem that connects to the piston via the wrist pin. The
rotation of the wobble bearing shaft produces reciprocating motion at the end of the

stem.



SPINDLE

Figure 1-1 — Rotary hammer mechanism cross section

WOBBLE SHAFT

e

—— OUTERRING “ y

Figure 1-2 — Wobble bearing construction



The piston reciprocates in and out of the bore of the spindle, compressing the
column of air trapped inside the working chamber between the piston and striker’s rear
faces. As the air is compressed, pressure builds inside the working chamber, propelling
the striker towards the anvil, creating the energy needed to break concrete. After the
impact, the piston withdraws, generating a vacuum inside the working chamber. This
vacuum, along with the kinetic energy retained by the striker after impact, allows the
striker to move back from the anvil with the piston, compressing the air column and
beginning the next cycle. A pair of grooves, a longitudinal groove in the striker and a
circumferential groove on the bore of the piston, vent the working chamber to the
atmosphere during a portion of the piston’s stroke. The working chamber is vented to
the atmosphere any time the striker o-ring passes under the piston’s groove. Air will
flow in or out of the chamber by passing over the striker o-ring and down the length of
the striker’s groove. This vent serves to regulate the amount of pressure that can be
generated inside the working chamber as well as allowing the mechanism to achieve

steady state operation regardless of the initial position of the piston and striker.

Figure 1-3 — Position of piston and striker when vent is open



Rotary hammers are typically equipped with three modes of operation:
hammer-drill, drill-only, and chisel-only. These modes are controlled by a shifting
mechanism that can selectively engage and disengage the wobble bearing and spindle
from the torque transmitted by the intermediate shaft. One of the more common ways
this is executed is by means of a pair of spring loaded couplers that engage the spindle
pinion and wobble bearing. In the hammer-drill position, as shown in Figure 1-4, both
couplers are locked to their respective components and the intermediate shaft

transmits torque to the wobble bearing and spindle.

Figure 1-4 — Mechanism engaged in hammer-drill mode

When the shifting mechanism is cycled to drill only, seen in Figure 1-5, the
wobble bearing coupler is retracted from the wobble bearing, disconnecting it from the
drivetrain and preventing the piston and striker from generating impacts. In this mode,
the tool functions as a drill and can be used to drill holes in wood, metal, or other non-

masonry materials.
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‘ OBBLE COUPLER DISENGAGED | @

Figure 1-5 — Mechanism engaged in drill-only mode

In the chisel-only mode, depicted in Figure 1-6, the spindle pinion coupler is
disengaged, preventing torque from being transmitted to the spindle. Additionally, the
same linkage that retracts the coupler also engages a spindle lock on the spindle pinion,
preventing the spindle from rotating. The chisel-only mode is employed in demolition

work and in flash removal on newly poured concrete slabs.

SPINDLE LOCK ENGAGED ON
PINION [ —

Figure 1-6 — Mechanism engaged in chisel-only mode

Rotary hammers also typically include an idling function to quickly dissipate the
kinetic energy of the striker and prevent impacts from occurring when the bit is

removed from the work piece. This function is necessary to prevent the tool from being



damaged by impact stress waves reflected back into the tool rather than into the
concrete as intended. A common means of achieving this function is to integrate a
catch barb onto the impact end of the striker. When the bit is removed from the work
piece while it is still activated, the striker will impact the anvil, pushing it a short
distance down the spindle. This anvil travel allows the striker to continue forward,
pushing the striker barb past a catch o-ring and holding it in place against the vacuum
generated in the piston working chamber during its return stroke. A vent placed in the
piston wall near the leading edge allows the vacuum in the chamber to be relieved
when the tool is idled. The energy of the last impact is dissipated when the anvil
collides with the brake ring placed inside the spindle. To exit idle mode, the user simply
presses the bit down on the work piece. This causes the connection end of the bit to
travel into the spindle, pushing the anvil against the striker and disengaging the barb

from the catch o-ring. Figure 1-7 shows a tool that has been placed in idle mode.

BRAKE RING

Figure 1-7 — Mechanism in idle mode



The final key component required in a rotary hammer is the bit retention system.
Rotary hammers with impact energy outputs of up to 4.0J typically utilize an industry
standard bit retention system known as SDS-Plus (1), (2), (3), (4). To install a bit, the
user inserts a bit into the spindle, pushing against a spring-loaded retainer ball and
toggle plate. The retainer ball engages a mating feature machined into the connection
end of the bit, while a pair of keys on the spindle bore engage slots on the bit to
transmit torque. To remove, the chuck sleeve is pulled back, compressing the spring
and releasing the retainer ball. The bit can then be removed from the spindle. A typical

execution of this bit retention system can be seen in Figure 1-8.

RETAINER BALL TOGGLE PLATE

CHUCK SLEEVE CHUCK RING CHUCK SPRING

Figure 1-8 — Typical SDS-Plus bit retention system



1.2 Subject Tool

The tool chosen for study was the Milwaukee Electric Tool Corporation model
5262-60 rotary hammer, seen in Figures 1-9 and 1-10 (5). This rotary hammer is a 2kg-
class hammer with a D-handle form factor and inline motor layout. The tool is driven by
a 120V AC electric motor. The published specifications and performance of the tool are

listed in Table 1-1 (6).

Figure 1-9 — Milwaukee Electric Tool 5262-20 rotary hammer (6)

Figure 1-10 — 5262-20 rotary hammer in a typical drilling application (6)
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Specification

Operating voltage [VAC] 120
Rated current [A] 7.0
Maximum hole size in concrete [in] 7/8
Impact energy [J] 2.44
No-load spindle speed [min™] 0-1500
No-load impact frequency [min™] 0-5625
Length [in] 17
Weight [Ib] 5.8

Table 1-1: Published specficiations, 5262-20 rotary hammer

1.3 Study Objectives

The primary objective of this study is the development of a mathematical model for
the prediction of the performance characteristics of rotary hammers. This model will
allow the design engineer to estimate the performance of candidate rotary hammer
designs before the first physical prototype is constructed. Additionally, secondary
outputs calculated by the model, such as force, torque, and acceleration, can be used to

inform the design of tool components and subsystems.

The completed model will be validated by inserting dimensions and specifications of
the subject tool described in the previous section into the model, simulating its
performance. The performance parameters calculated by the model will then be
compared to the tool’s actual measured performance as measured per European Power
Tool Association (EPTA) test standard 05/2009 — Measurement of single impact energy

of rotary hammers and breakers.
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Chapter 2 details the formulation of the mathematical model that describes the
kinematics of the mechanism components and thermodynamic conditions inside the
piston working chamber. Chapter 3 discusses how the FEA simulation of the impact of
the striker on the anvil was set up and how the results were used as an input for the
model. Chapter 4 discusses the construction of the impact energy test fixture and the

procedure by which impact energy data was collected.
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2 Mathematical Model

In order to estimate rotary hammer performance, it was necessary to develop a
mathematical model to describe the kinematics of the tool’s mechanism and the
thermodynamic properties of the air column inside the working chamber of the piston.
The model is iterative, starting at t = 0 with the mechanism at rest, proceeding to a
steady state condition representing the tool in its normal operating condition. A
backward finite-difference numerical integration technique is used to calculate angular
and linear positions and velocities of mechanism components at each time step (7).
Other model parameters are calculated at each time step based on these positions and

velocities.

2.1 Model Inputs

A number of key physical quantities and dimensions characteristic to the tool’s
mechanism are required as inputs for calculation of various model parameters. Figure
2-1 shows a cross section of the mechanism and highlights the specific dimensions that

are used as model inputs.
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WOBBLE BEARING CENTERLINE ?

| TTTE

Figure 2-1: Tool mechanism cross section, 5262-20 rotary hammer

All of the length and area dimensions are nominal dimensions and were measured
from a three-dimensional CAD model of the tool. Additionally, moments of inertia for
rotating components on the mechanism drivetrain were derived via analysis of three-
dimensional CAD data for the tool and combined into the total rotational moment of
inertia, J;, seen by the motor. Masses for the striker and piston assemblies were also

taken from analysis of the tool CAD.

Certain inputs for the mathematical model were not directly measureable, namely,
the constants for the motor performance curves and striker o-ring friction and leakage
parameters. Generation of motor performance curve constants will be discussed in the
following section. O-ring friction and leakage parameters were taken from the Parker O-

Ring Handbook (8) and will covered in detail in Section 2.4.
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2.2 Mechanism Kinematics

2.2.1 Motor
The model starts with the calculation of the motor’s angular position and velocity.
Velocity and position at each time step are determined using the Euler method (7) and

are described by Equations 2-1 and 2-2, respectively.
Hmotorn = emotorn_l + (wmotorn_lAt) (2-1)

Wmotor, = Wmotory,_, T (amotorn_lAt) (2-2)

The motor’s angular acceleration is given by Equation 2-3 and is a function of the torque
provided by the motor, the load applied to the tool, and the rotational inertia of the
mechanism drivetrain. The load on the tool is produced by three sources: the cyclic
compression of air column to drive the striker, the reciprocating mass of the piston

assembly, and drag on the bit as it rotates in the hole being drilled.

. _(*pneuntTpistony _( Thity, )
motorn GR, GR1GR> (2-3)

Jt

®motor, =

The expression for motor torque comes from a curve fitted to actual test data of
the motor’s performance. This data was obtained by running a sample of four tools on a
dynamometer at various load points, correcting the data for inertia and gear ratio, and
averaging the results to obtain a curve of motor speed in revolutions per minute as a
function of torque. Multiple tools are required to generate this data because, as a

general rule, power tool motors are understood to vary as much as £10% from the
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nominal designed performance due to manufacturing variances. Since the motor’s
speed is known at the current time step from Equation 2-2, the curve fit is rearranged to

give torque in terms of speed:
2
Tmotor, — Cleotorn + CZNmotorn +c3  (2-4)
where ¢y, ¢, and c3 are constants from the curve fit specified in Table 2-1.

The motor’s angular velocity also needs to be converted to revolutions per minute in

order to be used in Equation 2-4:

__ 30wmotory,
Nmotorn - 1 (2-5)

In addition to torque, the motor performance data plotted in Figure 2-1 is used to

estimate the current draw of the tool:

Imotorn = blfmotorn + b, (2-6)

where by and b, are constants from the curve fit specified in Table 2-1.

2.2.2 Intermediate Shaft & Spindle

With the response of the motor defined, position and velocity of the intermediate
shaft and spindle can be found. In a similar fashion to the motor, angular position for
the intermediate shaft and spindle are determined at each time step via the Euler
method:

Hisn = 6WSn—1 + (wwsn_lAt) (2-7)
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espindlen = espindlen_l + (wspindlen_lAt) (2-8)
The angular velocity for the intermediate shaft is easily calculated from the

motor’s angular velocity and the first stage gear ratio:

Wmotor
Wisy = Gr— (2-9)

Intermediate shaft velocity and the second stage gear ratio provide the spindle angular

velocity:

_ Wwsn
wspindlen - GR, (2‘10)

Converting the angular velocities of the intermediate shaft and spindle to
revolutions per minute provides two useful pieces of information about the tool
performance; spindle speed and impacts per minute (IPM). IPM is the frequency with
which the tool strikes the work piece. Equation 2-11 provides the expression for the
intermediate shaft rotational speed and Equation 2-12 is the expression for the spindle

rotational speed

30wws,
Nisn = . (2-11)
and
30Wspindien,
Nspindlen = z;_dl (2-12)

Spindle speed and IPM predicted by the model can be compared to the spindle speed
measured while drilling to check that the motor performance data input into the model
is accurate and the motor response is modeled correctly. Additionally, both of these

guantities are typically advertised in rotary hammer marketing literature.
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2.2.3 Piston

The position of the piston can be determined using the angular position of the
intermediate shaft, the center distance between the intermediate shaft and the spindle,
the distance from the piston’s rear face to the wobble bearing centerline, and the angle
of the wobble bearing raceway. With the piston position known, the piston’s velocity

and acceleration at each time step can then be found:

X i — X
__ “pistong pistonp—1
Upiston, = Tt (2-14)
and
Vpi 2%
__ Upistonn pistonp—1
—QApiston, = At (2-15)

Additionally, the position of the trailing and leading edges of the groove in the piston

bore must be known:

Vb, = Xpiston, T Y1 — X1 (2-16)
and

Yf, = Xpiston,, T Y2 — X1 (2-17)

The groove position will be used later in the model as a means of determining whether
the working chamber of the piston is sealed or open to the atmosphere. This, combined
with the position of the striker’s o-ring and the difference between atmospheric and
chamber pressure, indicates the flow condition of the working chamber: closed, intake,

or outlet.
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2.2.4 Striker
The equations that define the motion and impact force of the striker couple the
kinematic behavior of the mechanism to the thermodynamic properties of the air
inside the piston’s working chamber. The position, velocity, and acceleration of the
striker are all derived from the force acting on the striker at any given instant. This
force is generated by the pressure of the air column trapped inside the piston working
chamber, which is dependent on the thermodynamic conditions inside the piston.
The position of the striker at a given time step is calculated using the first three
terms of a Taylor series (7):
Xstrikery = Xstrikern_y T Ustrikern_s At + 5 Qstriker,_,At?  (2-18)
The value of striker position is limited in the model such that it can never exceed the
distance between the wobble bearing centerline and the point of impact with the anvil,
X,.
Striker velocity is calculated similarly to position, this time using only the first
two terms of the Taylor series:

vstrikern_le xstrikern = XZ

(2-19)
vstrikern_l + astrikern_lAt xstrikern < XZ

Ustriker, — {

As can be seen in Equation 2-19, a special condition exists when the striker’s position is
at the point of impact with the anvil. In this case, the velocity of the striker is calculated
using the velocity just prior to impact and the rebound coefficient of the impact. For the
purposes of the model, rebound coefficient is simply the ratio of the striker’s velocity

immediately after an impact to velocity just prior to impact:
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p = Ustrikern (2-20)

Ustrikerp—q

It is also important to note that since the velocity of the striker before impact is taken to
be in the positive direction and velocity after impact is in the negative direction, the

value of rebound coefficient will always be negative.

The acceleration of the striker is simply calculated from the force acting on the

striker and its mass:

0 Xstriker, — X, Pcyt, = Patm

Fstrikern

(2-21)

Agiri 1
strikery all other condtions

Mstriker

As with velocity, a special condition exists at the point of impact. At the moment of
impact, and while the air pressure in the piston working chamber is still above

atmospheric, the striker’s instantaneous acceleration is taken to be zero.

The force acting on the striker arises from the air pressure inside the piston
working chamber pushing the striker forward toward the anvil, atmospheric pressure
resisting the forward travel of the striker, and the drag of the striker o-ring as it moves
along the piston bore:

Astriker(pcyln - patm) - Fo—ringn Avpsn <0

(2-22)
Astriker (pcyln - patm) + Fo—ringn Avpsn

Fstrikern = {

The way striker force is calculated is dependent on the velocity of the piston relative to
the striker. If the relative velocity is less than or equal to zero, the piston and striker are

moving away from each other and the drag from the striker o-ring opposes acts in the
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assumed negative direction, which is away from the point of impact between the striker
and anvil. If relative velocity is greater than zero, the piston and striker are moving
toward each other and the o-ring drag acts in the positive direction, toward the anvil.
The relative velocity of the piston and striker is simply the difference in instantaneous

velocity of the piston and striker:

Avpsn = Upiston,, — Ustrikery, (2-23)

+—

Direction of striker travel

o | Atmospheric
| pressure

Chamber
pressure

Direction of piston
travel

S
Positive
direction

Figure 2-2: Free body diagram of forces acting on striker, Avps <0

There are two additional quantities associated with the striker’s movement
required for the model. The first is the distance between the rear faces of the piston

and the striker:

Axpsn = Xstrikerp, — Xe — Xpistony, (2-24)
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This quantity is needed in order to calculate the volume of the piston working chamber

at any given time step. Second is the position of the striker o-ring:

Xo-ringn, — Xstrikerp, — Xe + X7 (2-25)

2.3 Thermodynamic Properties Inside the Piston Working Chamber

2.3.1 Volume, Pressure, & Temperature
The instantaneous volume of the piston working chamber is given by:
Veyt, = Mxps, Astriker (2-26)
Since the compression and expansion processes inside the working chamber are
assumed to be adiabatic, pressure can be found using the following thermodynamic

relation (9):

k
Peyt, = Peyly_q (ﬁ) (2-27)
Temperature inside the working chamber is found using a form of the ideal gas law (9):

Dcyly
Ty, = 22 (2-28)

2.3.2 Density & Mass

The calculation for air density inside the working chamber at a given instant is
dependent whether mass is able to flow in and out of the chamber. If the working
chamber is sealed, the mass inside the chamber is constant, and density is simply that

mass divided by the current chamber volume, as given by the first case of Equation 2-29:
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Mcyln—1

v Amcyln =0
P = ey ey (2-29)
=1 n
Relna O A, 0
cyln

If the chamber is open to atmosphere, however, mass is able to either enter or exit the
chamber. This change in mass is taken into account in the density calculation, as can be
seen in the second case of Equation 2-29.

The change in mass when the working cylinder is open to atmosphere is
dependent on the pressure inside the working chamber relative to atmospheric
pressure. If the pressure inside the chamber is higher than atmospheric, air will flow
out of the chamber and vent to atmosphere. On the other hand, if pressure in the
chamber is below atmospheric, air will flow into the chamber while it is open.

Additionally, a third case exists for air flow while the working chamber should be
sealed to atmosphere. In certain instances, air is able to leak past the striker o-ring
during the sealed portions of its travel inside the piston bore. This is due to the amount
of compression on the o-ring in its installed condition, the pressure differential across
the o-ring, and the permeability of the particular elastomer from which the o-ring is
made. If the o-ring is not sufficiently compressed on assembly or if the working
pressure acting on it is too great, air may be able to leak past it. The calculation of the
mass change due to o-ring leakage will be expanded upon in Section 2.4.

Mass inside the working chamber at each time step is simply the product of

density and volume at that time step:

Meyt, = Pn chln (2-31)
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The value of mass calculated using Equation 2-31 is subsequently used to calculate

density inside the working chamber at the next time step, as seen in Equation 2-29.

2.3.3 Striker & Piston Groove

As previously discussed in Chapter 1 and Section 2.3.3, the longitudinal groove in
the striker and the circumferential groove in the piston bore allow air to flow in and out
of the piston working chamber during each cycle of the mechanism. This flow of air is
what controls the amount of mass and air pressure inside the working chamber,

ultimately affecting the amount of impact energy that the tool is able to deliver.

2.4 Striker O-Ring

In Section 2.2.4, reference was made to a drag force acting on the striker arising
from friction between the striker o-ring and the piston bore. Also, the possibility for air
to permeate through the o-ring, depending on the amount of compression on the o-ring
and the pressure inside the piston working chamber was mentioned in Section 2.3.2.
The o-ring drag force and air leakage through the o-ring are calculated using empirical
formulas derived from experimental data collected by the o-ring manufacturer (8).
Several parameters used in the calculation of drag force and leakage are specific to the

o-ring and are published in the manufacturer’s literature (8).
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2.4.1 O-Ring Drag
The drag force generated by the striker o-ring as it moves along the piston’s surface
is made up of two components. The first comes from the compression of the o-ring
when it has been installed on the striker and inserted into the piston. The second
component is generated by air pressure from inside the piston working chamber and
atmosphere acting on the o-ring during the piston’s stroke.
The determination of the compression component begins with a calculation of

the percentage of stretch on the o-ring’s inside diameter after is it placed on the striker
(8):

Sd — <dstriker_do—ring) % 100 (2_37)

do—ring
Next, the percent stretch on the o-ring inside diameter is used to calculate the amount
of cross section reduction. The formulation for percent cross-section reduction is

dependent on the amount of stretch on the inside diameter, as shown in Equation 2-37

(8):

0 Sq = 0
W, =1 —0.005 + 1.19s, — 0.195,2 — 0.001s, + 0.0085,* 0<s; <3  (2-38)
0.56 + 0.595, — 0.00465,° 3<s,

Then, o-ring percent compression can be calculated (8):

Wy dcyl—dstriker
w . -
O7TING 1005wy _ping 2

S =

* 100 (2-39)

. —Wr
Wo_rmg_loo*wo—ring
The percent compression of the o-ring is used to find the compression friction factor, f.,

as shown by Figure 2-4.
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Basis for Curves
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Figure 2-3: O-ring friction as a function of compression, taken from the Parker O-Ring
Handbook (8)

Finally, the compression friction factor is simply multiplied by the length of the o-ring

seal rubbing surface to arrive at a value for the compression-generated drag (8):

Fo=fl,  (240)

The pressure-generated portion of o-ring drag is given by the experimentally-
derived plot shown in Figure 2-5. Here, drag is measured in terms of force per unit of o-

ring seal projected area.
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Figure 2-4: O-ring friction as a function of pressure, taken from the Parker O-Ring
Handbook (8)

The pressure and compression components are summed to give the total o-ring

drag at each time step:

Fo—ringn = th + F; (2-42)
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2.4.2 O-Ring Leakage

There exists the possibility for air to escape from the piston working chamber by
permeating through the o-ring elastomer. The amount of air that is able to escape is
dependent on the permeability of the elastomer, the compression on the o-ring in
assembled condition, and the pressure differential across the seal. Equation 2-43 is a
modified version of an equation recommended by the Parker O-Ring Handbook (8) for
the estimation of leak rate through an o-ring seal. In order to suit the purposes of the
model, the time step and density of air at the piston vent are appended to the equation
to convert leak rate to the actual mass of air leaking past the seal at each time step.
Also, conversion factors are applied to o-ring inside diameter, pressure, and density to

ensure consistent units (8).

2 .
i] _Pexitn (2-43)

AMyeqr, = ﬁdo_l% [1 X 10_5(patm - prln)]Q [1 100 1000000

In addition to pressure and o-ring compression, two other factors are introduced. The
first is the permeability factor, B, of the o-ring elastomer. The second factor is the o-ring
squeeze factor, which is a function of o-ring percent squeeze, given by the following

equation (8):

Q = —51.2825° + 80.425* — 36.026S53 + 5.943552 — 0.3112S + 0.7512 (2-44)
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2.5 Loads Applied to Tool

2.5.1 Pneumatic & Reciprocating Mass Loads
The first two loads applied to the tool are the torque required to generate air
pressure inside the piston working chamber and accelerate the striker into the anvil and

the torque required to drive the reciprocating mass of the piston assembly.

The torque supplied to these two loads is transferred to from the motor to the
mechanism via the wobble bearing. The wobble bearing converts the rotational motion
of the intermediate shaft into reciprocating motion, much like a crankshaft and
connecting rod. The path through which the torque is transferred is complex due to the
nature of the wobble bearing’s motion. As such, a detailed analysis of the wobble
bearing mechanics is required to develop an equation to calculate the torque supplied

by the motor to the pneumatic and reciprocating mass loads.

The forces acting on the striker and the wobble bearing in the X-Z plane (vertical
through centerline of tool) and the X-Y plane (horizontal through spindle axis) are shown

in Figures 2-6 and 2-7, respectively.
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Figure 2-5: Striker and wobble bearing forces, X-Z plane

Figure 2-6: Wobble bearing forces (left) and striker forces (right), X-Y plane

In order to calculate the torque transmitted through the wobble bearing, the

angle between the force applied to the striker to generate impact energy and the force
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applied to the piston by the wobble bearing stem must be determined at each time step
in terms of the angular position of the intermediate shaft driving the wobble bearing.
The force acting on the striker is a component of the normal force, Fy, acting in the X-Y
plane at the centerline of the wrist pin. Fyis in turn a component of the force acting
perpendicular to the wobble stem through the wrist pin centerline, F,,x. The moment
arm, Ly, on which Fypy acts, is a function of the mechanism center distance and the
angular position of the intermediate shaft. The torque acting about the wobble bearing
axis normal to the X-Z plane is the same at all points along the wobble stem. The
moment arm ry corresponding to Fris dependent on the intermediate shaft angular
position and can be found using the radius of the wobble bearing. Finally, the torque
about the intermediate shaft axis to drive the pneumatic load is given by the product of

Frand ry.

The calculation of the torque to drive the piston assembly reciprocating mass is
nearly identical to pneumatic torque, by simply replacing the striker force with the mass

and acceleration of the piston assembly.

2.5.2 Drill Bit Drag

The final source of load comes from the drag on the drill bit as it progresses
deeper into the concrete. This loading is dependent on many factors, including the size
and condition of the bit, as well as the amount of force the operator applies to the tool

and material properties of the work piece. Adding in the drag produced by the drill bit
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provides a convenient means by which to apply load to the tool and examine the
performance at various load points. At present, a reliable means of estimating or
measuring drill bit drag for use in the model has not been found. However, the
procedure for measuring the tool’s impact energy calls for operating the tool in
hammer-only mode and does not involve drilling a hole in concrete, thus the drill bit

drag load will not be considered.

2.6 Model Outputs

The primary output of the mathematical model is the tool’s impact energy. The
impact energy is calculated by first performing a search of the model’s calculated data
for the time steps at which impacts occur. After an impact is found, the striker’s velocity
at that time step is multiplied by the rebound coefficient to give the velocity of the
striker just prior to impact. This velocity, together with the striker’s mass and rebound
coefficient, is used to calculate the amount of the striker’s kinetic energy that is

transferred to the anvil. The impact energy is given by Equation 2-47:
1
Es = Emstrikervstrikern_lz(l - 32) (2-59)

The impact energy of the tool is taken as the average of the energy of the last ten

impacts calculated in the model, after steady state has been reached.

In addition to the tool’s impact energy, several other parameters are used to

gauge the tool’s performance. These parameters are shown in Table 2-3. Like impact
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energy, velocity, pressure, and temperature are calculated as the average of these
values at the last ten calculated impacts. Impacts per minute, spindle speed, and
current draw are a total average of these values at every time step during the period of

time in which the last ten impacts occur.

Output Symbol Value Unit
Steady state impact energy E, 234 | )
Steady state current draw Imotor 578 | A
Steady state impacts per minute (IPM) Ni 4372 | min-1
Steady state spindle speed (RPM) Nspindle 1166 | min-1
Steady state maximum pressure Peyi 25.94 | Bar
Steady state maximum temperature Teyl 740 | K
Steady state striker impact velocity Vetriker 9.26 | m/s

Table 2-1: Mathematical model outputs, 5262-20 rotary hammer
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3 Impact Energy Testing

The previous chapters described the formulation of a mathematical model to
describe rotary hammer performance, using an existing tool to demonstrate the
operation of the model. In order to validate the model’s accuracy, samples of the
modeled tool were tested following the European Power Tool Association (EPTA) test
procedure 05/2009 — Measurement of single impact energy of rotary hammers and
breakers (10). The two primary performance metrics recorded by this test are the
average energy delivered to the test rod with each impact and the frequency at which

impacts occur.

3.1 Test Fixture

Impact energy was measured using a test fixture developed in parallel to the
mathematical model by the Milwaukee Electric Tool test lab (11). The fixture was
designed according to the specifications prescribed by EPTA 05/2009 (10). A schematic

of the fixture can be seen in Figure 4-1.

Amplifier Numerical transient recorder

Test rod

Concrete

Figure 3-1: Impact energy test fixture schematic, from EPTA 05/2009 (10)



34

The test fixture consists of four primary elements: the test rod, the strain gauge
amplifier, the data acquisition system (DAQ), and the test concrete. Additionally, a
holding fixture for the test rod, a verification device, and a frame on which to mount
them and position them over the concrete block were constructed.

The test rod is a bar of AlISI 8630 steel 10mm in diameter, with features
machined into the connection end of the rod that allow it to be installed into rotary
hammers equipped with a SDS-Plus type bit retention device. The opposite end of the
rod is domed with radius of 100mm to provide a consistent contact point with the
concrete block.

Four strain gauges in a Wheatstone full-bridge configuration were affixed to the
surface of the rod at a distance of 150mm from the connection end. This position
allows the strain gauges to accurately measure the first compression stress wave from
each impact of the tool without interference from tension stress waves generated by
the previous impact that are reflected from the contact end of the test rod. The strain
gauges were applied to the rod in pairs. Each strain gauge in the pair were oriented 90°
relative to each other, while the pairs were located 180° apart on the surface of the test
rod in order to minimize the effects of temperature, bending, or torsion of the test rod
(10). The gauge output leads were soldered to a connection header for connection to
the strain gauge amplifier.

The strain gauge amplifier was used to supply excitation voltage to the strain

gauge bridge circuit as well as filter signal noise and condition the output signal from the
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circuit. The amplifier was also used to zero out the signal generated by the application
of a weighted fixture to the tool handle before the start of the test.

The DAQ system consisted of two analog input modules mounted to an 1/O
chassis. The first input module has the ability to capture data at a 1MHz sampling rate
and was utilized to acquire the strain gauge output signal via the strain gauge amplifier.
The second module samples at 250kHz and was used to capture the output signal from
the verification device. The DAQ system was linked to a Hewlett-Packard 8540w laptop
running LabView.

The verification device consisted of a barrel positioned below a pneumatic
cylinder used to fire a metal slug at the end of a test rod.

Two lengthwise slots were cut into the barrel 180° apart from each other just above the
test rod, through which a laser curtain was passed. The curtain was used to measure
the displacement of the metal slug before and after impacting the test rod. The
displacement measurements were in turn used to calculate the slug’s velocity prior to
and after impact. The slug velocities were then used to calculate the quantity of the

slug’s kinetic energy that was transferred into the test rod using Equation 2-59:

1
Es = Emstrikervstrikern_lz(l - eZ) (2-59)

A LabView program was developed to receive data from both the test rod strain
gauges and the verification device and use it to calculate impact energy and frequency
and, in the case of the verification device, the verification slug’s transferred kinetic

energy. The program contains an algorithm to search the strain gauge data for the first
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compression stress wave of an impact and the subsequent reflected tension wave, as
shown in Figure 4-4. Once this segment of data was located, the energy for the impact
was calculated by evaluating Equation 4-1 over the time period between the first

compression wave and the first tension wave (10).

T
E; = ACE [ €%dt (4-1)
o 1% reflected wave
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Figure 3-2: First compression wave segment used for energy calculation (10)

This search and calculation is repeated for every impact captured during the test run.
The reported impact energy value for the test run is calculated as the average of the
values for each individual impact. The impact frequency is simply calculated as the

number of impacts captured divided by the capture time.

3.2 Test Rod Verification Procedure & Results

Prior to taking the impact energy measurements, the ability of the test rods to
accurately record impact energy was verified. The test rod was inserted into the rod
holder and the verification device was aligned directly over the rod to ensure that the

verification slug would impact the rod straight and on center. The slug was then loaded
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into the barrel of the verification device and launched toward the test rod by the
pneumatic cylinder. The DAQ system simultaneously recorded the displacement signal
from the laser curtain and the strain signal from the test rod. Each of these signals was
used to calculate a value for energy. The kinetic energy lost to the test rod by the slug
was calculated from the displacement data using Equation 2-59 while strain energy in
the test rod was calculated from the strain gauge data using Equation 4-1. The two
values were then compared to determine if the values for kinetic and strain energy were
in agreement. The verification process was repeated five times for each rod used and
the percent difference between kinetic and strain energy was computed as the average
of the difference for each run. Per EPTA 05/2009, the allowable difference between
measured kinetic and strain energy is 5% (10). A negative value indicates that the
measured strain energy was less than the kinetic energy reported by the verification
device. The results of verification testing for the test rods used in this investigation are

listed in Table 4-1. Detailed results can be found in Appendix B.

Test Rod ID % Difference of Energy Measurements
HK52 -3.04%
HK55 0.3%

Table 3-1: Test rod verification results

3.3 Impact Energy Test Procedure & Results

A sample of seven Milwaukee Electric Tool model 5262-20 rotary hammers was

used to conduct impact energy testing. The sample was comprised of four new tools
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drawn from factory stock and three tools returned under warranty, but classified as
having no defect. This was done to minimize the number of tools used for testing that
were built during the same production run and mitigate the effect of manufacturing
variance on the test data.

Prior to starting each test run, the tools were warmed up by drilling ten 6” deep
holes in 5000psi compressive strength concrete using a %2” carbide masonry drill bit.
The warm up procedure is necessary to distribute and heat the lubricating grease inside
the gears, bearings, and piston, reducing viscous friction from the grease and resulting
in a consistent impact energy measurement. If the tool is not warmed up properly, this
will manifest as increasing impact energy during the test run as the tool continues to
warm up.

After the warm up was completed, the tool’s hammer-only mode was engaged
and the tool was connected to the test rod and a 120N weight was placed over the tool
handle. The weight replaces the force applied to the tool by a user and aids in keeping
the anvil, test rod, and concrete in contact during the test run, minimizing the possibility
for any rebound impacts that would affect the data measurement. Additionally, a
grounding lead was connected to the test rod to help reduce electrical interference and
noise that would affect the strain data transmitted to the amplifier. Just prior to
starting the test run, the strain gauge amplifier was balanced to zero out the voltage
signal produced by the strain gauges when the weight fixture was applied to the tool

handle.
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The next step in the test procedure was to take the actual impact energy
measurement. The tool was activated and allowed to come to full operating speed,
after which the data collection program was started. The program collected voltage
data from the strain gauges for a period of three seconds and performed the
calculations, as detailed in the previous section, to produce the measurements for
average impact energy and impact frequency during the test run.

A report for each test run was automatically generated for each test run,
detailing not only average impact energy and frequency, but also the energy and time
for each impact and the strain signature of each impact. The additional information for
each impact was used to determine if there were any irregularities in the test data that

would warrant repeating the test run. A typical test run report can be seen in Figure 4-

A successful test run is indicated by consistent energy and duration for each
impact and similarly shaped strain signatures. An impact energy plot that shows
increasing energy during the test run indicates an improperly warmed up tool. A
discontinuity in the time step plot or abnormally shaped strain signatures are symptoms
of either insufficient force applied to the tool to prevent rebound impacts or an error in

the data collection. Figure 4-7 shows an example of a test run report with errors.
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Figure 3-3: Typical test run report with no errors
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Figure 3-4: Test report containing errors in impact energy, time step, and strain

signature data
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The test procedure was repeated three times for each tool, as specified by ETPA
05/2009. At the completion of three test runs, the current draw of the tool in hammer-
only mode while breaking concrete was measured with a multimeter applied to the
tool’s power cord. The impact energy and frequency for the tool was calculated as the
average of the measured values from every test run for all seven samples. The averaged
test results are listed in Table 4-2. Detailed results for each tool and test run can be

found in Appendix C

Measurement Value

Tool Milwaukee 5262-20
Voltage [V] 120
Current, hammer only [A] 4.6
Feed Force [N] 120
Impact Frequency [Hz] 76.8
Impact Frequency [min™] 4608
Impact Energy [J] 2.15

Table 3-2: Average impact energy test results



4 Results, Discussion, Conclusions, and Future Recommendations

The performance data gathered during impact energy testing was compared to

the corresponding outputs calculated by the mathematical model. The results can be

seen side by side in Table 5-1.
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Performance Parameter Model Result Test Result %A

Impact energy [J] 2.34 2.15 8.84
Impact frequency [min™] 4372 4608 -5.12
Chisel-mode current draw [A] 5.78 4.60 25.65

Table 4-1: Comparison of model predicted performance to measured performance

The model results exhibited good agreement with the test data. Impact energy

and impact frequency outputs from the model were within 10% of their measured

values, while the chisel-mode current draw of the tool was about 1.0A lower than

predicted. While the performance estimation generated by the mathematical model

does not precisely match the measured performance of the tool, the level of accuracy

obtained is more than adequate for development of new rotary hammers.

The validation of the model provides the rotary hammer designer with a powerful

tool for synthesizing new designs that are able to approach the target performance on

the first prototype iteration. The end result is the ability to compress new product

development timelines and deliver a product that exceeds the expectations of the user.

Not only is the model being actively employed in the creation of new rotary hammer
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designs, but existing models of rotary hammers are being analyzed with the model to

better understand their performance and further validate the capabilities of the model.

4.1 Potential Sources of Error

There are several possible sources of error that the difference between the model
result and test data can be attributed to. These errors may lie in both the assumptions

and formulation of the model as well as the test procedure used to validate it.

The mathematical model assumes that the portion of the striker’s kinetic energy
that is transferred into the anvil and bit is the tool’s impact energy. In reality, a small
portion of the transferred energy is lost to sound and internal heating of the anvil and
bit due to elastic deformation of the anvil and bit as the impact stress wave travels
along these components. Additionally, energy may be lost to sliding friction at the

points of contact between the striker, anvil, bit, and concrete.

A number of assumptions were made to simplify the formulation of the model.
The thermodynamic conditions inside the piston working chamber assume that the air
column trapped inside the chamber behaves as an ideal gas. Due to the temperatures
and pressures attained inside the chamber, the air column’s behavior may depart

significantly from the ideal model (9).

Further sources of error include manufacturing variances present in the tested

tools and measurement error present in the test rods or DAQ equipment.
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4.2 Other Applications

In addition to its primary function of performance prediction, secondary outputs
calculated by the model can be used to aid in component design. The calculated
pressure of the air in the piston working chamber can be used to assess the ability of the
striker o-ring to effectively seal the working chamber without causing wear on the inside
of the piston due to excessive compression. The force acting on the striker is used as a
bearing reaction load for the purposes of determining bearing life. The torque and
speeds calculated at the spindle, motor and intermediate shafts find use as inputs in

design of gearing capable of transmitting power through the mechanism.

4.3 Improvements and Future Work

Although the mathematical model described in this study has been shown to
provide a reasonably accurate prediction of rotary hammer performance, there are still
opportunities to improve the function of the model and expand its capabilities.
Additionally, the model has opened up the possibility to research ways to manipulate

various aspects of rotary hammer designs to improve performance.

The model is currently based on a backward-difference numerical integration
scheme, utilizing the Euler method and the Taylor series to compute component
velocity and position at each time step. While this formulation was relatively easy to
implement and attained reasonable results, it is not as accurate as other well-known

numerical integration techniques. Furthermore, a small time step is required in order to
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achieve the desired accuracy. For a model that requires a significant amount of time to
reach steady state, a small time step can prove to be costly from a computational
perspective. Investigation is ongoing into adapting the model to use the fourth-order
Runge-Kutta integration scheme in an effort to improve the model’s accuracy and

reduce the computational expense (7).

The model’s accuracy can be improved further with a more accurate treatment of
the thermodynamics of the piston working chamber. Rather than using the ideal gas
model, other equations of state, such as the Van der Waals or Redlich-Kwong equations,

might be employed (12).

The functionality of the impact energy test fixture is currently in the process of
being expanded to include the ability to record the pre- and post-impact velocities of
the striker inside a rotary hammer to calculate striker kinetic energy alongside the
impact energy measurement from the test rod, similar to the process used to validate
the test fixture. This additional function will enable the measurement of the portion of
striker kinetic energy that is not converted to impact energy and allow further
improvement to the model by accounting for lost energy. This additional test procedure
necessitates modification of the test tool by cutting a passage through the tool housing,

spindle, and piston to allow the laser curtain to track striker displacement.

Recently, the model has been modified to include an optimization function. The
optimization version of the model functions by allowing the input parameters to be set

as optimization variables, each constrained to a particular range of values specified by
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the designer. The optimization algorithm then repeatedly runs iterations of the model
using random combinations of the input variables, staying within the specified range for
each variable. The performance predictions are then plotted, allowing the designer to
review the results for any combinations that may meet the desired performance targets.
This method is effective at providing a number of candidate designs without the need
for trial and error, but the computational effort required by the integration technique is
magnified when the model is recalculated thousands of times for different input
combinations. Itis hoped that this issue will be mitigated by implementing a more

efficient integration scheme as mentioned earlier.

In addition to developing the optimization version of the model, preliminary work
is being carried out on integrating the optimization version with parallel work being
done to correlate drill rate for a given bit size to performance characteristics such as
impact energy, impacts per minute, and spindle revolutions per minute. The ultimate
goal of this effort would be to optimize a rotary hammer design to perform well in key

applications that represent the majority of the tool’s use.
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Appendix A: Test Rod Verification Results

The following data are detailed test reports generated during verification trial of

the impact energy test rods. The data given are for both rods used during impact

energy testing. The rod identification number is noted in the upper left corner of the

report. The summarized test rod verification results were previously presented in

Section 4.2.
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Test Cycle 1

[Test Rod#: HK Rod 52
Amplifier: TML DC-874A

‘{ _EZ T 5 As=T78.54u
E =2 [2(t)dr  |ezsm
= [ : E=204.96G

Today's date: 9/4/2012 3:52:13 PM

Test Start Time: 9/4/2012 2:48:43 PM

Impact Sampling Rate: 1000000 5/s|

Displacement Sampling Rate: 250000 5/s

Strain-Based Impact Energy: 2.357 J
Velocity-Based Impact Energy: 2.454 ]

Percent Error: -3.9%

Y | )
ES = 5 mmfomara‘ I - (vr'emrn /1"‘fo;'wam‘ )2

Where:

As = cross-sectional area of the test rod (m)

¢ =speed of sound in steel (m/s)
E = Young's Modulus (Pa)

| = density of steel * ¢ = {7850 kg/m"3) * ¢

Vforward =8.380 m/fs
Vreturn=-1.297 m/s
m=0.0716 kg
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[Test Rod#: HK Rod 52
|Amplifier: TML DC-97A

A E' L
E, :STIS'(I](%
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Test Cycle 2

Today's date: 9/4/2012 3:57:17 PM

Test Start Time: 9/4/2012 3:56:44 PM

Impact Sampling Rate: 1000000 5/s

Displacement Sampling Rate: 250000 5/s

Strain-Based Impact Energy: 2.333 )

Velocity-Based Impact Energy: 2.426 J
Percent Error: -3.9%

As=78.54u
c=5.1k
E=204.96G

... &
ES = ;I’iﬂ-‘ e [l I (“L‘ygﬁyr}? /vfonvai'd )Z:I

Where:

c =speed of sound in steel {m/s)
E=Young's Modulus (Pa)

As = cross-sectional area of the test rod (m)

| = density of steel * ¢ = (7850 kg/m~"3) * ¢

Viorward = 8.330 m/s
Vreturn =-1.271 m/s
m=0.0716 kg

31526

[Test Rod#: HK Rod 52
[Amplifier: TML DC-37A

g
E, :7J53(f]dr
(1]

Test Cyde 3

Today's date: 9/4/2012 4:29:24 PM

Test Start Time: 9/4/2012 4:28:47 PM

Impact Sampling Rate: 1000000 5/s|

Displacement Sampling Rate: 250000 S/s

Strain-Based Impact Energy: 2.419 )
Velocity-Based Impact Energy: 2.490 J
Percent Error: -2.9%

As =78.54u
c=5.1k
E=204.96G

1
ES - E MY fomvard [1 B (vi'em?"” /vﬁ’”"“"‘j )Z]

Where:

As = cross-sectional area of the test rod [m)
¢ =speed of sound in steel (m/s)

E = Young's Modulus {Pa)

I = density of steel * ¢ = {7850 kg/mn3) * ¢

'Vforward = 8.429 m/s
Vreturn =-1.230 m/s
m=0.0716kg
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Test Cycle &

Test Rod#: HK Rod 52
|Amplifier: TML DC-97A

Today's date: 9/4/2012 4:33:41 PM

Test Start Time: 9/4/2012 4:33:13 PM

Impact Sampling Rate: 1000000 S/s

Displacement Sampling Rate: 250000 5/s

E

S

Strain-Based Impact Energy: 2.465 J
Velocity-Based Impact Energy: 2.516 J
Percent Error: -2.0%

4 2T

0

L .3

= 5 Iﬂ“}onmm‘

-E ’
s | 2 c=5.1k
-2 [ dr 52

As =78.54u

E=204.96G

[1 L (1‘;-emrn /vfom'm'd F]

Where:

As = cross-sectional area of the test rod (m)
c = speed of sound in steel {m/s)

E = Young's Modulus (Pa)

I = density of steel * ¢ = (7850 kg/m~"3) * ¢

Viorward = 8.472 m/s
Vreturn=-1.223 m/s
m=0.0716kg

31526

Test Cycle 5

[Amplifier: TML DC-97A

Today's date: 9/4/2012 4:35:30 PM

Test Start Time: 9/4/2012 4:35:02 PM

Test Rod#: HK Rod 52 ‘

Impact Sampling Rate: 1000000 S/s|

E

=

S

S

3 As = 78.54u Where:

4 E

s =

Displacement Sampling Rate: 250000 5/s|

Strain-Based Impact Energy: 2.411)
Velocity-Based Impact Energy: 2.474 )
Percent Error: -2.5%

As = cross-sectional area of the test rod (m)
c=speed of sound in steel (m/s)

E = Young's Modulus (Pa)

| = density of steel * ¢ = (7850 kg/ma3} * ¢

J-gf[r]n’f =51k

E=204.96G

0

2

1
- ?”ﬂ' forward

[l - (‘l‘,.emm / Y torward )Z:I

Viorward =8.411 m/s
Vreturn =-1.282 m/s
m = 0.0716 kg
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Komas

Test Cycle 1

[Test Rod#: HK Rod 55
[Amplifier: TML DC-974

E. =

5

i

1
Ee = Emw

A -E?

Today's date: 9/28/2012 2:05:01 PM

Test Start Time: 9/28/2012 2:04:41 PM

Impact Sampling Rate: 1000000 §/s

Displacement Sampling Rate: 250000 S/s|

Strain-Based Impact Energy: 2.355 )
Velocity-Based Impact Energy: 2.377 )

Percent Error: -0.9%

T As =78.54u
jg'[r)dr ok

E=204.96G
(]

Where:

¢ =speed of sound in steel {m/s)
E = Young's Modulus (Pa)

As = cross-sectional area of the test rod (m}

I = density of steel * ¢ = (7850 kg/m"3) *¢

Jz’onl-‘ard [l a (1‘1'(’mm /vfom‘m'd )2]

Viorward = 8.249 m/s
Vreturn =-1.282 m/s
m=0.0716kg
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Test Cycle 2

[Test Rod#: HK Rod 55

|Amplifier: TML DC-97A

|
FE. =—mvy
2

T
: ‘[6‘2(.’]({!‘ c=5.1k
0

Today's date: 9/28/2012 2:05:49 PM

Test Start Time: 9/28/2012 2:05:35 PM

Impact Sampling Rate: 1000000 5/s

Displacement Sampling Rate: 250000 /s

Strain-Based Impact Energy: 2.356 J
Velocity-Based Impact Energy: 2.345 )

Percent Error: 0.5%

As =78.54u

E=204.96G

2

'Where:

As = cross-sectional area of the test rod (m)

¢ =speed of sound in steel (m/s)
E = Young's Modulus (Pa)
1= density of steel * ¢ = (7850 kg/m"3) * ¢

forward [l i (vr'emrn /vfonvard )Z:I

'Vforward =8.193 m/s
Vreturn =-1.280 m/s
m=0.0716 kg
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Test Cycle 3

Test Rod#: HK Rod 55
[Amplifier: TML DC-97A

A E*G
ESZSTIE‘U]

0

1 2
ES = E]’}’n’fomard

Today's date: 9/28/2012 2:06:30 PM

Test Start Time: 9/28/2012 2:06:16 PM

Impact Sampling Rate: 1000000 S//s|

Displacement Sampling Rate: 250000 5/s|

Strain-Based Impact Energy: 2.340)
Velocity-Based Impact Energy: 2.335 )
Percent Error: 0.2%

As=78.54u

(]f c=5.1k
E=204.96G

[1 . (vi'emm /vfomm'a‘ )2]

Where:

As = cross-sectional area of the test rod (m)
¢ =speed of sound in steel (m/s)

E = Young's Madulus (Pa)

I = density of steel * ¢ = {7850 kg/m~3) * ¢

Viorward =8.183 m/s
Vreturn =-1.317 m/s
m=0.0716 kg

Komas

Test Cyde 4

Test Rod#: HK Rod 55
[Amplifier: TML DC-97A

| -
= —mv
s orward
9 e

I

S T As=78.54u
E,=% Jlé‘:(.f](fr c= 5.k
L E=204.96G
I 0

Today's date: 9/28/2012 2:07:17 PM

Test Start Time: 9/28/2012 2:06:55 PM

Impact Sampling Rate: 1000000 5/s

Displacement Sampling Rate: 250000 S/s|

Strain-Based Impact Energy: 2.315 )

Velocity-Based Impact Energy: 2.314 )
Percent Error: 0.0%

‘Where:

As = cross-sectional area of the test rod (m)
= speed of sound in steel (m/s)
E=Young's Modulus (Pa)

1= density of steel * ¢ =(7850 kg/m"3) * ¢

[1 — (1‘!_?,.”;.” /vfa;war'd y]

Vforward =8.123 m/s
Vreturn=-1.153 m/s
m=0.0716 kg
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Test Cycle 5
Komas Today's date: 9/28/2012 2:08:14 PM

Test Start Time: 9/28/2012 2:08:02 PM

Test Rodi: HK Rod 55
[Amplifier: TML DC-27A Impact Sampling Rate: 1000000 5/s
Displacement Sampling Rate: 250000 §/s

Strain-Based Impact Energy: 2.398 )
Velocity-Based Impact Energy: 2.358 )
Percent Error: 1.7%

A v 2T . As=T78.54u Where:
Eg _ 8 ‘[ ra [r] dr =51k As = cross-sectional area of the test rod (m)
< E=204.966 c=speed of sound in steel (m/s)
0

E=Young's Modulus (Pa)
I = density of steel * ¢ = (7850 kg/m"3) * ¢

5 Vforward = 8.206 m/fs

Y o | ]
sy y 2 _ v , Vreturn=-1.217 m/s
ES - 9 m Jorward 1 (1 return /1' Sforward )Z m=0.0716 kg
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Appendix B: Impact Energy Test Results

The data presented in this appendix are the summarized testing results for each
test subject. Following the summarized results are detailed test reports for every test
trial conducted for each tool, including plots of the test rod strain signature, impact
energy for each impact during the trial, and the impact duration for each impact. The

averaged result for all tools and all test trials was previously given in Section 4.3.
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Didier

Test Rod#: HK Rod 52
Amplifier: TML DC-97A

Test Cycle 1

Today's date: 9/5/2012 4:36:59 PM

| Impact Frequency:

0.0 Hz [

Test Start Time: 2/5/2012 4:36:12 PM

Impact Sampling Rate: 1000000 5/s

Milwaukee 5262-20 C88AD11401635 Single Impact Energy: 1.969 )

Test Rod#: HK Rod 52
Amplifier: TML DC-97A

4 'E: T As =7.854E-5 Where:
£ 2
E. =5 = g~[f)(]'r c=5152.07 s = cross-sectional area of the test rod (m)
s E=2.084E+11 = i
B c=speed of sound in steel (m/s)
o E=Young's Modulus [Pa)
I = density of steel * c = (7850 kg/mA3) * ¢
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Today's date: 9/5/2012 4:37:50 PM

Impact Frequency: 0.0 Hz

\ Test Start Time: 9/5/2012 4:37:31 PM

\ Impact Sampling Rate: 1000000 S/s

Milwaukee 5262-20 C88AD11401635 Single Impact Energy: 1.966 J

A ‘El T As = 7.854E-5 Where:
£ 2
B 5 S‘(I)(ﬁ c=5154.15 s = cross-sectional area of the test rod (m}
B E=2.085E+11 i
& ¢ =speed of sound in steel (m/s)
¢ E=Young's Modulus {Pa)
| = density of steel * c= (7850 kg/m"3) * ¢
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Test Rod#: HK Rod 52
Amplifier: TML DC-97A

Test Cycle 3

Today's date: 9/5/2012 4:38:29 PM

Impact Frequency: 0.0 Hz |

Test Start Time: 9/5/2012 4:38:16 PM

Impact Sampling Rate: 1000000 5/s

Milwaukee 5262-20 C88AD11401635 Single Impact Energy: 1.942 )

Test Rod#: HK Rod 52

4 'E: T As=7.854E-5 Where:
£ 2
E, :57}£~(1)({f c=471375 As = cross-sectional area of the test rod (m)
I E=1.744E+11 c=speed of sound in steel {m/s)
0 E = Young’s Modulus (Pa)
I = density of steel * ¢ = (7850 kg/m"3) * ¢
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Amplifier: TML DC-97A
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Impact Sampling Rate: 1000000 §/s|
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I =density of steel * ¢ = (7850 kg/m"3) * ¢
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Didier

Test Cycle 2

Today's date: 9/21/2012 12:38:01 PM

Test Rod#: HK Rod 52
Amplifier: TML DC-97A

| Impact Frequency:

0.0 Hz

Test Start Time: 9/21/2012 12:37:40 PM

Milwaukee 5262-20 C88AD11401651 Single Impact Energy: 2.115)

Impact Sampling Rate: 1000000 55|
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4 'E: T As =7.854E5 Where:
£ 2
E = S—I g’ (!}(,’f c=5144.21 A5 = cross-sectional area of the test rod (m)
I E=2.077E+11 ¢ =speed of sound in steel (m/s)
0 E=Young's Modulus {Pa)
I = density of steel * c= (7850 kg/m"3) * ¢
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Test Rod#: HK Rod 52
Amplifier: TML DC-97A

| Impact Frequency:

0.0 Hz

Test Start Time: 9/21/2012 12:41:54 PM

2 T As =7.854E5
Es = AS E J‘EE (f}(ff c=5130.70
I E=2.066E+11

Milwaukee 5262-20 C88AD11401651 Single Impact Energy: 2.119 )

Impact Sampling Rate: 1000000 5/s|

0

‘Where:

As = cross-sectional area of the test rod (m)

¢ = speed of sound in steel {m/s)

E = Young's Modulus {Pa)
I = density of steel * c= (7850 kg/m"3) *c
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— Test Cycle 1
Didier Today's date: 9/21/2012 12:52:51 PM

Test Rod#: HK Rod 52 | Impact Frequency: 0.0 Hz | Test Start Time: 9/21/2012 12:52:26 PM
Amplifier: TML DC-97A [ Impact ing Rate: 1000000 5/5,

Milwaukee 5262-20 C88AD11401653 Single Impact Energy: 2.282 )

4 = EI T As=7.8B54E-5 ‘Where:

£

E =5 ‘[Ez(f](ff c=5138.88 As = cross-sectional area of the test rod (m)
E=2.073E+11 = speed of sound in steel (m/s)

@ E=Young's Modulus [Pa)

I = density of steel * ¢ = (7850 kg/m"3) * ¢

3.00 13400
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e Fun Test Cycle 2
Didier Today's date: 9/21/2012 12:57:12 PM

Test Rod#: HK Rod 52 | Impact Frequency: 0.0 Hz | Test Start Time: 8/21/2012 12:57:01 PM
Amplifier: TML DC-97A [ Impact Sampling Rate: 1000000 5/5

Milwaukee 5262-20 C88AD11401653 Single Impact Energy: 2.239)

4 ‘E: T As=7.854E5 ‘Where:
£ 3
E. =35 = E-(f)(]f c=5138.82 As = cross-sectional area of the test rod {m)
o E=2.073E+11 = ;
I ! ¢ =speed of sound in steel (m/s)
o E =Young's Modulus {Pa)
1 = density of steel * c= (7850 kg/m"3) * ¢
240 15000
230 I
10000
220 —Comp. Sample #
e |1 paCt ENErgy (1) ey e
210
200 o]
Ho oW~ LY Mo O Mm@ o MmO
SRR R N e I - oo W oM@ o
IR R R R e
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0.00025 . i ‘:, — e :
o002  ———— — —
w 0 /4 100 150 200 250 300
0.00015 . i \_]j
i Time Delta (s)
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o
Ho@@WM~WN T MmN O
AMIe~S oM~ oo
e
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Didier

Test Cycle 3
Today's date: 9/21/2012 12:55:18 PM

Test Rod#: HK Rod 52
[Amplifier: TML DC-97A

[ impact Frequency: 0.0 1z ‘ Test Start Time: 9/21/2012 12:55:06 PM
\ Impact Sampling Rate: 1000000 /s

4 E2 T As=7.854E-5 Where:
Ag - 5 i
n :—J-g'(f](]f ©=5145.99 As = cross-sectional area of the test rod (m)
; I E=2.079E+11 ¢ = speed of sound in steel {(m/s)
0

Milwaukee 5262-20 C88AD11401653 Single Impact Energy: 2.256 J

E = Young's Modulus (Pa)
I = density of steel * ¢ = (7850 kg/m~3) * ¢

250 15000
240
10000
2.30 -
=——Comp.5ample #
320 Impact Energy (1} 5000 Diff
2.10
2.00 o
4O DML MN O S @ oo Mmoo
L T T = L T = ~N oo ® A4 MW~ G0N
4548528 Jo24532 R
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0.00025 o L G e
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0.00015 . " N A
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SRBARESSERE 2
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e Test Cycle 1
Didier Today's date: 9/24/2012 2:20:30 PM

Test Rod#: HK Rod 52
Amplifier: TML DC-97A

[ impact Frequency: 0.0 Hz [ Test Start Time: 9/24/2012 2:20:16 PM
[ Impact Sampling Rate: 1000000 5/5

Milwaukee 5262-20 C88AD11170744 Single Impact Energy: 2.171)

4 'E: T As =T7.B54E-5 Where:
g 3 K .
E.=—=__"_|e°lt)dt €=5148.70 As = cross-sectional area of the test rod (m)
S
I E=2.081E+11 c=speed of sound in steel (m/s)
o E =Young's Modulus {Pa)
I = density of steel * ¢ = (7850 kg/m"3) * ¢
2.40 15000
230 [
220 10000
2.10 —Comp. Sample #
200 = |mpact Energy (1) 5000 Diff
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180 o
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Didier

Test Rod#: HK Rod 52
Amplifier: TML DC-97A

Milwaukee 5262-20 C88AD11170744 Single Impact Energy: 2.177 )

Test Cycle 2

Today's date: 9/24/2012 2:23:37 PM

| Impact Frequency:

0.0 Hz [

Test Start Time: 9/24/2012 2:22:57 PM

Impact Sampling Rate: 1000000 5/s

[Amplifier: TML DC-97A

Milwaukee 5262-20 C88AD11170744 Single Impact Energy: 2.251)

4 _E: T As =7.854E-5 ‘Where:
Ag 2 .
ES =2 1g° (f}(ff c=5142.35 As = cross-sectional area of the test rod {m)
I E=2.076E+11 = speed of sound in steel (m/s)
o E=Young's Modulus {Pa)
1 = density of steel * ¢ = (7850 kg/m"3) * ¢
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220 10000
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— | t El g
210 e 5000 Diff
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. g Test Cyce 3
Didier Today's date: 9/24/2012 2:25:51 PM
Test Rod#: HK Rod 52 | Impact Frequency: 0.0 Hz ‘ Test Start Time: 8/24/2012 2:25:26 PM

Impact Sampling Rate: 1000000 5/s

4 'E2 T As = 7.B54E-5 ‘Where:
< 2
Eg _ 5 ‘[S_ (f) dt c=5172.85 As = cross-sectional area of the test rod (m)
- I E=2.101E+11 ¢ =speed of sound in steel (m/s)
o E=Young's Modulus (Pa)
1 = density of steel * ¢ = (7850 kg/m#3) * ¢
3.00 15000
200 1000C
150 =—Comp. Sample #
s e I pact Energy (1) 5000 Diff
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Didier

Test Cycle 1

Test Rod#: HK Rod 52
[Amplifier: TML DC-97A

Today's date: 9/24/2012 2:38:46 PM

‘ Impact Frequency: 0.0 Hz

Test Start Time: 9/24/2012 2:38:27 PM

Impact Sampling Rate: 1000000 5/s

Milwaukee 5262-20 C88AD11170712 Single Impact Energy: 2.103 J

4 . E? T As = 7.854E-5 Where:
Ag 5 .
E : g‘(f)d{ ©=5124.36 As = cross-sectional area of the test rod (m)
5 E=2.061E+11 £ i
I o ¢ = speed of sound in steel (m/s)
0 E=Young's Modulus (Pa)
| = density of steel * ¢ = (7850 kg/m"3) * ¢
230 15000
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. g Test Cycle 2
Dldler Today's date: 9/24/2012 2:40:24 PM

Test Rod#: HK Rod 52 ‘ Impact Frequency: 0.0 Hz ‘
[Amplifier: TML DC-974 ‘

Test Start Time: 9/24/2012 2:40:13 PM
Impact Sampling Rate: 1000000 §/s

Milwaukee 5262-20 C88AD11170712 Single Impact Energy: 2.141)

4 'E: T As=7.854E-5 Where:
£ 3
E = 57‘[5—(1‘]({; c=514557 As = cross-sectional area of the test rod (m)
¥ ¥ i E=2.078E+11 c=speed of sound in steel {m/s)
o E = Young's Modulus [Pa)
| = density of steel * ¢ = (7850 kg/m"3) * ¢
225 15000
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Didier

Test Rod#: HK Rod 52
Amplifier: TML DC-97A

Test Cycle 3

Today's date: 9/24/2012 2:41:43 PM

Test Start Time: 9/24/2012 2:41:30 PM

‘ Impact Frequency: 0.0 Hz ‘

Impact Sampling Rate: 1000000 5/s|

Milwaukee 5262-20 C88AD11170712 Single Impact Energy: 2.130J

4 'El T As=7.854E-5 Where:
£ 2
E. === g~(f)(ff ©=5140.13 As = cross-sectional area of the test rod (m)
8 E=2.074E+11 = i
I ! c=speed of sound in steel (m/s)
o E=Young's Modulus {Pa)
I = density of steel * ¢ = (7850 kg/m"3) * ¢
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_— Test Cycle 1
Didier

Test Rod#: HK Rod 55
Amplifier: TML DC-27A

Milwaukee 5262-20 CA88AD11401652 Single Impact Energy: 2.275 )

Today's date: 10/2/2012 3:28:19 PM

| Impact Frequency: 0.0 Hz

Test Start Time: 10/2/2012 3:28:06 PM

Impact Sampling Rate: 1000000 5/5,

4 ‘E: T As=7.B54E-5 Where:
F, 2
E, :5—jg~(1)(ﬁ c=513%.16 As = cross-sectional area of the test rod (m)
I E=2.073E+11 c=speed of sound in steel (m/s)
0 E =Young's Modulus {Pa)
I = density of steel * c= (7850 kg/m"3) * ¢
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Test Rod#: HK Rod 55
|Amplifier: TML DC-97A

Test Cycle 3

Today's date: 10/2/2012 3:32:57 PM

| Impact Frequency: 0.0 Hz |

Test Start Time: 10/2/2012 3:32:43 PM

Impact Sampling Rate: 1000000 5/s

Milwaukee 5262-20 CA88AD11401652 Single Impact Energy: 2.190 )

Test Rod#: HK Rod 55
Amplifier: TML DC-97A

4 E2 T As=7.854E-5 Where:
g " 2 .
E._= g’((]df ©=5124.92 As = cross-sectional area of the test rod {m)
5 E=2.062E+11 i
I o c=speed of sound in steel (m/s)
o E = Young's Modulus (Pa)
I =density of steel * ¢ = (7850 kg/m"3) * ¢
240 13500
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s Test Cydle 4
Didier

Today's date: 10/2/2012 3:34:24 PM

‘ Impact Frequency: 0.0 Hz |

Test Start Time: 10/2/2012 3:34:11 PM

Impact Sampling Rate: 1000000 5/s|

Milwaukee 5262-20 CA88AD11401652 Single Impact Energy: 2.158 J

‘I EZ T As = 7.854E-2 Where:
Ag 3 .
ES =ik o ([] dt c=5128.09 As = cross-sectional area of the test rod (m)
I E=2.064E+11 c=speed of sound in steel (m/s)
0 E = Young's Modulus (Pa)
I = density of steel * c = (7850 kg/m"3) * ¢
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Test Cycle 1

Today's date: 10/2/2012 3:46:47 PM

Test Rod#: HK Rod 55
[Amplifier: TML DC-97A

Impact Frequency:

0.0Hz [

Test Start Time: 10/2/2012 3:46:34 PM

Impact Sampling Rate: 1000000 5/s|

Milwaukee 5262-20 CA88AD11400082 Single Impact Energy: 2.179 )

4 E2 T As =7.854E-5 Where:
Ag 2 .
E‘9 =3 e (f] dt c=3114.77 As = cross-sectional area of the test rod (m)
5 I E=2.054E+11 c=speed of sound in steel (m/s)
0 E=Young's Modulus (Pa)}
1 = density of steel * ¢ = (7850 kg/m"3) * ¢
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=g Test Cycle 2
Dldler Today's date: 10/2/2012 3:48:14 PM
Test Rod#: HK Rod 55 ‘ Impact Frequency: 0.0 Hz | Test Start Time: 10/2/2012 3:48:01 PM

Amplifier: TML DC-97A

Impact Sampling Rate: 1000000 5/s

Milwaukee 5262-20 CA88AD11400082 Single Impact Energy: 2.170J

{ ‘El T As=7.8B54E-3 Where:
£ >
E, = 5—‘[ g? (f}df ©=5113.36 As = cross-sectional ares of the test rod (m)
I E=2.052E+11 = speed of sound in steel {m/s)
o E =Young's Modulus (Pa)
I = density of steel * ¢ = (7850 kg/m"3) * ¢
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Test Rod#: HK Rod 55
Amplifier: TML DC-97A

Milwaukee 5262-20 CA88AD11400082 Single Impact Energy: 2.275 )

Test Cycle 3

Today's date: 10/2/2012 3:49:24 PM

Impact Frequency: 0.0 Hz ‘

Test Start Time: 10/2/2012 3:49:12 PM

\ Impact Sampling Rate: 1000000 S/s

4 'E: T As =7.854E-5 Where:
£ 2
E, :S—JE‘ (f)df c=5127.73 As = cross-sectional area of the test rod (m)
I E=2.064E+11 c=speed of sound in steel {m/s)
¢ E = Young's Modulus (Pa)
I = density of steel * ¢ = (7850 kg/m"3) * ¢
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