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ABSTRACT 

MECHANICS OF BOLTED ELECTRICAL SPLICES 

by 

Samuel Thomas Alberts 

 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor Ilya V. Avdeev 
 

  

Localized heating of bolted electrical splices in the power distributing bus is a 

primary concern in the industrial automation industry. While localized heat generation 

problems are commonly reported in the field, it is not entirely clear what the root causes 

are. A methodology is presented for development of a tool to measure in-situ the 

influence of clamping load on the thermo-electric behavior of the splice joint. Applied 

research and reasoning used to identify probable root causes for failures reported in the 

field are also presented. Experiments were conducted to characterize the mechanical 

properties of the bolt and nut system used in service. A bolt was modified and retrofitted 

with strain gauges. This system was calibrated as a load cell and experiments were 

conducted to develop a sample specific model for determining the bolt pretension as a 

function of torque applied to the nut. The methods herein described can be implemented 

for applications in which optimal performance of bolted connections is required. 

Measurements were made of the electrical contact resistance and an idealized finite 

elements simulation of the contacting bus materials was studied alongside real samples. 

Based on this study, the author presents potential root causes for the onset of problematic 

localized heat generation.   
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CHAPTER 1. Introduction  

1.1 Motivation and Objectives 

Industrial automation is the blanket term for the use of computer technology and 

feedback control logic in industry. In general, the implementation of control logic 

involves feeding particular inputs into a system, called the plant, to get a desired output 

[1]. In the industrial automation industry, the plant can range from an entire facility, 

manufacturing process or a particular apparatus. Examples include computer numerical 

control of machining processes, pressure or displacement controlled stamping and 

forming processes, and temperature control of various thermally sensitive processes. In 

practice, the industrial automation system is a power distribution network that feeds 

power from the facility main to lumped groups of individual power loads. Current, 

typically ranging from 800 Amps to 3000 Amps, nominally, is conducted via a 

conductive bus that is often a rigid and uninsulated. The bus is not insulated because it is 

housed inside of metal power containment structures which are subject to rigorous 

regulation imposed by various external agencies, such as Underwriters Laboratories, 

National Electric Manufacturers Association, and International Electrical Commission.  

Overheating is a prevalent problem in industrial automation. Heat generation in the 

power control structure is a function of many parameters. By virtue of the application, 

heat is generated in response to high currents conducted by the bus. Heating problems 

most often occur at locations where one portion of main bus is spliced with another or 

where secondary, load, bus is spliced to the main bus. Sections of the bus structure are 

typically spliced together with bolted connections. Bolted splice connections are chosen 

because this allows for modularization of the rigid bus system components. The fact that 
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bolted splice joints can be assembled with inexpensive steel bolts, thus eliminating the 

need for expensive welding processes, is another economical impetus to use them. On the 

other hand, the quality of electrical conduction through the joint is a function of the 

quality of surface to surface contact between the sections of bus. There is potential for 

relatively high local heat generation to occur at the splices because conductivity is greatly 

reduced at the splice.  

A common practice for locating and mitigating heat problems in the field is to open 

up the structure containing the bus system, image each splice with an infrared camera, 

and evaluate whether or not the temperature is acceptable. This methodology is time 

consuming, expensive, and can pose great safety risk as the bus is exposed and subject to 

an arc flash event. The author is pursuing a novel methodology for modeling and 

monitoring the temperature of the bus without opening the containment structure. Various 

specifics of this methodology are proprietary, as such; the author is not at liberty to 

describe all of them in this text. Instead, this text will is focused on development of an in-

situ measurement tool, and method for characterizing the mechanical parameters of the 

bolted splice joint as well as identification of potential root causes to localized heat 

generation in the field. 

The heat generation in the splice joint is primarily a function of material properties 

of the conductive surfaces in contact, clamping pressure between surfaces in contact due 

to bolt system pretension, and the surface quality of materials in contact. These three 

primary parameters are process and sample specific and cannot be explicitly solved for 

without use of empirical relations. In order to properly understand the heat generation 
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properties of a specific bolted splice joint system, engineers must gather real data from 

product samples which are manufactured according to organization specific tolerances.   

Experiments were conducted to characterize the mechanical properties of the bolt 

and nut system used in service. A bolt was modified and retrofitted with strain gauges. 

The bolt with strain gauges was calibrated as a load cell and experiments were conducted 

to develop a sample specific model for determining the bolt pretension as a function of 

torque applied to the nut for in-situ studies. The calibration of the load cell was validated 

using an industry clamping pressure load cell. Bolts and nuts used in service were used to 

splice samples of bus material and the electrical resistance was measured across the 

interface in order to get an understanding of the relationship between applied clamping 

load and resistance.  Bolt system pretension values computed with the experimental 

model were applied with finite elements analysis to produce a qualitative understanding 

of ideal contact between the conductors. The simulated contact pressure map was visually 

compared with real assembled samples of bus material. Finally, bolts and nuts used in 

service were used to splice samples of bus material and the electrical resistance was 

measured across the interface in order to get an understanding of the relationship between 

applied clamping load and resistance.  

The methodology behind a proper test process should be repeatable and reliable. It 

should also be transferrable between testing operators.  The author has placed particular 

emphasis on presenting the procedures and methods used throughout the project as 

transparently as possible such that they can be repeated with this text, alone, as a guide. 
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1.2 Literature Review 

1.2.1 Theoretical Approach to Predicting Pretension in Bolts 

In a technical article submitted to Mechanical Engineering magazine, J. H. Bickford 

cited as many as 76 different variables of interest for determining the pretension in a bolt 

[2]. Unfortunately, the industry standard is to assemble bolted joints with specified torque 

values which are essentially accepted based on experiential reasoning without 

consideration of the age of the bolt or lot-to-lot bolt variation. Depending on the 

application, this may be acceptable, but should not be preferred where high performance 

is expected. 

The diagram in Figure 1-1 below describes the geometry of threaded fasteners. The 

terminology in the diagram will be used throughout this text. 
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Figure 1-1. Diagram of Fastener Thread Geometry. 

The primary geometric parameters that influence the mechanical behavior of the 

threaded fastener are thread angle, pitch, minor diameter, and major diameter. These 

parameters have been standardized for various sizes of threaded fastener by the Unified 

Thread Standard This standardization provides an increase in the predictability of 

behavior of bolted joints by reducing the gross randomness in thread geometry to a 

tightly defined tolerance window.  

In practice, the tensioning of a bolted joint system is provided through applied torque 

on the nut. This can be described by adapting Shigley’s description of the power screw by 

“unrolling” one revolution of screw thread as shown in the diagram in Figure 1-2 [3].  
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Figure 1-2. Diagram of Forces Acting on the Screw Thread. 

In this diagram, Dm is the mean of the major and minor diameter, πDm is then the 

mean circumference of the bolt, and the tangential distance a point at the mean diameter 

of the bolt will travel over one revolution. The variable, l, is the axial distance the point 

on the mean diameter of the bolt will progress as the bolt is rotated, which is commonly 

called the pitch. Regarding forces, P is a tangential force as a result of applying torque to 

the bolt which causes the thread to progress with respect to the mating thread, N is the 

normal reaction between thread surfaces, and fN is the friction force existing between the 

two surfaces. The remaining force, F, is the force acting axially to the shaft of the bolt 

and can be described as causing pretension in the bolt. As the bolt thread progresses 
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through the nut and constrains the clamped bodies, the bolt thread can no longer progress 

freely as torque is applied and the axial reaction, F, or pretension increases.  

 

In a bolt splice, the bolt acts as a heavy spring to clamp the two conductor materials 

together. Pretension is required in the joint because if the system is left with zero 

pretension in the bolt changes in the system will dissolve the clamping action, resulting in 

opening of the clamped joint [4]. In general, there is typically a 2% to 11% drop in bolt 

pretension immediately after torqueing [5]. This is likely due to the influence of friction 

on the system as torque is applied. As torque is applied only about 10% of the applied 

torque contributes to clamping tension, the remainder of applied torque is necessary to 

overcome friction between the thread surfaces and between the clamped surface and the 

nut [6]. This initial relaxation is primarily elastic and is likely due to the release of the 

torque load on the system. There is also a time dependent relaxation which occurs. One 

study of A325 and A354 steel bolts showed an additional 4% relaxation over the course 

of 21 days [7]. Relaxation is of even more concern for the bolts in a bolted splice joint of 

conductors under current load as the materials used in bolts (typically steel for the 

application of interest) are temperature sensitive and subject to thermal relaxation over 

time [8]. Moreover, the thermal expansion of the conductor material (typically copper, 

which has a linear thermal expansion coefficient roughly 120% higher than steels [9]) 

will increase the transient relaxation of the bolt, which is commonly expected to be in 

service for years at a time. This can lead to a recursive behavior in which increasing heat 

generation and reduced contact pressure contribute to each other.  

Since the geometry is standardized for all fasteners used in industry, friction is the 

primary governing agent of concern when designing for the development of bolt 
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pretension. Unfortunately, the friction behavior is highly process specific and cannot 

necessarily generalized for. For example, in some cases, design intent drives engineers to 

use titanium because of its good strength-to-weight ratio. In general, one would expect 

the amount of pretension derived from applied torque to vary across different material 

interfaces due to the variation of coefficient of friction. Croccolo et al. found that the use 

of titanium bolts threaded into steel base material leads to a situation where bolt 

pretension and clamping load development as a function of friction is found to vary based 

the choice of lubricant and number of times the system was disassembled and 

reassembled [10]. In a study on aluminum bolted joints, Croccolo et al. found that for a 

particular sample set, the pretension could vary by more than 300% based on surface 

preparation and that the friction behavior of coated thread surfaces would change with 

each loosening and tightening operation due to the removal of the coating [11]. A study 

by Eccles et al. showed a similar behavior in zinc plated fasterners [12].  One study 

showed that a bolt used in an airplane wing which had been disassembled and 

reassembled failed because the frictional behavior had changed between the time of 

initial assembly and the time of reassembly, years later [13]. 

1.2.2 Theory of Micro-Scale Contact Resistance 

An electrical contact has been defined by Ragnar Holm as “a releasable junction 

between two conductors which is apt to carry electric current [14].” This is commonly 

seen in consumer products in the form of switches, such as those for turning on and off 

devices, and connectors, such as a USB connector for streaming data between devices. In 

the industrial automation industry, and power distribution in general, conducting 

releasable junctions are used in service for various purposes. Some examples are clamped 
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bus-bus splices, sliding bus-stab connections between individual loads and the power 

distribution bus, and industrial switchgear for opening and closing circuits for safety and 

maintenance purposes.  

All real surfaces, no matter how well prepared, are “rough” at the microscopic level. 

That is, all real surfaces feature what are called “surface asperities.” These are 

microscopic peaks and valleys on the surface which result from manufacturing processes 

and material structural properties. Braunovic, et al. provide an in-depth discussion on the 

science of surface quality as well as methods for measuring the surface parameters [15]. 

The theory of electrical contact resistance is well understood on the basis of conduction 

constriction through single points of surface contact as a result of microscopic surface 

roughness [16]. As two conducting surfaces come into contact, the individual 

microscopic peaks mechanically contact each other. Force applied to clamp the surfaces 

together causes the peaks to break through the oxide film on the material surface and a 

cold weld occurs, allowing electrical conduction through the interface. Such a point is 

called an “a-spot” in electrical contact theory. Electrical conduction through the a-spot 

forces the theoretical lines of current to “constrict” and it becomes more difficult for 

electrons to flow through the constriction than it is for them to flow through the bulk of 

either contacting material. This is a function of the mean free path for flow of electrons in 

the material. The concept is shown in Figure 1-3 below. Timsit describes this 

phenomenon in explicit detail in his chapter of the book Electrical Contacts.  
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Figure 1-3. Graphical Description of Current Constriction Resistance. 

 

As the applied clamping force is increased, the constriction resistance through the 

joint is expected to drop. This is a function of the increasing number of surface asperities 

in contact, as well as elastic and plastic deformation. To exemplify this, consider the 

interface of conductive surfaces as resistances in parallel. It is commonly understood 

from circuit theory that the reciprocal of the total resistance across a bank of resistors in 

parallel is equal to the sum of the reciprocals of each resistance in the bank. This is 

described by the following equation, 

 

  
 ∑
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in this equation, RT is the total resistance across n resistances and Ri is an individual 

resistance. As the clamping load increases, the initial points of contact will deform, 

allowing additional surface asperities to come into contact, thus reducing the overall 

resistance of the interface. Contact interface resistance is a primary concern in the 

development of reliable micro-electromechanical systems (MEMS) because the scale of 

surface roughness is similar to the overall scale of the device [17 - 19]. A macro-scale 

process of interest for which the electrical contact resistance as a function of the surface 

quality is of key importance is resistance welding [20]. Research efforts to characterize 

the quality of surface contact regarding the size and spatial distributions of contact points 

include the development of deterministic asperity models [21], statistical and random 

process models [22, 23], and fractal geometry models [24]. Barber developed a boundary 

value approach to the contact resistance problem by considering geometric properties of 

the contacting areas studied the influence of statistical surface characteristics [25].  

Approaching the design of electrically conductive surfaces for optimally reduced 

contact resistance from a micro-scale perspective is an applicable methodology in MEMS 

technologies. However, in the problem of interest, the variation of mating surfaces from 

nominal flatness due to geometrical tolerance allowances requires that the micro-scale 

approach to the design of the electric splice be foregone until these macroscopic issues 

are be dealt with. On the other hand, when addressing the mitigation of failure of the 

electrical splice, defined hereon as elevated heat   generation in the region of the 

electrical contact, the engineer must be aware of and understand the micro-scale physics 

which govern the electro-thermal behavior of splice.  
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1.2.3 Bus Material and Degradation of Conducting Surfaces 

The bulk of the studied bus material studied is a copper alloy, C11000. It is specified 

by ASTM as a bus bar, due to its rectangular profile [26]. Aluminum is also an option for 

bus material, but is less frequently used. Discussion in this text will stay focused on 

copper as a bus material. The copper bus material is tempered to a minimum hardness of 

Rockwell F 80. The material is either cold-drawn or rolled and then sheared to length by 

the manufacturer. The bus is electroplated with a layer of tin. Silver plating is also used 

for some applications. The discussion will stay focused on tin plating because it is more 

common in the field. Plating is introduced in order to reduce the formation of surface 

oxides [27]. Tin is noted as a particularly easy metal to electroplate in a controllable 

manner and thus provides an economical option for protection of the bus [28]. While tin 

is more resistive than copper, the detrimental influence of this increased resistance is 

decreased by requiring that the plating be very thin. In this particular case, the plating is 

specified to be on the order of 0.0002 inches thick. Tin is also less hard than copper and 

may provide for a more consistent surface to surface contact through plastic deformation 

of the a-spots. On the other hand, tin has a low melting point and is easily solderable. 

This amplifies the concern for temperature control of the bus and may lead to localized 

welding of bus-stab joints in the case of current overloads at junctions between individual 

loads and the bus. 

Common mechanisms for degradation of the quality of the conductive interface are 

oxidation, fretting, stress relaxation, and thermal expansion. The topics of thermal 

expansion and stress relaxation were mentioned in Section 1.2.1. These two mechanisms 

recursively affect one another as the bus material expands at a higher volumetric rate than 
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the steel bolts in the splice joint, which leads to increased pretension in the bolt. Transient 

stress relaxation of the bolts occurs due to exposure to elevated temperature, as described 

with experiments on steel wires [29]. This, in turn, reduces the clamping load on the 

interfacing conductive surfaces, increasing the resistance across the interface. Oxidation 

is can be particularly damaging to the conductivity of the interface because metal oxides 

have a much higher resistivity than the pure metal. In the case of copper, the oxide is 10
10

 

times more resistive [30]. Copper will oxidize immediately upon exposure to oxygen in 

the surrounding ambient atmosphere. As mentioned previously, this justifies the plating 

of the bus material with tin, which oxidizes much slower. On the other hand, the rate of 

oxidation of the bus is commonly a function of fretting wear, which cannot necessarily be 

controlled by design. Fretting wear is mechanical damage caused by low-cycle small 

amplitude relative motion between surfaces in contact [31]. In the industrial control 

power bus, fretting corrosion is likely caused due to ambient environment vibration, 

vibration resulting from processes occurring in the facility, or cycling of thermal 

expansion and contraction due to the power network being taken offline periodically for 

maintenance. Fretting causes new oxides to form as virgin material is uncovered by the 

fretting action which scrapes off the most outer material. In the worst case, over years of 

service, the base copper material may be exposed. This would result in a drastic increase 

in electrical contact resistance and thus, the likelihood of failure of the splice. Bryant and 

Antler provide very detailed descriptions of the effect on electrical contacts, in general, in 

their respective papers [32, 33].  
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CHAPTER 2: Correlation of Bolted Joint Torque and Pretension 

The first immediately controllable factor governing the electro-thermal behavior of 

the splice joint is the pretension in the bolts which clamp the splice joint.  As this is a 

function of bolt and nut materials, processing, and geometry a thorough understanding of 

the mechanical behavior of the bolt and nut in the bolt splice system is required to 

implement proper thermal modeling and monitoring of the industrial power distribution 

network. In Section 2.1, a rigorous approach to characterizing the material of the bolt and 

nut in service is presented. In Section 2.2,  a bolt is modified and retrofitted with strain 

gauges in a half bridge configuration and calibrated as a load cell to measure the 

pretension in the bolt as a function of applied torque. Section 2.3 describes 

experimentation to correlate bolt pretension to applied torque and provides a benchmark 

against a theoretical calculation as well as bolt pretension data measured with a market 

clamping force load cell. 

2.1 Bolt and Nut Test Sample Material Characterization 

2.1.1 Experimental Samples and Apparatus 

All bolt samples used throughout this study are round head square neck carriage 

bolts with geometry according to American Standard B18.5 [34]. They are cold headed 

medium carbon steel which is cold rolled threaded to 3/8”-16 UNC 2A according to 

American Standard B1.1 [35]. After forming, the bolts are tempered and quenched to 

Grade 5 quality hardness. This type of bolt is typical to those which may be used in 

bolted splice joints in industrial power distribution networks. According to internal 
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drawing tolerances, these bolts are expected to have nominal ultimate tensile and yield 

stresses of 120,000 and 92,000 pound-force per square inch, respectively. 

Nine bolt samples were modified such that they matched the geometry of the bolts 

used as load cells as described in the next section. The bolts had a 0.33 inch long section 

of material removed 0.15 inches from the underside of the bolt head on a manual lathe. 

The threads were cut away to the minor diameter of the bolt shaft. The nominal minor 

cross sectional area according to the above threading geometry standard for these bolts is 

0.068 square inches. The geometry is shown in Figure 2-1. The measured diameter in the 

machined section of each sample is presented below in Table 2-1. Based on a typical 

industry standard of plus-or-minus 0.005 inches tolerance on dimensions defined to the 

thousandths place, it would seem that the majority of samples were not within 

specification. This is likely a due to manual preparation of test samples.  

 

 

Figure 2-1. Carriage Bolt CAD Model and Modification Dimensions. 
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Nine additional bolts were selected for testing but were not modified. It was chosen 

to test the unmodified bolts in order to highlight any effects on material behavior 

resulting from modification of the bolts. 

Tensile loads were applied to the bolt samples using a SATEC tensile testing 

machine. For the materials characterization process, the samples were tested at a constant 

pull rate of 0.2 inches per minute. Custom tensile grips were manufactured to apply the 

tensile load. The grips were reverse engineered from an existing set to provide the 

function of constraining a 3/8-16 bolt. One grip has a hole, tapped with 3/8”-16 threads 

while the other has a hollow core to allow for the bolt head and a hole on the bottom to 

pass the bolt shaft. A representative picture of the grips is shown in Figure 2-2 while 

dimensional drawings of the grips are presented in Appendix A.  

 

Table 2-1. Geometry of Modified Bolt Samples 

 

 

Sample 

Test Section 

Area (in
2
) 

1 0.056 

2 0.057 

3 0.063 

4 0.063 

5 0.054 

6 0.059 

7 0.059 

8 0.060 

9 0.063 
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Figure 2-2. Tensile Grips Manufactured for Materials Characterization and 

Calibration Processes. (Left) Threaded Grip. (Right) Bolt Shaft Pass Grip. 

 

All nut samples used in this experimentation are 3/8”-16 steel nuts with integral 

conical washers. This nut is representative of what may typically be used in bolted splice 

joints in industrial power distribution networks. The nut is connected to the washer by a 

flange which is swaged around a lip on the inner diameter of the washer. The nut and 

washer may rotate freely with respect to each other. The nut and washer configuration is 

shown in the section view in Figure 2-3.  
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Figure 2-3. Macro Photograph of Sectioned Nut and Integral Washer. 

 

As torque is applied to the bolt system, leading to increased pretension in the bolt, 

the conical washer flattens elastically under the compressive load applied by the nut. Due 

to the developed stress profile in the washer in the flattened state, it will push back 

against the nut, providing a greater amount of friction between the nut and the clamped 

object [36]. This increases the stability of the clamping in the bolted splice joint and may 

play a role in the development of pretension in the bolt. 

To provide insight to the influence of the flattening of the conical washer on the 

development of pretension in the bolted splice joint of study, 7 samples were tested in 

compression using the SATEC tensile testing machine. Compression was applied using a 

constant displacement rate of 0.2 inches per minute. 
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2.1.2 Materials Characterization Data 

 

Since the tensile grip which holds the bolt head is a bearing contact, there was 

considerable variation from sample to sample in the amount of system settling which 

occurred before the stress profile began to develop. Each set of sample data was manually 

pre-processed to eliminate this portion of the data. The data were then processed and 

plotted using a MATLAB script and are presented in the following Figures. The 

MATLAB script was developed to streamline future work which is will likely involve 

many more tested samples in order to develop a better statistical representation of the 

material behavior. The script is presented in Appendix B. Stress-strain and stress-strain 

slope curves of all machined samples are presented in Figures 2-4 and 2-5, respectively. 

Stress-Strain and stress-strain slope of unmodified samples are presented in Figures 2-6 

and 2-7, respectively. All samples from both sets are presented in a composite plot to 

allow for simplified comparison between individual samples. The slope of stress-strain 

plots were generated by computing the slope between consecutive points and then 

plotting this against the percent of average yield strength for the grouping of samples. In 

Figure 2-8 the average stress-strain curve for machined bolts is plotted along with the 

average curve for unmodified bolts to provide for comparison of the shapes of the 

corresponding stress profiles. For this same purpose, the average slope of stress-strain 

curve for machined bolts is plotted along with the average slope of stress-strain curve for 

unmodified bolts in Figure 2-9. Table 2-2 shows the average yield and ultimate tensile 

stresses for both machined and unmodified samples. 



20 
 

 
 

 
Figure 2-4. Composite Stress-Strain Curves for 9 Machined Samples 

 

 

 

 

 
Figure 2-5. Slope of Stress-Strain Curves for 9 Machined Samples. 
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Figure 2-6. Composite Stress-Strain Curves for 9 Unmodified Samples. 

 

 

 
Figure 2-7. Slope of Stress-Strain Curves for 9 Unmodified Samples. 
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Figure 2-8. Averaged Stress-Strain Curves.  

Machined (Red) and Unmodified (Green) Samples. 

 

 

 
Figure 2-9. Averaged Slope of Stress-Strain Curves.  

Machined (Red) and Unmodified (Green) Samples. 



23 
 

 
 

 

 

Table 2-2. Average Experimental Yield and Ultimate Strengths. 

 
Strength (psi) 

 
Yield  Ultimate Failure 

Machined  140,000 157,000 

Unmodified  141,000 160,000 

  

 

The nut compression data were also manually processed to isolate the data of 

interest. The data were processed using the MATLAB script listed in Appendix C. A 

composite plot of compression load against deformation for all samples along with the 

data average is presented in Figure 2-10. Figure 2-11 shows the slope of the load-

deformation lines plotted against compressive load for all samples along with the data 

average. In both plots, the average is shown as a bold dashed black line while individual 

samples are thin colored lines. 
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Figure 2-10. Individual Sample and Average Compression Load for Nut Samples. 

 

Figure 2-11. Individual Sample and Average Load-Deformation Slope for Nut 

Samples. 



25 
 

 
 

2.1.3 Discussion  

In general, for both the machined and unmodified test samples, the material 

outperforms the nominal expectation. Both machined and unmodified samples exhibited 

yielding and ultimate failure at similar values of stress. Both sets of samples show 

considerable spread in the data. Overall, the spread in stress-strain data for both machined 

and unmodified samples can primarily be attributed to variations in the materials at the 

grain structure level, as well as design tolerances for the rolled threading and heat 

treatment processes. Also, since the head of the bolt is cold formed there is some 

tolerance allowance in the concentricity of the bolt shaft with respect to the bolt head. 

This likely led to some variability in how directly axial the applied tensile load was.   

In the machined samples, the stress profile develops slightly quicker and yielding 

and ultimate failure both occur at smaller amounts of strain than in the unmodified 

samples. This may be because a stress concentrating artificial neck in the shaft of the bolt 

is introduced by the machining. The machined samples, in general, have wider spread in 

the data, both in terms of the value of stress at a particular amount of strain as well as the 

location on the strain axis where yielding and ultimate failure occur. Because of this, the 

averaged stress curve for machined samples seems not to exhibit the typical “shoulder” 

after yielding that is expected in tensile test samples. Inspection of the individual sample 

data will show that this shoulder is present, yet less pronounced than in the unmodified 

samples and is likely convoluted by the spread in the stress-strain data.  

Regarding the machined samples, the increased spread in the data can likely be 

attributed to the removal of the threads. The cold working process of rolling the threads 

will tend to compress and refine the crystal structure of the outer material. Similarly, 
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during the quenching portion of the heat treatment process the outer material grains are 

cooled faster than the inner grains. This can lead to a radial gradient of material hardness. 

Perhaps these two actions also lead to a more regular crystal structure. For the 3/8-16 

bolts studied, the portion of the material with a more regular crystal structure would 

account for roughly 30% of the cross section. Effectively, removing the threads from a 

portion of the bolt leaves a portion of the bolt where the less controlled properties of the 

raw “medium carbon steel” drawn wire govern. 

The nuts were compressed until they plastically deformed to roughly half their 

original height. An example of one tested sample is shown next to a fresh sample for 

comparison in Figure 2-12. The compression data for the nuts were processed to isolate 

the portion of data concerning deformation of the conical washer. An example of the total 

test curve of load against deformation is presented in Figure 2-13.  

 

 

Figure 2-12. Before and After Comparison of Compressed Nut Sample. 
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Figure 2-13. Characteristic Total Sample Compression Plot. 

 

In this figure it can be seen that there is steep increase in the data around 7 

kiloPounds and 0.035 inches of deformation. Previous to this point, only the washer is 

being compressed. This corresponds to nominal height of the washer. The increased 

steepness of the curve between 7 and 10 kiloPounds, is likely due to encountering the thin 

swaged flange which joins the nut and washer. Since this material is cold formed it will 

have a locally refined grain structure and higher strength. At around 10 kiloPounds and 

0.04 inches of deformation there is a shoulder. This is where the entire nut and washer 

assembly is being elastically compressed. At around 15 kiloPounds and 0.07 inches 

deformation there is a second shoulder, indicating the onset of plastic deformation, and 

the curve takes an exponential shape, indicating increasing strength of the material as it is 

being compressed.  
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2.2 Load Cell Calibration 

2.2.1 Load Cell Set-Up 

The bolt used as a load cell was modified as described in Section 2.1.1. The bolt then 

had strain gauges applied in a half-bridge configuration as described in Figure 2-14 using 

the procedure listed in the installation instructions provided by Vishay Precision Gauges 

[37].  The strain gauges are shown in an artificial color and out of scale for diagrammatic 

purposes. Note that the strain gauges are installed diametrically opposed in the center of 

the gauging region of the load cell and with the wire solder pads in the same orientation 

with respect to the bolt head. The strain gauge configuration reflects item number 5 in 

Table 2-3 [38]. This configuration was chosen due to the small amount of space available 

for mounting strain gauges on the bolts. A second bolt was set-up with the same half-

bridge configuration in order to complete the bridge for testing. A second bolt with strain 

gauges was chosen as a bridge completion unit because this allows for temperature 

compensation in future testing of the splice joint under load. Temperature compensation 

is not provided if constant value resistors are used to complete the bridge. The strain 

gauges used are Micro-Measurements General Purpose Strain Gauges (distributed by 

Vishay Precision Gauges) model number EA-06-060LZ-120/E. The selected strain 

gauges have a nominal grid resistance of 120 Ohms with a tolerance of plus-or-minus 

0.3%.   
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Table 2-3. Table of Strain Gauge Configurations.
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Figure 2-14. Strain Gauge Configuration. 

 

A DATAQ Instruments data logger (Model Number D170-ULS) was used for 

measurement of strain data from the load cell [39]. The data logger has 8 differential 

voltage inputs with a measurement tolerance of plus-or-minus 50 microVolts. This 

tolerance was neglected in the analysis provided that the measured voltage variation data 

tended to be on the order of one hundred times larger than the voltage tolerance. The total 

calibration system is shown in Figure 2-15. A sample detail is shown in Figure 2-16. 
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Figure 2-15. Load Cell Calibration Set-Up. 

 

 

Figure 2-16. Detail View of Load Cell in Grips. 
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2.2.2 Calibration Procedure 

  The load cell was calibrated by applying a tensile load to the load cell with the 

SATEC tensile testing machine at constant pull rate of 0.01 inches per minute while the 

change in voltage across the strain gauge half bridge was measured using the D170-ULS 

data logger. The load was applied until a maximum tensile load of 2000 pounds was 

reached in the load cell. Both sets of data were manually processed to eliminate the 

settling period and to align the peaks of change in voltage and applied load. In Figure 2-

17 both sets of data are shown in normalized format in order to provide a description of 

the shape of the plots.   

 

Figure 2-17. Change in Voltage Plotted Against Load Applied to Load Cell. 
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The SATEC tensile testing machine dwelled (ceased increasing load) at the 

maximum of load application. By taking the slope between the values of change in 

voltage and load at this point and at the onset of loading, a linear calibration function was 

determined and is shown in Equation 2-1, with P indicating applied load and V indicating 

change in voltage across the strain gauge bridge. 

  (       )       (2-1) 

2.3 Experiment  

2.3.1 Set-Up and Procedure 

The basic premise of this experimentation was to apply known values of torque to a 

nut on the load cell’s threads while the load cell was clamping two pieces of material 

mounted in a vice. The DATAQ D170-ULS data logger was used to collect change in 

voltage data from the load cell strain gauge bridge as torque was applied. The calibration 

curve was then applied to the collected data. The total set-up is shown in Figure 2-18 

while a sample detail is shown in Figure 2-19. 

A random sampling of 20 nuts as described in Section 2.1.1 was used throughout the 

experiment. Before testing, a 3/8”-16 tap was passed through each nut in order to ensure 

that the surfaces of the threads were clean and uniform. This should also reduce the 

likelihood of the coefficient of friction of the threads to change with each tightening-

loosening procedure. The threads of the load cell were similarly treated with a 3/8”-16 

die. 
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A calibrated FUTEK Advanced Sensor Technology digital torque wrench (Model 

Number TAT500) and Sensotec torque data logger (Model Number SC2000) were 

employed to ensure accurate and repeatable applications of torque. 

 

 
Figure 2-18. Torque-Pretension Correlation Set-Up. 
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Figure 2-19. Detail of Mounted Load Cell and Saddle. 

 

 

The load cell was mounted to two pieces of copper bus bar described in Section 

1.2.3. The bus bar has holes punched through it for the purpose of creating bolted splice 

joints. From this point on in this chapter, this material will be referred to as the mount. 

The load cell was driven through a saddle which typically carries two carriage bolts. The 

saddle has square holes which hold the square portion of the carriage bolt shaft in order 

restrain them from rotating. The unused portion of the saddle was clamped to the mount. 

The CAD model in Figure 2-20 describes this set-up. 
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Figure 2-20. Assembly Diagram of Torque-Pretension Correlation Set-up. 

 

The bridge completion cell was rested in another hole in the mount with a nut 

threaded onto it such that there was no tension load applied to the cell. This was done to 

keep the bridge completion cell steady during testing.  

A nut was randomly selected from the grouping of 20 nuts with treated threads. This 

nut was threaded onto the load cell and turned by hand until it could no longer be turned 

without much effort. Since this was a subjective process, the data stream was examined 

simultaneously in order to ensure that there was no load applied to the load cell before 

torqueing began with the torque wrench. At this point, the torque wrench was used to 

apply torque to the desired value while the D170-ULS data logger collected data from the 

load cell. The nut was then removed with an open-end wrench and returned to the pool of 
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nuts. This procedure was repeated 10 times each at torque values of 50, 100, 150, 200, 

and 250 pounds-inch.  

 

2.3.2 Experiment Data 

Since the change in voltage data were collected from the load cell in a continuous 

stream, the data were manually processed to isolate portions of data when the load cell 

was in a steady load state after torque application and immediate settling. Figure 2-21 

motivates the necessity for this processing.  

  

Figure 2-21. Descriptive Plot of Load Cell Voltage Response to Applied Torque. 

This figure is a descriptive plot of the voltage response of the load cell during two 

successive applications of metered torque to the nut followed by the removal of the nut. 



38 
 

 
 

There are 4 primary response regions of the measured signal. Region A, or the 

application region, is the region in which torque is applied. The amount of load in the bolt 

is reported as especially high during torque application because no torque measurement 

strain gauges are on the cell and thus the torque portion of the applied load cannot be 

filtered out. In region B the load is removed and the load cell settles to a steady load state 

condition, region C. Region C is the area of interest and is where the bolt pretension 

measurements are made. Pretension measurements are an average of this entire region for 

a given torque application trial. Region D is the release and ambience region. It can be 

seen that there is a sharp increase in voltage at the onset of the release region. This is 

because the bolt will twist slightly as static friction is overcome in the system and the nut 

can freely rotate off.  

 

2.4 Experimental Results and Discussion 

The mean experimental load cell measurements are plotted against applied torque in 

Figure 2-22. Standard deviation is included in this plot. By evaluation of the deviation 

envelope it can be seen that as the applied torque increases, the data become more 

consistent. The change in voltage tends to increase linearly with applied torque. A linear 

fit line (Equation 2-2) is plotted with the data. The linear fit line has a coefficient of 

determination of 0.9561. 

                     (2-2) 

In Equation 2-2, V indicates the change in voltage and T indicates the applied 

torque. 
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Figure 2-22. Mean Change in Voltage Values (o) Plotted with Standard Deviation 

(+) and Linear Fit Line. 

 

Several factors could cause the trend to decrease the standard deviation of change in 

voltage at a given applied torque as applied torque is increased. At present, the most 

reasonable explanation for this behavior is that at the lower applied torques the 

magnitude of the measurement accuracy tolerance of the torque wrench is closer to the 

magnitude of the measured torque than at higher torque applications. This reasoning 

stands for the measurements collected from the strain gauges as well.  

The data from Figure 2-22 are tabulated in Table 2-4. In Table 2-5 the 

experimentally determined calibration is applied and tabulated along with theoretical 
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loads determined using the Equation 2-3 [40] as well as percent error between the 

experimental values and the theoretical values. 

  
 

  
  (2-3) 

In this equation, T indicates the applied torque, P indicates the bolt pretension, D is 

the major diameter of the bolt threads, and K is an empirical constant. For the case of a 

steel nut on a steel bolt with clean, dry threads, the value of K is assumed to be 0.20. 

 

Table 2-4. Experimental Response to Applied Torque Data 

Applied Torque 

(lbf-in)  
50 100 150 200 250 

Change 

in 

Voltage 

(mV) 

Mean 0.483 1.163 1.271 1.704 2.004 

StDev 0.180 0.431 0.176 0.133 0.099 

 

Table 2-5. Bolt Pretension Prediction using Linear Calibration. 

Applied Torque (lbf-in) 50 100 150 200 250 

Experimental Mean 

Bolt Pretension (lbf) 
967 2326 2542 3407 4008 

Deviation of Pretension 

(lbf) 
359 862 352 266 197 

Theoretical Bolt 

Pretension (lbf) 
667 1333 2000 2667 3333 

Percent Error (%) 44.98 74.49 27.10 27.75 20.25 
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It is important to note that the use of the empirical constant in Equation 2-3 produces 

a deterministic theoretical value that is, in reality, highly probabilistic due to the nature of 

friction between dry surfaces. When bolt pretension is a primary design parameter, either 

the value of K should be evaluated on a case by case basis, or a process specific modeling 

equation should be determined. 

The calibration of the load cell was validated with a Honeywell Model DT Thru-

Hole Load Cell. This load cell has a compressive load range of 7500 pounds and 

accuracy of plus or minus 75 pounds. The validation apparatus is shown in Figure 2-23.  

 

 

Figure 2-23. Load Cell Validation Set-Up. 

 

 The mounting and procedure for the validation were the same as for the experiment. 

The experimental load cell was mounted in the saddle on the mount material. The Thru-
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Hole load cell was place between the nut and the mount. Torque was applied for 10 trials 

each of metered torque at 50, 100, 150, 200, 250 and 350 pounds-inch. A manual torque 

wrench was used because the Thru-Hole load cell required the use of the Sensotec data 

logger. The averages of collected pretension data for each set of trials are shown along 

with the experimental values measured with the load cell in Table 2-6. 

Table 2-6. Comparison of Experimental and Validation Pretension Values. 

Applied Torque  

(lbf-in) 
50 100 150 200 250 

Experimental (lbf) 967 2326 2542 3407 4008 

Validation (lbf) 387 676 955 1196 1456 

Percent Error (%) 149.87 244.08 166.17 184.87 175.27 

 

From examination of data in the Table 2-6 it can be seen that for each applied torque the 

mean validation pretension value is roughly 1/3 that measured with the experimental load 

cell. Noting this, a correlating factor of 1/3 is introduced to the calibration equation, 

Equation 2-2. The final calibration equation is presented in Equation 2-4. Comparison of 

the experimental data computed with Equation 2-4 and the validation data are presented 

in the Table 2-7. Also, in this table a value of pretension as a result of one trial 

application of 350 pounds-inch is computed using Equation 2-4 and is compared with the 

pretension value measured with the validation load cell. 

  (  ⁄ )[(      
 )      ] (2-4) 
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As in Equation 2-2, P indicates the pretension load and V indicates the change in voltage. 

Table 2-7. Corrected Experimental Pretension Values and Validation Values with 

Percent Error. 

Applied 

Torque 

 (lbf-in) 

50 100 150 200 250 350 

Experiment 

(lbf) 
322 775 847 1136 1336 1833 

Validation 

(lbf) 
387 676 955 1196 1456 2028 

Percent 

Error (%) 
16.64 14.77 11.24 5.00 8.25 9.62 

 

Upon examination of percent error data presented in Table 2-7 it can be seen that the 

modification to the calibration equation provides for an experimental load cell which can 

be use with good confidence for in-situ measurement and experimentation.  

Plotting the measured pretension load using calibration Equation 2-4 against the 

applied torque and applying a linear curve fit provides a modeling equation, Equation 2-

5, for predicting the pretension load in the bolt for a given applied torque. This is shown 

in Figure 2-23. The fit line has a coefficient of determination of 0.9562. Validation 

measurements made with the industry clamping load cell are shown for comparison.  



44 
 

 
 

 

Figure 2-24. Experimental (o) and Validation (+) Loads against Applied Torque.  

 

                   (2-5) 

In Equation 2-5 P is the modeled pretension load and T is the applied torque. It is 

proposed that this equation can be used to model pretension in Grade 5 3/8-16 UNC 2A 

bolts in the specific application of clamping two pieces of 0.25 inches nominal thickness 

tin plated copper bus bar with a 3/8-16 steel washer with integral conical washer. The 

threads of both bolt and nut must unlubricated. The value computed, using Equation 2-5, 

at 350 pounds-inch is compared with the value measured with the experimental load cell 

as well as the value measured using the industry clamping load cell in Table 2-8.  
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Table 2-8. Comparing Experimental, Validation, and Modeled Pretension Load. 

Pretension Load at 350lbf-in 

Experimental Validation Model 

1833 2028 1839 

 

The modeled value of pretension is very similar to the value measured 

experimentally with the load cell. Regarding the value measured with the industry 

clamping load cell the model has a percent error of 9.3%. 

Overall, it is apparent that the experimental load cell can produce accurate 

measurements of bolt pretension. Furthermore, using Equation 2-5, one can model the 

pretension load for the system of interest. It is important to note that the model will fail at 

values of applied torque lower than 50 pounds-inch as it predicts 166.5 pounds of 

pretension load with no torque applied to the system. This is acceptable in the present 

study because the nominal applied torque for this system is 350 pounds-inch. Further 

study could include the onset of pretension at small amounts of torque and improve the 

quality of the model with a piece-wise calibration curve and pretension model. The 

accuracy of the model would also be improved by testing more samples and more trials at 

each value of applied torque. It is also of interest to re-iterate that the theoretical 

calculation of Equation 2-3 will over-predict the pretension load by at least 150%. In a 

design problem where optimal performance of the clamp under mechanical load was 

critical, use of this calculation could lead to failure of the design. 
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CHAPTER 3: Electrical Resistance as a Function of Bolt Pretension 

Due to increases in electrical resistance at the point of splicing in a power 

distribution network, this is where Joule heat generation is of primary concern. This is a 

function of the material properties and mechanical quality of the surfaces in contact, as 

well as the contact pressure due to pretension in the bolt. Section 3.1 describes an 

experiment for evaluating the variation of electrical resistance of the bolted splice joint 

with respect to applied torque/bolt pretension. Section 3.2 describes a numerical 

simulation to describe the contact pressure profile in the joint.  

3.1 Electrical Resistance in the Surface Contact Zone 

3.1.1 Experimental Approach 

New samples of bus bar material were spliced together using a pair of 3/8-16 

carriage bolts, bolt saddle, and 3/8-16 nut with integral conical washer. The resistance 

across the joint was measured with a Biddle Ohmmeter. The probes of the Ohmmeter 

were placed, one on each side of the splice joint, 0.5 inches from the splice. Metered 

torque was applied to the intended value on one bolt, then to the other bolt. Although this 

may cause irregular settling of the clamped surfaces, this torqueing method was used 

because this is the practice in the field.  A CAD model showing assembly of the test 

specimen is shown in Figure 3-1. The total experiment set-up is shown in Figure 3-2. 
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Figure 3-1. CAD Model of Resistance Measurement Assembly. 

 

Figure 3-2. Resistance Measurement Experiment Set-Up. 
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3.1.2 Results 

The resistance data for the experiment are presented in Table 3-1 and are plotted in 

Figure 3-3. In Table 3-1 and Figure 3-3, the contact resistance datum indicated at zero 

pounds-inch of applied torque corresponds to the point at which torque can no longer be 

applied to the nut with the fingers. 

 

Table 3-1. Resistance across the Splice. 

Contact 

Resistance 

(mΩ) 

0.054 0.029 0.005 0.004 0.0035 0.003 

Applied 

Torque 

(lbf-in) 

0 3 9 12 18 48 

 

 

 

Figure 3-3. Plot of Resistance across the Splice. 
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3.1.3 Discussion 

The resistance across the splice quickly falls off asymptotically as clamp load is 

increased. The change in resistance across the splice for brand new bus material seems to 

asymptotically approach 0.003 milliOhms as applied torque is increased. Qualitatively, 

these data have a trend similar to contact resistance computed as a function of the applied 

load for the Weierstrass profile [41], as well as experimental contact resistance data and 

computed contact resistance values for a cluster of a-spots as presented by Braunovic et 

al. [30].  

The resistivity of the copper base material is temperature dependent [42]. Since 

Joule heating of the splice will take place when the bus has a current load applied, 

measurements of the contact resistance should be made while current is applied to get a 

more complete understanding of the behavior. Furthermore, the geometry of the bus bar 

will also change in time due to thermal expansion. This may influence the contact 

resistance by redistributing the locations of surface asperities on either contact surface. 

For relatively clean samples with good quality surfaces, it may be that problematic 

localized heating arises as a function of stress relaxation of the bolts which provide 

clamping load to the splice. The Joule heating model for conductors carrying current is 

given by Equation 3-1 [43].  

 ̇      (3-1) 

In this equation,  ̇ is the heat generated in the conductor, I is the applied current, and R is 

resistance. In the reported resistance measurements there is a 17 times increase in 

resistance across the splice when the pretension is negligible. It can be clearly seen that 
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loss of pretension in the bolt due to transient relaxation of the bolt material is a probably 

root cause for localized heating of the splice. Data on the creep behavior medium carbon 

steels is not forthcoming in the literature. As such, further analysis is not provided. 

 

3.2 Qualitative Prediction of Contact Pressure 

3.2.1 Numerical Simulation 

The finite elements method was used to simulate the bolted joint and provide a 

descriptive view of the contact pressure profile between the mating conductive surfaces 

of the bus sections. All simulations were implemented in ANSYS v.13.0. A two-

dimensional study was conducted assuming perfectly planar bus bar. The nominal 

dimensions for the bus bar, bolt, and nut were used. The pretension is modeled from 

Equation 2-5 for the nominal torque of 350 pounds-inch. The modeled value of 

pretension was reduced to 2 significant figures for a value of 1800 pounds at each bolt. 

The loading was applied as a distributed load on the surfaces where the bolt head and 

conical washer nominally interface with the bus. Plane183 8-node planar solid elements 

were used to model the bus. A modulus of elasticity of 17,000,000 pounds per square 

inch and Poisson’s ratio of 0.3 were used to model the copper material. Frictionless 

contact between the two sections of the bus bar was modeled using Contact172 and 

Target169 elements. To avoid rigid motion, the lower bus bar is constrained at two points 

in both x- and y- directions while the upper bus bar is constrained in the x-direction. The 

set-up for the simulation is shown in Figure 3-4. 
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Figure 3-4. Schematic for 2D Contact Simulation. 

 

3.2.2 Results 

The qualitative two-dimensional contact pressure map for simulated contact between 

perfectly planar bus bars is presented in Figure 3-5. The qualitative map of von Mises 

stress is presented in Figure 3-6. 

 

 

Figure 3-5. Descriptive Contact Pressure Plot. 
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Figure 3-6. Descriptive von Mises Stress Profile. 

3.2.2 Discussion 

In Figure 3-5 it can be seen that, for perfectly planar surfaces, the contact pressure is 

focused at the location of clamp loading and quickly falls off to be negligible outside of 

the direct area of influence under the bolt head and washer system. This observation is 

supported by the plot of von Mises stress, in Figure 3-6, which shows that the material is 

primarily stressed in the area that is directly influenced by the clamping of the bolt. The 

local stresses on the extremities of the bus bar are phantoms due to the modeled 

displacement constraint at these locations.  

The simulation is idealized to solve for the case of perfectly planar mating surfaces. 

It will be seen that this is not realistic. On the other hand, comparison of these results 

with real samples of disassembled bus can provide insight into the nature of contact 

pressure and internal stresses in the bus. Macro photographs are presented which show 

the mating surfaces of previously in-use bus material. Via examination of contact witness 

marks, one can determine where a mating surface has actually come into contact with 

other mating surfaces. In Figure 3-7, one mating surface of a power conducting bus is 

shown. In Figure 3-8 and 3-9 the mating surfaces of a power conducting bus and load bus 
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are shown, respectively. The load bus is bolted to the power conducting bus for 

distribution of current to individual loads. 

 

 

Figure 3-7. Mating Surface of Power Conducting Bus with Witness Marks 

Outlined. 
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Figure 3-8. Mating Surface where Power Conducting Bus meets Load Bus 

 

 

Figure 3-9. Mating Surface of Load Bus. 

 

From all of the Figures 3-7 through 3-9, the first thing to note is that the true mating 

surface is much smaller than the expected or “apparent” mating surface. For example, in 
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Figure 3-7, the green dashed line shows the rough outline of the witness mark left by 

contact with another piece of bus bar. The location shown in Figure 3-7 is where this 

piece of main power conducting bus bar would be spliced to a second piece of main 

power conducting bus bar. Figures 3-8 and 3-9 show the reciprocal mating surfaces of a 

main power conducting bus and load bus. Again it can be noted that the actual contact 

area is much smaller than the apparent contact area. In the case of  

Figure 3-7, the irregular shape of the actual mating area is a function of geometric 

tolerances in the cross section of the bulk copper material with respect to its length and 

potentially process tolerance allowance for the thickness of the tin plating. The influence 

of these effects is seen in both mating surfaces, adding to the uncertainty of the problem. 

In Figures 3-8 and 3-9 the shape of the contact area is primarily a function of the 

construction method of the load bus. This particular load bus is a hollow copper bar 

which is cold formed in a press to create the flat mating surface and punch the mounting 

holes. Flattening of the originally tubular material leaves macro-scale surface waviness in 

the mating surface. The irregular pattern of contacting surfaces results and is not designed 

for.  

In the finite elements analysis, the mating surfaces are treated as perfectly planar. As 

such, their deformation under the clamping load of the simulated bolt system leads to a 

situation in which the surfaces come into contact directly in between the bolt head and 

washer. This leads to internal stresses being concentrated around this point.  

Examination of the samples shows that, without further quantifying study to produce 

accurate surface models, the qualities of the real situation must be extrapolated by 

interpretation of the simulation results because the bus bars are not perfectly planar. The 
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material shows contact wear outside of the area predicted in the simulation. In the case of 

main power conducting bus, this is probably due to combination of the geometric 

tolerance on the cross section of the bar as well as additional deformation of the area 

surrounding splicing holes as the holes are punched cold. Based on the simulation results, 

the contact pressure is expected to be concentrated in the areas showing witness marks 

and to quickly fall off on the fringes of these areas. Internal stresses in the material are 

generated due to the constraint created by the clamping bolts as well as interfacial 

contact. The areas where contact pressure is concentrated are where the conduction of 

electricity occurs across the splice. 

Splicing occurs at numerous points in the power distribution system. Every 

individual load gets its power from a load bus which is bolted to the main power bus. 

Every splice between main power bus sections is a double lap joint which uses a small 

splicing patch of copper bus bar material to complete the splice. This is described in 

Figure 3-10. As such, the actual number of interfaces is twice the number of such splice 

locations. For the power application of study, three-phase power is used. This then triples 

the amount of splicing interfaces for each point along the current stream of the bus. 

 

Figure 3-10. Description of Power Bus Splice. 
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The splice interface is not optimized for contact quality. In other words, the ratio of 

actual contact area to apparent contact area is very small. Since the amount of actual 

contact area is so small, fretting wear, and potential subsequent oxidation of mating 

surfaces, is of primary concern in the studied application. Considering the small area of 

actual contact and the extreme increase in resistance for oxidized copper, this is likely a 

primary cause of localized heat generation problems that may arise suddenly. 

Unfortunately, the supplier of industrial automation power distribution networks can only 

provide guidelines as to how frequently the system is taken offline and does not have 

direct control over the likelihood of fretting wear occurring in the field. An ideal 

approach to reducing the development of localized heat generation problems in the field 

is to optimize the mating contact surfaces of the bus. This could be provided through 

tighter geometric tolerances on the final bus material.  

As described earlier in Section 1.2.3, the bus is cold drawn and then sheared to 

length. This is an economical process. The flatness of the bus mating surfaces could be 

enhanced with additional cold work in a press, or with machining. Both suggested 

options for improving the mating surface are economically unattractive due to the 

external costs of adding additional processing to an entire family of parts, of which each 

part is made in many thousands, annually. The bus bar is a basic component in a very 

large number of assemblies. As such there would be a large internal engineering cost, due 

to the creation and processing of drawing and bill of materials changes and engineering 

change notices, associated with implementing a change to its processing. To optimize the 

mating surfaces via additional processing would not be feasible to pursue unless it could 
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be proven that it would drastically increase the reliability of the splice regarding the onset 

of problematic localized heating in the field. Based on the literature review portion of this 

text the author would argue that said increased reliability could be proven experimentally. 

A short term solution would be for the supplier to work with the customer to custom 

engineer the distribution network to reduce the number of splices between main power 

conducting buses on a project-to-project basis. 
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Chapter 4. Conclusion 

4.1 Summary 

In summary, there were two main purposes for the implementation of this project. 

The first was to design and validate a bolt pretension measurement method for in-situ 

measurements in industrial automation power distribution networks. The second was to 

generate a body of knowledge on the contact resistance behavior of the interface between 

bolted spliced electrical power distribution buses for a set of product. The author has put 

particular effort on maintaining the concept that the parameters governing the mechanical 

behavior of the bolted joint and those governing the electrical properties of the bolted 

electrical splice are highly process specific. Therefore, they are product specific, as 

geometrical and process tolerances are governed by the organization using the materials. 

This project is but a small piece in a much larger body of work that the author is 

developing.  

4.2 Conclusions 

A methodology is herein presented which can be used to design, tune, and validate a 

load cell for making in-situ measurements of pretension in bolts. The experimental load 

cell was validated to make measurements within 10% accuracy of the measurements 

made by an industry clamping load cell. A modeling equation which predicts pretension 

as a function of applied torque to the same level of accuracy is presented and compared to 

a typical calculation used in industry which, for the particular case of interest over-

predicts pretension by 150%. For brand new samples of bus material clamped with two 

bolts it was found that the contact resistance can vary by 170% between negligible 

pretension and 640 pounds of pretension load. Based on this result it is suggested that a 
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probable root cause for problematic localized heating of the bus is an increase in contact 

resistance across the splice due to stress relaxation of the bolt. Data on the stress 

relaxation of medium carbon steels is required for further analysis. The mating surfaces 

of samples of previously in-use bus material were examined and it is determined macro-

scale surface abnormality is leading parameter influencing the contact resistance for cold-

drawn, sheared, and punched tin-plated copper bus bar. Based on the literature review 

and understanding that oxidation of the copper surface will increase the local resistance 

by a factor of 10
10

, it is suggested that a an additional probable root cause for problematic 

localized heating in systems which have been brought offline and put back online many 

times is degraded mating surface quality on the bus bar via fretting corrosion and 

oxidation.  
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Appendix A: Geometry of Custom Tensile Grips 
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Appendix B: MATLAB Script for Tensile Test Processing 

 

%Automated Data Processor for Tensile Test Data on Bolts. 

 

 

windowOfInterest = 375; 

AverageData = zeros(windowOfInterest,3); 

numberOfSamples = 9; 

AverageYield = 140; %ksi 

 

for i=1:10 

 

 

    

    S = num2str(i); 

    fileName = strcat('BoltFail',S,'.csv'); 

    fid=fopen(fileName); 

    data = textscan(fid,'%f %f %f 

%f','HeaderLines',3,'Delimiter',',','CollectOutput',1); 

    fclose(fid) 

 

    data = data{1}; 

 

    data = [data(:,3) data(:,2) data(:,4) 

zeros(length(data),1)]; 

    %[ (Strain) (Stress) (Load) (Stress-Strain Slope)] 

     

     

     

    %Compute the slope of the stress strain plot. 

    for j=2:length(data) 

        data(j-1,4) = (data(j,2)-data(j-1,2))/(data(j,1)-

data(j-1,1)); 

    end 

 

    data(windowOfInterest+1:length(data),:) = []; 

     

     

    AverageData(:,1) = AverageData(:,1) + data(:,1); 

    AverageData(:,2) = AverageData(:,2) + data(:,2); 

    AverageData(:,3) = AverageData(:,3) + data(:,4); 

     

    switch i 

        case 1 

            lineColor = [1 1 0]; %yellow; 

        case 2 
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            lineColor = [1 0 1]; %magenta; 

        case 3 

            lineColor = [0 1 1]; %cyan; 

        case 4 

            lineColor = [1 0 0]; %red; 

        case 5 

            lineColor = [0 1 0]; %green; 

        case 6 

            lineColor = [0 0 1]; %blue; 

        case 7 

            lineColor = [0 0 0]; %black; 

        case 8 

            lineColor = [.7014 0 1]; %violet; 

        case 9  

            lineColor = [1 0.2706 0]; %red-orange; 

        otherwise 

            lineColor = [1 0.4964 0.1367]; %brown; 

         

    end 

     

    data(:,2) = data(:,2)/1000; %convert to Ksi 

    data(:,4) = data(:,4)/1000; %convert to Ksi 

   

    figure(222) 

    title ('Load vs. Strain Curves, Machined Specimens') 

    ylabel('Load (Lbf)') 

    xlabel('Strain') 

    hold on 

    plot(data(:,1),data(:,3),'Color',lineColor) 

    hold off 

     

    %convert load data array to percentage of yield stress 

    data(:,3) = data(:,2)/AverageYield; 

       

    figure(333) 

    title ('Stress vs. Strain Curves, Machined Samples') 

    ylabel('Stress (ksi)') 

    xlabel('Strain') 

    hold on 

    plot(data(:,1),data(:,2),'Color',lineColor) 

    hold off 

     

    %configure to plot 'modulus' data against % of yield 

stress 

    modCounter = 0; 

    for j = 1:length(data) 

        if data(j,3)<1.0 
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            modCounter = modCounter+1; 

        else 

            break 

        end 

    end 

     

     

    figure(444) 

    title ('Slope of Stress-Strain Curve, Machined 

Samples') 

    ylabel('"Modulus" (ksi)') 

    xlabel('% of Average Yield Stress') 

    hold on 

    

plot(data(1:modCounter,3)*100,data(1:modCounter,4),'Color',

lineColor) 

    hold off 

     

    %figure(i) 

    %plot(data(:,1),data(:,2),data(:,1),data(:,3)) 

     

 

     

end 

 

AverageData = AverageData/numberOfSamples; 

 

outputFileName = 'AveragedDataMach.csv'; 

outputFile = fopen(outputFileName, 'w'); 

fprintf(outputFile,'Strain , Stress , Modulus\n'); 

 

for i=1:length(AverageData) 

    fprintf(outputFile,'%12.8f , %12.8f , %12.8f\n', 

AverageData(i,1),AverageData(i,2),AverageData(i,3)); 

end 

 

fclose(outputFile); 
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Appendix C: MATLAB Script for Compression Test Processing 
 

%Automated Data Processor for Compression Test on Nuts. 

 

windowOfInterest = 350; 

AverageData = zeros(windowOfInterest,3); 

numberOfSamples = 7; 

 

for i=1:numberOfSamples 

 

    S = num2str(i); 

    fileName = strcat('Sample',S,'.csv'); 

    fid=fopen(fileName); 

    data = textscan(fid,'%f 

%f','HeaderLines',3,'Delimiter',',','CollectOutput',1); 

    fclose(fid); 

 

    data = data{1}; 

 

    data = [data zeros(length(data),1)]; 

    %[ (Deformation) (Load) (Load-Deformation Slope)] 

     

    lengthOfData=length(data) 

     

    for j=2:length(data) 

        data(j,3) = (data(j,2)-data(j-1,2))/(data(j,1)-

data(j-1,1)); 

    end 

     

    if i<windowOfInterest+1 

        AverageData(:,1) = AverageData(:,1) + 

data(1:windowOfInterest,1); 

        AverageData(:,2) = AverageData(:,2) + 

data(1:windowOfInterest,2); 

        AverageData(:,3) = AverageData(:,3) + 

data(1:windowOfInterest,3); 

    end 

     

    switch i 

        case 1 

            lineColor = [1 1 0]; %yellow; 

        case 2 

            lineColor = [1 0 1]; %magenta; 

        case 3 

            lineColor = [0 1 1]; %cyan; 

        case 4 
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            lineColor = [1 0 0]; %red; 

        case 5 

            lineColor = [0 1 0]; %green; 

        case 6 

            lineColor = [0 0 1]; %blue; 

        case 7 

            lineColor = [0 0 0]; %black; 

        case 8 

            lineColor = [.7014 0 1]; %violet; 

        case 9  

            lineColor = [1 0.2706 0]; %red-orange; 

        otherwise 

            lineColor = [1 0.4964 0.1367]; %brown; 

         

    end 

     

    data(:,2) = data(:,2)/1000; 

    data(:,3) = data(:,3)/1000; 

   

    figure(222) 

    title ('Load Profiles') 

    ylabel('Load (kip)') 

    xlabel('Deformation (in)') 

    hold on 

    plot(data(:,1),data(:,2),'Color',lineColor) 

    hold off 

     

    figure(444) 

    title ('Slope of Load Profiles') 

    ylabel('"Modulus" (kip/in)') 

    xlabel('Load (kip)') 

    hold on 

    plot(data(:,2),data(:,3),'Color',lineColor) 

    hold off 

     

    %figure(i) 

    %plot(data(:,1),data(:,2),data(:,1),data(:,3)) 

     

 

     

end 

 

AverageData = AverageData/numberOfSamples; 

AverageData(:,2) = AverageData(:,2)/1000; 

AverageData(:,3) = AverageData(:,3)/1000; 

 

figure(222) 
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hold on 

plot(AverageData(:,1),AverageData(:,2),'--k','LineWidth',3) 

hold off 

 

figure(444) 

hold on 

plot(AverageData(:,2),AverageData(:,3),'--k','LineWidth',3) 

hold off 

 

outputFileName = 'AveragedData.csv'; 

outputFile = fopen(outputFileName, 'w'); 

fprintf(outputFile,'Deformation , Stress , Modulus\n'); 

 

for i=1:length(AverageData) 

    fprintf(outputFile,'%12.8f , %12.8f , %12.8f\n', 

AverageData(i,1),AverageData(i,2),AverageData(i,3)); 

end 

 

fclose(outputFile); 
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