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ABSTRACT 
REGIONALIZATION OF HYDROLOGIC RESPONSE IN THE GREAT LAKES BASIN: 

CONSIDERATIONS OF TEMPORAL VARIABILITY 
 

by 
 

Jonathan Kult 
 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Woonsup Choi 

 
 
 

Methods for predicting streamflow in areas with limited or nonexistent measures of 

hydrologic response commonly rely on regionalization techniques, where knowledge 

pertaining to gaged watersheds is transferred to ungaged watersheds.  Hydrologic 

response indices have frequently been employed in contemporary regionalization 

research related to predictions in ungaged basins. In this study, regionalization models 

were developed using multiple linear regression and regression tree analysis to derive 

relationships between hydrologic response and watershed physical characteristics for 

163 watersheds in the Great Lakes basin.  These models provide a means for predicting 

runoff in ungaged basins at a monthly time step without implementation of any process-

based rainfall-runoff model.  Major findings from this research study include (1) 

Monthly runoff in ungaged watersheds was predicted with reasonable skill using 

regression-based relationships between runoff ratio and watershed physical 

characteristics; (2) Predictions in ungaged watersheds were highly influenced by the 

temporal characterization of runoff ratio used to condition the regression models; (3) 
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Watershed classification using regression tree and multiple linear regression techniques 

resulted in comparable model predictive skill. 
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1. Introduction 

 

1.1 Predictions in ungaged basins 

 

Water resource research and management objectives require knowledge of hydrological 

processes spanning both gaged and ungaged watersheds.  Hydrological processes 

include precipitation, runoff, and the routing, storage and loss of water by intervening 

media.  Research and management objectives include lake level forecasting, nonpoint 

source pollution loadings, the effects of land use/land cover change on streamflow and 

coastal ecosystems, and net water supply availability for irrigation, hydropower, and 

human consumption. 

 

Addressing water quantity and quality issues is possible in gaged watersheds, where 

historical time series of streamflow observations can be used to calibrate and validate 

hydrologic models designed to represent the hydrological processes being studied.  The 

need to address these issues over spatial domains with limited or nonexistent stream 

gage observation networks motivated the International Association of Hydrological 

Sciences Prediction in Ungaged Basins (PUB) initiative (Sivapalan et al., 2003).  While 

PUB research is typically conducted at local or regional scales, the challenges of 

understanding hydrological processes in data-sparse locations are global.  In fact, the 

least developed gaging networks are generally found in those regions most susceptible 
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to hydrologic impacts from expanding populations and changes in land use and climate 

(Sivapalan et al., 2003). 

   

Figures 1 illustrates some fundamental elements of a watershed, in this case the 

Milwaukee and Menomonee Rivers watershed in southeastern Wisconsin.  Red triangles 

indicate locations of stream gages, which provide continuous observations of the 

volume of water passing that point per unit of time.  The area of Figure 1 shaded green 

represents the gaged portions of the watershed, that is, the drainage area upstream 

from a gage.  The area shaded grey represents the ungaged portion of the watershed, 

that is, the drainage area downstream from all stream gages.  Consequently, the 

amount of water generated by the land upstream from a gage is known, but not how 

much water is flowing into Lake Michigan from the land downstream of the gages. 
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Figure 1 Milwaukee and Menomonee Rivers watershed in southeastern Wisconsin.  Stream 
gages are indicated by red triangles.  The area shaded green represents the gaged portion of 
the watersheds, while the grey area is ungaged. 
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1.2 Regionalization as a solution to the PUB problem 

  

Traditional approaches to making predictions in ungaged basins (PUB) invoke the 

concept of regionalization (Vogel, 2006; Wagener et al., 2004).  The term originates 

from the need to apply a locally calibrated hydrologic model to a larger region of 

interest.  More generally, regionalization can be thought of as the spatial interpolation 

of hydrologic variables or observations from gaged watersheds to ungaged watersheds. 

 

A great deal of research has explored the means and physical rationale for this transfer 

of hydrologic information across space.  Returning to Figure 1, a simple regionalization 

approach could extrapolate the total watershed’s outflow based solely on drainage 

area.  Since the gaged portion covers 92 percent of the watershed’s drainage area, we 

might assume it contributes 92 percent of the total watershed runoff. 

 

This straightforward regionalization approach is based on the geographic phenomenon 

of spatial autocorrelation, that is, the correlation of a variable with itself over space 

(Cliff and Ord, 1973).  While spatial autocorrelation is a common feature of many 

physical and human processes, the assumption of similar hydrologic response based on 

spatial proximity is frequently unjustified.  Hydrologic response refers to the way a 

watershed translates rainfall into runoff, for example by surface runoff, soil infiltration, 

evapotranspiration, and ultimately outflow from the watershed. 
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Table 1: Land cover type for gaged versus ungaged portions of the Milwaukee and 
Menomonee Rivers watershed. 

Land cover type 
Gaged area 

(km
2
) 

Percent of 
gaged area 

Ungaged area 
(km

2
) 

Percent of 
ungaged area 

Water 22 1 1 1 

Open/low developed 387 18 67 39 

Medium/high developed 135 6 84 49 

Forest 266 13 6 4 

Shrub/grassland 34 2 2 1 

Agriculture 979 47 6 4 

Wetlands 270 13 5 3 

Total 2093   171   

   

For example, Table 1 compares the predominance of different land cover types in the 

gaged and ungaged portions of the Milwaukee and Menomonee Rivers watershed.  

Compared to the upstream gaged area, the downstream ungaged area features higher 

percentages of impervious surfaces influencing fast runoff in developed areas, lower 

percentages of vegetation for plant uptake and transpiration, and lower percentages of 

wetlands for short-term water storage. In short, the ungaged and gaged portions of the 

Milwaukee and Menomonee Rivers watershed would not be expected to exhibit similar 

hydrologic response despite their physical proximity. 

 

In addition to spatial variability, hydrologic response can exhibit substantial temporal 

variability.  Table 2 presents summary statistics for monthly streamflow at United States 

Geological Survey (USGS) gaging station 04087000 on the Milwaukee River (see Figure 

1) for water years (WY) 1915-2012 (USGS, 2013).  The data in Table 2 indicate 

considerable seasonal and interannual variability of hydrologic response (here, 

quantified as streamflow) for the Milwaukee River watershed.  The temporal trends 
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evident in Table 2 (and present to varying degrees throughout the Great Lakes basin) 

are discussed in greater detail in Section 6.1. 

 

Table 2: Monthly streamflow statistics for the Milwaukee River at USGS gaging station 
04087000 for WY 1915-2012. 

  Streamflow (cubic meters per second) 

Month Min Max Mean 
Standard 
deviation 

Jan 1.3 30.6 7.6 5.5 

Feb 1.3 62.3 11.3 9.6 

Mar 5.1 100.4 30.0 17.9 

Apr 6.7 85.6 28.2 15.9 

May 2.4 73.5 15.8 10.5 

Jun 1.6 84.3 12.9 13.3 

Jul 0.7 35.5 6.9 6.4 

Aug 0.5 83.1 6.2 8.9 

Sep 0.8 65.2 7.3 9.8 

Oct 1.5 37.3 7.8 7.0 

Nov 1.8 55.4 9.8 7.5 

Dec 1.2 27.8 8.7 6.0 
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1.3 Research questions and methodology overview 

 

This research considers both the spatial and temporal variability of hydrologic response 

in the Great Lakes basin with the goal of predicting runoff from ungaged areas at a 

monthly time step.  The following questions are addressed: 

 

1. Can an index of hydrologic response be used to predict monthly runoff in 

ungaged watersheds? 

2. How does the temporal variability of hydrologic response affect monthly runoff 

predictions? 

3. How does watershed classification using a regression tree technique compare to 

the more commonly used linear regression technique? 

 

In order to answer these research questions, the following methods are employed: 

 

 Perform exploratory analysis of the spatial and temporal variability of hydrologic 

response in the Great Lakes basin, using monthly runoff ratio as an index of 

hydrologic response; 

 Develop two contrasting regression-based models relating hydrologic response 

with watershed physical characteristics (that is, comparing monthly runoff ratio 

with information on watershed climate, soils, land cover and topography); 
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 Use the models to predict streamflow in ungaged basins at a monthly time step 

without implementation of a physically-based rainfall-runoff model; and 

 Assess model predictive skill by comparing model predictions to actual 

observations. 

 

Section 2 introduces the watershed as the fundamental areal unit in hydrology and 

discusses attempts to define hydrologic similarity or derive watershed classification 

systems as bases for transferring knowledge between watersheds.  Section 3 provides a 

literature review of regionalization techniques used to make predictions in ungaged 

watersheds, including contemporary research gaps to be addressed.  The Great Lakes 

basin study area is described in Section 4.  Section 5 presents the data and methods 

used to develop the regionalization models.  Results are given in Section 6.  Section 7 

provides a discussion of the significance of these results in the context of water 

resources research and management in the Great Lakes basin and worldwide.  Answers 

to the research questions posed above are provided in Section 8. 

 

 

 

 

 

 

 



9 
 

 
 

2. The role of watersheds in hydrology 

 

2.1 The watershed as a geographic and geomorphic unit 

 

In the middle of the 20th century, hydrology emerged as a unique scientific pursuit 

consequent to increased specialization within geomorphology.  By this point, the 

drainage basin had been well established as a fundamental landscape unit in 

geomorphology (Davis, 1899) and was readily adopted as the fundamental areal unit in 

hydrology (Chorley, 1969).  Drainage basins, also referred to as watersheds or 

catchments, can be defined as the area of land for which surface and near surface water 

flows to a common location.  The drainage basin has served as an important 

geographical unit for applications in ecology (Omernik and Griffith, 1991), engineering 

and reclamation (Graf, 1999), and water quality impacts from non-point source 

pollution (He and DeMarchi, 2010), among many others. 

 

In all cases, the drainage basin constitutes a geographic unit within which both 

hydrological processes and their resulting land surface forms may be examined (Gregory 

and Walling, 1973).  Hydrological processes include precipitation, runoff, and the 

routing, storage and loss of water by intervening media.  Resulting landforms include 

river channels, flood plains, and erosional features, while topographic characteristics 

include basin area, relief, slope, aspect, and drainage density. 
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One important benefit of the drainage basin concept is that watersheds are naturally 

scalable to any spatial resolution as they are solely determined by land surface 

topography.  This nesting of spatial units allows for the study of hydrological processes 

at multiple scales and is the basis for the USGS Hydrologic Unit Code (HUC) system 

(USGS, 2012).  This scalability has resulted in hydrologic research conducted at a range 

of spatial resolutions, from highly discretized process studies in small “experimental 

watersheds” (Hewlett et al., 1969; Slaughter et al., 2001) to studies of continental and 

global scale runoff (Njissen et al., 1997; Njissen et al., 2001). 

 

However, there are important limitations to the drainage basin concept.  For example, 

groundwater basin boundaries are frequently different from the surface water basin 

boundaries dictated by topography (Feinstein et al., 2010).  In addition, Omernik and 

Bailey (1997) discuss many situations where watershed delineations dictated by 

topography alone may not be the best spatial unit for ecosystem management and 

developed the concept of ecoregions as an alternate geographic unit for analysis.  A final 

limitation, and one that is particularly relevant for making predictions in ungaged basins, 

is the lack of a formal watershed classification system.  This issue is discussed in the 

following section. 
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2.2 Watershed similarity and classification 

 

Wagener et al. (2007) review the many existing approaches to defining hydrologic 

similarity or devising watershed classification systems.  The authors observe that as a 

relatively young science, hydrology has yet to develop a unified watershed classification 

system.  Wagener et al. (2007) contrast the current state of classification in hydrology 

with the well-established and well-defined systems found in biology (i.e. Linnaean 

taxonomy) and chemistry (i.e. the periodic table). 

  

The need for a unified watershed classification system has been established (Wagener 

et al., 2007), and much research undertaken toward this goal (Sawicz et al., 2011; 

Sivakumar and Singh, 2012; Winter, 2001; Wolock et al., 2004).  Winter (2001) 

presented the concept of hydrologic landscapes “as a framework for objectively 

conceptualizing the movement of ground water, surface water, and atmospheric water 

in different types of terrain” (336).  Subsequently, Wolock et al. (2004) used geographic 

information systems and statistical techniques to group 43,931 small U.S. watersheds 

into 20 hydrologic-landscape regions based on similarities in land-surface form, geology, 

and climate.  Sawicz et al. (2011) developed a classification scheme for watersheds in 

the eastern U.S. based on statistical analysis of an ensemble of hydrologic response 

indices. 
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Attempts at watershed classification must address the wide range of variables that 

influence watershed response (see Section 5.2).  Climate, vegetation, land use and land 

cover, soils, geology, topography, and human modifications to the landscape are all 

physical characteristics influencing rainfall-runoff processes in a watershed.  The 

potential combinations of these physical characteristics are indicative of the 

“uniqueness of place” concept as applied to watersheds (Beven, 2000; see section 3.2).  

In light of these difficulties for establishing watershed similarity, a variety of 

regionalization techniques have been developed to transfer information from gaged to 

ungaged watersheds. 
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3. Regionalization approaches for making predictions 

in ungaged basins 

 

3.1 Rainfall-runoff model-dependent regionalization approaches 

 

Traditionally, regionalization approaches for predicting streamflow in ungaged basins 

begin by calibrating a chosen rainfall-runoff model in watersheds where observations 

are available.  Recalling the definition of hydrologic response as the translation of 

rainfall into runoff via routing, storage, and loss processes, rainfall-runoff models 

attempt to represent these processes by way of formal mathematical relationships. 

 

Figure 2 shows a representative structure for such a process-based rainfall-runoff 

model.  Rainfall-runoff models translate incoming precipitation into runoff via numerous 

surface and subsurface processes (the right side of the diagram), while accounting for 

losses of water from the system (the left side of the diagram).  The boxes in Figure 2 

represent the short- and long-term storage of water in the system.  The internal 

components and structure of this “cascading tank” type of model are adaptable to a 

wide variety of research and management objectives, including lake level forecasting, 

sediment or contaminant transport, flood and drought mitigation, and net water supply 

availability for irrigation, hydropower, and human consumption. 
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Figure 2: Representative components of a process-based rainfall-runoff model. 

 

The rainfall-runoff model calibration process typically seeks to find an optimal set of 

model parameters based on observed system inputs (e.g. precipitation and 

temperature) and outputs (e.g. streamflow).  Such parameters are associated with the 

routing, storage and loss processes included in the model structure, that is, the boxes 

and arrows of Figure 2. 

 

In ungaged watersheds, streamflow observations are not available for estimating these 

parameters.  Consequently, a variety of regionalization techniques have been developed 

to establish parameter sets at ungaged sites based on parameter sets calibrated at 
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gaged sites.  Assuming model inputs such as temperature and precipitation are available 

for the ungaged watershed, the rainfall-runoff model can then be applied to predict 

runoff from the ungaged area.  This methodology reflects the origins of the term 

regionalization, that is, finding a way to make a locally calibrated rainfall-runoff model 

applicable to a larger region of interest. 

 

In many studies, parameter sets are estimated at ungaged sites based on statistical 

relationships between calibrated parameters and watershed physical characteristics at 

gaged sites (Abdulla and Lettenmaier, 1997; Kokkonen et al., 2003; Post and Jakeman, 

1999; Sefton and Howarth, 1998; Seibert, 1999).  For example, a model parameter 

related to direct surface runoff could be related to information on land cover, such as 

the percent of agriculture, impervious surfaces, or wetlands in the watershed.  These 

statistical relationships can then be applied to ungaged areas, resulting in a new 

parameter set based on the physical characteristics of the ungaged watershed. 

 

Abdulla and Lettenmaier (1997) obtained parameter values for the gridded Variable 

Infiltration Capacity rainfall-runoff model based on regression relationships between 

calibrated parameters and watershed soils, topography, and climate.  Results indicated 

that this method provided better streamflow simulations than an approach based on 

linearly interpolating calibrated parameters over the grid.  Post and Jakeman (1999) 

used a similar procedure to predict daily streamflow in 16 small Australian watersheds 

using the IHACRES rainfall-runoff model.  They found that some relationships between 
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model parameters and watershed physical characteristics were better defined than 

others, leading to a range of predictive skill for simulating streamflow. 

 

Alternately, a parameter set may be inferred for an ungaged watershed based on its 

spatial proximity or physical similarity to gaged watersheds (McIntyre et al., 2005; Merz 

and Blöschl, 2005; Njissen et al., 2001; Parajka et al., 2005; Reichl et al., 2009).  For 

example, Njissen et al. (2001) used climate characteristics as a basis for transferring 

parameters for the Variable Infiltration Capacity model from nine large river basins to 17 

other continental river basins.  Parajka et al. (2005) explored a variety of regionalization 

approaches for transferring parameters of a conceptual rainfall-runoff model among 

320 Austrian watersheds.  Two regionalization approaches performed best: (1) spatial 

interpolation of model parameters using a kriging technique and (2) transfer of 

complete model parameter sets based on similarity of watershed physical 

characteristics.  McIntyre et al. (2005) developed a method to predict runoff in ungaged 

watersheds using an ensemble of candidate models from the most similar gaged 

watersheds, where similarity was based on a set of 17 watershed physical 

characteristics.  Results indicated that this ensemble approach performed better than 

an approach based on regression relationships between model parameters and 

watershed physical characteristics. 
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3.2 Limitations of rainfall-runoff model-dependent approaches 

 

In practice, the three regionalization schemes described above (based on spatial 

proximity, physical similarity, and regression on calibrated parameters) are frequently 

explored in tandem (e.g. Bao et al., 2012; Kay et al., 2006; Kokkonen et al., 2003; Merz 

and Blöschl, 2004; Oudin et al., 2008).  Comparisons of regionalization approaches 

indicate there is no optimal approach for estimating model parameters for ungaged 

watersheds.  Kay et al. (2006) found the optimal regionalization scheme depended on 

the rainfall-runoff model employed for calibration.  Bao et al. (2012) observed that the 

accuracy of different approaches varied between humid and arid regions.  Oudin et al. 

(2008) found spatial proximity to be optimal for their regionalization study in France, 

but predicated their findings on the presence of a dense gaging station network.   

 

There are many explanations for this inability to identify an optimal regionalization 

approach.  Beven (2000) argues that “a fully reductionist approach to describe the 

uniqueness of individual catchment areas by the aggregation of descriptions of small 

scale behavior will be impossible given current measurement technologies” (203).  In 

other words, the scale at which watersheds exhibit unique behavior is finer than the 

scale at which physical measurements can feasibly be obtained.  This “uniqueness of 

place” paradigm has been well documented as a major obstacle for contemporary 

regionalization studies (Beven, 2000; McDonnell et al., 2007). 
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Further, the regionalization approaches discussed so far are all rainfall-runoff model-

dependent, that is, they all implement some rainfall-runoff model for generating runoff 

predictions.  Such models invariably contain “structural uncertainty introduced through 

simplifications and/or inadequacies in the description of real world processes” 

(Wagener et al., 2004, p.5).  The model structure in Figure 2 illustrates this simplification 

of the real world.  For example, surface runoff is treated as a single process, when in fact 

numerous sub-processes are involved in this translation of rainfall into runoff. 

 

Moreover, Wagener and Wheater (2006) argue that implementations of rainfall-runoff 

models introduce location-specific model structural uncertainty.  That is, a model 

structure that appears representative of hydrological processes in one location (e.g. a 

gaged watershed) may not be suited for the same processes occurring at another 

location (e.g. an ungaged watershed). 

 

Finally, for any given rainfall-runoff model structure, the potential for multiple equally 

acceptable parameters sets has been well established (Bárdossy, 2007; Beven, 2006; 

Sorooshian and Gupta, 1983).  In other words, considering Figure 2, there will be 

multiple ways for the model structure to translate observed precipitation into observed 

streamflow, with no objective way to discern which pathway most closely represents 

the actual flow of water in the system. 
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3.3 Rainfall-runoff model-independent approaches 

 

In response to the limitations of model-dependent regionalization approaches, recent 

studies have developed regionalization schemes that are model-independent (that is, 

they can be applied to any rainfall-runoff model).  Wagener and Montanari (2011) 

review emerging methods wherein model-independent measures of hydrologic 

response in gaged watersheds (other than direct streamflow observations) are 

employed to establish a regionalization scheme. 

 

Hydrologic response refers to the translation of rainfall into runoff via watershed 

routing, storage and loss processes.  Hydrologic response indices are attempts to 

implicitly quantify hydrological processes (contrasted with explicit representation in 

rainfall-runoff models).  A wealth of indices (see Olden and Poff, 2003) has been derived 

to implicitly quantify these processes.  Examples include watershed input-output 

relationships (e.g. runoff ratio), hydrograph analytics (e.g. rising limb density) and 

metrics characterizing the magnitude, frequency, duration and timing of flow events 

(e.g. baseflow index and flood frequency). 

 

Examination of one commonly used response index, runoff ratio (also referred to as 

runoff yield), is instructive for demonstrating the concept of hydrologic response.  

Runoff ratio is a dimensionless index obtained by dividing total watershed runoff by 

total watershed precipitation over an equivalent time period.  Low values are indicative 
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of arid environments or drought conditions, while values greater than one represent 

surplus conditions, for example due to snowpack ablation or reservoir releases.  

Whereas a rainfall-runoff model would try to represent the surface, soil and 

groundwater processes occurring within a watershed (see Figure 2), an index like runoff 

ratio simply characterizes the watershed based on the percent of incoming precipitation 

that ultimately becomes runoff. 

 

Olden and Poff (2003) note the dramatic increase in recent years of hydrologic response 

indices developed and applied for streamflow characterization.  They present a 

comprehensive review of 171 indices from the literature, providing a framework for 

identifying high-information and non-redundant indices for hydroecological research.  

Yadav et al. (2007) review contemporary research employing hydrologic response 

indices for studying seasonal changes in evapotranspiration, biological assessment in 

ungaged basins, and annual temperature and streamflow regimes. 

 

Yadav et al. (2007) presented a rainfall-runoff model-independent approach to making 

predictions in ungaged basins based on empirical relationships between watershed 

physical characteristics and a variety of hydrologic response indices.  Three response 

indices (runoff ratio, high pulse count and the slope of the flow duration curve) were 

shown to be useful for constraining ensemble predictions at ungaged sites.  Shamir et al. 

(2005) developed two hydrograph-based response indices (rising and declining limb 

density) to improve the identification of optimal parameters for a rainfall-runoff model.  
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A case study employing this method indicated improved model reliability and predictive 

skill.  Sawicz et al. (2011) developed a classification scheme for watersheds in the 

eastern U.S. that incorporated six hydrologic response indices observed to vary along a 

climate gradient: runoff ratio, baseflow index, snow day ratio, slope of the flow duration 

curve, streamflow elasticity, and the rising limb density. 

 

Relationships between hydrologic response indices and watershed physical 

characteristics are typically used to provide ancillary information for rainfall-runoff 

modeling.  For example, Bulygina et al. (2009) used this information to constrain the 

range of allowable values for model parameters.  Alternately, this information can be 

used to develop an ensemble of predictions based on the likelihoods of candidate 

models (McIntyre et al., 2005; Reichl et al., 2009). 

 

Finally, some hydrologic response indices (e.g. runoff ratio) can be applied directly to 

simulate runoff in ungaged watersheds, as is demonstrated in this research.  Unlike 

those presented above, this approach is rainfall-runoff model-independent in the sense 

that runoff is predicted without implementation of a process-based rainfall-runoff 

model. 
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3.4 Temporal characterization of hydrologic response 

 

Hydrologic response indices have traditionally been developed to describe a 

watershed’s typical behavior over a given period of time.  Again, runoff ratio provides a 

salient example.  Yadav et al. (2007) define runoff ratio as average annual runoff divided 

by average annual precipitation.  Berger and Entekhabi (2001) and Sawicz et al. (2011) 

define it more generally as the ratio of long-term runoff to long-term precipitation.  

Similarly, nearly all of the 171 response indices reviewed by Olden and Poff (2003) are 

derived as long-term mean values, representing the average watershed behavior over a 

given time period.  Moreover, despite the fact that hydrologic response can exhibit 

substantial seasonal variability (see Section 6.1), runoff ratio has typically been defined 

at an annual time step.  As a result, contemporary research utilizing hydrologic response 

indices has addressed the spatial, but not temporal, variability in watershed behavior. 

 

This research gap is addressed by developing and regionalizing two different temporal 

characterizations of runoff ratio, addressing the research question of how temporal 

variability in hydrologic response affects predictions in ungaged basins. 
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4. Study area 

 

4.1 The Great Lakes basin 

 

The Great Lakes basin (Figure 3) drains 522,000 km2 of land in the United States and 

Canada featuring varied land cover, climate, subsurface properties, and human activity.  

The lakes themselves cover an area of 244,000 km2 and constitute the largest system of 

fresh surface water on Earth, containing more than 80 percent of the U.S. supply and 

nearly 20 percent of the global supply.  The Great Lakes support a multi-billion dollar 

fishing industry, recreation and tourism opportunities, major shipping routes and 

harbors for international commerce, and a source of freshwater for industry and 

consumption. 

 

The basin is home to over 30 million residents, many of whom live in highly urbanized 

areas adjacent to the lakes.  Temperature and precipitation variability is a function of 

both latitudinal and lake effects (Choi et al., 2012; Norton and Bolsenga, 1993).  

Significantly different subsurface properties exist throughout the basin as a result of the 

geologic formation of the Great Lakes.  At the scale of the Great Lakes basin, this 

variability results in a wide range of potential watershed behavior spanning both gaged 

and ungaged catchments. 
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Figure 3: The Great Lakes basin study area.  Gaged watersheds in the U.S. portion of the basin 
are colored green, while ungaged areas are colored orange. 

 

Figure 4 shows the dominant land cover for USGS 12-digit Hydrologic Unit Code sub-

watershed delineations (USGS, 2012).  Land cover types are based on classifications 

from the 2006 National Land Cover Dataset (Fry et al., 2011).  Wetlands and forests 

constitute the dominant land cover in northern Minnesota, Wisconsin, and Michigan, 

while agriculture is prevalent throughout most of central Wisconsin and Michigan and 

northern Indiana and Ohio.  Major urban areas featuring high levels of development are 

primarily situated along the coasts of the lakes. 
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Figure 4: Dominant land cover for USGS sub-watershed delineations. 

 

Predictions in ungaged basins are important at both local and regional scales for a 

variety of research and management objectives in the Great Lakes basin.  For example, 

complete spatial coverage of runoff estimates throughout the Great Lakes basin is 

critical for preparing reliable water level forecasts and for understanding the 

mechanisms involved in fluctuating water levels.  The transportation industry relies on 

maintenance of water levels sufficient for freight traffic and continued use of docks and 

harbors.  Fluctuations in water levels affect the 17,000 km of shoreline by impacting 

hydropower potential, beach and recreational areas, near-shore wetland habitats, and 

water quality at municipal water intakes (Gronewold et al., 2011; Lee et al., 1997). 
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Additional research and management objectives include the effects of land use and land 

cover change on coastal and near-shore environments (Wolter et al., 2006); the 

transport of nonpoint source pollution from agriculture and urban runoff (He and 

DeMarchi, 2010); and net water supply availability for irrigation, hydropower, and 

human consumption (Changnon, 1987; He, 1997). 

 

4.2 Hydrologic modeling in the Great Lakes basin 

 

As a study area, the Great Lakes basin poses unique challenges for making predictions in 

ungaged watersheds.  For example, there is a clear siting bias in the U.S. stream gage 

network, with coastal areas primarily ungaged and inland areas predominantly gaged 

(see Figure 3).  Although it represents only 27 percent of the total drainage area, these 

ungaged areas are frequently unique from neighboring inland regions in a number of 

ways, including the presence of the region’s most highly urbanized areas, coastal 

wetland ecosystems, or even local climate related to lake effect processes. 

 

Moreover, due to its large size and transnational regulation and data coordination 

efforts, many models have been applied within the Great Lakes basin to individual 

tributaries or portions of the basin within national boundaries, but few estimates of 

runoff to the entire system exist (Coon et al., 2011).  Two of the most widely used 

basinwide products include (1) the conceptual Large Basin Runoff Model (LBRM) 

developed by the National Oceanic and Atmospheric Administration’s Great Lakes 
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Environmental Research Laboratory (NOAA-GLERL; Croley and Hartmann, 1986) and (2) 

the physically-based Modeling Environment Community Surface Hydrological (MESH) 

model developed by Environment Canada (Pietroniro et al., 2007).  LBRM and MESH are 

process-based rainfall-runoff models of the type discussed in Section 3.1. 

 

An alternate regionalization approach involving a simple area ratio method (ARM) has 

served as a cornerstone of Great Lakes regional hydrologic research for several decades 

(Croley and Hartmann, 1986; Fry et al., 2012).  The basis of this method is the simple 

extrapolation of runoff by drainage area, as described for the Milwaukee and 

Menomonee Rivers watershed in Section 1.2.  As implemented by NOAA-GLERL, the 

ARM identifies the most downstream gage(s) for each of 121 subbasins spanning the 

Great Lakes basin and extrapolates streamflow from gaged to ungaged regions based on 

the ratio of gaged to total subbasin drainage area. 

 

Advantages of the ARM include the high temporal resolution of the data (daily 

streamflow observations) as well as computational and conceptual simplicity.  The 

primary disadvantage of the area ratio approach lies in its assumption of spatial 

homogeneity among the watershed physical characteristics influencing hydrologic 

response. 

 

Both the ARM and the models developed in this research involve regionalization of 

hydrologic response (streamflow and runoff ratio, respectively), resulting in empirical 
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rather than process-based rainfall-runoff models.  The methods differ in their 

assumptions concerning the spatial heterogeneity of watershed physical characteristics 

known to influence hydrologic response.  The regionalization models developed in this 

study take into account the spatial heterogeneity of watershed physical characteristics 

not explicitly accounted for by the area ratio method.   

 

With the background provided in Sections 2 through 4, the first two research questions 

posed in Section 1.3 are now specified in greater detail.  The regression techniques 

referred to in the third research question are explained in Sections 5.3 and 5.4. 

 

1. Can an index of hydrologic response be used to predict monthly runoff in 

ungaged portions of the Great Lakes basin, without implementation of a process-

based rainfall-runoff model? 

 

2. How does the temporal variability of hydrologic response, quantified as monthly 

runoff ratio, affect runoff predictions? 

 

3. How does watershed classification using a regression tree technique compare to 

the more commonly used linear regression technique? 
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5. Data and methods 

 

5.1 Monthly runoff ratio 

 

Monthly runoff ratio (monthly runoff divided by monthly precipitation) was calculated 

for 225 Great Lakes basin watersheds with continuous flow records for water years 

2001-2010.  USGS streamflow and NOAA precipitation data for each watershed were 

obtained from NOAA-GLERL.  All runoff ratios were log transformed prior to developing 

the regression relationships. 

 

For a gaged watershed w with observations covering t years, monthly runoff ratio (MRR) 

was defined at two temporal scales (Table 3).  These temporal characterizations of 

hydrologic response are derived by (1) treating monthly runoff ratios as individual 

observations (MRRi) and (2) using the mean of those runoff ratios as a representative 

observation (MRRm). 

 

In the table, Y represents the total number of MRR observations for all months over all 

watersheds contributing to the regionalization scheme.  For this study, t = 10 years (WY 

2001-2010) and w = 225 watersheds.  Of the 225 watersheds, 163 were used to develop 

the regionalization scheme, and 62 watersheds used to validate the models. 
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Since these runoff ratio observations are used to develop regionalization schemes for 

predicting runoff in ungaged watersheds, the distinction between temporal scales can 

be viewed as a distinction in water resource research and management objectives.  

Some common research and management objectives are listed in Table 3 under 

“Applications” in relation to the perceived appropriateness of temporal scale.  The last 

row in the table recalls the fact that long-term averages of hydrologic response have 

dominated contemporary PUB-related research. 

 

The monthly time step selected for this research is a compromise: predictions at longer 

time steps (e.g. annual) have limited use for most water quality and quantity 

applications, while predictions at shorter time steps (e.g. daily) would be 

computationally demanding, with reduced tractability for the relationships between 

watershed response and physical characteristics.  Moreover, the Large Basin Runoff 

Model computes runoff at a monthly time step, facilitating potential comparison 

between two very different approaches to PUB in the Great Lakes basin. 
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5.2 Watershed physical characteristics 

 

Watershed physical characteristics were obtained from the Geospatial Attributes of 

Gages for Evaluating Streamflow (GAGES-II) dataset (USGS, 2011). The geospatial data 

contained in GAGES-II include several hundred variables related to land cover, soils, 

topography, geomorphology, and anthropogenic modifications for 450 gaged 

watersheds within the Great Lakes basin.  Criteria for inclusion in the dataset were 

gages with at least 20 complete years of discharge record since 1950, or currently active 

gages as of water year 2009.  Table 4 lists all watershed physical characteristics from 

GAGES-II considered for inclusion in the regionalization models.   

 

In GAGES-II, land cover variables are derived from the 2006 National Land Cover Dataset 

(NLCD) and soils variables from the State Soil Geographic (STATSGO) database.  A wide 

range of variables describing watershed geomorphology, hydrology and topography are 

derived from national hydrography and Digital Elevation Model datasets.  Additional 

data related to anthropogenic modifications (such as freshwater withdrawals, canals, 

and dams) are also included in the GAGES-II dataset. 

 

Climate variables within the GAGES-II dataset are derived from PRISM Climate Group 

datasets.  Percent snow is defined as the ratio of annual snow water equivalent to 

annual precipitation, thus serving as proxy to seasonal snowpack accumulation and  
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Table 4: Watershed physical characteristics considered for inclusion in the regionalization 
schemes. Variables contributing to monthly multiple linear regression models at the p < 0.05 
significance level are denoted with dots. Black and red dots refer to the MRRi and MRRm 
temporal characterizations, respectively (see Table 3). The characteristics highlighted in grey 
were retained for developing the regionalization schemes based on the criteria in Section 5.2. 
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ablation processes.  The precipitation seasonality index ranges from zero to one, with 

higher values indicating higher seasonality of precipitation. 

 

Derivations and sources of variables in the GAGES-II dataset are documented in detail by 

USGS (2011).  The two exceptions are (1) a monthly wetness index computed as the 

ratio between monthly precipitation and potential evapotranspiration and (2) the 

Standardized Precipitation-Evapotranspiration Index (SPEI) developed by Vicente-

Serrano (2010).  Both the wetness index and SPEI were calculated in R with the SPEI 

package. 

 

The wetness index and SPEI both characterize water balance surplus-deficit conditions 

at a monthly time step.  SPEI additionally considers surplus-deficit conditions from prior 

months in its derivation.  The variables percent snow, precipitation seasonality index, 

wetness index, and SPEI are included as attempts to address seasonal water balance 

dynamics obscured by binning precipitation and runoff by month. 

 

To develop the models, 12 variables (highlighted in grey in Table 4) were retained based 

on (1) variable significance at the p < 0.05 level over most of the year based on fitting 

monthly linear models; (2) minimal redundancy among variables, informed by assessing 

Pearson correlation coefficients; (3) representation of climate, soils, land cover, 

topography and geomorphology variables; and (4) prevalence of land cover types in the 

region.  These criteria are discussed in greater detail in the following section. 
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Figure 5 illustrates the spatial distribution for one of these physical characteristics, the 

percent of annual precipitation falling as snow.  In addition to the expected latitudinal 

gradient, lake effect snowfall is also visible, for example east of Lakes Erie and Ontario.   

   

 

Figure 5: Percent annual precipitation falling as snow in the Great Lakes basin.  Data are from 
the GAGES-II dataset (USGS, 2011). 
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5.3 Multiple linear regression 

 

Multiple linear regression is a statistical technique commonly used to model 

relationships between two or more explanatory (independent) variables and a response 

(dependent) variable based on observed data.  The relationships are of the form 

 

0 1 1 2 2 ... n ny x x x          .       (Equation 1) 

 

In the present case, the response variable, y, is monthly runoff ratio and the explanatory 

variables, x, are the n = 12 watershed physical characteristics.  Regression coefficients 

are denoted by the β terms, while ε is an error term, or residual, representing the 

difference between modeled and actual runoff ratio values.   

 

Examples of linear relationships between mean monthly runoff ratio (MRRm) and 

selected watershed physical characteristics are given in Figure 6.  The four months 

(columns) were chosen to represent each season, while the watershed characteristics 

(rows) were chosen to represent climate, land cover, and topography variables.  For 

purposes of visualization, the panels show relationships from simple linear regression, 

that is, Equation 1 reduced to the form 

 

 y x     .                     (Equation 2) 
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The strongest relationship found in Figure 6 is between mean April runoff ratio and the 

percent of annual precipitation falling as snow.  A physical interpretation of this 

statistical result is that watersheds receiving higher amounts of their annual 

precipitation as snow are likely to exhibit higher runoff ratios in April as winter 

snowpacks melt.  The relationship is reversed in the winter, where a higher percent 

snow tends to result in lower runoff ratios as precipitation is stored in the snowpack. 

 

Many of the plots indicate only weak or moderate linear relationships between long-

term hydrologic response (MRRm) and individual watershed characteristics.  Table 4 

presents the results of linear fits between 46 watershed physical characteristics and 

each temporal characterizations of monthly runoff ratio (MRRm and MRRi).  Dots 

indicate a probability of less than five percent (p < 0.05) that the relationship could have 

been derived by chance.  Compared to the relationships developed using mean monthly 

runoff ratio (MRRm), Table 4 illustrates how strong linear relationships developed using 

all individual monthly observations (MRRi) are far more prevalent.  This is expected, 

however, since the determination of p-values in linear regression analysis is contingent 

upon the original variability in the data. 
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Figure 6: Linear relationships between mean monthly runoff ratio (MRRm) and selected 
watershed physical characteristics. 
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5.4 Variable selection process 

 

The results shown in Table 4 provide a starting point for selecting a more parsimonious 

set of watershed physical characteristics for the development of the regionalization 

scheme.  This exploratory analysis indicates the notable prevalence of climate variables 

as good linear predictors.  On the other hand, variables such as freshwater withdrawal 

and subsurface flow time rarely appear linearly related to monthly runoff ratio.  

Additionally, this analysis indicates that some watershed physical characteristics can be 

related to hydrologic response consistently throughout the year  (e.g. percent 

impermeable surface and SPEI), while other characteristics only express a linear relation 

to response seasonally (e.g. percent agriculture and dam storage). 

 

The next step in the variable selection process identified representative and non-

redundant watershed physical characteristics.  Many of the variables in Table 4 are 

highly correlated, particularly those of the same class.  Examples include large positive 

Pearson correlation coefficients between percent impervious and percent developed 

land cover (r = 0.97) and between permeability and percent sand (r = 0.93).  Aggregation 

redundancies exist as well, for example, percent agriculture is a composite of pasture 

and crop land cover.  Correlation matrices for the climate, soils, and land cover classes 

of variables are given in Appendix B. 

 



40 
 

 
 

Final considerations in the variable selection process were based on the prevalence of 

land cover types in the region.  For example, percent shrubland demonstrated strong 

linear relationships with monthly runoff ratio throughout the year, while percent 

wetlands rarely appeared linearly related to monthly runoff ratio.  However, shrubland 

only makes up 2 percent of Great Lakes basin land cover, while wetlands constitute 15 

percent.  Additionally, shrubland is not a dominant land cover in any of the 225 

watersheds used in this study, with a median of less than one percent and a maximum 

of only 14 percent.  On the other hand, wetlands are dominant surface features in many 

watersheds throughout the basin, with a median of 12 percent and a maximum of over 

half the watershed’s area.  Table 5 provides summary statistics for the 12 watershed 

physical characteristics used to develop the regionalization models.  
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Table 5: Summary statistics for the 12 watershed physical characteristics selected for the 
regionalization models. 

Watershed physical 
characteristic 

Units Mean Median 
Standard 
deviation 

Minimum Maximum 

Annual average 
precipitation 

mm 910 878 107 736 1349 

Annual average 
temperature 

°C 7.8 8.2 1.7 3.8 10.4 

Percent precipitation as 
snow 

Percent 19.9 18.7 5.0 12.1 39.1 

Precipitation-
evapotranspiration index 

NA 0.05 0.06 0.07 -0.19 0.25 

Percent impermeable 
surface 

Percent 4.2 1.4 8.1 0.0 49.7 

Percent agriculture Percent 31.8 31.8 26.2 0.0 84.9 

Percent woody wetlands Percent 12.7 11.5 9.8 0.0 51.4 

Drainage area km2 1725 561 2937 6 16,409 

Stream density km/km2 0.66 0.61 0.22 0.13 1.38 

Available water capacity in/in 0.14 0.15 0.03 0.07 0.25 

Erosivity (R) factor NA 99 95 17 65 153 

Slope Percent 2.4 1.7 2.2 0.0 11.4 

 

 

5.5 Model development 

 

Two contrasting regression techniques were developed in the R software environment 

to relate monthly runoff ratio with watershed physical characteristics.  Each regression 

model is developed with both temporal characterizations of hydrologic response (MRRi 

and MRRm), resulting in four regionalization models designed to predict runoff ratio at a 
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monthly time step.  Predicted runoff ratio multiplied by observed precipitation yields 

predicted runoff. 

 

The first regression technique is multiple linear regression, as described in Section 5.3.  

In that section, the goal of the regression was exploratory, and involved all the 

watershed physical characteristics listed in Table 4.   In order to develop the 

regionalization scheme, multiple linear regression was conducted again, this time using 

only the set of 12 watershed physical characteristics selected in Section 5.4.  In other 

words, for each month of the year, runoff ratio is modeled as a linear combination of 

watershed characteristics known to influence hydrologic response. 

 

However, many hydrological processes are known to exhibit highly nonlinear behavior 

(Kundzewicz and Napiórkowski, 1986; Sivakumar and Singh, 2012; Wittenberg, 1999).  

For this reason, regression tree analysis was performed as an alternate technique to 

potentially capture nonlinear watershed behavior.  Unlike linear models, regression tree 

models have rarely been used in regionalization studies.  One notable exception is the 

Spatial Regression-Tree Analysis method of Robertson and Saad (2003) for extrapolating 

water quality data from monitored to unmonitored streams.  Regression tree analysis, 

as implemented in R using the rpart package, is discussed in detail in the next section. 
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5.5.1 Regression tree analysis with rpart 

 

Regression tree analysis involves the partitioning of a dataset into clusters of 

observations.  The partitions are based on algorithms designed to identify differences 

among explanatory variables, in this case, watershed physical characteristics.  In this 

way, the method can be considered a data mining technique.  Unlike linear regression, 

regression tree analysis does not model the response variable as a linear combination of 

the explanatory variables.  Rather, it seeks to identify clusters of observations, in this 

case watersheds, with similar attributes.  In this way, the method can be considered a 

watershed classification technique as well. 

 

Regression tree routines in package rpart (Therneau and Atkinson, 2011) are based 

largely on the Classification and Regression Tree methodology of Breiman et al. (1984).   

Trees in rpart are grown so as to maximize differences in watershed characteristics at 

each branching in a simple analysis of variance.  The resulting trees are then pruned to 

minimize the risk of misclassifying an observation while avoiding excessive model 

complexity or overfitting.  Outputs from the regression tree analyses in rpart are 

monthly decision trees, with binary splits based on values of watershed physical 

characteristics, and terminal nodes grouping the 163 gaged watersheds into clusters 

(ideally) exhibiting similar hydrologic response.  From the PUB perspective, rpart can 

then assign cluster membership to an ungaged watershed based on its physical 

characteristics. 
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An example of this process is illustrated in Figures 7 and 8.  Figure 7 shows a regression 

tree grown and pruned with rpart for the month of July, with mean monthly runoff 

ratio as the dependent variable.  The process begins with all 163 watersheds.  The 

algorithms in rpart partition the set of 163 observations into all possible combinations 

of binary groupings, then search for the threshold value among all watershed physical 

characteristics that produces the greatest between-group sum-of-squares for runoff 

ratio.  For example, the first branching partitions the 163 watersheds into two groups 

based on a threshold of 20.5 percent agricultural land cover.  The process is then 

repeated for both resulting partitions.  Additional partitioning occurs until a group 

contains less than a user-defined number of watersheds or until further splits do not 

result in reduced error based on a leave-one-out cross-validation.  The final partitions 

are terminal nodes, or clusters.  In Figure 7, the regression tree has been pruned to six 

clusters, where each cluster contains n watersheds with a mean of  ̅.  The criteria for 

the pruning process are discussed next. 
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Figure 7: Monthly regression tree grown and pruned with rpart using the MRRm temporal 

characterization for the month of July. 

 

Figure 8 illustrates the rationale for pruning the trees.  Black lines refer to models 

conditioned on MRRi, while red lines refer to models developed with MRRm.  For every 

month, the reduction in cross-validation error (the risk of misclassification) is plotted 

against model complexity (the number of clusters).  Plots of risk (y-axis) versus 

complexity (x-axis) typically exhibit an initial decay followed by a plateau and then a 

slow rise (Therneau and Atkinson, 2011).  Optimal model complexity can be considered 

the point on the plot where the reduction in misclassification error becomes small.   

These points are indicated by the black and red dots in Figure 8, where a threshold of 

less than a 0.01 reduction in risk was chosen to determine their locations.  Trees were 

then pruned to contain this optimal number of clusters, indicated by the point’s x-value 

on the plots. 
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Figure 8: Cross-validation error (y-axis) versus number of clusters (x-axis) for monthly 
regression tree models.  Black lines refer to models conditioned on MRRi, while red lines refer 
to models developed with MRRm.  The dots indicate the point on the curve where increased 
clustering leads to a reduction in errors less than 0.01. 

 

 

5.6 Model validation 

 

Since the sample sizes of MRRi (n = 1630) and MRRm (n = 163) are so different, 

comparisons of relative error between the two temporal characterizations are not 

possible for purposes of model assessment.  Consequently, the four models (multiple 

linear regression and regression tree, conditioned by both MRRi and MRRm) were used 
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to predict monthly runoff in 62 validation watersheds.  Data for the validation 

watersheds were also obtained from the GAGES-II dataset.  None of the validation 

watersheds were among the 163 watersheds used to develop the models. 

 

The Nash-Sutcliffe coefficient of efficiency (NSE; Nash and Sutcliffe, 1970), the 

coefficient of determination (R2), mean absolute error (MAE), and deviation of runoff 

volumes (Dv) were computed to compare monthly predicted runoff (P) versus monthly 

observed runoff (O) in validation watersheds for all months i during WY 2001-2010 (n = 

120).  NSE (Equation 3) and R2 (Equation 4) are goodness-of-fit statistics; MAE (Equation 

5) quantifies error in units of mm of runoff; and Dv (Equation 6) assesses model bias in 

terms of total cumulative runoff. 
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For the NSE and R2 statistics, values of one indicate a perfect model fit, where predicted 

runoff is equal to observed runoff.  For Dv, a value of zero implies no model bias, where 

cumulative predicted and observed runoff (here, for WY 2001-2010) are equal.  MAE 

quantifies the difference between observed and predicted values in actual units, in this 

case millimeters of runoff.  Values closer to zero indicate a better model fit.   

 

The performance ratings for NSE and Dv suggested by Moriasi et al. (2007) are shown in 

Table 6.  Since R2 is highly sensitive to outliers, Moriasi et al. (2007) do not provide 

performance ratings for this statistic, but consider a value greater than 0.50 to generally 

be acceptable. 

 

Table 6: Performance ratings for model validation statistics from Moriasi et al. (2007). 

Rating NSE Dv 

Very good 0.75 < NSE ≤ 1.00 |Dv| < 10 

Good 0.65 < NSE < 0.75 10 ≤ |Dv| < 15 

Satisfactory 0.50 < NSE < 0.65 15 ≤ |Dv| < 25 

Unsatisfactory NSE ≤ 0.50 |Dv| ≥ 25 
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6. Results 

 

6.1 Spatial and temporal variability of hydrologic response 

 

Figures 9 and 10 illustrate the spatial and temporal variability of monthly runoff ratio in 

the U.S. portion of the Great Lakes basin.  Figure 9 depicts 30-year mean monthly runoff 

ratios (MRRm) for April and October for the 163 gaged watersheds used to develop the 

regionalization models.  Watersheds are shown as points graduated by drainage area, 

with the largest of any nested watersheds shown as polygons.  Runoff ratios are 

symbolized by quartiles.  As indicated in the legend, the quartiles for MRRm are 

substantially different between the two months, reflecting the fact that April and 

October are typically high and low flow periods, respectively. 

 

Spatial trends include very high April runoff ratios in northern Michigan and western 

New York due to snowpack ablation and very low October runoff ratios in the 

predominantly agricultural regions of eastern Michigan and northern Ohio.  However, 

there is also evidence of highly dissimilar hydrologic response between spatially 

proximal watersheds, for example in central and northern Wisconsin. 
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Figure 9: Seasonal and spatial variability of monthly runoff ratio in the Great Lakes basin. The 
163 watersheds used to develop the regionalization models are shown as circles graduated 
according to drainage area.  Solid-colored polygons show the largest of any nested 
watersheds. Ungaged areas are shaded orange. Quartiles of MRRm are mapped for a) April 
and b) October. Note the sizable difference in the range of values between the spring and 
autumn months. 
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Figure 10 presents the full range of seasonal and interannual variability in observed 

MRRi and MRRm for the same 163 watersheds.  Seasonal trends are evident, with higher 

magnitudes and larger ranges for runoff ratio during winter and early spring compared 

to summer months.  The left panel shows all individual monthly runoff ratios (MRRi) 

over a ten year period.  The right panel shows the means of these individual runoff 

ratios (MRRm). 

 

 

Figure 10: Seasonal and interannual variability of hydrologic response in the Great Lakes 
basin. The left panel shows all individual monthly runoff ratios (MRR i) over a ten year period.  
The right panel shows the means of these individual runoff ratios (MRRm). Runoff ratios 
greater than one indicate a net monthly watershed surplus. 
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The different distributions of MRRi and MRRm indicate the degree of interannual 

variability in hydrologic response among Great Lakes basin watersheds.  While the 

median values for both temporal characterizations are similar, the interquartile ranges 

are very different, particularly during winter and spring months.  As a result, for 

management objectives related to the magnitude and timing of high flow events (e.g. 

potential floods) in ungaged areas, regionalization schemes based on long-term or 

annual averages may not be suitable. 

 

6.2 Model validation 

 

The 62 validation watersheds are shown in Figure 11, symbolized according to the 

deviation of runoff volumes (Dv) for WY 2001-2010.  Cumulative runoff was over-

predicted in watersheds with a positive Dv and under-predicted in watersheds with a 

negative Dv.  The distributions of Dv statistics are shown as boxplots.  Runoff was 

generally over-predicted (median ~ 10%) with the MRRm temporal characterization and 

under-predicted (median ~ -5%) with the MRRi temporal characterization.  However, in 

some regions, runoff is over- or under-predicted regardless of the model used, such as 

in western New York and central Michigan.  In other regions, however, the bias depends 

on the model used, such as in northern Wisconsin and southern Michigan. 

 

 



53 
 

 
 

 

Figure 11: Deviation of runoff volumes (Dv) are shown for the 62 GAGES-II watersheds used to 
validate the linear and rpart models. Validation watersheds are shown as circles graduated 

according to drainage area.  Solid-colored polygons show the largest of any nested 
watersheds.  Positive Dv values indicate that cumulative runoff was over-predicted.  Negative 
Dv values indicate that cumulative runoff was under-predicted. The distributions of Dv 
statistics for each model are shown as boxplots. 

 

The NSE, R2 and MAE statistics are given as boxplots in Figure 12.  Multiple linear 

regression using mean runoff ratios performed poorly, while both regression 

approaches using MRRi performed fairly well.  Multiple linear regression using MRRi 

resulted in the smallest interquartile range for both goodness-of-fit statistics, and was 

the only model with no NSE values less than zero (that is, higher variance in the model’s 
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residuals than in the observed data).  The lowest mean absolute errors (in mm of runoff) 

were produced using the MRRi temporal characterization of hydrologic response. 

 

 

Figure 12: Nash-Sutcliffe coefficient of efficiency (NSE; top panel) and coefficient of 
determination (R2; middle panel) goodness-of-fit statistics for the 62 validation watersheds.  
Mean absolute error (MAE) in mm of runoff is given in the bottom panel. 

 

Hydrographs of model-predicted versus observed runoff are shown in Figure 13 for five 

contrasting validation watersheds.  Summary descriptions of these watersheds are given 

in Table 7.  In Figure 13, blue lines show observed runoff, while black and red lines show 

runoff predicted with the MRRi and MRRm temporal characterizations, respectively.  

Solid lines display predictions from the multiple linear regression approach, while dotted 

lines display predictions from the regression tree approach. 
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Figure 13: Model-simulated versus observed monthly runoff (in mm) for five validation 
watersheds during WY 2001-2010.  The thick grey line represents observed runoff.  Black and 
red lines represent the MRRi and MRRm temporal characterizations, respectively. Solid and 
dashed lines represent the linear and rpart models, respectively.  January is indicated with 

the large tick marks on the x-axis. 
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Table 7: Characteristics of validation watersheds used for hydrograph comparison. 

Name 
Area 
(km2) 

Dominant land cover 

Mean 
annual 
runoff 
(m3/s) 

Mean 
annual 
precip. 
(mm) 

Average 
annual 
temp. 
 (°C) 

Montreal River, WI 684 
Forest 
(59%) 

Wetlands 
(23%) 

8.9 852 4.8 

Sandusky River, OH 231 
Agriculture 

(70%) 
Developed 

(15%) 
2.6 1059 10.0 

Mill Creek, MI 326 
Agriculture 

(51%) 
Forest 
(19%) 

2.4 885 9.2 

Saginaw River, MI 14,327 
Agriculture 

(45%) 
Forest 
(24%) 

132.2 832 8.3 

Irondequoit Creek, NY 380 
Developed 

(38%) 
Agriculture 

(33%) 
1.1 884 9.2 

 

Comparing the top two hydrographs in Figure 13, some basic relationships between 

streamflow regimes and watershed physical characteristics can be inferred.  For 

example, while the Montreal River exhibits a regular annual cycle, the Sandusky River 

hydrograph appears more erratic, with a less apparent annual cycle.  The regular annual 

cycle can be largely attributed to the predominance of forests and wetlands in the 

Montreal River watershed, while the irregular streamflow regime in the Sandusky River 

watershed likely reflects the prevalence of agriculture and high levels of urbanization 

and development in the region. 

 

Runoff from the Montreal River consistently peaks in April as a result of spring 

snowpack ablation, while hydrograph peaks are observed throughout the year for the 

Sandusky River.  In the latter case, warmer average annual temperatures imply less 



57 
 

 
 

snowpack storage potential, and therefore runoff peaks occurring any time throughout 

the winter.  In summer, hydrograph peaks for the Sandusky River can be attributed to 

fast runoff from agricultural and developed land cover. 

 

Model bias varies considerably among the five watersheds in Figure 13.  For all models, 

there is a recurring bias in late winter and early spring with runoff consistently under-

predicted for Montreal River and over-predicted for Irondequoit Creek.  For Sandusky 

River, numerous high runoff events in both winter and summer are under-predicted by 

all models.  For Mill Creek and Saginaw River, the models conditioned on mean runoff 

ratio (MRRm), particularly the linear model, greatly over-predicted monthly runoff, even 

in months not experiencing relatively high flows. 
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7. Discussion 

 

Numerous water resource research and management objectives require knowledge of 

hydrological processes occurring in ungaged watersheds.  Making predictions in 

ungaged basins through regionalization is inherently a geographical pursuit, addressing 

theoretical and practical means of (1) transferring knowledge of hydrological processes 

over space from gaged to ungaged watersheds; (2) determining similarities and 

differences among watersheds, including attempts to establish watershed classification 

systems; and (3) understanding and accounting for the temporal variability exhibited by 

hydrologic systems.  A great deal of research has been directed towards the first two 

items.  However, regionalization approaches involving hydrologic response indices have 

rarely accounted for the temporal variability of watershed behavior.  Further advances 

in regionalization research involving hydrologic response indices require the 

consideration of their temporal as well as spatial variability. 

   

In this research, four regionalization models (multiple linear regression and regression 

tree, conditioned by both MRRi and MRRm) were developed to predict runoff at a 

monthly time step based on watershed physical characteristics.  Results from 

applications to validation watersheds indicate that model predictions are far more 

sensitive to the temporal characterization of runoff ratio than to the type of regression 

technique used to develop the relationships (see Figure 12).  Specifically, the two 

regionalization schemes based on MRRi performed comparably well alongside 
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contemporary studies using response indices in conjunction with a rainfall-runoff model 

(e.g. Bulygina et al., 2009; Yadav et al., 2007).  Moreover, predictions based on the MRRi 

index were generally acceptable based on the performance ratings of Moriasi et al. 

(2007).  However, mean monthly runoff ratio (MRRm) does not appear to provide 

enough information about watershed behavior to be useful for making predictions in 

ungaged basins.  This conclusion mirrors the opinion expressed by Olden and Poff (2003) 

that a single index of hydrologic response is insufficient for characterizing the seasonal 

and interannual variability of hydrologic systems.  While MRRm accounts for seasonal 

variations in hydrologic response (the monthly time step), the MRRi characterization 

additionally accounts for interannual variability (the inclusion of all observations over a 

range of years).  This additional level of temporal characterization likely explains the 

superior performance of MRRi models compared to MRRm models. 

 

Compared to the contrasts exhibited by the temporal characterizations of runoff ratio, 

there were no substantial differences found between the multiple linear regression and 

regression tree techniques used to develop the models.  In other words, predictions in 

ungaged watersheds were not sensitive to the watershed classification technique 

employed to determine hydrologic similarity.  These results reflect the contemporary 

challenges described by Wagener and Montanari (2011) of determining hydrologic 

similarity among watersheds.   
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In this research, predictions of runoff in ungaged basins were based solely on empirical 

relationships between a watershed’s physical characteristics and observed hydrologic 

response.  This approach is distinct from the more commonly used regionalization 

approaches that rely on process-based rainfall-runoff models to make runoff 

predictions, for example the LBRM and MESH in the Great Lakes basin (see Section 4.2).  

Whereas rainfall-runoff models attempt to model specific hydrological processes 

occurring in a watershed (see Figure 2), the method presented in this study modeled the 

watershed as a system, without explicitly modeling constituent routing, storage and loss 

processes. 

 

An important result of this study is that monthly runoff can be predicted with 

reasonable skill without recourse to a process-based rainfall-runoff model.  This finding 

is particularly important considering the many regions of the world with sparse stream 

gage networks and limited resources for gathering the large amounts of field data 

required to calibrate a rainfall-runoff model.  In such cases, the approach used in this 

study may be viable for understanding and predicting watershed behavior, particularly 

over large spatial domains.    

 

The method used in this study is similar to the area ratio method (ARM; see section 4.2) 

in its empirical approach for predicting runoff in ungaged watersheds.  The primary 

advantage of the ARM is its utilization of all available streamflow observations at a daily 

time step.  The advantage of the method used in this study is its ability to account for 
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spatial heterogeneity between gaged and ungaged watersheds.  Comparisons between 

these two approaches would provide an opportunity to assess the significance of this 

spatial heterogeneity, while an integration of these two approaches could be developed 

as an improved alternative to process-based rainfall-runoff models. 
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8. Conclusion 

In this research, regionalization models were developed to predict runoff at a monthly 

time step based on watershed physical characteristics.  Results from this research 

suggest the following conclusions, each of which contributes to contemporary research 

involving hydrologic predictions in ungaged watersheds: 

 

 Monthly runoff in ungaged watersheds can be predicted with reasonable skill using 

regionalization relationships between runoff ratio and watershed physical 

characteristics; 

 Predictions in ungaged watersheds are highly influenced by the temporal scale used 

to condition the models; and 

 Predictions in ungaged watersheds were not sensitive to the watershed classification 

technique employed: similar results were obtained using multiple linear regression 

and regression tree analysis. 

 

The results from this research are important given the numerous applications of 

hydrologic response indices in contemporary research for making predictions in 

ungaged watersheds.  These predictions are essential for water resource management 

in the Great Lakes basin and worldwide. 
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Appendix A: Pearson correlation coefficients for watershed   

physical characteristics 

 

In order to identify representative and non-redundant watershed physical 

characteristics, Pearson correlation coefficients were computed for variables from the 

GAGES-II dataset (see section 5.4).  Correlation matrices are given below for three major 

classes of variables: climate, soils, and land cover. 

 

Table A.1: Correlation matrix for climate variables. 

Climate variables Precip Temp PSI Snow Latitude RH 
First 
frost 

Last 
frost 

Mean annual precipitation 1.00               

Average annual 
temperature 0.26 1.00             

Precip. seasonality index -0.69 -0.24 1.00           

Percent precip. as snow 0.01 -0.86 -0.21 1.00         

Latitude -0.46 -0.95 0.36 0.80 1.00       

Relative humidity -0.42 0.25 0.13 -0.20 -0.05 1.00     

Day of first frost 0.20 0.90 -0.19 -0.75 -0.80 0.30 1.00   

Day of last frost -0.21 -0.92 0.16 0.81 0.84 -0.29 -0.97 1.00 

 

Table A.2: Correlation matrix for soils variables. 

Soils variables AWC Perm BD Clay Sand 
K 

factor 
R 

factor 
Sub 
Flow 

Available water capacity 1.00               

Permeability -0.37 1.00             

Bulk density -0.40 -0.31 1.00           

Percent clay 0.19 -0.75 0.59 1.00         

Percent sand -0.21 0.93 -0.42 -0.85 1.00       

Erodibility (K) factor 0.30 -0.86 0.39 0.80 -0.91 1.00     

Erosivity (R) factor -0.02 -0.10 0.52 0.41 -0.22 0.30 1.00   

Subsurface flow index 0.05 -0.32 0.36 0.51 -0.37 0.38 0.37 1.00 
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