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Abstract

Essays on Asset Return and Housing Market

by

Swati Kumari

The University of Wisconsin–Milwaukee, 2013
Under the Supervision of Professor Narayan K. Kishor

The last two decades have witnessed substantial amount of research on time

variation in asset returns. It has been found that macroeconomic variables contain

useful information about asset returns. This dissertation consists of three essays

that study the link between the macroeconomy and financial markets. A central

idea behind the link is that households adjust their consumption spending in

anticipation of variations in the return on household assets.

The first essay proposes a latent-variables approach to estimate expected returns

on total household assets and expected growth rate of excess consumption

(consumption in excess of labor income) within a present-value model of

consumption. The present-value model of consumption implies that the ratio of

consumption- aggregate wealth reflects information about future asset returns and

consumption growth. Since expected returns and expected excess consumption

growth are unobserved variables, the current literature uses lagged excess

consumption-assets ratio or other proxies for estimation. This essay goes beyond

the existing literature by using an unobserved component approach to filter these

unobserved variables from the observed history of realized returns and realized

excess consumption growth. Results suggest that both filtered returns and filtered

excess consumption growth rate are significant and better predictors of realized

returns and realized excess consumption growth rate than the one obtained by

lagged excess consumption-assets ratio.
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The second essay focuses on estimating expected return on housing by exploiting

the information from the movements in consumption, income, and observable

assets. To do so, a present-value model of consumption is combined with an

unobserved component model. Kalman filter is then applied to extract expected

housing returns from the observed history of realized returns and realized excess

consumption growth. Results suggest that the filtered housing returns does a

significantly better job in predicting realized housing returns than other popular

predictors like mortgage rate and price-rent ratio.

The third essay uses an unobserved components model with heteroskedastic

disturbances to measure the time-varying importance of permanent and transitory

components in the U.S. and U.K. house prices. Estimation results suggest that the

movement in house prices in the two economies is mainly transitory in nature from

its trend path.
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Chapter 1

Introduction

1.1 Significance of the dissertation

The last decade has brought forth an active research in predictability of time varia-

tion in asset returns. The predictability of asset returns is of considerable importance

to the investor community that is interested in improving the predictability of asset

returns over the short run. This improved predictability can allow investors to make

better investment decisions without taking additional risks. However, in order to

overcome the unobservability of expected asset returns, the current literature uses

proxies for future asset returns. Two chapters of my dissertation show that this

approach doesn’t efficiently use all available information and an unobserved compo-

nents methodology can be used to significantly improve predictability of both total

and housing asset returns. Moreover, the dissertation sheds potentially valuable in-

sights into the permanent vs. transitory impact of movement in house prices in the

U.S. and the U.K. housing markets. This has significance for the government and

investors. It would help government make better policies and international property

investors create more effective property management strategy.

1.2 Structure of the dissertation

This dissertation consists of three essays. The first essay proposes an unobserved

component approach to estimate expected asset returns and expected excess con-

sumption (consumption in excess of labor income) growth rate in a present-value
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model of consumption. The expected returns based on the unobserved component

approach uses larger information set which is based on the information from the

whole history of observed returns and observed excess consumption. The findings

suggest that expected returns and expected excess consumption growth rate esti-

mated from the unobserved component approach do a better job in explaining re-

alized returns and realized excess consumption growth rate than the lagged proxies

used in the existing approach for future asset returns and future excess consumption

growth rate.

The second essay estimates housing asset returns by utilizing the information

in consumption, income, and observable assets. To do so, a modified present value

model of consumption is combined with an unobserved component model. Ac-

knowledging that expected housing asset returns are unobservable, the Kalman fil-

ter technique is used to extract them from the observed history of realized returns

and realized excess consumption growth. The constructed predictor outperforms

the other popular predictors like mortgage rate, price-rent ratio and GDP growth

rate both in and out-of-sample, providing statistically and economically significant

forecasts.

The third essay examines the behavior of the US and the UK housing market

by allowing the permanent and transitory component of house prices to vary with

time. It also focuses on the impact of the recent housing market collapse on the

US and the UK markets. An unobserved component model with heteroskedastic

disturbances is used to measure the permanent and transitory components of house

prices. More specifically, it measures the ratio of standard errors of transitory shocks

to those of permanent shocks over the entire sample period and examine whether

the movements in house prices will have a long term or a short term impact on the

US and the UK markets. The essay also investigates whether the impact of the

decline in the housing market in 2007 in the UK and the US markets is a transient
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deviation from the trend path.

1.3 Contribution to the literature

In the first essay, the existing approach in the literature includes consumption-wealth

ratio or excess consumption-assets ratio as proxies for future asset returns. These

proxies have provided some evidence that households adjust their consumption in

anticipation of the variations in the return on household assets. However, the usual

approach is not optimal as it does not use all the information efficiently. The main

contribution of the first essay is to use an unobserved component approach to esti-

mate the expected asset returns and expected excess consumption growth directly

from a version of present value model of consumption. The unobserved component

approach allows us to expand the information set by using the information from the

whole history of observed returns and observed excess consumption growth. The

use of more information provides us estimates of expected return and expected ex-

cess consumption that in theory should yield better forecasts of realized returns and

realized excess consumption growth rate. The approach also enables decomposition

of the movements in excess consumption-assets ratio into portion arising due to

movements in excess consumption growth and movements due to expected returns.

The second essay goes beyond the traditional literature that has mainly focused

on estimating the consumption response to changes in the housing market wealth to

estimate housing asset returns. Rather than estimating the consumption response

to changes in housing wealth, this essay utilizes the information in consumption,

income, and observable assets to estimate expected housing asset returns. This es-

say contributes to the literature by estimating future housing market returns from

a present value model of consumption using an unobserved component approach.

This approach provides an estimate of expected housing return that uses more in-

formation than the conventional finite lag approach and therefore should yield a
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better forecast of realized housing returns.

The third essay decomposes the movement in house prices into the permanent

and transitory components by allowing the shocks to house prices to have a time-

varying permanent and transitory effects. This is different from the traditional

literature that decomposes house prices into trend and cycle by assuming the shocks

to the permanent and transitory components to have same distribution. The data

suggests time variation in house prices. The real HPI has been much more volatile

at some times than at others. Therefore, I apply GARCH or IGARCH effect to

conditional variance of the innovation in trend and cycle component. I then observe

the ratio of standard errors of transitory shocks to those of permanent shocks over

the sample period, and examine whether the movements in house prices will have

a long term or short term impact on the US and the UK housing markets. More

importantly, the essay also analyzes the impact of the recent housing bubble crisis

on the housing market.
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Chapter 2

First Essay: Consumption and Expected Asset

Returns: An Unobserved Component Approach

2.1 Introduction

The relationship between financial markets and the macroeconomy has received

widespread attention over the last few years. One of the models that has been used

widely as a link between the macroeconomy and the financial markets is the present-

value model of consumption. The central idea behind the present-value model of

consumption is that the predictable fluctuations in asset returns may be reflected

in the current consumption decision of a household in a manner consistent with

rational expectations. Recently, Whelan (2008) proposed a modified present-value

model of consumption that takes the following form:

xt − at ≈ Et
∞∑
j=1

ρj(rat+j −∆xt+j)

where xt is the log of consumption minus labor income, at is the log of observable

household assets, rat is the return on these assets, and ρ is a known constant slightly

less than one. The above model suggests that log ratio of excess consumption

(defined as consumption in excess of labor income) to observable assets can be

expressed as an expected discounted sum of future returns on household assets

minus future growth rates of excess consumption. Therefore an upward surprise in

excess consumption today must correspond to an unexpected return on assets today

or to news that future returns will be higher or to a downward revision in expected
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excess future consumption growth rate.

The existing approach in the literature that includes Whelan (2008) and Lettau

and Ludvigson (2001) use excess consumption-assets ratio and consumption-wealth

ratio as proxies for future asset returns and future excess consumption growth rate1.

Their results have provided some evidence that households adjust their consump-

tion spending in anticipation of variations in the return on household assets. In this

essay, an alternative approach is proposed to estimate expected asset returns and

expected excess consumption growth rate in a present-value model of consumption.

Instead of using excess consumption-assets ratio as a proxy for expected asset returns

and expected excess consumption growth rate, they are estimated directly using an

unobserved component approach. This approach is based on recent research in

stock returns literature, where Binsbergen and Koijen (2010) and Rytchkov (2008)

have used an unobserved component approach to estimate expected returns in a

present-value model of stock prices. To estimate the expected return on assets and

expected consumption growth rate, I follow Campbell’s (1991) strategy and model

both expected returns and expected excess consumption growth rate as a first order

autoregressive process. It should be noted that this low order autoregressive pro-

cess in a state-space setting admits an infinite order VAR representation in terms

of excess consumption growth and excess consumption-assets ratio, as shown by

Cochrane (2008). This implies that expected return based on the unobserved com-

ponent approach uses a larger information set which is based on the information

from the whole history of observed returns and observed excess consumption. The

assumption of low order autoregressive specification for unobserved variables allows

me to write log excess consumption-assets ratio as a linear function of expected

return and expected excess consumption growth rate, which can be used as a mea-

surement equation in a state-space system. The state-space system also includes

1Lettau and Ludvigson (2001) use estimated residual from a cointegrating regression of con-
sumption, labor income and wealth (cay) as a proxy for expected asset returns.
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another measurement equation linking the observed ∆xt with the unobserved ex-

pected excess consumption growth rate and one transition equation involving the

AR process for expected excess consumption growth. This state-space model is

estimated using maximum likelihood via the Kalman filter.

The results indicate that expected returns are more persistent than expected

excess consumption growth rate, which is consistent with what other researchers

have found in the finance literature for expected stock returns and expected divi-

dend growth. This approach also allows decomposition of the movements in excess

consumption-assets ratio into portion arising due to movements in excess consump-

tion growth and movements due to expected returns2. The results suggest that

expected return accounts for 92 percent of the variations in the excess consumption-

assets ratio, whereas excess consumption growth rate accounts for only 8 percent of

the variations. This is similar to the findings of Binsbergen and Koijen (2010), who

find that expected return accounts for most of the variations in price-dividend ratio.

The findings suggest that expected returns and expected excess consumption

growth rate estimated from the unobserved component approach do a better job

in explaining realized returns and realized excess consumption growth rate than

lagged excess consumption-assets ratio. Estimated expected returns explain 8.3

percent of the variations in realized asset returns, whereas estimated expected excess

consumption growth rate explains 9 percent of the variations in realized excess

consumption growth rate. The corresponding R-squared values are 3.9 percent and

1.9 percent when lagged excess consumption-wealth ratio is used as a predictor of

realized asset returns and realized excess consumption growth rate. The approach

improves upon the predictive power of lagged excess consumption-assets ratio in

predicting asset returns because the unobserved component approach allows us to

expand the information set by using the information from the whole history of

2This is similar to the idea of Fama and French (1988), who point out that the price-dividend
ratio is only a noisy proxy for expected returns when the price-dividend ratio also moves due to
expected dividend growth rate variation.
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observed returns and observed excess consumption. The use of more information

provides us estimates of expected return and expected excess consumption growth

rate that in theory should yield better forecasts of realized returns and realized

excess consumption growth rate.

As pointed out by Lettau and Ludvigson (2001), return on total household as-

sets is highly correlated with the stock returns. Therefore I also examine whether

estimated expected return on assets from the proposed approach has significant ex-

planatory power for future movements in real stock returns. The predictive power

of the measure of expected returns is then compared with the predictive power of

cay and the excess consumption-assets ratio. The results suggest that the mea-

sure improves upon the predictive power of the excess consumption-assets ratio. 5.8

percent of the variations in one quarter ahead real stock returns are explained by ex-

pected asset returns, whereas the excess consumption-assets ratio explains about 2.5

percent of the variation. This suggests that decomposing the movements in excess

consumption-assets ratio into expected asset growth and expected excess consump-

tion growth rate led to a reduction in the noise of the predictive ability of excess

consumption-assets ratio, and helped improve the predictive power. In terms of

comparison with cay, cay explains 5.9 percent of the variation in one quarter ahead

stock returns, which is marginally better than our measure of expected returns.

The plan of this essay is as follows: section 2.2 provides a brief literature review;

section 2.3 proposes an unobserved component model to estimate the present-value

model of consumption. Section 2.4 describes the data. Section 2.5 provides the

empirical methodology; section 2.6 explains the empirical results; and section 2.7

concludes.
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2.2 Brief Literature Review

The use of the present-value model of consumption to establish a link between

the macroeconomy and the financial market goes back to Campbell and Mankiw

(1989), who showed that log of consumption-aggregate wealth ratio reflects infor-

mation about expected returns on wealth and expected consumption growth rate.

The empirical implementation of this model, however, was limited by the unob-

servability of human capital component of aggregate wealth. To get around this

problem of the unobservability of human capital, Lettau and Ludvigson (2001) used

a set of approximating assumptions that link the unobservable total wealth series

to observable series on assets and income. They found that stationary deviations

from the shared trend of consumption, labor income and wealth, defined as cay, is

a good predictor of future asset returns. However, Whelan (2008) argued that the

estimation of cay is based on the point estimate of cointegrating vector, which is

subject to uncertainty3.

Whelan (2008) introduced a new approach that eliminates the need to estimate

any parameter and showed that the ratio of excess consumption (consumption in

excess of labor income) to assets can be expressed as an expected discounted sum of

future returns on household assets minus future growth rates of excess consumption.

This model implies that an upward movement in excess consumption-assets ratio can

occur either due to lower future expected excess consumption growth rate or/and

due to higher-than-average expected asset returns. As a result, Whelan (2008)

suggests to use lagged excess-consumption assets ratio instead of cay as a predictor

of future asset returns.

The present-value approach used in this essay is closely related to literature on

present-value models in finance. Rytchkov (2008), Binsbergen and Koijen (2010),

Pastor and Stambaugh (2009), and Brandt and Kang (2004) have also applied filter-

3There is also a debate in the literature on the methodology involving the estimation of the
cointegrating vector in Lettau and Ludvigson (2001). See Hahn and Lee (2006) for details.
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ing techniques to predict stock returns and dividend growth rate. Rytchkov (2008)

also applies the state-space approach that simultaneously and explicitly uses both

dividends and returns in the filtering procedure. Binsbergen and Koijen (2010) fol-

low the similar approach used in this essay to estimate the expected stock returns

and apply it to predict stock returns. Brandt and Kang (2004) model conditional

mean and volatility of stock returns as unobservable variables that follow a latent

VAR process. Pastor and Stambaugh (2009) develop a predictive framework for

estimating unobservable expected returns from imperfect exogenous predictors and

realized returns.

2.3 Model Specification

2.3.1 Present-Value Model

In this section I build on the present-value model of Whelan (2008) and combine it

with the latent variable approach of Binsbergen and Koijen (2010). In doing so, I

first briefly explain the present-value model used in this essay.

Whelan (2008) considers the following budget constraint that describes the evo-

lution of total observable assets:

At+1 = Ra
t+1(At + Yt − Ct) (2.1)

where At is total household assets, Ra
t+1 is the gross return on assets, Yt is labor

income and Ct is consumption. Dividing across by At and taking logs we get:

∆at+1 = rat+1 + log
(

1− Ct − Yt
At

)
(2.2)

Define, excess consumption as Xt = Ct − Yt4

4For the US data series used in this study, which rely on a standard definition of labor income,
consumption always exceed labor income. Therefore, Xt is always positive. One of the interpre-
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Equation (2.2) can be rewritten as:

∆at+1 = rat+1 + log(1− exp(xt − at)) (2.3)

where log(1 − exp(xt − at)) is a non-linear function. Taking a first order Taylor

expansion around the mean (x− a), the budget constraint in equation (2.3) can be

approximated as:

log(1− exp(xt − at)) ≈ log(1− exp(x− a))−
(

X

A−X

)
(xt − at − x+ a) (2.4)

The coefficient -
(

X
A−X

)
equals - exp(x−a)

1−exp(x−a)
. We can rewrite the coefficient -( exp(x−a)

1−exp(x−a)
)

as 1− 1
ρ

where ρ ≡ 1− exp (x− a).

Equation (2.4) can be simplified to:

log(1− exp(xt − at)) ≈ κ+ (1− ρ−1)(xt − at) (2.5)

where κ is a constant and equals log(1− exp(x− a))-(1− ρ−1)(x− a).5

Substituting equation (2.5) into equation (2.3), we obtain :

∆at+1 = rat+1 + κ+ (1− ρ−1)(xt − at) (2.6)

Rearranging and solving equation (2.6) forward via repeated substitution and

imposing the condition that lim
j→∞

ρ−j(xt+j−at+j) = 0, yields the following expression:

xt − at ≈
ρκ

1− ρ
+
∞∑
j=1

ρj(rat+j −∆xt+j) (2.7)

tation of this positive sign may arise from the fact that in addition to after tax labor income Yt,
consumption is financed out of total wealth.

5In Whelan’s (2008) model, κ is dropped from the budget constraint.
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The algebraic steps applied to the above equation are similar to the methodology

applied in Campbell and Mankiw (1989) model.

The above equation can also be considered as a log linear equivalent of nonlinear

present-value budget constraint:

∞∑
j=0

Ct+j j∏
k=0

Ra
t+k

 = At +
∞∑
j=0

Yt+j j∏
k=0

Ra
t+k

 (2.8)

Equation (2.7) holds ex post and ex ante. Taking conditional expectations of the

equation yields the following expression for the excess consumption-assets ratio:

xt − at ≈
ρκ

1− ρ
+ Et

∞∑
j=1

ρj(rat+j −∆xt+j) (2.9)

An upward surprise in excess consumption today must correspond to an unexpected

return on assets today or to news that future returns will be higher or to a downward

revision in expected excess future consumption growth rate.

The model is in spirit of models by Campbell and Mankiw (1989) and Lettau and

Ludvigson (2001). A key advantage of this approach is that it does not require any

assumptions about unobservable variables such as human capital variable. Also,

it does not require estimation of unknown parameters to arrive at a forecasting

variable.

I build upon this model to filter expected asset returns from the observed history

of realized returns and excess consumption growth rate. Expected returns and

expected excess consumption growth rate are assumed as unobserved variables. This

assumption is also justified by the finding that xt−at is a noisy indicator for expected

returns. We only observe realized returns and excess consumption growth rate.

Since future returns and future excess consumption growth rate are unobserved,

an unobserved component model is more suitable to model the present-value model.
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We need to construct the most efficient estimates of unobservable expectations given

available data that improves upon the predictive regressions.

Expected returns and expected excess consumption growth rate are assumed

as latent variables and are modeled as AR(1) process. Similar approach has been

applied in a series of papers such as Binsbergen and Koijen (2010) that estimate the

expected stock returns and dividend growth by assuming an AR(1) process for the

two variables. Fama and French (1988), Campbell (1991), Pastor and Stambaugh

(2009) among others have argued that expected returns are likely to be persistent.

ret+1 = δ0 + δ1(ret − δ0) + εret+1 (2.10)

∆xet+1 = γ0 + γ1(∆xet − γ0) + εxet+1 (2.11)

where ret ≡ Et(r
a
t+1) and ∆xet ≡ Et(∆xt+1). The shocks εret+1 and εxet+1 are indepen-

dent and identically distributed over time. Realized asset return is equal to expected

asset return plus an idiosyncratic shock6:

rat+1 = ret + εrt+1

The realized excess consumption growth rate is equal to expected excess consump-

tion growth rate plus an idiosyncratic shock:

∆xt+1 = ∆xet + εxt+1

Plugging equations (2.10) and (2.11) into equation (2.9) and solving, we get:

xt − at = A+B1(ret − δ0)−B2(∆xet − γ0) (2.12)

6Return on total household assets is: rat+1 = log
(

At+1

At+Yt−Ct

)



14

where A = ρκ
1−ρ + ρ(δ0−γ0)

1−ρ , B1 = ρδ1
1−ρδ1 , and B2 = ργ1

1−ργ1 . The above equation implies

that the log of excess consumption-assets ratio is linear in the expected excess con-

sumption growth rate and expected returns. There are three shocks in the above

model: shock to expected excess consumption growth rate ( εxet+1), shock to expected

returns ( εret+1), and shock to realized excess consumption growth rate ( εxt+1). These

shocks have a mean zero and have the following variance-covariance matrix:

∑
= var


εret

εxet

εxt

 =


σ2
re σrexe σrex

σxere σ2
xe σxex

σrex σxex σ2
x



In this general correlation structure some of the parameters may be unidentified.

Cochrane (2008) and Morley et al. (2003) suggest that we need to impose restrictions

on covariance structure in the state space model to achieve identification. For our

purpose, we assume that the covariance between shocks to expected returns and

expected excess consumption is zero.

2.3.2 Variance Decomposition

Since both ret and ∆xet follow an AR(1) process, the variance of excess consumption-

assets ratio can be decomposed using equation (2.12) as:

var(xt − at) = B2
1var(r

e
t ) +B2

2var(∆x
e
t )− 2B1B2cov(∆xet , r

e
t )

var(xt − at) =
(B1σre)

2

1− δ2
1

+
(B2σxe)

2

1− γ2
1

− 2B1B2σxere
1− γ1δ1

(2.13)

The above formula implies that proportion of variation in excess consumption-assets

ratio explained by expected returns equals B2
1var(r

e
t ), and percentage of variation

explained by excess consumption equals B2
2var(∆x

e
t ).
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Table 2.1: Variance Decomposition of Excess Consumption-Assets Ratio

Estimate Share
var (xt − at) 0.0242 1

(B1σre )2

1−δ21
0.0237 0.918

(B2σxe )2

1−γ21
0.0021 0.081

Table 2.1 presents the variance decomposition results for excess consumption-

assets ratio from the estimated state space model. As reported in Table 2.1, most

of the variation in xt − at is explained by asset returns. The result show that

expected returns explain 92% of the variation in the excess consumption-assets ratio.

However, variations in expected excess consumption explains about 8% of the overall

variation in the ratio. For identification of the state-space system, we assume that

the correlation between the expected return and expected excess consumption equals

zero.

2.4 Data Description

The data in this essay includes excess consumption-assets ratio, return on assets,

and excess consumption 7. Quarterly data has been used starting in the first quarter

of 1952. The sample period runs through the last quarter of 2006. The data on total

household assets is based on the Federal Reserve Board’s Flow of Funds net worth

series. We subtract the value of consumer durables from the net worth series because

our measure of consumption includes outlays on durable goods8. Consumption

data has been obtained from National Income and Product Account (NIPA) Tables.

Labor income has been constructed using the data from NIPA, and according to

the procedure defined in Lettau and Ludvigson (2001). Labor income is wages and

7In NIPA, consumption and labor income series are reported on an annualized basis. Therefore,
the excess consumption series constructed using data from NIPA is divided by four. This adjusts
the excess consumption series to arrive at the correct figure for the average reduction in assets per
quarter due to consumption in excess of labor income. However, the chart in Fig.1 reports the
series for excess consumption on an annualized basis.

8Our measure of consumption is based on Whelan’s (2008) approach.



16

salaries plus transfer payments plus other labor income minus personal contributions

for social insurance minus labor taxes. Labor taxes are defined by imputing a share

of personal tax and non-tax payments to labor income with the share calculated as

the ratio of wages and salaries to the sum of wages and salaries, proprietors’ income,

and rental, dividend, and interest income. All data on asset valuation, consumption,

and labor income is in nominal terms. Consumption, assets, and income series is

deflated by the price index of the total personal consumption expenditure to obtain

real consumption, asset returns, and income9. I also examine the predictive ability

of expected asset returns in explaining variations in real stock returns and compare

it with the predictive ability of the consumption based predictors such as cay10 and

xt−at. The data on real stock returns has been obtained from the Standard &Poor’s

(S&P) composite Index for which quarterly earnings data are available11.

9Whelan (2008) also deflates asset returns, consumption and labor income series by the price
index of personal consumption expenditure. Also, see Palumbo, Rudd, and Whelan (2006).

10The data on cay has been obtained from Martin Lettau’s website
http://faculty.haas.berkeley.edu/lettau/data.

11The S&P index data has been obtained from S&P’s website:
http://www.standardandpoors.com/indices.
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Figure 2.1: Excess consumption-assets ratio

The above figure describes the ratio of excess consumption to total household

assets where excess consumption is expressed at an annual rate.

2.5 Model Estimation

State Space Representation

The model has two latent variables: expected returns ret and expected excess

consumption growth rate ∆xet . Demeaned state variables are defined as:

∆xet = γ0 + ∆x̂et

ret = δ0 + r̂et

There are two transition equations associated with the demeaned latent variables:

r̂et+1 = δ1r̂
e
t + εret+1

∆x̂et+1 = γ1∆x̂et + εxet+1
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and two measurement equations are:

∆xt+1 = γ0 + ∆x̂et + εxt+1

xt − at = A+B1r̂
e
t −B2∆x̂et

In the above measurement equations system, second equation does not contain any

error term. Therefore, we can use the method employed by Binsbergen and Koijen

(2010) and substitute out the latent variable ret . This makes the state space system

smaller by reducing the number of transition equations. The final state space system

has one transition equation and two measurement equations:

∆x̂et+1 = γ1∆x̂et + εxet+1 (2.14)

Two measurement equations are:

∆xt+1 = γ0 + ∆x̂et + εxt+1 (2.15)

xt+1 − at+1 = (1− δ1)A−B2(γ1 − δ1)∆x̂et + δ1(xt − at) +B1ε
re
t+1 −B2ε

xe
t+1 (2.16)

The measurement equation for excess consumption growth rate and the excess

consumption-assets ratio implies the measurement equation for returns.

Transition equation 2.14 is represented as:



∆x̂et

εxt+1

εr
e

t+1

εx
e

t+1


=



γ1 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0





∆x̂et−1

εxt

εr
e

t

εx
e

t


+



0

εxt+1

εr
e

t+1

εx
e

t+1



Measurement equations (2.15-2.16) are represented as:
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 ∆xt+1

xt+1 − at+1

 =

 γ0

A(1− δ1)

+

 0 0

0 δ1


 ∆xt

xt − at



+

 1 1 0 0

−B2(γ1 − δ1) 0 B1 −B2





∆x̂et

εxt+1

εr
e

t+1

εx
e

t+1


We can estimate the above state space system using the maximum likelihood

estimation via the Kalman filter. A detailed description of the Kalman filter can be

found in Clark (1989), Harvey (1989), and Stock and Watson (1991).

The Kalman filter is a recursive procedure for computing the optimal estimate

of the unobserved-state vector [∆x̂t]
′ given the hyperparameters of the model. It

consists of two steps: prediction and updating. Let βt = [∆x̂t]
′, γ = [εxt+1, εret+1,

εxet+1]′, and the covariance of β be Pt|T = E((βt|T − βt)(βt|T − βt)′). The prediction

equations are:

βt|t−1 = Fβt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Q

ft|t−1 = E[v2
t|t−1]

The updating equations are:

βt|t = βt|t−1 + Pt|t−1Z
′G−1

t vt

Pt|t = Pt|t−1 − Pt|t−1V
′G−1

t vt

where the prediction error is vt|t−1 = Yt−Yt−1, the covariance of the prediction error
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is ft|t−1, Gt=E(vt, v
′
t)=VPt|t−1V

′, the initial estimates of F, V, and Q are given. The

estimation problem is then to maximize the Gaussian log likelihood function:

logL(θ) = −T log(2π)− T

2
log(det ft)−

1

2

T∑
t=1

v′tf
−1
t vt

2.6 Estimation Results

Table 2.2 reports the maximum likelihood estimates of the parameters of the present-

value model described in equations (2.13-2.15). The estimated AR parameters for

expected returns is persistent with a coefficient of 0.964. AR parameter for excess

consumption growth rate is 0.681. The high persistence of expected returns is

consistent with a variety of economic models in which the expected return varies

over time. Binsbergen and Koijen (2010) found that expected return on stock is

persistent with a coefficient of 0.932. Our finding is also consistent with Fama

and French (1988), Campbell and Cochrane (1999), Pastor and Stambaugh (2009),

and Rytchkov (2008). The unconditional mean for expected returns and expected

excess consumption growth rate is 1.7% and 0.95% respectively. The estimated

correlation structure between expected returns and excess consumption growth rate

provides us some interesting results12. The correlation between excess consumption

and expected return is positive and equals 0.622. One interpretation of this positive

and significant correlation is that an upward rise in excess consumption today must

correspond to news that future returns will be higher. This result conforms with the

theoretical budget constraint derived by Campbell and Mankiw (1989), Lettau and

Ludvigson (2001) and Whelan (2008). I also find that expected excess consumption

growth rate and realized excess consumption growth are negatively correlated with

12It should be noted that different combinations of correlation structure between shocks can be
used to identify the state space model. For example, we can allow non-zero correlation between
shock to expected return and shock to expected excess consumption growth. We choose the
correlation structure based on likelihood value.
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a correlation coefficient of -0.685. This result suggests that an upward revision in

excess consumption today corresponds to a downward revision in expected future

excess consumption growth.

Table 2.2: Maximum Likelihood Estimates of Hyperparameters

Parameter Estimate Standard Error
σx 0.0443 0.0031
σre 0.0019 0.0007
σxe 0.0162 0.0044
δ0 0.0177 0.0032
δ1 0.9641 0.0153
γ0 0.0095 0.0027
γ1 0.6812 0.0821
ρxex -0.6855 0.1537
ρrex 0.6219 0.1493

Table 2.3 reports the estimated value of implied present value parameters. B1

and B2 are the loadings on expected returns and expected excess consumption

growth, which depend on constant ρ and respective persistence parameters δ1 and

γ1. High persistence of expected return leads to a much higher loading on expected

return in the present-value relationship.

Table 2.3: Implied Present-Value Model Parameters

Parameter Estimate Standard Error
A -4.8091 0.472
B1 21.5368 7.698
B2 2.0792 0.771
ρ 0.991
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2.6.1 Comparison with the Benchmark Model

Using the expected asset returns and expected excess consumption growth rate

from our approach, the R-squared values for asset returns and excess consumption

growth rate is computed13 and compare this with the benchmark model which uses

the predictive OLS regressions14.

R2
returns = 1− var(rt+1 − ret )

var(rt+1)

R2
∆x = 1− var(∆xt+1 − xet )

var(∆xt+1)

The R-squared value for expected returns is 8.3% and for excess consumption growth

rate it equals 9.17 % 15. The results are reported in Table 2.4.

Table 2.4: R-squared values

R2
Returns 0.083 R2

∆x 0.091

Next, we compare the result of our model to a benchmark model where only

lagged excess consumption-assets ratio is used as an explanatory variable16.

rt+1 = α1 + β1(xt − at) + εrt+1

13Return on total household assets is: rat+1 = log
(

At+1

At+Yt−Ct

)
14This is in spirit of Binsbergen and Koijen (2010).
15See also Harvey (1989).

16Whelan (2008) studies regressions of the form

N∑
k=1

ρka(rat+k −∆xt+k) = γ(xt − at) + εt+N . In

addition, he also examines separate forecasting regressions for rt and ∆xt.
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∆xt+1 = α2 + β2(xt − at) + ε∆xt+1

The results are reported in Table 2.5. For the first regression, returns on excess

consumption-assets ratio has a predictive coefficient of β1 = 0.03 with a R-squared

value of 3.9%. The slope coefficient is positive and significant with a t-statistic of

2.33. The second regression of excess consumption growth rate has a predictive co-

efficient of β2 = −0.045 with a R-squared of 1.9%. The slope coefficient is negative

and weakly significant with a t-statistics of -1.77. The result suggests that the esti-

mated expected return on household assets and expected excess consumption growth

rate obtained from state-space approach perform significantly better than when only

lags of excess consumption-assets ratio are used as predictors. The predictive su-

periority arises from the fact that the unobserved component approach uses more

information and aggregates the past information in a parsimonious way. In addition

to the lagged excess consumption-assets ratio, the state space approach uses the

entire history of excess consumption growth rates and excess consumption-assets

ratio to predict future returns and excess consumption growth rates.

rt = αr +
∞∑
j=0

βr1j(xt−j−1 − at−j−1) +
∞∑
j=0

βr2j∆xt−j−1 + εrt

∆xt = αx +
∞∑
j=0

βx1j(xt−j−1 − at−j−1) +
∞∑
j=0

βx2j∆xt−j−1 + εxt

Therefore, latent variable approach is more flexible than a simple OLS regression.

The Kalman filter allows the data to form the best linear predictor, making the

forecast more precise.
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Table 2.5: OLS predictive regressions

Dependent Variable rt ∆xt
constant 0.160 -0.208

(0.009) (0.088)
xt − at 0.030 -0.045

(0.020) (0.077)
R2 0.039 0.019

2.6.2 Stock Return Predictability

As suggested by Lettau and Ludvigson (2001), most of the variation in total asset

returns can be explained by real stock market returns. Therefore, I try to analyze

the ability of expected returns to forecast stock returns and compare it with the

benchmark model of predictive regressions of stock returns on xt − at ratio, and

cay respectively. The results are summarized in Table 2.6 below. 5.83 percent of

the variation in the one quarter ahead movement in real stock returns is explained

by expected asset returns, whereas xt − at ratio explains about 2.5 percent of the

variation. cay explains 5.97 percent of the variation in one quarter ahead real stock

returns. The results suggest that the filtered returns significantly improves upon the

predictive power of xt−at ratio. This is not surprising since one of the objectives of

this approach is to reduce the noise associated with xt − at as a proxy for expected

returns.

Table 2.6: Stock return predictability regressions

Returns on stocks

Model C r̂et xt − at cay R2

1 0.024(0.25) 10.45(0.00) 0.0583
2 1.467(0.045) 0.30(0.05) 0.0251
3 0.024(0.24) 4.77(0.00) 0.0597
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2.7 Conclusion

In this essay, a latent-variables approach has been proposed to estimate expected

asset returns and excess consumption growth rate within a present-value model of

consumption. Acknowledging that expected returns and excess consumption growth

rate are unobservable, the Kalman filter technique is used to extract them from the

observed history of realized return on assets and realized excess consumption growth

rate. To apply the Kalman filter to the unobserved component model, expected

returns and expected excess consumption growth rate are assumed to follow a parsi-

monious autoregressive progress. Since returns is the residual in accounting identity,

we can trace the time variation in returns once we estimate the expected excess con-

sumption growth rate. This approach is combined with Whelan’s (2008) version of

the present-value model of consumption that implies that the excess consumption-

assets ratio can be expressed as a function of present discounted value of expected

excess consumption growth rate and expected asset returns. This model also has

some practical advantages over the earlier models by Campbell and Mankiw (1989)

and Lettau and Ludvigson (2001). Notably, it does not rely on untestable assump-

tions about unobserved variables or require estimation of unknown parameters to

operationalize the forecasting equation.

Filtered series for returns and excess consumption from this approach is a good

predictor for future returns and future excess consumption growth rate. Almost

9 percent of the variation in excess consumption growth rate is explained by fil-

tered series on excess consumption. The constructed predictor for asset returns can

explain about 8.3 percent of the variation in asset returns. In contrast, the pre-

dictive regression of excess consumption on excess consumption-assets ratio lacks

the power to predict future consumption, with an R-squared of 1.9 percent. The

predictive regression of returns on excess consumption-assets ratio explains about

3.9 percent of the variation in asset returns. The variance decomposition of the
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excess consumption-assets ratio suggest that expected returns account for about 92

percent variation in excess consumption-assets ratio and 8 percent of the variation

of the excess consumption-assets ratio is related to expected excess consumption

growth rate variation.

The estimated expected returns also has significant explanatory power for future

movements in real stock returns. The results suggest that filtered series for returns

improve upon the predictive power of the excess consumption-assets ratio.
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Chapter 3

Second Essay: Consumption-Wealth Ratio and

Expected Housing Return

3.1 Introduction

One of the channels through which the housing market affects the overall macroe-

conomic activity is through its impact on the household balance sheet. There is a

consensus in the economic literature and policymaking about housing wealth being

one of the determinants of consumption expenditure1. The linkage between housing

wealth and consumption suggests that changes in household consumption should

contain information about expected changes in housing market wealth.

The traditional literature on the relationship between housing market wealth

and consumption has mainly focused on estimating the consumption response to

changes in the housing market wealth. We take a different approach in this essay.

Rather than estimating consumption response to changes in housing wealth, we

utilize the information in consumption, income and observable assets to estimate

expected housing returns. To do so, we combine a modified version of a present-

value model proposed by Whelan (2008) with an unobserved component model.

Whelan’s modified present-value model suggests that an upward surprise in excess

consumption-assets ratio-a modified measure of consumption-wealth ratio- today

must correspond to lower than average excess consumption growth or higher than

average asset returns in future2. In simple words, if representative household’s

1See, among others, Poterba (2000), Case, Quigley and Shiller (2005, 2011), Benjamin, Chinloy
and Jud (2004), Kishor (2007), and Miller et al. (2011).

2Excess consumption is defined as consumption in excess of labor income.
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consumption increases relative to its housing wealth, it may be either due to higher

than expected housing wealth growth or lower than average consumption growth.

Therefore changes in expected housing return should be reflected in the current

consumption decision of the households. The challenge, therefore, is to estimate the

expected return on housing assets using the present information set that contains

information about current and past excess consumption, return on financial assets,

and return on housing assets3. One simple method that can be applied to estimate

expected housing returns is the standard VAR approach, where lags of consumption-

wealth ratio and past asset returns can be used as predictors of housing return.

However, the application of traditional VAR or univariate autoregression approach in

the present context is fraught with limitations, as has been suggested by Binsbergen

and Koijen (2010) and Rytchkov (2008) in the context of stock returns literature. In

particular, the VAR approach only uses finite lags to predict the variable of interest,

and may miss individually small but possibly important moving average terms in

the long run as pointed out by Cochrane (2008).

In this essay, we use Kalman filter to extract expected housing asset returns

from the present-value model. This approach allows us to expand the information

set by using the information from the whole history of observed housing asset re-

turns, financial asset returns, and excess consumption growth rather than using just

finite lags of excess consumption-assets ratio. The state space approach provides

us an estimate of expected housing return that uses information from an expanded

information set. Since the estimate of expected housing returns in our model uses

more information than the conventional finite lag approach, it should yield a better

forecast of realized housing returns and house price growth 4. The results obtained

in this essay broadly support this hypothesis. In particular, we find that the filtered

returns explains 18% of the variation in one-period ahead housing asset returns and

3Note that housing asset or housing wealth has been used interchangeably in this essay. Section
4 explains how housing asset or housing wealth is calculated.

4The correlation coefficient between housing assets return and house price growth is 0.51.
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22% of the variation in one-period ahead house price growth rate. Our results show

that filtered series of expected housing return obtained from the present-value model

is a superior in-sample and out-of-sample predictor of realized housing asset returns

compared to other predictors like mortgage rate, price-rent ratio, yield spread, cay5,

and real GDP growth. The superiority of the predictive power of the filtered return

is also statistically significant.

The rest of the essay is organized as follows. The next section provides a brief

literature review; section 3.3 proposes an unobserved component model to estimate

the present value model of consumption. Section 3.4 describes the data. Section 3.5

provides the empirical methodology . Section 3.6 documents the main findings on

the predictability of housing asset returns. Section 3.7 concludes.

3.2 Brief Literature Review

This essay combines the literature on the present-value models of consumption with

the literature on the housing market predictability. Present-value models have been

applied extensively in macroeconomics and finance literature. For example, Camp-

bell and Mankiw (1989) show that consumption-wealth ratio reflects information

about expected returns on wealth and expected consumption growth rate. Lettau

and Ludvigson (2001) also use consumption-wealth ratio as a proxy for future asset

returns and show that whenever consumption-wealth ratio moves above/below its

long-run value, wealth adjusts to correct for the disequilibrium. The literature on

the estimation of marginal propensity to consume out of wealth is also based on the

present-value model of consumption that states that current consumption depends

on the present discounted value of life-time income and current wealth. A number

of empirical studies have used this model and analyzed the impact of changes in

5Lettau-Ludvigson (2001) use estimated residual from a cointegrating regression of consump-
tion, labor income and wealth (cay) as a proxy for expected asset returns.



30

housing wealth on consumption. Poterba (2000) finds that the traditional wealth

effect estimate implies that for every dollar increase in wealth, consumption should

increase by 2-10 cents. Case, Quigley and Shiller (2005, 2011) find strong evidence

that variations in housing market wealth have important effects upon consumption.

According to them, housing wealth effect on consumption is especially important in

recent decades as institutional innovations have made it simple to extract cash from

housing equity. Benjamin, Chinloy and Jud (2004) have shown that an additional

dollar of real estate wealth increases consumption by 8 cents. They point out that

with the availability of home equity loans and low-cost tax deductible refinancing,

homeowners can access their housing to finance consumption.

The literature on the forecastability of housing market is substantial, starting

with Case and Shiller (1989), who show that unlike stock returns, there is a sig-

nificant predictive component in house prices. Other papers like Crawford and

Fratantoni (2003) utilize ARIMA, GARCH, and regime switching univariate time

series model to estimate the behavior of home price growth rates in California,

Florida, Massachusetts, Ohio, and Texas. They find that regime-switching models

perform better in-sample, while ARIMA and GARCH perform better in out-of-

sample forecasting. Rapach and Strauss (2007) analyze the forecasting ability of a

large number of potential predictors of state real housing price growth using an au-

toregressive distributed lag model framework. Guirguis, Giannikos, and Anderson

(2005) use estimation methodologies where the estimated parameters are allowed

to vary overtime. They find that the forecasts generated by the Kalman Filter and

rolling GARCH techniques outperform the forecasts of all the other specifications

considered. Our approach contributes to the literature by deriving an estimate of

future housing market returns from a version of widely used present-value model of

consumption.

In this essay, we estimate the expected return on housing assets from a present-
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value model using an unobserved component approach. Using this filtered return,

we examine the predictive power of our measure in forecasting realized housing asset

returns and compare the forecasting performance with other popular predictors like

mortgage rate, price-rent ratio, yield spread, and GDP growth, among others.

3.3 The Present-Value model and Expected Re-

turn on Housing

This section presents a modified present value model of consumption that is based on

Whelan (2008) and Binsbergen and Koijen (2010). The present value of consumption

links excess consumption-asset ratio to expected housing asset returns, expected

financial asset return and expected excess consumption growth. We modify this

present value model and apply Kalman filter to extract expected housing return.

The household budget constraint can be described as follows:

At+1 = Ra
t+1(At + Yt − Ct) (3.1)

where At is total household assets and equals sum of household assets and financial

assets, Ra
t+1 is the gross return on assets, Yt is labor income, and Ct is consumption.

Dividing across by At and taking logs we get:

∆at+1 = rat+1 + log
(

1− Ct − Yt
At

)
(3.2)

Define, excess consumption as Xt = Ct − Yt6.

6For the US data series used in this study, which rely on a standard definition of labor income,
consumption always exceed labor income. Therefore, Xt is always positive. One of the interpre-
tation of this positive sign may arise from the fact that in addition to after tax labor income Yt,
consumption is financed out of total wealth.
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Equation (3.2) can be rewritten as:

∆at+1 = rat+1 + log(1− exp(xt − at)) (3.3)

Total wealth is sum of housing wealth Ht and stock market wealth St i.e. At =

Ht + St.The logarithm of total assets may be approximated as:

at = ωht + (1− ω)st (3.4)

where at is log of total asset, ht is the log of housing wealth, and st is the log of

stock of net financial assets, ω is the steady state share of housing assets in total

assets and (1− ω) is the steady state share of financial assets in total assets7 8.

The return on total assets can be decomposed into the return of its two compo-

nents:

rat ≈ ωrht + (1− ω)rst (3.5)

Substituting (3.4) and (3.5) into (3.3) gives

∆(ωht+1+(1−ω)st+1) = (ωrht +(1−ω)rst )+log(1−exp(xt−(ωht+(1−ω)st))) (3.6)

In the above equation, log(1−exp(xt−(ωht+(1−ω)st))) is a non-linear function.

Taking a first order Taylor expansion around the mean (x− (ωh+ (1−ω)s)) results

in the following approximation:

log(1− exp(xt − (ωht + (1− ω)st)) ≈ κ+ (1− ρ−1)(xt − (ωht + (1− ω)st)) (3.7)

7This logarithmic approximation is widely used in economics and finance. For example, see
page 820 Lettau and Ludvigson (2001). As long as the share of a particular component doesn’t
explode over time, ω and (1-ω) refer to the long-run averages of the share of different types of
wealth.

8The sample average is used as the steady state share. In our case, the data suggests that
ω = 0.25 and (1− ω) = 0.75.
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where ρ ≡ 1− exp(x− (ωh+ (1− ω)s)) and κ is a constant and equals log(1−

exp(x− (ωh+ (1− ω)s)))-(1− ρ−1)(x− (ωh+ (1− ω)s)). 9

Substituting equation (3.7) into equation (3.6) and rearranging we obtain:

xt−at ≈ ρ((ωrht+1 +(1−ω)rst+1)+κ−∆xt+1)+ρ(xt+1−(ωht+1 +(1−ω)st+1)) (3.8)

Solving forward via repeated substitution and imposing the transversality con-

dition lim
j→∞

ρ−j(xt+j − (ωht+j + (1− ω)st+j)) = 0 we obtain:

xt − (ωht + (1− ω)st) ≈
ρκ

1− ρ
+
∞∑
j=1

ρj(ωrht+j + (1− ω)rst+j −∆xt+j) (3.9)

The above equation implies that log ratio of excess consumption-asset ratio is

stationary since the right hand side is stationary. This suggests that if the excess

consumption-asset ratio goes above its long-run value, either expected excess con-

sumption growth will decline in future or expected housing return or expected stock

return will go up in future. If one takes expectations at time t, it yields the following

expression:

xt − (ωht + (1− ω)st) ≈
ρκ

1− ρ
+ Et

∞∑
j=1

ρj(ωrht+j + (1− ω)rst+j −∆xt+j) (3.10)

The above model is central to the estimation of expected housing return. There

are two ways to estimate the unobserved expected return: the conventional approach

and the unobserved component approach. The conventional approach uses finite lags

of excess consumption growth, realized housing return and realized stock return or

estimate cointegrating relationship between consumption, labor income, housing

9For detailed derivation see Kishor and Kumari (2011).
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wealth and stock market wealth and use the cointegrating residual. The second

approach is to use the unobserved component model to estimate the unobserved

returns on assets and expected excess consumption growth. Since expected returns

and future expected excess consumption growth rate are unobserved, an unobserved

component model is more suitable to model the present value model of consumption.

Since the estimate of expected housing returns in the unobserved component model

uses more information than the conventional finite lag approach, it should yield a

better forecast of realized housing returns. Following Campbell (1991), we model

expected housing asset returns, expected financial asset returns, and expected excess

consumption growth rate as AR(1) process.10 11 12

ωrhet+1 = δ0 + δ1(ωrhet − δ0) + εrhet+1 (3.11)

(1− ω)rset+1 = ψ0 + ψ1((1− ω)rset − ψ0) + εrset+1 (3.12)

∆xet+1 = γ0 + γ1(∆xet − γ0) + εxet+1 (3.13)

where rhet ≡ Et(r
h
t+1), rset ≡ Et(r

s
t+1), and ∆xet ≡ Et(∆xt+1). The shocks εrhet+1, εrset+1,

and εxet+1 are independent and identically distributed. Realized housing asset return

and financial asset return is equal to expected housing asset return and expected

financial asset return plus an idiosyncratic shock.

ωrht+1 = ωrhet + εrht+1

10Similar approach has been applied in a series of papers such as Binsbergen and Koijen (2010),
Fama and French (1988), and Pastor and Stambaugh (2009) among others.

11The one question that immediately comes to mind is whether AR(1) assumption is sufficient
to capture the dynamics of these variables. To that end, we also perform ARIMA modeling of
the realized housing asset return, realized financial asset return and realized excess consumption
growth and the results suggest that AR(1) model is sufficient to capture the dynamics.

12In order to convert the present value model in equation (3.10) into a linear measurement
equation of a state space system, it is important that the unobserved variables follow a stationary
process. Therefore, we model unobserved variables as an autoregressive process instead of a random
walk process.
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(1− ω)rst+1 = (1− ω)rset + εrst+1

The realized excess consumption growth rate is equal to expected excess con-

sumption growth rate plus an idiosyncratic shock.

∆xt+1 = ∆xet + εxt+1

Substituting equations (3.11-3.13) into equation (3.10) and solving we get:

xt − at =
ρ

1− ρ
κ+

ρ(δ0 + ψ0 − γ0)

1− ρ
+

ρδ1

1− ρδ1

(ωrhet − δ0) +

ρψ1

1− ρψ1

((1− ω)rset − ψ0)− ργ1

1− ργ1

(∆xet − γ0) (3.14)

Let A = ρ
1−ρκ+ ρ(δ0+ψ0−γ0)

1−ρ , B1 = ρδ1
1−ρδ1 , B2 = ρψ1

1−ρψ1
, and B3 = ργ1

1−ργ1

Equation (3.14) can be rewritten as:

xt − at = A+B1(ωrhet − δ0) +B2((1− ω)rset − ψ0)−B3(∆xet − γ0) (3.15)

The above equation is a linear relationship between log of excess consumption-assets

ratio, expected housing asset returns, expected financial asset returns, and expected

excess consumption growth rate13. There are five shocks in the above model: shock

to expected excess consumption growth rate (εxet+1), shock to expected housing asset

returns (εrhet+1), shock to expected financial asset returns (εrset+1), shock to realized

excess consumption growth rate (εxt+1) and shock to realized return on housing assets

(εrht+1). These shocks have a mean zero and have the following variance-covariance

13Even though ω enters the measurement equation, it doesn’t affect the estimated dynamics of
expected return on housing and stock.
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matrix:

∑
= var



εxet

εrhet

εrset

εxt

εrht


=



σ2
xe σxehe σxese σxex σxeh

σxehe σ2
he σhese σhex σheh

σsexe σhese σ2
se σsex σseh

σxex σhex σsex σ2
x σxh

σxeh σheh σseh σxh σ2
h


In the general correlation structure, some of the parameters may be unidentified.

Following Cochrane (2008) and Morley et al. (2003) we impose restrictions on

the covariance structure to achieve identification. We follow Binsbergen and Koijen

(2010) identification strategy and assume that covariance between realized return on

housing assets and realized excess consumption growth is uncorrelated with shocks

to the unobserved state variables. This implies that σxeh = σheh = σseh = σxex =

σsex = σxhe = 0. In addition, we assume that shocks to realized excess consumption

growth and realized return on housing assets are uncorrelated, that is σxrh = 014.

To summarize, our approach converts the present-value model as represented by

equation (3.10) into a linear measurement equation of state space system represented

by equation (3.15). To do so, we assume a simple autoregressive structure for

unobserved variables: expected return on housing (rhet ) , expected return on financial

asset (rset ) and expected excess consumption growth (∆xet ).

3.3.1 Data Description

We use quarterly data starting in the first quarter of 1952. The sample period runs

through the last quarter of 2006. The data in this essay includes excess consumption-

assets ratio, return on housing assets, return on financial assets, and excess consump-

14Alternatively, we can impose zero covariance restriction on one of the covariances between
shocks to expected excess consumption growth, expected housing return and expected stock re-
turns. In the empirical section, we also explore this approach.



37

tion15. Our measure of consumption includes outlays on durable goods16. The data

on consumption has been obtained from the National Income and Product Account

(NIPA) Tables. Labor income has been constructed using data from the NIPA, and

according to the procedure defined in Lettau and Ludvigson (2001)17. Labor income

is wages and salaries plus transfer payments plus other labor income minus personal

contributions for social insurance minus labor taxes. Labor taxes are defined by

imputing a share of personal tax and non-tax payments to labor income with the

share calculated as the ratio of wages and salaries to the sum of wages and salaries,

proprietors’ income, and rental, dividend, and interest income.

The data on housing asset returns and financial asset returns is based on the

Federal Reserve Board’s flow of funds net worth series. Net housing assets equals

real estate minus home and commercial mortgages and outlays on durable goods18.

Net financial assets equals financial assets minus financial liabilities. Asset returns

are calculated as quarterly changes in log of asset values.

All data on asset valuation, consumption and labor income is in nominal terms.

We deflate consumption, housing assets, financial assets, and labor income series by

the price index of total personal consumption expenditure to obtain real consump-

tion, asset returns, and income19. We also examine the predictive ability of popular

forecasting variables in explaining the variation in housing returns as compared to

our filtered measure of expected housing asset returns. We include data on mort-

gage rates, price-rent ratio, real GDP growth rate, excess consumption-assets ratio,

yield spread, and cay20. Data on mortgage rates and yield spread has been obtained

15In NIPA, consumption and labor income series are reported on an annualized basis. Therefore,
the excess consumption series constructed using data from NIPA is divided by four. This adjusts
the excess consumption series to arrive at the correct figure for the average reduction in assets per
quarter due to consumption in excess of labor income.

16Our measure of consumption is based on Whelan’s (2008) approach.
17Whelan (2008) also follows the same approach.
18We also include data on equipment and software owned by nonprofit organizations
19Whelan (2008) also deflates asset returns, consumption and labor income series by the price

index of personal consumption expenditure. Also, see Palumbo, Rudd, and Whelan (2006).
20Lettau-Ludvigson (2001) use estimated residual from a cointegrating regression of consump-

tion, labor income and wealth (cay) as a proxy for expected asset returns.
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from the Federal Reserve Bank of St. Louis’s Fred data set21. The data on the

price-rent ratio has been obtained from Davis et. al (2008), who combine different

data sources and provide a measure of the price-rent ratio for the US economy that

goes back to 1961. We obtain real GDP data from the National Income and Product

accounts data (NIPA). The data on cay has been obtained from Martin Lettau’s

website22. Data on nominal house price index has been obtained from the Case-

Shiller house price index. We deflate nominal house price index by the price index

of total personal consumption expenditure to obtain the real house price index.

3.4 Model Estimation

3.4.1 State Space Representation

The model has three latent variables: expected return on housing assets, expected

return on financial assets, and expected excess consumption growth rate. The de-

meaned state variables are defined as:

∆xet = γ0 + ∆x̂et

ωrhet = δ0 + ωr̂het

(1− ω)rset = ψ0 + (1− ω)r̂set

There are three transition equations associated with the demeaned latent variables

∆x̂et+1 = γ1∆x̂et + εxet+1 (3.16)

ωr̂het+1 = δ1ωr̂
he
t + εrhet+1 (3.17)

21The data on mortgage rate is available from 1971 Q2
22http://faculty.haas.berkeley.edu/lettau/data.
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(1− ω)r̂set+1 = ψ1(1− ω)r̂set + εrset+1 (3.18)

Three measurement equations are:

∆xt+1 = γ0 + ∆x̂et + εxt+1 (3.19)

ωrht+1 = δ0 + ωr̂het + εht+1 (3.20)

xt − at = A+B1ωr̂
he
t +B2(1− ω)r̂set −B3∆x̂et (3.21)

The measurement equation for excess consumption growth rate, return on hous-

ing assets, and excess consumption-assets ratio implies the measurement equation

for the return on financial assets. The above state space system can be estimated

using the maximum likelihood estimation via the Kalman filter.

The transition equations in (3.16-3.18) is represented as:


∆x̂et

r̂het

r̂set

 =


γ1 0 0

0 δ1 0

0 0 ψ1




∆x̂et−1

r̂het−1

r̂set−1

+


εxet

εrhet

εrset



Measurement equation in equations (3.19-3.21) can be written as:


∆xt+1

rht+1

xt − at

 =


γ0

δ0

A

+


1 0 0

0 1 0

−B3 B1 B2




∆x̂et

r̂het

r̂set

+


εxt+1

εht+1

0



This model provides us estimates of expected return on housing assets (rhet ),

expected return on financial assets (rset ), and expected excess consumption growth

(∆xet ).
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3.5 Estimation Results

The estimated hyperparameters from the state space system described by equations

(3.16-3.21) are shown in Table 3.1. The estimated AR parameter for return on fi-

nancial assets is highly persistent with a coefficient of 0.97. The high persistence of

expected financial asset returns is consistent with a variety of economic models in

which the expected returns varies overtime. Binsbergen and Koijen (2010), Fama

and French (1988), Campbell (1991), Campbell and Cochrane (1989), Pastor and

Stambaugh (2009), and Rytchkov (2008) have also found expected return on stocks

to be highly persistent. The corresponding estimate of the AR parameter for ex-

pected return on housing assets and excess consumption growth is 0.78 and -0.34

respectively. Our results suggest that expected return on financial assets and excess

Table 3.1: Maximum Likelihood Estimates of Hyperparameters

Parameter Estimate Standard Error
σx 0.0191 0.0045
σrh 0.0028 0.0002
σxe 0.0427 0.0029
σrhe 0.0018 0.0004
σrse 0.0014 0.0004
δ0 0.0025 0.0006
δ1 0.7789 0.0838
ψ0 0.0153 0.0036
ψ1 0.9776 0.0085
γ0 0.0096 0.0025
γ1 -0.3476 0.0685

ρrhexe -0.0003 0.0427
ρrsexe 0.9309 0.0740
ρrherse -0.4295 0.0855

consumption growth rate are highly positively correlated at 0.93. This implies that

households raise their excess consumption in anticipation of higher than expected



41

return on financial assets. The expected return on housing assets and financial as-

sets are negatively correlated. The direction of such linkage could be due to the fact

that the substitution effect and wealth effect point in opposite directions and sub-

stitution effect dominates the wealth effect during the sample period23. There is a

negative but insignificant correlation between expected excess consumption growth

and expected return on housing assets. We also estimate correlation between shock

to realized excess consumption growth and shock to realized housing return by re-

stricting the correlation between expected excess consumption growth and expected

return on housing assets to be zero. The estimated correlation between realized

excess consumption growth and realized housing return is positive and insignificant

and the likelihood value is lower than the original model. The other estimated pa-

rameters remain qualitatively similar. The insignificant correlation may arise due to

the fact that the realized excess consumption growth is very close to a white noise,

whereas realized housing return is highly persistent. Therefore a shock to realized

excess consumption growth disappears immediately, whereas a shock to realized

housing return may take some time to dissipate. Table 3.2 shows the estimated

value of the present-value parameters, where B′is represent the loadings on expected

returns on housing assets, financial assets, and excess consumption growth. These

loadings depend positively on the persistence parameter of the unobserved state

variables. As reported in table 3.2, these loadings are statistically significant.

23A substitution effect predicts a negative relationship between the prices of the two assets, as
the high return in one market tends to cause investors to leave the other market. A wealth effect,
by contrast, predicts a positive relationship because the high return in one market will increase
the total wealth of investors and their capability of investing in other assets.
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Table 3.2: Implied Present-Value Model Parameters

Parameter Estimate Standard Error
A -4.810 0.498
B1 3.390 1.598
B2 31.347 8.765
B3 -0.256 0.037
ρ 0.991

Figure 3.1 plots the realized housing asset return along with the filtered re-

turn from the latent-variables approach, as well as the fitted return from the excess

consumption-asset ratio. It is evident from the graph that the filtered return from

the latent variable approach tracks the realized returns much more closely than the

predicted returns from excess consumption-asset ratio24. The simple contemporane-

ous correlation between expected housing return and realized return is 0.84, whereas

the corresponding correlation between mortgage rate and the realized housing re-

turn is -0.16. In fact, the filtered return tracks realized return better than other

predictors. Our analysis in the next section shows this result in a greater detail.

24Rycthkov (2008) and Binsbergen and Koijen (2010) also compare the filtered series of state
variables with the forecasts based on conventional predictive regression.
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Figure 3.1: Comparison of realized housing returns with forecasts from the unob-
served component approach and the OLS approach

Figure 3.2 plots the change in Real HPI along with the filtered return from the

latent-variables approach, as well as the fitted return from the excess consumption-

asset ratio. Again, the graph suggests that the filtered return from the latent vari-

able approach tracks the change in house price growth much more closely than the

predicted returns from excess consumption-asset ratio.
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Figure 3.2: Comparison of change in Real HPI with forecasts from the unobserved
component approach and the OLS approach

3.6 Quarterly Forecasting Regressions

3.6.1 Forecasting Housing Asset Return

Our approach yields us an estimate of expected housing return that in theory should

have better predictive power in forecasting realized housing return than finite lags

of excess consumption-assets ratio. We test this hypothesis by comparing the fore-

casting performance of expected return on housing obtained from the present-value

model with excess consumption-assets ratio. In addition, we also compare the fore-

casting performance of our measure with other popular predictors of housing market,

for example, among others, mortgage rate, the price-rent ratio, GDP growth, and

yield spread. Table 3.3 reports the results for this exercise.

The first row of the table is the regression of realized housing asset returns on its

own lag. This model predicts about 13% of the next quarter’s variation in realized

housing asset returns. If expected housing return is used as a predictor of realized

housing asset returns, then we find that it explains 18% of the variation. This

implies that our preferred measure contains an extra 5 percent explanatory power
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as compared to the lagged housing returns. It should be noted that our measure

of expected housing return co-varies positively with future housing asset returns,

and is procyclical. It is also positively correlated with GDP, with a correlation

coefficient of 0.23. This measure tends to increase during expansions and decline in

recessions. The statistical properties of expected housing return from our approach

matches well with the overall developments in the housing market as well as the

macroeconomic environment in the US.

Our results show lagged real GDP growth rate explains around 3% of the vari-

ation in realized return on housing wealth. The estimation results show that there

is a positive relationship between GDP growth and realized return on housing.
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Table 3.3: Forecasting Quarterly Housing Asset Return

Model Constant lag r̂h mg rgdp xa yield cay prent R2

1 0.006 0.36 0.129
(0.00) (0.00)

2 0.009 2.95 0.180
(0.00) (0.00)

3 0.019 -0.09 0.024
(.004) (0.14)

4 0.007 0.27 0.027
(0.00) (0.03)

5 0.013 0.0008 0.000
(0.78) (0.93)

6 0.009 0.10 0.004
(0.00) (0.52)

7 0.010 -0.23 0.047
(0.00) (0.06)

8 0.016 0.014 0.015
(0.04) (0.41)

9 0.009 0.079 2.484 0.182
(0.00) (0.69) (0.00)

10 0.014 3.266 -0.038 0.269
(0.00) (0.00) (0.37)

11 0.008 2.838 0.120 0.184
(0.00) (0.00) (0.18)

12 0.036 3.034 0.007 0.185
(0.13) (0.00) (0.275)

13 0.009 2.975 0.130 0.187
(0.00) (0.00) (0.199)

14 0.010 3.060 0.030 0.180
(0.00) (0.00) (0.778)

15 0.011 3.000 0.003 0.197
(0.06) (0.00) (0.842)

The table reports regression results of realized housing asset returns on lagged variables.

r̂h is the expected return on housing assets computed via the filtering approach, mg is

the mortgage rate, rgdp is the real GDP growth rate, xa is the excess

consumption-assets ratio, yield is the spread between 10 year and 1 year Treasury bill

rate, cay is the cointegrating residual between consumption, assets, and labor income,

and prent is the price-rent ratio. The sample covers the period 1953 Q2-2006 Q4. The

numbers in the parentheses are P-values.
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Whelan (2008) and Kishor and Kumari (2011) find that excess consumption-

assets ratio is a significant predictor of total asset returns, however, our findings

suggest that it is an insignificant predictor for returns on housing wealth. We use

the cointegrating residual between consumption, labor income and assets, cay, as

one of the predictors. Our results suggest that the cointegrating residual, cay, is

a significant predictor of one period ahead return on housing assets and explains

around 5% of the variation. The mortgage rate explains only 2.47% of the variation

in housing asset returns and is insignificant. Business cycle literature suggests that

the yield spread, which is the difference between 10-year and 1-year treasury bond

is a significant predictor of business cycle, though its predictive power has declined

recently. We also use yield spread as one of the predictors of housing markets,

but we don’t find any significant relationship between yield spread and one-period-

ahead housing asset returns. Similarly, we also find that the price-rent ratio is not

a significant predictor of one-period-ahead housing asset returns and explains only

1.5% of variation.

In addition to examining the in-sample predictive power of different predictors

separately, we also examine whether the inclusion of lagged expected housing re-

turn in a prediction equation with other predictors improve the explanatory power

of realized housing return. For example, as shown in row 9, if we augment the

prediction model of realized housing return with its own lag by including lagged

expected housing return, R-squared increases from 12.9% to 18.2% implying an in-

crease of 5.3%. Similarly, if we augment the model of lagged mortgage rate with

lagged expected housing return, R-squared increases by almost 24%. The results

also suggest that in the presence of lagged expected return on housing, own lag of

realized housing return and lag of mortgage rate becomes insignificant. Rows 11-15

of Table 3.3 represent results when lagged expected return on housing is included

in a regression with lagged real GDP growth rate, excess consumption assets ra-
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tio, yield, cay, and price-rent ratio. Adding r̂h significantly improves the degree of

variation in 1-quarter ahead realized housing return .

Therefore, the results presented in this section suggests that the filtered expected

returns obtained from the present-value model contains additional information about

the future movements in housing returns that is not already present in the alternative

predictors discussed here.

3.6.2 Forecasting Real House Price Growth

In addition to analyzing the role of expected housing return obtained from the

present-value model in forecasting realized housing asset returns, we also explore its

performance in forecasting house price growth and compare it with other compet-

ing predictors. Table 3.4 shows the estimation results for the predictive power of

expected housing return and other predictors for house price growth.
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Table 3.4: Forecasting Quarterly Growth in Housing Prices

Model Constant r̂h mg rgdp xa yield cay prent R2

1 0.0068 2.030 0.225
(0.00) (0.00)

2 0.021 -0.133 0.154
(0.00) (0.00)

3 0.005 0.283 0.057
(0.01) (0.00)

4 0.064 0.012 0.034
(0.12) (0.17)

5 0.004 0.327 0.120
(0.02) (0.02)

6 0.007 -0.148 0.050
(0.00) (0.07)

7 0.014 0.017 0.048
(0.03) (0.25)

The table reports regression results of realized housing price growth on lagged variables.
r̂h is the expected return on housing assets computed via the filtering approach, mg is

the mortgage rate, rgdp is the real GDP growth rate, xa is the excess
consumption-assets ratio, yield is the spread between 10 year and 1 year Treasury bill
rate, cay is the cointegrating residual between consumption, assets, and labor income,
and prent is the price-rent ratio. The sample covers the period 1953 Q2-2006 Q4. The

numbers in the parentheses are P-values based on the Newey-West standard errors.

We find that filtered expected housing return is a significant predictor of 1-period

ahead house price growth, and explains 22% of the variation in house price growth.

The mortgage rate and yield spread are also significant predictors of house price

growth. Mortgage rate explains around 15% of the variation in house price growth.

The estimated coefficient is negative, which is intuitive as it suggests that a higher

mortgage rate entails higher amortization which in turn impinges on the cash flow of

households. This reduces the affordability of new housing demand and pushes down

house prices. Our results also suggest that yield spread has a positive and significant

effect on house price growth. Increase in yield spread shows market expectation of

higher interest rate in future, as it expects economic activity to pick up. This may

also lead to an increase in house prices.

Real GDP growth rate and cay are also significant predictors of house price
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growth. They explain 5.75% and 5% of the variation in dependent variable respec-

tively. The increase in the growth rate of real GDP would be expected to lead

overtime to higher house prices. The excess consumption-assets ratio is an insignif-

icant predictor of house price growth. The price-rent ratio explains 4.8% of the

variation in the dependent variable.

It is well known that the housing market witnessed an unprecedented rise in

the price level between 1997-2006. To examine how much our results are affected

by this period, we also estimate our forecasting regressions for the pre-1997 time

period. Table 3.5 reports the results for the sub-sample 1970 Q2-1996 Q4. The

Table 3.5: Forecasting Quarterly Growth in Housing Prices: 1971Q2-1996Q4

Model Constant r̂h mg rgdp xa yield cay prent R2

1 0.0068 2.050 0.427
(0.00) (0.00)

2 0.013 -0.068 0.052
(0.00) (0.00)

3 0.004 0.300 0.131
(0.00) (0.00)

4 -0.02 -0.005 0.016
(0.54) (0.44)

5 0.005 0.095 0.020
(0.00) (0.39)

6 0.007 -0.151 0.103
(0.00) (0.03)

7 -0.013 -0.044 0.146
(0.07) (0.008)

The table reports regression results of realized housing price growth on lagged variables
for the subsample 1971Q2-1996Q4. The numbers in the parentheses are P-values based

on the Newey-West standard errors.

filtered series of expected housing asset returns explains around 43% of the variation,

showing that the predictive power was much higher in the pre-1997 time period. In

contrast, mortgage rate is weakly significant and explains only 5% of the variation
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in change in house prices. The yield spread is an insignificant predictor for the

pre-1997 period. Real GDP growth rate and cay are significant predictors of house

price growth explaining 13 percent and 10.3 percent of the variation in dependent

variable respectively. The excess consumption-assets ratio remains an insignificant

predictor of house price growth. The price-rent ratio is a negative and significant

predictor for the subsample and explains around 15% of the variation. The results

for the pre-1997 sample period suggests that the forecasting power of most of the

predictors was higher in the pre-1997 sample period.

3.6.3 Out-of-Sample Evidence

The results presented in the previous section suggests that expected housing return

obtained from the present-value model dominates other competing predictors in

forecasting realized housing returns within the whole sample period. In this section,

we examine one-period-ahead out-of-sample forecasting ability of estimated filtered

returns and compare it with other alternative models. Each model is first estimated

using data from the second quarter of 1953 through the third quarter of 1963. We

use recursive regressions to re-estimate the forecasting model each period, adding

one quarter at a time till the end of the sample and calculating a series of one-step-

ahead forecasts. Our forecasting sample ends in 2006:04.

In our forecasting experiment, we compare the mean-squared error from a series

of one-quarter-ahead out of sample forecasts obtained from a prediction equation

that includes r̂h as the sole forecasting variable, to a variety of forecasting equations

that use different predictors. Table 3.6 reports the ratio of MSE of the forecasts

generated using filtered housing asset returns as a regressor in the forecasting equa-

tion to MSE of the forecasts generated using an alternative regressor. The ratio

below unity represents superior forecasting performance of expected housing asset

returns relative to the alternative predictors. The results in table 3.6 indicate that
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MSE of forecasts generated with the expected housing asset returns does a superior

job in predicting housing asset returns out-of-sample. For example, MSE-ratio of

0.828 implies that forecasts from the model with filtered housing asset returns has

17.2 percent lower MSE than the corresponding forecasts of housing asset returns

obtained from the mortgage rate. The other alternative predictors are real GDP

growth, excess consumption-assets ratio, yield spread, cay, and price-rent ratio. In

all cases, the reduction in MSE is around 20%.

To test the significance of forecast accuracy, we perform a statistical forecast

comparison test. Since the forecasts in question are non-nested, we use Diebold

and Mariano (1995) and West (1996) type of forecast evaluation test. This test

statistic is referred to as the modified Diebold-Mariano (MDM) test statistic and

is estimated with the Newey-West corrected standard errors that allow for het-

eroskedastic/autocorrelated errors. The null hypothesis of this test implies that the

forecast accuracy of our preferred model and the alternative forecasts are not sig-

nificantly different from each other. The P-values for this test are reported in table

3.6.
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Table 3.6: One-Quarter-Ahead Forecasts of Housing Assets Returns:

Nonnested Comparisons

Row Model 1 vs Model 2 MSE1
MSE2

MDM P-value

1 r̂h vs. mg 0.828 0.045

2 r̂h vs. gdp 0.831 0.007

3 r̂h vs. xa 0.796 0.003

4 r̂h vs. yield 0.802 0.004

5 r̂h vs. cay 0.850 0.008

6 r̂h vs. prent 0.769 0.000

The table reports the results of one-quarter-ahead nonnested forecast comparisons. The

dependent variable is return on housing assets. In each case two models are compared.

Model 1 always uses lagged r̂h as a predictive variable. Model 2 uses one of several

alternate variables labeled in the second column. The column labeled MSE1/MSE2

reports the ratio of the mean squared error of Model 1 to Model 2. The first row uses

the lagged mortgage rate as a predictive variable; the model denoted gdp uses lagged

real GDP growth rate as a predictive variable; the model denoted xa uses lagged excess

consumption-assets ratio as a predictive variable; the fourth row uses lagged yield

spread; the model denoted cay uses lagged value of cay and the last row uses change in

price- rent ratio as a predictive variable. The fourth column reports the P-values of

modified Diebold-Mariano test statistic. The null hypothesis is that Model 2

encompasses Model 1. Each model is first estimated using data from the second quarter

of 1953 to the third quarter of 1963. It is recursively re-estimated each period until 2006

Q4, adding one quarter at a time and calculating a series of one-step-ahead forecasts.

The results suggest that the forecasts of housing asset returns generated using

expected housing asset returns as a predictive variable significantly outperforms the

forecasts from alternative predictors.

We also compare out-of-sample forecasting power of different predictors in fore-

casting change in house prices. As above, each model is first estimated using data

from the second quarter of 1953 to the third quarter of 1963. We use recursive

regressions to re-estimate the model. The results from a set of non-nested forecast

comparison tests are given in Table 3.7. The alternative models are the same as

above. More specifically, we compare the model with lagged value of expected hous-

ing asset returns to alternative models in which either the lagged mortgage rate,

lagged yield spread, lagged real growth of GDP, lagged excess consumption-assets
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ratio, lagged cay, and lagged price-rent ratio is the only predictor. As indicated in

Table 3.7: One-Quarter-Ahead Forecasts of House Price Growth: Nonnested

Comparisons

Row Model 1 vs Model 2 MSE1
MSE2

MDM P-value

1 r̂h vs. mg 0.830 0.041

2 r̂h vs. gdp 0.731 0.012

3 r̂h vs. xa 0.694 0.003

4 r̂h vs. yield 0.772 0.064

5 r̂h vs. cay 0.747 0.001

6 r̂h vs. prent 0.716 0.025

The table reports the results of one-quarter-ahead nonnested forecast comparisons. The
dependent variable is growth in house prices. In each case two models are compared.
Model 1 always uses lagged r̂h as a predictive variable. Model 2 uses one of several
alternate variables labeled in the second column. The column labeled MSE1/MSE2

reports the ratio of the mean squared error of Model 1 to Model 2. The first row uses
the lagged mortgage rate as a predictive variable; the model denoted gdp uses lagged
real GDP growth rate as a predictive variable; the model denoted xa uses lagged excess
consumption-assets ratio as a predictive variable; the fourth row uses lagged yield
spread; the model denoted cay uses lagged value of cay and the last row uses change in
price-rent ratio as a predictive variable. The fourth column reports the P-values of
modified Diebold-Mariano test statistic. The null hypothesis is that Model 2
encompasses Model 1. Each model is first estimated using data from the second quarter
of 1953 to the third quarter of 1963. It is recursively re-estimated each period until 2006
Q4, adding one quarter at a time and calculating a series of one-step-ahead forecasts.

Table 3.7, the MSE of forecasts generated with the expected housing returns does

a superior job in predicting house price growth out-of-sample. For example, MSE-

ratio of 0.830 implies that forecasts from the model with housing asset returns has 17

percent lower MSE than the corresponding forecasts of house price growth obtained

from mortgage rate. The difference in the forecast accuracy of our preferred model

and the alternative forecasts are statistically significant according to the MDM test

statistic. P-values for this test are reported in Table 3.7.

We also test the forecasting performance of the filtered series and other alterna-
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tive variables in the subsample: 1970 Q2-1996 Q4. The filtered series of r̂h again

produces a superior forecasts to all other variables. Table 3.8 reports the results.

Table 3.8: One-Quarter-Ahead Forecasts of House Price Growth: Nonnested
Comparisons(1971Q2-1996Q4)

Row Model 1 vs Model 2 MSE1
MSE2

MDM P-value

1 r̂h vs. mg 0.373 0.010

2 r̂h vs. gdp 0.478 0.003

3 r̂h vs. xa 0.386 0.007

4 r̂h vs. yield 0.328 0.005

5 r̂h vs. cay 0.536 0.020

6 r̂h vs. prent 0.628 0.016

The table reports the results of one-quarter-ahead nonnested forecast comparisons for
the subsample-1971 q2- 1996 q4. The dependent variable is growth in house prices. In
each case two models are compared. Model 1 always uses lagged r̂h as a predictive
variable. Model 2 uses one of several alternate variables labeled in the second column.
The column labeled MSE1/MSE2 reports the ratio of the mean squared error of Model
1 to Model 2. The last column reports the P-values of modified Diebold-Mariano test
statistic. The null hypothesis is that Model 2 encompasses Model 1. Each model is first
estimated using data from the second quarter of 1971 to the first quarter of 1981. It is
recursively re-estimated each period until 1996 Q4, adding one quarter at a time and
calculating a series of one-step-ahead forecasts.

All of these encompassing tests indicate that the forecasting model that includes

expected return on housing as a predictive variable contains information that pro-

duces superior and significant forecasts to those produced by any of the competitor

models.
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3.7 Conclusions

The literature on the relationship between housing market wealth and consumption

has mainly focused on estimating the consumption response to changes in housing

market wealth. Rather than estimating the impact of housing wealth on consump-

tion spending, the goal of this essay is to exploit the information in consumption,

income and observable assets to estimate expected return on housing wealth, as

the life cycle model suggests that household’s consumption responds to expected

changes in housing market wealth and financial market wealth. To do so, we com-

bine a present-value model with an unobserved component model to write down the

observed excess-consumption asset ratio as a linear function of unobserved expected

return on housing assets and financial assets and unobserved excess consumption

growth. By assuming a simple autoregressive process for the unobserved variables,

we apply Kalman filter to extract the unobserved expected return on housing from

the present-value model.

Our results show that expected housing return from a present-value model is

a superior predictor of realized housing asset returns and house price growth rate

as compared to the other popular predictors both in-sample and out-of-sample.

The estimated expected housing return explains 18% of the variation in one-period

ahead housing assets returns and 22% of the variation in one-period ahead house

price growth rate. The results suggest that the filtered returns dominates popu-

lar predictors like mortgage rate, price-rent ratio, yield spread, cay and real GDP

growth. The superior predictive ability of the filtered returns is not surprising since

the unobserved component approach uses information from the whole history of the

variables in the information set, as compared to the traditional approach where only

finite lags are used for forecasting. To examine whether the differences in the fore-

casting performance of forecast obtained from our approach is significantly superior

to that of the traditional predictors, we also perform non-nested forecast comparison
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tests. The modified Diebold-Mariano (MDM) test suggests that the mean squared

errors of the forecasts generated from the expected return on housing asset from

the present-value model is significantly lower than the mean squared error of the

forecasts generated from predictors like the mortgage rate, price-rent ratio, among

others.
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Chapter 4

Third Essay: The Relative Importance of

Permanent and Transitory Components in the US

and UK House Prices

4.1 Introduction

The housing sector is one of the largest sectors of the US and the UK economy.

Therefore, movement in house prices is likely to have a significant impact on both

the economies. The US housing market has experienced a higher degree of volatility

over the last 30 years due to major structural changes and economic fluctuations.

Real house prices rose by only 3.7 percent between 1985-1995, but increased by 46

percent between 1995 and 2005. The subsequent correction in house prices led to

a decline of 34 percent from the year end 2006 through the first quarter of 2009.

House prices increased exponentially in the UK during 1995-2007 Q3. Increase in

house prices during this period has surpassed its historic precedents in the late 1970s

and the late 1980s in both its duration and scale. The condition of housing market

has deteriorated since the third quarter of 2007.

In this essay, we decompose the movement in house prices into trend and cycle

and assess the relative importance of trend and cyclical component in the US and

the UK house prices. Trend-Cycle decomposition is important both theoretically

and statistically. Infact, there is a great deal of literature on the decomposition

of data into trend and cycle. Prior to the 1980s, the general approach to time se-

ries data was that an economic time series could be decomposed into a secular or
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growth component and a cyclical component, which were deterministic functions

of time. In this method, the cyclical component emerges as a residual from the

trend line. However, researchers such as Beveridge and Nelson (1981) and Nelson

and Plosser (1982) have a different view. They find that an economic time series

are non-stationary stochastic processes. The deviation of the series from any deter-

ministic path will grow without bound. Therefore, growth in a time series should

be removed by first-differencing. Harvey (1985), Watson (1986), and Clark (1987)

are also in line with the latter view. Harvey et al. (1982) apply the autoregres-

sive conditional heteroskedasticity (ARCH) model proposed by Engle (1982) and

generalized ARCH (GARCH) model developed by Bollerslev (1986) to time series

model formulated in terms of unobserved components. They examined how ARCH

and GARCH disturbances might be incorporated in time series models with unob-

served components. According to Engle (1982), if the variance varies through time,

then modeling the residual variance as a constant leads to consistent but inefficient

parameter estimates and suboptimal forecasts.

The historical evidence on house prices in the US and the UK suggests that

the volatility in house prices has changed over time. Therefore, the trend-cycle

decomposition of house prices without taking into account time-varying volatility

may provide us with misleading results. Therefore, we decompose the movement in

house prices into the permanent and transitory components by allowing the shocks

to house prices to have a time-varying permanent and transitory effects. We apply

GARCH or IGARCH effect to conditional variance of the innovation in trend and

cycle component. More specifically, we incorporate GARCH (1,1) and IGARCH

(1,1) processes into the unobserved component model. We then observe the ratio

of standard errors of transitory shocks to those of permanent shocks over the sam-

ple period, and examine whether the movements in house prices will have a long

term or short term impact on the US and the UK markets. We also investigate
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whether the impact of the decline in housing market in 2007 in the US and the UK

markets is a transient deviation from the trend path. Movement in house prices is

also decomposed using a conventional unobserved components model that assumes

constant variance of the white noise processes. The model is then compared with

the model with heteroskedastic disturbances. We perform the likelihood ratio test

to compare the fit of two models.

We find that for the US economy, the standard errors of the transitory component

reached peaks on three periods: around 1980, 2004-2006, and around 2008-2010. The

standard errors of the permanent component have gradually reduced since 1984Q2.

We also find that standard errors of transitory component were larger than those of

permanent component on an average in US real house price index. This is especially

true for the housing crisis of 2007. Thus it is plausible to conclude that the level of

real house prices in US are transitorily lower than its trend path. The likelihood ratio

test suggests that the model without heteroskedastic disturbances is significantly

worse than the model with heteroskedastic disturbances. In the UK housing market,

the standard errors of the permanent components have gradually reduced over the

entire sample period employed, even though they had increased in three periods :

1998, 2002 and between 2008Q3-2009Q4. We also find that the ratios of standard

errors of transitory components to those of permanent components were larger over

the entire sample period.

This essay is organized as follows. In section 4.2, the unobserved components

model with heteroskedastic and non heteroskedastic disturbances is specified. Sec-

tion 4.3 discusses the state-space representation and estimation. Then, in section

4.4, estimations of parameters are assessed. Section 4.5 concludes.
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4.2 The Unobserved Components Model

The purpose of this essay is twofold. First, to decompose the movement in house

prices into trend and cycle and second, to analyze whether the movement has been

permanent or transitory. The movement in house prices can be decomposed us-

ing an unobserved component model. We decompose the prices via two types of

unobserved component model. First, by using an unobserved component model

with heteroskedastic disturbances. Next, using a conventional unobserved compo-

nent model that assumes constant variance of the white noise process. The first

model allows us to measure the relative size of each shock, permanent and transi-

tory. Each country is modeled based on the process the permanent and transitory

shock follows. The heteroskedastic disturbances are permitted to follow either the

generalized autoregressive conditional heteroskedasticity (GARCH) specification or

Integrated GARCH(1, 1)1 specification, based on the characteristics of the data for

each country.

We apply the UC model proposed by Watson (1986) and Clark (1987, 1989) and

incorporate GARCH (1, 1) or IGARCH(1, 1) disturbances into the model. This is

different from the conventional unobserved component model that assumes constant

variance of the white noise processes2.

Data on nominal house price index (HPI) for the US has been obtained from the

OFHEO house price index. Quarterly data runs from 1975 Q1 through the fourth

quarter of 2011. National Statistical Office is the data source for the Nominal house

price index for the UK. Quarterly data has been used starting in the second quarter

of 1968. The sample period runs through the third quarter of 2011. Nominal House

1IGARCH (1,1) model has the sum of ARCH and GARCH parameters equal to one
2There is a great deal of literature on the decomposition of output data into trend and cycle.

Prior to the 1980s, the general approach to time series data was that an economic time series could
be decomposed into a secular or growth component and a cyclical component, which were deter-
ministic functions of time. However, researchers such as Beveridge and Nelson (1981) and Nelson
and Plosser (1982) have a different view. They find that economic time series are non-stationary
stochastic processes and growth in economic activity should be removed by first-differencing. Har-
vey (1985), Watson (1986), and Clark (1987) are also in line with the latter view
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Price index is converted to real house price index by deflating it by CPI.

4.2.1 Model with Heteroskedastic Disturbances

The unobserved components model with heteroskedastic disturbances has the fol-

lowing structure:

Yt = Tt + Ct (4.1)

Tt = gt + Tt−1 + ut, ut|ψt−1 ∼ N(0, hu,t) (4.2)

Ct = φ1Ct−1 + φ2Ct−2 + et, et|ψt−1 ∼ N(0, he,t) (4.3)

hu,t = α0 + α1u
2
t−1 + α2hu,t−1 (4.4)

he,t = β0 + β1e
2
t−1 + β2he,t−1 (4.5)

where ψt−1 refers to information upto t-1. Yt is the log of real HPI. Equation (4.1)

shows that Yt (real HPI) is decomposed into two unobserved components consisting

of the stochastic trend component Tt, and the stationary cyclical component, Ct.

The stochastic trend component follows a random walk with a constant drift

term. Tt is subject to innovation to the level ut. The cyclical component is allowed

to follow a second order autoregressive process given by equation (4.3) which is the

most parsimonious way to generate boom and burst in the housing market. et is an

innovation to the cyclical component.

We first assume heteroskedastic disturbances. This is due to the fact that the

real HPI has been more volatile in recent times than at others. Therefore, instead

of assuming the shocks to the permanent and transitory components to have same

distribution, we apply GARCH (1,1) or IGARCH (1,1) effect to conditional variance

of the innovation in equation (4.4) and (4.5)3. More specifically, if we apply GARCH

3Engle(1982,1985) also found evidence that the disturbance variances for some kinds of time-
series data were less stable than usually assumed, and so specified the model for the inflation rate
allowing the uncertainty of inflation to change over time.
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(1,1) effect, the conditional variance of the error term of the trend component con-

sists of the intercept term α0, the ARCH parameter α1, and the GARCH parameter

α2. Similarly, the conditional variance of the error term of the cyclical component

consists of the intercept term β0, the ARCH parameter β1, and the GARCH param-

eter β2. However, it turns out that for the two countries, the conditional variance

of the permanent shocks follows an IGARCH (1, 1) process. IGARCH in the con-

ditional variance of the permanent shocks, the error term of the trend component

consists of the following structure:

hu,t = α1u
2
t−1 + (1− α1)hu,t−1

where α1 is the ARCH parameter and 1−α1 is the GARCH parameter and the sum

of the ARCH and GARCH parameters sum to one.

The model enables us to observe the ratio of standard errors of the transitory

shocks to those of permanent shocks over the sample period.

4.2.2 Model with Non Heteroskedastic Disturbances

Next , we assume the shocks ut and et to the trend and cyclical component to be

normally distributed, i.i.d, with mean zero and are not correlated. The conven-

tional unobserved component model proposed by Watson (1986) and extended by

Clark(1987,1989) has assumed constant variance of the white noise processes.

The unobserved components model with non-heteroskedastic disturbances has

the following structure:

Yt = Tt + Ct (4.6)

Tt = µ+ Tt−1 + ut, ut|ψt−1 ∼ N(0, hu,t) (4.7)

Ct = φ1Ct−1 + φ2Ct−2 + et, et|ψt−1 ∼ N(0, he,t) (4.8)
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The trend is modeled as a random walk with drift and the cyclical component is

modeled as an AR(2) process. We perform the likelihood ratio test to compare the

fit of two models, model with heteroskedastic disturbances and model with constant

disturbances.

4.3 State-Space Model

In this section, we present the state-space representation and estimation of the model

given by equations (4.1-4.5). Measurement equation is :

Yt = Hβt (4.9)

where

H =
[

1 1 0 0 0 0

]

βt =



Tt

Ct

Ct−1

gt

ut

et



Transition equation is represented as:

βt = Fβt−1 +Gvt (4.10)
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where

F =



1 0 0 0 0

0 φ1 φ2 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


, G =



1 0 0

0 1 0

0 0 0

1 0 0

0 1 0


, v =


ut

et

0



Covariance matrix of the disturbance vector in the transition equation is repre-

sented as:

E(Gvtv
′
tG
′) = E





1 0 0

0 1 0

0 0 0

1 0 0

0 1 0


∗


ut

et

0

 ∗
[
ut et 0

]
∗


1 0 0 1 0

0 1 0 0 1

0 0 0 0 0





=



hu,t 0 0 hu,t 0

0 he,t 0 0 he,t

0 0 0 0 0

hu,t 0 0 hu,t 0

0 he,t 0 0 he,t


= Q∗t

Kalman Filter is then applied to the model given by equations (4.9-4.10). The

Kalman filter provides us with prediction error and its variance as by-products.

Based on this prediction error decomposition the Gaussian log likelihood function

is maximized with respect to the unknown parameters of the model. However,

to operate the Kalman filter, we need to calculate hu,t = α0 + α1u
2
t−1 + α2hu,t−1

and he,t = β0 + β1e
2
t−1 + β2he,t−1 in the Q∗t matrix of the above model. Both hu,t

and he,t are functions of the squared lagged disturbance and the variance of lagged

disturbance, which are unobserved. Harvey et al. (1992) solve the problem of the
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unobserved u2
t−1 and e2

t−1 by replacing the squared lagged disturbances by their

conditional expectations. Thus,

hu,t = α0 + α1E[u2
t−1|ψt−1] + α2hu,t−1 (4.11)

he,t = β0 + β1E[e2
t−1|ψt−1] + β2he,t−1 (4.12)

To calculate E[u2
t−1|ψt−1] and E[e2

t−1|ψt−1]4, we use

E[u2
t−1|ψt−1] = E[ut−1|ψt−1]2 + E[(ut−1 − E(ut−1|ψt−1))2] (4.13)

E[e2
t−1|ψt−1] = E[et−1|ψt−1]2 + E[(et−1 − E(et−1|ψt−1))2], (4.14)

where E[ut−1|ψt−1] and E[et−1|ψt−1] are obtained from the last two elements of

βt−1|t−1, and where E[(ut−1 − E(ut−1|ψt−1))2] and E[(et−1 − E(et−1|ψt−1))2] are ob-

tained from the last two diagonal elements of the covariance matrix of β, Pt−1|t−1.

4.3.1 Normally Distributed Error Terms

Following is the state-space representation and estimation of the model given by

equations (4.6-4.8).

Yt = Hβt (4.15)

where

H =
[

1 1 0

]

βt =


Tt

Ct

Ct−1


4We follow the approach used in Song (2011)
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Transition equation is represented as:

βt = Fβt−1 +Gvt (4.16)

where

F =


1 0 0

0 φ1 φ2

0 1 0

 , G =


1 0

0 1

0 0

 , v =

 ut

et



Covariance matrix of the disturbance vector in the transition equation is repre-

sented as: Qt = E(vtv
′
t) =


σ2
µ 0 0

0 σ2
ε 0

0 0 0



4.4 Estimation Results

4.4.1 USA

Table 4.1 contains parameter estimates of the unobserved component model with

heteroskedastic disturbances over the sample period. The results show that the

cycle is highly persistent at 0.989 (φ1 + φ2 = 0.989). Both ARCH parameters α1

and β1 are statistically significant, but the GARCH parameter β2 is statistically

insignificant. This implies that the volatility of the error term of the stationary

cyclical component follows ARCH(1) process. In the conditional variance of the

error term of the stochastic trend component, we first considered GARCH (1,1),

but found that the sum of the ARCH and GARCH parameters approximately equal

to one. Thus IGARCH (1,1) process is more suitable to the volatility of the error

term of the stochastic trend component, and GARCH parameter α1 and the initial

value of error term hu,0 are estimated.
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Table 4.1: Maximum Likelihood Estimates of the Unobserved Components

Model with Heteroskedastic Disturbances-USA

Parameters Estimates Standard Errors
µ 0.162 0.063
φ1 1.796 0.041
φ2 -0.807 0.037
a1 0.523 0.261
h10 1.453 1.815
b0 0.128 0.072
b1 0.617 0.231
b2 0.088 0.227

Likelihood Value -161.64

Figure 4.1 shows that there was a large increase in the level of real House Price

Index (HPI) during the period 2005-2007. The house prices peaked in 2007. There

was a large fall-off of the level of real house prices following the house price bust and

financial crisis in 2007. Figure 4.2 indicates that the cyclical component of house

prices had a sharp increase during the housing crisis.

Figure 4.1: Real HPI and Trend Component from the Unobserved Components Model
with Heteroskedastic Disturbances-USA
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Figure 4.2: Stationary Cyclical Component from the Unobserved Components Model
with Heteroskedastic Disturbances-USA

Figure 4.3 and 4.4 represent standard errors of innovations of the trend and cycli-

cal components, namely, standard errors of the permanent component and those of

the transitory component, respectively. One interesting finding is that the stan-

dard errors of the permanent component have gradually reduced since 1984Q2. The

standard errors of the transitory component reached peaks on three periods: around

1980, 2004-2006, and around 2008-2010.
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Figure 4.3: Standard Errors of Transitory Shocks from the Unobserved Components
Model with Heteroskedastic Disturbances- USA

Figure 4.4: Standard Errors of Permanent Shocks from the Unobserved Components
Model with Heteroskedastic Disturbances- USA

Figure 4.5 shows that standard errors of transitory component were larger than

those of permanent component on average in US real house price index. It follows

that the standard errors of transitory component were 2-10 times larger than those

of the permanent component during the housing crisis of 2007.
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This fact indicates that there is a transitory decrease in the level of house prices

in the US. Therefore, it is likely that the level of real house prices are transitorily

lower than its initial trend path. We also analyzed the simple trend-cycle decom-

Figure 4.5: Ratios of Standard Errors of Transitory Shocks to those of Permanent
Shocks from the Unobserved Components Model with Heteroskedastic Disturbances-
USA

position for the US economy and compared the fit of the two models: model with

heteroskedastic disturbances and model without heteroskedastic disturbances using

a likelihood ratio test. Table 4.2 contains parameter estimates of the unobserved

components model with constant disturbances over the same sample period. Again,

the cycle is highly persistent at 0.996. The likelihood ratio test suggests that the

fit is significantly worse under the alternate, where the alternate is the unobserved

component model with non-heteroskedastic disturbances.
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Table 4.2: Maximum Likelihood Estimates of the Unobserved Components

Model with Non-Heteroskedastic Disturbances-USA

Parameters Estimates Standard Errors
hu 0.631 0.062
hv 0.428 0.080
µ 0.157 0.110
φ1 1.875 0.043
φ2 -0.879 0.041

Likelihood Value -179.227

Figure 4.6: Stationary Cyclical Component from the Unobserved Components Model
with Non Heteroskedastic Disturbances-USA

4.4.2 UK

For the UK housing market, the results in Table 4.3 suggest that the cycle of an

unobserved component model with heteroskedastic disturbances is highly persistent

at 0.983 (φ1 + φ2 = 0.983). ARCH parameter α1 is statistically significant, but the

ARCH parameter β1 is statistically insignificant. GARCH parameter β2 is statis-

tically significant implying that the volatility of the error term of the stationary

cyclical component follows GARCH(1,1) process. IGARCH (1,1) process is incor-

porated in the volatility of the error term of the stochastic trend component, and



73

GARCH parameter α1 and the initial value of error term hu,0 are estimated.

Table 4.3: Maximum Likelihood Estimates of the Unobserved Components

Model with Heteroskedastic Disturbances-UK

Parameters Estimates Standard Errors
µ 0.822 0.116
φ1 1.744 0.043
φ2 -0.761 0.038
a1 0.721 0.318
h10 141.00 641
b0 0.245 1.143
b1 0.00 0.00
b2 0.917 0.382

Likelihood Value -353.997

The increase in house prices in the United Kingdom exceeded the level of house

prices in the United States. Figure 4.7 shows that there was a large increase in the

level of real House Price Index (HPI) during the period 1997-2007. The condition of

the house prices has deteriorated since the third quarter of 2007. Figure 4.8 reflects

the fact that there was a sharp increase in the cyclical component during 1997-2003

and a sharp decrease thereafter.
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Figure 4.7: Real HPI and Trend Component from the Unobserved Components Model
with Heteroskedastic Disturbances-UK

Figure 4.8: Stationary Cyclical Component from the Unobserved Components Model
with Heteroskedastic Disturbances-UK

As represented by figure 4.9, the standard errors of the permanent component

have gradually reduced over the entire sample period, even though they had in-

creased over the three periods:1998, 2002 and between 2008Q3-2009Q4. There is

not much variation in the standard errors of the transitory component.
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Figure 4.9: Standard Errors of Permanent Shocks from the Unobserved Components
Model with Heteroskedastic Disturbances- UK

Figure 4.10 reflects the fact that the level of real house prices are transitorily

lower than its initial trend path. The standard errors of transitory component were

larger than those of permanent component on average in UK real house price index.

They were especially higher during the housing crisis of 2007.
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Figure 4.10: Ratios of Standard Errors of Transitory Shocks to those of Permanent
Shocks from the Unobserved Components Model with Heteroskedastic Disturbances-
UK

Table 4.4 contains parameter estimates of the unobserved components model

with constant disturbances over the same sample period. Again, the cycle is highly

persistent at 0.988. The likelihood ratio test suggests that the difference between the

log likelihoods of the two models is not statistically significant. Given the volatility

in the house prices of UK, it seems that the model with heteroskedastic disturbances

is better suited for analysis.
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Table 4.4: Maximum Likelihood Estimates of the Unobserved Components

Model with Non-Heteroskedastic Disturbances-UK

Parameters Estimates Standard Errors
hu 1.0652 0.165
hv 1.510 0.166
µ 0.783 0.129
φ1 1.782 0.046
φ2 -0.794 0.041

Likelihood Value -355.278

Figure 4.11: Stationary Cyclical Component from the Unobserved Components

Model with Non Heteroskedastic Disturbances-UK
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4.5 Conclusions

In this essay, we analyze the relative importance of the permanent and transitory

components of the house prices of the US and the UK economies. Acknowledging

that volatility of house prices has changed overtime, the movement in house prices is

decomposed into the permanent and transitory components by allowing the shocks

to house prices to have a time-varying permanent and transitory effects. GARCH

(1,1) and IGARCH (1,1) processes is incorporated into the unobserved component

model and then the ratio of standard errors of transitory component to those of

permanent component is observed. We then examine the relative importance of

permanent and transitory components in the US and UK house prices. Our findings

suggest that the standard errors of transitory component were larger than those of

the permanent component on an average in the US and the UK real house price

index. For both the economies, the standard errors of transitory component were

much larger than those of permanent component during the housing crisis. This

implies that there is a greater degree of similarity in the evolution of house price

volatility in the US and the UK.
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