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ABSTRACT
CATEGORY O REPRESENTATIONS OF THE LIE SUPERALGEBRA osp(3,2)

by

America Masaros

University of Wisconsin — Milwaukee, 2013
Under the Supervision of Professor Ian M. Musson

In his seminal 1977 paper [Kac77], V. G. Kac classified the finite dimensional simple
Lie superalgebras over algebraically closed fields of characteristic zero. However, over
thirty years later, the representation theory of these algebras is still not completely
understood, nor is the structure of their enveloping algebras.

In this thesis, we consider a low-dimensional example, 0sp(3,2). We compute
the composition factors and Jantzen filtrations of Verma modules over osp(3,2) in a

variety of cases.
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CHAPTER 1
INTRODUCTION

The purpose of this thesis is to describe all category O representations of the Lie
superalgebra o0sp(3,2). This chapter provides an introduction to Lie superalgebras
and a concrete description of 0sp(3,2) as a matrix algebra. Chapter 2 includes several
results from the representation theory of Lie superalgebras that will be used in the
sequel. Chapters 3 to 5 describe the Verma modules over osp(3,2) under various
conditions on the highest weight.

Throughout, we work over a field which is algebraically closed of characteristic 0;
for notational simplicity, C.

We assume some familiarity with the study of Lie algebras, which much of this

material generalizes. This introduction is adapted from [Mus12, Ch. 1-6].
1.1 LIE SUPERALGEBRAS

Lie superalgebras are a generalization of the well-studied Lie algebra (for a good
treatment, see [Hum?78]). However, while Lie algebras are typically developed initally
the tangent spaces to Lie groups, Lie superalgebras are here developed axiomatically,
independent of the underlying Lie supergroups. (Lie supergroups are group objects
in the category of supermanifolds, as Lie groups are group objects in the category of

manifolds. For a treatment of Lie supergroups, see for example [BV91].)
1.1.1 AXIOMATIC DEVELOPMENT

A Lie superalgebra g is a Zs-graded vector space (over a field C) g = go® g1, together
with a bilinear bracket [-,-]. An element z € go U g; is called homogeneous, and
|z| = i if x € g; is called the degree of x. By using the notation |z|, we implicitly
assume that x is homogenous. For two homogeneous elements x and y, the notation

sgn(z,y) = (—1)#I¥ simplifies the following defintions greatly. The bracket satisfies



the following axioms for homogeneous elements, extended to g via bilinearity.

® [9;,9;] < gi+;, where addition is mod 2 (Z, grading)

o [z,y] + sgn(z,y)[y, 2] = 0 (graded skew-symmetry)

o sgn(x, 2)[z, [y, z]] + sen(z,v)|y, [z, z]] + sgn(y, 2)[z, [z,y]] = 0 (graded Jacobi
identity)

It is easy to see that with these axioms, gy is a Lie algebra and g, is a go module,
where the action is the adjoint action.
We make extensive use of the Zs grading. We shall refer to gg as the even part of
g, and say that x € gg is an even element of g. Similarly, g, is the odd part of g, and
x € g1 is an odd element. Further, for b a subalgebra of g, set h; = hng; for i =0, 1.
We say that a Lie superalgebra is simple if it is not abelian and the only Z,-graded
ideals of g are 0 and g. We say that g is classical simple if g is simple and g; is a

completely reducible go-module.

Assumption 1. In the remainder, we make the assumption that go is reductive and
g1 1s semisimple as a gy module. (Both of these assumptions apply to our main focus
of study, 0sp(3,2), described in section 1.6.) This implies, among other things, that

if g is simple, it is classical simple ( [Mus12, Thm. 1.2.9]).

1.1.2 MATRIX SUPERALGEBRAS

It is also easy to see from the definition that given a Zs-graded associative algebra
A = Ay@®A; we can construct a Lie superalgebra by defining |z, y] = zy—sgn(z, y)yz
for homogeneous elements and extending via bilinearity. Thus, as in the Lie algebra
case, we construct some initial examples of Lie superalgebras as matrix algebras. The
easiest of these to describe is the general Lie superalgebra

A|B
C|D

A€ Myxm, D€ My, }

[(m,n) =
o ) { Be Myxn, C€ Myxm




Al O
g[<m7n>0 = T? A€ mem7 D e Mnxn = g[<m> C_Dg[(n)
_ ol 5 _
g[<m7n)1 = —t—|: Be meng Ce Mnxm 5
L C 0 -

where M,, ., denotes the algebra of m xn matrices. Asin the Lie algebra case, further
matrix superalgebras are obtained as subalgebras of gl(m,n) which preserve bilinear

forms.
1.2 CARTAN SUBALGEBRAS AND ROOT SPACES

It is useful to describe the root space of a Lie superalgebra. We begin with a Cartan

subalgebra by of gy (recall that go is a Lie algebra). For a € b, set
¢ = {weg:[ha] = alh)z for all he by
and let
A={aebhi:a#0,g"+#0}

be the set of roots of g. Since the action of hy on any finite-dimensional simple go-
module is diagonalizable, and g; is semisimple (by Assumption 1), the action of by is
also diagonalizable. Thus we have a root space decomposition

g=heoPg" (1.2.1)

acA

where h = g° is the centralizer of b in g.
Several properties of the roots of Lie algebras carry over to the superalgebra case,

including the following important result.

Lemma 1.2.1 ( [Musl2, Lem. 2.1.1]). If g is a classical simple Lie superalgebra and

o, B,a + 8 are roots of g, then [g°, g°] = g**~.

The usual corollary, that if o + 3 # 0 is not a root then [g®, g°] = 0, also holds.



1.2.1 TYPES OF RooTs

It is unsurprising to find that A is also Zy graded. We define A to be the roots of
go, and A; = A\Ay. Elements of Aq are called even roots, while elements of A; are
called odd roots.

Unlike the Lie algebra case, it is possible that «, 2« are roots for some « € h*. If
this occurs, then oo € Ay, but odd roots of this kind behave differently from other odd
roots (most importantly with respect to reflection). If @ € A; is an odd root such
that 2« is a root, we say that « is odd non-isotropic. Otherwise, we say « is isotropic
(or odd isotropic).

In addition to the two sets above, we sometimes wish to consider the sets

Ag={aeA:a+283forany fe A}
A = {odd isotropic roots} .
1.3 BOREL AND PARABOLIC SUBALGEBRAS
A subalgebra b of a Lie superalgebra g is a Borel subalgebra if
e b is a Borel subalgebra of g,

e b=h@n" with n™ nilpotent in g, and

e b is maximal with these properties.

In the Lie algebra case, all Borel subalgebras are conjugate. However, in the super-

algebra case, instead we have the following theorem.

Theorem 1.3.1 ( [Musl2, Thm. 3.1.2]). If g is a classical simple Lie superalgebra,
then there are only a finite number of conjugacy classes of Borel subalgebras under

the action of Aut g.

This creates some complications in the representation theory, in particular, as

regards highest weights and highest weight vectors (see chapter 2). We consider a



representative of each conjugacy class; among these, we call one (one representative
of one class) distinguished. Each Borel subalgebra corresponds to a basis of simple

roots. If b and b’ are Borel subalgebras of g, we say that b and b" are adjacent if

e by = b, and

e b; N b} is codimension one in both by and b].
In this case, there is an odd root a of g such that
g"cb and g *cb.
Note that in this situation, a must be isotropic. Adjacent pairs of Borel algebras turn
out to be extemely useful, since for g # p(n) or psl(2,2), the following holds.

Theorem 1.3.2 ( [Musl2, Thm. 3.1.3]). If b and b’ are Borel subalgebras of g such

that by = by, then there is a sequence

of Borel subalgebras such that 60~ and b are adjacent for 1 <i < m.
A Borel subalgebra b has a nilpotent complement n~ such that
g=n ®Ob=n" ®hPn".
Such a decomposition is called a triangular decomposition.
Hereafter, we may refer to a Borel subalgebra simply as a Borel.
1.3.1 PARABOLIC SUBALGEBRAS

At times, it is helpful to work with a superset of a Borel subalgebra b, a so-called
parabolic subalgebra. Let p be a subalgebra of g containing b, and let t be the comple-
ment of p. Then there exists a partition A = A*UAP, where A* € A~ and AP 2 AT,
such that

t=P g p=be P g™

QaEAT aEAP



The subalgebra p is called a parabolic subalgebra.
1.4 WEYL GROUP

The Weyl group W of a Lie superalgebra g is the Weyl group of the underlying Lie
superalgebra go. Hereafter we denote the reflection in the hyperplane orthogonal to
a root a by o,. Note that if @ = 23, where § is an odd non-isotropic root, we will
often use the notation o rather than o,.

In computation, we define a bilinear form (-, -) on h*. If « is a non-isotropic root,

B € b*, define
(8, @)
W(B)=0-2 .
To simplify this notation somewhat, we define a¥ = (2%), and write

Ja(ﬁ) = B - (B,Oév)a.
(Note that if 5 = na, Y = %ozv.)

1.4.1 THE DoT ACTION

When studying modules, it will be useful to consider a shifted action of the Weyl

group. We define

Note that p depends on the choice of positive roots, and therefore on the choice of
Borel. When we wish to make the choice of Borel explicit, we may write p(b). We

now define the dot action of W on h* by
oA = 0o(A+ p) — p.

1.4.2 ODD REFLECTIONS

It is sometimes useful to consider an analog of reflections for roots a € A;. Suppose

B is a basis of simple roots for g and o € B n A;. Then for any 3 € B we define a



root 7,(3) by

—« if 8=«
ro(f) =< a+p if a+ isaroot .
1G] otherwise

Then r,(B) = {ro(B) : 5 € B} is a basis of simple roots, said to be ( [Ser11]) obtained

from B by the odd refiection r.,.

1.5 ENVELOPING ALGEBRAS AND THE PBW THEOREM

Generalizing the Lie algebra case, we embed a Lie superalgebra g in an associative
Zo-graded algebra &, so that the multiplication respects the bracket, that is, for z,y

homogeneous in g,

xy —sgn(z, y)yxr = [z, y],

where the multiplication takes place in &. Such an algebra is called an enwveloping
algebra, and the universal enveloping algebra $4(g) is universal among such algebras,
in the sense that for any enveloping algebra &, with morphisms i : g — $(g) and
J g — & which respect the bracket, there is a unique homomorphism ¢ making the

following diagram commute:

(Henceforth, we will concern ourselves only with Ll(g).) Enveloping algebras are
useful in representation theory, in that g modules are identically $(g) modules (an
easy consequence of universality). Also, $l(g) is unique (up to isomorphism) because
universal objects are unique; to prove existance, we construct a universal enveloping

algebra as a quotient of a Zs-graded tensor algebra, similar to the method in the Lie



algebra case (for details, see [Mus12, p. 131-132]). As in the Lie algebra case, the key

results on universal enveloping algebras are the PBW theorem and its corollaries.

Theorem 1.5.1 (PBW Theorem, [Mus12, Thm. 6.1.1]). Let Xq be a basis for go over
C and Xy a basis for g1 over C, and let < be a total order on X = Xgu Xy. Then

the set of all monomials of the form
x1x2 DY xn
with x; € X, x; < xi41, and x; # x;41 if x € Xy is a basis for $(g) over C.

This admits several easy corollaries. First, we can rewrite in terms of monomials

with exponents.

Corollary 1.5.2 ( [Mus12, Thm. 6.1.2]). Let x4, ..., 2, be a vector space basis for g

consisting of homogenous elements. Then the set of all monomials of the form

AR

with a; € N if |x;| = 0 and a; € {0,1} if |z;| = 1 is a basis for U(g)
Proof. By rewriting. O]
Noting that odd basis vectors appear at most once in any such monomial, we can

relate $(g) to LU(go).

Corollary 1.5.3 ( [Mus12, Lem. 6.1.3]). In the notation of Theorem 1.5.1, the algebra
3U(g) is a free left and right module over $(go) with basis consisting of all monomials

of the form
.’,E]_.I‘Q PR 'CETL

with x; € Xy and x; < x;11. In particular, if g1 is finite dimensional, then $4(g) is
finitely generated and free as a left and right $(g)-module, with 1 as part of a free

basis.



Proof. By proper choice of <, so that elements of X; come first or last as appropriate.

]

Finally, we relate the universal enveloping algebra to the enveloping algebras of

subalgebras.

Corollary 1.5.4 ( [Musl2, Lem. 6.1.4]). If g is a direct sum of Lie superalgebras
g=a®b, then

() = £h(a) ® L(b)
as vector spaces.

Proof. Take a suitable basis for g, ordered so that elements of a come before those of

b. ]

1.6 PROPERTIES OF osp(3,2)
1.6.1 A NOTE ON DESCRIBING MATRICES

In describing elements of 0sp(3,2), below, we will specify the entries in matrices as

follows.
0 1 -1 2 -2
0 [ * % % * % |
1 * ok % * %
1 * % % ® K
2 E. S * * *
_92 * % % ® K

(This labeling helps to highlight symmetry.) We will use the notation e; ; to specify

the matrix with a 1 in the ¢, 7 entry and a 0 elsewhere.
1.6.2 A MATRIX ALGEBRA WHICH PRESERVES A BILINEAR FORM

In chapters 3 to 5 we consider 0sp(3,2). In the classification of the classical simple

Lie superalgebras (see for example [Musl2, Ch. 1-2]) this is B(1,1). In general,



10

B(m,n) = osp(2m+1, 2n) is a subalgebra of gl(2m + 1, 2n) which preserves a bilinear

[

where G is a non-degenerate symmetric 2m + 1 x 2m + 1 matrix and and H is a

form given by a matrix of the form

non-degenerate skew-symmetric 2n x 2n matrix. Canonically, we take

1 0 0 N
G=|0 0 1Id, H= "
~1d, 0

In this case, all of the assumptions made in the previous sections apply, namely
e go is a semisimple Lie algebra; in this case, go = 0(3) @ sp(2),
e g, is a finitely generated go-module, and
e by = b, with basis {h. = e11 —e_1_1,hs = €32 — €_9 _o}.

1.6.3 ROOT SPACE, BASIS AND BOREL SUBALGEBRAS

The root space of 0sp(3,2) is seen in fig. 1.1, where {e, —¢} is the root space of the
copy of 0(3) in gg and {24, —20} is the root space of the copy of sp(2).
In fig. 1.1, and in diagrams to follow, open dots (O) indicate even roots, filled dots

(®) indicate odd non-isotropic roots, and crossed dots (®) indicate isotropic roots.

Remark 1.6.1. The Lie algebra SLo(C) has several real forms, including SLs(R)
and SO3(R). The representation theory for the copy of 0(3) in gy resembles that of
SO3(R) rather than that of SLa(R).

We obtain a basis for 0sp(3,2) according to [Mus12, Ex. 2.7.4]. A “mulitplication

table” for osp(3,2) with the basis in table 1.1 can be found in appendix A.

Remark 1.6.2. Note that the basis in table 1.1 may differ in scalar multiple from

the basis given in [Mus12, Ex. 2.7.4]; this simplifies later computations. However,
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€0 € e+0
O
—20 -0 J 20
O @ @ O
O
—£—90 —€ —e+90

€e

€25

€s
€5
€5

Figure 1.1: The root space of osp(3,2)

€11 —€-1,—1

€1,0 — €0,—1
€22
€20 — €0,—2

€ 9 1+ €12
—€_921 —€_-12

hs = €292 — €22
€ =¢€01 —€-1p0
€_25 = €29
€5 =€_20 1 €02
€ets = €21 — €1,-2
€_eys = —€21 T €12

Table 1.1: A basis for osp(3,2)
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this interferes with “handedness” of the basis, and will have minor consequences for

scalars appearing in Svapavolov elements (see section 2.6).

Recall that Borel subalgebras of Lie superalgebras are not unique up to conjugacy.
Indeed, 0sp(3,2) has two distinct conjugacy classes of Borel subalgebras, represented

by the Dynkin diagrams in fig. 1.2.

CE: —555‘ 0 g &‘é(g

) ( (

a® s a® 5
b b2

Figure 1.2: Representatives of the Borel subalgebras for osp(3,2).

In chapters 3 to 5, we take g = o0sp(3,2), and use the notation o, 30 b0
as in fig. 1.2. Note that these Borel subalgebras are adjacent, with g==° < b() and
g% < b®®. When a Borel b is specified without an index, a denotes the non-isotropic
simple root, and 3 denotes the isotropic simple root. The symbol v denotes the root

€+ 0.
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CHAPTER 2
REPRESENTATION THEORY

We now turn our attention to the study of modules over g (or equivalently, (g))
modules. In particular, we consider left modules, here and throughout, and the action
of g is the left action. Again, some familiarity is assumed with the representation
theory of Lie algebras of the category O. For a thorough treatment of this theory,
see [HumO8|]. The material in this chapter is adapted from [Mus12, Ch. 8-10].

Throughout this chapter we make the assumption that g is either basic classical
simple of type different from A or g = gl(m,n). This is equivalent to the assumption
that g can be constructed as a contragradient Lie superalgebra g(A, 1), see [Mus12,
Ex. 5.6.12]. This is required for several results in this chapter, and will pass without
further comment.

We use the notation II to denote a basis of simple roots, or II, when we wish to

call attention to the associated Borel, and set Q* = den NC(.

2.1 VERMA MODULES

Verma modules for semisimple Lie algebras were introduced in Verma’s thesis; see
[Ver68]. We proceed to define Verma modules for classical simple Lie superalgebras
in an analogous way. The case g = q(n) involves some complications, so we will not

consider it here; the case is noted as excluded in relevant results.

Lemma 2.1.1 ( [Musl2, Lem. 8.2.2]). For A € b, there is a unique finite dimensional
graded simple b-module V) such that n*Vy = 0 and hv = A(h)v for all h € by and
v E V)\.

If g # q(n), then V) is one-dimensional. In this case, we write V\ = Cu,.

Next, we fix a triangular decomposition g =n~ @h@dnt, and set b = hdn'. Let
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V\ = Cuy be as in Lemma 2.1.1. Then we define the Verma module for g by
M(N) = U(g) ®yep) Va = IndgVi.

When we are considering more than one Borel, say b, b®) we will denote the re-

spective Verma modules by
MD(N) = IndS, Vi
We now give some of the most basic properties of Verma modules.

Lemma 2.1.2 ( [Musl2, Lem. 8.2.3]). Let My()\) denote the Lie algebra Verma mod-

ule of weight \ for go. Then we have the following.

e The module M (\) has a unique mazximal Zs-graded submodule.
o M(X) =Un")Vy; this is a free sh(n~)-module with basis a vector space basis for
V. (For g # q(n), M(X) = U(n~)vy as g-modules.)

e There is a surjective map of $4(g)-modules
U(g) ®u(ge) Mo(A) = M(A).
. Endﬂ(g)M()\) =~ Endu(h)V)\. (FO?“ g # q(n), Endﬂ(g)M()\) x>~ (C)

By Lemma 2.1.2, the module M (\) has a unique maximal submodule N()) and a
unique simple quotient L(\). Any nonzero factor module of M () is called a module

generated by a highest weight vector with weight .
2.2 CATEGORY O

The Verma modules are generalized in a convenient way by the category O introduced
by Bernstein, Gel'fand, and Gel'fand, [BGG71, BGG75, BGG76|. By definition, ob-

jects in the category O of 4(gg) modules are those with the following properties.
(a) M = @uef)a" M*, where

M* ={ve M : hv = pu(h)v for all h € b}.
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We call M* the weight space of weight u, and say M is a direct sum of weight

spaces, or that M is a weight module.
(b) For all ve M, dimU(ng)v < oo.
(¢) M is a finitely generated LU(go)-module.

This is a full subcategory of the category of {(gg)-modules, that is, the morphisms
are precisely 4(go)-module morphisms. We consider the category O of graded U(g)-
modules which belong to the category O when viewed as 4(go) modules by restriction.

We note that the definition of the category O depends only on the triangular
decomposition of go. However, when we refer to a highest weight, we implicitly fix a
triangular decomposition of g. This is equivalent to fixing a choice of Borel subalge-
bras. When working in the osp(3,2) case, if we are choosing one Borel specifically,
we shall use the superscripts ), @) to refer to the Borels b, 6@ in fig. 1.2.

To further develop the theory of Verma modules, we will require the following.
Denote by 3(g) the center of {(g). Note that under the current assumption g # q(n),
the module V) in Lemma 2.1.1 is one-dimensional. Thus if z € 3(g) and v € V), zv is
a highest weight vector of weight A and thus a scalar multiple of v. This allows us to

define an algebra homomorphism y, : 3(g) — C by

2v = xa(2)(v).

We call x, the central character of U(g) afforded by the A(g)-module M (). It is easy
to see that z € 3(g) acts on M (A) as the scalar y,(z).

It is easy to see that homomorphic images of an object in category O are again
objects in O. The following results, especially Lemma 2.2.4, motivate the study

undertaken in chapters 3 to 5.

Lemma 2.2.1 ( [Mus12, Lem. 8.2.5]). If L is a simple object in O, then L =~ L(\)

for some X\ € h*.
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Lemma 2.2.2 ( [Musl2, Lem. 8.2.6]). Let M be a module of category O.
(a) If M is nonzero, then M contains a highest weight vector.
(b) There is a finite series of submodules
M=M,o>oM,1>---D>M D>My=0
such that each M;/M;_1 is a highest weight module for 1 < i < s.
(c) For all u € b, the weight space M* is finite dimensional.

Lemma 2.2.3 ( [Musl12, Cor. 8.2.12]). If M is an object in category O, then M has

finite length.

Lemma 2.2.4 ( [Musl2, Lem. 8.2.14]). The Verma module M(X) has a finite compo-
sition series as a Zs-graded module with composition factors of the form L(u) where
Xa = Xu and pp < X. Furthermore L(X) is a composition factor of M(X) with multi-

plicity 1.

In the Lie algebra case, xx = x,, if and only if ;o = w.\ for some w € W (where W
denotes the Weyl group). (This result is due to Harish-Chandra [HC51]; for a good
exposition see for instance [HumO08, Sec. 1.7-1.10].) In the Lie superalgebra case, the

relationship is somewhat more complex, as we shall see in Theorem 2.5.2.
2.3 PARTITIONS AND CHARACTERS

Let QF =, n Nn. For A € h*, set D(A) = A — Q" and let £ be the set of functions
on h* which are supported on a finite union of sets of the form D()). Elements of £
can be written as formal linear combinations Y3, . cxe* where €’ (u) = 8y ,. We can
make £ an algebra via the convolution product

(fo)N) = >, Fmg).

ptr=A
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To describe some elements of £, we use partitions. If n € QT, a partition of n is a
map 7 : AT — N such that 7(£) = 0 or 1 for all £ € AT and
> e =n.
EeAT
For 7 a partition, set |7| = > . o+ 7(£). We denote by P(n) the set of partitions of

n, and for £ € A} we define

Pe(n) = {r e P(n) : (&) = 0}

Set p(n) = |P(n)| and pe(n) = |Pe(n)|. The partition function p is defined by

p=2pMm)e " Thus p(u) = X p(n)e (1) = p(—p). It is easy to see that

. ngAT(l +e)
HCEAS (1 - G—C) ’

since the coefficient of €~¢ in this expression is precisely the number of ways of writing

¢ as a sum of elements of A* where elements of A} have coefficient in {0, 1}. Similarly

for £ € AT we define pe = >, pe(n)e . Then we have

p :L
ST tef)

We can readily compute also p(n) = pe(n) + pe(n — ).
Partitions are useful in indexing a basis for {{(n*), as in the following lemma.

Take a basis for g of elements e; € g°, e_¢ € g~* for each £ € AT such that

lee, e—¢] = he,

where he € h such that ((he) = (¢, €) for all ¢ € A, and fix an ordering on A*. (Note
that the basis given in Table 1.1 is such a basis for 0sp(3,2).) Then for a partition 7

set

ey = H ef(f),

EeAt
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where the product is taken with respect to the order. In addition set

e, =te_ = H eg(é)’

feAT
where the product is taken in the opposite order. The following lemma follows directly

from the PBW theorem:

Lemma 2.3.1 ( [Musl2, Lem. 8.4.1]). The elements e, with m € P(n) form a basis
of U(m*)F1. Thus dim(U(n)*") = p(n).

If M is an object of O, the character ch M of M is defined by
ch M =) dim(M")e".

Remark 2.3.2. Since M (XN * has a basis consisting of all e_ vy with € P(u), it

follows that
ch M()\) = ep.

Remark 2.3.3. Note that ch M(\) € &, so & is useful in calculations involving char-

acters. Also if M € O and E is a finite dimensional simple module, we have
ch(M®FE)=chMchEce€€.
Remark 2.3.4. If M, M’', M" € O such that the sequence
0O->M —->M-—>M"—0
18 exact,

chM =ch M +chM"e€&.

The Grothendieck group of the category O, denoted K(QO) is defined as follows.
For M € O, write [M] for the isomorphism class of M. Then K(O) is the free Abelian

group generated by the symbols [M] with relations [M] = [M'] + [M"] whenever

0> M —>M-—M —0
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is a short exact sequence in O. It follows from Lemmas 2.2.1 and 2.2.3 that ch M € £
for any module M € O. The same results imply that K(O) is free Abelian on
the [L(A)] with A € h*. Let C(O) be the additive subgroup of £ generated by the
characters chL()\) for A € h*. Then it is easy to show the following (see [Jan79,

Satz 1.11]).

Theorem 2.3.5 ( [Musl2, Thm. 8.4.6]). There is an isomorphism from the group
K(O) to C(O) sending [M] to ch M for all modules M € O.

2.3.1 CHARACTERS OF INDUCED MODULES

We can generalize this notation to describe the modules induced from a parabolic

subalgebra. Suppose g = p @ v, where p is a parabolic subalgebra, and let
A ={(eA:g ct}

For a weight 1, a p-partition of n is a map v — N such that 7(¢) = 0 or 1 for all
¢ e A} and

> w(¢) = —n.

CeAr
Denote by P,(n) the set of all p-partitions of 7, and let p,(n) = |P,(n)|. Finally,

define the p-partition function p, by

1I_ v (1 + E_C)
_ - CeA]
= E € =

Py pp (77) cheA(')(l _ Eic)

The same argument used in Remark 2.3.2 tells us that if L is a p-module,
chIndfL = ch L - p,.

2.4 CHANGING THE BOREL SUBALGEBRA

We consider the behavior of highest weight modules when the Borel subalgebra is

changed. Take b, b’ adjacent Borel subalgebras and /3 an isotropic root such that

g?cb  gPcv.



20

Note that p(b) = p(b’) + 3. We see the following results.

Lemma 2.4.1 ( [Musl2, Lem. 8.6.1]). Suppose V' = i(g)vy, where vy is a highest
weight vector for b with weight X\. Let w = e_gvy. Then either w = 0 or w is a

highest weight vector of weight A — B for b'. Moreover, one of the following holds.
(a) (N, B) #0 and (g)w =V, or
(b) (N, 5) =0 and w generates a proper $(g)-submodule of V.

The following corollary follows immediately.

Corollary 2.4.2 ( [Musl2, Cor. 8.6.2]). Assume V is as in Lemma 2.4.1 and V is

simple. Then one of the following holds.
(a) (N, B) # 0 and V has highest weight \ — [3 with respect to b, or
(b) (A, 5) =0 and V' has highest weight X\ with respect to b'.

2.5 VERMA MODULE EMBEDDINGS

Here, we describe a sufficient condition for an embedding of Verma modules M (p) <
M (). In describing Verma module embeddings, we will frequently call upon the
following hypothesis. Here we assume we have a basis II of simple roots for g con-
taining at most one isotropic odd simple root, and we denote by W the subgroup of

W generated by the reflections oy, & € .
Hypothesis 2.5.1. The positive root  is in the W’ -orbit of a simple root.
It is also useful to define the following sets of weights. For A € h* denote

AN)o ={€e Dy : (A +p,£Y) e N*}
AN)1 = {€e ANAT - (A +p,£Y) e N4}

AX) = AA)o v A(M)y
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B(\) = { €Ay : (A +p,8) = 0}.
We are now able to supply a sufficient condition for a Verma module embedding.

Theorem 2.5.2 ( [Musl2, Thm. 9.3.3]). Assume Hypothesis 2.5.1, with ¢ € A(N).
Then M(o¢.X) < M(N).

2.6 SAPAVOLOV ELEMENTS

The following discussion will allow us to describe the highest weight vectors of a
Verma module of given highest weight. These results are analogous to results for Lie
algebras first studied in [gap72]; for a good exposition of the theory in the Lie algebra
case, see [HumoO8, Sec. 4.12].

We determine the conditions on a weight ( under which a gapavolov element
6 € $U(b™) exists such that fv, is a highest weight vector in M (\) of weight A — (.

For simple roots ¢, the element 6. is easy to describe.
Lemma 2.6.1 ( [Musl2, Lem. 9.2.1]).

(a) If C € Iy n AF and (A + p,¢¥) = m € NT, then e vy generales a submodule of

M(X) isomorphic to M(o¢.\).

(b) If ¢ € Ty n AT, (¢,€) # 0, and (A + p,¢¥) = 2m + 1 € N9 then e¥7 vy

generates a submodule of M(X) isomorphic to M(o¢.\).

(¢) If ¢ € Iy n AT is an isotropic root and (A + p,¢) = 0, then e_cvy generates a

proper submodule of M ().

For ease of exposition, we will assume our basis of simple roots has the following

property. This holds, in particular, for both Borels for osp(3,2).

Hypothesis 2.6.2. 11 is a basis of simple roots for g containing at most one isotropic

odd simple root.
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When this hypothesis holds, let 5 denote the unique simple isotropic root.
Lemma 2.6.3 ( [Mus12, Lem. 9.2.3]). If Hypothesis 2.6.2 holds, then:
(a) For all positive roots ¢ and w e W', we have rg(7y) = rg(wy).
(b) If ¢ is a positive isotropic root and  # 3, then ((,a”) > 0 for some « € ;.
(c) We have A} = W'B.

2.6.1 SApravoLOvV ELEMENTS FOR NONISOTROPIC ROOTS

Assume Hypothesis 2.5.1 with ¢ a positive nonisotropic root. If ( € A, we assume
that ( € Zar since otherwise we can consider instead the root (/2. Suppose one of the

following holds.
(a) v € Ay and m e N*.
(b) ve AF\A] and m e Nodd,

Let 7 € P(m() be the unique partition of m¢ such that 7°(&) = 0 for £ € AT™\II. The
result below is an analog of a result of éapavolov, [Sap??, Lem. 1], for semisimple Lie

algebras; see also [Hum08, Sec. 4.1.3].

Theorem 2.6.4 ( [Musl12, Thm. 9.2.6]). There exists an element 0, € $4(b~)~™¢

such that the following hold.
(a) For all £ € AT,

echem € U(g)(he + p(he) —m((,€)/2) + Ug)n™
(b) Orym = 2oncB(mn) €—ntn for some Hr € U(h), with Hro = 1.

Corollary 2.6.5 ( [Musl2, Cor. 9.2.7]). For each \ € h* such that (A + p,() =
m((,()/2, there is a nonzero map of Verma modules wy : M\ — m({) — M(N)

sending xvyx_me to 0., (N)vy for z e U(n™).
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While there are general formulas which may be used to compute the element 0, ,,,
in the case of 0sp(3,2), they may be readily computed via change of Borels, as we

shall do in chapters 3 to 5.

2.7 THE JANTZEN FILTRATION AND THE THE JANTZEN SUM FORMULA
Given a Verma module M (\), we consider a specific filtration, the Jantzen Filtration
M(X) 2 Mi(A) 2 My(A\) 2---

which has the following properties.

Lemma 2.7.1 ( [Musl2, Lem. 10.2.2]). For all A € h* and ne Q*:
(a) Mi(X) is the unique mazximal proper submodule of M(\).

(b) Each M, (\) is a U(g)-submodule of M(X).

(c) M,(\) =0 forn sufficiently large.

The construction of this filtration and many additional properties are described
in [Musl12, Sec. 10.2]. This is an analog of a result shown for the Lie algebra case
in [Jan79]. This filtration is related to the Verma submodules via the following

equation concerning characters.

Theorem 2.7.2 (The Jantzen Sum Formula, [Mus12, Thm. 10.3.1]). For all X € h*
dichM(A) = > chM(oy )+ Y 7,
>0 neA(N) neB(N)
Remark 2.7.3. In the case where all terms are characters of modules, in particular,
when e’\_"pn is the character of a module for each n € B(\), we can regard the Jantzen
sum formula instead as a sum in the Grothendieck group, by Theorem 2.3.5. We shall

see in chapter 5 that this holds for osp(3,2).
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2.8 THE CASIMIR ELEMENT

As in the Lie algebra case, we construct a central element €2 of 4(g) known as the
Casimir element. Assume xy,...,%, and yi, ..., y, are bases of g such that (z;,y;) =
0;; and x;,y; are homogeneous elements of g of the same degree d;. Fix = € g.

(c e {0,1}) and write

[2,2:] = Y awy, (2,0 = D by
j

J

Then computation shows that
Qi = —(—1)Cdlbk2

Now set Q = Y (—1)%x,y; € U(g).

The above computation allows us to readily show the following lemma.
Lemma 2.8.1 ( [Musl2, Lem. 8.5.1)). The Casimir element Q) is central in L(g).
The following lemmas will be helpful in determining whether a module is simple.

Lemma 2.8.2 ( [Musl2, Lem. 8.5.3]). Let Q2 denote the Casimir element of g. Then

Q acts on any g-module M as scalar multiplication by xA(2) = (A + 2p, A).

Lemma 2.8.3 ( [Mus12, Lem. 8.5.4]). Suppose p is a highest weight of M, a g-module

of generated by a highest weight vector of weight . Then
(A+2p,A) = (1 + 2p, ).
From Lemma 2.8.3 and easy computations, we can obtain the following.

Lemma 2.8.4. Suppose i is a highest weight vector in M, a g-module of highest
weight A. Write u = X\ — (; then 2(A + p, () = (¢, Q).



Proof. We compute

(A +2p,\) =
(A A) +2(p, >\)

2(>\+p,C) =

as desired.

(A

(A,

—(A

(¢,

A) =

Q) —
¢)

Q) =
(A

(A
,C) +

Q)+
(CaC)_

2(p, ¢)

25
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CHAPTER 3
VERMA MODULES OF TYPICAL WEIGHT

3.1 TERMINOLOGY AND NOTATION

Here, and for the remainder of the thesis, we make the assumption that g = osp(3, 2).
We begin by studying the structure of Verma modules of typical weight with respect
to all isotropic roots. We say that the module V' generated by a highest weight vector
is b-typical if it is generated by a vector vy of highest weight A with respect to b, where
(A + p,&) # 0 for any isotropic root £&. We also say that the weight A is b-typical.

The following lemma will be useful.
Lemma 3.1.1. A module V is bW -typical if and only if it is b -typical.

Proof. Let {i,j} = {1,2}. Suppose V is b-typical, say V is generated by v,@. Then
by Lemma 2.4.1, V is generated by e_g vy, of highest weight A@ — () = \0)
with respect to b@). A simple computation or Lemma 2.4.1 tells us that A\¢) 4+ pl@) =
AD 4+ p@ and so (AU + pl) €) 0 for any isotropic root €. Thus by definition, V is

bW)-typical. L

Lemma 3.1.1 tells us that we need not specify the Borel when considering whether
an 0sp(3,2)-module is typical, and therefore, we may unambiguously state that a
module M is typical without reference to the specific Borel. The following lemma

relates typical weights to their reflections.

Lemma 3.1.2. Fiz a Borel b. Then if X is b-typical, then o¢.\ is as well for any

non-isotropic root (.
Proof. By computation, o¢c. A + p = a¢(A + p), so

(o¢A+p,8) = (a¢(A+ p), €)
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= (A +p,00(6))  because o; preserves the inner product

#0 because o¢(£) is again an isotropic root. [

3.2 VERMA SUBMODULES

Let M = MM (AD) = M@ (A?) be a typical Verma module; then by Lemma 2.4.1,

A o) = 22 4 s Let

m ="+ p®ev)

n =D+ p0 5¥).

(Note that m £ n # 0, since otherwise (A® + p( e+ §) = 0 and M is atypical. These
cases are treated in chapters 4 and 5.)

Lemma 3.2.1 follows immediately from Theorem 2.5.2.
Lemma 3.2.1. V has the following Verma submodules.
(a) If m € N*, M(l)(as(i))\(l)) is a submodule of V.

(b) If n e Nodd, M(2)<06(é)/\(2)) is a submodule of V.

The following lemma follows after a little calculation.

Lemma 3.2.2.
(a) Us(i))\(l) +pM = Us(é))\m) + p?.
(b) ag(é)M?) +p? = o—g(i)w + pW,

Since these are typical, it follows that

MY (o, XV) = M@ (g, . A\@)
(i) )
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3.3 THE STRUCTURE OF M(\)

We are now ready to describe the structure of the Verma module
M = M(l)()\(l)) = M(Q)()\(Q))
where AV + pM) = X2 1 p2) - Again we write
AD £ oD ey =m  (AD 4+ p@ §v) = n,

First, we establish a sufficient (and also, we shall see, necessary) condition for M to

be simple.

Lemma 3.3.1. If m ¢ N* and n ¢ N°Y, then M is simple.

Proof. This follows from Theorem 2.7.2. In this case, with either Borel,

and so M, the unique maximal submodule, is the zero module. O

Next, we find two cases with composition series of length two. Let L denote
LOMNDY = L@ (X)) the unique simple submodules of these weights (which exist by

Lemma 2.2.1, and are equal by Corollary 2.4.2).

Lemma 3.3.2. If m e N* and n ¢ N°4 [et N = M(l)(as(i))\(l)) = M(Q)(as(é))\@)).

Then we have short exact sequence
0—>N'—>M-—L—0.
with N1, L simple.

Proof. First, N1 is simple by Lemma 3.3.1, so to prove the theorem, all that must be
shown is that M/N' is simple. To demonstrate this, we turn again to Theorem 2.7.2.

In this case A(A\) = {¢} and B(\) = &J. So the right hand side in Theorem 2.7.2 has
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unique term N!, and thus N!' = M, is the unique maximal submodule of M, that is,

N' is maximal, and so M/N' is simple. O

Lemma 3.3.3. Ifn € N°4 gnd m ¢ NT, let N? = M(l)(O'(;(i)/\(l)) = M(2)(05(é))\(2)).

Then we have short exact sequence
0—>N*—>M-—L—0.
with N%, L simple.

Proof. This follows a similar argument to Lemma 3.3.2. We know N? is simple by
Lemma 3.3.1, and the right hand side in Theorem 2.7.2 has unique term N2, since in
this case A(\) = {0} and B(\) = . Thus N? = M, the unique maximal submodule
of M, and so M/N? is simple. O

Finally, the most complicated case has composition series of length four.

Lemma 3.3.4. If m e N* and n e N°4 M has the structure seen in fig. 3.1, where

a node labeled by a weight indicates a submodule of that highest weight.

2@

Figure 3.1: The structure of M = M®AD) = M@ (AP) when (AD + p(® £v) e N* and
()\(z)p(z)7 5v) e Neodd
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Proof. In this case, the right-hand side in Theorem 2.7.2 has two terms, as A(\) =
{e,0} and B(\) = &. For the following argument, we treat the Jantzen Sum Formula
as an equality in the Grothendieck group (not problematic, as B(\) = ¢J, so each
term on the right hand side is the character of a Verma module), and let { denote

the addition in the Grothendieck group. Let

R'= MW (o, . A\V) = M@ (5. . \?@)
(i) 2)

R? = M (g5 . XY = M® (g5 . A,
Um ) U@ )

Then the right hand side of the Jantzen Sum Formula is R'ER?. But by Lemma 3.3.2,
R' = N'@E L, and by Lemma 3.3.3. R? = N2[@ L. So the right hand side becomes
N'E N?H2L. Thus either M; = N'EHN?HL and My = L or M; = N'EHN?>H2L
and My = 0.

1L o.05 . N9 = g50. . \O
{o) )

Figure 3.2: To show that the structure of M is that shown in fig. 3.1, we must eliminate this
possibility.

To eliminate the second possibility, seen in fig. 3.2, we consider the weight

D = .05 . AV = g50. . AP,
K € 5(2) 3 a(z)
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If the structure in fig. 3.2 is correct, then L is a composition factor of the quotient
M /R!. This requires the existance of a singular vector u of weight u™) in M\R' such
that u is highest weight mod R, that is, such that U(b)u = R'.

It is easy to compute that @ = \O —me —nd. If n > 1, u» has multiplicity 4
in M, with M u® having basis

e se vy, e_e_sey em Ty,
eeses €My, e_csec_sel5Tem vy
where vy is a vector of highest weight A with respect to 6. If n = 1, the weight

has multiplicity 3 in M, with M n® having basis

el se™ vy, 5€n51€m Lo,
ee_se"s ey,

In either case, by eliminating basis elements which are clearly contained in R' (gen-

erated by €™ v, ), we see that if the required singular vector exists we may take

U=€_._ 56”516m Lox.

To prove that no such singular vector exists, it suffices to show that e.u ¢ R!.

Noting that n € N°44 we note first that

[ec ¢3! = [ea,e("%l)/z] 0.

Then, computing, we obtain

lec, e . 56”51€m l]v)\ = ([ec, e_c 5]6”5167" +e_._ 5[65,6n516m 1]) N

(
= (e"se™ "+ e_cs ([e €75 €™ + €5 e, €M)
(e%eTE_l +e_o s (O + e e, eTE_l])) 0\

(

eﬁdem_l + 2(2)6_5 5671516’" 2) Uy,

which is clearly not an element of {((n~)"))e™ vy = R'. Thus the required singular

vector does not exist, and L is not a composition factor of M/R'. This rules out the



structure in fig. 3.2, leaving the structure in fig. 3.1 the only possibility.

32
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CHAPTER 4
VERMA MODULES OF ATYPICAL WEIGHT: TYPE 1

Next we consider weights A orthogonal to a simple isotropic root 3. Note that since
BN = —p® X is orthogonal to 41 if and only if it is orthogonal to 5®).

Again letting (A + p®,&¥) = m® and (A + p@,5%) = n® (i = 1,2), we see that
in this case m(¥ = —p®_ In particular, this means that if m® e N* then n® ¢ Nedd,
and conversely, if n(® e N°dd then m® ¢ N*.

Note that we do not introduce the notation A® in this case. Since \ is orthogonal
to 3, Lemma 2.4.1 tells us that if M®()\) is a Verma module generated by highest
weight vector vy, then e_gv, generates a proper submodule of M @(X\). We examine
this submodule in the first section.

It is convenient to note that if (A + p@, ) = 0, then X is a scalar multiple of

1

B39 since pt¥) = —iﬁ(i). In particular, we can write A = C(¢ — §) for a constant C.

4.1 A PARABOLIC SUBALGEBRA
Partition A into
A" = (—g,—=2§,—0,— —0), AP = (g,20,e —d,e +0,0,— +0),

and define

t=P g, p=He P ¢

a€eA® aeAP

(so g =t@p). Note that v < n~ for either choice of Borel, and that ty = ny. Then

the following lemmas hold.

Lemma 4.1.1. For X = C(e—9), let M()\) = Ind}V}\, where Vy is as in Lemma 2.1.1.

Then we have a short exact sequence

0= M\ — ) > M(\) > M(\) — 0
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where V¢ is as in Lemma 2.1.1.

Proof. We first establish the maps ¢+ and 7w. Let vy be a highest weight vector in
M(X), wy_g, wy highest weight vectors in M(\ — 3), M()), respectively. By the
universality of Verma modules, there exists a unique surjection 7 : vy — w,. Further,
since [ is atypical, by Lemma 2.4.1 ¢ : wy_g — e_gv) maps M (X — f3) into the proper

submodule of M(\) generated by e_gv,. Finally, noting that
m(e_pvy) = e_gm(vy) = e_gwy = 0,

where the last equality holds because — 3 € AP, we see that kerw < im¢.

Now the sequence is exact by comparing characters. Note from Remark 2.3.2 that

A1+ e )1+ e=79)
(191 -e9)

ch M(\) =

and from the discussion in section 2.3.1 that

A1+ €79
(I—e=)(1—e?)
A1+ e=79)
e

ch Indg V,\ =

ch IndgV)\,g =
and so it is easy to see that ch M(A) = chInd}Vy_g + ch IndyVi. O

Note: If \ is orthogonal to 3, then A— 3 is as well. So by studying M (\) = IndJVy,
where A = A\ (e +6), we also discover the structure of M(\— 3). To study the action

of 4(g) (and thus of g) on M()\), we construct a map
¢ : U(g) = My(As)

and describe an action of My(Ay) on M()). To show that such a function ¢ exists,

we first consider M()) as a free module.
Lemma 4.1.2. M()\) = U(v)vy is a free U(rg)-module.

Proof. By the PBW theorem. Take a basis for v by letting s = e_o5, t = €_., a = e_y,
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b=e_._s5. The PBW theorem implies that we can write
ﬂ(t) = L[('Co) &) abﬂ(t()) &) aﬂ(to) &) bﬂ(to),
where $l(tg) = U(ny ) has basis {s't’|i, j € N}. O

Note that, since s = e_gs and t = e_. commute, as vector spaces H(ty) = Cls, ] a

polynomial ring. So

P -

i=1
where A = C[s, t] a polynomial ring, and {z;} = {1,ab, a,b}. Recalling that M () is

a left 4((g)-module, we define a map
¢ : 1U(g) — My(End cA)
such that, for u € i(g), p € A,

uz;puy = Z zj (p(u)ji(a)) .

=1

Calculations show that the image of ¢ is contained in My(D(A)) = My(Ay), where
D(A) denotes the differential operators on A and A, denotes the second Weyl algebra
Cls, t, 0s, O]

Lemma 4.1.2 shows that the action of g on M (\) provides a mapping of g into
Endys 484(t); computation shows that the image of this map is asubring of the matrix
ring My(As), where Ay denotes the second Weyl algebra ks, t, 0, 0;].

To compute the map, we fix a basis for g and compute the action of each basis
element. This induces a map g — My(As), and by the universality of $(g), a map
U(g) — My(As).

4.1.1 ExpriciT COMPUTATION OF THE MAP ¢

Take a basis for g with e, € g* for each a € A. Using the basis on page 11, basic

elements have images as follows.



First, images of elements of vy are easy to compute.

§=€_925 —

a = e_§+—
1 0

—6t S

t
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Next, an induction result proved in [Hum78, Sec 21.1] allows us to compute the

action of b° on $4(vg)vy. Extending to M(\) we obtain the following.

[ ¢ 1,
C—top—1
he —
C —to,
C—top—1
[ (C - Lta,)o, s
(C—-1- %t@t)at
€. —
(C = Ltan)a, 1
| (C—1— 3to,)o;
[ —C — 280,
—C — 280, — 2
hs —
—C —2s0, — 1
| —C —2s0, — 1
[ (—C - s0,)0, t
(—C — 2 — 50,)0,
€25 —
(—C — 1 — 50,)0,
| (—C — 1 - 50,)0s
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The remaining basis elements are computed as commutators of these.

—C - 865 + t&t t

—0s0¢ —0s
es = less, e—s] —
—0s —t
| 656t —C + té\t - s@s
| —t 0
ds 0
€45 = [6—67 66] =
0 0
—0s —t
—s0; —2s
-152 -@
t t
€e—5 = [657 6—5] — -
—(9t 2s
| %6}2 —s&t

(C + 505 — 5t0,)0  2C + t0, — 2505

(’/)s af 2 (’/)s at

€€+5 = [667 65] —
656,5 2C -1 + té’t - 2565

—10,0.>  (C + 50, — 3t0,)0,

4.2 HIGHEST WEIGHT VECTORS FOR M ()
4.2.1 PREDICTED HIGHEST WEIGHTS
4.2.1.1 NONISOTROPIC SIMPLE ROOTS
When
A+ pM V) =mM =20 +1eN*
(that is, when C' € iN), by Theorem 2.5.2 we have a Verma module embedding

M(l)(as(i))\) — MD(N)

where, by Lemma 2.6.1,

Vg, x> 2N (4.2.1)
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Similarly, when
A+ p@,6v) =n® = —2C + 1 e NoUd
(that is, when C'€ —N), we have a Verma module embedding

M(2)(05(é))\) — M3 (N

with

—2C+1

e
Ugs . A > €5 Uy = €_g5€_gUy. (4.2.2)

(2)
However, we find that these highest weight vectors lie in M()), rather than M(\ —

B, since M (X — ™) is of highest weight A — 3%, and
oo ANEA=BD o5 AL AP,
0 £A-0 5 LA-p

4.2.1.2 NONISOTROPIC NON-SIMPLE ROOTS

We expect to see a submodule of highest weight aa(é))\ when
A+ p@,ev) =m® =20 — 1 e N*,
and similarly a submodule of highest weight 0'5@))\ when
A+ pW 6v) =n® = 20 — 1 e N°,

(Since Hypothesis 2.5.1 is not satisfied, these need not be Verma submodules.) How-

ever,

oo A< A=B% g5 A< A=W,
(2) (1)

In fact, we will see that the vectors of these highest weights lie in M (A—3®). However,
in these cases, we can find another highest weight of M ().
To see this, we first note that in M (\), vy is highest weight for both Borels (since

6™ U b < p), and we change Borels, per Lemma 2.4.1.
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Beginning with the highest weight vector obtained above for b® and changing

Borels, we obtain as a highest weight vector for b(Y), of weight O'g(é)<>\) + pW:

-C -C
6,5@)6_256_5UA ::650)6_256—6UA

—0-1
oae g5 (e_ce_gs + Ce_se_o_g5)vy

—-C-1
= e 95 (e—ce 25 —e_se o shs)un

when C' < —1, with the last equality holding because hsvy = —Cvy. When C' = 0,

(A4 pM,ev) = 1 € N*, and the highest weight vector obtained in this computation

is e_.yse_svroce_.vy, the highest weight vector obtained directly in eq. (4.2.1).
Similarly, beginning with the highest weight vector for b®") and changing Borels,

we obtain as a highest weight vector for b, of weight og(i)()\) + B2

2C+1 2C+1
e,ﬁ(l)e_e U,\Z@ﬁ(z)e_a Ux

e’ e, + (2C + De_ce_s — C(2C + 1)e_._s)vx

€

2C-1

=22 te_.e_s+2e_e_sh. —e_._sh. —2e_._sh*)vy

when C' > . When C = 0, (A + p®,§v) = 1 € N°4_ and the highest weight vector

1
5.
obtained in this computation is e._se_.vyoce_svy, again, the same as obtained directly
in eq. (4.2.2).

Finally, we rewrite the weights in terms of the dot action for the appropriate Borel,
noting that p® = pl@) + gU) ({i, j} = {1,2}), and so for ¢ € {¢, §},
UC(%)()‘) + AW = oc(A+ p(i)) —p@ + gl)

— o (A + P + gy — p@

=oc . (A +BY).
()

Thus, the weights above are 0(5(1)()\ + BW) and Ug(é)()\ + 8@).
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4.2.2 EXxpPLICIT COMPUTATION VIA MATRICES

To confirm that those found above are truly highest weights in M (), and there are no
further highest weights, we compute directly from the matrices found in section 4.1.1.

First, note that any highest weight vector must be contained in a single weight
space, and therefore (in terms of the basis given earlier) must be of the following

forms:

(st + ks " ab)uy € M(N)°, weight A — ic — 250 (4.2.3)
(s'ta + ks't? " 'b)vy € M(N)!, weight A\ — ie — (25 + 1)4. (4.2.4)
Representing these vectors as column vectors in the free module M ()), with basis

ordered as in Lemma 4.1.2, we use matrix multiplication to identify all highest weight

vectors. Further, we will introduce the following notation:

|

The matrices in section 4.1.1 are block-diagonal or block-antidiagonal, and act on

* % OO

S H G

M()) in a straight forward manner. Elements of go map M()), to itself as multipli-
cation by the upper left block, M()); to itself as multiplication by the lower right
block. Similarly, elements of g; map M(\)g to M()); as multiplication by the lower
left block, M(\); to M()\)g as multiplication by the upper right block. In order to
simplify the computations to come, we introduce the following notation: for an ele-
ment x of go U g1, write 2¢ for the block of the matrix image of z that acts on M (\);

(1 =0,1). Thus, if z € gy,

and if z € gy,
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Consider first the action of gy, with positive roots {e,20}. The elements e., ea5 will
kill any highest weight vector for either Borel. For elements of M(\)g, as expressed

in eq. (4.2.3), multiplication by these two elements gives us

0 _
0 = (C — Lta)o0 + [ . ° ]

—0,
0 st (Cj—3i(j—1)—n)s'ti™?
€. . . = . .
ns 1 [ [ (nOG = 1) = 40l = 1) —2) + 0l = D)sH? ]
0 ¢
€95 = (—C — 805)0s1 + 0 o5 ]

0 st (—Ci—i(i—1) +n)s" 1t/
€ ) ) = . ) .
P onsw || (<O 1) (i = 1)(i - 2) = 2n(i — )52 |
Setting these equal to zero yields the following system of equations

0=Cj—1j(—1)—n
0=n(j—1)(C -3~ +1)
0=—Ci—i(i—1)+n

0=n(i—1)(=C — (i —2) — 2)

which has solutions as shown in table 4.1. Since es lies in both Borels, and has
relatively simple matrix image, it is a convenient element of g; to check first. (Note
that it suffices to check elements of simple root spaces, so es need only be checked
for b®, but since e; € b(!) also, any vector that fails to be killed by es is not highest
weight for either Borel.)

.| e —t
65 ==
(95(715 —C + tﬁt - Sas

0 s't) [ (=i —mn)s" 1
& . . = . .
"lase ] GG = Ont (i — 1) —nli — )5 |
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n i ¥ 1,7€N Notes
1 0 0 0  alC —
2) 0 -C+1 0 Ce-Nuf{l} Notkilled by e;
3) 0 0 2C+1 Ce3N
4 0 —-C+1 20+1 C=1 same as (3)
() C 1 1 all C' Not killed by es
6) ¢ -C 1 Ce—-N
(7) C 1 2C¢  allC Not killed by e
8 Cc -C 2 C=0 same as (1)

Table 4.1: Parameters for Highest Weight Vectors in M (\)°

Setting this vector equal to zero gives the equations

0=—-1—n

0=ij—Cn+n(j—1) —n(i—1)

which are satisfied only by (3) and (6). To decide for which Borels, if any, the vectors
in (3) and (6) are highest weight, having already found that both are killed by e. and
es, we must check whether they are killed by e._s or e_.,s. These correspond to the

highest weight vectors

_t20+1
2ty = (4.2.5)
- 0 0
[ st
(e=55e—c + Ce=C e se o s)uy = Caot| (4.2.6)
- S 0

These are both highest weight with Borel b():
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n 1 ¥ 1,7 € N Notes
1) 0 0 0 alC  =u
2) 0 -C 0 Ce-N
3) 0 0 2C+1 CeiN Not killed by e
4 0 —-C 2041 C=0 sameas (5)
(5) —C 0 I allC  Not killed by es
6) —-C -C 1 C' e —N Not killed by es
(7) —-C 0 20 alC
8 —-C —-C 20 C=0 sameas(1)

Table 4.2: Parameters for Highest Weight Vectors in M (\)*

but neither is highest weight with Borel b(®):

0 _—ﬁt 2s
66—(5 = 1 2
_56,5 —883
o tZC-‘rl_ [ _(20 4 1)t2C
68—(5 - 7é O
0 | [ieo+neoeet|
0 sCt ] B [ _s=C 1+ 205C 0
“iloser| T 0 i
do L 1

We next perform the same calculations on elements of M(\); as expressed in
eq. (4.2.4). Checking go first,
el = (C =160 + [8 _161
Cj—%j(G—1) +n)sti!
n(CG-1) =G -1)G—2)— (- 1>>sit“]1
g5 = (—C — 1 — 50,)0,1

(—Ci—i—i(i —1))sis ] |
n(—Ci—i—i(i —1))s 17! ,

This gives the system of equations

0=i(—C—1—(i—1))



0=Cj—Li(j—1)+n

0=n(j—-1)(C-5(-2)-1)

with solutions as shown in table 4.2.

Again, we check es next.

1
€s o
[nsltj -1

o =so,+to, ¢
65:
—0,0, s

st

[(—~C =i+ j +n)sitd ]
L (== ni)st1gi -1
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-0

which fails to kill all but (2) and (7). So we have two possible highest weight vectors,

2C

c s
el 0sC_sUx =
0
L 1
[ tQC
201
(eXle_s — Ce= " le_._5)v\ = o201

(4.2.7)

(4.2.8)

1

Checking with remaining primitive root vectors, we see that neither of these is highest

weight with b®):

. [~ 0
6—5+6 = P 0
1 _S_C_ B [ —s %t 0
el g | T | —oso 7
L d1 L 0
[ —C] [ 2041
61—5+6 ’ = ! ] 7&0
L 0 d1 L 0

but both are highest weight with b():

—s@t

oA —2s
e—0 _%atQ —6t

]
el °
5
€ O |
2c |
el !
e=9d 201

I
o

—20'st26—1 4+ 2051261

[—;(20)(20 — )22+ C(2C -

20 -2
1)e2 |
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The argument above shows the following:

Lemma 4.2.1. Highest weight vectors of M()\) are as follows.

(a) With bW, if C € IN, then e € A(\) and € is simple. In this case, M()\) contains
a unique highest weight vector

2C+1
—€

of weight ag(i)A.

(b) With 60, if C € —N,C # 0, then 6 € A(\) and § is non-simple. In this case,

M () contains a unique highest weight vector

(e=Se_e + CeSste_se_._s)uy
of weight ag(i)()\ + W),
(c) With b if C € —N, then d € A()\) and 6 is simple. In this case, M(\) contains
a unique highest weight vector
6:%675%\

of weight os . \.
f g 5(2)

(d) With 82, if C e %N,C’ # 0, then ¢ € A(\) and ¢ is non-simple. In this case,

M () contains a unique highest weight vector

(e*e_s — Ce*Te_._5)uy

—e =

of weight ag(é)(/\ + @),

(e) In all other cases, M(\) contains no highest weight vector except vy.
Proof. Tt remains only to determine the weights of the highest weight vectors found
above. This may be done directly by examining the weights of the given vectors, or

by noting the computations in section 4.2.1, above. O]
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4.3 DECOMPOSITION OF M ())

We are now in the position to fully describe the structure of M()) in all cases.

Theorem 4.3.1. If C € Z U 3N, M(\) has a unique simple submodule with highest
weight as given in Lemma 4.2.1 and simple quotient. In all other cases, M()) is

simple.

Proof. In light of Lemma 4.2.1, we need only show that, when M () has a highest
weight submodule, the quotient is simple, as the remaining results follow from the
fact that every submodule must contain a highest weight vector. Call the highest
weight p, N, = $(g)v,, and write L = M(X\)/N,. We call on Lemma 2.8.4 to show
that L contains no highest weight vector, and is thus simple.

Potential highest weights of L are of the form A —(, where ( = Ae + By, A, Be N
(since A, = {—¢, —e — 0, —J, —26}). Recall that in the current case A = C'(e —§), and
depending on choice of Borel, p = +1(e — §); so 2(A — p) = (2C + 1)(¢ — 6). Thus, if

A — ( is a highest weight in L, we must have

2(A +p,¢) = (¢, €)
(2C +1)(e — 6, Ae + B6) = (Ae + B6, Ae + BJ)
(2C + 1)(A+ B) = A% — B2,

Note that ¢ = 0 is uninteresting, and A, B are nonnegative, so A + B # 0, and

thus ¢ must satisfy
2C+1=A-B. (4.3.1)

We now pass to cases, and show that in each case from Lemma 4.2.1, all possible

solutions are contained in N,,.

(a) b=0bW, CeiN, p=X—(2C + 1)e. In this case and the next, p = (¢ — 9), so

eq. (4.3.1) becomes

20+1=A-B.
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Note that with C' € %N, 2C'+1 is a positive integer. Nonnegative integer solutions

to this equation are of the form
A=B+20+1
so potential highest weights are of the form
A—(2C+1+ B)e—Bé=pu— Ble+9).
But these are of lower weight than p and so contained in N,,.

b=0bM, Ce—-N,C< -1, u=\—e+2CH. In this case, 2C + 1 is a negative

integer, so nonnegative integer solutions are of the form
B=A-2C-1
and so potential highest weights are of the form
A—Ae—(A-2C—-1)0=p—(A—-1)(e+9).

If A > 0, these are lower weights than p and so contained in N,,.

If A =0, we have a potential highest weight 1 4+ ¢ + d. The weight space is one-

Cc-1
€

dimensional, with basis vector v = e_Y ""e_.,sv). But multiplying this vector by
e_c1s gives a vector of weight p + 29, which is a higher weight than p and thus
not in N,. Thus the image of v in L is not killed by e_.,s, so 4+ € + d is not a

highest weight either.

b =0 Ce-N C< —1, p =X~ (=20 +1)5. In this case and the next,

p=—1(c—0), s0eq. (4.3.1) becomes

2C-1=A-B.

In this case, 2C' — 1 is a negative integer, so nonnegative integer solutions are of
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the form
B=A-2C+1
and so potential highest weights are of the form
AN—Ae—(A-2C+1)6 = p— A(e +9).
These are lower weights than ;o and so are contained in N,.

(d) b=0b? Ce %N, C >0, u=A—2Ce—4. In this case 2—C — 1 is a nonnegative

integer, so nonnegative integer solutions are of the form
A=B+20-1
and so potential highest weights are of the form
A= (B+2C —-1)e—Bd=p—(B—1)(e+9).

When B > 0, these are lower weights than p and thus contained in N,,.

When B = 0, we have potential highest weight p + ¢ + d. Multiplying a vector of
this weight by e._s gives a vector of weight i + 2¢, which is a higher weight than

i, and so not in N,,. Thus the image of this vector is not highest weight in L.

So in all cases where M()) is not simple, the quotient L has no highest weight

other than A and is thus simple. O]

Thus (recalling, Lemma 2.2.1, that a simple highest weight module is uniquely

determined by its highest weight), M () decomposes as follows.
Ifb =00 (A+pM ev)eNtor b=b® (A+p? §v)e Nodd

0= L(oa)) — TI(A) — L(\) — 0.
Ifb=bM (A4 pM,6v)e N or b =b®@, (A + p? V) e N*,

0 = L(0arp-(A + B)) > M(A) — L(A) — 0.
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4.4 HIGHEST WEIGHT VECTORS FROM M ())

We now return from M () to consider the structure of M()). Recall (Lemma 4.1.1)

that M (\) has short exact sequence
0— M(\—f)— M(\) — M(\) — 0.

Thus M (X — ) embeds in M()), so highest weight vectors in M (X — ) continue to
be highest weight in M ()). On the other hand, M () is a quotient; so highest weight
vectors in M (\) need only be highest weight in M ()\) modulo M (A— j); in particular,
they need only be highest weight modulo e_zl(g). In the discussion to follow, special
attention is paid to these vectors. The associated submodules will not in general be

highest weight modules.
4.5 CASES WHERE M (\) HAS LENGTH 3

When A = —p, M () is uniserial of length 3.
When A = —p) = —1(z —§), b = b, note that A — B = 1(e —§). Thus, by
Theorem 4.3.1, M () is simple, but M (X — () has length 2, with a unique simple

submodule of highest weight

ag(i)()\ — My =X — W —2¢

generated by the highest weight vector e? _e_zmvy. Thus M®(—pM)) has a unique

Z.e
composition series

0c L(ae(i))\) = M\ —BY)c MO,

This is unique because each term in the series is its successor’s unique maximal

submodule.

When A = —p@ = L(z = §), b = b®, note that A — 8® = —1(c — ). Thus, by

1
2
)

Theorem 4.3.1, M(—p® — ) is simple, but M () has length 2, with unique simple
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submodule of highest weight
%®u+5®):A+ﬂ”—%

generated by the highest weight vector w = (e_.e_s — %e_s_(;)v,\. (Note that w is
a singular vector in M@ (\).) Let N be the submodule of M@ (\) generated by w.

Thus M@ (—p®?) has unique composition series
0 M\—pBP)c Nc MP(N).

This series is unique because N contains no highest weight vector other than A — 5,
and thus unique submodule is M (A\—73 (2)); N is in turn the unique maximal submodule

of M@ ()).
4.6 CASES WHERE M (A) HAS LENGTH 4

When C € iNU -Nand A+p # 0, C+1€ INU —N, so M(XA — ) has length 2

precisely when M ()) does. So in these cases, M (\) has length 4.
4.6.1 SIMPLE ROOT CASE

These are the cases appearing in parts (a) and (c) of Lemma 4.2.1, where b = b
and (A + p,e¥) e NT or b = b® and (A + p,d") e Nodd,

In these cases, we see the submodule lattice shown in fig. 4.1, where a node labeled
by a weight represents a composition factor of that highest weight.

When b = b)) (and C € 1N) the highest weight vectors are

Ux

Ux—B = €2—5Ux

Vg 5 = 2CH1

.- —¢ Ux

2C+3
Voo .(\pe—s) = €27 "€o_gUy.
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Figure 4.1: Submodule lattice when (A + p,8) = 0 and (A + p,a") is integral.

When b = b® (and C € —N) the highest weight vectors are

UX
U —p = €—c4+5UN
e
Ugs. X = €_95€_5U)

—C+1
Vos.(A—e+8) = €_o5 €—6€_c45U-
4.6.2 NON-SIMPLE RoOOT CASE

These are the cases (b) and (d) of Lemma 4.2.1, where b = b®) and (A+p(V), §) e Nodd
or b = b and (A +p®,e¥) e N*. In these cases, we see the submodule lattice shown
in fig. 4.2, where a node labeled by a weight represents a composition factor of that
highest weight.

The module on the right, labeled /V in the diagram, is not a highest weight module.
It is the preimage under the projection 7 : M(\) — M()) described in Lemma 4.1.1
of the submodule of M()) described in Lemma 4.2.1 part (b) or (d).

When b = b (and C € —N, C < 1) the highest weight vectors are

U\



Oa+5.()\ + B)

Figure 4.2: Submodule lattice when (A + p, 8) = 0 and (A + p, (a + 8)V) is integral.

Un—p = €U

Vgs.\ = (=S te. + (C + 1)e=Ss%e_se_o_s)ee_svy

and the singular vector which generates the module N is

Vos.(n+8) = (€556 + Ce"55 e se_c_s)ua.
When b = b® (and C e sN,C = 1) the highest weight vectors are
Ux

Ux—B = €_e45UA

Voe X = (62—6;_26—5 —(C - 1)62—08_36—5—5)6—a+5w

and the singular vector which generates the module N is

2C 2C—-1
Voe.(A+8) = (6756—5 - 06—5 6—6—5)1))\‘

4.7 CASES WHERE M (\) HAS LENGTH 2

52

For all A = C'(e — ), M () has length at least 2, per Lemma 4.1.1. When both M ())

and M (X — f3) are simple, this is a complete decomposition, and M ()) has length 2.
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This occurs in all cases except those discussed above.
4.8 COMPOSITION FACTORS OF M(\)

This section summarizes the structure seen above. From section 4.5, we see Corollar-

ies 4.8.1 and 4.8.2.

Corollary 4.8.1. If A+ pM = 0, MW (X) has composition factors of highest weights
(@) A (¢) . (A= 50

(b) A\—BW, and

Corollary 4.8.2. If A+ p® =0, M®)()\) has composition factors of highest weights

(a) A, (c) aa(é)()w—ﬂ@)) = ag(é))\— (e +9).
(b) X — P, and

All composition factors are of multiplicity 1.

From section 4.6.1 we see Corollaries 4.8.3 and 4.8.4, and from section 4.6.2 we

see Corollaries 4.8.5 and 4.8.6.

Corollary 4.8.3. If A\ = C(c—90), C € AN, MW (X) has composition factors of highest
2

weight
(a) A, (c) Ug(i))\, and
(b) A= BW, (@) 0. (A= 80).

Corollary 4.8.4. If A\ = C(c — 6), C € =N, M@ (X) has composition factors of

highest weight

(a) )‘7 (C) Ug(é))\, and
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Corollary 4.8.5. If A = C(c—0), C e =N, C < —1, MM ()) has composition factors

of highest weight

(a) M, (c) 7 )()\ + BW) = ag(i))\ —(e+9), and

1
(b) X— W, (d) O'(j(i))\.

Corollary 4.8.6. If A = C(c —4), C € 3N, C =1, M®(X) has composition factors

of highest weight

(a) N, (c) as(é)()\ + %) = ae(é))\ — (e +9), and

(b) \— 3@, (d) ag(é))\.
Finally, section 4.7 shows Corollary 4.8.7.

Corollary 4.8.7. If A =C(e—§), C ¢ %N U —N, M@(X) has composition factors of

highest weight

(a) A\, and (b) X — B,
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CHAPTER 5
VERMA MODULES OF ATYPICAL WEIGHT: TYPE 2

In this chapter, we consider weights orthogonal to v = ¢ + 6, so A + p( = T(e+9).

This notation is chosen for the coefficient because we will frequently use
A+ 9D )= A+ pD,6Y) =m.
Note that in this case X is 3¥-typical, and so if we write
AD ) =A@ 4 y@ Zmie ),
then by Lemma 2.4.1, MW (\D) = M@ (X?)), When this is the case, write
M = M(l)(/\(l)) = M(2)()\(2)).

In the remainder of the section, we will denote by L®(¢) the simple module of

highest weight ¢ with respect to b®.
5.1 HIGHEST WEIGHT X\ — ~

Throughout this section, we suppose m € N and m > 3. In this case, there are
elements 99 of the weight space $(n=®)” such that, if vyu), w,@ are highest weight
vectors of M with respect to b)), 6(?) respectively, 99)7})\(1) , 052)1,0 \(» are highest weight
vectors of M with respect to b, b® of weight A1) — v, A — ~ respectively. We

show that these elements exist by computing them, specifically,

1
oL

(?)6—5—6 - (T) €_eC_5 + 62_565—6

0 = (e-as = (P)esee = (D)t crs

These elements are known as Sapovalov elements.

This easily shows the following lemma.

Lemma 5.1.1. If (A®D + p) ~) =0, then AV — ~ is a highest weight of M®(\®).
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We next consider the submodule of highest weight \®) — ~ generated by 99)2})\(1),

8,()/2) Wy(2)-

Lemma 5.1.2. Let vya) be an element of M of highest weight XV with respect to

b, Let wye be an element of M of highest weight X2 with respect to b®),
(a) ()0 vy = U(g)0P wye as submodules of M.
(b) This submodule (hereafter My_. ) is a proper submodule of M.

Proof. First, note that, since X is typical with respect to 8, 53, by Lemma 2.4.1,
wk(z)OCe_ﬂu)U)\u) and U)\(l)OCe_ﬁ(z)w)\u).

Now, since A\ — v is a typical weight, showing part (a) amounts to showing that

9,&1)1})\(1) € M(g)t‘)g)w,\@) (5.1.1)
and
9,&2)10)&2) S Ll(g)ﬁgl)v,\(l). (5.1.2)

First, to show eq. (5.1.1), suppose without loss of generality that wye= = e_z0 vy .

Then computation shows that

1 2 2
9§ )UA(1>OC€—5+5‘9§ )65—67})\(1) = €—a+59§ )w)\(2)

which shows the desired inclusion.
Next, to show eq. (5.1.2), suppose, again without loss of generality, that vya) =

€_g@) U\ - Another computation shows that
ng)ww) 0665_599)6—&571&(2) = 65_599%(1)

which shows the other inclusion.
Part (b) follows easily from the fact that M,_, is generated by a highest weight

vector of weight less than A for each Borel. O]
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5.2 CASES WHERE M HAS LENGTH 8

We see the most complex structure, length 8, when m € N°44 1 > 1. In this section,
we determine the composition factors of M by considering the quotients of M by
its Verma submodules, and then comparing the two quotients; see Theorems 5.2.6

and 5.2.11, which combine to show Theorem 5.2.12.
5.2.1 VERMA SUBMODULES

Lemma 5.2.1. M has the following Verma submodules:
(a) N':= M(l)(crg(i))\(l)), generated by e™ vy, and
(b) N? := M(z)(O};(é))\@)), generated by e™sv,.

Proof. Noting that with b("), the root ¢ is simple and Hypothesis 2.5.1 holds, (a)

follows by Theorem 2.5.2. The same argument with b® and & shows part (b). O

Computation shows that

My = m(_ _ ) _m=l/.
0., M) = B2 +0) (e~ 9)

75,5, (\¥) = (e =) = oY = 271~ ),

so the composition factors of N' and N? are given by Corollary 4.8.5 and Corol-

lary 4.8.6, respectively.

5.2.2 THE QUOTIENT M /N'!

Lemma 5.2.2. M = MW(\WD) has highest weight vectors of the following weights:
a) o. . AW, d) o5 . ANV — B0 = g5 (A 4 ),
(a) " (d) 5y g 5(1)( 7)

b) o, . AV — ), (1)

(b) @ g (e) Ug(i))\ , and

1)
(c) 0‘505(1))\ ’ (f) AV —7.
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Proof. (a) — (c) follow from Lemma 5.2.1 and the discussion in section 4.6.2. To see (d)
and (e), note from the discussion in section 4.6.2 that the 3("-atypical weights Ug(é))\(2)
and Jg(é)A(Q) — B are highest weights of M) (ag(é))\@)), which is a submodule of M
by Lemma 5.2.1. By Lemma 2.4.1, these are also highest weights of M. Computation

shows that

o5 . A? — 3 = g5 AW 05 . AP =g5 ANV 0 =55 (A 4 4),
53 g 5i) 53 5 g 5(1)( 7)

which are the weights given in (d) and (e). Finally, (f) follows from Lemma 5.1.1. [
Next, we turn our attention to the quotient
Q'= M/N".

To describe the structure of Q! we turn again to a parabolic subalgebra. Partition A

as
AV ={—e,—+0,0,20,e +,¢} A™ ={e —0,-0,—25, — — J},
and define

=hoDg" m=Dg m =Pg”
neAa neAm neAm
(so g = q@®m). Let [ = q be the copy of s0(3) generated by {e., h.}, and let L be the
finite-dimensional simple [-module of dimension m. (Note that while s0(3) =~ sl(2),
the basis for | resembles a canonical basis for s0(3), rather than a canonical basis

for s[(2). In particular, [he,e.] = e, not 2e. as one would expect with a canonical

s[(2) basis. This affects the character of L, computed later in this section.) Extend

m—+1

5> and

the action on L to q by letting hs act on L as multiplication by A (hs) =

allowing m~ to act trivially.

Lemma 5.2.3. Q' = Ind}L
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Proof. We prove this by comparing characters. By Remark 2.3.2,

e)‘(l)(l + 6—(5+6))(1 + 6—(—e+6))
(1—e=)(1—¢€9)
6()\(1)—m6)<1 + 6—(€+6)>(1 + 6—(—€+6)>
(1—e=)(1—€9)

ch M =

ch Nt =

and so, Remark 2.3.4,

AW (ZZ:ol 6—ke> (1+ 67(e+6))(1 + 6*(*5+6))

ch@Q'=chM —chN' = =
—€

On the other hand, so(3) theory, together with the action of hs on L, tells us that

(m—1)/2
ch L = 6((m-i—l)/2)(5 Z G_kE
/2

k=—(m—1)

(1) : —

1

6)\ 2 € ke
k=0

and so, following the discussion in section 2.3.1,

AW (Z?:Bl Efks) (1+ e*(“‘”)(l + E*(*Eﬂi))

chIndfL = ) )

Thus, chInd}L = ch Q".
Next, we establish a surjection Q' —» IndﬁL. Noting the construction of Q' gives

the short exact sequence
0> N - M-Q"—0.

Thus it suffices to construct a surjection ¢ : M — IndﬂL such that
N' = $l(g)e™ vy S ker ).

But IndﬁL is a highest weight module generated by a vector w, of highest weight \;

let ¢ be the surjection

¢ M — IndgL

Uy > W)
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which exists uniquely by the universality of M. To show N! < ker, we need only

show that ¥ (e vy) = 0. ¢ is a (g)-module homomorphism, so

P(elvn) = e p(vy) = eZwy.

Since e_. € [, this is merely the (I)-action on L. L is finite dimensional of dimension

m, with basis

m—1

{wy, e_cwy, ..., €M wy

and so e wy = 0, as desired.

Thus by isomorphism theorems, Q! surjects onto IndﬁL, and so by comparing

characters, Q! = Ind§L. O

Now to determine the composition factors of M™(AM), we need only determine

the composition factors of Q', since the composition factors of N are known.

Lemma 5.2.4. If p = AV — (Ae + BY) is a highest weight of Q*, then either u = AW,

or AeNu {1}, BeN' and A= B or A+ B =m (where \) + p(l) = Z(c +§) ).
Proof. By Lemma 2.8.4, if \() — (Ae + B6) is a highest weight of Q!, then
2001 + pM) | Ae + BS) = (Ae + BJ, Aec + BY).
Computing, obtain the equation
m(A — B) = A? — B?

Solving this, we find that either A= B or A+ B = m.
Further, we must have Ae + B§ sums of positive roots with respect to b"), with

isotropic roots having coefficient at most one. Recalling that
Al =1{e, e+d =17, 0, 20, —+ 0}

we see that Ae Nu {1}, Be N.
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When B =0, A =m,

MY — (A + BS) = AV —me = aa(i))\(l),

which is not a weight of Q! by its construction as a quotient. The remaining cases

are the ones described in the lemma. OJ

Lemma 5.2.5. Q' has highest weights
(a) XV, (c) O'(S(i))\(l) — 8D, and

Proof. (a) is clear. (b), (c) and (d) are highest weights of M by Lemma 5.2.2. How-
ever, by the discussion in section 4.6.2, they are not highest weights of N!, so they

must be highest weights of Q!. O

We are now in a position to describe some constraints on the possible composition
factors of M = MM (AD),

As vector spaces (and indeed as [-modules),

Q@ =@l

keN

where

Q=1L
Qi =esL®e.sLDe_._sL
Q) =2e" ;L e, sL®eSle . 5L for k= 2.
Each @} is a finite-dimensional [-module; for k > 2, the l-weight spaces of Q). have

the dimensions shown in table 5.1. These dimensions can be computed by noting that

L has weight spaces of weight

AesAe — &, A — (m— 1)e,
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Weight Dimesion
A e — k6 1
A — k6 3
A — e — ko 4
: 4
A — (m —2)e — ké 4
MY (m—e—ks 3

2D —me — k6 1

Table 5.1: Dimensions of weight spaces in Q},

each of dimension one, where A. denotes AV (h.)e = "=e. (Q} is simple and Q]

replaces the dimensions 3 and 4 by 2 and 3, respectively.)
Each @Q} is finite-dimensional, and thus semi-simple, so can be written as direct
sum of simple finite-dimensional [-modules L;,, each of dimension j;. By counting

dimensions, we observe that

Qo= Lm (5.2.1)
Q1 = L2 ® Ly @ Ly (5.2.2)
Q= Lint2 ® 2Ly @ Ly s k=2 (5.2.3)

With respect to the action of [ = s0(3), the highest weights of L, 2, Ly, and Ly,,_o
are A\ + ¢, \., and A\, — ¢, respectively.
This means that if 4 = A — Ae — B¢ is a highest weight of @', then A € {—1,0,1}.

So the possible highest weights are:

:ua:A(l)eQ(l)
=AY —e—6 =X —ve Q]

e =AY 46— (m+1)§ = ag(i)()\(l) +79)€Qhi1

g = A\ —ms = 0'5(i)>\(1) e qQl

po = A —e = (m—1)0 =05, WV =) € Q,

m—1-
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Recalling that m > 3, these are all distinct. All but p. are noted as highest weights

in Lemma 5.2.5, but we must also consider their multiplicity.

(a) (Q})*= is one-dimensional, and so the highest weight p, is multiplicity free.

(b) Observing eq. (5.2.2), we see that (Q1)" contains a unique [-highest weight vec-

tors. So again, the highest weight p;, is multiplicity free.

(¢) Again, (QL,, )" is one-dimensional, and so the highest weight s, is multiplicity

free.

(d) Observing eq. (5.2.3), we see that (QL )"¢ contains two [-highest weight vectors.

1
m—1

(e) Finally, observing eq. (5.2.3) again, we see that ( )#e contains a unique I-

highest weight vector.

We can now give a partial description of the composition factors of M = M® (A1),
We remind the reader that ours strategy will be to compare the result below to The-

orem 5.2.11 to completely determine the composition factors and their multiplicities.
Theorem 5.2.6. The composition factors of M = MM (AW satisfy the following.

(a) Each of the following composition factors has multiplicity exactly one.

L, = L(l)()\(l)) = L(2)(/\(2))
Ly = L(l)()\(l) —7) = L(Q)(/\(Z) —7)
Lo=LWY(os . AV 4+ 7)) = L¥(0s5 . A\?)
(1) (2)
L.=LW (o, AV =L, . A\ +
(7, ) (7: 5, (¥ +7)

Ly = LW(o. . (AW — = L¥(g. . A\

p =10 (A0 =) (0: ;M)
Ly = LW(o50¢ ; A +7)) = L(oe0s, (X +7))

L, =LY (c Oc . A = L® 005 . A2
" (950e ;1) (0c035, ™)
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(b) The following composition factor has multiplicity one or two.

_ (1) _ 7@ @ _
Lg=1L (a(;(i)A ) L (0'5@()\ 7))

(¢) The following simple module is a possible composition factor, occurring with mul-

tiplicity at most one.
Lo = I (o5 ; (A =) — 105 ; (A —27)

(d) M = MM (AD) has no other composition factors.

Proof. In part (a), the composition factors L., Ly, L, and L; are the composition
factors of N, described in Corollary 4.8.5. The remainder of (a) and parts (b), (c)

and (d) follow from Lemma 5.2.5 together with the discussion above. O

5.2.3 THE QUOTIENT M /N?

We now determine the composition factors of M = M®(A?). The argument is

similar to the one in the previous section, with some key differences.

Lemma 5.2.7. M® has highest weight vectors of the following weights:

(a) 75, A, (d) 0e (XD = = 0. . (X £ ),

(b) 05@))\(2) — B3, (e) UE(Q))‘(Q)’ and

(c) 0505(2))\(2), () A& — .

Proof. Follows the same argument as Lemma 5.2.2. [

Now we turn again to the quotient Q? = M/N?. To determine the structure
of this quotient, we introduce a parabolic subalgebra different than the one in the

previous section. Partition A as

AV = {26, 0,e +0,6,6 —5,—0,-20}  A™ = {—c+0,—,—c — 0},
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and define

=hbe Pg* w=(@P g

aeAY aeAW

(so g=q@m). Let '  q be the copy of osp(1,2) generated by {e4s, hs}, and let L’
be the finite-dimensional simple ['-module of dimension m.

The structure of L’ requires some discussion, as the representation theory of
0sp(1,2) is less well known than that of sl(2). A good discussion can be found
in [Mus12, Ex. A.4.4]. Unlike the case for s[(2), osp(1,2) has a unique finite dimen-
sional submodules only of dimension any odd dimension m, with one-dimensional

weight spaces of weights

and thus character

m—1
2
chL=1| > "]
Now, extend the action on L' to ¢’ by letting h. act on L’ as multiplication by
A@(h.) = ™ and remaining elements of q act trivially.

Lemma 5.2.8. ()? = Indg,L’

Proof. We begin by noting that

ch@* = ch M — ch N?

6/\(2)(1 + 67(576))(1 + 67(€+6)) E)\(z)fmé(l + 67(575))(1 + 67(5+6))

(1—€e?)(1—e) - (I—e?)(1—e)
_ AP (ZZZJ Eké) (1+ 6—(575))(1 + Ef(s+5))
(1—e)
and that
m—1
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) m—1

(2 _

_ E)‘ Z ¢ k6 )
k=0

The remainder of the proof follows the same argument as that for Lemma 5.2.3. [

Lemma 5.2.9. If iy = \? — (Ac + B6) is a highest weight of Q*, then either =
and Ae N*, Be Nu{-1}, and A = B or A+ B = m (where \? + p&) = 2(c +§)).

Proof. Follows the same argument as Lemma 5.2.4. O]

Lemma 5.2.10. Q? has highest weights

(a) \®), (c) Ue(é))‘@) — ®), and
2
(b) ae(é)M ), (d) A — ~.
Proof. Follows the same argument as Lemma 5.2.5. O

We now employ an argument similar to that preceding Theorem 5.2.6 to describe
the possible composition factors of M = M®(A?)) Again. we decompose Q2 (this
time as [-modules) as

Q= DAk

keN

and we see that

Q=1L
Qi =e—L'@e_.ps'@e_._sL

Qr=2" I'@e" e sl ®ele . 51 for k=2

This allows us to compute the dimensions of the weight spaces of Q%, as seen
in table 5.2. We note that there exist unique osp(1,2)-modules of dimensions m +

2, m,m — 2, which we will denote L/ .,, L L having highest weights

m+2» m—2)

)\6 +(57 )\57)\5 _57
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Weight Dimesion
A 4§ — ke 1
A2 — ke 3
A — 5 — ke 4
: 4
A2 — (m —2)§ — ke 4
XD (m—1)5—ke 3

A2 —ms — ke 1

Table 5.2: Dimensions of weight spaces in Q%

respectively, where \s = (A?)(§))d. We also note that each Q? is finite-dimensional
and thus completely decomposable. Then we see by counting dimensions that

Q= Ly,

Qi = le+2 ® L;n ® L;an

Q=1L ,®2L, ®L for k > 2.

m—2

Now a dimension-counting argument similar to that preceding Theorem 5.2.6 allows
us to show the following; recall again that our strategy will be to compare this theorem

to Theorem 5.2.6.
Theorem 5.2.11. The composition factors of M = M@ (X)) satisfy the following.

(a) FEach of the following composition factors has multiplicity exactly one.

L, = L(l)()\(l)) = L(Q)()\(Q))
Ly = L(l)()\(l) —7) = L(2)()\(2) —7)
Lo = LW (o5 . AV 7)) = L (o5 . \?)
1) (2)
L.=LW(gs  \D = IL®(g: . (A\? _
2= L5, AV) (05,5, (A =)
L. = LW(o. . \V) = L%, . \? 1 9))

(1 (2)
Ly = L8 (0502 ; O +7) = Loeas, 00 +)
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L, = LW (o Oc . A =L® 005 . A2
" (5 (1) ) ( 5(2) )

(b) The following composition factor has multiplicity one or two.

Ly = LW(o. . (AW — = L®(g. . A\¥
! ( m( 7)) (@))

(¢) The following simple module is a possible composition factor, occurring with mul-

tiplicity at most one.

Lo = L0(0. , (A = 27)) - Lo, , (¥ =)

(d) M = M@ (X®) has no other composition factors.
Proof. In part (a), the composition factors L., Lq, L, and L; are the composition

factors of N', described in Corollary 4.8.6. The remainder of (a) and parts (b), (c)

and (d) follow from Lemma 5.2.10 together with the discussion above. O

5.2.4 THE STRUCTURE OF M

Comparing the lists of composition factors in Theorem 5.2.6 and in Theorem 5.2.11,

we obtain the following.

Theorem 5.2.12. M = MO \D) = ME(AP) has the following composition fac-

tors, each with multiplicity exactly one.

L, = L(l)()\(l)> = L(2)<)\(2))
Ly = L(D()\(l) —) = L(2)<)\(2) —)
Lo= LW (o5 . AV + = LP(o; . \@
(75,3, 7)) (75,5, A7)
Ly=LWY(gs . AV = Lo . (\?@ —
s = L (o5 A) (7, A% =)
Le = LW (0. . A1) = LP(0. . (A2 1))

(1) (2)

Ly =LY, . AV - = LP(g, . \?
f ( (1)( 7)) ( 5 )
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Ly = L (o500 s A0 +9)) = 190205, (¥ +1)

L, =LY (s O: . A =L® 005 . A2
" (050e ;1) (035,

Proof. Note that the possible composition factor L, in Theorem 5.2.6 does not ap-
pear as a possible composition factor in Theorem 5.2.11, and similarly, L., in The-
orem 5.2.11 does not appear in Theorem 5.2.6. Thus, L., L., do not appear as
composition factors of M. Note also that Theorem 5.2.6 shows that Ly; has multiplic-
ity exactly one, and that Theorem 5.2.11 shows that L; has multiplicity exactly one.

The remainder of the theorem is clear from either of Theorems 5.2.6 and 5.2.11. [

We next wish to determine the Jantzen filtration. For the following computations,
we fix b = b™; if we had fixed b = b®, the computations would be similar. Having
fixed our Borel, we omit the notations indicating the choice of Borel in the following
computations.

To determine the Jantzen filtration, we return to the Jantzen sum formula, The-
orem 2.7.2,

Zch M; = Z ch M(c,.)\) + Z 7,
neA(X) neB(N\)
It is easy to see that A(\) = {¢,d} and B(A\) = {7}. Our next step is to show that,

in this case, €*77p, is the character of a module.

Lemma 5.2.13. Suppose m = (A + p,e¥) = (A +p,0Y) e N4 m > 3. Let M) =

M/My_, (where My_, is the submodule described in Lemma 5.1.2). Then ch M) =

A
€Dy

Proof. Showing the lemma amounts to showing that dim(M; ") = p,(n). This in

turn amounts to showing that

S, = {e_zvy:me P'y(77>}
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forms a basis for M} ", Tt is clear that M; " is spanned by

S={e_ vy:meP(n)}

But writing n = Ae + BJ, we see that with a properly ordered basis for n~, when

A>1B =2,
g et eBsuy, eArteBle, suy,
eds 168516— —5Ux, 6‘1‘56]35 €e—5€—c—5U
S, = {ei‘aei;m, eAtlePs lec_svr}
so we need only show that e?- 1635 le_._suy, et efa_zea_ge_a_(;v,\ are in the span of

S,. (The cases for smaller A, B simply eliminate some elements of these vectors; the
argument below also applies in these cases.)

By the construction of M), in this module 09)1),\ =0, so
m 2
(2)6_5_51])\ = Mme_.e_sU\ — €- _€._5U,.
This identity allows us to show the desired result. We begin by noting that

wy = (2)€A YePile sy = (T)eA LeBile_ e 51},\—6‘4 LeBole? e._sun (5.2.4)
oA

m B2 A _B— A B2
Wy = (2) el e g _csU\ = (1)6 eP52e._se_.e_suy — et ePi%e. se? _e._suy.
(5.2.5)
By computing
_ 2
€€ €5 = —€_c€_ 56,5 — €_;
2 _ 9 902
€e—6€_Ce§ = —4€ € §Cc§ — 4€6_5 — €€ ¢y,
we can rewrite eq. (5.2.5) as
efee§g2e€_5€_5_5v>\ocef€ei;v,\ + eéselj’fe_se_gee_(;v,\. (5.2.6)

First, we show that w; € span S, when B = 2k + 1 is odd. To show this, we note
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that eZ;! = e*,5 commutes with e_., and so

e 163516 C_sUy = eA 51},\657

oA 1635162 €5 _€A+1€B5165 s€S

which gives the desired result.
Next, we show that wy € span S, when B = 2k + 2 is even. Noting that again

eP5? = eF s commutes with e__,

A B
el.es€ S,

el 635 2e_.e_seo_gvy = eAHeB(; Le._ sy € S,

which gives the desired result.

When B is even, the computation for w; is complicated by the fact that w, appears
as a commutator. However, we have already shown that in this case wy € spanS,,
and thus w; € span .S, also. Similarly, when B is odd, the computation for wy is
complicated because w; appears as a commutator, but we have already seen that
wy € span S, in this case.

Thus for each fixed 1, S, forms a basis for (M,)*~", which proves the desired

result. []
Corollary 5.2.14. ch M,_, = ¢* p,
Proof. By construction we have a short exact sequence
0— M_, —> M(\) - M, —0.
So, noting that p = (1 + ¢ 7)p,,

ch My_, = ch M(\) — ch M,

=e'p—€'p,

— A
= € p,y
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as desired. n

Corollary 5.2.15. The notation M) introduced in Lemma 5.2.13 is unambiguous,

that is, My is the submodule of M(\ + ) generated by le)v,\ﬂ.
Proof. This is easy to see by comparing characters and the universality of M(\). [

Corollary 5.2.16. M, has composition factors L, L., Le, Ly, and My_., has compo-

sition factors Ly, Lq, L, Ly,.

Proof. Comparing the composition factors of M () and M (X + 7) in Theorems 5.2.6
and 5.2.11, we see that L,, L., L, L, are precisely their common factors, and thus
must be the composition factors of the common M,. The remaining factors must be

composition factors of M,_,. n
Theorem 5.2.17. M has Jantzen filtration

M, =LyHL.HL®LB Ly H Ly Ly,
My =LiB Ly HLyH Ly,
M; = Ly,

M; =0 fori > 4.

Proof. Observing that ¢’ 7p, = ch M,_,, we see that the right-hand side of the
Jantzen Sum Formula (Theorem 2.7.2) contains only characters of modules, and can
thus be understood as a sum in the Grothendieck group. Letting [ denote addition in

the Grothendieck group, we see the following equation from the Jantzen Sum Formula.

M; = M (ae(. AN E MDY (o; XY@ M, (5.2.7)

i) (1)
Note, to avoid confusion, that M (1)(05(i))\(1)) is not a submodule of M. However,

computing
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we see by Corollary 4.8.3 that
M(l)(a(g(i)/\(l)) = LW Ly LyH Ly,
As noted before, by Corollary 4.8.5,
M(l)(as(i)/\(l)) =L.BL;EL,EH Ly,
and finally, Corollary 5.2.16 gives us
My = Ly Lqg @ Ly B Lp,.
This, together with eq. (5.2.7), gives

[HHM; = Ly LB L. B2L,EB 2L B 2L, B 3L, (5.2.8)

Finally, eq. (5.2.8) combined with the observation that each composition factor is

multiplicity-free gives the desired result. O
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