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ABSTRACT

Markov Chain Monte Carlo Simulation

of the Wright-Fisher Diffusion

by

Markus J. Wahl

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Advisor
Professor Richard H. Stockbridge

In population genetics, the proportions of alleles at any given time are of interest.

From generation to generation, these proportions vary and over a long time horizon

the likelihoods for the proportions are given by a stationary distribution correspond-

ing to the dynamics of the population. We investigate a diffusion approximation for

the Wright-Fisher model and develop a Markov chain Monte Carlo simulation to

approximate the evolution of the proportions of alleles in the population. Our aim

is to estimate the stationary distribution, especially for parameters of the model for

which no analytical formulas are known. We discretize the space of the diffusion

process and construct a continuous time Markov chain which converges weakly to

the diffusion.
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Chapter 1

Introduction

In a population, in which certain genes can be of different types, called alleles, ques-

tions arise how the composition of the population will evolve over time. How will the

population be built-up in the future? Will a certain allele become extinct? What

proportions of the population are made up of each allele?

One mathematical model is provided by the Wright-Fisher diffusion. This model

takes not only the randomness for the reproduction of individuals into account, but

also mutation (the possibility that one gene changes from one allele to another) and

selection (better chances of survival for certain genes of a certain allele).

The questions we described above considering the long-term behavior of the pop-

ulation correspond to the stationary distribution in the diffusion model. Stationary

distributions for the Wright-Fisher diffusion are known only for a few special com-

binations of parameters. However, the long-term behavior is unknown for more

general combinations of parameters.

Since no analytical formulas exist for these cases, we develop a Markov chain

Monte Carlo algorithm to simulate the evolution of the population in order to ap-

proximate the stationary distribution of the Wright-Fisher diffusion model.

The diffusion is approximated by a discretization. We do not discretize the time
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here as in other schemes used for the simulation of diffusion processes such as the

Euler-Maruyama method. Instead, we discretize the state space to get an approxi-

mating continuous time Markov Chain with finite state space, using a rectangular

grid, in our case. Then, we simulate the stationary distribution of the approximating

Markov chain using Markov chain Monte Carlo techniques. Since the Markov chain

is constructed as a locally consistent approximation, convergence in distribution of

the simulated stationary distributions to the stationary distribution of the diffusion

process is guaranteed as the grid becomes finer.

First of all, we describe the Markov chain Monte Carlo method for continuous

time Markov chains in this chapter. To construct this Markov Chain, we use a

combination of two methods. These methods are described in Chapter 2 according

to [KD2001]. In Chapter 3, we describe the application of the techniques from

Chapter 2 to the Wright-Fisher diffusion and their combination for the construction

of the Markov chain Monte Carlo algorithm. Chapter 3 provides the theoretical

basis for the algorithm. We discuss the numerical results of an implementation of

this algorithm in Chapter 4.

1.1 Markov Chain Monte Carlo Simulation

Since we approximate the diffusion process by a continuous time Markov chain, the

approximation of the stationary distribution of the diffusion process is the stationary

distribution of the continuous time Markov chain. Thus, we simulate the unknown

stationary distribution of the Markov chain. In this section, we describe the Markov

chain Monte Carlo method used for the simulation of this distribution.

Let (ψ (t))t≥0 be a continuous time Markov chain with finite state space S,

transition matrices (P (t))t≥0, with P (t) = (pij (t))i,j∈S. We denote the embedded

chain by ξn for n ∈ N.

If ξn is irreducible and (ψ (t))t≥0 is positive recurrent, then (ψ (t))t≥0 has a sta-

tionary distribution π = (πi)i∈S and
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pij (t)→ πj (t→∞) (1.1)

independent of i [Br1999].

For an arbitrary initial distribution φ = (φi)i∈S, we have

P (ψ (t) = j) =
∑
i∈S

pij (t)φi →
∑
i∈S

πjφi = πj, (t→∞) . (1.2)

Thus, we can approximate π by running the Markov chain for a certain amount of

time T . Since π does not depend on the initial distribution φ we can choose an

arbitrary initial distribution. T has to be chosen large enough to allow a sufficient

number of transitions.

This result allows us to simulate π in the following way.

1. Generate a realization φ̂ of φ.

2. Generate one realization ψ̂ of a path of the Markov chain ψ with ψ̂ (0) = φ̂.

3. Repeat steps 1 and 2.

Denote the realized paths by
(
ψ̂m (t)

)
0≤t≤T

, m = 1, . . . ,M . By (1.2) and the strong

law of large numbers,

π (i) ≈ P (ψ (T ) = i) = E
[
1{ψ(T )=i}

]
= lim

M→∞

1

M

M∑
m=1

ψ̂m (T )1{ψ̂m(T )=i} (1.3)

for T sufficiently large, so that enough transitions are allowed.

To simulate an approximation of π using this method, we need to construct

a continuous time Markov chain with an irreducible embedded chain. The irre-

ducibility can be verified easily in our application. Furthermore, we need positive

recurrence for the continuous time Markov chain itself. This process is positive

recurrent since the state space is finite and so the irreducibility of the embedded

chain implies recurrence (and positive recurrence) of the embedded chain and the

continuous time Markov chain. Positive recurrence implies then the existence of a
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stationary distribution and (1.1). By (1.2), this stationary distribution is unique.

Consequently, it suffices to check that the embedded chain is irreducible and that the

approximation converges weakly as the grid becomes finer. This will be discussed

in the next chapter.
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Chapter 2

Locally Consistent Markov Chain
Approximations

In this chapter we want to approximate the diffusion process X by a sequence of

continuous time Markov chains ψh in a way such that ψh −→ X weakly for h −→ 0

as described in [KD2001]. Two issues arise here. The first issue is, which conditions

does the approximation have to satisfy in order to get the desired behavior. This

behavior is guaranteed for locally consistent approximations. Therefore, we will

begin Chapter 2 by discussing local consistency.

The second issue is how to actually construct such a locally consistent Markov

chain approximation for a diffusion process. We use a combination of two methods,

which we describe in Chapter 2 as well.

2.1 Local Consistency

Let

Af (x) =
1

2

d∑
i,j=1

aij (x)
∂2

∂xi∂xj
f (x) +

d∑
i=1

bi (x)
∂

∂xi
f (x) (2.1)

be the generator of a d-dimensional diffusion process X = (X (t))t≥0 which is to be

approximated.

Definition 2.1.1 (Local Consistency). A family of continuous time Markov chains

ψh with finite state spaces Sh ⊂ Rd, expected holding times ∆th (x) > 0, x ∈ Sh
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and embedded chain ξhn is called a locally consistent approximation of the diffusion

process X if

sup
x,ω

∥∥ξhn+1 − ξhn
∥∥→ 0, sup

x
∆th (x)→ 0 as h→ 0, inf

x
∆th (x) > 0 for each h (2.2)

and further

Ex
[
ξhn+1 − ξhn

]
= ∆th (x) b (x) + o

(
∆th (x)

)
(2.3)

and

Ex
[(

∆ξhn − E∆ξhn
) (

∆ξhn − E∆ξhn
)T]

= ∆th (x) a (x) + o
(
∆th (x)

)
, (2.4)

where ∆ξhn = ξhn+1 − ξhn.

These conditions ensure the desired weak convergence of the approximating pro-

cess to the diffusion [KD2001]. Thus, we have to construct Markov chains which

have the properties (2.2), (2.3) and (2.4). In our case, (2.2) will be obvious and

holds always, whereas (2.3) and (2.4) turn out to be challenging. We therefore focus

on (2.3) and (2.4) in our descriptions. We always use a uniform rectangular grid for

Sh.

2.2 Construction of the Locally Consistent Ap-

proximating Markov Chain

The following two approaches from [KD2001] for the construction of the locally

consistent approximating Markov chain are used for our algorithm. Whereas the

first approach (in 2.2.1) uses finite difference techniques and is therefore a numerical

approach, the secend approach (described in 2.2.2) is a probabilistic, direct approach

to get the transition probabilities and transition rates.

2.2.1 Approximation using Finite Differences

The idea behind this approach is to approximate the partial derivatives from the

generator of the diffusion process in (2.1) by finite differences in a specific way
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such that the resulting operator can be interpreted as a generator of a continuous

time Markov chain. Denote the points that are used for the difference quotient to

approximate the partial derivatives at point x by x+hvi, i = 1, ..., K . By choosing

appropriate difference quotients and collecting terms, we want to write A as

Af (x) ≈ c (x)
K∑
i=1

pi (x) (f (x+ hvi)− f (x)) (2.5)

in such a way that pi (x) ≥ 0 and
∑K

i=1 pi (x) = 1. Then we can interpret (2.5) as an

infinitesimal generator of a continuous time Markov chain, where ph (x, x+ hvi) :=

pi (x) , i = 1, ..., K are the transition probabilities of the embedded chain for the

transition from x to x+ hvi and c (x) are the transition rates, given the chain is in

state x.

The approximations of the partial derivatives are chosen as described below,

where ei are the canonical unit vectors:

fxi (x) ≈


f (x+ hei)− f (x)

h
, if bi (x) ≥ 0

f (x)− f (x− hei)
h

, if bi (x) < 0

. (2.6)

These different choices for the difference quotient ensure that ph (x± hei) are

positive. The geometric interpretation helps to understand this choice: In case

bi (x) > 0 , this component of the drift points from x to x+ hei (for bi (x) < 0 from

x to x − hei). Thus, f (x) and f (x+ hei) are used in the first case and f (x) and

f (x− hei) in the second case for the difference quotient.

The reasons for the choices for the approximation of the second partial derivatives

are the same, but the concern is not about the drift here but about the diffusion

instead. A different difference quotient for fxixi compared to what is usually used

to compute the mixed partial derivatives is chosen for the same reason.

These choices are

fxixi (x) ≈ f (x+ hei) + f (x− hei)− 2f (x)

h2
, (2.7)

for aij (x) ≥ 0, we use
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fxixj (x) ≈2f (x) + f (x+ hei + hej)− f (x− hei − hej)
2h2

− f (x+ hei) + f (x− hei)− f (x+ hej) + f (x− hej)
2h2

(2.8)

and for aij (x) < 0 we use

fxixj (x) ≈− 2f (x) + f (x+ hei − hej) + f (x− hei + hej)

2h2

+
f (x+ hei) + f (x− hei)− f (x+ hej) + f (x− hej)

2h2
.

(2.9)

By approximating the derivatives in (2.1) by the difference quotients (2.6), (2.7),

(2.8), (2.9) and rearranging the terms in the form (2.5), one obtains the transition

probabilities for the embedded chain

p (x, x± hei) =

aii(x)
2
−
∑

j:j 6=i
|aij(x)|

2
+ hb±i (x)

Qh (x)

p (x, x+ hei + hej) = p (x, x− hei − hej) =
a+ij (x)

2Qh (x)

p (x, x− hei + hej) = p (x, x+ hei − hej) =
a−ij (x)

2Qh (x)

(2.10)

where

Qh (x) =
∑
i

aii (x)−
∑
i,j:i 6=j

|aij (x)|
2

+ h
∑
i

|bi (x)| (2.11)

is a normalizing constant. This gives us the expected holding times

∆th (x) =
h2

Qh (x)
. (2.12)

The quantities in (2.10) are nonnegative and sum up to one and can therefore

be interpreted as probabilities as long as

aii (x)−
∑
j:j 6=i

|aij (x)| ≥ 0. (2.13)
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It is not obvious from the construction that these transition probabilities together

with ∆th (x) give us a locally consistent Markov chain approximation. However,

(2.3) and (2.4) can be verified [KD2001], so we have a locally consistent approxi-

mation with possible transition directions to the nearest neighbors parallel to the

axes and the diagonals as illustrated in Figure 2.1. Both the uniform grid for Sh

Figure 2.1: Transition directions

and the possible transition directions result from the choices for the difference quo-

tients. That means the structure of the approximating chain is basically influenced

by the points used for the difference quotients. Since these points can not be cho-

sen arbitrarily, but instead they have to be chosen in a way such that the result

can be interpreted as the generator of the Markov chain, it is hard to change these

directions. We will see in Section 3.2.3 that it will be necessary in our application

to modify these directions. To be able to adjust the algorithm in such a way, we

describe the following approach, in which the possible transition directions are not

the result of the finite difference approximation, but, instead, are chosen directly.

2.2.2 Direct Construction of the Approximating Markov
Chain

This approach is a direct and therefore more probabilistic approach. Unlike the

one just described, there is no discretization of the generator here. Instead, the
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approach aims at directly finding transition probabilities for an embedded chain

and transition rates such that the local consistency conditions (2.3) and (2.4) hold.

This is not trivial since both the expectation (drift) and the covariance structure

must match. To simplify this task, in this approach, we decompose the transition

into a drift and a diffusion component and then combine both components.

We choose for each x a set M (x) = {vi (x) , i ≤ m (x)} , m (x) ≤ K of vectors

vi (x) as candidates for the next states of the chain. For the local consistency, the

transition probabilities must be chosen such that they satisfy (2.3) and (2.4), that

is

∑
i∈M(x)

p (x, x+ hvi (x))hvi (x) = ∆th (x) b (x) + o
(
∆th (x)

)
(2.14)

for (2.3) and∑
i∈M(x)

p (x, x+ hvi (x))hvi (x)hvi (x)T = a (x) ∆th (x) + o
(
∆th (x)

)
. (2.15)

for (2.4).

The idea is initially to deal with these two equations separately. We want to find

q0i (x) ≥ 0 and q1i (x) ≥ 0 for all i ∈ {1, . . . ,m (x)} and for all x such that

b (x) =
∑

i∈M(x)

q0i (x) vi (x) (2.16)

and

a (x) =
∑

i∈M(x)

q1i (x) vi (x) vi (x)T . (2.17)

Thus, q0i (x) approximates the drift consistently and q1i (x) approximates the dif-

fusion. Since we handle both parts separately, we do not want the diffusion to

contribute to the drift so we require further∑
i∈M(x)

q1i vi (x) = 0. (2.18)
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By combining q0i (x) and q1i (x) we define the transition probabilities for the embed-

ded chain by

p (x, x+ hvi (x)) =
hq0i (x) + q1i (x)

Qh (x)
(2.19)

with normalizing constant

Qh (x) =
∑

i∈M(x)

[
hq0i (x) + q1i (x)

]
. (2.20)

The corresponding holding times for these transition probabilities are then given by

∆th (x) =
h2

Qh (x)
. (2.21)
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Chapter 3

Markov Chain Approximation for
the Wright-Fisher Diffusion

3.1 The Wright-Fisher Model

The Wright-Fisher model describes the evolution of the proportions of genes in

a certain population. These genes can be of r different types (alleles). For the

construction of the approximating Markov chain in Section 3.2, we consider the

case r = 3. From each generation to the next, the model describes the change in the

proportions of the alleles of the whole population by taking mutation, selection and

randomness for the type of offsprings into account. The resulting process is a Markov

chain. It is in many cases more convenient to work with a diffusion approximation,

the so called Wright-Fisher diffusion, which we describe as in [EK1986].

3.1.1 The Wright-Fisher Diffusion

Let r be the number of possible alleles and (X1 (t) , . . . , Xr (t)) the process withXi (t)

describing the proportion of allele i at time t, t ≥ 0. Therefore,
∑r

i=1Xi (t) = 1.

The Wright-Fisher diffusion captures this condition by modeling X = (X (t))t≥0,

X (t) = (X1 (t) , . . . , Xr−1 (t)) by a r − 1 dimensional diffusion process on

K =

{
x = (x1, . . . , xr−1) ∈ [0, 1]r−1 :

r−1∑
i=1

xi ≤ 1

}
. (3.1)
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Then, Xr (t) = 1−
∑r−1

i=1 Xi (t).

We consider a version with mutation, but without selection. The diffusion oper-

ator of X for f ∈ C2 (K) is given by

Af (x) =
1

2

r−1∑
i,j=1

aij (x)
∂2

∂xi∂xj
f (x) +

r−1∑
i=1

bi (x)
∂

∂xi
f (x) , (3.2)

where

aij (x) = xi (δij − xj) (3.3)

and

bi (x) = −
r∑
j=1

µijxi +
r∑
j=1

µjixj. (3.4)

3.2 Construction of the Approximating Markov

Chain

3.2.1 Finite Difference Approximation Scheme for the Inte-
rior

We use the scheme obtained from the finite difference discretization described in

(2.2.1) wherever possible. To verify (2.13) we observe that for k 6= i

aii (x)−
∑
j:j 6=i

|aij (x)| = xi (1− xi)− xixk = xi (1− xi − xk) ≥ 0 (3.5)

since xi, xk ∈ K.

Consequently, we can use this algorithm in the interior. This gives us an algo-

rithm with possible transitions to the nearest neighbors parallel to the axis and to the

nearest diagonal neighbors. Note that p (x, x+ hei + hej) = p (x, x− hei − hej) =
a+ij(x)

2Qh(x)
= 0 since we have aij (x) = −xixj ≤ 0 for i 6= j for all x. That means we only

move along one diagonal and from the grid point x never directly to the neighbors

x+ hei + hej and x− hei − hej.
We can apply this algorithm everywhere where there is no danger of leaving K.

Since the transition directions are limited to the ones shown in Figure 3.1 and there
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Figure 3.1: Possible transition directions

are no transitions along the other diagonal, we can use this algorithm on the grid

points below the diagonal, i.e. for all x = (x1, x2) with x1 +x2 = 1−h as well. This

fact enables us to use the algorithm on the whole interior.

3.2.2 Approximation on the Horizontal and Vertical Bound-
ary

Next, we want to show that we can use this scheme on the horizontal and vertical

boundaries as well, i.e. where x1 = 0 or x2 = 0. That means we need to show that

the probability of leaving the triangle, which is p (x, x− he1) is 0. Let us consider

the case x1 = 0 and x2 6= 0, 1, the argument for x2 = 0 is essentially the same. For

x1 = 0 we have

p (x, x− he1) =
a11(x)

2
− |a12(x)|

2
+ hb−i (x)

Qh (x)

=

x1(1−x1)
2
− x1x2

2
+ h

(
−
∑r

j=1 µijx1 +
∑r

j=1 µjixj

)−
Qh (x)

= 0

(3.6)

since µj,i ≥ 0 for all i, j = 1, . . . , r. Thus, we can use the the algorithm on these

boundaries (except for the vertices) as well.
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3.2.3 Approximation Scheme on the Diagonal

Now, we want to consider the diagonal, i.e. all x = (x1, x2) for which x1 + x2 = 1.

That means in particular, we include the vertices as well. However, the behavior

at the vertices is slightly different since a11 = a12 = 0 at the vertices. As we will

see, we can interprete the vertices both as special cases of points on the diagonal

and as different cases with no diffusion. First, we include the vertices in the diago-

nal. Although the Wright-Fisher diffusion never leaves K, this may happen to the

discretization with positive probability as the following example describes.

Example 3.2.1. Let µij = µj = 0.5, i, j = 1, 2, 3. Then we have on the diagonal,

i.e. for x1 = 1− h and x2 = h

p (x, x+ he2) =
a22(x)

2
− |a21(x)|

2
+ hb+2 (x)

Qh (x)

=

x2(1−x2)
2
− x2x1

2
+ h

(
−
∑r

j=1 µjx2 + µ2

)+
Qh (x)

=
x2(1−x2−x1)

2
+ h (−1.5h+ 0.5)+

Qh (x)
> 0

(3.7)

for h < 1/3, since x1 + x2 = 1 for all points on the diagonal.

As the Wright-Fisher diffusion never leaves the triangle, we have to modify the

approximation on the diagonal. As a result we want to get transition probabilities

and the expected holding times ∆th (x) such that the modified process is still locally

consistent, but never leaves the triangle. The challenge is to maintain the local

consistency without using the transition directions that point out of the triangle.

To solve this problem, let us first consider the reason for the problem. As (3.7)

shows, the positive probability of leaving the triangle K results from the drift com-

ponent, not from the diffusion component since 1− x1− x2 = 0. The drift direction

b (x) is separated into its components b1 (x) and b2 (x). Although the total drift

direction b (x) points inside the triangle and the Wright-Fisher diffusion is instantly

pulled back into the triangle once it approaches the diagonal, this approximating



16

process may leave the triangle, since the diffusion is approximated by the transi-

tions in the horizontal and vertical direction and not by the diagonal. Figure 3.2

illustrates this. Here, b2 (x) > 0 and hence, p (x, x+ he2) > 0, but x+ he2 /∈ K.

Figure 3.2: Leaving the triangle by a transition along he2

Due to the nature of the Wright-Fisher diffusion, the drift at point x, where x

is supposed to be on the diagonal, can never point out of the triangle, so we can

assume

b1 (x) + b2 (x) ≤ 0 (3.8)

for the following solution of the problem described above. Furthermore, if both

b1 (x) ≤ 0 and b2 (x) ≤ 0, the drift is decomposed to transition probabilities in the

directions −he1 and −he2, so the process will never leave the triangle from such a

point, as illustrated in Figure 3.3.

This alows us to use the original algorithm for the points with b1 (x) ≤ 0 and

b2 (x) ≤ 0 so we can assume for the modification for the case pointed out in Figure

3.2 that either

b1 (x) < 0, b2 (x) > 0 (3.9)

or

b1 (x) > 0, b2 (x) < 0 (3.10)

holds.
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Figure 3.3: The algorithm can be used if b1 (x) ≤ 0 and b2 (x) ≤ 0.

Due to the symmetry, both cases are similar, so we assume in the following

that (3.8) and (3.9) hold. In case that (3.8) and (3.10) hold, the derivation is then

analogous. All other cases are not relevant as shown since they can not occur or

they are covered by the algorithm described above.

3.2.4 Approximation on the Diagonal by Direct Construc-
tion

To find a locally consistent approximation on the diagonal, we use the method

described in Section 2.2.2. First of all, we choose vectors vi, i = 1, 2, 3, 4 as possible

transition directions with

v1 =

(
−1
1

)
, v2 =

(
−1
0

)
and v3 =

(
1
−1

)
. (3.11)

The reasons for these choices are that this helps us on the one hand to replicate the

drift by using v1 and v2. On the other hand, v1 and v3 are used to replicate the

diffusion, which makes the process move only along the diagonal once it is on the

diagonal. Next, we must choose q01 (x) and q02 (x) according to (2.16) such that

b (x) =

(
b1 (x)
b2 (x)

)
= q01 (x)

(
−1
1

)
+ q02 (x)

(
−1
0

)
. (3.12)
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These conditions force q01 (x) = b2 (x) ≥ 0 by (3.9) and

q02 (x) = −b1 (x)− b2 (x) ≥ 0 by (3.8).

Figure 3.4: Transition directions vi, i = 1, 2, 3, 4.

To find q11 (x) and q13 (x), we have to solve (2.17)

(
a11 (x) a12 (x)
a21 (x) a22 (x)

)
=

(
x1x2 −x1x2
−x1x2 x1x2

)
= q11 (x)

(
−1
1

)(
−1 1

)
+ q13 (x)

(
1
−1

)(
1 −1

)
= q11 (x)

(
1 −1
−1 1

)
+ q13 (x)

(
1 −1
−1 1

)
.

(3.13)

Since the idea of this approach is the decomposition into drift and diffusion, the

diffusion should not contribute to the drift, so we want q11 (x) and q13 (x) to further

satisfy (2.18):

q11 (x)

(
−1
1

)
+ q13 (x)

(
1
−1

)
= 0 (3.14)

Using this result we obtain q11 (x) = q13 (x) and so we can solve (3.13) which gives

us

q11 (x) = q13 (x) =
x1x2

2
. (3.15)
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Then, we can set up the transition probabilities for the embedded chain and expected

holding times and we have with (2.19)

p (x, x+ hv1) =
2hb2 (x) + x1x2

2Qh (x)
,

p (x, x+ hv2) = −hb1 (x) + hb2 (x)

Qh (x)
and

p (x, x+ hv3) =
x1x2

2Qh (x)

(3.16)

with the normalizing constant

Qh (x) = −hb1 (x) + x1x2 (3.17)

and expected holding times

∆th (x) =
h2

Qh (x)
. (3.18)

due to (2.20) and (2.21).

3.2.5 Alternative Approximation Scheme for the Vertices

Consider the vertex x1 = 0, x2 = 1. The case x1 = 1, x2 = 0 is similar. For x1 =

0, x2 = 1, it follows for the diffusion that a (x) = 02×2. Thus, there is no diffusion at

the vertex, the process is only pulled back by the drift. This behavior of the diffusion

can be interpreted as deterministic. The idea behind this alternative approach is

to obtain a locally consistent approximation by a deterministic transition. Local

consistency means in this case that the drift has to be replicated by a transition to

only one candidate, so the transition direction must fit the direction of the drift. In

other words, that means that we proceed from x to a point on the grid which can be

written as x + ∆th (x) b (x) for a small ∆th (x) which can be chosen appropriately.

Of course, it is not always possible to find such a point which has to be positioned

at the intersection of the grid and the drift vector starting at the vertex.
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Example 3.2.2. Consider again the previous example with µi = 0.5, i = 1, 2, 3.

For x =

(
1
0

)
, we have

b (x) =

(
b1 (x)
b2 (x)

)
=

(
−1
0.5

)
= ∆th (x)

(
−2h
h

)
(3.19)

with ∆th (x) = h/2. Thus, we can use a deterministic transition from

(
1
0

)
to(

1− 2h
h

)
with ∆th (x) = h/2 to get a locally consistent approximation (see also

figure 3.5).

Figure 3.5: Deterministic transition at the vertex.

By construction, (2.3) holds and (2.4) holds as well, since ai,j = 0, i, j = 1, 2

and the transition is deterministic. Thus, this deterministic transition at the vertex

is locally consistent.
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Chapter 4

Simulation Results

We describe the results of simulations of different types of stationary distributions

in this chapter using the algorithm developed in the previous chapter. At the begin-

ning, we approximate stationary distributions of the Wright-Fisher model choosing

parameters for µ = (µij)i,j=1,2,3 for which analytical formulas are known such that

we can compare these simulation results to the distribution that is approximated.

Afterwards, we simulate a distribution for parameters µ for which no analytical

formula is known. The implementation of this algorithm can be found in the ap-

pendix.

Analytical formulas for the density of the stationary distribution of the Wright-

Fisher diffusion are known if µij = µj for all i, j = 1, . . . , r, i 6= j and µii = 0. The

density function is then given by the Dirichlet distribution

f (x1, . . . , xr−1) = C

(
r−1∏
i=1

x2µi−1i

)(
1−

r−1∑
i=1

xi

)2µr−1

(4.1)

with normalizing constant C [EK1986]. As a special case we have a uniform distri-

bution when µj = 0.5 for all j = 1, . . . , r.

We always choose a uniform distribution on all grid point as initial distribution φ

and the number of sample paths is always 100,000 throughout the whole chapter.

We deal with two types of convergence here. For t → ∞, the distribution of ψ (t),

which is the distribution of the continuous time Markov chain at time t, converges

to its stationary distribution π almost surely and therefore in L1 as well as discussed
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in (1.2), since the state space is finite. In order to observe this convergence, we run

simulations until different times T = 0.5, 1, 5. T = 5 turned out to be an appropri-

ate value in order to allow enough transitions as Figures (4.1)-(4.3) indicate. These

figures show the distribution of the number of transitions made until T = 5 for the

simulation from Section 4.2. The numbers of transition for the simulations from the

other sections are similar.

Figure 4.1: Distribution of the number of transitions for h = 1/10

Figure 4.2: Distribution of the number of transitions for h = 1/25
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Figure 4.3: Distribution of the number of transitions for h = 1/40

The other type of convergence we deal with is the weak convergence of π to the

stationary distribution of the diffusion as h→ 0, guaranteed by the local consistency

[KD2001]. We investigate this convergence by running simulations for different grid

sizes (h = 1/10, 1/25 and 1/40).

4.1 Simulating Distributions with Known Ana-

lytical Formulas

The biological interpretation of µ helps us to understand the corresponding station-

ary distributions of the diffusion. Although mutation is not deterministic in nature,

the parameters for the mutation, µ, influence the drift, but not the diffusion. The

quantitiy µij models the mutation from allele i to allele j. High values for µij in-

dicate a lot of mutation from allele i to allele j. Since an allele can not mutate to

itself, µii = 0 is always required.
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4.1.1 Uniform Distribution

First of all, we simulate the stationary distribution choosing

µ =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 . (4.2)

For this choice, the stationary distribution of the Wright-Fisher diffusion is the uni-

form distribution on K. Figures 4.4, 4.5 and 4.6 show that the simulated stationary

distributions approximate the uniform distribution better for smaller h. Whereas

the distribution in Figure 4.4 is shaped, the distribution in Figure 4.6 is almost flat.

The convergence on the diagonal is slower due to the different discretization scheme

which is not used in the middle of the diagonal, but near the vertices.

Figure 4.4: Simulation of the uniform distribution for h = 1/10, T = 5



25

Figure 4.5: Simulation of the uniform distribution for h = 1/25, T = 5

Figure 4.6: Simulation of the uniform distribution for h = 1/40, T = 5
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4.1.2 Dirichlet Distribution

The next distribution we simulate is for

µ =

 0 0.5 0.5
0.3 0 0.5
0.3 0.5 0

 . (4.3)

Compared to the uniform distribution, there is less mutation from alleles 2 and 3 to

allele 1, since µ21 = µ31 = 0.3 compared to 0.5 in the previous case. Consequently,

there is less probability mass concentrated on the larger proportions for allele 1.

The stationary distribution of the diffusion is a Dirichlet distribution in this case.

The density is given by

f (x1, x2) = 0.96x−0.41 (4.4)

for x ∈ K. Again, for h = 1/10, the curve is shaped parallel to the x2 axis, even

for T = 5 and the structure parallel to the x1 axis is not similar to the Dirichlet

distribution (Figures 4.7, 4.8 and 4.9). For h = 1/25 and h = 1/40, the simulations

illustrate the convergence of the Markov chain approximation to the Dirichlet dis-

tribution. Furthermore, the transition from the initial, uniform distribution to the

stationary distribution can be seen for these simulation runs in Figures 4.10-4.15.

For T = 0.5 (Figures 4.10 and 4.13), much more probability mass is concentrated

on the points with x1 >> 0 and there are less realisations with small values for x1

than for T = 5 (Figures 4.12 and 4.15).
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Figure 4.7: Simulation of the Dirichlet distribution with h = 1/10, T = 0.5

Figure 4.8: Simulation of the Dirichlet distribution with h = 1/10, T = 1
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Figure 4.9: Simulation of the Dirichlet distribution with h = 1/10, T = 5

Figure 4.10: Simulation of the Dirichlet distribution with h = 1/25, T = 0.5
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Figure 4.11: Simulation of the Dirichlet distribution with h = 1/25, T = 1

Figure 4.12: Simulation of the Dirichlet distribution with h = 1/25, T = 5
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Figure 4.13: Simulation of the Dirichlet distribution with h = 1/40, T = 0.5

Figure 4.14: Simulation of the Dirichlet distribution with h = 1/40, T = 1
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Figure 4.15: Simulation of the Dirichlet distribution with h = 1/40, T = 5

4.2 Simulations of a Distribution with Unknown

Density

Finally, we want to simulate a stationary distribution of the Wright-Fisher diffu-

sion with an unknown density. No analytical formula is known for the stationary

distribution when

µ =

 0 0.5 1
0.5 0 1
0.5 1 0

 . (4.5)

Compared to the uniform distribution, the higher value for µ13, µ23 and µ32 corre-

sponds to more mutation. Since mutation makes the process move away from the

vertices, more probability mass is concentrated in the center of K. The likelihood

to get combinations with small x1, that is a small proportion of allele 1 is high,

because the first column of µ (which is the mutation to allele 1) consists of lower

values than the other columns.

Similar to the simulations of the Dirichlet distribution, the transition from the initial
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distribution to the stationary distribution with more probability mass being concen-

trated in the center is clearly visible for all chosen values of h (Figures 4.16-4.24).

Figure 4.16: Simulation of the distribution with unknown density and h = 1/10,
T = 0.5
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Figure 4.17: Simulation of the distribution with unknown density and h = 1/10,
T = 1

Figure 4.18: Simulation of the distribution with unknown density and h = 1/10,
T = 5
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Figure 4.19: Simulation of the distribution with unknown density and h = 1/25,
T = 0.5

Figure 4.20: Simulation of the distribution with unknown density and h = 1/25,
T = 1
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Figure 4.21: Simulation of the distribution with unknown density and h = 1/25,
T = 5

Figure 4.22: Simulation of the distribution with unknown density and h = 1/40,
T = 0.5
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Figure 4.23: Simulation of the distribution with unknown density and h = 1/40,
T = 1

Figure 4.24: Simulation of the distribution with unknown density and h = 1/40,
T = 5
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Chapter 5

Conclusion

We investigate the evolution of proportions of alleles in a population over a long

time horizon by simulating the stationary distribution of the Wright-Fisher diffusion

using Markov Chain Monte Carlo techniques. The diffusion is approximated by a

locally consistent, continuous time Markov chain. This approximation guarantees

the weak convergence of the of the approximating process to the diffusion. We

combine two discretization schemes for a locally consistent approximation. The first

approach, a finite difference approach can not be used on all points on the diagonal.

On these points, we use a direct, probabilistic approach to construct the required

locally consistent Markov chain used for the simulation. We simulate distributions

for choices of parameters for which analytical formulas for the densities are known

to examine the behavior of the simulation. Finally, we simulate the stationary

distribution of the diffusion for a choice of parameters for which no analytical formula

for the stationary distribution is known.

Topics for further research include modifications of the approximating Markov

chain, its state space and the dimensions of the model. The application of the direct,

probabilistic approach not only on the diagonal, but on the whole state space can

provide new approximating Markov chains, the convergence of different methods

and a comparison with the algorithm we use, is of interest. Since the discretization

schemes described here are developed for a very general setting, an application

to a model with more than three alleles would be interesting. Furthermore, an
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approximation on a non-uniform grid could be of advantage for distributions for

which a lot of probability mass is concentrated in a certain region of the triangle.
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Appendix A

Code

function [ Xi_1,Xi_2,Xi_1_final,Xi_2_final,time ] =...

Wright_fisher(samplesize,T,m,mue)

time=zeros(samplesize,1);

for k=1: samplesize

a=inf;

b=inf;

while a+b>m

a=unidrnd(m+1)-1;

b=unidrnd(m+1)-1;

end

Xi_1(k,1)=a/m;

Xi_2(k,1)=b/m;

end

Xi_1_final=zeros(samplesize,1);

Xi_2_final=zeros(samplesize,1);

h=1/m;

%Initializing a

x=(0:h:1)’;

a_1_1=repmat(x.*(1-x),1,m+1);

40
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a_2_2=a_1_1’;

a_1_2=-x*x’;

a_2_1=a_1_2;

%Initializing b

b_1=-sum(mue(1,:))*repmat(x,1,m+1)+mue(1,1)*repmat(x,1,m+1)...

+mue(2,1)*repmat(x’,m+1,1)+mue(3,1)*(1-repmat(x,1,m+1)-repmat(x’,m+1,1));

b_2=-sum(mue(2,:))*repmat(x,1,m+1)’+mue(1,2)*repmat(x,1,m+1)...

+mue(2,2)*repmat(x’,m+1,1)+mue(3,2)*(1-repmat(x,1,m+1)-repmat(x’,m+1,1));

%Initializing Q

Q=a_1_1+a_2_2-0.5*(abs(a_1_2)+abs(a_2_1))+h*(abs(b_1)+abs(b_2));

%Initializing transition probabilities

p_1=(a_1_1/2-abs(a_1_2/2)+h*max(0,b_1))./Q; %right

p_2=(a_2_2/2-abs(a_2_1/2)+h*max(0,b_2))./Q; % up

p_3=max(0,-a_1_2)./(2*Q); %left up

p_4=(a_1_1/2-abs(a_1_2/2)+h*max(0,-b_1))./Q; %left

p_5=(a_2_2/2-abs(a_2_1/2)+h*max(0,-b_2))./Q; %down

p_6=max(0,-a_2_1)./(2*Q); %down right

dt=h^2./Q;

%Diagonal

for k1=1:length(x)

k2=length(x)-k1+1;

if b_2(k1,k2)>0

Q(k1,k2)=-h*b_1(k1,k2)+x(k1)*x(k2);

p_1(k1,k2)=0;

p_2(k1,k2)=0;
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p_3(k1,k2)=(h*b_2(k1,k2)+x(k1)*x(k2)/2)/Q(k1,k2);

p_4(k1,k2)=-(h*b_1(k1,k2)+h*b_2(k1,k2))/Q(k1,k2);

p_5(k1,k2)=0;

p_6(k1,k2)=x(k1)*x(k2)/(2*Q(k1,k2));

dt(k1,k2)=h^2/Q(k1,k2);

end

if b_1(k1,k2)>0

Q(k1,k2)=-h*b_2(k1,k2)+x(k1)*x(k2);

p_1(k1,k2)=0;

p_2(k1,k2)=0;

p_3(k1,k2)=x(k1)*x(k2)/(2*Q(k1,k2));

p_4(k1,k2)=0;

p_5(k1,k2)=-(h*b_2(k1,k2)+h*b_1(k1,k2))/Q(k1,k2);

p_6(k1,k2)=(h*b_1(k1,k2)+x(k1)*x(k2)/2)/Q(k1,k2);

dt(k1,k2)=h^2/Q(k1,k2);

end

end

%Simulation

for k=1:samplesize

step=1;

index1=round(m*Xi_1(k,step)+1);

index2=round(m*Xi_2(k,step)+1);

t=exprnd(dt(index1,index2));

time(k,step)=t;

while t<T

index1=round(m*Xi_1(k,step)+1);

index2=round(m*Xi_2(k,step)+1);

z=rand();
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prob1=p_1(index1,index2);

prob2=p_2(index1,index2);

prob3=p_3(index1,index2);

prob4=p_4(index1,index2);

prob5=p_5(index1,index2);

prob6=p_6(index1,index2);

if z<prob1

Xi_1(k,step+1)=Xi_1(k,step)+h;

Xi_2(k,step+1)=Xi_2(k,step);

else

if z<prob1+prob2

Xi_1(k,step+1)=Xi_1(k,step);

Xi_2(k,step+1)=Xi_2(k,step)+h;

else

if z<prob1+prob2+prob3

Xi_1(k,step+1)=Xi_1(k,step)-h;

Xi_2(k,step+1)=Xi_2(k,step)+h;

else

if z<prob1+prob2+prob3+prob4

Xi_1(k,step+1)=Xi_1(k,step)-h;

Xi_2(k,step+1)=Xi_2(k,step);

else

if z<prob1+prob2+prob3+prob4+prob5

Xi_1(k,step+1)=Xi_1(k,step);

Xi_2(k,step+1)=Xi_2(k,step)-h;

else

if z>=prob1+prob2+prob3+prob4+prob5

Xi_1(k,step+1)=Xi_1(k,step)+h;

Xi_2(k,step+1)=Xi_2(k,step)-h;

end
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end

end

end

end

end

index1=round(m*Xi_1(k,step)+1);

index2=round(m*Xi_2(k,step)+1);

t=t+exprnd(dt(index1,index2));

time(k,step)=t;

Xi_1(k,step+1);

Xi_2(k,step+1);

Xi_1_final(k)=Xi_1(k,step+1);

Xi_2_final(k)=Xi_2(k,step+1);

step=step+1;

end

end

end
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