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ABSTRACT

PBW deformations of Artin-Schelter

regular algebras and their homogenizations

by

Jason D. Gaddis

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor Allen Bell

A central object in the study of noncommutative projective geometry is the

(Artin-Schelter) regular algebra, which may be considered as a noncommutative

version of a polynomial ring. We extend these ideas to algebras which are not

necessarily graded. In particular, we define an algebra to be essentially regular

of dimension d if its homogenization is regular of dimension d + 1. Essentially

regular algebras are described and it is shown that that they are equivalent to PBW

deformations of regular algebras. In order to classify essentially regular algebras

we introduce a modified version of matrix congruence, called sf-congruence, which

is equivalent to affine maps between non-homogeneous quadratic polynomials. We

then apply sf-congruence to classify homogenizations of 2-dimensional essentially

regular algebras. We study the representation theory of essentially regular algebras

and their homogenizations, as well as some peripheral algebras.
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Chapter 1

Introduction

Lying at the intersection of algebraic geometry and noncommutative algebra is the

field of noncommutative projective geometry. This field has grown out of the seminal

work of Artin and Schelter [9], wherein the original motivation was to define a notion

of a noncommutative polynomial ring. They defined a connected graded algebra to

be (Artin-Schelter) regular if it has finite global and GK dimension and satisfies a

certain homological symmetry condition know as AS-Gorenstein (Definition 2.2.1).

The study of these algebras has inspired the development of a vast array of new

techniques and connections between algebra and other fields.

Much of this work is motivated by the following question: Can one enlarge the

class of regular algebras to include algebras which are not graded?

We approach this problem much as one would in algebraic geometry. Given

an algebra A which is presented by generators and (not-necessarily homogeneous)

relations, we homogenize the relations to produce a new, graded algebra, H(A),

called the homogenization of A. In case H(A) is regular, we say A is essentially

regular (Definition 2.3.1). These algebras are also referred to as central extensions

of a regular algebra in [41] and [23]. This follows from the standard fact that H(A)

is regular if and only if gr(A) is regular (Proposition 2.3.7). Thus, the study of

regular homogenizations is equivalent to the study of PBW deformations of regular

algebras.

Artin, Tate, and Van den Bergh classified regular algebras of dimension three

by associating each to a point scheme and automorphism in P2 or P1 × P1 [6]. This

geometry was exploited in [7] to study the module structure of regular algebras.

They developed a notion of point modules, which are modules of GK-dimension

one and in bijective correspondence to the points of the noncommutative curve

associated to the algebra. Information on the point modules allows one, in many
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cases, to determine the finite-dimensional simple modules of a regular algebra. The

analysis of this, in the case of the so-called Sklyanin algebras, was completed by

Walton in [58]. We ask whether the study of simple modules of a deformation can

be computed using geometric tools. By considering the geometry associated to the

homogenization of an essentially regular algebras, we prove the following.

Theorem 1 (Theorem 2.4.10). Suppose A is 2-dimensional essentially regular and

not a finite module over its center. Then all finite-dimensional simple modules of A

are 1-dimensional.

Such a theorem does not seem accessible (or even true) in higher dimensions.

However, we can generalize one part of this theorem to partially answer a conjecture

by Walton regarding deformed Skylanin algebras.

Suppose R is a quadratic geometric algebra (Definition 2.4.2). If A is a PBW de-

formation of R, then H(A) is geometric and so there exists a surjection φ : H(A)→
B, where B is a twisted homogeneous ring. The problem of determining the finite-

dimensional simple modules of H(A) then splits into two cases: those that are

torsion over kerφ and those that are torsionfree.

Theorem 2 (Theorem 2.4.12). Suppose A is a PBW deformation of a quadratic

geometric algebra and M is a finite-dimensional simple module of H(A) with ho-

mogenizing element x0. If M is torsion over kerφ, then either x0M = 0 and M is

a finite-dimensional simple module over gr(A) or else M is 1-dimensional.

A key initial result in the study of regular algebras is that there are exactly two

types of regular algebras in dimension two. One might then hope to have a similar

classification for essentially regular algebras. In fact, we are able to do a bit better.

Theorem 3 (Theorem 4.0.7). Suppose A ∼= K〈x, y | f〉 where f is a polynomial of

degree two. Then A is isomorphic to one of the following algebras:

Oq(K2), f = xy − qyx (q ∈ K×), Aq1(K), f = xy − qyx− 1 (q ∈ K×),

J , f = yx− xy + y2, J1, f = yx− xy + y2 + 1,

U, f = yx− xy + y, K[x], f = x2 − y,

Rx2 , f = x2, Rx2−1, f = x2 − 1,

Ryx, f = yx, S, f = yx− 1.

Furthermore, the above algebras are pairwise non-isomorphic, except

Oq(K2) ∼= Oq−1(K2) and Aq1(K) ∼= Aq
−1

1 (K).
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Many of these algebras are well-known. The algebras Oq(K2) are the quantum

planes and Aq1(K) the quantum Weyl algebras . The algebra J is the Jordan plane

and J1 is the deformed Jordan plane. If L is the two-dimensional solvable Lie

algebra, then U = U(L) is its enveloping algebra. This list slightly contradicts that

given in [54] since S and J1 both have GK-dimension two. An easy consequence of

this theorem is the following.

Corollary 1 (Corollary 2.3.14). The 2-dimensional essentially regular algebras are

Oq(K2), Aq1(K), J , J1 and U.

The proof of Theorem 4.0.7 is split between Chapters 3 and 4. In the former,

we determine a maximal list of forms for f . This is done by introducing a modified

form of matrix congruence. Let M ∈Mn(K) and write M in block form as,

M =

(
M1 M2

MT
3 m

)
,

where M1 ∈ Mn−1(K), M2,M3 ∈ Kn−1, m ∈ K. We define the K-linear map

sf :Mn(K)→Mn(K) via the rule(
M1 M2

MT
3 m

)
7→
(
M1 M2 +M3

0 m

)
.

One may regard the matrix M as a (non-homogeneous) quadratic relation in n− 1

variables. Hence, the map sf may be thought of as a matrix equivalent of combining

like linear terms. We say a matrix is in standard form if sf(M) = M . We define the

following group,

P =

{(
P1 P2

0 1

)
∈Mn(K) | P1 ∈ GLn−1(K), P2 ∈ Kn−1

}
.

Definition 1 (Definition 3.3.2). We say M,M ′ ∈ Mn(K) are standard-form

congruent (sf-congruent) and write M ∼sf M
′ if there exist P ∈ P and α ∈ K×

such that sf(M) = α · sf(P TM ′P ).

Canonical forms under standard-form congruence for matrices in M3(K) are

shown to be in near 1-1 correspondence algebras of the form K〈x, y | f〉 with

deg(f) = 2. These forms are given in Table 3.1. The second step is to deter-

mine whether any of the algebras corresponding to these forms are isomorphic. We

consider isomorphism problems for various families of algebras including quantum

affine spaces (Theorem 4.2.11) and quantum Weyl algebras (Propositions 4.3.5 and
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4.3.6). For the remainder, we consider ring-theoretic properties of the algebras.

In particular, we classify the prime and primitive ideals in order to determine the

finite-dimensional simple modules.

In Chapter 5 we study the homogenizations of 2-dimensional essentially regular

algebras. In particular, sf-congruence can also be used to classify algebras of the

form K〈x, y, z | f, xz−zx, yz−zy〉, where deg(f) = 2 and f is homogeneous. Using

results of Irving ([32], [33]), we determine the prime ideals, which in turn allows us

to determine the primitive ideals and the finite-dimensional simple modules.

Theorem 4 (Theorem 5.2.4). Let A be 2-dimensional essentially regular with gen-

erators x and y and H = H(A) with homogenizing element z. If P is a nonzero

prime ideal in H, then one of the following holds:

1. z ∈ P and P corresponds to a prime of H/(z);

2. z − α ∈ P , α ∈ K×, and P corresponds to a prime of H/(z − 1);

3. xy − yx ∈ P ;

4. P ∩ K[y, z] = (g1 · · · gn) where the gi are irreducible polynomials in K[y, z]

disjoint from K[z];

5. P ∩ K[x, z] = (g1 · · · gn) where the gi are irreducible polynomials in K[x, z]

disjoint from K[z].

We conclude this work by generalizing the notion of homogenization by intro-

ducing skew homogenizations in Chapter 6. In this case, the homogenizing element

is no longer assumed to be central, but instead normal such that it commutes with

the original generators via a quantum-plane like relation. These algebras may be

regarded as Zhang twists of standard homogenizations.

As with the homogenizations, we attempt to study the representation theory by

first computing the prime ideals. Also, as with the homogenizations, these algebras

can be constructed as skew polynomial rings over quantum planes. Our primary

tools in this chapter come from results by Goodearl and Letzter ([28]) and results

by Leroy and Matczuk ([43]). Much of the work will come in showing when δ is an

inner derivation (resp. inner σ-derivation) in the skew polynomial ring Oq(K2)[x; δ]

(resp. Oq(K2)[x;σ, δ]). Thus, the following result is essential to our study.
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Proposition 1 (Proposition 6.1.1). Let R = Op(K2)[x; δ] with δ(z) = 0. If p is

not a root of unity, then δ is inner if and only if δ(y) has no constant term. If p is

a primitive nth root of unity, then δ is inner if and only if z does not appear to a

power dividing n in δ(y).

Special attention is paid to skew homogenizations of the quantum Weyl alge-

bras. These algebras may be considered as two-parameter analogs of the Heisenberg

enveloping algebra. The single parameter case was studied by Kirkman and Small

[38]. They showed that such an algebra has a primitive factor ring isomorphic to

the Hayashi-Weyl algebra [30]. In our case, we show that if there exists r, s ∈ Z
such that pr = qs, then the two parameter Heisenberg enveloping algebra contains

a primitive central element Ω.

Theorem 5 (Theorem 6.3.6). Let p, q ∈ K× be nonroots of unity. Suppose there

exist r, s ∈ Z such that pr = qs. For all α ∈ K×, A = Hp,q/(Ω − α) is a simple

noetherian domain of GK-dimension two and global dimension one.

Unless otherwise specified, we assume K is an uncountable, algebraically closed

field with char(K) = 0. All algebras may be regarded as K-algebras and all isomor-

phisms should be read as ‘isomorphisms as K-algebras’. All algebras are assumed

to be generated in degree one unless otherwise specified.
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Chapter 2

Essentially regular algebras

The motivation for studying essentially regular algebras is to determine a sort of

ungraded version of regularity. There are two graded algebras one may associate

to an essentially regular algebra, the associated graded algebra gr(A) and the ho-

mogenization H(A). We show that regularity of one implies regularity of the other

(Proposition 2.3.7). Moreover, we show that, in the case A is noetherian essentially

regular, both the global dimension and GK dimension of A are finite (Corollary

2.3.9). One proposed generalization of the notion of regular algebras is that of a

Calabi-Yau algebra. In particular, Reyes, Rogalski and Zhang have shown that

regular algebras are the same as connected graded skew Calabi-Yau algebras (The-

orem 2.2.6). We show that essentially regular algebras are also skew Calabi-Yau

(Proposition 2.3.11).

We begin this section with some background on filtered and graded algebras

(Section 2.1) and then proceed to give some background on regular algebras (Section

2.2). In Section 2.3 we give the definition of an essentially regular algebra and explore

its basic properties. In addition, we use Theorem 4.0.7 to classify all dimension two

essentially regular and give several examples in dimension three.

In the generic case, one may associate a set of geometric data to a regular

algebra. This is one of the most powerful facts about regular algebras. We exploit

this geometry to study the finite-dimensional simple modules of essentially regular

algebras. In particular, we show that the finite-dimensional simple modules of a 2-

dimensional non-PI essentially regular algebra are 1-dimensional (Theorem 2.4.10).

This is generalized in Theorem 2.4.12, which makes progress toward a conjecture of

Walton regarding finite-dimensional simple modules of deformed Sklyanin algebras.
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2.1 Filtered and graded algebras

Given a (noncommutative) polynomial f ∈ K〈x1, . . . , xn〉 with α = deg(f), write

f =
∑

1≤i1≤···≤i`≤n

cix
αi1
i1
· · ·xαi`i` , ci ∈ K,αik ∈ N,

∑̀
k=1

αik ≤ α, (2.1)

where all but finitely many of the ci are zero. The homogenization of f is then

f̂ =
∑

1≤i1≤···≤i`≤n

cix
αi1
i1
· · ·xαi`i` x

αi0
0 ,

where x0 is a new, central indeterminate and αi0 is chosen such that
∑`

k=0 αik = α.

Then f̂ is homogeneous.

Definition 2.1.1. Let A be of form

A = K〈x1, . . . , xn | f1, . . . , fm〉. (2.2)

The homogenization H(A) of A is the K-algebra on the generators x0, x1, . . . , xn

subject to the homogenized relations f̂i, i ∈ {1, . . . ,m}, as well as the additional

relations x0xj − xjx0 for all j ∈ {1, . . . , n}.

A filtration F on an algebra A is a collection of vector spaces {Fn(A)} such that

Fn(A) ⊂ Fn+1(A), Fn(A) · Fm(A) ⊂ Fn+m(A), and
⋃
Fn(A) = A. The filtration F

is said to be connected if F0(A) = K and F`(A) = 0 for all ` < 0. The associated

graded algebra of A is grF(A) :=
⊕

i≥0Fi(A)/Fi−1(A). The algebra grF(A) is said

to be connected if the filtration F is connected.

Associated to the pair (A,F) is also the Rees ring of A,

RF(A) :=
⊕
n≥0

Fn(A)xn0 .

For an algebra A of the form (2.2), there is a standard connected filtration wherein

Fd(A) is the span of all monomials of degree at most d. Since this filtration is the

only one we consider, we drop the subscript on gr(A) and R(A). One can recover A

and gr(A) from H(A) via A ∼= H(A)/(x0− 1) and gr(A) ∼= H(A)/(x0), respectively.

An algebra is said to be graded if gr(A) = A. In this case, we write Ad for the vector

space spanned by homogeneous elements of degree d.

Let F = (f1, . . . , fm) be the set of relations of A. We can filter F in much the

same way we filtered A. For each i ∈ {1, . . . ,m}, let ri be the highest homogeneous

degree component of fi. Let R = (r1, . . . , rm). There is a canonical surjection

K〈x1, . . . , xn | R〉 → gr(A). (2.3)
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Definition 2.1.2. We say A is a Poincaré-Birkhoff-Witt (PBW) deforma-

tion of gr(A) if the map (2.3) is an isomorphism.

Definition 2.1.2 may be considered as a generalization of the well-known PBW

theorem for Lie algebras. Recall that when L is a Lie algebra and U(L) its enveloping

algebra, then U(L) is a PBW deformation of S(L), the symmetric algebra on L.

The projective dimension of a right A-module M is the minimum length of a

projective resolution of M . The right global dimension of A, rgld(A), is the supre-

mum of the projective dimensions of the right A-modules. Left global dimension,

lgld(A), is defined similarly. When A is noetherian, the right and left global di-

mension coincide, and we write gld(A) for the global dimension of A. Let A+ be

the augmentation ideal generated by all degree one elements. If A is graded, then

the global dimension of A is equal to the projective dimension of the trivial module

KA = A/A+.

Let V be a K-algebra generating set for A and V n the set of degree n monomials

in A. If dimV n ≥ tn for some t > 1, then A is said to have exponential growth.

Otherwise, A has subexponential growth. If there exists c, t ∈ N such that V n ≤ ctn

for all n, then A is said to have polynomial growth. The Gelfand-Kirilov dimension

(GK dimension) of A is defined as

gk(A) := lim sup
n→∞

logn(dimV n).

Hence, if A has polynomial growth as defined above, then gk(A) = t.

The algebra A is said to be AS-Gorenstein if ExtiA(KA, A) ∼= δi,d · AK where

δi,d is the Kronecker delta and d = gld(A). The AS-Gorenstein property may be

thought of as a sort of homological symmetry condition. That is, the condition

ensures that the length of a minimal projective resolution of the trivial module KA

is equal to that of the dual resolution obtained by taking Hom(�, A) of each term

in the resolution.

Of special importance to our analysis throughout this work is the concept of a

skew polynomial ring (or Ore extension). Let R be a ring, σ ∈ Aut(R) and δ a σ-

derivation, that is, δ : R→ R satisfies the skew Leibniz rule, δ(rs) = σ(r)δ(s)+δ(r)s

for all r, s ∈ R. This reduces to the usual Leibniz rule when σ = idR.

Definition 2.1.3. Let R be a ring, σ ∈ Aut(R) and δ a σ-derivation. The skew

polynomial ring R[ξ;σ, δ] is defined as the overring of R with commutation defined

by ξr = σ(r)ξ + δ(r) for all r ∈ R. In case δ = 0 we write R[ξ;σ], and in case
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σ = idR we write R[ξ; δ]. The latter are referred to as differential operator

rings.

By a generalization of the Hilbert Basis Theorem, R[ξ;σ, δ] is noetherian when

R is noetherian ([29], Theorem 2.6).

If there exists a unit u ∈ R such that σ(r) = u−1ru for all r ∈ R, then σ is

said to be an inner automorphism and we have R[ξ;σ, δ] = R[uξ;uδ]. On the other

hand, if there exists a ∈ R such that δ(r) = ar − σ(r)a for all r ∈ R, then δ is said

to be an inner σ-derivation and R[ξ;σ, δ] = R[ξ − a;σ].

Finally, a ring R is said to be a polynomial identity ring (PI ring) if there exists

a polynomial P ∈ Z〈x1, . . . , xn〉 such that P (r1, . . . , rn) for all ri ∈ R. By [49],

Corollary 13.1.13 (iii), if R is finitely generated as a right module over its center Z,

then R is PI. In this case, dimZ(R) = n2 <∞. The number n is the PI-degree of R

and we write pid(R) = n.

2.2 Artin-Schelter regular algebras

The basic object of study in this thesis is the Artin-Schelter regular algebra. In this

section, we define these algebras using notions developed in the previous section and

outline the approach taken by Artin, Tate, and Van den Bergh ([6],[7]).

Definition 2.2.1. A connected graded algebra H is said to be (Artin-Schelter) reg-

ular of dimension d if H has finite global dimension d, finite GK dimension, and

is AS-Gorenstein.

In all known cases, the GK dimension of a regular algebra coincides with its

global dimension. We now recall some standard facts regarding regular algebras of

low dimension. In dimension two, there are only two types, the quantum planes

Oq(K2), and the Jordan plane J . In dimension three, every regular algebra surjects

onto a twisted homogeneous coordinate ring B. Details on these rings are given in

Section 2.4 and for now we simply state that they are defined by a projective scheme

E, a line bundle L, and an automorphism σ of E. This is a natural generalization

of a homogeneous coordinate ring in (commutative) algebraic geometry and there

is an analog of ampleness called σ-ampleness. Artin and Van den Bergh [8] showed

that a twisted homogeneous coordinate ring is noetherian when L is a σ-ample line

bundle.
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Theorem 2.2.2 (Artin, Tate, Van den Bergh). A regular algebra of dimension ≤ 3

is noetherian.

All known regular algebras are domains. In dimension two, the result follows by

standard facts on skew polynomial rings. The most significant general result in this

direction is recalled next, and the proof relies on knowledge of the point modules of

a regular algebra.

Theorem 2.2.3 (Artin, Tate, Van den Bergh). A regular noetherian algebras of

dimension ≤ 4 is a domain.

Closely related to regular algebras is the more recent notion of a Calabi-Yau and

skew Calabi-Yau algebra, which we define now.

The enveloping algebra of A is defined as Ae := A⊗Aop. If M is both a left and

right A-module, then M is an Ae-module with the action given by (a⊗ b) · x = axb

for all x ∈ M , a, b ∈ A. Correspondingly, given automorphisms σ, τ ∈ Aut(A), we

can define the twisted Ae-module σM τ via the rule (a ⊗ b) · x = σ(a)xτ(b) for all

x ∈M , a, b ∈ A. When σ is the identity, we omit it.

Definition 2.2.4. An algebra A is said to be homologically smooth if it has a

finite resolution by finitely generated projectives as an Ae-module. The length of this

resolution is the Hochschild dimension of A.

The Hochschild dimension of a Calabi-Yau algebra is known to coincide with the

global dimension ([17], Remark 2.8).

Definition 2.2.5. An algebra A is said to be skew Calabi-Yau of dimension d if

it is homologically smooth and there exists an automorphism τ ∈ Aut(A) such that

there are isomorphisms

ExtiAe(A,A
e) ∼=

{
0 if i 6= d

Aτ if i = d.

If τ is the identity, then A is said to be Calabi-Yau.

The condition on Ext in Definition 2.2.5 is sometimes referred to as the rigid

Gorenstein condition [20].

PBW deformations of Calabi-Yau algebras were studied by Berger and Taillefer

[17]. Their main result is that PBW deformations of Calabi-Yau algebras defined

by quivers and potentials are again Calabi-Yau. More recently, Wu and Zhu proved
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that a PBW deformation of a noetherian Koszul Calabi-Yau algebra is Calabi-Yau

if and only if its Rees ring is [59]. The next result is essential to our analysis.

Theorem 2.2.6 (Reyes, Rogalski, Zhang). An algebra is connected graded Calabi-

Yau if and only if it is regular.

We prove in the next section that PBW deformations of regular algebras are again

skew Calabi-Yau (Proposition 2.3.11). This is then used to show that certain skew

polynomial extensions of essentially regular algebras are again essentially regular.

2.3 Essentially regular algebras

Definition 2.3.1. We say an algebra A is essentially regular of dimension d if

H(A) is regular of dimension d+ 1.

The following lemma is useful in passing properties between A and H(A).

Lemma 2.3.2. Suppose x0 is not a zero divisor. Then H(A)[x−10 ] ∼= A[x±10 ].

Proof. Let f be a defining relation for A and f̂ the homogenized relation in H. Let

α = deg(f) and write f as in (2.1). Then

0 = x−α0 f̂ =
∑

1≤i1≤···≤i`≤n

ci(x
−1
0 xi1)

αi1 · · · (x−10 xi`)
αi` .

If we let X0 = x0 and Xi = x−10 xi for i > 0, then the {Xi}i≥0 generate A[x±10 ] in

H[x−10 ]. Conversely, in A[x±10 ] we have

0 = xα0f =
∑

1≤i1≤···≤i`≤n

ci(x0xi1)
αi1 · · · (x0xi`)αi` .

If we let X0 = x0 and Xi = x0xi for i > 0, then the {Xi}i≥0 generate H[x−10 ] in

A[x±10 ].

In the case that x0 is not a zero divisor, we have H(A) ∼= R(A) ([59], Proposition

2.6) and H(A) becomes a regular central extension of gr(A) (see [23], [41]). However,

this need not always be the case, as the next example illustrates, and so we choose

to use H(A) instead of R(A) in Definition 2.3.1.

Example 2.3.3. Let A = K〈x1, x2 | x21 − x2〉. Then A ∼= K[x]. However, the

algebra H(A) is not regular. Indeed,

x1x2x0 = x1x
2
1 = x21x1 = x2x0x1 = x2x1x0 ⇒ (x1x2 − x2x1)x0 = 0.
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Thus, either x0 is a zero divisor or else H(A) is commutative. The latter cannot

hold because H(A)/(x0) ∼= K〈x1, x2 | x21〉 is not commutative. By [7], Theorem 3.9,

all regular algebras of dimension at most four are domains. Hence, in this case,

H(A) � R(A).

In light of Theorem 2.2.3 and the previous example, we hereafter assume that

H(A) is a domain whenever A is essentially regular.

Example 2.3.4. The dimension of an essentially regular algebra is not the same as

its global dimension in all cases. The first Weyl algebra, A1 = K〈x, y | yx−xy+1〉,
is dimension two essentially regular but has global dimension one.

Let Z(A) denote the center of A. One would expect a natural equivalence

between the center of a homogenization and the homogenization of a center. The

next proposition formalizes that idea.

Proposition 2.3.5. Suppose x0 is not a zero divisor. By identifying generators, we

have Z(H(A)) = H(Z(A)).

Proof. By [53], Propositions 1.2.20 (ii) and 1.10.13, along with Lemma 2.3.2,

H(Z(A))[x−10 ] ∼= Z(A)[x±10 ] = Z(A[x±10 ]) ∼= Z(H(A)[x−10 ]) = Z(H(A))[x−10 ].

Thus, H(Z(A))[x−10 ] ∼= Z(H(A))[x−10 ]. It remains to be shown that the subalgebras

H(Z(A)) and Z(H(A)) are isomorphic and, moreover, the elements can be identified

by generators.

Let f̂ ∈ H(Z(A)), then f̂ ∈ H(Z(A))[x−10 ] and, by Lemma 2.3.2, f ∈ Z(A)[x±10 ].

Since only positive powers of x0 appear in f , then f ∈ Z(A)[x0]. Therefore, f ∈
Z(A)[x±10 ] = Z(A[x±10 ]) and so f̂ ∈ Z(H(A)[x−10 ]) = Z(H(A))[x−10 ]. Again, since

only positive powers of x0 appear in f̂ , then f̂ ∈ Z(H(A)). The converse is similar.

We now consider properties that pass between an essentially regular algebra and

its homogenization.

Proposition 2.3.6. Suppose x0 is not a zero divisor and H = H(A).

1. A is prime if and only if H is prime;

2. A is PI if and only if H is PI;
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3. A is noetherian if H is noetherian;

4. H is noetherian if gr(A) is noetherian;

5. H is not primitive.

Proof. (1) is well-known since x0 is central and not a zero divisor. (2) is a con-

sequence of Proposition 2.3.5. (3) is clear because A is a factor algebra of H and

(4) follows from [6], Lemma 8.2. The algebra H is affine over the uncountable,

algebraically closed field K, so (5) follows from [37], Proposition 3.2.

The next proposition shows that essentially regular algebras are equivalent to

PBW deformations of regular algebras.

Proposition 2.3.7. An algebra A is essentially regular if and only if gr(A) is reg-

ular. Moreover, if A is essentially regular, then it is a PBW deformation of gr(A).

Proof. Let B = gr(A) and H = H(A). Since x0 ∈ H is central and not a zero divisor,

then by the Rees Lemma ([52], Theorem 8.34), ExtnB(KB, B) ∼= Extn+1
H (KH , H).

Hence, B is AS-Gorenstein if and only if H is. Moreover, since B (resp. H) is

graded, then gld(B) = pd(KB) (resp. gld(H) = pd(KH)). By the Rees Lemma,

gld(B) = d if and only if gld(H) = d + 1. The sequence 0 → x0H → H → B → 0

is exact, so gk(B) ≤ gk(H)− 1 <∞ when H is regular. Conversely, if B is regular,

then gk(A) = gk(B) <∞. Localization at the central regular element x0 in H and

in A[x0] preserves GK dimension ([49], Proposition 8.2.13). This, combined with

Lemma 2.3.2, gives,

gk(H) = gk(H[x−10 ]) = gk(A[x±10 ]) = gk(A) + 1 <∞.

That A is a PBW deformation now follows from [22], Theorem 1.3.

Corollary 2.3.8. If A is regular, then A is essentially regular.

Corollary 2.3.9. If A is a noetherian essentially regular algebra, then A has finite

global and GK dimension.

Proof. By [49], Corollary 6.18, and because gr(A) is regular, gldA ≤ gld gr(A) <∞.

The statement on GK dimension follows from the proof of Proposition 2.3.7.

Corollary 2.3.10. An algebra A is essentially regular of dimension d if and only

if A[ξ] is essentially regular of dimension d+ 1.
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Proof. We need only observe that H(A[ξ]) = H(A)[ξ] and that regularity is pre-

served under polynomial extensions.

We now show that the class of essentially regular algebras lives within the class of

skew Calabi-Yau algebras. This will enable us to prove that the property of essential

regularity is preserved under certain skew polynomial extensions.

Proposition 2.3.11. If A is noetherian essentially regular, then A is skew Calabi-

Yau.

Proof. By Proposition 2.3.7, A is a PBW deformation of the regular algebra gr(A).

By [60], A has a rigid dualizing complex R = Aσ[n] for some integer n and some σ ∈
Aut(A). This is precisely the condition forA to be rigid Gorenstein. The filtration on

A is noetherian and connected, so A has a finitely generated Ae-projective resolution

([49], Theorem 7.6.17). Thus, A is homologically smooth.

Suppose A is of the form (2.2). If σ ∈ Aut(A) with deg(σ(xi)) = 1, then σ

lifts to an automorphism σ̂ ∈ Aut(H(A)) defined by σ̂(x0) = x0 and σ̂(xi) = σ̂(xi)

for i > 0. To see this, let g be a defining relation for A and ĝ the corresponding

relation in H(A). For a generator xi of A, σ(xi) = yi,1 + yi,0 for some yi,1 ∈ A1 and

yi,0 ∈ A0 = K. Thus, σ̂(xi) = yi,1 + yi,0x0. We must show that this rule implies

σ̂(g) = σ̂(g). Suppose deg(g) = d and write g =
∑d

i=0 gi with deg(gi) = i. Then

σ(gi) =
∑i

j=0 gi,j where deg(gi,j) = j. Thus,

σ̂(g) =
d̂∑
i=0

σ(gi) =

̂d∑
i=0

i∑
j=0

gi,j =
d∑
i=0

i∑
j=0

gi,jx
d−j
0 .

Now ĝ =
∑d

i=0 gix
d−i
0 and a similar computation shows

σ̂(ĝ) =
d∑
i=0

σ̂(gi)x
d−i
0 =

d∑
i=0

i∑
j=0

(gi,jx
i−j
0 )xd−i0 =

d∑
i=0

i∑
j=0

gi,jx
d−j
0 .

Similarly, if δ is a σ-derivation of A with deg δ(xi) ≤ 2 for all i, then δ̂ is a

σ̂-derivation of H(A) with δ̂(x0) = 0 and δ̂(xi) = δ̂(xi) for i > 0.

Lemma 2.3.12. Let A, σ, and δ be as above. Then H(A[ξ;σ, δ]) = H(A)[ξ; σ̂, δ̂].

Proof. The defining relations for A[ξ;σ, δ] are f1, . . . , fm along with e1, . . . , en where

ei = xiξ − σ(ξ)xi − gi. The defining relations for H(A[ξ;σ, δ]) are then f̂i, . . . , f̂m

along with êi = xiξ− σ̂(ξ)xi− ĝi. Defining δ̂(xi) = ĝi we see that δ̂ is a σ̂-derivation

of H(A).
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Proposition 2.3.13. Let A be essentially regular. If σ and δ are as above, then

A[ξ;σ, δ] is essentially regular.

Proof. Let R = H(A)[ξ; σ̂, δ̂]. By Lemma 2.3.12, it suffices to prove that R is

regular. Since H(A) is regular, then it is Calabi-Yau. By [45], Theorem 3.3, skew

polynomial extensions of Calabi-Yau algebras are Calabi-Yau and so R is Calabi-

Yau. Moreover, σ̂ and δ̂ preserve the grading on H(A) and so R is graded. Thus,

by Theorem 2.2.6, R is regular.

We end this section with a classification of essentially regular algebras in dimen-

sion two and several examples of those of dimension three. If A is essentially regular

of dimension two, then H(A) is dimension three regular. Hence, H(A) either has

three generators subject to three quadratic relations, or else it has two generators

subject to two cubic relations. Since H(A) is a homogenization, then the commuta-

tion relations for x0 give two quadratic relations, so there must be some presentation

in the first form. Since A ∼= H(A)/(x0−1), then the commutation relations drop off

and we are left with one quadratic relation. Those algebras of the form K〈x, y | f〉
where f is quadratic are classified in Theorem 4.0.7. An easy consequence of this is

the next corollary.

Corollary 2.3.14. The dimension two essentially regular algebras are

Oq(K2), Aq1(K),J ,J1,U.

Proof. The algebrasOq(K2) and J are 2-dimensional regular [9]. On the other hand,

Rx2 and Ryx are not domains and therefore not regular [7]. Therefore, Aq1(K), J1

and U are essentially regular of dimension two, whereas K[x], Rx2−1 and S are not

by Proposition 2.3.7.

We collect a few examples of 3-dimensional essentially regular algebras. We

have already observed that if H is 3-dimensional regular, then H is 3-dimensional

essentially regular (Corollary 2.3.8) and if A is 2-dimensional regular, then A[ξ] is

3-dimensional essentially regular (Corollary 2.3.10).

Example 2.3.15 ([42]). Let L be at 3-dimensional Lie algebra over K. The en-

veloping algebra U(L) is 3-dimensional essentially regular. A special case of interest

is when L = sl2(C) (see [40]).
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Example 2.3.16 ([22]). Essentially regular algebras need not be skew polynomial

rings. The down-up algebra A(α, β, γ) for α, β, γ ∈ K is defined as the K-algebra

on generators d, u subject to the relations d2u = αdud + βud2 + γd, du2 = αudu +

βu2d+ γu. The algebra A(α, β, γ) is 3-dimensional essentially regular if and only if

β 6= 0.

Example 2.3.17. Let (a : b : c) ∈ P2\D where

D = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)} ∪ {(a : b : c) | a3 = b3 = c3 = 1}

such that abc 6= 0 and (3abc)3 6= (a3 + b3 + c3)3. The (3-dimensional) Sklyanin

algebra has presentation

K〈x, y, z | axy + byx+ cz2, ayz + bzy + cx2, azx+ bxz + cy2〉.

The deformed Sklyanin algebra S has generators x, y, z and relations

axy + byx+ cz2 + d1 + e1 = 0,

ayz + bzy + cx2 + d2 + e2 = 0,

azx+ bxz + cy2 + d3 + e3 = 0,

where, for all i ∈ {1, 2, 3}, di is a linear term in x, y, z and ei ∈ K. By Proposition

2.3.7, S is 3-dimensional essentially regular.

2.4 Geometry of homogenized algebras

In [6], Artin, Tate, and Van den Bergh showed that every dimension two and di-

mension three regular algebra surjects onto a twisted homogeneous coordinate ring.

We begin this section by defining a twisted homogeneous coordinate ring following

the exposition in [36]. We then go on to define the related concept of a geometric

algebra, which was originally called an algebra defined by geometric data by Vancliff

and Van Rompay [57].

While one would not expect such a construction for deformations of regular

algebras, we might hope to recover information about the deformed algebra from

the geometry associated to the homogenization of a deformation. We show that,

in certain cases, this geometry allows us to classify all finite-dimensional simple

modules of a deformed regular algebra.
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Let L be a line bundle, E a projective scheme, and σ ∈ Aut(E). Set L0 = OE
(the structure sheaf on E) and, for d ≥ 1, Ld = L ⊗OE Lσ ⊗OE · · · ⊗OE Lσ

d−1
.

Define the (graded) vector spaces Bm = H0(E,Lm). Taking global sections of the

natural isomorphism Ld ⊗OE Lσ
d

e
∼= Ld+e gives a multiplication defined by a · b =

aσm(b) ∈ Bm+n for a ∈ Bm, b ∈ Bn. If σ = idE, then this construction defines the

(commutative) homogeneous coordinate ring of E.

Definition 2.4.1. The twisted homogeneous coordinate ring of E with re-

spect to L and σ is the N-graded ring B = B(E,L, σ) :=
⊕

d≥0H
0(E,Ld) with

multiplication defined as above.

Artin and Stafford have shown that every domain of GK dimension two is iso-

morphic to a twisted homogeneous coordinate ring [5]. Hence, if H is 3-dimensional

regular and g ∈ H3 is a normal element, then gk(H/(g)) ≤ 2 and therefore H/(g)

must be isomorphic to some B. By [6], Theorem 6.8, every 3-dimensional regular

algebra contains such an element.

To define a geometric algebra, we make a slight change of notation to conform

to convention. In addition, we specialize to the case of quadratic algebras. These

algebras were originally defined by Vancliff and Van Rompay. They were renamed

geometric algebras by Mori [50] and we use his definition here.

The free algebra K〈x0, x1, . . . , xn〉 is equivalent to the tensor algebra T (V ) where

V = {x0, . . . , xn}. If H is a quadratic homogeneous algebra, then we write H =

T (V )/(R) where R is the set of defining polynomials of H. Any defining polynomial

may be regarded as a bilinear form f : V ⊗K V → K. Write f =
∑
αijxi ⊗ xj,

αij ∈ K. If p, q ∈ P(V ∗), written as p = (a0 : a1 : · · · : an) and q = (b0 : b1 : · · · : bn),

then f(p, q) =
∑
αijaibj (we drop the tensor product for convenience). Define the

vanishing set of R as

V(R) := {(p, q) ∈ P(V ∗)× P(V ∗) | f(p, q) = 0 for all f ∈ R}.

Definition 2.4.2. A homogeneous quadratic algebra H = T (V )/(R) is called geo-

metric if there exists a scheme E ⊂ P(V ∗) and σ ∈ AutE such that

G1 V(R) = {(p, σ(p)) ∈ P(V ∗)× P(V ∗) | p ∈ E},

G2 R = {f ∈ V ⊗k V | f(p, σ(p)) = 0 for all p ∈ E}.

The pair (E, σ) is called the geometric data corresponding to H.
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All regular algebras of dimension at most three are geometric. The classification

of quadratic regular algebras given in [6] shows that either E = P2 or else E is a

cubic divisor in P2. The projective scheme E is referred to as the point scheme of H.

It is not true that every 4-dimensional regular algebra is geometric [56]. However,

it seems that they are in the generic case.

Theorem 2.4.3. If A is a PBW deformation of a quadratic geometric algebra, then

H(A) is geometric.

Proof. Let V = {x1, . . . , xn} and W = {x0} ∪ V . Write H(A) = T (W )/(R) and

gr(A) = T (V )/(S). Choose p, q ∈ V(R) and write

p = (a0 : a1 : · · · : an), q = (b0 : b1 : · · · : bn).

Let ei = x0xi−xix0, i = 1, . . . , n, be the commutation relations of x0 in H. Suppose

a0 = 0, then ei(p, q) = 0 implies aib0 = 0 for i = 1, . . . , n. Since q is not identically

zero, then b0 = 0. Reversing the argument, we see that a0 = 0 if and only if

b0 = 0. Let E0 ⊂ V(R) be those points with the first coordinate zero and define

σ|E0 to be the automorphism corresponding to gr(A). Then E0 is σ-invariant and

the restriction (E0, σ|E0) is the geometric pair for gr(A).

Let E1 ⊂ E be those points with first coordinate nonzero. If a0 6= 0, then b0 6= 0

and so there is no loss in letting a0 = b0 = 1. Hence, ei(p, q) = 0 implies ai = bi and

so we define σ|E1 = idE1 .

We define the scheme E := E0 ∪E1 ⊂ P(V ∗) where E0 corresponds to the point

scheme of gr(A) and E1 corresponds to the diagonal of V(R). That is, p ∈ E1

if (p, p) ∈ V(R). Define the automorphism σ where σ|E0 is the automorphism

corresponding to gr(A) and σ|E1 = idE1 . Thus, E0 and E1 are σ-invariant and V(R)

is the graph of E. It is left to check that G2 holds.

Let F be R reduced to E0. If f ∈ F , then f(p, p) = 0 for all p ∈ E1, so f corre-

sponds to a relation in commutative affine space. Define C = K[x1, . . . , xn]/(F ). If

g ∈ V ⊗k V such that g(p, σ(p)) = 0 for all p ∈ E1, then ĝ := g|E1 ∈ V(F ). By the

Nullstellensatz, ĝn ∈ F for some n. On the other hand, if p ∈ E0, then either g is a

commutation relation or else gr(g) ∈ S. Thus, g is quadratic and so n = 1. Hence,

g ∈ R.

The algebra V = K〈x, y | yx − xy + y2 + x〉 is isomorphic to U (Proposition

3.4.6). However, H(U) � H(V) by the next corollary. It is not known whether
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H(A) ∼= H(B) implies A ∼= B in general. The following corollary provides a similar

result for graded algebras.

Corollary 2.4.4. If H(A) ∼= H(B) where A and B are essentially regular, then

gr(A) ∼= gr(B) as graded algebras.

Proof. Suppose Φ : H(A) → H(B) is an isomorphism and let (E, σ), (F, τ) be

the corresponding geometric pairs. The point schemes E and F decompose as

E = E0 ∪ E1 and F = F0 ∪ F1, where E0 corresponds to the point scheme of gr(A)

and F0 to gr(B). The automorphisms σ and τ fix E0 and F0, respectively. Hence,

Φ restricts to an isomorphism (E0, σ|E0)
∼= (F0, τ |F0). These point schemes are in

1-1 correspondence with gr(A) and gr(B), and so induce an isomorphism as graded

algebras [50].

If H is geometric, then H1 ≈ B1 and so there is a surjection µ : H → B. In

particular, L = j∗OP(V ∗)(1) where j : E → P(V ∗) is the natural embedding. When

H is noetherian, I = kerµ is finitely generated by homogeneous elements and so

there is hope of pulling information about H back from B. Let M be a finite-

dimensional simple module of H. Then M is either I-torsion or it is I-torsionfree.

Those of the first type may be regarded as modules over H/I ∼= B. Those of the

second type are not as tractable, though results from [7] give us a complete picture

in the case that H is regular of dimension three. Our goal is to generalize the

following example to homogenizations of 2-dimensional essentially regular algebras

that are not PI.

Example 2.4.5. If H = H(J1), then E1 = {(1 : a : ±i)}. The finite-dimensional

simple modules of J1 are exactly of the form J1/((x1−a)J1 + (x2± i)J1). They are

all non-isomorphic.

Closely related to these results is a conjecture by Walton.

Conjecture 2.4.6 (Walton). Let S be a PBW deformation of a Sklyanin algebra

that is not PI. Then all finite-dimensional simple modules of S are 1-dimensional.

While we cannot solve this conjecture in its entirety, we make progress towards an

affirmative answer by showing that the modules which are torsion over the canonical

map H(S)→ B are 1-dimensional.

Let A be essentially regular and H = H(A) geometric with geometric pair (E, σ).

If f is a defining relation of H and p = (p0 : p1 : · · · : pn) ∈ E1, then f(p, σ(p)) = 0
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implies σ(p) = p. Thus, we write f(p, p) = 0 or, more simply, f(p) = 0. This is

equivalent to defining the module,

Mp = H/((x0 − 1)H + (x1 − p1)H + · · ·+ (xn − pn)H).

Since H acts on Mp via scalars, then M is 1-dimensional. Since x0 − 1 ∈ Ann(Mp),

then Mp may be identified with the A-module A/((x1 − p1)A + · · · + (xn − pn)A).

By an abuse of notation, we also call this A-module Mp. Conversely, if M = {v} is

a 1-dimensional (simple) A-module, then A acts on M via scalars, say xi.v = civ,

ci ∈ K, i = 1, . . . , n. By setting x0.v = v, M becomes an H-module. This action

must satisfy the defining relations of H and so setting pi = ci gives f(p) = 0. We

have now proved the next proposition.

Proposition 2.4.7. Let A be essentially regular. The A-module M is 1-dimensional

if and only if M ∼= Mp for some p ∈ E1.

Corollary 2.4.8. Let Mp and Mq be 1-dimensional (simple) modules of an essen-

tially regular algebra A. Then Mp
∼= Mq if and only if p = q.

For A essentially regular, we believe that certain conditions will imply that these

are all of the finite-dimensional simple modules. In the following, we will show that

this is the case when A is 2-dimensional essentially regular and not PI.

Lemma 2.4.9. If A is essentially regular and M is a finite-dimensional simple

module of A, then Ann(M) 6= 0.

Proof. Let H = H(A). Write M = MA (resp. M = MH) when M is regarded as

an A-module (resp. H-module). If NH ⊂ MH as an H-module, then NA ⊂ MA, so

NH = 0 or NH = MH . Thus, MH is a simple module and, moreover, dimA(MA) =

dimH(MH). By [58], Lemma 3.1, if MH is a finite-dimensional simple module and P

is the largest graded ideal contained in Ann(MH), then gk(H/P ) ∈ {0, 1}. If P = 0,

then gk(H/P ) = gk(H) > 1 whenH is regular of dimension greater than one. Hence,

if dim(MH) > 1, then Ann(MH) 6= 0. Since x0.m = m, then x0 − 1 ∈ Ann(MH),

but x0 − 1 is not a homogeneous element so x0 − 1 /∈ P . Let r ∈ P ⊂ Ann(MH)

with r 6= 0. If r ∈ K[x0] with r 6= x0 − 1, then 1 ∈ P so Ann(MH) = H. Hence,

r /∈ K[x0] and so r 6≡ 0 mod (x0 − 1). Thus, Ann(MA) 6= 0.

Every finite-dimensional simple module of J or Oq(K2), q ∈ K× a nonroot of

unity, is 1-dimensional (see Chapter 4). This fact, along with the above results,



21

implies the following result for homogenizations of 2-dimensional essentially regular

algebras. However, in light of Proposition 2.4.3, it seems reasonable that it may

apply to certain higher dimensional algebras as well.

Theorem 2.4.10. Let A be an essentially regular algebra of dimension two that is

not PI. If M is a finite-dimensional simple A-module, then M is 1-dimensional.

Proof. Let g ∈ H = H(A) be the canonical element such that H/(g) ∼= B =

B(E,L, σ) and let Q = AnnM . Because |σ| = ∞, the set of g-torsionfree simple

modules of H is empty ([7], Theorem 7.3). Hence, we may assume M is g-torsion

and therefore M corresponds to a finite-dimensional simple module of B.

Since H is a homogenization, then g = g0g1 where gi /∈ K for i = 1, 2. It is clear

that x0 | g so set g0 = x0. Hence, g0 ∈ Q or g1 ∈ Q because Q is prime.

If g0 and g1 are irreducible, then the point scheme decomposes as E = E0 ∪
E1. Thus, M corresponds to a finite-dimensional simple module of B(E0,L, σ|E0)

or B(E1,L, σ|E1). In the first case, we have that B(E0,L, σ|E0) is isomorphic to

the twisted homogeneous coordinate ring of Oq(K2) or J . Since σ|E1 = id, then

B(E1,L, σ|E1) is commutative. Hence, H/Q is commutative and Q contains x0 − 1

so M is a 1-dimensional simple module of A.

If g divides into three linear factors gi, i = 1, 2, 3, then B/giB is isomorphic to

the twisted homogeneous coordinate ring of Oq(K2) or J for each i.

As a corollary, we recover a well-known result regarding the Weyl algebra.

Corollary 2.4.11. The first Weyl algebra A1 has no finite-dimensional simple mod-

ules.

Proof. If p ∈ E1, then p = (1, a, b). The defining relation f = x1x2 − x2x1 − 1 gives

f(p, p) = ab− ba− 1 = 1 6= 0. Hence, E1 = ∅.

More generally, suppose A is a PBW deformation of a noetherian geometric

algebra. By Proposition 2.4.3, H(A) is geometric. Let (E, σ) be the geometric data

associated to H(A) and let I be the kernel of the canonical map H(A)→ B(E,L, σ).

Let E1 be the fixed points of E and E0 = E\E1. We say F ⊂ E0 is reducible if

there exists F ′, F ′′ such that F = F ′ ∪ F ′′ and σ(F ′) ⊂ F ′, σ(F ′′) ⊂ F ′′. We say F

is reduced if it is not reducible.

Theorem 2.4.12. With the above notation, if M is a finite-dimensional simple

module of H(A) that is I-torsion, then M is either a module over gr(A) or else M

is 1-dimensional.
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Proof. Let M be an I-torsion simple module of H, so we may regard M as a sim-

ple module of B. Let Q = Ann(M) and so Q 6= 0 by Lemma 2.4.9. If P is the

largest homogeneous prime ideal contained in Q, then P corresponds to a reduced

closed subscheme of F ⊂ E and B/P ∼= B(F,OF (1), σ|F ) ([14], Lemma 3.3). These

subschemes are well-understood in this case, and so either F corresponds to a sub-

scheme in the twisted homogeneous coordinate ring associated to gr(A), or else F

is a (set of) singletons, in which case B/P is commutative.

Let S be a deformed Sklyanin algebra that is not PI. By Theorem 2.4.12 and

[58], Theorem 1.3, the only finite-dimensional simple module over gr(S) is the trivial

one. By [41], there are exactly eight fixed points in E. Hence, all I-torsion, finite-

dimensional simple modules are 1-dimensional.

The algebra U(sl2(K)) is essentially regular of dimension three, is not PI, but

does have finite-dimensional simple modules of every dimension n. There are other

examples of essentially regular algebras exhibiting the same behavior (see [51], [16]).

This leads to the following conjecture.

Conjecture 2.4.13. Let A be essentially regular of dimension three that is not PI.

Then either all finite-dimensional simple modules are 1-dimensional or else A has

finite dimensional simple modules of arbitrarily large dimension.

We end this section with a brief foray into the PI case. Suppose A is prime PI

and essentially regular. By Proposition 2.3.6, H = H(A) is also prime PI. Moreover,

if we let QA be the quotient division ring of A and QH that of H, then

pid(H) = pid(QH) = pid(QA(x0)) = pid(A[x0]) = pid(A).

Suppose A is 2-dimensional essentially regular and PI. Then H = H(A) is PI and,

in particular, H = H(Aq1(K)) or H(Oq(K2)) with q a primitive nth root of unity.

In each case, the PI-degree is exactly n. One can also show that n = |σ| where σ

is the automorphism of the geometric pair (E, σ) corresponding to H. Of course,

the g-torsion finite-dimensional simple modules of either algebra correspond to the

finite-dimensional simple modules of Oq(K2).

The g-torsionfree simple modules of H are in 1-1 correspondence with those of

H[g−1]. Let Λ0 be its degree 0 component. Since H contains a central homogeneous

element of degree 1, then pid(Λ0) = pid(H) = n ([39], page 149). Thus, by [58],

Theorem 3.5, H has a g-torsionfree simple module of dimension n.
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2.5 A 5-dimensional family of regular algebras

Suppose A and B are regular. In terms of generators and relations, the algebra

C = A ⊗ B is easy to describe. Let {xi} be the generators for A and {yi} those

for B. Let {fi} be the relations for A and {gi} those for B. Associate xi ∈ A with

xi ⊗ 1 ∈ A⊗ B, and similarly for the yi. Then A⊗ B is the algebra on generators

{xi, yi} satisfying the relations {fi, gi} along with the relations xiyj − yjxi = 0 for

all i, j.

A similar description holds when A and B are essentially regular. By comparing

global dimension, one sees that H(A ⊗ B) � H(A) ⊗ H(B). However, a related

identity will be used to prove the following proposition.

Proposition 2.5.1. Let A and B be essentially regular algebras. Then A ⊗ B is

essentially regular.

Proof. We must show that H(A ⊗ B) is regular given that H(A) and H(B) are.

Suppose z0 is the homogenizing element in H(A⊗B) and x0, y0 those in H(A) and

H(B), respectively. By Proposition 2.3.7 and [47], it suffices to prove the following:

H(A⊗B)/z0H(A⊗B) ∼= H(A)/x0H(A)⊗H(B)/y0H(B). (2.4)

This is clear from the defining relations for the given algebras.

Corollary 2.5.2. If A and B are 2-dimensional essentially regular, then H(A⊗B)

is 5-dimensional regular.

Using the techniques developed above, we hope to understand the module struc-

ture of algebras of the form H(A⊗B).

Example 2.5.3. Let A = B = J with generating sets {x1, x2} and {y1, y2}, respec-

tively. Let x̂i = xi ⊗ 1 and ŷi = 1 ⊗ yi for i = 1, 2. Then C = A ⊗ B is generated

by {x̂1, x̂2, ŷ1, ŷ2} and the defining relations are

f = x̂1x̂2 − x̂2x̂1 + x̂21, g = ŷ1ŷ2 − ŷ2ŷ1 + ŷ21,

hij = x̂iŷj − ŷjx̂i for i, j ∈ {1, 2}.

Let EA, EB, EC be the point schemes of A,B and C, respectively. We claim that

E ∼= EA ∪ EB. Let p = (a1 : a2 : a3 : a4) ∈ P3. Then p ∈ EC if there exists

q = (b1 : b2 : b3 : b4) ∈ P3 such that (p, q) is a zero for the above defining relations.
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The relation f1 gives a1
a2

= b1
b1+b2

and f2 gives a3
a4

= b3
b3+b4

. Substituting into the

additional relations gives a3 = a4 = 0 or else a1 = a2 = 0. In the first case the

points correspond to EA and otherwise to EB.

The following proposition generalizes the above example.

Proposition 2.5.4. Suppose A and B are regular and C = A⊗B is noncommuta-

tive. Then EC = EA ∪ EB.

Proof. Let {x1, . . . , xn, y1, . . . , ym} be the generators of C subject to relations {fi, gi,
hij} such that the subalgebra generated by the xi (resp. yi) subject to the relations

fi (resp. gi) is isomorphic to A (resp. B). Identify A and B with their respective

images in C. Let hij = xiyj − yjxi for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let E be the point

scheme of C and σ the corresponding automorphism. Choose p ∈ EA × EB and let

q = σ(p). Write

p = (a1 : · · · : an : b1 : · · · : bm), and q = (c1 : · · · : cn : d1 : · · · : dm).

We claim either ai = 0 for all i ∈ {1, . . . , n} or else bj = 0 for all j ∈ {1, . . . ,m}.
Let σA = σ|A and σB = σ|B. Suppose there exists l, k such that al 6= 0 and

bk 6= 0. There is no loss in letting al = 1. Hence, 0 = hlj(p, q) = dj − bjcl. If

cl = 0, then dj = 0 for all j. Hence, σB(b1 : . . . : bm) = 0, a contradiction, so cl 6= 0.

Then bj = dj for all j. Thus, either ai = 0 for all i or else σB is constant, so B is

commutative. An identical argument shows that either bi = 0 for all i or else σA is

constant, so A is commutative. If A and B are commutative, then so is C.

If A and B are essentially regular, then the point scheme of H(A⊗ B) has two

components, E0 and E1, and E0 corresponds to that of H(A⊗B)/z0H(A⊗B) (see

(2.4)). An argument similar to that from the previous proposition shows that E1

corresponds to EA
1 ∪ EB

1 . Consequently, if M is a 1-dimensional simple module of

A⊗B, then M is isomorphic to a 1-dimensional simple module of A or B.
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Chapter 3

Standard form congruence

Suppose the algebra A is defined as

A = K〈x, y | f〉, deg(f) = 2. (3.1)

In case f is homogeneous, the classification of such algebras is well-known. The

polynomial f can be represented by a matrix M ∈ M2(K) and matrix congru-

ence corresponds to linear isomorphisms between homogeneous algebras. Hence,

canonical forms for matrices in M2(K) give a maximal list of algebras to consider.

One must verify that there are no non-linear isomorphisms between the remaining

algebras. The details of this are given in Section 3.2

In Section 3.3, we give a method for extending this idea to algebras (3.2) in which

f is not necessarily homogeneous. In particular, we develop a modified version of

matrix congruence called standard-form congruence. We compute canonical forms

in M3(K) under standard-form congruence and these are listed in Table 3.1.

In Chapter 4 the classification of algebras of form (3.1) is completed by consider-

ing ring-theoretic properties of these algebras. The end result is that the canonical

forms in Table 3.1 are in near 1-1 correspondence with isomorphism classes of alge-

bras of the form (3.1).

3.1 Canonical forms for matrix congruence

We say two matrices M,M ′ ∈ Mn(K) are congruent and write M ∼ M ′ if there

exists P ∈ GLn(K) such that M = P TM ′P . Canonical forms for congruent matrices

date back (at least) to the work on Turnbull and Aitken in 1932 [55]. More recently,

they were studied by Horn and Sergeichuk [31]. The interested reader is directed to
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the expository article by Terán [24], which also explains the relationship between

the two forms.

The Horn-Sergeichuk forms depend on three block-types which we henceforth

refer to as HS-blocks ,

Jn(λ) =


λ 1 0

λ
. . .
. . . 1

0 λ

 , J1 =
(
0
)
,

Γn =



0 (−1)n+1

. .
.

(−1)n

−1 . .
.

1 1
−1 −1

1 1 0


,Γ1 =

(
1
)
,

H2n(µ) =

(
0 In

Jn(µ) 0

)
, H2(µ) =

(
0 1
µ 0

)
.

Theorem 3.1.1 (Horn, Sergeichuk [31]). Each square complex matrix is congruent

to a direct sum, uniquely determined up to permutation of summands, of canonical

matrices of the three types Jn(0), Γn, and H2n(µ), µ 6= 0, (−1)n+1. Moreover, H2n(µ)

is determined up to replacement of µ by µ−1.

Thus, in M2(K) there are precisely four forms,(
1 0
0 0

)
,

(
0 0
1 0

)
,

(
0 −1
1 1

)
,

(
0 1
−q 0

)
, q ∈ K×. (3.2)

It follows from Theorem 3.1.1 that the matrix

(
0 1
−q 0

)
is congruent to

(
0 1
−q−1 0

)
.

It furthermore follows that two such matrices are congruent only if the parameters

are equal or inverses of each other (Corollary 3.4.2).

3.2 The homogeneous case

Let f = ax2 + bxy + cyx+ dy2, a, b, c, d ∈ K. By a slight abuse of notation,

f =
(
x y

)(a b
c d

)(
x
y

)
.

Hence, we can represent any homogeneous quadratic polynomial by an element of

M2(K). If A = K〈x, y | f〉, then f is called a defining polynomial for A and the
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matrix corresponding to f is called a defining matrix for A. The map φ given by

x 7→ p11x+p12y and y 7→ p21x+p22y, pij ∈ K, with p11p22−p12p21 6= 0, corresponds

to a linear isomorphism between the algebras with defining polynomials f and φ(f).

Moreover, if P = (pij), then P TMP is the matrix for φ(f). Thus, matrix congruence

is equivalent to linear isomorphisms of quadratic algebras.

The matrix forms (3.2) correspond to four algebras, Rx2 , Ryx, J , and Oq(K2)

(q ∈ K×). Moreover, Op(K2) ∼= Oq(K2) if and only if p = q±1 (Corollary 4.2.12).

It is left to show that there are no additional isomorphisms between the algebras.

In this case, it is not difficult. In particular, J and Oq(K2) are domains while Rx2

and Ryx are not. The Jordan plane has one height one prime ideal and a quantum

plane has (at least) two height one prime ideals. The algebra Rx2 is prime while

Ryx is not. Further details may be found in Chapter 4.

3.3 The general case

In the non-homogeneous case, we write f = ax2 + bxy + cyx + dy2 + αx + βy + γ,

a, b, c, d, α, β, γ ∈ K. We can represent f by a 3x3 matrix via the rule

f =
(
x y 1

)a b α
c d β
0 0 γ

xy
1

 .

We extend the terms defining polynomial and defining matrix from Section 3.2 as

one would expect. However, our choice of defining matrix is not unique. One could

choose to define f by

f =
(
x y 1

)a b 0
c d 0
α β γ

xy
1

 .

Hence, it is necessary to fix a standard form for the defining matrices of non-

homogeneous polynomials. We restrict our attention to the following set,

G3 =


a1 a2 a3
b1 b2 b3
0 0 c

∣∣∣∣∣∣
(
a1 a2
b1 b2

)
6= 0

 ⊂M3(K).

Every degree two polynomial has a unique corresponding matrix in G3. Consider

the matrix

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 ∈M3(K).
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This corresponds to the polynomial

f = m11x
2 +m12xy +m13x+m21yx+m22y

2 +m23y +m31x+m32y +m33

= m11x
2 +m12xy +m21yx+m22y

2 + (m13 +m31)x+ (m23 +m32)y +m33,

which in turn corresponds to the matrixm11 m12 m13 +m31

m21 m22 m23 +m32

0 0 m33

 .

Hence, we define a K-linear map sf :M3(K)→ G3 bym11 m12 m13

m21 m22 m23

m31 m32 m33

 7→
m11 m12 m13 +m31

m21 m22 m23 +m32

0 0 m33

 .

Let pij ∈ K and define a K-linear map by

φ(x) = p11x+ p12y + p13, φ(y) = p21x+ p22y + p23, φ(1) = 1.

If p11p22− p12p21 6= 0, then φ defines an affine isomorphism between K〈x, y | f〉 and

K〈x, y | φ(f)〉. Thus, the matrices corresponding to affine isomorphisms of these

algebras should be contained in the set

P3 =

{(
P1 P2

0 1

)
∈M3(K) | P1 ∈ GL2(K), P2 ∈ K2

}
.

In general, we want a map that fixes the degree two part of a quadratic polyno-

mial and adds the linear parts. We write M ∈Mn(K) in block form

M =

{(
M1 M2

MT
3 m

)
|M1 ∈Mn−1(K),M2,M3 ∈ Kn−1,m ∈ K

}
. (3.3)

We call M1 the homogeneous block of M . Define the set

Gn =

{(
M1 M2

0 m

)
∈Mn(K) |M1 ∈Mn−1(K),M2 ∈ Kn−1,m ∈ K

}
.

Then define the map sf :Mn → Gn by(
M1 M2

MT
3 m

)
7→
(
M1 M2 +M3

0 m

)
, (3.4)

where the matrix is written according to (3.3). The matrices corresponding to affine

isomorphisms of these algebras should be contained in the set

Pn =

{(
P1 P2

0 1

)
∈Mn(K) | P1 ∈ GLn−1(K), P2 ∈ Kn−1

}
.
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Proposition 3.3.1. Pn is a group.

Proof. That Pn contains the identity matrix is clear. Let P, P ′ ∈ Pn. Then

PP ′ =

(
P1 P2

0 1

)(
P ′1 P ′2
0 1

)
=

(
P1P

′
1 P1P

′
2 + P2

0 1

)
∈ Pn.

Since P1 ∈ GLn−1(K), then we can set P ′1 = P−11 ∈ GLn−1(K) and P ′2 = −P−11 P2.

It is now clear from the above that P ′ = P−1.

Under ordinary matrix congruence, two matrices which are scalar multiples of

each other are always congruent. However, if we restrict to Pn, that is no longer

the case. Hence, in our modified definition of congruence, we set scalar multiple

matrices to be congruent to each other.

Definition 3.3.2. We say M,M ′ ∈ Mn(K) are standard-form congruent (sf-

congruent) and write M ∼sf M
′ if there exist P ∈ Pn and α ∈ K× such that

sf(M) = α · sf(P TM ′P ).

It turns out that Pn is bigger than is necessary. Indeed, it is possible to restrict

to those elements Pn which are of determinant one. To see this, suppose M ∼sf N .

By definition, there exists P ∈ Pn and α ∈ K× such that M = α · sf(P TNP ). Let

β = det(P )
1
n 6= 0. Then

sf(M) = α · sf(P TNP ) = α · β
2

β2
· sf(P TNP ) = (αβ2) · sf

(
(β−1P )TN(β−1P )

)
.

If we let γ = αβ2 and Q = β−1P , then sf(M) = γ · sf(QTNQ) and

det(Q) = det(β−1P ) = β−n det(P ) =
(

det(P )
1
n

)−n
det(P ) = 1.

The next proposition shows that sf-congruence is a true extension of congruence.

Proposition 3.3.3. Let M,N ∈ Mn(K) with homogeneous blocks M1, N1, respec-

tively. If M ∼sf N , then M1 ∼ N1.

Proof. By hypothesis, sf(M) = α · sf(P TNP ) for some P ∈ P , α ∈ K×. Then(
M1 M2

0 m

)
= sf(M) = α · sf(P TNP )

= α · sf
((

P T
1 0
P T
2 1

)(
N1 N2

0 m

)(
P1 P2

0 1

))
= α · sf

((
P T
1 N1P1 ∗
∗ ∗

))
=

(
α · P T

1 N1P1 ∗
0 ∗

)
.

Thus, M1 = α · P T
1 N1P1, so M1 ∼ N1.
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Proving that standard-form congruence is an equivalence relation requires the

following technical lemmas.

Lemma 3.3.4. If M ∈Mn(K) and P ∈ Pn, then sf(P TMP ) = sf(P T sf(M)P ).

Proof. We have,

sf(P TMP ) = sf

((
P T
1 0
P T
2 1

)(
M1 M2

MT
3 m

)(
P1 P2

0 1

))
= sf

((
P T
1 M1P1 P T

1 M1P2 + P T
1 M2

P T
2 M1P1 +MT

3 P1 P T
2 M1P2 + P T

2 M2 +MT
3 P2 +m

))
=

(
P T
1 M1P1 P T

1 M1P2 + P T
1 M2 + (P T

2 M1P1 +MT
3 P1)

T

0 P T
2 M1P2 + P T

2 M2 +MT
3 P2 +m

)
=

(
P T
1 M1P1 P T

1 M1P2 + P T
1 M2 + P T

1 M
T
1 P2 + P T

1 M3

0 P T
2 M1P2 + P T

2 M2 +MT
3 P2 +m

)
= sf

((
P T
1 0
P T
2 1

)(
M1 M2 +M3

0 m

)(
P1 P2

0 1

))
= sf(P T sf(M)P ).

The next to last step in the above proof uses the fact that M3 and P3 are vectors

and therefore MT
3 P2 = P T

2 M3. We now have the tools we need to prove that sf-

congruence is indeed an equivalence relation.

Proposition 3.3.5. Standard-form congruence defines an equivalence relation.

Proof. Reflexivity is obvious. Now suppose M ∼sf M
′, so sf(M) = α · sf(P TM ′P )

for some α ∈ K×, P ∈ Pn. By Lemma 3.3.4,

(P−1)T sf(M)(P−1) = α · (P−1)T sf(P TM ′P )(P−1)

sf
(
(P−1)T sf(M)(P−1)

)
= α · sf

(
(P−1)T sf(P TM ′P )(P−1)

)
α−1 · sf

(
(P−1)TM(P−1)

)
= sf

(
(P−1)TP TM ′P (P−1)

)
α−1 · sf

(
(P−1)TM(P−1)

)
= sf(M ′).

Hence, M ′ ∼sf M , so symmetry holds. Finally, suppose M ∼sf M
′ and M ′ ∼sf M

′′.

Then there exists α, β ∈ K× and P,Q ∈ Pn such that sf(M) = α · sf(P TM ′P ) and

sf(M ′) = β · sf(QTM ′′Q). By two additional applications of Lemma 3.3.4,

sf(M) = α · sf(P TM ′P ) = α · sf
(
P T sf(M ′)P

)
= α · sf

(
P T
(
β · sf(QTM ′′Q)

)
P
)

= (αβ) · sf((QP )TM ′′(QP )).

Thus, M ∼sf M
′′, so transitivity holds as well.
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Alg M [M] Alg M [M]

Rx2

(
1 0 0
0 0 0
0 0 0

) (
1 0 µ
0 0 0

0 0 µ2

4

)
Ryx

(
0 0 0
1 0 0
0 0 0

) (
0 0 µ
1 0 ν
0 0 µν

)
Rx2−1

(
1 0 0
0 0 0
0 0 −1

) (
1 0 µ
0 0 0
0 0 κ

)
S

(
0 0 0
1 0 0
0 0 −1

) (
0 0 µ
1 0 ν
0 0 κ

)
κ 6= µ2/4 κ 6= µν

J
(

0 −1 0
1 1 0
0 0 0

) (
0 −1 0
1 1 ν

0 0 ν2

4

)
J1

(
0 −1 0
1 1 0
0 0 1

) (
0 −1 0
1 1 ν
0 0 κ

)
κ 6= ν2/4

K[x, y]
(

0 1 0
−1 0 0
0 0 0

) (
0 1 0
−1 0 0
0 0 0

)
Oq(K2)

(
0 1 0
−q 0 0
0 0 0

) (
0 1 µ
−q 0 ν
0 0 µν

1−q

)
q 6= 1

A1

(
0 1 0
−1 0 0
0 0 −1

) (
0 1 0
−1 0 0
0 0 κ

)
Aq1(K)

(
0 1 0
−q 0 0
0 0 −1

) (
0 1 µ
−q 0 ν
0 0 κ

)
κ 6= 0 q 6= 1 κ 6= µν

1−q

V
(

0 −1 1
1 1 0
0 0 0

) (
0 −1 µ
1 1 ν
0 0 κ

)
U

(
0 1 0
−1 0 −1
0 0 0

) (
0 1 µ
−1 0 ν
0 0 κ

)
µ 6= 0 (µ, ν) 6= (0, 0)

K[x]
(

1 0 0
0 0 1
0 0 0

) (
1 0 µ
0 0 ν
0 0 κ

)
ν 6= 0

Table 3.1: Canonical forms for M3(K) under sf-congruence

3.4 Canonical forms under sf-congruence

Table 3.1 lists canonical forms for matrices in M3(K) under sf-congruence. The

column Alg lists the algebras. The column M gives a defining matrix for the algebra

and [M ] gives the general form of M under sf-congruence. Throughout, assume

µ, ν, κ ∈ K are arbitrary unless otherwise stated.

In this section, we show that this list is complete (Theorem 3.4.5). If M ∼sf N ,

then M1 ∼ N1 by Proposition 3.3.3. To determine the canonical form of M ∈
M3(K) under sf-congruence, we first perform the necessary congruence to put M1

into one of the canonical forms (3.2).

Assume M ∈ G3. Our next step is to determine the stabilizer

Stab(M) = {P ∈ GLn(K) | P TMP = M}

when M is one of the canonical forms (3.2). In general, these stabilizer groups

correspond to some orthosymplectic group but, because some of the forms are de-

generate, there are shifts in the dimensions. Once computed, this will allow us to

determine which pairs (M2,m) determine distinct forms. The groups Stab(M) be-

low are computed below directly, though we will make some remarks on stabilizers
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for arbitrary HS-blocks subsequently.

Proposition 3.4.1. The following are the stabilizers for the matrices in (3.2) rel-

ative to matrix congruence. Suppose throughout that r, s ∈ K× are arbitrary.

Stab

((
1 0
0 0

))
=

{(
±1 0
r s

)}
, Stab

((
0 0
1 0

))
=

{(
r 0
0 r−1

)}
,

Stab

((
0 −1
1 1

))
=

{
±
(

1 r
0 1

)}
, Stab

((
0 1
−1 0

))
= SL2(K),

Stab

((
0 1
−q 0

))
=

{(
r 0
0 r−1

)}
(q ∈ K×, q 6= 1).

Proof. Throughout, let P ∈ Stab(M) and write P =

(
a b
c d

)
.

Let MK[x,y] =

(
0 1
−1 0

)
, the matrix corresponding to the standard basis non-

degenerate dimension two alternating form. Thus, Stab(MK[x,y]) = Sp(2) ∼= SL2(K).

Let MRx2
=

(
1 0
0 0

)
. Then, P TMRx2

P =

(
a2 ab
ab b2

)
. If P TMRx2

P = MRx2
, then

a = ±1 and b = 0.

Let MJ =

(
0 −1
1 1

)
. Then, M =

(
0 0
0 1

)
+

(
0 −1
1 0

)
. The first matrix corre-

sponds to a degenerate symmetric bilinear form and therefore the stabilizer group

is analogous to Stab(MRx2
). The second matrix is anti-symmetric and nonsingular

and therefore the stabilizer group is SL2(K). Thus,

Stab(MJ ) = Stab(MRx2
) ∩ SL2(K).

Let MRyx =

(
0 0
1 0

)
. Then, P TMRyxP =

(
ac bc
ad bd

)
. If P TMRyxP = MRyx , then

a = d−1. Furthermore, b = c = 0.

Let MOq(K2) =

(
0 1
−q 0

)
, q 6= 1. Then,

MOq(K2) =
1− q

2

(
0 1
1 0

)
+

1 + q

2

(
0 1
−1 0

)
.

Then Stab(MOq(K2)) = O(2) ∩ Sp(2) ∼= K×.

Corollary 3.4.2. For p, q ∈ K×, let Mp,Mq ∈ M2(K) matrices corresponding to

Op(K2) and Oq(K2), respectively. Then Mq ∼Mp if and only if p = q±1.

Proof. Sufficiency is provided by Theorem 3.1.1. Suppose Mq ∼ Mp and choose

P =

(
a b
c d

)
∈ GLn(K) such that Mq = P TMpP . Then

P TMpP =

(
(1− p)ac ad− qbc
bc− pad (1− q)bd

)
.
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Comparing entries of Mq and P TMpP , we see that ac = bd = 0. Thus, either

b = c = 0 or a = d = 0. In the first case, P TMpP = (ad)Mp, and so p = q. In the

second case, P TMpP = (pbc)Mp−1 , and so p = q−1.

Corollary 3.4.3. Let p, q ∈ K×. The defining matrices corresponding to Ap1(K)

and Aq1(K) are sf-congruent if and only if p = q±1.

Proof. Let Mp,Mq ∈ G3 be the corresponding matrices. That Mp ∼sf Mq if p = q±1

is an easy check and we omit it. The converse now follows by Corollary 3.4.2 and

Proposition 3.3.3.

Lemma 3.4.4. Let L be one of the forms (3.2). For all γ ∈ K×,(
L 0
0 1

)
∼sf

(
L 0
0 γ

)
.

Proof. Let P1 ∈ Stab(L). Then(√
γP1 0
0 1

)(
L 0
0 γ

)(√
γP1 0
0 1

)
=

(
γL 0
0 γ

)
= γ

(
L 0
0 1

)
.

Our last step is to determine, for each canonical form in M2(K), which pairs

(M2,m) give sf-congruent matrices.

Theorem 3.4.5. The canonical forms presented in Table 3.1 are complete.

Proof. Suppose M ∈M3(K) such that M1 ∼sf L. We perform necessary congruence

operations to put M1 in canonical form. Thus, M is sf-congruent to a block matrix

of the form

N =

(
L N2

0 n

)
where L is one of (3.2), N2 =

(
u v

)T ∈ K2, and n ∈ K. Let P =

(
P1 P2

0 1

)
∈ P3

such that P1 ∈ Stab(L) and P2 =
(
e f

)T ∈ K2. Write P1 as in Proposition 3.4.1.

First, suppose L =

(
1 0
0 0

)
. There are two cases for the stabilizer of L cor-

responding to ±1. Both cases are similar and we only consider the positive case

below,

sf(P TNP ) =

1 0 2e+ u+ rv
0 0 sv
0 0 e2 + eu+ fv + n

 .
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Because det(P ) 6= 0, then s 6= 0. Thus, sv = 0 if and only if v = 0. In case v 6= 0 we

set e = 0, s = v−1, r = −u
v
, and f = −n

v
. This is the canonical form corresponding

to K[x]. In case v = 0, then we set e = −1
2
u. The bottom right entry becomes

−1
4
u2 + 4. Thus, if n = 1

4
u2, we have the canonical form corresponding to Rx2 and

otherwise, by Lemma 3.4.4, the form corresponds to that of Rx2−1.

Suppose L =

(
0 0
1 0

)
. We have

sf(P TNP ) =

0 0 r(u+ f)
0 0 r−1(e+ v)
0 0 fe+ eu+ fv + n

 .

Setting f = −u and e = −v gives a bottom right entry of n − uv. Thus, there are

two cases corresponding to n = uv and n 6= uv. In the former case we arrive at the

canonical form of Ryx and in the other case, by Lemma 3.4.4, that of S.

Suppose L =

(
0 −1
1 1

)
. There are two cases for the stabilizer. We consider only

the positive case, which gives,

sf(P TNP ) =

0 −1 u
1 1 2f + ru+ v
0 0 f 2 + eu+ fv + n

 .

Setting f = −1
2
(ru + v) allows us to make the (2,3)-entry zero. If u = 0, then the

(3,3)-entry becomes n− 1
4
v2. Thus, in case n = 1

4
v2 we have the canonical form for

J and otherwise we have the form for J1. If u 6= 0, then we can make u = 1 and

set e = u−1(1
4
v2 − n) + 1 so that this is the canonical form for V.

Let L =

(
0 1
−q 0

)
. Then

sf(P TNP ) =

 0 1 −r((q − 1)f − u)
−q 0 −r−1(q − 1)e− v
0 0 −fe(q − 1) + eu+ fv + n

 .

Set f = u(q − 1)−1 and e = v(q − 1)−1. Then the bottom right entry becomes

n + uv(q − 1)−1. Thus, if n = uv(q − 1)−1 then this form corresponds to that of

Oq(K2) and otherwise, by Lemma 3.4.4, it corresponds to that of Aq1(K).

Let L =

(
0 1
−1 0

)
. Then

sf(P TNP ) =

 0 1 au+ cv
−1 0 bu+ dv
0 0 eu+ fv + n

 .
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Suppose u = v = 0. If n = 0, then we have the canonical form for K[x, y] and

otherwise we have the form for A1. Suppose u = 0 and v 6= 0. Then set b = c = 1,

d = 0, and f = −nv−1. This gives the canonical form for U. Similarly for the case

v = 0 and u 6= 0. Finally, suppose u, v 6= 0. Then we can choose e, f such that

eu+ fv = −n. Similarly, we can choose b, d such that bu+ dv = 0. If we choose a, c

such that au+ dv = 0, then det(P ) = 0, so au+ cv 6= 0 and we have the canonical

form again for U.

The observant reader may have noticed a discrepancy in the Table 3.1 and The-

orem 4.0.7. There is an additional canonical form corresponding to the algebra V,

which is not included in Theorem 4.0.7. This is explained by the following result.

Proposition 3.4.6. The algebras U and V are isomorphic.

Proof. Let X, Y be the generators for U with defining polynomial Y X − XY + Y

and let x, y be the generators for V with defining polynomial yx − xy + x + y2.

Define a map Φ : U → V by Φ(X) = −y, Φ(Y ) = x + y2. This map extends to an

algebra homomorphism since

Φ(Y )Φ(X)− Φ(X)Φ(Y ) + Φ(Y ) = (x+ y2)(−y)− (−y)(x+ y2) + (x+ y2)

= yx− xy + x+ y2.

We also define Ψ : V→ U by Ψ(x) = Y −X2, Ψ(y) = −X. This map also extends

to an algebra homomorphism since

Ψ(y)Ψ(x)−Ψ(x)Ψ(y) + Ψ(x) + Ψ(y)Ψ(y)

= (−X)(Y −X2)− (Y −X2)(−X) + (Y −X2)− (−X)2 = 0.

It is readily checked that Ψ(Φ(X)) = X and Ψ(Φ(Y )) = Y so that Ψ = Φ−1.

This is the one case considered here where two algebras are isomorphic even

though their defining matrices are not sf-congruent. This makes sense as the map Φ

constructed above is not an affine isomorphism. Moreover, U is a PBW deformation

of K[x, y] while V is a PBW deformation of J . The relationship between these

algebras is explored further in Chapter 5. In particular, we show that isomorphism

classes of homogenizations of the algebras in Table 3.1 are in 1-1 correspondence

with canonical forms of matrices in Mn(K) under sf-congruence.
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Chapter 4

Two-generated algebras

Our goal in this chapter is to complete the proof of the following theorem.

Theorem 4.0.7. Suppose A ∼= K〈x, y | f〉 where f is a polynomial of degree two.

Then A is isomorphic to one of the following algebras:

Oq(K2), f = xy − qyx (q ∈ K×), Aq1(K), f = xy − qyx− 1 (q ∈ K×),

J , f = yx− xy + y2, J1, f = yx− xy + y2 + 1,

U, f = yx− xy + y, K[x], f = x2 − y,

Rx2 , f = x2, Rx2−1, f = x2 − 1,

Ryx, f = yx, S, f = yx− 1.

Furthermore, the above algebras are pairwise non-isomorphic, except

Oq(K2) ∼= Oq−1(K2) and Aq1(K) ∼= Aq
−1

1 (K).

In Chapter 3, we showed that there are a minimal number of canonical forms for

relations up to affine isomorphism. In addition, we showed that U ∼= V (Proposition

3.4.6). It is left to show that the remaining algebras are non-isomorphic.

Immediately, one can divide the algebras into two classes: the domains and non-

domains. The domains can be further subdivided into quantum planes (Section

4.2), quantum Weyl algebras (Section 4.3), and differential operator rings (Section

4.4). Proving that an algebra belongs to exactly one of these classes requires a study

of their automorphism groups. We consider isomorphisms within each class, which

requires different techniques in each case.

An ideal P of a ring R is said to be prime if for any two ideals I and J in P ,

IJ ⊂ P implies I ⊂ P or J ⊂ P . The ring R is said to be prime if (0) is a prime
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ideal. The set of all prime ideals in a ring R is the prime spectrum, Spec(R). In

the case of the non-domains we are not able to give a full description of the prime

spectrum, specifically in the case of Rx2 and Rx2−1. However, we do make partial

progress (Proposition 4.1.4). In the case of the domains we give a full description

by utilizing the tools of skew polynomial rings.

An ideal P is primitive if there exists a faithful simple module M such that

P = Ann(M). A primitive ideal is prime but the converse is not true. To determine

the primitive ideals in these cases, we follow Dixmier’s programme [21].

Let R be a ring. For all ideals I of R, we define the sets V (I) = {P ∈ Spec(R) |
P ⊇ I}. Then Spec(R) may be regarded as a topological space wherein the V (I)

are the closed sets (Zariski topology). We say a prime ideal P of R is locally closed

in Spec(R) if there exists an open set U ⊇ {P} such that {P} is closed in U .

The Jacobson radical of a ring R, J(R), is the intersection of all maximal right

ideals in R. The ring R is said to be semiprimtive if J(R) = 0 and it is Jacobson

if J(R/P ) = 0 for all prime ideals P of R. By [21], Proposition II.7.12, an affine

noetherian K-algebra over an uncountable field K is Jacobson. In this case, we have

a pleasant description of the primitive ideals.

Lemma 4.0.8. A prime ideal P in a ring R is locally closed in Spec(R) if and

only if the intersection of all prime ideals properly containing P is an ideal properly

containing P . Moreover, if R is a Jacobson ring, every locally closed prime is

primitive.

Proof. See [21], Lemmas II.7.7 and II.7.11.

An element a ∈ R is said to be normal if aR = Ra. When R is a domain,

a ∈ R is normal if and only if there exists an automorphism σ ∈ Aut(R) such

that ar = σ(r)a for all r ∈ R. As with the prime and primitive ideals, we give a

full description of the automorphism group and normal elements in the case of the

domains. Partial results are given for the non-domains.

Portions of this chapter are to appear in [26].

4.1 The non-domains

That the algebras Rx2 , Rx2−1 and Ryx are not domains is clear from the defining

relations. In S, since yx = 1, we have (xy − 1)x = x − x = 0. Our goal in this

section is to prove that the algebras Rx2 , Rx2−1, Ryx and S are all distinct. We
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begin with S, which was studied extensively, and in greater generality, by Bavula

[12]. We compile some of his results here.

Proposition 4.1.1. The algebra S has the following properties:

(1) The algebra is not left or right noetherian;

(2) gk(S) = 2 and gld(S) = 1;

(3) The prime ideals can be found explicitly;

(4) The algebra S is primitive.

Proposition 4.1.2. The algebra Ryx has the following properties:

(1) The algebra is not left or right noetherian;

(2) gk(Ryx) = gld(Ryx) = 2;

(3) SpecRyx = {(x), (x, y − a), (y), (y, x− b) | a ∈ K, b ∈ K×};

(4) The primitive ideals are {(x, y − a), (y, x− b) | a ∈ K, b ∈ K×};

Proof. The sum
∑

i≥0 x
iyRyx is direct and therefore Ryx is not right noetherian.

Likewise, Ryx is not left noetherian, proving (1).

The set {xiyj} is a K-algebra basis of Ryx and so gkRyx = gkK[x, y] = 2. The

right (resp. left) global dimension of a graded K-algebra is equal to the projective

dimension of KA (resp. AK) [6]. Consider the sequence of left modules,

0 // Ryx
M // R2

yx
x // Ryx

ε // K // 0,

where the maps are defined below. We claim this sequence is exact. Let ε : Ryx → K

be the projection defined by ε(x) = ε(y) = 0. Then p ∈ ker ε if p has nonzero

constant term. Let x be right multiplication by

(
x
y

)
. If (r, s) ∈ R2

yx, then x(r, s) =

rx + sy. Hence, im x = ker ε and ker x = {(r, 0) ∈ R2
yx | r ∈ Ryxy}. Finally,

let M be right multiplication by the row vector (y, 0). Notice that Mx = (yx),

the generating relation for Ryx. Then imM = ker x and M is injective. Hence,

lgldRyx = 2. Likewise, rgldRyx = 2. This proves (2).

Let P be a prime ideal in Ryx. Since yRyxx = 0 ∈ P , then x ∈ P or y ∈ P .

Moreover, Ryx/(x) ∼= K[y] and Ryx/(y) ∼= K[x]. This proves (3). However, (x) =⋂
(x, y−α). Hence, (x) is not locally closed and a similar argument shows (y) is also

not locally closed. The ideals (x, y − α) and (y, x − β) are maximal and therefore

locally closed, proving (4).
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Let A,B be two rings and denote by A ∗ B their free product. Then Rx2

(resp. Rx2−1) can be constructed as a free product with A = K[x]/(x2) (resp.

A = K[x]/(x2 − 1)) and B = K[y].

Theorem 4.1.3 (Bergman, [18]). Let A and B be two rings,

gld(A ∗B) = max{gldA, gldB}.

A full analysis of the prime spectrum of Rx2 and Rx2−1 seems unattainable at

this time. However, we can locate a number of prime ideals in both algebras. For

any α ∈ K, Rx2/(y − α) ∼= K[x]/(x2), the ring of dual numbers. This is not a

prime ring since xRx = 0. However, it is a local ring with a unique maximal

ideal (x). Since every prime ideal must then live inside of (x), it is not difficult

to see that it is the unique prime ideal of K[x]/(x2). Similarly, for any α ∈ K,

Rx2−1/(y−α) ∼= K[x]/(x2−1) and this has two maximal ideals, (x+ 1) and (x−1).

Proposition 4.1.4. Let R = Rx2 or Rx2−1. Let q(y) ∈ K[y] with deg q(y) ≥ 2.

Then the ideal generated by q(y) is prime in R.

Proof. Write R = A∗K[y] for A = K[x]/(x2) or K[x]/(x2−1). We have R/(q(y)) ∼=
A ∗B where B = K[y]/(q(y)). If deg q(y) ≥ 3, then B has dimension at least three

over K. Thus, by [44], Theorem 2, R/(q(y)) is a primitive ring, that is, Q is a

primitive ideal in R. In case deg q(y) = 2, then A and B both have dimension two

over K and the afformentioned theorem does not apply. Let T12 be the free algebra

generated by {xy}. Suppose I, J are nonzero ideals in R. By [44], Theorem 1, there

exists a ∈ I ∩ T12 and b ∈ J ∩ T12 such that a, b 6= 0. Since T12 is a domain, ab 6= 0

so AB 6= 0 and therefore 0 is a prime ideal in R. Thus, Q is a prime ideal in R.

Proposition 4.1.5. The algebra Rx2 has the following properties:

(1) The algebra is not left or right noetherian;

(2) gk(Rx2) = gld(Rx2) =∞;

(3) A partial description of the prime ideals is given in Proposition 4.1.4;

(4) The algebra Rx2 is not primitive.

Proof. Let a, b ∈ Rx2 with a, b 6= 0. Then ayb 6= 0, so aRx2b = 0 implies a = 0 or

b = 0. Hence, Rx2 is prime. The sum
∑

i≥0 y
ixyRx2 is direct so Rx2 is not right

noetherian. Likewise, Rx2 is not left noetherian proving (1).
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Let Rn be the nth homogeneous component of Rx2 . The claim on GK dimension

will follow easily once we show that dimRn = F (n + 2), where F (n) is the nth

Fibonnaci number. We have R0 = K and R1 = {x, y} so dimR0 = 1 = F (2) and

dimR1 = 2 = F (3). Proceeding inductively, it suffices to show dimRn+1 = dimRn+

dimRn−1. It is clear that Rn+1 = yRn t xRn (disjoint union). Since r. ann(y) = 0,

then dim yRn = dimRn. Also, r. ann(xy) = 0, so dim xyRn−1 = dimRn−1. Since

xRn = xyRn−1 t x2Rn−1 and x2Rn−1 = 0, then dim xRn = dimRn−1.

Let A = K[x]/(x2). If gldA < ∞, then by [10], Theorem 1.10, A is a domain.

Clearly A is not a domain so gldA =∞. By 4.1.3, gldRx2 =∞, proving (2).

Proposition 4.1.6. The properties for Rx2−1 are identical to those listed in Propo-

sition 4.1.5 for Rx2 except that gldRx2−1 = 1.

Proof. The proof to most statements is identical to those for Rx2 . In this case, let

A = K[x]/(x2 − 1). Since A ∼= K × K is semisimple, then gldA = 0 and so by

Theorem 4.1.3, rgldRx2−1 = max{rgldA, rgldK[y]} = 1.

Proposition 4.1.7. The algebras Ryx, Rx2, Rx2−1 and S are all non-isomorphic.

Proof. By the above results, the algebras Rx2 , Rx2−1 and S are prime while Ryx

is not. We have gldRx2−1 = gldS = 1 whereas gldRx2 = ∞. Finally, gkS = 2

whereas gkRx2−1 =∞.

4.2 Quantum planes

We begin with basic properties of the quantum planes Oq(K2), q ∈ K×. While this

will be sufficient to show that the quantum planes are non-isomorphic to the quan-

tum Weyl algebras and the differential operator rings, the ring-theoretic properties

are not sufficient to show that Op(K2) ∼= Oq(K2) if and only if p = q±1. We do this

in Section 4.2.1 using linear algebraic techniques of graded algebras.

Recall that, for q ∈ K×, Oq(K2) ∼= K〈x, y | xy − qyx〉. Hence, Oq(K2) is the

skew polynomial ring K[y][x;σ] where the σ ∈ Aut(K[y]) is defined by σ(y) = qy.

When q is a primitive nth root of unity, σ is of finite order n.

To determine the prime ideals of Oq(K2) when q ∈ K× is a non-root of unity

is an easy exercise. One need only check that the localization Oq(K2)[x−1, y−1] is

simple, implying that each nonzero prime ideal contains x or y. Since Oq(K2)/(x) ∼=
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K[y] ∼= Oq(K2)/(y), then the prime ideals of Oq(K2) are

{(0), (x), (x, y − α), (y), (y, x− β) | α ∈ K, β ∈ K×}. (4.1)

Describing the primitive ideals is now a relatively simple matter. Since (0) is con-

tained in the ideals (x) and (y) and (0) ( (xy) = (x)∩ (y), then (0) is locally closed.

The remainder follows as in the proof of Proposition 4.1.2. Thus, the primitive

ideals are

{(0), (x, y − α), (y, x− β) | α ∈ K, β ∈ K×}.

The root of unity case is considerably more complex. The prime ideal structure of

skew polynomials rings R[x;σ] was considered by Irving [32] in the case that R is

commutative. We appeal to more general results that will be useful later.

Theorem 4.2.1 (Leroy, Matczuk [43]). Let I be a nonzero ideal of R = Q[x;σ, δ]

such that I ∩Q = 0. If some power of σ is inner, then there is a 1-1 correspondence

between Spec(R) and Spec(Z(R)).

If q ∈ K× is a primitive nth root of unity, then a straightforward computation

shows that Z(Oq(K2)) = K[xn, yn]. Hence, in this case we have the additional

prime ideals (xn− ξ, yn−ψ), ξ, ψ ∈ K×. We can now deduce the finite-dimensional

simple modules.

Proposition 4.2.2. Let q ∈ K×, q 6= 1. The 1-dimensional modules of Oq(K2) are

all of the form Span{v} and either x.v = 0 and y.v = αv for some α ∈ K or else

x.v = βv and y.v = 0 for some β ∈ K. If q is not a root of unity, then these are all

of the finite-dimensional simple modules. If q is a primitive nth root of unity, then

Oq(K2) is PI and all simple modules are finite dimensional.

To determine the normal elements we first recall results regarding the automor-

phism groups. This will also be critical to proving Theorem 4.0.7.

Proposition 4.2.3 (Alev, Chamarie, [1]). If q 6= ±1, then Aut(Oq(K2)) ∼= (K×)2.

If q = −1, then Aut(Oq(K2)) ∼= (K×)2 o {ω} where ω is the involution switching

the generators x and y.

Proposition 4.2.4. Suppose q 6= 1 and let 0 6= g ∈ Oq(K2) be a normal element. If

q is not a root of unity, then g = cyrxs for some c ∈ K×, r, s ∈ N. If q is a primitive

nth root of unity, then g =
∑
ciy

rixsi where ci ∈ K× for all i and ri ≡ rj mod n,

si ≡ sj mod n for all i, j.
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Proof. (Case 1: q 6= −1) Let ρ ∈ Aut(Oq(K2)) = (K×)2 be the automorphism

corresponding to g. Then ρ(y) = εy and ρ(x) = ε′x for some ε, ε′ ∈ K×. Write

g =
∑
γijy

ixj. Then,

ε
∑

γijy
i+1xj = ρ(y)g = gy =

∑
γijy

i(xjy) =
∑

γijq
jyi+1xj.

Choose u, v maximal such that γuv 6= 0. Then ε = qv and if there exists u′, v′ with

v′ 6= v such that γu′v′ 6= 0, this gives ε = qv
′
, a contradiction unless qv

′
= qv. This

happens if and only if q is a root of unity and v ≡ v′ mod n. Furthermore,

ε′
∑

γivq
iyixv+1 = ρ(x)g = gx =

∑
γijy

ixv+1.

In a similar manner as above, ε′ = q−u.

(Case 2: q = −1) In this case, there is the additional possibility that the auto-

morphism ρ may interchange x and y. Then,

ε
∑

γij(−1)iyixj+1 = εx
∑

γijy
ixj = ρ(y)g = gy =

∑
γij(−1)jyi+1xj.

It is clear that the two sides are inequivalent. Hence, the normal elements expressed

in the statement of the proposition comprise all for Oq(K2).

4.2.1 Isomorphisms of quantum affine space

We now wish to show that Op(K2) ∼= Oq(K2) if and only if p = q±1. We will, in

fact, solve a more general problem on isomorphisms of quantum affine space.

We say q = (qij) ∈ Mn(K×) is multiplicatively antisymmetric if qii = 1 and

qij = q−1ji for all i 6= j. Let An ⊂ Mn(K×) be the subset of multiplicatively

antisymmetric matrices. The symmetric group on n letters, Sn, acts on An by

σ.A = [aσ(i)σ(j)] for A ∈ An. We say p is a permutation of q if there exists σ ∈ Sn
such that p = σ.q.

For q ∈ An, the quantum affine n-space Oq(Kn) is defined as the algebra with

generating basis {xi}, 1 ≤ i ≤ n, subject to the relations xixj = qijxjxi for all

1 ≤ i, j ≤ n. The algebra Oq(Kn) is affine connected graded. By [21], Lemma

II.9.7, gk(Op(Kn)) = n. Hence, if Op(Kn) ∼= Oq(Km), then n = m. We prove that

two quantum affine spaces, Op(Kn) and Oq(Kn), are isomorphic if and only if p is

a permutation of q (Theorem 4.2.11).

If R is an affine connected graded algebra and a ∈ R, then we can decompose

a into its homogeneous components, a = a0 + · · · + an, ad ∈ Ad. If Φ : R → S is a
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map between affine connected graded algebras and xi a generating element of R, we

denote by Φd(xi) the homogeneous degree d component of the image of xi under Φ.

Throughout this section, let Φ : R → S be a (not necessarily graded) iso-

morphism between affine connected graded algebras. Let {xi} (resp. {yi}) be a

generating basis for R (resp. S) and suppose 1 ≤ i ≤ n in both cases.

Lemma 4.2.5. The degree one components of Φ(x1), . . . ,Φ(xn) are all K-linearly

independent. Moreover, Φ1 maps R1 isomorphically onto S1.

Proof. The isomorphism Φ is completely determined by its action on the xi. Hence,

the elements {Φ(xi)} generate all of S. Let fi ∈ R such that yi = Φ(fi), i ∈
{1, . . . , n}. Since deg(yi) = 1, then yi = Φ1(fi).

Because S is graded, then Φ2(xi) ·Φd(xj) ∈ Sd+2. Moreover, since S is connected

graded, then Φ0(xi) ∈ S0 = K. Let r = xi1 · · ·xim be an arbitrary monomial in R.

Then

Φ1(r) =

(
m∏
k=1

Φ(xik)

)
1

=

(
m∏
k=1

Φ0(xik) + Φ1(xik)

)
1

.

Thus, we can write,

yi =
n∑
j=1

αijΦ1(xj), αij ∈ K.

Hence Φ1 : R1 → S1 is onto. Moreover, dimK(R1) = dimK(S1) and so Φ1 is an

isomorphism.

The next step is to show that the constant term of the image of each generator

is zero. This need not always hold, but it does in the generic case.

Lemma 4.2.6. If i, j ∈ {1, . . . , n} such that xixj − pxjxi = 0 for some p ∈ K×,

p 6= 1, then Φ0(xi) = Φ0(xj) = 0.

Proof. Without loss of generality, suppose Φ0(xi) 6= 0. Let T = Φ(xi)Φ(xj) −
pΦ(xj)Φ(xi). Then T0 = Φ0(xi)Φ0(xj)(1 − p) = 0, so Φ0(xj) = 0. Thus, T1 =

Φ0(xi)Φ1(xj)(1 − p) = 0. Since Φ1(xj) 6= 0 by Lemma 4.2.5, then T1 6= 0, a

contradiction.

We include one additional general result.

Lemma 4.2.7. The isomorphism Φ determines a permutation τ ∈ Sn.



44

Proof. Let M = (αij). Then det(M) 6= 0. By Lemma 4.2.5, Φ1 : R1 → S1 is a

vector space isomorphism, and so det(M) 6= 0. We proceed by induction, with the

case of n = 1 being trivial. Suppose this holds for some n = k. We will prove the

result for n = k + 1. Let Mj be the minor of M corresponding to the entry α1j.

Then,

det(M) =
k+1∑
j=1

(−1)j+1α1j det(Mj).

Because det(M) 6= 0, there exists some τ(i) ∈ {1, . . . , n} such that αiτ(i) det(Mτ(i)) 6=
0. We pass now to Mτ(i) and, because dim(Mτ(i)) = k2, the result now follows by

induction.

The following result is not necessary for our analysis of the quantum affine spaces,

but will be necessary in considering isomorphism problems in Chapter 5.

Lemma 4.2.8. The subring Z(S) is graded.

Proof. Let a ∈ Z(S) and write a = a0+· · · an according to the grading in S. Assume

b is homogeneous of degree d. Then

0 = ab− ba =
d∑
i=0

(aib− bai).

Each component is homogeneous of degree n + d and so ai commutes with all ho-

mogeneous elements of S. It now follows easily that ai ∈ Z(S) for all i.

We now specialize to R = Op(Kn) and S = Oq(Kn). By Lemma 4.2.7, the

isomorphism Φ : R → S gives a permutation τ ∈ Sn. It now suffices to show that

p = τ.q.

Lemma 4.2.9. If r, s ∈ {1, . . . , n} such that prs 6= 1, then prs = qτ(r)τ(s).

Proof. By Lemma 4.2.6, Φ0(xr) = Φ0(xs) = 0. Write Φ1(xr) =
∑
αiyi and Φ1(xs) =∑

βiyi. Let T (r, s) = Φ(xr)Φ(xs)− prsΦ(xs)Φ(xr). Because T (r, s) ∈ S, then each

graded component Td(r, s) is zero. In particular,

0 = T2(r, s) = (1− prs)

(
n∑
d=1

αdβdy
2
d

)
+

∑
1≤i 6=j≤n

(αiβj − prsαjβi) yiyj.



45

Since prs 6= 1, then αd = 0 or βd = 0 for each d. Thus,

T2(r, s) =
∑

1≤i<j≤n

[(αiβj − prsαjβi) + qji(αjβi − prsαiβj)] yiyj

=
∑

1≤i<j≤n

[(αjβi(qji − prs) + αiβj(1− qjiprs)] yiyj. (4.2)

By Lemma 4.2.7, ατ(r), βτ(s) 6= 0. Thus, ατ(s) = 0 and βτ(r) = 0. If τ(r) > τ(s),

then by (4.2) the coefficient of yτ(s)yτ(r) is ατ(r)βτ(s)(qτ(r)τ(s)− prs). Therefore, prs =

qτ(r)τ(s). One the other hand, if τ(r) < τ(s), then the coefficient of yτ(r)yτ(s) is

ατ(r)βτ(s)(1− qτ(s)τ(r)prs). Therefore, prs = q−1τ(s)τ(r) = qτ(r)τ(s). Because prs 6= 1, then

r 6= s and so, because τ is a permutation, τ(r) 6= τ(s) and so the result follows.

Lemma 4.2.10. If r, s ∈ {1, . . . , n} such that prs = 1, then prs = qτ(r)τ(s).

Proof. Let p# (resp. q#) denote the number of entries in p (resp. q) not equal to

1. By Lemma 4.2.9, p# ≤ q#. Because Φ is an isomorphism, then we can apply

Lemma 4.2.9 to Φ−1 to get that q# ≤ p#. Thus, p# = q#.

Theorem 4.2.11. Op(Kn) ∼= Oq(Kn) if and only p is a permutation of q.

Proof. Suppose p is a permutation of q. Then there exists σ ∈ Sn such that p = σ.q.

We wish to define a homomorphism Op(Kn)→ Oq(Kn) via the rule Ψ(xi) = yσ(i).

For all i, j, 1 ≤ i, j ≤ n, this rule gives

Ψ(xi)Ψ(xj)− pijΨ(xj)Ψ(xi) = yσ(i)yσ(j) − qσ(i)σ(j)yσ(j)yσ(i) = 0.

Hence, Ψ extends to a homomorphism which is clearly bijective. Thus, Op(Kn) ∼=
Oq(Kn).

Conversely, suppose Φ : Op(Kn) → Oq(Kn) is an isomorphism. Lemma 4.2.7

gives a permutation τ ∈ Sn. By Lemmas 4.2.9 and 4.2.10, p = τ.q.

Corollary 4.2.12. Op(K2) ∼= Oq(K2) are isomorphic if and only if p = q±1.

The methods developed in this section can be used for a variety of additional iso-

morphism problems. In particular, they are used to study isomorphisms between the

algebras H(Oq(K2)) and H(Ap1(K)) (Propositions 5.4.4 and 5.4.5). Further appli-

cations, including those to single-parameter and certain multi-parameter quantum

matrix algebras, can be found in [26].
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4.3 Quantum Weyl algebras

As with the previous section, we review results on prime ideals and automorphisms,

compute the normal elements, and then proceed to proving Ap1(K) ∼= Aq1(K) if and

only if p = q±1. Suppose q ∈ K× is not a root of unity. Let θ = xy − yx ∈ Aq1(K).

Then θ is normal in Aq1(K) and in Aq1(K)/(θ) we have

1 = xy − qyx = xy − yx+ yx− qyx = (1− q)yx.

Thus, Aq1(K)/(θ) ∼= K[y, y−1]. By [27], Theorem 8.4 (a), the intersection of all

nonzero prime ideals in Aq1(K) is (θ), and so prime ideals are of the form

{(0), (θ), (θ, y − γ) | γ ∈ K×}.

Now suppose q ∈ K× is a primitive nth root of unity. If q = 1, then Aq1(K) is a

simple ring so assume n > 1. Results in this case have been obtained independently

by Irving, Goodearl, and Jordan (see, in particular, [34], Proposition 2.2). It can

also be deduced from Theorem 4.2.1. The prime ideals are of the form

{(0), (θ), (θ, y − γ), (p) | γ ∈ K×, p is an irreducible polynomial in K[xn, yn]}.

We observe

Proposition 4.3.1. Let q ∈ K×, q 6= 1. The 1-dimensional modules of Aq1(K) are

all of the form Span{v} where x.v = αv and y.v = α−1(1− q)−1v for some α ∈ K×.

If q is not a root of unity, then these are all of the finite-dimensional simple modules.

If q is a primitive nth root of unity, then Aq1(K) is PI and all simple modules are

finite dimensional.

The automorphism group of Aq1(K) was considered in [3] and [1]. Recalling it

here serves two purposes. The first is to prove Op(K2) � Aq1(K) for all p, q ∈ K×,

and the second is to determine the degree one normal elements of Aq1(K).

Proposition 4.3.2 (Alev, Chamarie, Dumas). If q 6= ±1, then Aut(Aq1(K)) ∼=
(K×). If q = −1, then Aut(Aq1(K)) ∼= K×o{ω} where ω is the involution switching

the generators x and y.

We say a normal element g in a skew polynomial ring R[x;σ, δ] is degree one if

g = ax + b for some a, b ∈ R. Recall that Aq1(K) can be constructed as a skew

polynomial ring K[y][x;σ, δ] where σ(y) = qy and δ(y) = 1.
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Proposition 4.3.3. Suppose q 6= 1. Degree one normal elements in Aq1(K) all have

the form cθ where c ∈ K×.

Proof. Checking that such an element is normal is an easy exercise and we omit it.

Suppose q 6= ±1 and ax+ b ∈ Aq1(K) is a degree one normal element, so a, b ∈ K[y].

Let ρ ∈ Aut(Aq1(K)) = K× be the corresponding automorphism and let ε ∈ K×

such that ρ(y) = εy and ρ(x) = ε−1x. Then,

(ax+ b)y = axy + by = a(qyx+ 1) + by = (qay)x+ (a+ by).

On the other hand,

(ax+ b)y = ρ(y)(ax+ b) = εy(ax+ b) = (εay)x+ ε.

Then ε = q and a = (q − 1)yb. Now ax+ b = b[(q − 1)yx+ 1] and so

(ax+ b)x = b((q − 1)yx2 + x).

By the construction of Aq1(K) as a skew polynomial ring, we have,

(ax+ b)x = ρ(x)(ax+ b) = q−1(xb)((q − 1)yx+ 1)

= q−1(σ(b)x+ δ(b))((q − 1)yx+ 1)

= q−1
(
σ(b)(q − 1)yx2 + qσ(b)x+ δ(b)(q − 1)yx+ δ(b)

)
.

But then δ(b) = 0, so b ∈ K×.

Now suppose q = −1 and again suppose ρ interchanges x and y. Then,

ax2 + bx = (ax+ b)x = ρ(x)(ax+ b) = εy(ax+ b) = εayx+ εyb.

Thus, a = 0, a contradiction.

It remains to be shown that Ap1(K) ∼= Aq1(K) if and only if p = q±1. That

these conditions are sufficient follows from Corollary 3.4.3. Because A1 is simple

and because the automorphism group of Aq1(K) for q = −1 is distinct (Proposition

4.3.2), we assume p, q /∈ {−1, 1}.
Recall that Aq1(K) is PI if and only if q is a primitive root of unity of order `, in

which case Z(Aq1(K)) = K[x`, y`], and otherwise Z(Aq1(K)) = K ([11], Lemma 2.2).

Hence, we consider the nonroot and root of unity cases separately (Propositions

4.3.5 and 4.3.6, respectively). The nonroot of unity case actually follows from [2],
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Proposition 3.11. However, the proof given here is more direct and is re-used in

Proposition 4.3.6.

Let {X, Y } (resp. {x, y}) be a generating basis for Ap1(K) (resp. Aq1(K)) and

define the normal elements Θ = XY − Y X ∈ Ap1(K) and θ = xy − yx ∈ Aq1(K).

Throughout the remainder of this section, assume Φ : Ap1(K) → Aq1(K) is an iso-

morphism. By degree we mean total degree in X and Y in Ap1(K) (resp. x and y

in Aq1(K)). The next lemma can be thought of as an ungraded version of Lemma

4.2.5.

Lemma 4.3.4. If Ap1(K) ∼= Aq1(K), then deg(Φ(X)), deg(Φ(Y )) ≥ 1.

Proof. Without loss, suppose deg(Φ(X)) = 0. Then Φ(X) ∈ Z(Aq1(K)), implying

X ∈ Z(Ap1(K)). This cannot hold by the above discussion.

Proposition 4.3.5. Let p, q ∈ K× with p, q non-roots of unity. If Ap1(K) ∼= Aq1(K),

then p = q±1.

Proof. By [27], the intersection of all nonzero prime ideals in Ap1(K) (resp. Aq1(K))

is ΘAp1(K) (resp. θAq1(K)). Hence, Φ(ΘAp1(K)) = Φ(Θ)Φ(Ap1(K)) = Φ(Θ)Aq1(K).

Since Φ(Θ) ∈ θAq1(K), then Φ(Θ) = λθ for some λ ∈ Aq1(K). We claim λ ∈ K×.

The ideal θAq1(K) is generated by θ, so there exists g ∈ Aq1(K) such that g · λθ = θ.

Hence, λ is a unit in Aq1(K) and therefore λ ∈ K×. This gives

Φ(Θ) = λθ = λ(xy − yx) = λ(q − 1)yx+ λ,

and so,

Φ(X)Φ(Y ) = Φ(Y )Φ(X) + λ(q − 1)yx+ λ.

Since Φ is an isomorphism,

0 = Φ(XY − pY X − 1) = Φ(X)Φ(Y )− pΦ(Y )Φ(X)− 1

= (Φ(Y )Φ(X) + λ(q − 1)yx+ λ)− pΦ(Y )Φ(X)− 1

= (1− p)Φ(Y )Φ(X) + λ(q − 1)yx+ (λ− 1),

and so,

Φ(Y )Φ(X) = (p− 1)−1 (λ(q − 1)yx+ (λ− 1)) . (4.3)

We claim the degrees of Φ(X) and Φ(Y ) in Aq1(K) are both one. Write Φ(X) = a =

a0 + · · · an, an 6= 0, and θ(Y ) = b = b0 + · · · bm, bm 6= 0, wherein ad is the sum of the
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monomomials of total degree d written according to the filtration {yixj | i, j ∈ N}
(and similarly for bd). Because Aq1(K) is a domain, the highest degree component

of Φ(Y )Φ(X) is bman 6= 0. If n or m is greater than one, then the left hand side

of (4.3) will have degree greater than two, a contradiction. This proves the claim.

Thus, we can write Φ(X) = αx + βy + γ and Φ(Y ) = α′x + β′y + γ′. Substituting

this into (4.3) gives

α′αx2 + α′βxy + α′γx+ β′αyx+ β′βy2 + β′γy + γ′αx+ γ′βy + γ′γ

= λ
q − 1

p− 1
yx+

λ− 1

p− 1
. (4.4)

Thus, α′α = β′β = 0. If α = β = 0, then Φ(X) is a constant and similarly for Φ(Y )

if α′ = β′ = 0. This contradicts Lemma 4.3.4.

If α′ = β = 0, then (4.4) reduces to

β′αyx+ β′γy + γ′αx+ γ′γ = (p− 1)−1(λ(q − 1)yx+ (λ− 1)).

Thus, β′α 6= 0 but β′γ = γ′α = 0 so γ = γ′ = 0. This holds only if λ = 1 so

0 = Φ(XY − pY X − 1) = β′α(xy − pyx)− 1

= β′α(qyx+ 1− pyx)− 1 = β′α(q − p)yx+ (β′α− 1).

Therefore, p = q.

Otherwise, α = β′ = 0 and (4.4) reduces to

α′βxy + α′γx+ γ′βy + γ′γ = (p− 1)−1(λ(q − 1)yx+ (λ− 1))

α′β(qyx+ 1) + α′γx+ γ′βy + γ′γ = (p− 1)−1(λ(q − 1)yx+ (λ− 1))

qα′βyx+ α′γx+ γ′βy + (α′β + γ′γ) = (p− 1)−1(λ(q − 1)yx+ (λ− 1)).

As above, γ = γ′ = 0 so

0 = Φ(XY − pY X − 1) = α′β(yx− pxy)− 1

= α′β(yx− p(qyx+ 1))− 1 = α′β(1− pq)yx− (pα′β + 1).

Therefore, p = q−1.

Proposition 4.3.6. Let p, q ∈ K× with p, q 6= ±1 primitive roots of unity. If

Ap1(K) ∼= Aq1(K), then p = q±1.
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Proof. As in Proposition 4.3.5, write Φ(X) = a = a0 + · · · + an and Φ(Y ) = b =

b0 + · · · + bm, an, bm 6= 0. By Lemma 4.3.4, m + n > 0. We decompose an and bm

further as

an =
n∑
i=0

an,iy
n−ixi, bm =

m∑
j=0

bm,jy
m−jxj,

where an,i, bm,j ∈ K for all i, j. Choose r, s minimal such that an,r, bm,s 6= 0. As

0 = θ(XY − pY X − 1) = ab− pba− 1, the highest y-degree term in anbm − pbman
is an,rbm,s

[
qr(m−s) − pqs(n−r)

]
yn+m−r−sxr+s = 0. Hence,

qr(m−s) − pqs(n−r) = qr(m−s)(1− pqns−mr) = 0.

This implies that

p = qmr−ns. (4.5)

Likewise, q = pt for some t ∈ N. Thus, p and q are roots of unity of the same order

`. Hence, Z(Ap1(K)) = K[X`, Y `] and Z(Aq1(K)) = K[x`, y`]. Then Φ(X`) = a` =

a′n` + a′n`−1 + · · · a′0 where a′d is the term of a` of total degree d. Thus,

a′n` = α`n,rq
vy(n−r)`xr` +

r`−1∑
j=0

α′n`,jy
n`−jxj, (4.6)

with v ∈ Z and α′n`,j ∈ K. Similarly, Φ(Y `) = b` = b′m` + b′m`−1 + · · · b′0 where

b′m` = β`m,sq
wy(m−s)`xs` +

s`−1∑
j=0

β′m`,jy
m`−jxj. (4.7)

The restriction of Φ to the centers of the respective algebras determines an auto-

morphism of the polynomial ring in two variables. The centrality of X` and Y `

implies θ(X`) and θ(Y `) are central. Thus, a′e = b′e = 0 if e 6≡ 0 modulo ` and

α′n`,j = β′m`,j = 0 if j 6≡ 0 modulo `. Lemma 2 of [46] shows that there are three

possibilities for an automorphism of the polynomial ring in two variables (see also

[3]).

Case 1: There exists t ∈ N and λ ∈ K such that a′n` = λ(b′m`)
t. Substituting

into (4.6) and (4.7) shows that r = st and n = mt, so ns = mr. Then (4.5) implies

p = 1, a contradiction.

Case 2: There exists t ∈ N and λ ∈ K such that b′m` = λ(a′n`)
t. This gives the

same contradiction as above.

Case 3: Φ(X`) = ζx`+ξy`+ω and Φ(Y `) = ζ ′x`+ξ′y`+ω′ with ζ, ξ, ω, ζ ′, ξ′, ω′ ∈
K. Hence, the deg Φ(X) = Φ(Y ) = 1 and we refer to the proof of Proposition

4.3.5.
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4.4 Differential operator rings

The algebras U, J , and J1 all appear as differential operator rings over K[y]. Denote

the algebra K[y][x; δ] by Rf (resp. Rg) where f = δ(y) (resp. g = δ(y)). Throughout

this section, we assume deg(f), deg(g) > 0. We say an ideal I of K[y] is δ-invariant

if δ(I) ⊂ I.

Proposition 4.4.1. The ring Rf is prime. Moreover, if P is a non-zero prime of

Rf then I = (h) where h | f is irreducible.

Proof. This follows directly from [29], Theorem 3.22.

Computing the prime spectrum of the algebras U, J , and J1 is now just a matter

of factoring the corresponding polynomial f . Thus, we have

SpecU = {(0), (y), (y, x− α) | α ∈ K},

SpecJ = {(0), (y), (y, x− α) | α ∈ K},

SpecJ1 = {(0), (y + i), (y − i), (y ± i, x− α) | α, β ∈ K}.

Let h be an irreducible factor of f ∈ K[y]. Since Rf/(h) ∼= K[y], then (h) is not

locally closed in SpecRf . On the other hand, f has only finitely many irreducible

factors and therefore (0) is locally closed. Thus, the primitive ideals of Rf are

exactly (0) and the maximal ideals.

Similarly, since AnnM is prime for any finite-dimensional simple module M of

Rf , then these are easily classified. In particular,

U :Mα = R/(Ry +R(x− α)), α ∈ K;

J :Mα = R/(Ry +R(x− α)), α ∈ K;

J1 :M±,α = R/(R(y ± i) +R(x− α)).

Alev and Dumas studied the isomorphism problem for such algebras in [4]. We

recall their result here.

Proposition 4.4.2 ([4], Proposition 3.6). The algebras Rf
∼= Rg are isomorphic if

and only if there exists λ, α ∈ K× and β ∈ K such that f(y) = λg(αy + β).

Corollary 4.4.3. The algebras U,J and J1 are all non-isomorphic.
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Proof. Since deg(xy − yx) = 1 in U, then U is not isomorphic to J and J1. If

J ∼= J1, then by Proposition 4.4.2 there exists α, β, λ such that

αλ(y2 + 1) = (αy + β)2 = α2y2 + 2αβy + β2.

Comparing coefficients of y we get that α = 0 or β = 0, a contradiction.

Corollary 4.4.4. Automorphisms of Rf are triangular of the form x 7→ λx + h,

y 7→ αy + β, for some α, λ ∈ K×, β ∈ K, and h ∈ K[y] such that

f(αy + β) = αλf(y). (4.8)

If p ∈ Rf is a polynomial in y dividing fp′, then p is normal. Clearly, p commutes

with y and if ρ ∈ Aut(Rf ) is such that ρ(x) = x+ h, h ∈ K[y], then

px = ρ(x)p = (x+ h)p = xp+ hp = px+ δ(p) + hp = px+ fp′ + hp. (4.9)

Because p divides fp′, we can choose h such that hg = −fp′. We show below that

the set of such p multiplicatively generate all of the normal elements in Rf .

Corollary 4.4.5. Normal elements in Rf are of the form p ∈ K[y] such that p

divides fp′.

Proof. That such an element is normal follows from the above discussion. Write

p =
∑
γijy

ixj. We order terms according to degree lexicographic (x > y). Let ρ be

the automorphism corresponding to p, with form given in Corollary 4.4.4. Then,∑
γijy

ixj+1 =
(∑

γijy
ixj
)
x = px = ρ(x)p = (λx+ h)

(∑
γijy

ixj
)

=
∑

γij
(
λ(xyi)xj + h(yixj)

)
=
∑

γij
(
λ(yix+ δ(yi))xj + h(yixj)

)
=
∑

γijλy
ixj+1 +

∑
γij (λif + hy) yi−1xj.

Comparing terms of highest degree, we see that λ = 1. Once we show that degx(p) =

0, then (4.9) implies that p divides fp′.

Assume, by way of contradiction, that degx(p) 6= 0. Choose u, v maximal

such that γuv 6= 0. By assumption, v 6= 0. This implies that we must have∑
γij (if + hy) yi−1xj = 0, which forces hy = −uf . If there exists another pair

u′, v′, (u′ 6= u), such that γu′v′ 6= 0, then hy = −u′f , a contradiction. Hence,

p = yu
∑
γujx

j. Then,

yu
∑

(αy + β)γujx
j = (αy + β)p = ρ(y)p = py = yu

∑
γuj(x

jy)

= yu
∑

γuj

(
yxj +

j∑
l=1

(
j

l

)
δl(y)xj−l

)
.
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Thus,

∑
(αy + β)γujx

j =
∑

γuj

(
yxj +

j∑
l=1

(
j

l

)
δl(y)xj−l

)
. (4.10)

Since γuv 6= 0, then by comparing coefficients of xv we see that α = 1 and β = 0.

Thus, (4.10) reduces to

∑
γuj

j∑
l=1

(
j

l

)
δl(y)xj−l = 0.

This implies that δv(y) = 0, which occurs only if f ∈ K, a contradiction.

It has been observed by Bell [13] that the above generalizes to the case where

R = S[x; δ] for any commutative ring S. In particular, normal elements are of the

form p ∈ S such that p | δ(p).
Suppose that for every φ ∈ Aut(Rf ) there exists h ∈ K[y] such that φ = φh

where φh(x) = x + h and φh(y) = y. Then Aut(Rf ) is isomorphic to the abelian

group (K[y],+) via the map h 7→ φh. This is clear by observing (φh1 ◦ φh2)(x) =

φh1(x+ h2) = x+ h1 + h2 = φh1+h2(x). This occurs when the only solution to (4.8)

is the trivial one, i.e., when α = λ = 1 and β = 0. This is the only case in which

Aut(Rf ) is abelian.

Proposition 4.4.6. If Aut(Rf ) is abelian, then Aut(Rf ) ∼= (K[y],+).

Proof. We claim the only solution to (4.8) is the trivial one. Let φ ∈ Aut(Rf ) be

arbitrary and write φ(x) = λx+ h and φ(y) = αy + β, with α, λ ∈ K×, β ∈ K and

h ∈ K[y]. Let ψ ∈ Aut(Rf ) be defined by ψ(x) = x+ y and ψ(y) = y. Then

(φ ◦ ψ)(x) = φ(x+ y) = λx+ h+ αy + β,

(ψ ◦ φ)(x) = ψ(λx+ h) = λ(x+ y) + h = λx+ λy + h.

Since Aut(Rf ) is abelian, then β = 0. Let φ be as before with β = 0 and ψ′ ∈
Aut(Rf ) defined by ψ′(x) = x+ y + 1 and ψ′(y) = y. Then

(φ ◦ ψ′)(x) = φ(x+ y + 1) = λx+ h+ αy + 1,

(ψ′ ◦ φ)(x) = ψ′(λx+ h) = λ(x+ y + 1) + h = λx+ λy + λ+ h.

Since Aut(Rf ) is abelian, then α = λ = 1.

Corollary 4.4.7. The groups Aut(U), Aut(J ), and Aut(J1) are non-abelian.
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Proof. In each case, we require α, β and λ satisfying (4.8). For U, we have αλy =

αy + β. This gives β = 0 and λ = 1. Hence, automorphisms are of the form,

x 7→ x + h, y 7→ αy, α ∈ K×, h ∈ K[y]. For J , we require αλy2 = (αy + β)2 =

α2y2 + 2αβy + β2. Hence, β = 0 and λ = α. Therefore, automorphisms are of the

form, x 7→ αx + h, y 7→ αy, α ∈ K×, h ∈ K[y]. For J1 we require αλ(y2 + 1) =

(αy + β)2 + 1 = α2y2 + 2αβy + (β2 + 1). This gives that αβ = 0 so β = 0

and α2 = αλ = 1 so α = λ = ±1. Therefore, automorphisms are of the form

x 7→ αx + h, y 7→ αy, α = ±1, h ∈ K[y]. In each case, there exist non-trivial

solutions to (4.8). Thus, each automorphism group is non-abelian.

4.5 Classification

We now have the tools we need to prove Theorem 4.0.7.

Proof. Let A and A′ be of the form (3.1) with defining matrices M,M ′ ∈ M3(K),

respectively. If M ∼sf M
′, then A ∼= A′. By Theorem 3.4.5 and Proposition 3.4.6,

we need only show that there are no additional isomorphisms between the algebras

in the present theorem.

The non-domains Ryx, Rx2 , Rx2−1 and S are all non-isomorphic by Proposition

4.1.7. The algebra with defining polynomial x2 − y is isomorphic to K[x] via the

map x 7→ x and y 7→ x2. It is one of only two commutative algebras considered

(the other being O1(K
2) ∼= K[x, y]) and is therefore distinct. By Corollary 4.4.3,

the algebras U, J and J1 are all non-isomorphic.

That Op(K2) ∼= Oq(K2) if and only if p = q−1 was proved in Corollary 4.2.12.

The corresponding result for the quantum Weyl algebras follows from Propositions

4.3.5 and 4.3.6. Recall the automorphisms groups ofOq(K2) and Aq1(K) from Propo-

sitions 4.2.3 and 4.3.2, respectively. By counting subgroups of order four, it follows

that Ap1(K) � Oq(K2) for all p, q ∈ K×. In particular, K× has one subgroup of

order four and (K×)2 has four. On the other hand, in K×o {ω} there are two sub-

groups of order four and in (K×)2 o {ω} there are eight. Hence, Op(K2) � Aq1(K)

for all p, q ∈ K×.

Let S = Oq(K2) or Aq1(K), q 6= 1, and let R = U,J , or J1. If q = −1 then

x2 is central so S is not primitive by [37], Proposition 3.2. On the other hand, R

is primitive. If q 6= ±1, then Aut(S) is abelian, whereas Aut(R) is non-abelian by

Corollary 4.4.7.
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Our results can be summed up succinctly in the following theorem.

Theorem 4.5.1. Let A and A′ be of the form (3.1) with defining matrices M,M ′ ∈
M3(K), respectively. If M ∼sf M

′, then A ∼= A′. Conversely, if A ∼= A′, then

M ∼sf M
′ unless A and A′ represent the forms of U and V.
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Chapter 5

Homogenizations

In this chapter, we consider algebras of the form

H = K〈x, y, z | xz − zx, yz − zy, f〉 (5.1)

where f ∈ K〈x, y, z〉 is homogeneous of degree two and f /∈ K[z]. By the com-

mutation relations for z, it is not hard to see that any algebra of the form (5.1) is

a homogenization of an algebra of the form (3.1). We invoke the methods used in

Chapters 3 and 4 to classify these algebras up to isomorphism. We show, in par-

ticular, that isomorphism classes of these algebras are in 1-1 correspondence with

sf-congruence conjugacy classes in M3(K).

Theorem 5.0.2. Let H be for the form (5.1). Then H is isomorphic to one of the

following algebras, with one representative of f given in each case:

H(Oq(K2)), f = xy − qyx (q ∈ K×), H(Aq1(K)), f = xy − qyx− z2 (q ∈ K×),

H(J ), f = yx− xy + y2, H(J1), f = yx− xy + y2 + z2,

H(U), f = yx− xy + yz, H(V), f = yx− xy + y2 + xz,

H(Rx2), f = x2, H(Rx2−1), f = x2 − z2,

H(Ryx), f = yx, H(S), f = yx− z2,

H(K[x]), f = x2 − yz.

Furthermore, the above algebras are pairwise non-isomorphic, except

H(Oq(K2)) ∼= H(Oq−1(K2)) and H(Aq1(K)) ∼= H(Aq
−1

1 (K)).

The key difference in this situation, versus that in the case of two-generated

algebras, is that the algebras H(U) and H(V) are non-isomorphic (see Proposition
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5.4.1). That H(Op(K2)) ∼= H(Oq(K2)) if and only if p = q±1 follows immediately

from Theorem 4.2.11. We can further adapt those methods from Section 4.2.1 to

prove H(Op(K2)) � H(Aq1(K)) for all p, q ∈ K (Proposition 5.4.4) and H(Ap1(K)) ∼=
H(Aq1(K)) if and only if p = q±1 (Proposition 5.4.5).

As before, we study the representation theory of algebras of the form (5.1) by

analyzing their prime and primitive ideals. In the case of the domains, we fully

classify the prime ideals in Theorem 5.2.4. For the non-domains we achieve partial

results.

Along the way, we also consider a class of differential operator rings which

contains the algebras H(U), H(J ), and H(J1). These algebras are of the form

Hf = K[y, z][x; δ] where δ(z) = 0 and δ(y) = f ∈ K[y, z]. The properties of Hf

mimic those of the differential operator rings considered in Chapter 4.

5.1 Standard-form congruence

We now show that sf-congruence can be used to classify all algebras of the form (5.1)

up to linear isomorphism. The remainder then is devoted to showing that there are

no additional isomorphisms between the algebras.

Suppose H is of the form (5.1). Then H can be represented by a triple of

matrices, (X, Y,M), of the form

X =

 0 0 1
0 0 0
−1 0 0

 , Y =

0 0 0
0 0 1
0 −1 0

 ,M =

m11 m12 m13

m21 m22 m23

0 0 m33

 , (5.2)

with (m11 m12
m21 m22 ) 6= 0. This representation follows by letting ~x =

(
x y z

)
so that

xz − zx = ~xX~xT , yz − zy = ~xY ~xT , f = ~xM~xT .

As in Chapter 3, the matrix M is not uniquely determined for f unless we fix a

standard form for M . Since z is central, then the map sf defined in (3.4) is well-

defined in this case.

Let H ′ be another algebra of form (5.1). Then H ′ is also defined by a triple, say

(X, Y,M ′). Suppose φ : H → H ′ is a linear isomorphism and let P ∈ P3 be the

matrix of φ. It is too much to ask that P TXP = X and P TY P = Y . We can still

hope to preserve those relations up to linear combination. The following proposition

shows that sf-congruence preserves the commutation relations for z.
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Proposition 5.1.1. Let P ∈ P3 and let X, Y be as in (5.2). The matrices X and

Y are linear combinations of P TXP and P TY P .

Proof. Write

P =

a1 a2 a3
b1 b2 b3
0 0 1

 .

Let,

U = P TXP =

 0 0 a1
0 0 a2
−a1 −a2 0

 and V = P TY P =

 0 0 b1
0 0 b2
−b1 −b2 0

 .

We require r, s ∈ K such that rU+sV = X. That is, ra1+sb1 = 1 and ra2+sb2 = 0.

This system has a solution since det

(
a1 a2
b1 b2

)
6= 0. Similarly, there exist r′, s′ ∈ K

such that r′U + s′V = Y . Hence, P fixes the commutation relations for z.

Thus, there is no loss in referring to M as the defining matrix of H. Moreover,

if M ∼sf M
′, then the triples (X, Y,M) and (X, Y,M ′) define isomorphic algebras.

Therefore, the canonical forms from Table 3.1 apply here as well, and the algebras

in that table correspond to their respective homogenizations.

5.2 Prime ideals of homogenizations

If A is 2-dimensional essentially regular, then A is a skew polynomial ring. By

Lemma 2.3.12, H(A) is as well. Moreover, we can regard each as a skew polynomial

ring over K[y, z] (or K[x, z]). In these cases we can completely determine the prime

ideals. In case A is not essentially regular, it is possible to at least partially describe

the prime ideals of H. The following is an immediate corollary of Proposition 2.3.5.

Corollary 5.2.1.

Z(H(J )) = Z(H(J1)) = Z(H(U)) = Z(H(V)) = K[z].

Z(H(Oq(K2))) =

{
K[xn, yn, z] if q is a primitive nth root of unity

K[z] otherwise.

Z(H(Aq1(K))) =

{
K[xn, yn, z] if q 6= 1 is a primitive nth root of unity

K[z] otherwise.

We say an algebra H of the form (5.1) has trivial center in case Z(H) = K[z].

Proving Theorem 5.0.2 is relatively painless in the cases that the algebra has trivial

center. Most of our work will concentrate on the algebras with non-trivial center.
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Lemma 5.2.2. Suppose H is of the form (5.1). If P is a prime ideal of H with

P ∩K[z] 6= 0, then P contains z − α for some α ∈ K.

Proof. Let g ∈ P ∩K[z] be nonzero. If g is not irreducible in K[z], then g = g1g2

for some g1, g2 ∈ K[z]. Because K[z] is central, then g1Hg2 = g1g2H ⊂ P . The

primeness of P implies g1 ∈ P or g2 ∈ P . Hence, P contains az−b for some a, b ∈ K,

a 6= 0, and so contains a−1(az − b) = z − a−1b.

Before proceeding to the main theorem, we need one additional definition.

Definition 5.2.3. Let J be an ideal in a ring R and σ ∈ Aut(R). Then J is σ-

cyclic if J = J1 ∩ · · · ∩ Jn where the Ji are distinct prime ideals of R such that

σ−1(Ji+1) = Ji and σ−1(J1) = Jn.

Let I be an ideal of a commutative ring R. The radical of I in R is

√
I = {a ∈ R | an ∈ I for some n}.

It is not difficult to see that the radical of an ideal is again an ideal in R. The ideal

I is said to be primary if ab ∈ I implies a ∈ I or bn ∈ I for all a, b ∈ R and some

n ∈ N. If I is primary, then
√
I is prime.

Suppose H is a domain of form (5.1). If z is not a zero divisor in H, then we

can localize at the set C = K[z]\{0}. We refer to this ring as HC .

Theorem 5.2.4. Let H be a domain of the form (5.1). If P is a nonzero prime

ideal in H, then one of the following holds:

1. z ∈ P and P corresponds to a prime of H/(z);

2. z − α ∈ P , α ∈ K×, and P corresponds to a prime of H/(z − α);

3. xy − yx ∈ P ;

4. P ∩ K[y, z] = (g1 · · · gn) where the gi are irreducible polynomials in K[y, z]

disjoint from K[z];

5. P ∩ K[x, z] = (g1 · · · gn) where the gi are irreducible polynomials in K[x, z]

disjoint from K[z].

Proof. First, suppose P ′ = P ∩ K[z] 6= 0. Then P ′ is a prime ideal of K[z] and

so, by Lemma 5.2.2, z − α ∈ P for some α ∈ K. Now assume P ∩ K[z] = 0. In

this case, P extends to a prime ideal in HC . Let R = K(z)[y], then R has Krull

dimension 1. Let I = P ∩R. By [33], Theorem 7.2, one of the following must hold:
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• HC/P is commutative;

• I is σ-cyclic;

• I is primary with σ(
√
I) =

√
I.

If HC/P is commutative, then xy − yx ∈ P . If I is σ-cyclic, then I = P1 ∩ · · · ∩ Pn
for distinct prime ideals of R. But the prime ideals of R are exactly extensions of

prime ideals of K[y, z] disjoint from K[z]. Therefore, I = (gσ(g) · · ·σn−1(g)) for

some irreducible g ∈ K[y, z], g /∈ K[z], σn(g) = g. Otherwise, I is primary. Since
√
I is prime, then

√
I = (g) where g ∈ R is irreducible. We claim I = (gn). Because

R is a principal ideal domain, I = (h) for some h ∈ R. Write h = tgn where n is

maximal such that g does not divide t. We claim t is a constant. Suppose otherwise,

then gm /∈ I for any m > 0. This contradicts g ∈
√
I, and so the claim holds and

I = (gn). For the remaining case, we need only observe that we can rewrite H as a

skew polynomial ring with base ring K[x, z] and repeat.

Note that the (4) and (5) occur if and only if H is PI. Thus, H PI implies

H = H(Oq(K2)) or H = H(Aq1(K)) with q a primitive root of unity. The last piece

in classifying the ideals of a homogenization is the case in (4) and (5) where the

intersection of P with the base ring is (0). In this case, it suffices to localize the

base ring K[y, z] to Q = K(y, z) and consider Q[x;σ, δ], where σ and δ have been

extended to Q in the usual way. Then we can appeal to Theorem 4.2.1. Thus,

the prime ideals lying over (0) in Q are of the form (g) where g ∈ K[xn, yn, z] is

irreducible and such that g /∈ K[yn, z] and g /∈ K[xn, z].

It is worth commenting on case (3). If H is a domain of the form (5.1) with

defining relation p, then H/(xy − yx) ∼= K[x, y, z]/(p0) where p0 is the image of p

under the canonical map K〈x, y, z〉 → K[x, y, z]. Thus, (xy−yx) is prime in H if and

only if p0 is irreducible. In the case of H(Oq(K2)) we have H(Oq(K2))/(xy− yx) ∼=
K[x, y, z]/(yx) and so (xy− yx) is not prime. However, we do have that (x) and (y)

are prime. On the other hand, H(Aq1(K))/(xy − yx) ∼= K[x, y, z]/((1− q)yx− z2).
Since (1−q)yx−z2 is irreducible, then xy−yx does indeed generate a prime ideal. In

the case of the algebras Hf we have Hf/(xy− yx) ∼= K[x, y, z]/(f). Thus, (xy− yx)

is prime in Hf if and only if f is irreducible. It is clear that H(J ) and H(J1) do

not satisfy this condition while H(U) does, whence H(U)/(xy − yx) ∼= K[x, z].

We can now identify the primitive ideals when H is a domain of the form (5.1).

By Proposition 2.3.6, (0) is not primitive. On the other hand, H/(z) and H/(z− 1)
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are primitive rings by results in Chapter 4. Moreover, the maximal ideals in H/(z)

and H/(z− 1) correspond bijectively to maximal (and therefore primitive) ideals in

H. The following is a consequence of Theorem 2.4.10, but now also follows from

Theorem 5.2.4.

Proposition 5.2.5. Let H be a domain of the form (5.1). If H is not PI, then all

finite-dimensional simple modules are 1-dimensional.

In the case that H(A) is not a domain, it is not always possible to give a full

description of the prime ideals. However, we can still recover some information.

Proposition 5.2.6. The algebras H(K[x]), H(Rx2), H(Ryx), H(Rx2−1), and H(S)

are not domains.

Proof. In the case of H(Rx2) and H(Ryx), this is obvious. The result for H(K[x])

follows by Example 2.3.3. In H(S),

y(xy − z2) = yxy − yz2 = yxy − z2y = (yx− z2)y = 0.

Finally, in H(Rx2−1),

(x+ z)(x− z) = x2 − xz + zx− z2 = x2 − z2 = 0.

By Proposition 2.3.6, the algebras H(Rx2), H(Rx2−1), and H(S) are prime and

H(Ryx) is not. A consequence of Proposition 5.2.6 is that H(Ryx) is not prime. It

is now possible to give a partial description of the ideals in the non-domain case.

Proposition 5.2.7. Let A be one of Ryx, Rx2 ,S or Rx2−1 and let H = H(A). If J

is a nonzero prime in H then one of the following holds:

1. z ∈ J , so J corresponds to a prime of H/(z);

2. z − α ∈ J for some α ∈ K×, so J corresponds to a prime in H/(z − 1);

3. J is a prime of HC disjoint from K[z].

We cannot give a complete list of the prime ideals in H(K[x]) as we have in the

previous cases, however, by considering its factor algebras we can list many of them.

Proposition 5.2.8. Let J be a prime of H(K[x]). The following are possibilities

for J :
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1. z ∈ J , so J corresponds to a prime of Rx2;

2. z − α ∈ J or y − α ∈ J for some α ∈ K×, so J corresponds to a prime of

K[x];

3. x ∈ J , so J corresponds to a prime of K[y, z]/(yz);

4. x− α ∈ J for some α ∈ K×, so J corresponds to a prime of K[z, z−1].

5.3 Certain differential operator rings

The algebras H(U), H(J ), and H(J1) can all be expressed as differential operator

rings Hf = K[y, z][x; δ] where δ(z) = 0 and δ(y) = f ∈ K[y, z]. We consider this

class of algebras in general and show that its properties mirror those of K[y][x; δ].

Thus, many of the results below are adaptations of those in [4]. Our hope is that

these results will serve as a starting point for a study of the more general case where

δ(z) 6= 0.

The following proposition overlaps Corollary 5.2.1 in the case of H(U), H(J ),

and H(J1). However, it also applies to any algebra of the form Hf .

Proposition 5.3.1. If f 6= 0, then Z(Hf ) = K[z].

Proof. It is clear that K[z] ⊂ Hf . We must show the opposite inclusion. Let r ∈ Hf

and suppose degy(r) 6= 0. Write r =
∑
αijz

iyj. Then

xr =
∑

αijx(ziyj) =
∑

αij
(
ziyjx+ δ(ziyj)

)
=
∑

αij
(
ziyjx+ jfziyj−1

)
= rx+ f

∑
αijjz

iyj−1.

Because Hf is a domain, then r ∈ Z(Hf ) if and only if
∑
αijjz

iyj−1 = 0.

Theorem 5.3.2. Hf is isomorphic to Hg if and only if there exists α, ε, λ ∈ K×

and β, γ ∈ K such that f(αy + βz + γ, εz) = λαg(y, z).

Proof. Let X, Y, Z be the standard generators for Hf and x, y, z those for Hg. Let

θ : Hf → Hg be an isomorphism. By Proposition 5.3.1, θ(Z) ∈ K[z]. The ideal

generated by f contains all commutators [a, b] with a, b ∈ Hf . Similarly for g in Hg.

Hence, if u, v ∈ Hg, then there exists r, s ∈ Hf such that θ(r) = u and θ(s) = v.

Then uv− vu = θ(rs− sr) ∈ θ(fHf ) = θ(f)Hg. But uv− vu ∈ gHg. By comparing

degrees, there exists a unit ε ∈ Hg such that θ(f) = εg. All units in Hg lie in K
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and so ε ∈ K×. Suppose degx θ(Y ) 6= 0. By considering the highest degree term in

f we have degx θ(f) 6= 0. Since θ(f) = εg, then degx g 6= 0, a contradiction.

Because θ is an isomorphism, there exists t ∈ Hf such that θ(t) = x. Write

t =
∑
αlijZ

lY iXj. Suppose degx θ(X) > 1. Since θ(Y ) ∈ K[y, z] and θ(Z) ∈ K[z],

then degx θ(t) > 1, a contradiction. Hence, θ(X) = λx + h for some λ, h ∈ K[y, z].

Because all units in K[y, z] lie in K, this further implies that λ ∈ K.

Write θ(Y ) =
∑n

i=0 z
ipi where pi ∈ K[y] for all i. Since θ(f) = εg, then

ε(xy − yx) = θ(XY − Y X)

= (λx+ h)

(
n∑
i=0

zipi

)
−

(
n∑
i=0

zipi

)
(λx+ h)

=
n∑
i=0

zi(xpi − pix) = g
n∑
i=0

zip′i.

Since xy − yx = g, then p′i = 0 if i > 1. In particular, θ(Y ) = αy + βx + γ where

α, β ∈ K× and γ ∈ K. Thus,

(λx+ h)(αy + βx+ γ)− (αy + βx+ γ)(λx+ h) = αλ(xy − yx) = εg(y, z),

so ε = αλ. Moreover, Hf
∼= Hg only if deg(f) = deg(g).

Corollary 5.3.3. Automorphisms of Hf are of the form

x 7→ x+ h, y 7→ αy + βz + γ, z 7→ εz, (5.3)

α, ε, λ ∈ K×, β, γ ∈ K, and h ∈ K[y, z], such that

f(αy + βz + γ, εz) = λαg(y, z).

Corollary 5.3.4. The automorphism groups for H(U), H(J ), and H(J1) are de-

scribed below in terms of (5.3):

Aut(H(U)) : α = ε−1, β = γ = 0;

Aut(H(J )) : α = λ, β = γ = 0;

Aut(H(J1)) : α, ε = ±1, β = γ = 0.

5.4 Classification

We divide the algebras into domains and non-domains. Our key result is the follow-

ing.
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Proposition 5.4.1. Let A and Â be essentially regular of dimension two with

Z(A) = Z(A′) = K. Let H = H(A) and H ′ = H(A′), respectively. If H ∼= H ′

then one of the following holds:

• A ∼= A′ and gr(A) ∼= gr(A′)

• A ∼= gr(A′) and A′ ∼= gr(A).

Proof. By the hypothesis on the center of A, we have Z(H) = Z(H ′) = K[z].

Suppose Φ : H → H ′ is the given isomorphism. Let I and J be the ideal in H

generated by z and z − 1, respectively, and let Φ(I) = I ′,Φ(J) = J ′. Since I

and J are generated by a central element in H, then I ′ ∩ K[z] 6= 0 and similarly

for J ′. By Proposition 5.2.2, I ′ = (z − α), J ′ = (z − β), α, β ∈ K. This gives,

Φ(H/I) ∼= Φ(H)/Φ(I) ∼= H ′/I ′. Similarly, Φ(H/J) ∼= H ′/J ′.

We observe that the previous proposition holds so long as the homogenizing

element is regular in H and Ĥ. We can now show that the non-domains are non-

isomorphic.

Proposition 5.4.2. The algebras H(Rx2), H(Rx2−1) and H(K[x]) have infinite GK

dimension while H(Ryx) and H(S) have GK dimension 3.

Proof. By [53], Proposition 6.2.22, gkR[z] = 1 + gkR. This proves the result for

H(Rx2) and H(Ryx). Since Rx2 is a homomorphic image of H(Rx2−1), then by [49],

Proposition 8.2.2, we have gkH(Rx2−1) ≥ gkRx2 =∞.

We claim H(S) has a K-algebra basis {xiyjzk}. Let m ∈ H(S) be a monomial.

Since z is central, we may always write m = m′z. If yx appears in m′ then we

replace yx with z2 and move it to the right. This proves the claim about the basis.

Hence, gkH(S) = gkK[x, y, z] = 3.

For H(K[x]), we establish a basis by first replacing x2 with yz in every instance.

If z appears in a monomial, it may be used to move any instance of y to the right

of any instance of x. Finally, we move any power of z to the right. Hence, H(K[x])

contains two types of monomials: those that contain z and those that do not. The

latter set is in 1-1 correspondence with the monomials of Rx2 . The monomials

containing z may further be divided into two families: those that contain x and

those that do not. Both sets are in 1-1 correspondence with the monomials of

K[y, z]. Thus, we see readily that gkH(K[x]) = gkRx2 =∞.
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Proposition 5.4.3. The algebras H(Rx2), H(Rx2−1), H(Ryx), H(S), and H(K[x])

are non-isomorphic.

Proof. The algebras H(Rx2), H(Rx2−1) and H(S) are prime whereas H(K[x]) and

H(Ryx) are not. However, by Proposition 5.4.2, gk(H(Ryx)) = 2 while H(K[x]) has

infinite GK dimension. Similarly, gk(H(S)) = 2 whereas

gk(H(Rx2)) = gk(H(Rx2−1)) =∞.

It is easy to see that Z(Rx2) = Z(Rx2−1) = K. Since z is regular in both

algebras, then Proposition 2.3.5 shows that Z(Rx2) = Z(Rx2−1) = K[z]. In both

rings, the ideals (z − α) for α ∈ K are prime. Hence, H(Rx2) is nonisomorphic to

H(Rx2−1) by Proposition 5.4.1.

For the domains, virtually all cases are covered by Proposition 5.4.1. The only

remaining case involves isomorphisms between H(Op(K2)) and H(Aq1(K)). This is

accomplished using the same tools as in the previous chapter. Specifically, Lemmas

4.2.5 and 4.2.6.

Proposition 5.4.4. We have H(Op(K2)) � H(Aq1(K)) for all p, q ∈ K×.

Proof. In case p = 1, H(Op(K2)) is commutative so assume p 6= 1. Let {X, Y, Z} be

the generators for H(Op(K2)) and {x, y, z} those for H(Aq1(K)). Suppose we have

an isomorphism Φ : H(Op(K2)) → H(Aq1(K)). Write Φ(X) =
∑
αijkx

iyjzk and

Φ(Y ) =
∑
βijkx

iyjzk. By Lemma 4.2.6, α000 = β000 = 0. Let T = Φ(X)Φ(Y ) −
pΦ(Y )Φ(X) and let Td be as in Section 4.2.1. Then

T2 = (α100β100x
2 + α010β010y

2)(1− p)

+ (α001β001(1− p) + α100β010 − pα010β100)z
2

+ (α100β001 + α001β100)(1− p)xz + (α010β001 + α001β010)(1− p)yz

+ (α100β010(q − p) + α010β100(1− pq))yx.

The coefficients of x2 and y2 must be zero, so we have four cases. We show that all

the cases lead to a contradiction.

(1) (α100 = α010 = 0) By Lemma 4.2.5, α001 6= 0. Then the coefficient of z2

reduces to α001β001(1− p) = 0, so β001 = 0. Similarly, the coefficients of xz and yz

give β100 = 0 and β001 = 0, respectively. This contradicts Lemma 4.2.5.

(2) (β100 = β010 = 0) This is similar to case (1).
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(3) (α100 = β010 = 0) The coefficient of xz and yz reduce to α001β100(1− p) = 0

and α010β001(1 − p) = 0, respectively. If α010 = 0 or β100 = 0, then we return to

the previous cases. Hence, we may assume α001 = β001 = 0. The coefficient of z2

reduces to −pα010β100, so α010 = 0 or β100 = 0, a contradiction.

(4) (α010 = β100 = 0) This is similar to case (3).

By Proposition 5.4.1, H(Ap1(K)) ∼= H(Aq1(K)) if and only if p = q±1 when

p, q ∈ K× are not roots of unity or one. If p, q 6= 1 are roots of unity, then a method

similar to the previous proposition may be applied. However, there is a slight hitch

that makes the computations trickier.

Proposition 5.4.5. Let p, q ∈ K×. Then H(Ap1(K)) ∼= H(Aq1(K)) if and only if

p = q±1.

Proof. That p = q±1 implies H(Ap1(K)) ∼= H(Aq1(K)) follows from Corollary 3.4.3.

By the above discussion, we may assume p, q 6= 1. Let X, Y, Z be the standard gen-

erators of H(Ap1(K)) and x, y, z those of H(Aq1(K)). Let Φ be the given isomorphism

and T = Φ(X)Φ(Y )− pΦ(Y )Φ(X)− Φ(Z)2 with Td as before. Let

Φ(X) =
∑

αijkx
iyjzk,Φ(Y ) =

∑
βijkx

iyjzk, and Φ(Z) =
∑

γijkx
iyjzk.

Since Z ∈ Z(H(Ap1(K))), then Φ(Z) ∈ Z(H(Aq1(K))). Thus, by Lemma 4.2.8,

γ100 = γ010 = 0. Moreover, by Lemma 4.2.5,

a100b010 − a010b100 6= 0. (5.4)

We have T0 = α000β000(1− p)− γ2000, and so

α000β000(1− p) = γ2000. (5.5)

Then

T1 = (α000β100 + α100β000)(1− p)x+ (α000β010 + α010β000)(1− p)y

− ((1− p)(α000β001 + α001β000)− 2γ000γ001)z.

Suppose β000 = 0. By (5.5), γ000 = 0. Moreover, T1 reduces to α000(β100x+β010y)(1−
p) = 0, and so α000 = 0. A similar argument shows α000 = 0 implies β000 = γ000 = 0.

Suppose α000, β000 6= 0. If β100 = 0, then the coefficient of x in T1 being zero

implies α100 = 0. This contradicts (5.4).
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Our last step is to consider T2. We have

T2 = (1− p)(α100β100x
2 + α010β010y

2)

+
[
(1− p)α001β001 − γ2001 + α100β010 − pα010β100

]
z2

+ [α100β010(1− qp) + α010β100(p− q)] yx

+ (1− p)(α100β001 + α001β100)xz + (1− p)(α010β001 + α001β010)yz.

Thus, by considering the coefficients of x2 and y2 we arrive at two cases. In the first

case, α100 = β010 = 0. Then the coefficient of yx reduces to α010β100(p − q), and

so p = q. The second case is that α010 = β100 = 0 and then the coefficient of yx

reduces to α100β010(1− qp) and so p = q−1.

Proof of Theorem 5.0.2. By Proposition 5.4.4, H(Op(K2)) � H(Aq1(K)) for

all p, q ∈ K×. It follows from Theorem 4.2.11 that H(Op(K2)) ∼= H(Oq(K2)) if

and only if p = q±1. Similarly, H(Ap1(K)) ∼= H(Aq1(K)) if and only if p = q±1 by

Proposition 5.4.5. The remainder is covered by Propositions 5.4.3 and 5.4.1 along

with Theorem 4.0.7.

We now summarize our results in a similar manner as to Theorem 4.5.1. The

statement, however, is slightly more satisfying.

Theorem 5.4.6. Let H and H ′ be of the form (5.1) with defining matrices M,M ′ ∈
M3(K), respectively. Then M ∼sf M

′ if and only if H ∼= H ′.
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Chapter 6

Skew homogenizations

This chapter is dedicated to generalizing the notion of homogenization. An alter-

native method for extending A to a regular algebra is via a skew homogenization.

Here, the homogenizing element x0 is not assumed to be central but instead normal.

Definition 6.0.7. Let A = K〈x1, . . . , xn | f1, . . . , fm〉 and let f̂j be the homoge-

nizations of fj for each j ∈ {1, . . . ,m}. For each i ∈ {1, . . . , n}, let qi ∈ K×. The

algebra Hq(A) is said to be a skew homogenization of A if it is a K-algebra

presented by the n + 1 generators x0, x1, . . . , xn subject to the relations f̂j as well

as the additional relations x0xi − qixix0 for all i. In case qi = 1 for all i, then we

recover the homogenization of A and, as usual, write H(A).

As with homogenizations, we can always recover gr(A) from Hq(A) via gr(A) ∼=
Hq(A)/(x0). However, we cannot recover A unless Hq(A) = H(A). We are inter-

ested in skew homogenizations which are regular. In order for this to be the case,

the choice of the qi cannot be made arbitrarily. In the case of n = 3, we employ

Bergman’s Diamond Lemma [19] to show that a given skew homogenization has a

K-algebra basis equivalent to that of a polynomial ring in three variables.

Let A = K〈x1, . . . , xn〉/I where I = (f1, . . . , fm). Let wi be the leading word

of fi for each i ∈ {1, . . . ,m} according to some ordering. Let w′ = fi − wi. If w

is some other word containing wi, so w = uwiv, then the corresponding reduction

is w 7→ uw′v. A word w is reduced if it contains no wi as a subword. An overlap

ambiguity is a case when w = uwi = wjv for leading words wi, wj with u, v 6= 1.

The case when wi = uwjv for leading words wi, wj is an inclusion ambiguity. In

both cases, the ambiguity is resolvable if reducing in all possible ways leads to the

same result. Otherwise, the difference of the results must be added as an additional

relation in I and the process repeats.
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Algebra A Restrictions Hq(A)
Oq(K2) none Op,q,r

Aq1(K) r = p−1 Hp,q

J r = p HqJ
J1 r = p = ±1 H ′(J1)
U r = 1 HpU

yx− xy + y2 + xz r = p = 1 H(V)

Table 6.1: Restrictions on q for skew homogenizations

Theorem 6.0.8 (Bergman’s Diamond Lemma). The set of reduced words corre-

sponding to (f1, . . . , fm) is a K-basis for A if all overlap and inclusion ambiguities

are resolvable.

For A essentially regular of dimension two, we determine all restrictions on the

parameters qi. Let Hq(A) have generators x, y, z subject to the relations zx− rxz,

zy − pyz, and the homogenized relation f̂ . There are no inclusion ambiguities to

check, so we check the only overlap ambiguity z(yx) = (zy)x. The restrictions on r

and p in each case are listed in Table 6.1

If H is connected and N-graded algebra, then a twisting system on H is a set of

graded K-algebra automorphisms of H, τ = {τn | n ∈ N}, such that τn(aτm(b)) =

τn(a)τn+m(b), for all n,m, l ∈ N, a ∈ Hm, b ∈ Hl.

Definition 6.0.9. Let τ be a twisting system of an algebra H. The Zhang twist

Hτ of H has the same K-algebra basis as H but a new multiplication ∗ given by

a ∗ b = aτn(b) for all a ∈ Hn, b ∈ Hl.

By [61], Theorem 1.3, Hτ is regular if and only if H is regular. By [7], Theorem

8.16, regular skew homogenization is a Zhang twist of a regular homogenization.

Theorem 6.0.10 (Zhang). Let A and B be two N-graded algebras. If B is isomor-

phic to a Zhang twist of A, then the category of graded A-modules is isomorphic to

the category of graded B-modules.

Thus, to study the graded module structure of a skew homogenization, it is

sufficient to determine to which homogenization it is twisted-equivalent.

Example 6.0.11. Let H be a skew homogenization of Aq1(K). Define a Zhang twist
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on H via τ1(x) = p−1x, τ1(y) = py, and τ1(z) = z. Then we have

z ∗ x− p−1x ∗ z = zτ1(x)− p−1xτ1(z) = p−1(zx− xz)

z ∗ y − py ∗ z = zτ1(y)− pyτ1(z) = p(zy − yz)

x ∗ y − qy ∗ x− z ∗ z = xτ1(y)− qyτ1(x)− zτ1(z) = p(xy − qp−2yx− p−1z2).

Let Hτ denote this new algebra. Then Hτ has defining relations

zx− xz, zy − yz, xy − qp−2yx− p−1z2.

Define σ ∈ Aut(Hτ ) by σ(x) = x, σ(y) = y, σ(z) = p1/2z. It is then clear that

Hτ ∼= H(Aqp
−2

1 (K)). Thus, Hτ ∼= H(A1) if and only if q = p2.

A similar computation shows that Op,q,r is twisted-equivalent to H(Opqr−1(K2)).

In all other cases of A 2-dimensional essentially regular we have that Hq(A) is

twisted-equivalent to H(A). Hence, in terms of module structure, there is little to

say about these skew homogenizations that has not been said previously in this work.

However, the direct study of these skew homogenizations leads to two generalizations

which are worth considering.

The algebras HpU, HqJ and H ′(J1) may be considered as differential operator

rings over the quantum plane. In particular, we fix throughout the notation R =

K[z][y; τ ] with τ ∈ Aut(K[z]) defined by τ(z) = pz. Technically, this is the ring

Op−1(K2), but it is isomorphic to Op(K2) by Corollary 4.2.12. Let C = {yizj | i, j ∈
N} ⊂ R and denote by RC the localization of R at C. If H = R[x;σ, δ] is a skew

polynomial ring over R, then denote the localization of H at C by HC = RC [x;σ, δ],

where σ and δ are extended to RC . We consider two situations here. The first is

the case in which σ = idR and δ(y) ∈ K[y, z] (Section 6.1). The second is the case

in which σ(y) = y, σ(z) = τ−1(z), and δ(z) = 0 (Section 6.2).

We finish this chapter with a modified skew homogenization of the quantum Weyl

algebra. In the defining relation xy−qyx−z2 we replace z2 with a single degree two

element z. These skew homogenizations are of particular interest because they can

be regarded as two-parameter analogs of the Heisenberg enveloping algebras. We

give conditions for such an algebra to have a distinguished central element which

gives rise to a primitive factor ring. These primitive factors rings are analogous to

the Hayashi-Weyl algebra [30].
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6.1 Certain differential operator rings

over quantum planes

We consider generalizations of the algebra HpU. Suppose H = R[x; δ] with δ(z) = 0

and δ(z) ∈ R. If δ(y) ∈ K[z], then we are in the situation of [35]. In the case of

HpU, δ(y) = yz.

Let δ(y) =
∑
αijy

izj. Then we have

0 = δ(zy − pyz) = zδ(y)− pδ(y)z = z
∑
i,j

αijy
izj − p

∑
i,j

αij(y
izj)z

=
∑
i,j

αij(zy
i)zj − p

∑
i,j

αijy
izj+1 =

∑
i,j

αij(p
i − p)yizj+1.

If p is not a root of unity, then αij = 0 whenever i 6= 1. Thus, in this case,

δ(y) = yf(z) for some f(z) ∈ K[z]. If p is a primitive nth root of unity, p 6= 1, then

αij = 0 whenever n - i− 1. Then δ(y) = y
∑
yinfi(z) where fi(z) ∈ K[z] for each i.

We can now describe the prime ideals of H which have nonzero intersection with

R. It is clear that H/(y) ∼= K[x, z] and H/(z) ∼= K[x, y]. Hence, if p is not a root

of unity and P is a prime ideal of H with P ∩ R 6= 0, then by (4.1) P corresponds

to a prime of the polynomial ring in two variables.

Our analysis of this case and the general case in the next section will depend

heavily on determining when δ is an inner derivation.

Proposition 6.1.1. Keep notation as above. If p is not a root of unity, then the

derivation δ is inner if and only if f(z) has no constant term. If p is a primitive

nth root of unity, then δ is inner if and only if z does not appear to a power dividing

n in δ(y).

Proof. In both cases, the sufficient condition can be checked easily by choosing an

appropriate element d such that δ(y) = dy−yd and δ(z) = dz−zd. We prove that the

indicated conditions are necessary. For an arbitrary element d =
∑

i,j αijy
izj inR,

we have

dy − yd =
∑
i,j

αijy
i(zjy)−

∑
i,j

αijy
i+1zj = y

∑
i,j

αij(p
j − 1)yizj. (6.1)

Suppose p is not a root of unity, then δ(y) = yf(z). Because H is a domain, then

(6.1) implies f(z) =
∑

i,j αij(p
j − 1)yizj. The right-hand side lies in K[z] only if

αij = 0 whenever i 6= 0. Moreover, the term on the right-hand side is 0 when

(i, j) = (0, 0). Thus, we must have that f(z) has zero constant term.
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The case of p a primitive nth root of unity is similar. In this case, αij = 0

whenever i | n. Moreover, if j | n, then p−j − 1 = 0. Thus, we must have that z

does not appear to a power dividing n in δ(y).

Suppose p is not a root of unity. If f(z) has a constant term, then δ is not inner

and there are no additional primes by the above proposition. In particular, this

holds if f(z) = 1. Otherwise, HC = RC [x − d] where d =
∑
αj(p

j − 1)−1zj. Now

there is no loss in passing to the full quotient ring Q of R. Let H = Q[x− d]. Since

Z(Q) = K, then Z(H) = K[x − d]. By Theorem 4.2.1, the primes of H which are

disjoint from Q are in 1-1 correspondence with the primes of K[x− d].

If p is a primitive nth root of unity, the ideals (y) and (z) remain prime. Denote

the ideal (yn − a, zn − b) in R by Ia,b. If Ia,b is δ-invariant, then it extends to

an ideal of H. Let I = Ia,b for some fixed choice of a, b ∈ K×. If r ∈ I, then

r = r1(y
n − a) + r2(z

n − b) for some r1, r2 ∈ H and

δ(r) = δ(r1)(y
n − a) + r1δ(y

n − a) + δ(r2)(z
n − b) + r2δ(z

n − b) ≡ r1δ(y
n) mod I.

Hence, I is δ-prime if and only if δ(yn) ∈ I. Then

δ(y) = y
∑

yinfi(z) ≡ y
∑

aifi(z) mod I.

Let f(z) =
∑
aifi(z). Then δ(y) = yf(z) mod I and the powers of z appearing in

f(z) are all relatively prime to n.

Proposition 6.1.2. Keep the notation as above. Suppose p is a primitive nth root

of unity. Then

δ(yk) = yk
k−1∑
i=0

f(piz).

Proof. The case of k = 0 follows from the discussion above. Assume this holds for

some k. Then

δ(yk+1) = δ(yk)y + ykδ(y) =

[
yk

k−1∑
i=0

f(piz)

]
y + yk+1f(z)

= yk

[
k−1∑
i=0

f(piz)y

]
+ yk+1f(z) = yk+1

[
k−1∑
i=0

f(pi+1z)

]
+ yk+1f(z)

= yk+1

[
k∑
i=1

f(piz)

]
+ yk+1f(z) = yk+1

k∑
i=0

f(piz).
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As an immediate consequence,

δ(yn) = yn
n−1∑
i=0

f(piz) ≡ b

n−1∑
i=0

f(piz) mod I.

Write f(z) =
∑m

j=0 αjz
j where αj = 0 if j ≡ 0 mod n. Let [k]p be the p-number ,

[k]p =
pk − 1

p− 1
= 1 + p+ · · ·+ pk−1.

Note that [n]p = 0 when p is an nth root of unity. We then have

δ(yn) ≡
n−1∑
i=0

f(piz) mod I ≡ nα0 +
m∑
j=1

[n]pαjz
j mod I ≡ nα0 mod I.

Thus, δ(yn) ≡ 0 mod I if and only if α0 = 0. We have now proved the following

proposition.

Proposition 6.1.3. If p is a primitive nth root of unity and a, b ∈ K×, then Ia,b is

δ-prime if and only if α0 = 0. Thus, in HpU, Ia,b extends to a prime ideal.

Proof. The first statement follows by the above discussion. Let H = HpU and

I = Ia,b for some a, b ∈ K. By Proposition 6.1.3, I is a δ-prime in R. Then

H/IH = (R/I)[x; δ], where δ is extended to R/I. Since I is prime in R, then R/I

is prime and so H/IH is a skew polynomial extension of a prime ring. Hence, IH

is prime.

There are two more things to consider in the root of unity case. One is, given an

ideal I as above, what ideals lie over I? The other question is which ideals lie over

(0)? The answer to the first question is surprisingly similar to Proposition 6.1.1.

Suppose Ia,b is δ-prime in R and let Ĥ = (R/I)[ŷ; δ̂]. Now R/I is a simple ring and

so by [49], Theorem 1.8.4, Ĥ is simple if and only if δ̂ is not an inner derivation on

R/I. A computation similar to Proposition 6.1.1 shows the following.

Proposition 6.1.4. Let p be a primitive nth root of unity and I = Ia,b for some

a, b ∈ K×. Write δ(y) ≡ yf(z) mod I. The derivation δ̂ is inner on R/I if and

only if f(z) has no constant term.

Proof. Let f(z) =
∑n−1

j=0 αjz
j and let d =

∑n−1
j=0 (p−j − 1)−1αjz

j. One checks that

0 = δ̂(z) = dz − zd and yf(z) = δ̂(y) = dy − yd.
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If δ̂ is inner on R/I, then H ∼= (R/I)[x̂ − d]. Since Z(R/I) = K, then by

Theorem 4.2.1, the primes lying over I are in 1-1 correspondence with the primes

of K[x̂− d].

It’s left to consider those primes lying over (0) in R. Let Q the quotient division

ring of R and let Ĥ = Q[x; δ]. Since Q is a simple ring (and a Q-algebra), then by

[49], Theorem 1.8.4, Ĥ is simple if and only if δ is not an inner derivation on Q. We

now give a criterion for this when p is a primitive root of unity.

Proposition 6.1.5. Let p be a nonzero primitive nth root of unity, n > 1. If P is

a prime of HpU, then one of the following holds:

1. y ∈ P and P corresponds to a prime of K[x, z];

2. z ∈ P and P corresponds to a prime of K[x, y];

3. (x− (p− 1)−1z − α) ∈ P , α ∈ K, and P corresponds to a prime of Op(K2).

Proof. Keep notation as above. Suppose p is not a root of unity. By Proposition

6.1.1, δ is inner on R and so the primes of H lying over (0) in R are in 1-1 corre-

spondence with the primes of K[x− d] where d = (p− 1)−1z, not including (x− d).

Hence, the primes are generated by Ωα = x− (p− 1)−1z−α with α ∈ K×. Modulo

the relation Ωα = 0 we have

0 = xy − yx+ yz = ((p− 1)−1z + α)y − y((p− 1)−1z + α) + yz

= (p− 1)−1(yz − zy) + yz = (p− 1)−1(yz − zy + pyz − yz)

= −(p− 1)−1(zy − pyz).

Thus, HpU/Ωα
∼= Op(K2).

Suppose p is a primitive nth root of unity. Proposition 6.1.1 implies that δ is

inner on the full quotient ring Q(R) and so we have the ideals in (4). There is an

additional possibility that P∩R = Ia,b and P corresponds to a prime of (R/Ia,b)[x−d]

as described above. It is easily checked that these ideals are exactly those in (4).

6.2 Skew polynomial rings over quantum planes

We considered the mixed case H = R[x;σ, δ] in one situation where σ(y) = y,

σ(z) = τ−1(z), and δ(z) = 0. In the case that δ(y) ∈ K[z], we are in the situation

of [35]. Our methods include algebras such at H ′J1. In H we have

0 = δ(zy − pyz) = σ(z)δ(y) + δ(z)y − p(σ(y)δ(z) + δ(y)z) = p−1zδ(y)− pδ(y)z.
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Hence, we have the criterion that zδ(y) = p2δ(y)z. This holds, in particular, in the

algebras HqJ and H ′J1. The defining relations are

zx− pxz = zy − pyz = yx− xy + δ(y) = 0,

and in the case of H ′J1, p = ±1. Let δ(y) =
∑
αijy

izj. Then

0 = zδ(y)− p2δ(y)z =
∑

αij(p
i − p2)yizj+1. (6.2)

If p is not a root of unity, then (6.2) implies αij = 0 whenever i 6= 2. Thus, in

this case, δ(y) = y2f(z) for some f(z) ∈ K[z]. If p is a primitive nth root of unity,

p 6= ±1, then (6.2) implies αij = 0 whenever n - i − 1. Thus, δ(y) = y2
∑
yinfi(z)

where fi(z) ∈ K[z] for each i.

It is clear that z generates a prime ideal and H/(z) ∼= K[x][y; d] where d = δ|z=0.

If p 6= ±1, then y generates a prime ideal and H/(y) ∼= Op(K2) with generators x

and z. The automorphism σ is inner on HC and hence, HC = RC [y−1x; y−1δ]. To

see this, we need only observe that

y(y)y−1 = y = σ(y) and y(z)y−1 = p−1z = σ(z). (6.3)

From this point we can appeal to our results from the previous section.

Proposition 6.2.1. If P is a nonzero prime of HqJ , then either z ∈ P and P

corresponds to a prime ideal of J or else y ∈ P and P corresponds to a prime ideal

of Op(K2).

Proof. Suppose p is not a primitive nth root of unity. We need only show that

there are no ideals lying over (0) in RC . In HC we have δ̂(y) = y−1δ(y) = y. By

Proposition 6.1.1, δ̂ is not inner on RC and so there are no additional ideals lying

over (0).

Now let p be a primitive nth root of unity, n > 1, and let I = Ia,b for some

a, b ∈ K×, as before. Since δ̂(y) = y mod I, then I is not δ̂-prime by Proposition

6.1.3. Let Q = Q(R). By an abuse of notation, let δ̂ be the extended derivation on

Q. Since δ̂(y) = y, then by Proposition 6.1.1, δ̂ is not inner on Q. Hence, there are

no primes lying over (0) in Q.

Let H = H ′J1 and note that (6.3) still holds, but it will be convenient for us

to flip y and y−1. There is no problem in doing this since p = p−1 = −1. Hence,

HC = RC [yx; δ̂] where δ̂ = yδ.
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Proposition 6.2.2. If P is a nonzero prime of H ′J1, then one of the following

holds:

1. z ∈ P and P corresponds to a prime ideal of J ;

2. P = (y2 − a, z2 + a)H with a ∈ K×;

3. P = (y2 − a, z2 + a, yx− b)H with a, b ∈ K×.

Proof. Let I = (y2 − a, z2 − b) in H. By Proposition 6.1.3, I is prime if and only

if δ(yn) ∈ I. Observe that δ(y2) = y2(y2 + z2) ≡ b(a + b) mod I. Hence, I is

prime if and only if a = −b. Since δ(y) ≡ 0 mod I, then HC/I corresponds to the

polynomial ring RC/I[x̂] = RC/I[yx]. Let Q = Q(R). Since z2 appears in δ̂(y),

then δ̂ is not inner on Q. Hence, there are no primes lying over 0 in R.

6.3 Skew homogenizations of quantum Weyl al-

gebras

Of particular interest are skew homogenization quantum Weyl algebras. Define

Hp,q = K〈x, y, z | zx− p−1xz, zy − pyz, xy − qyx− z〉, p, q ∈ K×. (6.4)

Assigning degree one to the generators x and y and degree two to z gives Hp,q the

form of a graded algebra. We have shifted from our usual convention so that our

results align with those of [38]. In particular, Kirkman and Small studied the algebra

Hp,q in the case p = q−1. These algebras may be considered as a two-parameter

analog of the Heisenberg enveloping algebra.

Define the (p, q)-number to be

[n]p,q =
n∑
i=0

qip−(n−i) = (qn − p−n)/(q − p−1). (6.5)

Note that [n]p,q = 0 if p and q are both primitive roots of unity and both orders

divide n.

For the skew polynomial construction, we take the base ring to be R = Op−1(K2)

with generators y, z and commutation given by yz = p−1zy. Then Hp,q
∼= R[x;σ, δ]

where σ is the R-automorphism given by σ(y) = qy, σ(z) = pz and δ is a σ-derivation

on R given by δ(y) = z, δ(z) = 0.
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Though we do not include them here, Hp,q can also be constructed as an am-

biskew polynomial ring, a generalized Weyl algebra, and it is isomorphic to a subal-

gebra of a two-parameter analog of U(sl3). The reader is referred to [25] for details.

Lemma 6.3.1. In Hp,q the following identites hold for n > 0,

xny = qnyxn + [n]p,qzx
n−1, (6.6)

xyn = qnynx+ [n]p,qy
n−1z. (6.7)

Proof. We prove (6.6) and leave (6.7) for the reader. The statement for n = 1 is

clear from (6.4). Assume true for n = k. For n = k + 1 we have

xk+1y = x(qkyxk + [k]p,qzx
k−1) = qk(qyx+ z)xk + [k]p,q(pzx)xk−1)

= qk+1yxk+1 + (qk + p[k]p,q)zx
k = qk+1yxk+1 + [k + 1]p,qzx

k.

The ideal (z) is prime since Hp,q/(z) ∼= Oq(K2). The element θ = (1−qp−1)xy−z
is normal in Hp,q and Hp,q/(θ) ∼= Op(K2). Thus, (θ) is also a prime ideal in Hp,q. In

the special case that p = q, (z) = (θ).

Proposition 6.3.2. The algebra Hp,q is PI if and only if p and q are primitive roots

of unity (not necessarily of the same order).

Proof. If H is PI, then so is every factor ring. However, Oq(K2) is only PI if q is a

root of unity. Similarly for p and Op(K2).

Suppose p is a primitive nth root of unity and q a primitive mth root of unity.

Let W = K[xmn, ymn, zn]. We claim W ⊂ Z(Hp,q). Once shown, the result follows

easily. That zn commutes with x and y is clear and similarly that xmn and ymn

commute with z. It remains to show that xmn and ymn commute with y and x,

respectively. This follows easily from (6.6) and (6.7).

Let P be a prime ideal of H. As we have seen, if z ∈ P , then P corresponds to

a prime ideal of Oq(K2). Let H = Hp,q and let HC be as in the introduction to this

chapter.

Proposition 6.3.3. If p 6= q, then δ is an inner σ-derivation on HC.
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Proof. Let β = (1 − qp−1)−1 and t = βzy−1. It suffices to show that 0 = δ(z) =

tz − σ(z)t and z = δ(x) = tx− σ(x)t.

(βzy−1)z − σ(z)(βzy−1) = βz(y−1z − py−1z) = 0,

(βzy−1)y − σ(y)(βzy−1) = β(z − q(yz)y−1) = β(1− qp−1)z = z.

Let Θ = x − t with t = βzy−1 as above. Then HC
∼= RC [Θ;σ]. If P is a prime

of HC and Θ ∈ P , then θ = βΘy ∈ P ∩H. Hence, the primes in HC containing Θ

are in 1-1 correspondence with the primes of H containing θ. These in turn are in

1-1 correspondence with the primes of Op(K2).

Proposition 6.3.4. HC [Θ−1] is a simple ring if and only if there do not exist

integers r, s such that qr = ps.

Proof. One readily checks that Θz = pzΘ and Θy = qyΘ so that HC [Θ−1] is a

quantum 3-space. The result now follows from [48], Proposition 1.3.

Corollary 6.3.5. If there do not exist r, s ∈ Z such that qr = ps, then H is a

primitive ring and so Z(H) = K.

Proof. Since the only nonzero primes of H are (z) and (θ), then (0) is locally closed

and therefore primitive. The second result now follows by [37], Proposition 3.2.

Suppose there exist r, s ∈ Z such that qr = ps, then it will follow that σr is an

inner automorphism. Let a = z−syr. Then

a−1ya = y−rzsyz−syr = psy−r(yzs)z−syr = qry = σr(y),

a−1za = y−rzszz−syr = pry−rzsz−s(yrz) = prz = σr(z).

Thus, HC = RC [a(x− t)r]. Let Ω = a(x− t)r. The primes lying over (0) in R are in

1-1 correspondence with the ideals of Z(R)[Ω]. These ideals are generated by Ω−α
for α ∈ K×. We have now proved the following.

Theorem 6.3.6. Let p, q ∈ K× be nonroots of unity. Suppose there exist r, s ∈ Z
such that pr = qs. For all α ∈ K×, A = Hp,q/(Ω−α) is a simple noetherian domain

of GK-dimension two and global dimension one.
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Proof. Most of this follows by the discussion above. Since the ideal P = (Ω− α) is

maximal in Hp,q, then A is a simple domain. Since P is generated by a central non-

zero divisor, then the GK dimension of A is at most two. A ring of GK dimension

one is necessarily PI. Hence, if p is not a root of unity, then gk(A) = 2.

That gld(A) = 1 follows analogously to the Weyl algebra. If r = 1, then this

follows by [12], Theorem 1.6. As above, HC
∼= RC [Θ;σ]. By [48], Corollary 3.10,

gld(RC) = 1. Thus, by [49], Theorem 7.5.3, gld(HC) = 2. Observe that A is

free as a K[x]-module. Define B1 = A ⊗K[x] K(x) and B2 = A ⊗K[y] K(y). Then

B1
∼= B2. Moreover, B1

∼= HC/(Ω−1)HC . The element Ω−1 is central and regular,

so gld(B1) = 1. Let B = B1 ⊕ B2. Since B is a faithfully free A-module, then

gld(A) ≤ gld(B) = max{gld(B1), gld(B2)} = 1.

The algebra A may be regarded as a two-parameter version of the Hayashi-Weyl

algebra. In particular, one can show furthermore that A is primitive and therefore

a ‘good analog’ of the Weyl algebra. More details on this algebra may be found in

[25] and, for an alternative approach, in [15].

We have deferred until now the case Hq = Hq,q. This algebra was studied in [38],

Section 2. The authors showed that when q is not a root of unity, the algebra Hq

is primitive, regular, and every nonzero prime ideal contains z. Our approach will

arrive at the same result but also include the root of unity case.

Proposition 6.3.7. The automorphism σ is inner on RC.

Proof. If a = yz−1, then

a−1ya = zy−1yyz−1 = (zy)z−1 = (pyz)z−1 = qy = σ(y),

a−1za = zy−1zyz−1 = zy−1(pyz)z−1 = pz = σ(z).

Let δ̂ = aδ. By Proposition 6.3.7, HC = RC [ax; δ̂]. By [29], Lemma 3.21, every

prime ideal of HC intersects RC in a δ-stable prime ideal. In the case of q not a root

of unity, RC is a simple ring so we need only consider those ideals that intersect RC

in zero. Let P be a nonzero prime ideal of HC with P ∩ RC = 0. Such an ideal

exists only if δ̂ is inner on RC .

Proposition 6.3.8. The derivation δ̂ is not inner on RC.
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Proof. Write d =
∑
αijy

izj. Then

y = az = δ̂(y) = dy − yd =
∑

αijy
i(zjy)−

∑
αijy

i+1zj

=
∑

αijp
jyi+1zj −

∑
αijy

i+1zj =
∑

αij(p
j − 1)yi+1zj.

In order to have equality, we need the coefficient (p0 − 1)α0,0 = 1, but that is

absurd.

In case q is a primitive nth root of unity, it is left to check that the ideals

(yn − a, zn − b) are not δ̂-invariant. Since δ̂(y) = y, then clearly δ̂(yn) = y. So

δ̂(yn − a) = y and thus, when n 6= 1, these ideals are not δ̂-invariant.

6.3.1 Isomorphisms and automorphisms

Now that we have a handle on the prime ideals of Hp,q, it is reasonable to ask when

two such algebras are isomorphic.

Proposition 6.3.9. Let p, q ∈ K×. Then Hp,q
∼= Hp−1,q−1 and Hp,q

∼= Hq,p.

Proof. Let x, y, z be the standard generators for Hp,q and X, Y, Z those for Hp−1,q−1 .

Define a rule Φ : Hp−1,q−1 → Hp,q by X 7→ y, Y 7→ x, Z 7→ −qz. This rule satisfies

the defining relations for Hp,q,

0 = Φ(X)Φ(Z)− pΦ(Z)Φ(X) = −q(yz − pzy),

0 = Φ(Z)Φ(Y )− pΦ(Y )Φ(Z) = −q(zx− pxz),

0 = Φ(X)Φ(Y )− qΦ(Y )Φ(X)− Φ(Z) = yx− qxy + qz = −q(xy − q−1yx− z).

Thus, Φ extends to an algebra homomorphism. It is clearly bijective and therefore

an isomorphism.

Now let X, Y, Z be the generators for Hq,p. Define a rule Φ : Hq,p → Hp,q by

X 7→ x, Y 7→ y and Z 7→ −q−1pθ = q−1p[z − (1 − qp−1)xy]. We check that the
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defining relations for Hp,q are satisfied,

0 = Φ(X)Φ(Z)− qΦ(Z)Φ(X)

= q−1p
(
x[z − (1− qp−1)xy]− q[z − (1− qp−1)xy]x

)
= q−1p

(
xz − (1− qp−1)x(qyx+ z)− qzx+ q(1− qp−1)xyx

)
= q−1p(qp−1xz − qzx) = xz − pzx,

0 = Φ(Z)Φ(Y )− qΦ(Y )Φ(Z)

= q−1p
(
[z − (1− qp−1)xy]y − qy[z − (1− qp−1)xy]

)
= q−1p

(
zy − (1− qp−1)(qyx+ z)y − qyz + q(1− qp−1)yxy

)
= q−1p(qp−1zy − qyz) = zy − pyz,

0 = Φ(X)Φ(Y )− pΦ(Y )Φ(X)− Φ(Z) = xy − pyx− q−1p[z − (1− qp−1)xy]

= xy − pyx− q−1pz + q−1pxy − xy = q−1p(xy − qyx− z).

As before, Φ extends to an algebra homomorphism which is bijective and therefore

an isomorphism.

Proposition 6.3.10. Let Ψ : Hp,q
∼= Hp′,q′ be an isomorphism and all parameters

are not roots of unity. Then either p = p±1 and q = q±1 or else p = q±1 and q = p±1.

Proof. Let P be a height one prime ideal of Hp,q. Then P is a principal ideal and if

we consider only the case where P is generated by a noncentral element in P there

are two possibilities: either P = (z) or P = (θ). Thus, either Ψ fixes those two

ideals or else it interchanges them. In the first case, the restriction of Ψ to Hp,q/P

induces an isomorphism Oq(K2) → Oq′(K2), so q′ = q±1. In the second case,

restricting Φ to Hp,q/P induces an isomorphism Op(K2) → Op′(K2), so p′ = p±1.

Thus, Hp,q
∼= Hp±1,q±1 .

We can now consider automorphisms of the algebras Hp,q. Note that the map

interchanging the ideals (z) and (θ) is an automorphism if and only if p = q. The

automorphism group in the Kirkman-Small case was considered in in [3], wherein

the authors prove that the automorphism group is K× o {ω} when the parameter

is not a root of unity. In case there is no relation between the parameters, the

automorphism group is smaller. This is yet another example of “quantum rigidity”.

Proposition 6.3.11. If p, q ∈ K× and there do not exist r, s ∈ Z such that pr = qs,

then

Aut(Hp,q) ∼= K×.
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Proof. Let ρ ∈ Aut(Hp,q). By the above discussion, we can assume ρ fixes the two

height one ideals, (z) and (θ). Then ρ(z) = εz and ρ(θ) = λθ for some ε, λ ∈ K×.

Thus,

ρ(θ) = λ((1− qp−1)xy − z)

(1− pq−1)ρ(x)ρ(y)− ε(z) = λ(1− qp−1)xy − λz

ρ(x)ρ(y) = λxy − (1− qp−1)−1(ε− λ)z. (6.8)

Thus, the total degree of ρ(y)ρ(x) is two. In light of Lemma 4.2.5, we write, ρ(x) =

a1x+ a2y + a3 and ρ(y) = b1x+ b2y + b3, with ai, bi ∈ K for all i ∈ {1, 2, 3}. Then,

T = ρ(x)ρ(y)

= a1b1x
2 + a2b2y

2 + a1b2xy + a2b1yx+ (a1b3 + a3b1)x+ (a2b3 + a3b2)y + a3b3.

In T we must have a3b3 = 0. If a3 = 0, then the coefficient of x in T becomes

a1b3 = 0 and the coefficient of y becomes a2b3 = 0. Since a1b2 − a2b1 6= 0, then we

cannot simultaneously have a1 = a2 = 0. Thus, b3 = 0. Similarly, if we assume

b3 = 0, then we see that a3 = 0. Thus, a3 = b3 = 0 and T reduces to

T = a1b1x
2 + a2b2y

2 + a1b2xy + a2b1yx.

Since the coefficients of x2 and y2 must be zero, we can now consider two cases.

Case 1 (a2 = b1 = 0) In this case, T = a1b2xy. Then (6.8) implies that λ = a1b2

and ε = λ.

Case 2 (a1 = b2 = 0) In this case, T reduces to a2b1yx = a2b1q
−1(xy − z).

Then (6.8) implies that a2b1q
−1 = λ and a2b1q

−1 = (1 − qp−1)−1(ε − λ). Thus

ε− λ = (1− qp−1)λ and so ε = (2− qp−1)λ.
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