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ABSTRACT

THREE ESSAYS ON QUANTILE REGRESSION

by

Liang Wang

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor Antonio F. Galvao

The first chapter studies identification, estimation, and inference of general uncon-

ditional treatment effects models with continuous treatment under the ignorability

assumption. We show identification of dose-response functions under the assump-

tion that selection to treatment is based on observables. We consider estimation of

dose-response functions through moment restriction models with generalized resid-

ual functions which are possibly non-smooth, and propose a semiparametric two-step

estimator. This general formulation includes average and quantile treatment effects

as special cases. The asymptotic properties of the estimator are derived. We also de-

velop statistical inference procedures and show the validity of a bootstrap approach

to implement these methods in practice. Monte Carlo simulations demonstrate that

the test statistics have good finite sample properties. Finally, we apply the proposed

methods to estimate unconditional average and quantile effects of mothers’ weight

gain and age on birthweight.

The second chapter develops a new minimum distance quantile regression (MD-

QR) estimator for panel data models with fixed effects. We establish consistency

and derive the limiting distribution of the MD-QR estimator for panels with a large

number of cross-sections and time-series. The limit theory allows for both sequential

and joint limits. The proposed estimator is efficient in the class of minimum distance

estimators. In addition, the MD-QR estimator is computationally fast, especially

ii



for large cross-sections. Monte Carlo simulations are conducted to evaluate finite

sample performance. Finally, we illustrate the use of the estimator with a simple

application to the investment equation model.

The third chapter proposes tests for slope homogeneity across individuals in quan-

tile regression fixed effects panel data models. The tests are based on the Swamy

statistic. We establish the asymptotic null distribution of the tests under large panel

data, with sequential and joint limits. Monte Carlo experiments show good perfor-

mance of the proposed tests in finite samples in terms of size and power. Finally, we

test and reject the hypothesis of homogeneous speed of capital structure adjustment

across firms using a panel dataset.
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1

Chapter 1

Uniformly Semiparametric Efficient Estimation of

Treatment Effects with a Continuous Treatment

1.1 Introduction

This chapter studies identification, estimation, and inference of general uncondi-

tional treatment effect (TE) models with a continuous dose of treatment. We con-

sider estimating the parameters of interest, dose-response functions (DRF), through

moment restriction models in which generalized residual functions are possibly non-

smooth. In this general formulation, the DRF include mean and quantile functions

as special cases, and consequently average treatment effects (ATE) and quantile

treatment effects (QTE) are direct applications of the methods developed in this

chapter.

In this chapter, the ignorability assumption is used to achieve identification of

parameters of interest. The ignorability assumption states that “given a set of

observed covariates, each individual is randomly assigned either to the treatment

group or to the control group”; see Firpo (2007). This condition has been largely

employed in TE literature, see e.g. Rubin (1977), Barnow et al. (1980), Heckman

et al. (1998), Dehejia and Wahba (1999), Firpo (2007), Flores (2007), Angrist and

Pischke (2009), and Cattaneo (2010) for a review.

Based on the identification condition, we construct a two-step estimation proce-

dure. The implementation of the estimator in practice is simple. In the first step,

one estimates a ratio of two conditional distributions, which is similar to a propen-

sity score. In the second step, an optimization problem is solved. It is important
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to note that, once the identification is achieved and a DRF is estimated, other pa-

rameters of interest based on these functions can be estimated with little additional

effort. For example, one can easily estimate TE, which are defined as differences of

the DRF evaluated at different levels of treatment. In addition, one could estimate

the entire curve of potential outcomes or the DRF.

Mild sufficient conditions are provided for the two-step estimator to have desired

asymptotic properties, namely, consistency, weak convergence, and semiparametric

efficiency. In particular, we show that the two-step estimator of a DRF is uniformly

consistent over a set of treatment. Different from the binary or multi-valued treat-

ment models, in which case pointwise results are equivalent to uniform results, when

treatment levels are an interval T , the uniform results are stronger than pointwise

results, and consequently, only pointwise results are often not adequate for infer-

ences. In addition, we show that the estimator converges weakly to a Gaussian

process, and that it is uniformly semiparametric efficient. For the latter derivation

we use the method of Bickel et al. (1993).

Technically, the derivations of the asymptotic properties for the proposed esti-

mator are independently interesting. Because the semiparametric model considered

encompasses continuous treatment levels and nuisance parameters, both of which

are infinit dimensional, existing results available in the literature are not directly

applicable. Therefore, an additional contribution of this chapter is to provide suffi-

cient conditions for consistency and weak convergence of generic moment restriction

estimators (Z-estimators) with possibly non-smooth functions and a nuisance param-

eter, when both the parameter of interest and the nuisance parameter are possibly

infinite dimensional. These general results are used to prove the asymptotic prop-

erties of the two-step estimator discussed above. In this general setting, the data

need not be independent and identically distributed (i.i.d.). These results extend

those of Chen et al. (2003) in that the parameter of interest is not in a Euclidean
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space but in a generic Banach space. Moreover, the results extend Theorem 3.3.1 of

van der Vaart and Wellner (1996) in that a possibly infinite dimensional nuisance

parameter needs to be estimated in the first step. This is an important innovation

because it facilitates the derivation of the limiting results for general Z-estimators,

and can be utilized in future works for other statistical models.

In addition, we develop statistical inference procedures based on the two-step es-

timator. In particular, we conduct inference on a DRF uniformly over the treatment

levels. We propose testing procedures for the hypothesis of the equality of a DRF

and any given function. The test statistics used are Kolmogorov and Cramér-von

Mises types, which detect any deviation of the null hypothesis. Since the parameter

of interest is infinite dimensional and the weak limit of these statistics are not stan-

dard, we compute critical values using a bootstrap method. We provide sufficient

conditions under which the bootstrap is valid, and discuss an algorithm for practical

implementation. The proof of the validity of the bootstrap is also an extension of

that in Chen et al. (2003).

We conduct Monte Carlo simulations to evaluate finite sample performance of the

test statistics. The simulations show that the Cramér-von Mises type test statistic

has good empirical size and high power against a few alternatives. In addition, the

result is improved when the sample size increases, and is not sensitive to the selected

numbers of bootstrap.

To illustrate the proposed methods, we consider an empirical application to a

birthweight study using data from the National Vital Statistics System of Centers

for Disease Control and Prevention. We estimate unconditional average and quantile

dose-birthweight function for mothers’ weight gain during pregnancy as well as age

separately. The empirical results document important heterogeneity in the dose-

birthweight functions for mothers’ weight gain during pregnancy and age across

quantiles. The findings provide evidence that, in general, more weight gain during
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pregnancy leads to higher birthweight. However, the treatment effects differ at

different levels of weight gain. For a given quantile of interest, positive impacts

are larger for low and high weight gains while relatively lower in the middle range

of weight gain. The quantile dose-birthweight functions of the mother’s age on

birthweight is downward-sloping. In addition, for a given age, this impact becomes

more severe for lower parts of the distribution of birthweight. Although intuitive,

this result complements the existing results in the literature.1

1.1.1 Literature and Outline

There is large and growing literature on unconditional TE, most of which focuses on

models with discrete (usually binary) treatment levels. Hahn (1998), Heckman et al.

(1998), and Imbens et al. (2006) study efficient estimation of the average treatment

effect nonparametrically. To estimate the average treatment effect, Hirano et al.

(2003) estimate propensity scores nonparametrically first while Abadie and Imbens

(2006) apply matching methods. In addition, Li et al. (2009) propose “efficient es-

timation of average treatment effects with mixed categorical and continuous data.”

The study of unconditional average TE has been extended to the quantile frame-

work by Firpo (2007) with a two-step estimator that is semiparametric efficient.

This method, as that of Hirano et al. (2003), is based on nonparametric estima-

tion of propensity score in the first step. There is also literature on multi-valued

treatment effect models. Imbens (2000) shows that the multi-valued counterpart of

the propensity score theorem of Rosenbaum and Rubin (1983) still holds. Imbens

(2000) and Lechner (2001) discuss the unconditional mean treatment effect. Catta-

neo (2010) extends the literature and proposes semiparametric efficient estimation

1Previous approaches to estimating birthweight outcome using quantile regressions have em-
ployed reduced form models and, therefore, cannot be interpreted as causal effects. For instance,
Abrevaya (2001) (see also Koenker and Hallock (2001) and Chernozhukov and Fernandez-Val
(2011)) used “federal natality data and found that various observables have significantly stronger
associations with birthweight at lower quantiles of the birthweight distribution.”
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of a family of multi-valued DRF which are implicitly defined by sets of possibly

over-identified non-smooth moment conditions under the ignorability condition.

However, literature on study of continuous TE is relatively sparse. Among oth-

ers, Hirano and Imbens (2004) and Imai and van Dyk (2004) develop the generalized

propensity score for continuous treatment models, and Flores (2007) develops non-

parametric estimators for the ADRF, its maximizer, and its global maximum under

the ignorability assumption. Also, Florens et al. (2008) consider the identification of

average TE using control functions. More recently, Lee (2012) studies unconditional

distribution of potential outcomes with continuous treatments as a partial mean pro-

cess with generated regressors. Despite this sparsity, many questions of interest in

applied research involve continuous treatments. For example, in the study of TE of

mothers’ weight gain during pregnancy as well as mother’s age on birthweight, the

weight gain in pounds and age are continuous variables.

This chapter contributes to the existing TE literature by studying continuous

treatments and considering general forms of dose response for TE models, which

include both ATE and QTE as special cases. Thus, this chapter extends the liter-

ature on ATE and QTE for discrete and multi-valued doses of treatment (see e.g.

Heckman and Vytlacil (2005), Firpo (2007), Cattaneo (2010)) to continuous doses of

treatment. We point out that the extension from the finite to continuous treatment

levels is non-trivial. In fact, since the parameters of interest are now infinite dimen-

sional, the results need to be uniform on the set of treatment levels. In addition,

we extend the literature on continuous treatments, which, to our knowledge, only

allows for ATE (see, e.g., Flores (2007)), to general (possibly non-smooth) DRF,

with QTE being an important example. This is a important innovation because

the extension to the non-smooth cases are important in practice and technically

challenging.

The remaining of the chapter is organized as follows. Section 1.2 provides iden-



6

tification conditions of the continuous treatment model and proposes a two-step

estimator. Section 1.3 studies the asymptotic properties of the two-step estimator.

Section 1.4 provides Monte Carlo simulation results and Section 1.5 illustrates the

two-step estimator with an application to the estimation of dose-birthweight func-

tions. Section 1.6 concludes the chapter. The proofs of the main results are collected

in the Appendix A3.

Notations: Let E and E denote the expectation and sample average, respec-

tively. Let  ,
p→, and

p∗→ denote weak convergence, convergence in probability, and

convergence in outer probability, respectively.

1.2 The Model, Identification, and Estimation

In this chapter, we assume that a random sample of size n is available. The objective

is to learn how an outcome variable of an agent changes as the dose of some treatment

variable varies. The dose is denoted by t, where t ∈ T , an interval in R, and the

outcome variable is denoted by Y (t). More specifically, for each t ∈ T , Y (t) is the

outcome when the dose of treatment is t. When t varies in T , a random process Y (t)

is defined. The random process Y (t) indexed by t ∈ T denotes potential outcomes

under treatment levels in T . However, one cannot observe the random process Y (t)

for all t ∈ T . Rather, only a single Y (t0) can be observed, where t0 is the realization

of a random variable T . Therefore, the observed outcome is the random variable

Y = Y (T ) =

∫
t∈T

Y (t) d1{t ≥ T},

where 1{·} is the indicator function.

Ideally we would like to estimate the value of the DRF at t0 using the sample

with T = t0. However, in general, due to the self-selection problem, bias can be

introduced by direct use of the sample counterparts to calculate treatment effects.
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To illustrate this point, we consider the estimation of average treatment effects as

an example. For any t1 < t < t2, since

E[Y |T = t2]− E[Y |T = t1]︸ ︷︷ ︸
Observed difference in birthweight

= E[Y (t2)− Y (t1)|T = t]︸ ︷︷ ︸
Average treatment effect on the treated

+ E[Y (t2)|T = t2]− E[Y (t2)|T = t]︸ ︷︷ ︸
Selection bias 1

+ E[Y (t1)|T = t]− E[Y (t1)|T = t1]︸ ︷︷ ︸
Selection bias 2

,

we have

E[Y |T = t2]− E[Y |T = t1]︸ ︷︷ ︸
Observed difference in birthweight

= E[Y (t2)− Y (t1)]︸ ︷︷ ︸
Average treatment effect on the treated

+ Et[E[Y (t2)|T = t2]− E[Y (t2)|T = t]︸ ︷︷ ︸
Average of selection bias 1

]

+ Et[E[Y (t1)|T = t]− E[Y (t1)|T = t1]︸ ︷︷ ︸
Average of selection bias 2

].

This simple example indicates that, due to the existence of averages of the selection

biases 1 and 2, it is impossible to directly use the sample counterparts to calculate

treatment effects. To solve this problem, it is common in the literature to assume the

existence of a set of random variables X conditional on which Y (t) is independent

from T for all t ∈ T . In such a case,

E[Y |X, T = t2]− E[Y |X, T = t1] = E[Y (t2)|X, T = t2]− E[Y (t1)|X, T = t1]

= E[Y (t2)|X]− E[Y (t1)|X]

= E[Y (t2)− Y (t1)|X],

which has a causal interpretation. This is the ignorability condition and it is dis-

cussed in more detail below. Finally, we need to combine the results for each X
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and obtain an unconditional treatment effect. In this case, using the law of iterated

expectation, this unconditional expectation can be recovered.

The objective of this chapter is to study ADRF and QDRF. From the corre-

sponding DRF it is straightforward to recover the average treatment effect (ATE)

and quantile treatment effect (QTE), respectively. To accomplish this aim we de-

velop a general framework for generic moment restriction estimators (Z-estimators)

with possibly non-smooth functions. For each t ∈ T , the parameter of interest

β(t) ∈ B ⊂ R is assumed to uniquely solve the identifying conditions as

E[m(Y (t); β(t))] = 0,

where m(·) is a generalized residual function, which we discuss in more details in

condition I.I stated below. Then the DRF is defined as the parameters of interest,

β(t), that solve the moment condition. As we will see below, ADRF and QDRF

result from choosing specific forms of m(·).

Now we state assumptions on the general model to achieve identification of the

parameters of interest.

I.I For each t ∈ T , β0(t) uniquely solves E[m(Y (t); β(t))] = 0, where m : R×B 7→ R

is measurable.

I.II For all t ∈ T , we have

1 Y (t) ⊥ T |X;

2 f0T |X,Y (t|x, y) > 0 for t ∈ T , x ∈ X and y ∈ Y .

I.III Assume that
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1 There exists a function e(y) with
∫
e(y) dy <∞ such that

|m(y; β(t0))fT,Y |X(t0 + ∆t, y|x)| ≤ e(y);

2 E[m(Y ; β(t0))|X, T = t0] = lim∆t↓0 E[m(Y ; β(t0))|X, T ∈ [t0, t0+∆t]]. Also

the interval T is right open.

Condition I.I is an identification condition were Y (t) observable. The parame-

ter of interest, β(t), is defined by this moment condition. However, this condition

cannot be used directly to estimate β(t) because our data are not experimental and

Y (t) are not observable for all t ∈ T . Therefore, condition I.II.1, the assumption of

ignorability, is fundamental. According to condition I.II.1, although the assignment

of the treatment level is not random, it is random within subpopulations character-

ized by X. This assumption has been used, among others, by Dehejia and Wahba

(1999) and Heckman et al. (1998). Condition I.II.2 states that for all x ∈ X and

y ∈ Y , the density of treatment levels is positive. In our model the triple (X, Y, T )

is observable, and a random sample of size n can be obtained. Condition I.III allows

us to change orders of a limit and an integral. Also, that the set T is right open is

without loss of generality. If we would like to have T to be right closed, we shrink

the interval [t0 −∆t, t0] to obtain t0.

The following two examples show that ADRF and QDRF are special cases of

β(t) in condition I.I.

Example (Average). We first discuss the identification of the ADRF. Setting

m(Y (t);µ(t)) = Y (t) − µ(t) and letting the first moment to equal to zero, we can

obtain µ0(t) = E[Y (t)], the unconditional ADRF. From this it is easy to recover the

ATE, which is given by ATE(t, t′) = µ0(t)− µ0(t′).

Example (Quantile). QDRF is another special case of our general model. Let

m(Y (t); qτ (t)) = τ − 1{Y (t) < qτ (t)}, we obtain qτ0(t) ∈ inf{q : FY (t)(q) ≥ τ}, the
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unconditional τ th QDRF, where FY (t) is the distribution function of Y (t). From the

QDRF, one can estimate the QTE as QTE(t, t′) = qτ0(t) − qτ0(t′). Note that, as

is in Firpo (2007) and Cattaneo (2010), in this chapter the QTE is defined as the

difference of the τ th quantile at different levels of treatment. This definition does

not require the assumption of rank preservation, and it is regarded as “a convenient

way to summarize interesting aspects of marginal distributions of potential outcomes.

However, if rank preservation holds, then the simple differences in quantiles turn out

to be the QTE.” (Firpo (2007))

The identification result is presented in the following theorem. For notational

convenience, denote u := (x>, y)> and U := (X>, Y )>.

Theorem 1. Under conditions I.I–I.III, we have

E[m(Y (t); β(t))] = E [m(Y ; β(t))π0(U ; t)] (1.1)

for each t ∈ T , where π0(u; t) :=
fT |X,Y (t|x,y)

fT |X(t|x)
. Consequently,

E [m(Y ; β(t))π0(u; t)] = 0 (1.2)

if and only if β(t) = β0(t).

Proof. See Appendix A3.

The result in equation (1.1) allows identification of the DRF. The left hand

side of equation (1.1) is used to define β(t), which involves the unobservable Y (t).

Consequently, it cannot be used to estimate β(t). Nevertheless, the right hand side

of equation (1.1) is expressed in terms of observable (X, Y, T ), and therefore, can

be used to estimate β(t). Note that Y (t) is not observable while Y is. The intuition

behind the result is that the existence of X delivers identification the parameter of
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interest. That is, conditional on observed covariates X, each individual is randomly

assigned to a treatment level.

Remark 1. The result in Theorem 1 indeed has a similar format as the equation

in (2) of Cattaneo (2010) after we transform the latter. We begin with

E

[
1{T = t}m(Y ; β(t))

pt(X)

]
= 0.

By the law of iterated expectation, the left hand side of the previous equation equals

E

[
m(Y ; β(t))

pt (X)
E [1 {T = t} |X, Y ]

]
. (1.3)

Noting that

E [1 {T = t} |X, Y ] = P (T = t|X, Y )

and, by definition, pt (X) = P (T = t|X), equation (1.3) equals

E

[
m(Y ; β)

P (T = t|X, Y )

P (T = t|X)

]
.

Thus, our result simply “replaces” the conditional probabilities by conditional den-

sities.

Given the identification condition in equation (1.2) of Theorem 1, we are able

to estimate the parameters of interest. We propose a Z-estimator that involves two

steps estimation as follows.2

Step 1 Estimate π0(U ; t) parametrically or nonparametrically and obtain an esti-

mator π̂.

2We work directly with the estimating equations. However, estimation could be carried with
GMM methods.
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Step 2 Find a zero β̂(t) for each t ∈ T

1

n

n∑
i=1

m(Yi; β(t))π̂(Ui; t) = 0. (1.4)

The estimator β̂(t) is defined as the zero of the equation above3.

The identification conditions and the estimator are illustrated below using the

previous two examples.

Example (Average, continued). The identification condition for µ0(t) is

E[(Y − µ0(t))π0(U ; t)] = 0.

An estimator of µ0 (t) is

µ̂ (t) =

(
1

n

n∑
i=1

π̂ (Ui; t)

)−1
1

n

n∑
i=1

π̂ (Ui; t)Yi. (1.5)

Example (Quantile, continued). The identification condition for qτ0(t) is

E[(τ − 1{Y < qτ0(t)})π0(U ; t)] = 0.

An estimator of qτ0 (t) is

q̂τ (t) = arg min
q

1

n

n∑
i=1

π̂0 (Ui; t) ρτ (Yi − q) , (1.6)

where ρτ (u) := u(τ − 1{u < 0}) is the check function as in Koenker and Bassett

(1978).

3The zero does not have to be exact. We only need a solution that approximately solves the
equation, which is common in literature; see, e.g., He and Shao (1996) and He and Shao (2000).
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1.3 Asymptotic Properties

In this section, we first derive the uniform consistency and the weak limit, and show

the uniform semiparametric efficiency of the general two-step estimator described

above. Second, we apply the general results and derive the corresponding asymptotic

properties of ADRF and QDRF. In addition, we discuss estimation of the nuisance

parameter, π0, and inference based on the two-step estimator.

To establish these results, we first extend existing theoretical results on moment

condition restriction estimators (Z-estimators). Lemmas 1 and 2 in Appendix A1

show consistency and weak convergence of the two-step estimator of the infinite

dimensional parameters; the function in the moment condition defining the param-

eter does not need to be continuous. These results are an extension of Chen et al.

(2003) in that the parameter of interest is not in a Euclidean space but in a generic

Banach space. Moreover, the results extend Theorem 3.3.1 of van der Vaart and

Wellner (1996) in that a possibly infinite dimensional nuisance parameter needs to

be estimated in the first step.

We then proceed by applying Lemmas 1 and 2 to show uniform consistency and

weak convergence of the estimator of DRF, β̂(t), in `∞(T ). Applications of these

results to the specific cases of ADRF and QDRF are also provided. The uniform

semiparametric efficiency is based on the pointwise semiparametric efficiency and

the weak convergence of the estimator to a tight random process. We then provide

ways of estimating the nuisance parameter π0. As for the inference, we focus on

hypothesis testing based on a Kolmogorov and a Cramér-von Mises statistic.

1.3.1 Consistency

Consistency is a desired property for most estimators. In this chapter, different from

the discrete or multi-valued treatment models, the treatment levels take values on

an interval T . Therefore, the consistency results are established uniformly over the



14

set T . For the general two-step estimator given in equation (1.4) to be uniformly

consistent, we state the following sufficient conditions.

C.I |E[m(Y ; β̂(t))π̂(U ; t)]|∞ = op(1).

C.II |E[m(Y ; βn(t))π0(U ; t)]| → 0 implies |βn(t) − β0(t)|∞ → 0 for any sequence

βn(t).

C.III supβ∈B |E[m(Y ; β(t))]|∞ < M <∞ for some M > 0.

C.IV |π̂ − π0|∞ = op(1).

C.V supβ(t)∈`∞(T ),π∈Πδn
|E[m(Y ; β(t))π(U ; t)]−E[m(Y ; β(t))π(U ; t)]|∞ = op∗(1) for

δn ↓ 0, or

C.V’ {ψ1,β,t : β ∈ `∞(T ), t ∈ T } and {ψ2,π,t : π ∈ Πδn , t ∈ T } are Glivenko-

Cantelli with respective envelopes F1 and F2 such that EF1F2 < ∞, where

ψ1β,t = m(Y ; β(t)) and ψ2,π,t = π(U ; t).

Conditions C.I defines the Z-estimator and C.II is an identification condition

for the Z-estimator. Pakes and Pollard (1989) and Chen et al. (2003) have similar

assumptions. For a detailed discussion of this type of identification condition, see

p. 45 of van der Vaart (1998). Condition C.III only requires the moment of the

estimating equation to be finite. This is a standard assumption and analogous to

condition 4 (b) in Cattaneo (2010). Condition C.IV imposes consistency estimation

of the nuisance parameter. This is also a usual requirement, which is appears in

equation (2.1) of Theorem 2 and equation (3.1) of Theorem 3 of Cattaneo (2010). We

will discuss estimations of the nuisance parameter in Section 3.4 below. Condition

C.V is a uniform law of large numbers, which is implied by condition C.V’. These

conditions correspond to assumption 4 (a) of Cattaneo (2010), and are high level

conditions, and we will provide more primitive conditions for specific cases, i.e.,
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average and quantile. Now we state the consistency result for the estimator of the

DRF.

Theorem 2. Suppose that E[m(Y, β0(t))π0(U ; t)] = 0, and that conditions C.I–

C.V are satisfied. Then

sup
t∈T
|β̂(t)− β0(t)| = op∗(1).

Proof. See Appendix A3.

Now we discuss the consistency of the two-step estimators of ADRF and QDRF

given in equations (1.5) and (1.6), respectively. To establish the result for the ADRF,

the following conditions are imposed.

AC.I There exists 0 < MY < ∞ such that E[Y (t)] < MY . Also, the parameter

space for µ is a bounded sub-Banach space M of `∞(T ).

AC.II The function class {ψ2,π,t : π ∈ Πδ, t ∈ T } is Glivenko-Cantelli, and has an

envelope F2(y) such that yF2(y) that is integrable.

Condition AC.I requires that the expectation of Y (t) be finite. Also the diameter

of the parameter space is finite, which is a common condition for M-estimators,

see e.g., Theorem 3 of Chen et al. (2003) or Wooldridge (2010). Hirano et al.

(2003) assume the second moment of Y (1) and Y (0) to be finite, which is slightly

stronger than our condition. This mainly is because they do not explicitly describe

conditions for the consistency of their estimator. Cattaneo (2010) has the same

second moment restriction as well. Condition AC.II is a high level condition on

the nuisance parameters, and will be discussed in more detail below. Nevertheless,

there are many functional classes satisfiy this condition. Examples include the

smooth function class in Example 19.9 of van der Vaart (1998) for sufficiently smooth
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functions and sufficiently small tail probabilities. Uniform consistency for the two-

step estimator of the ADRF is summarized in the following corollary.

Corollary 1 (Average). The two-step estimator of ADRF is consistent, i.e., |µ̂(t)−

µ0(t)|∞ = op∗(1), provided conditions AC.I–AC.II and C.IV are satisfied.

Proof. See Appendix A3.

For the uniform consistency of the QDRF estimator over t ∈ T , the following

conditions are imposed.

QC.I Uniformly in t, the densities fY (t)(y) is bounded above and fY (t)(qτ0(t)) > 0.

Also, for any δ > 0, inf |q−qτ0|∞>δ |E[(τ − 1{Y < q})π0(U ; t)]∞ > εδ fir some

εδ > 0.

QC.II There exists 0 < Mπ <∞ such that π0(u; t) < Mπ.

QC.III The function class {ψ2,π,t : π ∈ Πδ, t ∈ T } is Glivenko-Cantelli, and have

an envelope F2(y) such that F2(y) that is integrable.

Condition QC.I is an identification condition on the parameter of interest. This

condition is the analogue to the general condition C.I, and it is similar to A.2 and A.3

of Angrist et al. (2006), and corresponds to Assumption 2 of Firpo (2007). Cattaneo

(2010) uses a similar assumption for the quantile estimation. Condition QC.II

is a boundedness condition of the joint density of (U , T ), and is the continuous

treatment version of Assumption 1 (ii) of Firpo (2007). Condition QC.III is weaker

than condition AC.II since only F2(y) is required to be integrable. This is because

τ − 1{·} is already uniformly bounded. The consistency result for the estimator of

QDRF is provided in the following corollary.

Corollary 2 (Quantile). For a given quantile of interest, the two-step estimator of

the QDRF is consistent, i.e., |q̂τ (t)− qτ0(t)|∞ = op∗(1), provided conditions QC.I–

QC.III and C.IV are satisfied.
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Proof. See Appendix A3.

1.3.2 Weak Convergence

In this section, we apply the general results of Lemma 2 to derive the limiting

distribution of the general two-step estimator in (1.4). Later, we demonstrate the

results for ADRF and QDRF estimators. To this end, we impose the following

sufficient conditions.

G.I |E[m(Y ; β̂(t))π̂(U ; t)]|∞ = op(1/
√
n).

G.II The map β 7→ E[m(Y ; β)π0(U ; ·)] is Fréchet differentiable at β0 with a con-

tinuously invertible derivative Z1(β0, π0).

G.III E[m(Y ; β(t))] is Lipschitz continuous at β0(t). In addition,

supβ∈B |E[m(Y ; β(t))2]|∞ < M <∞ for some M > 0.

G.IV |π̂ − π0|∞ = op(n
−1/4).

G.V The functional classes {ψ1,β,t : β ∈ `∞δ (T ), t ∈ T } and {ψ2,π,t : π ∈ Πδ, t ∈ T }

are uniformly bounded Donsker classes.

G.V’ The functional classes {ψ1,β,tψ2,π,t : β ∈ `∞δ (T ), π ∈ Πδ, t ∈ T } is a Donsker

classes.

G.VI
√
n
(
E[m(Y ; β0(t))(π(U ; t)− π0(U ; t))]|π=π̂ + E[m(Y ; β0(t))π0(U ; t)]

)
converges weakly to a tight random element G(t) in `∞(T ).

Condition G.I defines the Z-estimator, which is slightly stronger than condition

C.I but still allows the right hand size to be zero only approximately. This type

of op(n
−1/2) condition is also assumed in (i) of Theorem 3.3 of Pakes and Pollard

(1989) and (2.1) of Theorem 2 of Chen et al. (2003). Condition G.II requires the

model to be differentiable in β and the derivative is invertible, and corresponds to
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(ii) of Theorem 3.3 of Pakes and Pollard (1989) and (2.2) of Theorem 2 of Chen

et al. (2003). Condition G.III corresponds to assumption 6 (b) of Cattaneo (2010).

Condition G.IV strengthens condition C.IV such that the estimator of the nuisance

parameter converges at a rate faster than n−1/4. A similar condition appears in

equation (4.1) of Theorem 4 and equation (5.1) of Theorem 5 of Cattaneo (2010).

Conditions G.V and G.V’ are similar conditions to Assumption 6 (a) of Cattaneo

(2010). Those conditions are high level ones and will be discussed below. Now we

present the weak convergence result.

Theorem 3. Suppose that |E[m(Y ; β0(t))π0(U ; t)]|∞ = 0, that |β̂ − β0|∞ = op∗(1),

and that conditions G.I–G.VI are satisfied. Then

√
n(β̂(t)− β0(t)) Z−1

1 (β0(t), π0(U ; t))G(t)

in `∞(T ).

Proof. See Appendix A3.

The result given in Theorem 3 shows that the limiting distribution of the two-

step DRF estimator is nonstandard. This result is due to the presence of the set of

continuous treatments. However, if one fixes the treatment at t̄, then the limiting

distribution collapses to a simple normal distribution. In spite of this, below we

provide inference methods for DRF over the set of treatments that are simple to

implement in practice. In addition, this result has important applications to the two

leading examples of ADRF and QDRF. For the weak convergence of the two-step

estimator of the ADRF, we impose the following conditions.

AG.I The parameter space for µ0 is a bounded sub-Banach spaceM of `∞(T ). In

addition, E[Y (t)2] < MY for some 0 < MY <∞.
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AG.II The function class {ψ3,π,t : π ∈ Πδ, t ∈ T } is Donsker, where ψ3,π,t(u) =

yπ(u; t).

AG.III
√
nE[(Y − µ0(t))(π(U ; t)− π0(U ; t))]|π=π̂ converges weakly.

Condition AG.I is standard and requires the parameter space to be bounded.

Also the second moment of Y (t) is bounded, which is used in Hirano et al. (2003) and

Cattaneo (2010). Many function classes satisfy condition AG.II, i.e., the smooth

function class discussed above. Condition AG.III is a high level condition on the

nuisance parameter, and we provide an estimator that satisfies this condition.

Corollary 3 (Average, continued). The two-step estimator of the ADRF is
√
n-

consistent and converges weakly in `∞(T ), provided conditions AG.I–AG.III and

G.IV.

Proof. See Appendix A3.

To obtain the weak convergence of the QDRF estimator, equation (1.6), we

impose the following conditions.

QG.I The function class {ψ2,π,t : π ∈ Πδ, t ∈ T } is Donsker with a uniform bound.

QG.II
√
nE[(τ − 1{Y < qτ0(t)})(π(U ; t)− π0(U ; t))]|π=π̂ converges weakly.

Examples satisfying condition QG.I include smooth function classes. Condition

QG.II is a high level condition and will be discussed in the section of the estimation

of the nuisance parameter. This assumptions is similar to AG.III and is a version

of condition G.VI. Now we state the weak convergence result for the estimator of

QDRF.

Corollary 4 (Quantile, continued). The two-step estimator of QDRF is
√
n-

consistent and converges weakly in `∞(T ), provided conditions QC.I–QC.II, QG.I–

QG.II, and G.IV.

Proof. See Appendix A3.
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1.3.3 Semiparametric Efficiency of the Two-Step Estimator

In this subsection we first calculate the efficient influence function of the parameter

β(t) in the following semiparametric model

F = {Fβ,π : β ∈ `∞(T ), π ∈ Π},

where Fβ0,π0 is the distribution function of the observed data. Then we provide

sufficient conditions under which the proposed two-step estimator is uniformly semi-

parametric efficient.

Claim 1. Suppose Γ0(t) := ∂E[m(Y (t);β0(t))]
∂β(t)

exists. For each t ∈ T , the efficient

influence function of the parameter β(t) is

Ψβ(y, t,x) = −Γ−1
0 (t)ψ(y,x, t, β0, π0, e0),

where ψ(y,x, t, β0, π0, e0) = m(y; β0(t))π0(u; t)− e0(x, β0(t))(π0(u; t)− 1) with

e0(x, β(t)) = E[m(Y ; β(t))|X = x].

Proof. See Appendix A3.

Based on the efficient influence function of β(t), we show that the two-step

estimator is uniformly semiparametric efficient provided the following condition

E.
√
nE[m(Y ; β0(t))π̂(U ; t)] =

√
nE[ψ(Y,X, t, β0, π0, e0)] + op(1).

Condition E is critical to the efficiency of the two-step estimator, and it is sim-

ilar to its corresponding condition for the multi-valued model is condition (4.2) of

Cattaneo (2010).

Theorem 4. Assume that the conditions of Theorem 3 and condition E hold.

Then the two-step estimator is uniformly semiparametric efficient.

Proof. See Appendix A3.
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This result guarantees that the two-step estimator is uniformly semiparametric

efficient. Hypothesis testings based on this estimator are expected to be optimal.

1.3.4 Estimation of π0

We have been assuming that the estimator π̂ of the nuisance parameter π0 satis-

fies various conditions. In this subsection we discuss the estimation of the nuisance

parameter π0, i.e.,
fT |X,Y (t|x,y)

fT |X(t|x)
. The estimation of the nuisance parameter is a very

important step for implementation of the proposed estimator in practice. It is com-

mon in literature to estimate nuisance parameters in two-step estimators by using

a parametric model, see, e.g., Newey (1984), Murphy and Topel (1985), Newey and

McFadden (1994), Chernozhukov and Hong (2002) and Wei and Carroll (2009). For

estimators of π0 to have the desirable properties, we impose the following assump-

tions.

N.I Assume π = π(u; t;ϑ), where ϑ ∈ Rdϑ with dϑ being a positive integer.

π(u; t;ϑ) is a smooth function of ϑ with uniformly continuous, bounded, and

square integrable first derivative, π′(u; t;ϑ), with respect to ϑ.

N.II There exists ϑ̂ such that
√
n(ϑ̂− ϑ)

d→ N(0,=−1
ϑ ) with =ϑ being nonsingular.

Condition N.I is a smoothness and boundedness condition for the function to

be estimated, and condition N.II assumes that there is an estimator of the param-

eter that is asymptotically normal. Examples which satisfy condition N.II include

maximum likelihood estimator.

Claim 2. Under conditions N.I and N.II, conditions C.IV–C.V and G.IV–G.VI

hold.

Proof. See Appendix A3.
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Claim 2 can be applied to verify the conditions on the nuisance parameters for

the average and quantile examples. Now we provide a few examples to demonstrate

the estimation of π0 in practice.

Example. We estimate fY |X,T (y|x, t) and fY |X(y|x) separately. For fY |X,T (y|x, t),

assume the relationship

Y = g(X, T ; b) + ε,

and ε|X, T ∼ N(0, σ2
ε ), where g(·) is some known function and b is an unknown

parameter to be estimated. Using Nonlinear Least Square Estimation, we obtain es-

timators of the conditional mean and variance, and therefore, the conditional density

of Y given X and T . Similarly, we estimate fY |X(y|x).

Example. To estimate the conditional density fY |X,T (y|x, t), we can also assume

the following model

Λ(Y, λ) = Λ(g(X, T ), λ) + ε,

where ε|X, T ∼ N(0, σ2
ε ), g(·) is some known function, and Λ(·) is the Box-Cox

transformation function, which is defined as Λ(Z, λ) = logZ if λ = 0 and = Zλ−1
λ

otherwise. Using Maximum Likelihood Estimation, we obtain the unknown param-

eter λ and therefore the conditional density fY |X,T (y|x, t). Similarly, we estimate

fY |X(y|x).

Example. A simple approach to estimate π0 is to assume that (t, x, y) follow a

known multivariate distribution, as a Normal distribution for instance. Then, Max-

imum Likelihood Estimation can be applied and the estimator f̂T,X,Y (t, x, y) calcu-

lated, and then π̂ can be obtained.
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1.3.5 Inference on the DRF

Inference is carried uniformly over the set of treatment levels, T . Given the formu-

lation for inference of DRF, inference for the treatment effects is straightforward. In

particular, it is possible to derive manifold tests from the weak convergence results

in Theorem 3.

Kolmogorov and Cramer-von Mises type tests can be used to test general hy-

potheses on β(t), i.e., H01 : β(t) = r(t) when r ∈ `∞(T ) is known. Thus, from the

result in Theorem 3, under the null hypothesis H01,

Vn(t) :=
√
n(β̂(t)− r(t)) G(t).

More precisely, we propose the following test statistics:

T1n := sup
t∈T
|Vn(t)|,

T2n :=

∫
t∈T
|Vn(t)| dt.

They are a Kolmogorov type and a Cramér-von Mises type statistic, respectively.

Now we present the limiting distributions of the test statistics under the null hy-

pothesis.

Corollary 5. Assume the conditions of Theorem 3 hold. Under H01 : β0(t) = r(t),

as n→∞,

T1n  sup
t∈T
|G(t)|, T2n  

∫
t∈T
|G(t)| dt.

Proof. The assertion holds by Theorem 3 and the continuous mapping theorem.

In addition to testing the hypothesis β0(t) = r(t) with known r ∈ C(T ), we

could also test the hypothesis with unknown r, in which case, the estimation of
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r is needed. Often, a
√
n-consistent estimator r̂ is available, and under the null

hypothesis H02 β0(t) = r(t), the test statistic becomes

V̄n(t) :=
√
n(β̂(t)− r̂(t)) G−Gr,

where Gr is the weak limit of
√
n(r̂(t) − r(t)). Therefore, due to the estimation of

r(t), a drift component is introduced.

We propose the following test statistics:

T̄1n := sup
t∈T
|V̄n(t)|,

T̄2n :=

∫
t∈T
|V̄n(t)| dt.

Now we display the limiting distributions of the test statistics under the null

hypothesis.

Corollary 6. Assume the conditions of Theorem 3 hold. Under H02 : β0(t) = r(t),

as n→∞,

T̄1n  sup
t∈T
|G(t)−Gr|, T̄2n  

∫
t∈T
|G(t)−Gr| dt.

Proof. The assertion holds by Theorem 3 and the continuous mapping theorem.

The weak limits in Corollaries 5 and 6 are not standard. Therefore, to make

practical inference we suggest the use of bootstrap techniques to approximate the

limiting distribution. A formal justification for our simulation method, discussed

below, is stated in Lemma 3, in Appendix A1. It is also an extension of that

in Chen et al. (2003). A simple application of Corollaries 5 and 6 produces the

bootstrap procedure for the ADRF or QDRF.

Given the above framework, inference for the treatment effects is simple. Using

the inference of ATE from treatment level t1 to t2 as an example, the point estimate
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of the ATE is µ̂(t2)− µ̂(t1), which has an asymptotic normal distribution with mean

µ(t2) − µ(t1) and variance calculable from the weak limit of µ̂(t). Therefore, the

inference can be done using standard method.

Implementation of Testing Procedures

Implementation of the proposed tests in practice is simple. To test H01 with known

r(t), one needs to compute the statistics T1n or T2n. Analogously, to test H02 one

computes T̄1n or T̄2n. The steps for implementing the tests are as following.

First, the estimates of β(t) are computed by solving the problem in equation

(1.4). For special cases of DRF, as ADRF and QDRF, one replaces equation (1.4)

with (1.5) and (1.6) respectively. Second, T1n or T2n are calculated by centralizing

β̂(t) at r(t) and taking the maximum over t (for T1n) or summing over t (for T2n).

For the general case, H02 with unknown r(t), the tests can be implemented in the

same fashion. The only adjustment is after estimating β(t) one uses r̂(t) to compute

T̄1n or T̄2n.

After obtaining the statistic of test, it is necessary to compute the critical values.

We propose the following scheme. We use the statistic of test T̄1n as an example,

but the procedure is the same for the other cases. Take B as a large integer. For

each b = 1, . . . , B:

(i) Obtain the resampled data {(Y b
i ,U

b
i ), i = 1, . . . , n}.

(ii) Estimate the DRF β̂b(t) and set V b
n (t) :=

√
n(β̂b(t)− r(t))

(iii) Compute the test statistic

T̂ b1n = max
t∈T
|V b
n (t)|

Let ĉB1−α denote the empirical (1− α)-quantile of the simulated sample

{T̂ 1
1n, . . . , T̂

B
1n}, where α ∈ (0, 1) is the nominal size. We reject the null hypothesis
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if T1n is larger than ĉB1−α. In practice, the maximum in step (iii) is taken over a

discretized subset of T .

1.4 Monte Carlo

In this section we conduct Monte Carlo simulations. Our data generating process

has treatment level t ∈ [0, 1]. A sample of n i.i.d. random elements (Xi, εi(t), vi(t))

whose components are mutually independent are generated, where the independent

white Gaussian noises εi(t) and vi(t) are represented by (εi(0), εi(0.01), · · · , εi(0.99), εi(1))

and (vi(0), vi(0.01), · · · , vi(0.99), vi(1)), respectively. The observed individual char-

acteristics Xi ∼ Unif [−0.5, 0.5] and Yi(t) = 0.5−|0.5−t|+Xi+vi(t) where indepen-

dent innovations vi(0), vi(0.1), · · · , vi(1) ∼ N(0, 1). The treatment assignment is

generated by Ti = arg maxt∈{0,0.01,··· ,0.99,1}Ht,i, where Ht,i = sin(2πt)Xi+ εi(t) where

independent innovations εi(0), εi(0.1), · · · , εi(1) ∼ N(0, 1). We generate the data in

such a way that the mean and median functions are 0.5− |0.5− t|, an up-side-down

symmetric check function. The level is highest in the middle range and decreases as

t deviates from the middle. The number of replications is 2,000.

Our null and alternative hypotheses are summarized below.

Hm0 : µ0(t) = 0.5− |0.5− t| for t ∈ [0.2, 0.8]

Hq0 : q0.5,0(t) = 0.5− |0.5− t| for t ∈ [0.2, 0.8]

Hm1 : µ0(t) = t for t ∈ [0.2, 0.8]

Hq1 : q0.5,0(t) = t for t ∈ [0.2, 0.8]

Hm2 : µ0(t) = t2 for t ∈ [0.2, 0.8]

Hq2 : q0.5,0(t) = t2 for t ∈ [0.2, 0.8]

Hm3 : µ0(t) = 0.25− (t− 0.5)2 for t ∈ [0.2, 0.8]

Hq3 : q0.5,0(t) = 0.25− (t− 0.5)2 for t ∈ [0.2, 0.8]

On the one hand, the first alternative is a linear function while the second is an

asymmetric quadratic function, which are quite different from the null. On the
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other hand, the third alternative is a quadratic function symmetric around 0.5 and

attains its maximum at 0.5.

We use the Cramér-von Mises test for the simulations. Also, we use the method

of Hall et al. (2004), a nonparametric method to estimate the conditional densities.

We first show the biasedness of the estimator when sample sizes are 150 and 300.

The bias is defined as the supreme of the pointwise biases and presented below.

n=150 n=300

Mean 0.071 0.059

Median 0.068 0.056

As expected, the bias decreases as sample size increases. Now we present the em-

pirical size and power below.

Size Power for H1 Power for H2 Power for H3

n=150 Mean 0.03 1.00 1.00 0.93

B=150 Median 0.02 1.00 1.00 0.55

n=150 Mean 0.03 1.00 1.00 0.93

B=300 Median 0.02 0.99 1.00 0.53

n=300 Mean 0.02 1.00 1.00 1.00

B=150 Median 0.01 1.00 1.00 0.88

n=300 Mean 0.02 1.00 1.00 1.00

B=300 Median 0.01 1.00 1.00 0.87

n=300 Mean 0.02 1.00 1.00 1.00

B=500 Median 0.01 1.00 1.00 0.88

In the simulations, we evaluate the empirical size and power for a variety of

sample sizes and numbers of bootstrap. We observe that the sizes are close to the

level of significance, 5%, and the power is high for the alternative hypotheses H1

and H2. To study the impact of sample size and number of bootstrap on the power

of the test, we test for H3, which is closer to the null hypothesis. It turns out that
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there is power gain from increasing the sample size. However, the power is not

sensitive to the number of bootstrap, implying that smaller number of bootstrap is

satisfactory and using larger number of bootstrap is not necessary.

The simulations show that, although we cannot show the weak convergence of the

Z-estimator if we use kernel estimation in the first step, in practice, we nevertheless

can use the kernel estimation as one of a few alternative methods in the first step.

1.5 Applications to the Study of Dose-Birthweight

Functions

In this section, we illustrate the use of the two-step estimator with a study of dose-

birthweight functions. Recently birthweight has been shown to be the foremost

telltale of infant health. Unhealthy births have large economic costs in both imme-

diate medical costs and longer care costs.

Infants are classified as low birthweight (LBW) when weighing less than 2.5

kilograms at birth. There is empirical evidence showing that the direct medical

costs of LBW are rather high. Almond et al. (2005) document that the hospital

costs for newborns are elevated: “the expected costs of delivery and initial care of a

baby weighing one kilogram at birth can exceed $100,000 (in year 2000 dollars). The

costs remain elevated even among babies weighing 2–2.1 kilograms; an additional

pound (454 grams) of weight is still associated with a $10,000 difference in hospital

charges for inpatient services.”4 Also, at lower birthweights, the infant death rate

is higher.

On the other hand, problems associated with high birthweight have become

more recognizable. Abrevaya and Dahl (2008) state “babies weighing more than

4 kilograms (defined as high birthweight (HBW)) and especially those weighing

4Appurtenant expenditures, such as radiological, pharmaceutical, respiratory, and laboratory
fees, greatly extend the costs of intensive care for LBW infants. (See, e.g., Behrman et al. (2007)).
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more than 4.5 kilograms (classified as very high birthweight) are more likely to re-

quire cesarean-section births, have higher infant mortality rates, and develop health

problems later in life.” Recent research also suggests giving birth to infants over 4.5

kilograms carries significant risks to both the infant and the mother; see, e.g., Cesur

and Kelly (2010) and Webb (2011) for more detailed discussions. Fetal disorders

such as shoulder dystocia, stillbirth, Erb’s palsy, jaundice, and respiratory distress

have been found to be more common in HBW infants in addition to greater levels

of obesity later.

Other studies on QTE include Abadie et al. (2002) and Chernozhukov and

Hansen (2005), which study treatment effects when they may not be monotonic

along the outcome distribution. Chernozhukov and Hansen (2006, 2008) investigate

a class of instrumental quantile regression methods for structural and TE models.

Imbens and Newey (2009) extend Newey et al. (1999), Pinkse (2000), and Blun-

dell and Powell (2003) to identification and estimation of a family of parameters,

termed structural quantile functions, and apply to the continuous treatments case.

Moreover, there is emerging literature on average treatment effects for continuous

variables, which includes Hirano and Imbens (2004) and Flores (2007).

1.5.1 Data

The United States natality data from the National Vital Statistics System (NVSS)

of Centers for Disease Control and Prevention (CDC) document nearly all births

in registered areas. The data in this study are the 2004 public use natality data of

Wisconsin.

For this study, we consider only live, singleton births (without missing values

of any characteristics used in the study) to new, white mothers that are not older

than 45, with less than five years of college, whose counties of occurrence (birthing)

and residence are the same. Birthweights have been found to differ across different
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ethnicities, numbers of babies at delivery, and so on. By using a more homogeneous

sample, we can focus more on the effects of birth inputs on the birthweights. This

results in a sample of 13,581 births. We emphasize that all the inferences done

using the sample should be applicable only for the subpopulation represented by

the sample choice.

Now we summarize the variables of interest. Out of 13,581 births, there are 6,508

females (proportion 0.4792), and 7,732 mothers are married (proportion 0.5693).

Table 1.1 displays statistics for birthweight (measured in kilograms), the mother’s

age, the mother’s weight gain during pregnancy (WG), number of cigarettes per day

(Cigarettes), number of prenatal care visits (No. Care), and the mother’s years of

education for the sample. And Figure 1.1 shows the distribution of the month of

first time prenatal care visits.

Our dataset is similar to “1st child” Washington and Arizona datasets of Abre-

vaya and Dahl (2008) for the variables that are directly comparable. The number of

observations are 45,067 and 56,201 for Washington and Arizona, respectively. For

example, the averages of the birthweights of Washington and Arizona data are 3.44

and 3.34 kilograms, respectively, while the average of the birthweights in Wisconsin

is 3.35 kilograms. The averages of the ages of Washington and Arizona are 25.27

and 25.23, respectively, while that of Wisconsin is 24.88. The averages of number

of prenatal care visits and education in Wisconsin are slightly lower than those of

Washington and Arizona. The proportion of male infants are similar for all the

births in the three states, but the proportion of married mothers in Wisconsin is

much lower than those of Washington and Arizona.

[Table 1.1 and Figure 1.1 about here]
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Figure 1.1: Distribution of the Months of First Prenatal Care Visit

1 2 3 4 5 6 7 8 9 10

Month of First Prenatal Care Visit

F
re

qu
en

cy

0
10

00
30

00
50

00

Note: The number 10 means “did not have prenatal care”.
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Table 1.1: Summary Statistics

Birthweight Age WG Cigarettes No. Care Education
Min. 0.26 14.00 0.00 0.00 0.00 0.00
1st Qu. 3.06 20.00 25.00 0.00 10.00 12.00
Median 3.37 24.00 33.00 0.00 12.00 13.00
Mean 3.35 24.88 34.20 1.10 11.80 13.02
3rd Qu. 3.69 29.00 42.00 0.00 14.00 15.00
Max 5.67 45.00 95.00 40.00 49.00 16.00
SD. 0.54 5.45 13.69 3.25 3.40 2.27

1.5.2 Estimation of Nuisance Parameter π0

The estimation strategy of nuisance parameters π0(u; t) :=
f0T |X,Y (t|x,y)

f0T |X(t|x)
in (1.5) and

(1.6) is the same for both the treatment effects of the mother’s age and weight gain

during pregnancy. In this section, we describe the details of the estimation procedure

using the first treatment effect model, i.e., the mother’s age, as an example.

The mothers’ ages in our sample range from 14 to 45 years old. Therefore, it is

natural to treat the mother’s age as a continuous variable in the interval [13,46]. For

the estimation of conditional distribution, we assume the relationship log
(
Ti−13
46−Ti

)
=

X>i θ0 + εi, where εi is independent of Xi and has density N(0, σ2
0). The choice of

X is described in the following subsections. The log-ratio form of the dependent

variable makes mothers’ age to be limited to [13, 46]. This strategy is similar to

the one in the logit model where the probability is confined to [0, 1]. Therefore,

Ti−13
46−Ti =: ηi follows log-normal distribution log-N(X>i θ0, σ

2
0). The density of T |X is

obtained by calculating the distribution function,

F0T |X(t|x) = P(T ≤ t|X = x) = P

(
η ≤ t− 13

46− t
|X = x

)
= Fη|X

(
t− 13

46− t
|x
)

= Φ

(
log t−13

46−t − x
>θ0

σ0

)

f0T |X(t|x) = φ

(
log t−13

46−t − x
>θ0

σ0

)
1

σ0

(
1

t− 13
+

1

46− t

)
,
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where Φ and φ are distribution and density functions of a standard normal ran-

dom variable. For the conditional density of T |X, Y , we assume the relationship

log
(
Ti−13
46−Ti

)
= U>i ϑ0 + εi, where εi is independent of Ui and has density N(0, ς0).

Therefore, the conditional distribution function

f0T |U (t|u) = φ

(
log t−13

46−t − u
>ϑ0

ς0

)
1

ς0

(
1

t− 13
+

1

46− t

)
.

Hence, we have

f0(u, t) =
f0T |U (t|u)

f0T |X(t|x)
=
φ
(

log t−13
46−t−u

>ϑ0

ς0

)
σ0

φ
(

log t−13
46−t−x>θ0

σ0

)
ς0

.

1.5.3 Empirical Results

Mothers’ Weight Gain during Pregnancy

The results regarding the mothers’ weight gain during pregnancy show evidence that,

after controlling for a mother’s characteristics chosen (i.e., age, marital status, years

of education, number of cigarettes per day, and the month of first prenatal care visit),

in general, greater weight gain during pregnancy leads to higher birthweight. Figure

1.2 reports the estimates of the average and selected quantiles of the birthweight

for different levels of the mother’s weight gain during pregnancy. From the figure,

we see that the slopes are relatively larger for low or high weight gain. The shape

of the curves resembles a simple cubic function with steeper slopes at the extremes.

This implies weight gaining generates higher birthweights at low and high levels

of weight gain. For low weight gains, the impact on the birthweight is higher for

upper quantiles and relatively mild for low quantiles. However, for the middle range

of weight gain, all the curves are relatively parallel. The disaggregated plots with

90% confidence bands are shown in Figure 1.3. The confidence bands in general are

relatively wider at the extremes of weight gain due to the sparsity of the data at
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Figure 1.2: Mothers’ Weight Gain during Pregnancy and Level of Birthweight
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The top and bottom horizontal lines represent the thresholds of high and low birth-
weight, respectively. The solid curve is the average of birthweights and the dashed
curves are the 90%, 75%, 50%, 25%, and 10% quantiles of birthweights.

the extremes.

Table 1.2 describes treatment effects for selected weight treatment effects. It

is divided according to the weight gain interval effects. The first part contains 20

pound effects. The second contains 40 pound effects, and so on until an 80 pound

interval. The results show that the impact of gaining weight is positive.

In summary, to produce an infant with healthy birthweight, mothers should gain

weight between approximately 20 to 40 pounds. The average birthweight is below

2.5 kilograms for mothers with weight gain less than around 10 pounds and is above

4 kilograms for mothers with weight gain more than around 80 pounds. It seems

optimal for pregnant women to gain between 20 to 40 pounds to lower the chances

of having LBW or HBW infants.
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Figure 1.3: Mothers’ Weight Gain during Pregnancy and Level of Birthweight with
90% Confidence Bands
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(b) 25% Quantile
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(c) 50% Quantile
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(d) 75% Quantile
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(e) 90% Quantile
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(f) Average
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The top and bottom horizontal lines represent the thresholds of high and low birth-
weight, respectively.



36

Table 1.2: Treatment Effects of Mothers’ Weight Gain During Pregnancy

WG change 10% Qt. 25% Qt. 50% Qt. 75% Qt. 90% Qt. Average
0–20 2.23 2.52 2.68 2.77 2.72 2.53
SD. 0.05 0.07 0.05 0.08 0.07 0.05

20–40 0.37 0.28 0.23 0.25 0.25 0.30
SD. 0.04 0.07 0.06 0.08 0.08 0.06

40–60 0.21 0.20 0.20 0.20 0.23 0.22
SD. 0.05 0.07 0.06 0.09 0.09 0.07

60–80 0.25 0.25 0.28 0.31 0.37 0.30
SD. 0.05 0.08 0.07 0.10 0.11 0.08

0–40 2.59 2.80 2.91 3.03 2.98 2.83
SD. 0.03 0.02 0.02 0.02 0.02 0.02

20–60 0.57 0.48 0.43 0.46 0.48 0.52
SD. 0.04 0.03 0.03 0.03 0.03 0.03

40–80 0.45 0.45 0.48 0.51 0.60 0.51
SD. 0.05 0.05 0.05 0.05 0.07 0.05

0–60 2.80 3.00 3.11 3.23 3.20 3.04
SD. 0.02 0.02 0.01 0.02 0.02 0.01

20–80 0.82 0.74 0.71 0.77 0.85 0.81
SD. 0.03 0.03 0.03 0.04 0.06 0.03

0–80 3.05 3.25 3.39 3.54 3.57 3.34
SD. 0.02 0.02 0.02 0.02 0.05 0.02

Mothers’ Age

The QDRF of the mother’s age on birthweight is downward sloping. For a given

age, this negative impact becomes more severe for lower parts of the distribution

of birthweights. Although intuitive, this result complements existing results in the

literature with three advantages. First, our results can be interpreted as causal

effects. Second, we estimate the unconditional quantile and mean of the birthweight

for a range of the mothers’ age. Third, unlike using regression framework, our results

show that the treatment effects are not confined to be constant or a linear function

of ages.

In the current study of the mothers’ age, we control for marital status, years of

education, and number of cigarettes per day during pregnancy. It is important to
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note that although we are controlling for some characteristics of mothers, we are

estimating the unconditional treatment effects. The empirical results for treatment

effects of the mother’s age on birthweight reveal that the treatment effect is negative;

that is, as expected, the birthweight decreases as the mother’s age increases. Figure

1.4 plots the point estimates for the mean, 10%, 90%, and the three quartiles of

birthweights for mothers’ ages from 14 to 45. This impact of the mother’s age on

birthweight is negative for all the quantiles. However, for a given age, this impact

becomes more severe for lower parts of the distribution of birthweight. In particular,

the impact is very prominent for the 10% quantile of mothers after 40 years old.

The estimated average birthweight is downward sloping, and more negative at high

ages, which is different from the median and is probably capturing the effect of the

low quantile. On the other hand, the median birthweight is robust to this feature.

From the disaggregated figures (Figure 1.5) one can see that the 90% confidence

bands are narrower in the middle ages because there are more data for that age

range. In contrast, we can see that the confidence interval for 10% quantile at the

age of 45 is relatively wide.

Table 1.3 describes the treatment effects for selected age treatment effects. The

table is divided according to the age interval effects. The first part contains 5 year

effects. The second part contains 10 year effects, and so on, until a 30 year interval.

Most of them are statistically significant, and negative values show evidence that

aging is negatively related to birthweight. Finally, the effect is larger (in absolute

values) for the low part of the distribution of birthweights; for example, for a mother

aged 25 to 35 years the treatment effect is -0.08 at 10% and -0.05 at 90%.

In general, there are certain risks of having a baby when the mother is too young

or too old. Although on average the birthweight is within the “healthy range”

between 2.5 and 4 kilograms, our estimates show that mothers younger than 20

years are likely to have HBW infants, while mothers older than 44 years are likely
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Figure 1.4: Mothers’ Age and Level of Birthweight
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The top and bottom horizontal lines represent the thresholds of high and low birth-
weight, respectively. The solid curve is the average of birthweights and the dashed
curves are the 90%, 75%, 50%, 25%, and 10% quantiles of birthweights.
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Figure 1.5: Mothers’ Age and Level of Birthweight with 90% Confidence Bands
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(b) 25% Quantile
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(c) 50% Quantile
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(d) 75% Quantile
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(e) 90% Quantile
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(f) Average
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The thresholds for low and high birthweights are 2.5 kilograms and 4 kilograms,
respectively.
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to have LBW infants. Therefore, it may be prudent for women who plan to have

a baby to do so approximately between 20 and 44 years of age. To prevent female

teenagers from having unexpected babies, more education and other forms of help

may be needed.

1.6 Conclusion

In this chapter, we first study the identification of a dose-response function with

continuous treatment levels. In empirical studies, we usually have observational

data. Agents can choose the levels of treatment they desire. Under the ignorabil-

ity assumption, we derive moment conditions by which parameters of interest are

identified with observational data. Based on the moment conditions, we propose a

two-step estimator. Sufficient conditions are provided for the estimator to be consis-

tent, converge weakly, and be semiparametric efficient. We study hypothesis testing

procedures based on the two-step estimator. More specifically, we are interested

in testing the null hypothesis that a DRF β(t) = r(t) with t ∈ T for known or

unknown r(t). Because the parameters are infinite dimensional and the weak limits

of test statistics are not standard, we use the bootstrap method when conducting

inferences. Finally, we apply our estimation methods to the study of unconditional

effects of mothers’ weight gain during pregnancy and age on infants’ birthweight,

illustrating the usefulness of the new estimator.
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Table 1.3: Treatment Effects of Mothers’ Age

Age Change 10% Qt. 25% Qt. 50% Qt. 75% Qt. 90% Qt. Average
15–20 -0.08 -0.05 -0.03 -0.06 -0.03 -0.06
SD. 0.03 0.02 0.02 0.02 0.02 0.02

20–25 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
SD. 0.05 0.03 0.03 0.03 0.04 0.04

25–30 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03
SD. 0.06 0.05 0.04 0.04 0.05 0.05

30–35 -0.06 -0.03 -0.03 -0.01 -0.03 -0.03
SD. 0.08 0.06 0.05 0.05 0.06 0.06

35–40 -0.03 -0.03 -0.03 -0.02 -0.03 -0.04
SD. 0.11 0.08 0.07 0.07 0.07 0.08

40–45 -0.17 -0.11 -0.06 -0.08 -0.08 -0.11
SD. 0.32 0.15 0.11 0.10 0.10 0.16

15–25 -0.11 -0.08 -0.06 -0.08 -0.06 -0.09
SD. 0.02 0.02 0.01 0.01 0.02 0.01

20–30 -0.06 -0.06 -0.06 -0.06 -0.05 -0.06
SD. 0.03 0.03 0.02 0.02 0.03 0.03

25–35 -0.08 -0.06 -0.06 -0.04 -0.05 -0.06
SD. 0.05 0.04 0.03 0.03 0.03 0.04

30–40 -0.08 -0.06 -0.06 -0.03 -0.06 -0.07
SD. 0.08 0.06 0.05 0.04 0.05 0.06

35–45 -0.20 -0.14 -0.08 -0.10 -0.11 -0.15
SD. 0.30 0.13 0.09 0.08 0.08 0.13

15–30 -0.14 -0.11 -0.08 -0.11 -0.09 -0.11
SD. 0.02 0.01 0.01 0.01 0.01 0.01

20–35 -0.11 -0.08 -0.08 -0.07 -0.08 -0.09
SD. 0.03 0.03 0.02 0.02 0.02 0.03

25–40 -0.11 -0.08 -0.08 -0.06 -0.08 -0.09
SD. 0.06 0.04 0.03 0.03 0.03 0.05

30–45 -0.25 -0.17 -0.11 -0.11 -0.13 -0.18
SD. 0.28 0.11 0.07 0.07 0.07 0.12

15–35 -0.20 -0.14 -0.11 -0.12 -0.11 -0.14
SD. 0.02 0.02 0.01 0.01 0.01 0.01

20–40 -0.14 -0.11 -0.11 -0.08 -0.11 -0.13
SD. 0.05 0.03 0.03 0.02 0.02 0.03

25–45 -0.28 -0.20 -0.14 -0.14 -0.16 -0.20
SD. 0.27 0.10 0.07 0.06 0.06 0.11

15–40 -0.23 -0.17 -0.14 -0.14 -0.14 -0.18
SD. 0.03 0.02 0.02 0.02 0.02 0.02

20–45 -0.31 -0.23 -0.17 -0.17 -0.19 -0.23
SD. 0.25 0.09 0.06 0.05 0.05 0.09

15–45 -0.40 -0.28 -0.20 -0.23 -0.22 -0.29
SD. 0.22 0.07 0.04 0.04 0.04 0.07
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Chapter 2

Efficient Minimum Distance Estimator for

Quantile Regression Fixed Effects Panel Data

2.1 Introduction

Quantile regression is a valuable method of statistical analysis. Particularly, con-

ditional quantile methods are used to analyze how treatments influence the entire

outcome distributions of interest. Lately, there has been an increase in literature

on estimation and inference for fixed effects quantile regression panel data mod-

els (FE-QR). The FE-QR is designed to control for unobserved individual effects

while exploring a range of covariate effects, and therefore provides a more complete

method for the analysis of panel data. Koenker (2004) proposes a general approach

for estimation of FE-QR, which treats the fixed effects (FE) as common for all con-

ditional quantiles. Kato et al. (2012) rigorously derive the asymptotic properties of

the FE-QR estimator and establish sufficient conditions for consistency and asymp-

totic normality. For other recent developments, see e.g. Abrevaya and Dahl (2008),

Graham et al. (2009), Powell (2010), Canay (2011), Ponomareva (2011), and Rosen

(2012).

However, despite these favorable asymptotic properties, there are certain draw-

backs regarding the implementation of the FE-QR procedure in practice. The first

is computational. In least squares applications the usual strategy would be to trans-

form both the dependent and independent variables to deviations from individual

means, and then compute the parameters of interest from the transformed data.

For quantile regression this decomposition of projections is not available and one is
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required to deal directly with the full problem. In typical applications the number

of individuals can be large and FE-QR estimator involves optimization with a large

number of parameters to be estimated, which makes the problem computationally

cumbersome. Also, the computation of the variance-covariance matrix for inference

becomes utterly impracticable. Despite the favorable large sample properties of the

quantile estimators, practical inference using FE-QR is difficult to implement in

practice.

The present chapter attempts to address both the computational difficulties and

this finite sample problem without sacrificing the desirable asymptotic properties

of the FE-QR strategy. We propose a novel efficient minimum distance quantile

regression (MD-QR) estimator. The MD-QR is defined as the weighted average

of the individual QR slope estimators, with weights given by the inverses of the

corresponding individual variance-covariance matrices. We provide sufficient con-

ditions for consistency and asymptotic normality of the MD-QR when the number

of individuals, n, and the number of time periods, T , grow to infinity. The limit

theory allows for both sequential limits, where T → ∞ followed by n → ∞, and

joint limits, where T, n→∞ simultaneously.

There are certain advantages of the MD-QR over the FE-QR. First, the MD-

QR estimator presents an important advantage for applied researchers since it is

computationally attractive. It is easy to implement in practice, interpret, and repli-

cate. Estimation of FE-QR models for large samples can be very cumbersome.

Instead of estimating all the individual specific intercepts and the slope parame-

ters simultaneously as FE-QR, the MD-QR only solves regression quantiles for each

individual. This procedure is especially economical for large cross-sections, and

therefore computationally appealing. For the same reason, it is easier to estimate

the variance-covariance matrices. Thus, it is easy to carry inference for large sample

sizes. The numerical experiments confirm this assertion.
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Second, the MD-QR is more efficient than the FE-QR. In fact, the MD-QR is

the most efficient estimator in the class of minimum distance estimators, since its

weights are the inverses of the corresponding variance-covariance matrices of the

estimated parameters. To complete the argument, we show that the asymptotic

linear part of the FE-QR estimator is a weighted average of the QR slope estima-

tors. Therefore, FE-QR also belongs to the class of minimum distance estimators.

Indeed, the asymptotic variance-covariance matrix of FE-QR is larger or equal than

that of the MD-QR in the sense that the difference between the first and the sec-

ond variance-covariance matrices is positive semi-definite. We conduct Monte Carlo

simulations to evaluate the finite sample properties of the MD-QR and FE-QR esti-

mators. The results show evidence that both estimators are approximately unbiased.

In addition, the results indicate that MD-QR is more efficient than the FE-QR. We

also compare both methods in terms of computation speed, and for relatively large

samples the MD-QR is substantially faster. Finally, to illustrate the use of the pro-

posed methods in practice, we apply the developed methods to Fazzari et al. (1988)

investment equation model, where a firm’s investment is the dependent variable and

a proxy for investment demand (Tobin’s q) and cash flows are independent variables.

We document important heterogeneity in investment models. The results uncover

strong evidence of substantial heterogeneity in the sensitivity of investment to cash

flow across the conditional distribution of investment.

Another important contribution of the present work is to introduce the use of

sequential limits to study QR panel data models with FE. Phillips and Moon (1999,

2000) discuss and develop a framework for analysis of mean regression panel data

asymptotics with double indexed process for both sequential and joint limit theories.

In this chapter, we apply these methods to the study of both FE-QR and MD-QR.

Therefore, in addition to the results for the MD-QR with both sequential and joint

limits, we also provide new results for consistency and asymptotic normality of
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the FE-QR under sequential asymptotics.1 The first insight from this analysis is

that the use of sequential limits substantially simplifies the formal derivation of the

asymptotic theory for both MD-QR and FE-QR. The second significant finding is

that, for the MD-QR estimator, the limiting distribution obtained under sequential

limits is shown to be equal to that derived under joint limits. In other words,

under the standard assumption available in the literature on the sample rate for

joint limits, the limiting distribution of the MD-QR under sequential limits is equal

to that under joint limits. We show that the same result also holds for FE-QR

estimator.

The minimum distance (MD) estimator dates back to Berkson (1944), Neyman

(1949), Taylor (1953), and Ferguson (1958), who, among others, aimed to produce

computationally tractable and efficient substitutes of maximum likelihood estima-

tors. Although very simple conceptually, MD estimation has been ingeniously used

by many scholars in statistics and econometrics since Malinvaud (1970) and Rothen-

berg (1973). The literature on MD is vast, hence we only list a limited set of exam-

ples: Amemiya (1974, 1976, 1978), Nagaraj and Fuller (1991), Lee (1992), Koenker

et al. (1994), Newey and McFadden (1994), Lehmann and Casella (1998), Moon

and Schorfheide (2002), and Lee (2010). The MD estimation is a flexible method-

ology and has also been applied to panel data problems, examples, among others,

include Chamberlain (1982, 1984), Ahn and Schmidt (1995), Hsiao et al. (2002),

Hsiao (2003), Lee et al. (2012), and Moon et al. (2012).

This chapter is organized as follows: Section 2.2 introduces the model and the

estimators. Section 2.3 studies the asymptotic properties of the MD-QR and FE-

QR when data are independent across individuals and independent and identically

distributed (i.i.d.) within each individual. Section 2.4 relaxes the i.i.d. assumption

to stationary β-mixing. The finite sample properties are examined in Section 2.5.

1The asymptotic distribution of the FE-QR under joint limits has been derived in Kato et al.
(2012).
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Section 2.6 provides an illustration, and Section 2.7 concludes the chapter.

2.2 The Model and the Estimator

In this chapter, we consider a quantile regression (QR) panel data model with fixed

effects (FE) as

Qτ (yit|xit, αi0(τ)) = αi0(τ) + x>itβ0(τ) ≡X>it θi0(τ), t = 1, ...T, i = 1, ..., n, (2.1)

where yit is the response variable, xit is a k dimensional vector of explanatory

variables, β0(τ) is the common slope coefficients, αi0(τ) is the fixed effect parameter,

θi0(τ) = (αi0(τ),β0(τ)>)>, and X>it = (1,x>it). The parameters can depend on the

quantile index τ ∈ (0, 1), however, since τ is fixed throughout the chapter, we

suppress such dependence on τ for simplicity when there is no confusion.

To estimate the QR model, Koenker (2004) considers the individual dummy

variables estimator, which is a natural analog of the dummy variables estimator

for the standard FE mean regression model. The fixed effects quantile regression

(FE-QR) estimator is the defined as follows

(α̂, β̂) := arg min
(α,β)∈An×B

1

nT

n∑
i=1

T∑
t=1

ρτ (yit − αi − x>itβ),

where α := (α1, . . . , αn)>, ρτ (u) := {τ − 1(u ≤ 0)}u is the check function as in

Koenker and Bassett (1978), A is a compact subset of R, An is the product of n

copies of A, and B is a compact subset of Rk.

The fixed effect parameter αi raises the incidental parameter problem as first

noted by Neyman and Scott (1948). To overcome this drawback, it has become

standard in the panel QR literature, to employ a large n and T asymptotics (see

Koenker (2004) and Kato et al. (2012)). Motivated by the large time-series dimen-
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sion requirement in this literature, we propose a simple to implement and efficient

minimum distance QR estimator for panels with fixed effects.

We consider a minimum distance quantile regression (MD-QR) estimator, β̂MD,

defined as follows

β̂MD =

(
n∑
i=1

V −1
i

)−1 n∑
i=1

V −1
i β̂i, (2.2)

where β̂i is the slope coefficient estimator from each individual quantile regression

problem using the time series data, and Vi denotes the associated variance-covariance

matrix of β̂i for each individual.

However, in applications, the estimator β̂MD, defined in equation (2.2), is in-

feasible unless Vi is known for every individual. The feasible estimator is defined

with each Vi replaced by its corresponding consistent estimators V̂i, such that the

MD-QR is given by

β̂MD =

(
n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i β̂i. (2.3)

The feasible two-step estimator can be implemented by obtaining, in the first step,

consistent estimates for the slope coefficients and their associated variance-covariance

matrices, V̂i. One can obtain such estimates from the standard quantile regression

algorithm for each individual separately. In the second step, to compute the MD-QR

estimator, the estimated Vi’s are substituted into (2.2) and treated as if they were

known to obtain (2.3).

In effect, the proposed MD-QR estimator is a product of a simple optimization

problem. The MD-QR is derived from the following set of restrictions

ιn ⊗ β0 − γ0 = 0,

where ιn denotes an n-vector of ones, and γ0 = (β>10, ...,β
>
n0)> is a vector containing



48

the slope coefficients from each individual. The n · k × 1 vector γ̂ contains the n

stacked auxiliary parameter vectors. The vector ιn imposes (n − 1) · k restrictions

on γ0, and β0 is k × 1 vector of parameters of interest from (2.1). The idea is

that γ0 consists of “reduced form” parameters from each individual regression, β0

consists of “structural” parameters, and ιn gives the mapping from structure to

reduced form. In other words, this restriction says that all the slope coefficients

from different individuals are the same. Thus, the quantile regression fixed effects

minimum distance estimator we propose results from the following minimization

β̂ := arg min
β∈B

(γ̂ − ι⊗ β)>W (γ̂ − ι⊗ β),

where γ̂ = (β̂>1 , ..., β̂
>
n )>, and W is a positive definite matrix. Under independence

across individuals, the optimization simplifies to

β̂ = arg min
β∈B

n∑
i=1

(β̂i − β)>Wi(β̂i − β),

and the closed form solution of the MD-QR estimator is given by

β̂ =

(
n∑
i=1

Wi

)−1 n∑
i=1

Wiβ̂i, (2.4)

which is given in equation (2.3) by replacing Wi with the inverse of the estimated

variance-covariance matrix of the individual regression parameters, V̂ −1
i .

Notice that by varying Wi in (2.4) one obtains the class of minimum distance

estimators, denoted by M. A natural question is whether β̂MD is an “optimal”

combination of the regression quantiles. In other words, does β̂MD have the smallest

asymptotic variance-covariance matrix inM? It turns out that the optimal weights

are the inverse of the asymptotic variance-covariance matrices of the slope regression

quantiles. For a proof of the inverse of the covariance matrices being optimal weights,
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see Rao (1965, p. 48), Serfling (1980, p. 126), or Hsiao (2003, p. 65). Thus, the

answer to the posed question is that the estimator defined in (2.2) is most efficient

estimator among all the estimators that are linear combinations of the regression

quantiles.

Given the efficiency property of the β̂MD, it is important to show that MD-

QR is more efficient than the standard FE-QR. To accomplish this, we need to

demonstrate that β̂FE also belongs to M, and therefore, cannot be more efficient

than the optimal β̂MD. Below we show that both the FE-QR, β̂FE, and the MD-

QR, β̂MD, are (asymptotically) within the class of minimum distance estimators,

M.

Clearly, β̂MD belongs to M, with Wi = V −1
i . To derive the result that β̂FE

also belongs to M, let Fi(u|X) be the conditional distribution function of uit :=

yit −X>it θi0 given Xit = X, and have conditional density fi(u|X). Denote γi :=

E[fi(0|xit)xit]/fi(0) where fi(u) is the marginal distribution of uit, and Γi :=

E[fi(0|xit)xit(x>it−γ>i )]. Now we show that β̂FE is a linear combination of weighted

regression quantiles for each individual with Wi = Γi. Under regularity conditions

and if the diverging rates of n and T satisfy the conditions of Kato et al. (2012),

the FE-QR estimator has the representation

β̂FE − β0 =

(
1

n

n∑
i=1

Γi

)−1{
1

nT

n∑
i=1

T∑
t=1

[τ − 1(uit ≤ 0)] (xit − γi)

}
+ op (1)

=

(
1

n

n∑
i=1

Γi

)−1{
1

n

n∑
i=1

ΓiΓ
−1
i

1

T

T∑
t=1

[τ − 1(uit ≤ 0)] (xit − γi)

}
+ op (1)

=

(
1

n

n∑
i=1

Γi

)−1{
1

n

n∑
i=1

Γi(β̂i − β0)

}
+ op (1) .

Therefore, β̂FE =
(

1
n

∑n
i=1 Γi

)−1 1
n

∑n
i=1 Γiβ̂i + op(1). Thus, it follows that

(asymptotically) β̂FE is a linear combination (weighted average) of QR slope es-

timator for each individual. As described previously, V −1
i ’s are the optimal weights
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to combine β̂i, therefore Γi’s cannot provide better weights. Hence, β̂FE cannot be

asymptotically more efficient than β̂MD.

2.3 Asymptotic Theory: i.i.d. within Individuals

In this section, we investigate the asymptotic properties of the MD-QR estimator

when both T and n go to infinity, both sequentially and simultaneously. For com-

parison and completeness we also provide parallel results for the FE-QR estimator.

The results for sequential asymptotics of the FE-QR are new in the literature.

The sequential asymptotics is defined as T diverging to infinity first, and then

n. In the definition of the simultaneous asymptotics, T and n tend to infinity at

the same time. We do not specify the exact relationship between n and T , although

we maintain that T depends on n. For notational simplicity, we suppress this de-

pendence. For a detailed discussion on sequential and simultaneous asymptotics

for panel data, see Phillips and Moon (1999, 2000). In what follows, we adopt the

following notation: (T, n)seq →∞ means that first T →∞ and then n→∞, while

(T, n) → ∞ means T and n tend to infinity simultaneously. To obtain the desired

results we make the following assumptions.

A1 {(yit,Xit)} is independent across i, and i.i.d. within each i.

A2 There is a constant M such that max1≤t≤T,1≤i≤n ||Xit|| < M .

A3 The parameter sets A and B are compact. For each δ > 0,

εδ := inf
1≤i≤n

inf
||θ||=δ

E

[∫ X>itθ

0

{Fi(s|Xit)− τ}ds

]
> 0, (2.5)

where Fi(s|Xit) is the distribution function of the innovations conditional on

the covariates.
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A4 The conditional density fi(u|X) is continuously differentiable for each X and

i. There exist 0 < CL ≤ CU < ∞ such that fi(u|X) ≤ CU uniformly over

(u,X) and i ≥ 1, and fi(0|X) ≥ CL uniformly over X and i ≥ 1; and there

exists Cf > 0 such that |f (1)
i (u|X)| ≤ Cf .

A5 There exists δΩ > 0 such that the smallest eigenvalue of Ω̃i ≥ δΩ, where Ω̃i =

E[XitX
>
it ].

Condition A1 assumes that the data are independent across individuals, and i.i.d.

within each individual. This condition is usual in the literature and the same as

assumption A1 in Kato et al. (2012). Condition A2 assumes that the covariates are

uniformly bounded. This is also common in QR literature, and is imposed in A3 of

Koenker (2004) and condition (a) of Theorem 1 of Chernozhukov and Hong (2002),

among others. The compactness of the parameter set in condition A3 is usual and is

also assumed in Hahn and Newey (2004) and Fernandez-Val (2005). Inequality (2.5)

in Assumption A3 is an identification condition, the same as A3 of Kato et al. (2012).

The first three assumptions are used to guarantee the uniform consistency of the

regression quantiles across individuals. The uniform bound in A2 also guarantees

that Ω̃i’s exist and have a uniform bound. Condition A4 restricts the smoothness and

the boundedness of the density of the innovations conditional on the covariates and

its derivatives. Condition A5 assures that Ω̃−1
i are bounded uniformly across i. Also,

the uniform upper and lower bounds of the continuous density functions together

with assumptions A2 and A5 guarantee that both Γ̃i = Ef(0|Xit)XitX
>
it and their

inverses are uniformly bounded across i. Therefore, the variance-covariance matrices

of the regression quantiles Ṽi and their inverses are uniformly bounded. Note that,

unless n→∞, the uniform conditions across i are not really restrictive.

In applications, the variance-covariance matrices are unknown and need to be

estimated. For the limiting theory where T and n tend to infinity sequentially, we

make the following assumption.
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A6 V̂i = Vi + op(1) for each i as T →∞.

In the situation when n and T tend to infinity simultaneously, we impose the fol-

lowing condition.

A6’ V̂i = Vi+Op(T
−1/2h

−1/2
n ) for some hn ↓ 0 uniformly across i and limn→∞

n logn
Thn

=

0 as n→∞.

Examples that satisfy condition A6 are suggested by Hendricks and Koenker

(1991) and Powell (1991). An example satisfying A6’ is

τ(1− τ)

(
1

T

T∑
t=1

Khn(ûit)XitX
>
it

)−1

1

T

T∑
t=1

XitX
>
it

(
1

T

T∑
t=1

Khn(ûit)XitX
>
it

)−1

where ûit = yit − α̂i − x>itβ̂ and Khn(·) is defined in Kato et al. (2012). For a study

of the convergence rate of the Powell’s kernel estimator, see Kato (2012).

Throughout the section, we study the properties of the feasible version of the

MD-QR estimator, which is defined in equation (2.3). The consistency of the MD-

QR and the FE-QR estimators are presented in Theorems 1 and 2, respectively. All

proofs are collected in the Appendix B.

Theorem 1.

1. Under conditions A1–A3 and A6, β̂MD
p→ β0 as (T, n)seq →∞.

2. Under conditions A1–A3 and A6’, β̂MD
p→ β0 as (T, n)→∞ and logn

T
→ 0.

Theorem 2.

1. Under conditions A1–A3, β̂FE
p→ β0 as (T, n)seq →∞.

2. Under conditions A1–A3, β̂FE
p→ β0 as (T, n)→∞ and logn

T
→ 0.

One can notice that the conditions required for consistency of the MD-QR esti-

mator are similar to those of the FE-QR. This shows the close relationship between
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these two estimators. In addition, these results show that both estimators are con-

sistent for the parameters of interest, i.e., the QR slope coefficients in (2.1).

Next we provide results regrading the asymptotic normality of the MD-QR and

the FE-QR estimators, under sequential and simultaneous limits. The results are

collected in Theorems 3 and 4 for the MD-QR and FE-QR, respectively.

Theorem 3. Let V := limn→∞
(

1
n

∑n
i=1 V

−1
i

)−1
.

1. Under conditions A1–A6, as (T, n)seq →∞,

√
nT (β̂MD − β0)

d→ N(0, V ).

2. Under conditions A1–A5 and A6’, as (T, n)→∞ and n2(logn)
T

∣∣∣log (logn)0.5

T 0.5

∣∣∣2 →
0,

√
nT (β̂MD − β0)

d→ N(0, V ).

Remark 2. One important conclusion from Theorem 3 is that the asymptotic vari-

ance of the feasible MD-QR estimator is the same as that of the infeasible MD-QR

estimator.

Theorem 4. Let Γ := limn→∞
1
n

n∑
i=1

Γi, and V := limn→∞
1
n

n∑
i=1

E[(xit − γi)(xit −

γi)
>].

1. Under conditions A1–A5, as (T, n)seq →∞,

√
nT (β̂FE − β0)

d→ N(0, τ(1− τ)Γ−1VΓ−1).

2. Under conditions A1–A5, as (T, n)→∞ and n2(logn)
T

∣∣∣log (logn)0.5

T 0.5

∣∣∣2 → 0,

√
nT (β̂FE − β0)

d→ N(0, τ(1− τ)Γ−1VΓ−1).
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There are several important remarks to be observed from these results. First,

from Theorems 3 and 4, one can see that both β̂MD and β̂FE are
√
nT consistent.

Moreover, under joint limits (part 2 of both Theorems 3 and 4), to ensure the

asymptotic normality, the requirements on the diverging rates of n and T are equal

for both estimators, and the same as that available in the literature, n2/T → 0 (see

Kato et al. (2012)).

Second, another interesting insight from the theorems is that, given the required

conditions, the limiting behavior of both estimators are identical under the different

limits. In particular, parts 1 and 2 of Theorem 3 show that the MD-QR has the

same limiting distribution for both sequential and joint limits. The analogous result

is shown in Theorem 4 for the FE-QR estimator, that is, FE-QR has same limiting

distribution under sequential and joint limits. This result is somewhat surprising

since a joint limit usually gives a more robust result than a sequential limit as stated

in Phillips and Moon (2000). We conjecture that the equality of the limiting distri-

butions under different limits is a result of the very stringent conditions required to

achieve asymptotic normality under joint limits.

Third, the mathematical proofs are greatly simplified for the sequential limits (as

shown in the Appendix B). In all the theorems above, we provide results for both

sequential and simultaneous asymptotics. For the sequential limits asymptotics,

we let T tend to infinity, and then n. This view of double indexes asymptotics

simplifies the proofs substantially, and provides valuable insights of the results,

although sequential limits could give deceptive asymptotic results. In contrast, the

view of simultaneous asymptotics is more general, although it is significantly more

difficult to obtain even with more stringent assumptions. In our case, the cost

is related to the requirements on the diverging rates of T and n. In the results

listed above, we note that for the simultaneous asymptotics, roughly speaking, the

best can be done is to require T tending to infinity faster than n2 log n. Thus,
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given the stringent requirement on the growth rate of T under the joint limits,

we believe the use of sequential asymptotics is an important tool and provides

useful approximations for QR panel fixed effects analysis, and dramatically decreases

the complexity of the proofs. The scope for the use of sequential asymptotics in

extensions of QR panel models with FE is large; for instance, censored, duration,

and survival models are examples of central models that remain to be formally

developed.

Finally, from the discussion in the previous section on optimal weights for MD

estimation, β̂MD is an appealing alternative estimator for QR models with fixed

effects, in the sense that β̂FE cannot be (asymptotically) more efficient than β̂MD.

Therefore, MD-QR estimator, together with its associated inference, is a compelling

alternative for practitioners since it is the most efficient estimator among the mini-

mum distance estimators class to which FE-QR estimator belongs.

Inference for the MD-QR estimator is simple. We now discuss the estimator

of the asymptotic covariance matrix. An easy-to-implement consistent estimator

of the variance-covariance matrix V described in Theorem 3 is
(

1
n

∑n
i=1 V

−1
i

)−1
.

Since Vi is not known in general, consistent estimators V̂i used for the computation

of the MD-QR estimator could be plugged in. Therefore, a consistent estimator

V̂ =
(

1
n

∑n
i=1 V̂

−1
i

)−1

. One can notice that this matrix is simple to compute and

inference is specially easy for large cross-sections case. Inference for the FE-QR is

described in Kato et al. (2012).

2.4 Asymptotic Theory: Extensions to Depen-

dent Data

The i.i.d. requirement for data with in each individual is relaxed to stationary and

β-mixing. We still maintain that the data are independent across individuals. The
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following conditions are imposed for the MD estimator to have desirable properties.

B1 For each i, {(yit,Xit), t ≥ 1} is stationary and β-mixing time series with β-

mixing coefficient βi(j). There exist constants a ∈ (0, 1) and B > 0 such that

supi≥1 βi(j) ≤ Baj for all j ≥ 1.

B2 fi,j(u1, u1+j|X1,X1+j) is uniformly bounded with respect to all the four vari-

ables, where fi,j(u1, u1+j|X1,X1+j) is the conditional density of (u1, u1+j)

given (Xi,1,Xi,1+j) = (X1,X1+j).

Condition B1 relaxes the assumption of i.i.d. within each individual to that of

stationary β-mixing which is used in Kato et al. (2012) and is similar to Hahn and

Kuersteiner (2011). Condition B2 is needed because the data are not i.i.d. and we

need to impose a condition on the joint distributions.

The following two theorems are asymptotic results for stationary β-mixing data,

and are extensions of the theorems in Section 3.

Theorem 5.

1. Under conditions A2–A6 and B1–B2, we have β̂MD
p→ β0 and

√
nT (β̂MD − β0)

d→ N(0, V ).

as (T, n)seq →∞.

2. Under conditions A2–A6, and B1–B2, β̂MD
p→ β0 as (T, n)→∞ and logn

T
→

0. In addition, if n2(logn)
T

∣∣∣log (logn)0.5

T 0.5

∣∣∣2 → 0, then

√
nT (β̂MD − β0)

d→ N(0, V ).

Theorem 6. Let Γ := limn→∞
1
n

n∑
i=1

Γi, and V̇ := limn→∞
1
n

n∑
i=1

Var[T−1/2
∑T

t=1{τ −

1(uit ≤ 0)}(xit − γi)].
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1. Under conditions A2–A5 and B1–B2, β̂FE
p→ β0 and

√
nT (β̂FE − β0)

d→ N(0, τ(1− τ)Γ−1V̇Γ−1).

as (T, n)seq →∞.

2. Under conditions A2–A5 and B1–B2, β̂FE
p→ β0 as (T, n)→∞ and logn

T
→ 0.

In addition, if n2(logn)
T

∣∣∣log (logn)0.5

T 0.5

∣∣∣2 → 0, then

√
nT (β̂FE − β0)

d→ N(0, τ(1− τ)Γ−1V̇Γ−1).

The results in Theorem 5 require condition A6 or A6’ to hold for stationary and

β-mixing data. An example of the estimator is

(
1

T

T∑
t=1

Khn(ûit)XitX
>
it

)−1

Ω̂ni

(
1

T

T∑
t=1

Khn(ûit)XitX
>
it

)−1

,

where

Ω̂ni =
τ(1− τ)

T

T∑
t=1

XitX
>
it

+
∑

1≤|j|≤mn

(
1− |j|

T

) 1

T

min{T,T−j}∑
t=max{1,−j+1}

{τ − 1(ûit ≤ 0)}{τ − 1(ûi,t+j ≤ 0)}XitX
>
it

 ,
as discussed in Remark 3.2, the proof of Theorem 3.2 of Kato and Galvao (2010).

Kato (2012) also studies the rate of convergence of the Powell’s kernel estimator for

stationary β-mixing data.
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2.5 Monte Carlo Simulations

This section conducts simulations to investigate finite sample performance of the

MD-QR estimator. For comparison purposes, we also report simulations for the

FE-QR estimator. We consider location and location-scale models as listed below

1. Location shift model: yit = ηi + βxit + εit,

2. Location-scale shift model: yit = ηi + βxit + (1 + 0.1xit)εit,

where xit = 0.3ηi + zit, zit ∼ i.i.d.χ2
3, ηi ∼ i.i.d.N(0, 1), and the innovations εit

follow a general distribution F . The correlation between ηi and xit makes the ran-

dom effects estimators to be inconsistent. We consider some selected F distribution

functions as standard normal [N(0, 1)], t-distribution with three degrees of freedom

[t(3)], and χ2-distribution with three degrees of freedom [χ2(3)]. The slope param-

eter of interest is β = 1. Thus, in the location shift model, the parameters in

equation (2.1) are αi0 = αi0(τ) = ηi + F−1(τ) and β0(τ) = 1. In the location-scale

shift model, αi0 = αi0(τ) = ηi + F−1(τ) and β0(τ) = 1 + 0.1F (τ)−1. We consider

several sample sizes and quantiles, where n ∈ {50, 100, 200}, T ∈ {50, 75, 100}, and

τ ∈ {0.25, 0.5, 0.75}. The number of replications is 2,000 in all cases.

In the numerical study, we compute the MD-QR introduced above and the FE-

QR. For comparison, we also report results for the MD-QR estimator generated

with weights computed using the true sparsity function instead of the estimated

sparsity in the corresponding variance-covariance matrix. It is important to present

results for the MD-QR with the true sparsity to investigate whether the finite sample

performance of the estimator is affected by estimation of the sparsity function in

the weights.

We use the following abbreviations: “MDT” stands for MD-QR using the true

sparsity; “MDE” stands for MD-QR using the estimated sparsity; and “FE” stands

for the FE-QR estimator. For the MDE we estimate the sandwich variance-covariance
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matrix using kernel estimation, and set the bandwidth h = 1.3hHS, where hHS is

the Hall-Sheather bandwidth. Tables 2.1–2.3 report the bias and standard deviation

(SD) of the MDT, MDE, and FE estimators for the location model. Tables 2.4–2.6

report the analogous results for the location-scale model. Tables 2.7–2.12 report the

average, over the number of replications, of the estimated standard deviations of

each estimator.

2.5.1 Bias and SD Results

Table 2.1 reports the bias and SD of the estimators for the location shift model

with N(0, 1) innovations. From the top panel, we see that the estimators are all

approximately unbiased, particularly when τ = 0.5. Comparing the MDT and MDE,

we find that the bias of MDT is in general lower than or equal to that of MDE,

which is due to the estimation effect of the sparsity. However, this effect disappears

as the time dimension increases, and the results for MDE are very similar to those

for MDT. In addition, as expected, we observe that the bias decreases as T increases

for all the estimators but not as n increases. This is due to the incidental parameter

problem discussed above. The SD’s are reported in the bottom panel. The results

support our claim that FE-QR cannot be more efficient than the MD-QR. MDT

has same SD as FE, and for two cases MDE has smaller SD than FE (τ = 0.25,

n = 200, T = 75; and τ = 0.75, n = 200, T = 50). Moreover, the SD decreases as

either T or n increases. Although the size of n does not affect the bias of MD-QR

and FE-QR estimators significantly, it does improve the SD of the estimators.

Tables 2.2 and 2.3 report the simulation results for the location shift model

with t(3) and χ2(3) innovations, respectively. From the results, we observe similar

patterns of the bias and SD for all the estimators. All estimators are approximately

unbiased, with bias reducing as T increases. In addition, there is evidence of smaller

SD for MDE relative to FE for τ = 0.75 in the χ2(3) case displayed in Table 2.3.
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Table 2.1: Bias and SD of the QR Estimators of the Location Shift Model When
the Innovations Are N(0, 1)

τ = 0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

Bias 50 50 0.002 0.006 0.001 0.000 0.000 -0.000 -0.002 -0.006 -0.000
75 0.002 0.005 -0.000 0.000 -0.000 -0.000 -0.002 -0.005 0.000

100 0.001 0.004 -0.000 -0.000 0.000 -0.000 -0.001 -0.004 0.000
100 50 0.002 0.006 0.000 0.000 0.000 -0.000 -0.002 -0.006 -0.000

75 0.001 0.005 0.000 -0.000 0.000 -0.000 -0.001 -0.005 -0.000
100 0.001 0.005 -0.000 0.000 -0.000 -0.000 -0.001 -0.005 -0.000

200 50 0.002 0.006 0.000 0.000 -0.000 0.000 -0.002 -0.006 -0.000
75 0.002 0.005 0.000 -0.000 0.000 -0.000 -0.002 -0.005 -0.000

100 0.001 0.005 0.000 0.000 0.000 0.000 -0.001 -0.005 -0.000
SD 50 50 0.011 0.011 0.011 0.010 0.011 0.010 0.011 0.011 0.011

75 0.009 0.009 0.009 0.009 0.008 0.009 0.009 0.009 0.009
100 0.008 0.008 0.008 0.007 0.007 0.008 0.008 0.008 0.008

100 50 0.008 0.008 0.008 0.007 0.007 0.007 0.008 0.008 0.008
75 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

100 0.006 0.006 0.006 0.005 0.005 0.005 0.006 0.006 0.006
200 50 0.006 0.006 0.006 0.005 0.005 0.005 0.006 0.005 0.006

75 0.005 0.004 0.005 0.004 0.004 0.004 0.005 0.005 0.005
100 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

For the location-scale model, the results of bias and SD with N(0, 1), t(3), and

χ2(3) innovations are reported in Tables 2.4–2.6, respectively. Basically, they are

parallel to those for the location shift model. In general, MDT and MDE estima-

tors are approximately unbiased. The effects of estimation of sparsity disappear as

sample size increase, and the SD’s of the MD estimators are not larger than the

corresponding FE.

2.5.2 The Estimators of SD

Table 2.7 reports the average of the estimated SD of MDT, MDE, and FE estimators

for location shift model with N(0, 1) innovations. We can see that the estimates of

the SD for MDT and FE are very close to the SD in the lower panels of Table

2.1, which implies that the estimators for the standard errors are approximately

unbiased. As for the MDE, the SD estimators slightly overestimate when T = 50.
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Table 2.2: Bias and SD of the QR Estimators of the Location Shift Model When
the Innovations Are t(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

Bias 50 50 -0.002 0.004 -0.000 -0.000 0.000 0.000 0.001 -0.004 -0.000
75 -0.001 0.004 -0.000 -0.000 0.000 -0.000 0.002 -0.004 0.000

100 -0.001 0.004 0.000 0.000 0.000 0.000 0.001 -0.004 -0.000
100 50 -0.001 0.004 0.000 -0.000 -0.000 0.000 0.001 -0.004 -0.000

75 -0.001 0.005 -0.000 0.000 -0.000 0.000 0.001 -0.004 -0.000
100 -0.001 0.004 -0.000 -0.000 0.000 0.000 0.001 -0.004 0.000

200 50 -0.001 0.005 -0.000 0.000 -0.000 0.000 0.001 -0.004 -0.000
75 -0.001 0.004 0.000 -0.000 0.000 0.000 0.001 -0.005 0.000

100 -0.001 0.004 0.000 0.000 -0.000 -0.000 0.001 -0.004 0.000
SD 50 50 0.015 0.013 0.014 0.012 0.012 0.012 0.015 0.014 0.014

75 0.012 0.011 0.012 0.009 0.009 0.009 0.012 0.011 0.011
100 0.010 0.010 0.010 0.008 0.008 0.008 0.010 0.010 0.010

100 50 0.010 0.010 0.010 0.008 0.008 0.008 0.010 0.010 0.010
75 0.008 0.008 0.008 0.007 0.007 0.006 0.008 0.008 0.008

100 0.007 0.007 0.007 0.006 0.006 0.006 0.007 0.007 0.007
200 50 0.007 0.007 0.007 0.006 0.006 0.006 0.007 0.007 0.007

75 0.006 0.005 0.006 0.005 0.005 0.004 0.006 0.006 0.006
100 0.005 0.005 0.005 0.004 0.004 0.004 0.005 0.005 0.005

But as T increases, the overestimation decreases, and almost disappears when T =

200. (We did simulations for T = 200. To save space, we do not report this result.)

This reflects the requirement of the size of the time dimension for the estimation

of the SD. The standard deviations of the estimated SD of MDT, MDE, and FE

are all very close to zero, therefore we do not report them in tables to save space.

Tables 2.8 and 2.9 report the average of the estimated SD of MDT, MDE, and FE

estimators for location shift models with t(3) and χ2(3) innovations, respectively, and

we observe similar patterns to Table 2.7. Results for the location-scale shift model

are reported in Tables 2.10–2.12, respectively. The results are parallel to those for

the location shift model. Overall, our simulations show that the estimators of the

SD are approximately unbiased.



62

Table 2.3: Bias and SD of the QR Estimators of the Location Shift Model When
the Innovations Are χ2(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

Bias 50 50 0.013 0.014 0.000 0.011 0.010 0.000 0.009 -0.008 0.001
75 0.009 0.011 0.000 0.007 0.006 0.001 0.006 -0.013 0.000

100 0.007 0.008 0.000 0.006 0.004 0.000 0.004 -0.016 -0.001
100 50 0.013 0.014 0.001 0.011 0.010 0.000 0.009 -0.008 0.000

75 0.009 0.010 0.000 0.008 0.006 0.000 0.006 -0.013 -0.000
100 0.007 0.008 0.000 0.006 0.004 -0.000 0.006 -0.015 -0.000

200 50 0.013 0.014 0.000 0.012 0.009 0.000 0.009 -0.008 0.001
75 0.009 0.010 0.000 0.008 0.006 0.000 0.006 -0.013 -0.000

100 0.007 0.008 0.000 0.006 0.004 -0.000 0.005 -0.015 -0.000
SD 50 50 0.015 0.016 0.015 0.022 0.022 0.022 0.033 0.031 0.034

75 0.012 0.013 0.012 0.018 0.018 0.018 0.028 0.026 0.028
100 0.011 0.011 0.011 0.015 0.015 0.015 0.024 0.022 0.024

100 50 0.011 0.012 0.010 0.016 0.015 0.016 0.023 0.021 0.023
75 0.009 0.009 0.008 0.012 0.013 0.013 0.019 0.018 0.020

100 0.008 0.008 0.007 0.011 0.011 0.011 0.017 0.015 0.017
200 50 0.007 0.008 0.007 0.011 0.011 0.011 0.017 0.015 0.017

75 0.006 0.007 0.006 0.009 0.009 0.009 0.014 0.013 0.014
100 0.005 0.005 0.005 0.008 0.008 0.008 0.012 0.011 0.012

2.5.3 Estimation Speed

Estimation of FE-QR models can be very cumbersome. It is important for applied

researchers to have available estimators that are easy to implement and compute.

The MD-QR is expected to be computationally attractive to practitioners. Thus,

we report the computing time for the MD-QR and the FE-QR estimators and the

associated standard deviations. Since the computing speed varies and depends on

the computer and the software, the following table provides some parameters of the

hardware and software we use.

Processor Speed: 2.93 GHz

Memory: 16 GB

Processor Interconnect Speed: 4.8 GT/s

R version: 2.14.1

quantreg version: 4.77
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Table 2.4: Bias and SD of the QR Estimators of the Location-Scale Shift Model
When the Innovations Are N(0, 1)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

Bias 50 50 0.006 0.018 0.001 0.001 -0.001 -0.000 -0.006 -0.018 -0.001
75 0.004 0.014 0.000 0.000 0.000 0.001 -0.004 -0.014 -0.001

100 0.003 0.011 0.001 0.000 -0.000 -0.000 -0.003 -0.011 -0.001
100 50 0.006 0.018 0.001 -0.000 -0.000 0.000 -0.006 -0.018 -0.001

75 0.004 0.014 0.001 0.000 0.000 -0.000 -0.004 -0.014 -0.000
100 0.003 0.010 0.001 -0.000 -0.000 -0.000 -0.003 -0.011 -0.000

200 50 0.006 0.018 0.001 -0.000 0.000 0.000 -0.006 -0.018 -0.001
75 0.004 0.014 0.001 -0.000 -0.000 0.000 -0.004 -0.013 -0.001

100 0.003 0.011 0.001 0.000 -0.000 0.000 -0.003 -0.011 -0.001
SD 50 50 0.018 0.019 0.018 0.017 0.018 0.017 0.018 0.019 0.018

75 0.015 0.015 0.015 0.014 0.014 0.014 0.015 0.015 0.015
100 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013

100 50 0.013 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013
75 0.010 0.011 0.010 0.009 0.010 0.010 0.010 0.011 0.011

100 0.009 0.009 0.009 0.008 0.009 0.008 0.009 0.009 0.009
200 50 0.009 0.009 0.009 0.008 0.009 0.008 0.009 0.009 0.009

75 0.007 0.008 0.008 0.007 0.007 0.007 0.007 0.008 0.007
100 0.006 0.007 0.006 0.006 0.006 0.006 0.006 0.007 0.006

We report results from one replication of the above simulation where we estimate

a location model for one particular quantile (τ = 0.5) using different sample sizes.

We compare the time in terms of three quantities: user, system, and elapsed. “User”

represents the CPU time spent executing the user instructions of the calling process,

and “system” is the CPU time charged by the system on behalf of the calling process.

“Elapsed” is the most interesting and describes the time required for one replication

of the simulation. The durations (in seconds) of the MD-QR and FE-QR estimations

for sample sizes n = T ∈ {10, 50, 100, 250, 500, 1000} are listed in the following table.
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Table 2.5: Bias and SD of the QR Estimators of the Location-Scale Shift Model
When the Innovations Are t(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

Bias 50 50 0.001 0.020 0.003 0.000 0.000 -0.000 -0.001 -0.021 -0.001
75 0.001 0.016 0.000 0.000 0.000 0.000 -0.001 -0.018 -0.001

100 -0.000 0.014 0.001 0.001 -0.001 -0.000 -0.000 -0.014 -0.001
100 50 0.001 0.021 0.002 -0.000 0.000 0.000 -0.001 -0.021 -0.002

75 0.000 0.017 0.001 0.000 0.000 0.000 -0.000 -0.017 -0.001
100 0.000 0.014 0.001 -0.000 -0.000 -0.000 -0.000 -0.014 -0.001

200 50 0.001 0.021 0.002 0.000 -0.000 0.000 -0.000 -0.021 -0.002
75 0.000 0.017 0.001 0.000 -0.000 -0.000 -0.000 -0.017 -0.001

100 0.000 0.015 0.001 -0.000 0.000 -0.000 -0.000 -0.014 -0.001
SD 50 50 0.023 0.024 0.023 0.019 0.020 0.018 0.023 0.023 0.022

75 0.020 0.018 0.018 0.015 0.015 0.015 0.019 0.019 0.018
100 0.016 0.016 0.016 0.013 0.013 0.013 0.016 0.016 0.016

100 50 0.017 0.016 0.016 0.014 0.014 0.013 0.017 0.016 0.016
75 0.013 0.013 0.013 0.011 0.011 0.010 0.013 0.013 0.013

100 0.011 0.011 0.011 0.009 0.010 0.009 0.011 0.011 0.011
200 50 0.012 0.011 0.012 0.010 0.010 0.009 0.011 0.011 0.011

75 0.009 0.009 0.009 0.008 0.008 0.007 0.010 0.010 0.009
100 0.008 0.008 0.008 0.007 0.007 0.006 0.008 0.008 0.008

MD-QR FE-QR

user system elapsed user system elapsed

n = T = 10 0.04 0.00 0.04 0.01 0.00 0.01

n = T = 50 0.18 0.00 0.18 0.15 0.01 0.16

n = T = 100 0.39 0.01 0.40 1.99 0.07 2.06

n = T = 250 1.19 0.06 1.25 111.94 1.08 113.07

n = T = 500 3.10 0.61 3.71 5035.23 10.29 5045.61

n = T = 1000 9.92 6.88 59.29 144133.94 888.38 153419.38

From the table, one can see that as the sample sizes increase, the durations of

computing each of the estimators increase, although the increment is mild for MD-

QR, it is drastic for FE-QR. The large difference in the duration of computing

the estimates comes from the fact that FE-QR solves a single larger optimization

problem while MD-QR splits the data into smaller parts and estimate each of them
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Table 2.6: Bias and SD of the QR Estimators of the Location-Scale Shift Model
When the Innovations Are χ2(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

Bias 50 50 0.022 0.024 0.000 0.017 0.003 -0.003 0.003 -0.064 -0.006
75 0.015 0.014 0.000 0.010 -0.002 -0.001 0.003 -0.063 -0.003

100 0.011 0.011 0.000 0.009 -0.005 -0.001 0.001 -0.055 -0.002
100 50 0.022 0.024 -0.000 0.015 0.002 -0.002 0.003 -0.062 -0.008

75 0.015 0.014 -0.000 0.010 -0.002 -0.001 0.003 -0.061 -0.003
100 0.011 0.011 -0.000 0.008 -0.004 -0.001 0.002 -0.056 -0.002

200 50 0.022 0.023 -0.000 0.015 0.001 -0.002 0.004 -0.063 -0.006
75 0.015 0.015 -0.000 0.011 -0.003 -0.001 0.003 -0.062 -0.004

100 0.011 0.010 0.000 0.008 -0.004 -0.001 0.001 -0.055 -0.003
SD 50 50 0.025 0.026 0.024 0.036 0.038 0.035 0.054 0.051 0.055

75 0.020 0.021 0.019 0.029 0.029 0.028 0.045 0.044 0.045
100 0.017 0.018 0.017 0.025 0.026 0.025 0.040 0.040 0.040

100 50 0.017 0.018 0.017 0.026 0.026 0.025 0.039 0.036 0.038
75 0.014 0.015 0.014 0.020 0.021 0.021 0.032 0.031 0.032

100 0.012 0.013 0.012 0.018 0.018 0.018 0.028 0.027 0.027
200 50 0.012 0.013 0.012 0.018 0.019 0.017 0.027 0.026 0.027

75 0.010 0.011 0.010 0.014 0.015 0.015 0.022 0.022 0.022
100 0.008 0.009 0.008 0.013 0.013 0.013 0.019 0.019 0.020

individually.

A natural question that follows is whether the duration of the estimation is more

sensitive to T or n. The following table shows the durations (in seconds) for various

levels of T when n = 100, and for various levels of n when T = 100. From the table

one can see that the durations of computing both of the estimators are much more

sensitive to the size of n. Moreover, the sensitivity to the sample size is much lower

for MD-QR than for FE-QR.

Overall, the computing time of MD-QR is considerably smaller than that of

FE-QR estimator. When the sample size, especially n, is large there is a strong

preference toward the MD-QR estimator. Thus, we expect the MD-QR to be very

useful for applied scholars seeking to estimate QR panels with fixed effects under

relatively large cross-section dimension.
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Table 2.7: Average of the Estimated SD of the Location Shift Model When the
Innovations Are N(0, 1)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

50 50 0.011 0.021 0.011 0.010 0.021 0.011 0.011 0.021 0.012
75 0.009 0.014 0.009 0.008 0.015 0.009 0.009 0.014 0.009

100 0.008 0.011 0.008 0.007 0.012 0.008 0.008 0.011 0.008
100 50 0.008 0.015 0.008 0.007 0.015 0.008 0.008 0.015 0.008

75 0.006 0.010 0.007 0.006 0.011 0.006 0.006 0.010 0.007
100 0.006 0.008 0.006 0.005 0.009 0.005 0.006 0.008 0.006

200 50 0.006 0.010 0.006 0.005 0.010 0.005 0.006 0.010 0.006
75 0.005 0.007 0.005 0.004 0.008 0.004 0.005 0.007 0.005

100 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004

Table 2.8: Average of the Estimated SD of the Location Shift Model When the
Innovations Are t(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

50 50 0.014 0.025 0.014 0.011 0.025 0.012 0.014 0.025 0.014
75 0.011 0.017 0.011 0.009 0.019 0.010 0.011 0.017 0.012

100 0.010 0.013 0.010 0.008 0.015 0.008 0.010 0.013 0.010
100 50 0.010 0.018 0.010 0.008 0.018 0.008 0.010 0.018 0.010

75 0.008 0.012 0.008 0.006 0.013 0.007 0.008 0.012 0.008
100 0.007 0.010 0.007 0.006 0.011 0.006 0.007 0.010 0.007

200 50 0.007 0.013 0.007 0.006 0.013 0.006 0.007 0.013 0.007
75 0.006 0.008 0.006 0.005 0.009 0.005 0.006 0.008 0.006

100 0.005 0.007 0.005 0.004 0.007 0.004 0.005 0.007 0.005

2.6 Application

In this section we apply the developed estimators to Fazzari et al. (1988) investment

equation model, where a firm’s investment is the dependent variable, and a proxy for

investment demand (Tobin’s q) and cash flows are independent variables. As stated

in Almeida et al. (2010), “following Fazzari et al. (1988), investment-cash-flow sen-

sitivities became a standard metric in the literature that examines the impact of

financing imperfections on corporate investment (Stein (2003)). These empirical

sensitivities are also used for drawing inferences about efficiency in internal capital
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Table 2.9: Average of the Estimated SD of the Location Shift Model When the
Innovations Are χ2(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

50 50 0.015 0.045 0.017 0.022 0.045 0.022 0.034 0.045 0.033
75 0.012 0.030 0.013 0.018 0.033 0.018 0.028 0.031 0.027

100 0.010 0.023 0.011 0.015 0.027 0.015 0.024 0.025 0.023
100 50 0.011 0.031 0.011 0.016 0.032 0.015 0.024 0.032 0.024

75 0.009 0.021 0.009 0.013 0.023 0.013 0.020 0.022 0.020
100 0.007 0.017 0.008 0.011 0.019 0.011 0.017 0.017 0.017

200 50 0.007 0.022 0.008 0.011 0.023 0.011 0.017 0.022 0.017
75 0.006 0.015 0.006 0.009 0.017 0.009 0.014 0.015 0.014

100 0.005 0.012 0.005 0.008 0.013 0.008 0.012 0.012 0.012

Table 2.10: Average of the Estimated SD of the Location-Scale Shift Model When
the Innovations Are N(0, 1)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

50 50 0.018 0.029 0.018 0.017 0.029 0.017 0.018 0.029 0.018
75 0.015 0.020 0.015 0.014 0.021 0.014 0.015 0.020 0.015

100 0.013 0.016 0.013 0.012 0.018 0.012 0.013 0.016 0.013
100 50 0.013 0.020 0.013 0.012 0.020 0.012 0.013 0.020 0.013

75 0.010 0.014 0.011 0.010 0.015 0.010 0.010 0.014 0.011
100 0.009 0.011 0.009 0.008 0.012 0.008 0.009 0.011 0.009

200 50 0.009 0.014 0.009 0.008 0.014 0.008 0.009 0.014 0.009
75 0.007 0.010 0.007 0.007 0.011 0.007 0.007 0.010 0.007

100 0.006 0.008 0.006 0.006 0.009 0.006 0.006 0.008 0.006

markets (Lamont (1997); Shin and Stulz (1998)), the effect of agency on corporate

spending (Hadlock (1998); Bertrand and Mullainathan (2005)), the role of business

groups in capital allocation (Hoshi et al. (1991)), and the effect of managerial char-

acteristics on corporate policies (Bertrand and Schoar (2003); Malmendier and Tate

(2005)).” Following the literature, the model in our application is

IKit = αi + θqit + γCFKit + uit, (2.6)
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Table 2.11: Average of the Estimated SD of the Location-Scale Shift Model When
the Innovations Are t(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

50 50 0.022 0.035 0.023 0.018 0.035 0.020 0.022 0.035 0.023
75 0.018 0.024 0.019 0.015 0.026 0.016 0.018 0.024 0.019

100 0.016 0.020 0.016 0.013 0.021 0.013 0.016 0.019 0.016
100 50 0.016 0.025 0.016 0.013 0.025 0.014 0.016 0.025 0.016

75 0.013 0.017 0.013 0.010 0.018 0.011 0.013 0.017 0.013
100 0.011 0.014 0.011 0.009 0.015 0.009 0.011 0.014 0.011

200 50 0.011 0.017 0.011 0.009 0.017 0.009 0.011 0.017 0.011
75 0.009 0.012 0.009 0.007 0.013 0.008 0.009 0.012 0.009

100 0.008 0.010 0.008 0.006 0.011 0.007 0.008 0.010 0.008

Table 2.12: Average of the Estimated SD of the Location-Scale Shift Model When
the Innovations Are χ2(3)

τ =0.25 τ =0.5 τ =0.75
n T MDT MDE FE MDT MDE FE MDT MDE FE

50 50 0.024 0.061 0.026 0.036 0.061 0.035 0.056 0.062 0.053
75 0.020 0.041 0.021 0.029 0.045 0.029 0.045 0.044 0.045

100 0.017 0.033 0.018 0.025 0.037 0.025 0.039 0.036 0.038
100 50 0.017 0.043 0.018 0.025 0.043 0.025 0.039 0.044 0.038

75 0.014 0.029 0.014 0.020 0.032 0.020 0.032 0.031 0.032
100 0.012 0.023 0.012 0.018 0.026 0.018 0.028 0.026 0.027

200 50 0.012 0.030 0.012 0.018 0.031 0.017 0.028 0.031 0.027
75 0.010 0.021 0.010 0.014 0.023 0.014 0.023 0.022 0.023

100 0.009 0.016 0.009 0.013 0.019 0.012 0.020 0.018 0.019

where the quantity IKit = Iit/Ki,t−1 and CFKit = CFit/Ki,t−1 so that the base

capital stock comes from the previous period, with I denoting investment, K capital

stock, q the average Tobin’s q, CF cash flow, α firm-specific fixed effect (FE), and

u error term.

However, although there is a consensus in the literature about the inclusion of

individual specific intercepts in investment equations, it is standard in the empirical

literature to impose an homogeneous response of Tobin’s q and cash flow by esti-

mating conditional mean regression models. To investigate the potential different
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Table 2.13: Duration of the Estimations

MD-QR FE-QR
n = 100 user system elapsed user system elapsed
T = 10 0.41 0.00 0.42 0.08 0.01 0.09
T = 50 0.45 0.01 0.46 0.44 0.03 0.48
T = 100 0.46 0.01 0.48 1.66 0.06 1.72
T = 250 0.54 0.03 0.57 5.64 0.16 5.81
T = 500 0.62 0.06 0.68 13.23 0.32 13.56
T = 1000 0.79 0.23 1.03 29.42 0.71 30.17

T = 100 user system elapsed user system elapsed
n = 10 0.05 0.00 0.05 0.01 0.00 0.01
n = 50 0.25 0.01 0.25 0.15 0.02 0.17
n = 100 0.50 0.02 0.52 1.64 0.07 1.71
n = 250 0.99 0.07 1.06 39.76 0.40 40.21
n = 500 2.13 0.07 2.19 703.81 1.78 705.52
n = 1000 4.57 0.43 5.00 8082.06 8.45 8089.07

types of heterogeneity in investment models we use the QR framework developed

in this chapter. QR panel data is used to analyze investment equations because

it allows for individual fixed effects, and most importantly, it allows exploring a

range of covariate effects. There are several compelling reasons to believe that the

sensitivity of investment to cash flow varies across quantiles. Firms that have more

volatile cash flow may not be as sensitive to cash flow in terms of investment. In

particular, increased investment will increase future expenses. Firms with large vari-

ances in cash flow may respond in a more tempered way to positive changes in cash

flow, believing that such changes can be mitigated by a negative shock in the future

periods. Moreover, firms may also exhibit heterogeneity in their response to qit.

We seek to estimate the following quantile regression version of the baseline

equation described in (2.6). The conditional quantile functions are given by

QIKit(τ |αi, qit, CFKit) = αi(τ) + θ(τ)qit + γ(τ)CFKit,

where the parameters of interest are θ(τ) and γ(τ), which are allowed to depend on
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the quantile τ .

2.6.1 Data Description

The dataset is from COMPUSTAT and covers 1970 to 2010. We follow Almeida and

Campello (2007) to collect the data. The sample consists of manufacturing firms

with fixed capital of more than $ 5 million (with 1976 as the base year for the cpi),

and the sample firms have growth of less than 100% in both assets and sales. Table

2.14 presents summary statistics for investment, cash flow, and q. For estimation

and robustness check, we break the sample into cases were there are data available

for the relevant firms between 35 and 40 years, more than 40 years, and more than

35 years. Each case in this breakdown allows us to estimate investment equations

for each individual firm in the sample, and then average the results to compute the

MD estimators. A comparison shows that these statistics are similar to those in

Almeida and Campello (2007).

Table 2.14: Descriptive Statistics

Variable Obs. Mean Std. Dev. Median Min Max

Investment 5596 0.211 0.126 0.184 0.003 1.208
35 ≤ T < 40 Cash Flow 5596 0.389 0.317 0.345 -2.509 5.042

q 5596 1.130 0.879 0.910 0.323 16.026

Investment 4320 0.208 0.111 0.188 0.004 1.141
T ≥ 40 Cash Flow 4320 0.417 0.311 0.363 -2.351 4.022

q 4320 1.147 1.002 0.931 0.304 18.342

Investment 9916 0.210 0.120 0.186 0.003 1.208
T ≥ 35 Cash Flow 9916 0.401 0.315 0.353 -2.509 5.042

q 9916 1.137 0.934 0.918 0.304 18.342
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2.6.2 Estimation Results

We estimate the above investment equation using FE quantile regression MD, and

FE mean regression MD.2 The QR technique explicitly allows for heterogeneity

across the conditional quantile functions. The results for the estimated effects of

Tobin’s q and cash flow are presented in Figures 2.1a–2.1c, for different samples.

The figures contain point estimates as well as 90% pointwise confidence bands for

both QR and mean estimates.

The results regarding the sensitivity of investment to cash flow are presented

in the left panels of Figures 2.1a–2.1c. The left panel of Figure 2.1a presents the

results for the sample with 35 ≤ T ≤ 40 and shows positive point estimates for

both mean and quantile effects of cash flow on investment. The mean regression

estimate is represented by the horizontal straight line, which shows a positive effect

close to 0.11, and is statistically different from zero at usual levels of significance.

Figure 2.1a also shows that the QR effects are positive and increasing along the

quantile index τ . The coefficients are also statistically different from zero at usual

levels of significance. This finding uncovers several important features. Firstly, this

documents important heterogeneity on the response of investment spending to cash

flow along the conditional quantile function. Firms in different quantiles of the con-

ditional distribution of investment respond differently to marginal changes in the

cash flow. Secondly, this heterogeneous increasing effect across quantiles also indi-

cates that, for a fixed level of q, the variability of the investment spending across

the conditional distribution increases as the level of cash flow increases. Intuitively,

firms with larger cash flow are entitled to invest in a larger range in contrast to the

firms with smaller cash flow. Thirdly, Figure 2.1a shows evidence that the invest-

ment spending is more sensitive to cash flow (large magnitude of the coefficients)

for firms at high quantiles. The large coefficients for higher quantiles is an intuitive

2Mean regression MD is defined as the weighted average of the OLS slope estimators with the
corresponding inverse matrices as the weights.
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Figure 2.1: MD Estimators of the Quantile and Mean Regression

(a) Firms with 35 ≤ T < 40
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(b) Firms with T ≥ 40
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(c) Firms with T ≥ 35
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The solid curve indicates the MDQR panel data estimates, the dotted curves are
90 % confidence bands for the panel data estimates, and the horizontal solid and
dashed lines represent minimum distance mean regression estimates and the 90 %
confidence bands.
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result. The cash flow coefficient captures the potential sensitivity of investment to

fluctuations in available internal finance–after investment opportunities and indi-

vidual fixed effects are controlled for. Thus, the results show evidence that firms

with high levels of investment spending are in fact more exposed to and dependent

on fluctuations in internal finance. The left panels in Figures 2.1b and 2.1c collect

the analogous results for samples with T ≥ 40 and T ≥ 35, respectively. The results

are qualitatively similar to those in Figure 2.1a.

The results for both mean and quantile estimates of the sensitivity of investment

to Tobin’s q are presented in the right panels of Figures 2.1a–2.1c for different

samples. According to the theory of investment equation, e.g., Fazzari et al. (1988),

and previous empirical studies, e.g., Kaplan and Zingales (1997), on average, the

investment demand has positive effect on the investment spending. This result is

verified in our estimations. The right panels of Figures 2.1a–2.1c show the significant

positive levels of the horizontal lines. The quantile estimates also show evidence that

there is positive effect of the investment demand on the investment spending across

the conditional quantile distribution of investment. Moreover, for all the three

samples, there is evidence that estimated QR effects are relatively stable and do not

vary much across quantiles. The QR point estimates are also relatively close to the

mean effect. Thus, we find evidence that firms have similar responses to changes of

investment demand across the conditional distribution of investment.

2.7 Summary

In this chapter, we study the asymptotic properties of the minimum distance esti-

mator (MD-QR) for the fixed effects quantile regression panel model. We establish

sufficient conditions for the consistency and asymptotic normality of the MD-QR

estimator under sequential and joint asymptotics. In addition, we derive new asymp-

totical results for the standard quantile regression fixed effects (FE-QR) estimator
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under the sequential asymptotics. We introduce the use of sequential limits to study

the asymptotic theory of quantile regression (QR) panel models with fixed effects.

This is an important innovation because it facilitates the derivation of the limit-

ing results and can be utilized in future works for other QR panel data models.

One important insight from the analysis of the two different asymptotics is that

the sequential limits substantially simplify the formal derivation of the asymptotic

properties of both MD-QR and FE-QR. In addition, the MD-QR has the same lim-

iting distribution under both sequential and joint limits. This result also holds for

the FE-QR estimator.

The MD-QR has significant properties. Firstly, it is efficient in the class of

minimum distance estimators. Secondly, it is computationally attractive. Monte

Carlo results show that both the bias and the standard deviation are relatively small.

Moreover, the great computing efficiency of the MD-QR estimator, especially when

n is large, provides strong incentive for practitioners to adopt it as opposed to the

FE-QR estimator.

There are many variants of the model that would extend the presented structure

for the MD-QR that we leave for future research. These include analysis and exten-

sion of the methods for other models as censoring and duration are also a critical

direction for future research. Applications to treatment effects models would be an

interesting environment for further development of these methods.
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Chapter 3

Testing Individual Slope Homogeneity in Quantile

Regression Panel Data Models with an

Application to Firm Capital Structure

3.1 Introduction

It is usual in applications of panel data models to impose a concomitant assumption

of heterogeneous individual specific intercepts and homogeneous slope coefficients

across individuals. The former condition has become standard in panel data models.

However, the latter constraint might be seen as excessively strong and has become

controversial as the availability of data increases. Heckman (2001) states “the most

important discovery [from the widespread use of micro-data is] the evidence on the

pervasiveness of heterogeneity and diversity in economic life.” Motivated by the

question on the benefits of pooling estimators vis-à-vis heterogeneous estimators,

Baltagi et al. (2000) reinvestigate the advantages of pooling, and compare the per-

formance of the homogeneous and heterogeneous estimators in an empirical study

of cigarette demand. They conclude that pooled models outperform their hetero-

geneous counterparts. On the other hand, another branch of the literature uses

shrinkage methodology to investigate the same question, whether to pool the data

(see, e.g., Maddala and Hu (1996), Maddala et al. (1997), and Maddala et al. (2001)).

These models do not assume homogeneity of the slope coefficient, and thus allow for

heterogeneity across individuals.1 Hsiao and Sun (2000) argue that if the individu-

1Another related literature includes random coefficient models. Swamy and Tavlas (2007) and
Hsiao and Pesaran (2008) are good surveys for these models. For a general discussion on the
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als do not share homogeneous coefficients, fixed effects estimation may not estimate

any parameters of interest; hence, in empirical work, it is important to use formal

tests to evaluate the conjecture of homogeneous coefficients across individuals.

There are several tests available in the literature for the hypothesis of slope

homogeneity across individuals for mean regression models. Pesaran et al. (1996)

propose an application of the Hausman (1978) testing procedure where the FE

estimator is compared with the mean group estimator. Phillips and Sul (2003)

suggest a “Hausman-type” test for slope homogeneity in the context of stationary

first-order autoregressive panel data models, where the cross-section, n, is fixed as

the time-series, T , goes to infinity. Hsiao (2003) describes a variation of the Breusch

and Pagan (1979) test for the slope homogeneity, which is valid when both n and

T dimensions tend to infinity. More recently, Pesaran and Yamagata (2008) (PY

hereafter) propose a dispersion type test based on Swamy (1970) type test. PY

standardize the Swamy type test so that this dispersion test can be applied when

both n and T are large.

Motivated by the fact that formal tests for homogeneity of the slopes across

cross-sectional units in panel data models are an indispensable tool for practitioners

and also by the recent strong influence of QR panel data methods, this chapter

contributes to the literature by developing testing procedures for homogeneity of

the slope coefficients across individuals for FE QR models and a fixed quantile. A

panel data QR model with different coefficients across quantiles and individuals is

a flexible method since it is able to capture these two different sources of hetero-

geneity. In addition, when the individuals have heterogeneous slope coefficients,

FE QR estimation has the potential to be very misleading since it is attempting to

combine parameters in a fashion that may render the estimator inconsistent for any

population parameters. Thus, we propose two tests, a Swamy (Ŝ) and a standard-

ized Swamy (∆̂) type tests, with the null hypothesis of slope homogeneity across

modeling of heterogeneity, see Browning and Carro (2007).
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individuals for a given quantile of interest. We derive the limiting distributions of

the tests under different asymptotic sample size conditions. In particular, we show

that under regularity conditions and the null hypothesis of the homogeneous slope

coefficients, Ŝ converges to a χ2 distribution as T → ∞ and n is fixed; and also ∆̂

converges to the standard normal distribution as both (T, n)→∞, sequentially and

jointly. Given these results, the critical values for a given level of significance are

tabled and widely available, and a prominent advantage of these proposed tests is

that they are very easy to implement in applications. When the null hypothesis of

homogeneous slope coefficients is rejected for some selection of τ ’s, there is evidence

of heterogeneous covariate effects across individuals, and as a result using fixed ef-

fect quantile regression assuming homogeneous slope coefficients is inappropriate.

In addition, when the null is rejected by our formal tests, one could consider esti-

mation of a set of parameters for each cross-sectional unit, or perhaps a shrinkage

estimator could be entertained.

We conduct Monte Carlo simulations to evaluate the performance of the tests in

finite samples. The simulation results show evidence that the proposed tests present

empirical size that is very close the nominal size, and has good power performance.

The numerical experiments also confirm that the finite sample performance improves

with the sample size.

Finally, we illustrate the implementation of the proposed tests with a “target

leverage” model. Many empirical studies assume a homogeneous speed of capital

adjustment across firms (see, i.e., Flannery and Rangan (2006)). To investigate the

potential different speed of adjustment, we use the tests developed in this chapter.

As stated in Galvao and Montes-Rojas (2010), “QR panel data is a suitable tool

for analyzing the behavior of ‘target leverage’ models since it allows controlling for

individual specific intercepts, and most importantly, it allows exploring a range of

conditional quantile functions exposing a variety of forms of conditional heterogene-
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ity.” Thus, we contribute to the discussion by uncovering two important sources

of heterogeneity. Firstly, we test the common assumption in the literature of ho-

mogeneity of speed of convergence across firms. More specifically we test whether,

for a fixed τth quantile, there is homogeneity across firms in the coefficient describ-

ing the speed of convergence. Secondly, we estimate the model for several different

quantiles and examine the heterogeneity across the distribution. The results show

evidence that, using our tests for selected quantiles and all the firms in the sample,

one is able to reject the null hypothesis of homogeneous slope coefficient across the

firms at usual levels of significance. In addition, we consider different subsets of the

firms to examine robustness of the results. When considering firms with similar fea-

tures, in particular a balanced panel of 31 years, one is not able to reject the null of

same speed of adjustment across firms for some quantiles. We also document large

heterogeneity in the speed of convergence across different parts of the conditional

quantile function.

The rest of the chapter is organized as follows. Section 3.2 describes and dis-

cusses the null hypothesis and the tests proposed. Sections 3.3 and 3.4 study the

asymptotic properties of the test statistics for static and dynamic models, respec-

tively. The Monte Carlo simulation results are reported in Section 3.5. In Section

3.6 we illustrate the new approach with an application to firm capital structure, and

Section 3.7 concludes the chapter.

3.2 The Null Hypothesis and the Proposed Tests

We consider a linear quantile regression panel model with n individuals and T time

periods for each individual as

yit = X>it θi0 + εit(τ) := αi0 + x>itβi0 + εit(τ) t = 1, . . . , T ; i = 1, · · · , n, (3.1)
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where yit is the response variable for the ith individual at time t, Xit is its corre-

sponding covariates with the first element being one, εit(τ) is the error term whose

τth quantile is zero conditional on Xit, and θi0 := (αi0,β
>
i0)> is a k + 1 vector of

coefficients. In general, the coefficients depend on the quantile index τ . Since τ is

fixed throughout the chapter, we will suppress this dependence for notational sim-

plicity. The analogous version to equation (3.1) for the conditional quantile function

of the response variable yit can be represented as

Qyit(τ |xit) = X>it θi0 = αi0 + x>itβi0.

For any given τ ∈ (0, 1), we wish to test the following hypothesis of slope homo-

geneity across individuals

H0 : βi0 = β0

for some fixed vector β0 for all i, against the alternatives

H1 : βi0 6= βj0 ∃ i, j.

To implement the tests, the strategy is to estimate the quantile regression coef-

ficients using the time series for each individual, and then compare them with β0.

Under the null, the estimates for all individuals should be close to β0. Therefore, a

large value of the differences of these estimates and β0 indicates that the null should

be rejected. However, in general, we do not observe the true coefficients β0, and

thus we replace it with a weighted average of the estimates, β̂i, from each individual.

Under the null, all the β̂i should be close to each other, and to any weighted average

of those estimates.

More specifically, put ψτ (u) := τ − 1{u ≤ 0}. Denote the slope regression
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quantiles for each individual i by β̂i := Ξθ̂i, with

θ̂i := arg min
θ∈Rk+1

1

T

T∑
t=1

ρτ (yit −X>it θ),

Ξ := [0k×1|Ik×k], where ρτ (u) := uψτ (u) as in Koenker and Bassett (1978). Define

the following minimum distance (MD) estimator which is a weighted average of the

slope regression quantiles

β̂MD =

(
n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i β̂i, (3.2)

with V̂i := Ξ
̂̃
V iΞ

>, where
̂̃
V i is a consistent estimator of the asymptotic variance-

covariance matrix of the regression quantiles Ṽi := τ(1 − τ)Γ̃−1
i Ω̃iΓ̃

−1
i with Γ̃i :=

E[fi(0|Xit)XitX
>
it ] and Ω̃i := E[XitX

>
it ] if the data are i.i.d. within each individual.

The weighted mean of the β̂i defined above is a minimum distance estimator with

weights being the inverse of the asymptotic variance-covariance matrices of the slope

regression quantiles. For a thorough discussion of the minimum distance estimators,

see Kodde et al. (1990), Newey and McFadden (1994), and Hsiao (2003). This

weighted average is the benchmark for the comparison of the β̂i’s in our tests.

Therefore, we propose a quantile regression version of the Swamy type test as

Ŝ :=
n∑
i=1

(
β̂i − β̂MD

)>( V̂i
T

)−1 (
β̂i − β̂MD

)
,

and also a standardized Swamy test as

∆̂ =
√
n

1
n
Ŝ − k
√

2k
.

As it will be clear later, when T is large and n is fixed, Ŝ is asymptotically

χ2
(n−1)k distributed. Therefore, E

[
1
n
Ŝ
]

is approximately k and V ar
[

1
n
Ŝ
]

is approx-
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imately 2k
n

. In fact, under some mild conditions, the previous statement holds, and

the standardized Swamy test statistic can be approximated by a standard normal

random variable.

The intuition behind the tests is that under the null hypothesis Ŝ and ∆̂ should

be close to zero. Under the null of homogeneity, all βi0 are the same. Thus, all

estimates β̂i are close to each other and consequently to βi0, which is estimated

by the weighted average β̂MD. Therefore, both Ŝ and ∆̂ should be small. If there

is evidence that either Ŝ or ∆̂ is large, we cast doubt that the null hypothesis of

homogeneity of the slope coefficients holds.

Remark 3. We use the minimum distance estimator β̂MD as the benchmark to con-

struct the test statistics in this chapter. The MD estimator simplifies the derivation

of the limiting distributions of the test statistics as shown in the proofs. However,

one could replace the MD estimator with the standard consistent FE-QR estimator,

β̂FE, introduced by Koenker (2004). The main results we present here still hold, at

the cost of lengthier proofs.

3.3 Asymptotic Properties of the Tests

In this section, we investigate the asymptotic properties of the proposed tests. For

the Swamy type test, we require n to be fixed and T to tend to infinity. For the

standardized Swamy test, we let both T and n go to infinity. We analyze both

sequential and simultaneous asymptotics in this case.

The use of large panel data asymptotics is common for testing slope homogeneity

in the mean regression literature, as in PY. The Swamy type test was originally

devised for panel data with small n and large T , while the standardized Swamy test

was devised for panel data with both n and T large.

In this chapter, there are two main reasons why we require large panels. First,

we need to consistently estimate βi0 for each individual, and the data employed in
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its estimation relies only on the time dimension. Second, the benchmark parameter,

β0, is estimated by β̂MD, which is an FE QR estimator. To achieve consistency of

β̂MD, it is also required that T tend to infinity. It is important to note that using

large panels is common in panel data FE QR literature (see Kato et al. (2012)).

In general, the FE QR estimator suffers from the incidental parameters problem

(Neyman and Scott (1948)), it is therefore essential to allow T to increase to infinity

to achieve for FE QR estimators .

We follow both the testing and the panel QR literatures and present results for

the limiting distribution of the Swamy test (Ŝ) as T → ∞, and the limiting dis-

tributions of the standardized Swamy test (∆̂) under two different asymptotics, T

and n tend to infinity sequentially and simultaneously. The sequential asymptotics

is defined as T diverging to infinity first, and then n. In the definition of the simul-

taneous asymptotics, T and n tend to infinity at the same time. We do not specify

the exact relationship between n and T , although we maintain that T depends on

n. For notational simplicity, we suppress this dependence. For a detailed discussion

on sequential and simultaneous asymptotics for panel data, see Phillips and Moon

(1999, 2000). In what follows, we adopt the following notation: (T, n)seq → ∞

means that first T →∞ and then n→∞, while (T, n)→∞ means T and n tend

to infinity simultaneously. To obtain the desired results we use the assumptions of

Chapter 2 and present the asymptotic distributions of the test statistics.

Theorem 5. 1. Under Conditions A1–A6, we have Ŝ
d→ χ2

(n−1)k as T →∞ and

n is fixed;

2. Under Conditions A1–A6, we have ∆̂
d→ N(0, 1) as (T, n)seq →∞;

3. Under Conditions A1–A5, and A6’, we have ∆̂
d→ N(0, 1) as (T, n) → ∞,

provided n2 logn
T
| log δn|2 → 0, where δn =

√
logn
T

.

Proof. See Appendix C1.
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Theorem 1 provides the asymptotic distributions of Ŝ and ∆̂, and shows that it

is very easy to find the critical values for the two tests. Since Ŝ is asymptotically

χ2
(n−1)k and ∆̂ is asymptotically normally distributed, the critical values for a given

level of significance are tabled and widely available. Therefore, implementation of

the proposed tests is simple. One computes the test statistics, Ŝ or ∆̂, sets the

level of significance, and finds the critical values from the corresponding tables. The

null hypothesis of homogeneity across individuals is rejected if the values of the test

statistics are larger than the corresponding critical values.

3.4 Extensions to Dependent Data

In this section, we study the test statistics for independent data across individu-

als but within each individual, the data are relaxed to stationary and β-mixing.

The mixing condition and the requirement on the joint conditional densities are in

Chapter 2.

The following two theorems are asymptotic results for stationary β-mixing data,

and are extensions of the theorems in Section 3.3.

Theorem 6. 1. Under Conditions A2–A6 and B1–B2, we have Ŝ
d→ χ2

(n−1)k as

T →∞ and n is fixed;

2. Under Conditions A2–A6 and B1–B2, we have ∆̂
d→ N(0, 1) as (T, n)seq →∞;

3. Under Conditions A2–A5, A6’, and B1–B2, we have ∆̂
d→ N(0, 1) as (T, n)→

∞, provided n2 logn
T
| log δn|2 → 0, where δn =

√
logn
T

.

Proof. See Appendix C1.
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3.5 Finite Sample Simulations

In this section, we investigate the finite sample properties of the tests proposed

above. We report empirical size and empirical power at nominal 5% level for

various pairs of n and T . In particular, the simulations consider sample sizes

n ∈ {10, 25, 50, 100} and T ∈ {50, 100, 200} and quantiles τ ∈ {0.25, 0.50, 0.75}.

The number of replications is 2,000.

3.5.1 Static Model

The static model under study is a location or a location-scale model as

yit = αi + βixit + (1 + γxit)uit

for t = 1, · · · , T and i = 1, · · · , n. For the location model γ = 0, and the location-

scale model γ = 0.5. The innovations uit are independent and identically distributed

(i.i.d.) with distribution function Fu, and xit = 0.3αi + zit, where zit
i.i.d.∼ χ2

3. For

the simulations, we use two distributions for Fu, a standard normal (N(0, 1)) and a

beta with shape parameters 2 and 6 (B(2, 6)).

We would like to test the null hypothesis H0 : βi = βj for all i, j ∈ {1, · · · , n}

against H1 : βi 6= βj for any i 6= j. In the simulations, we set αi = i−1
n−1

(which means

that αi are uniformly distributed in the unit interval, and are fixed for different

replications as in Pesaran and Yamagata (2008)). Under the null, we set βi = 1 for

all i; under the alternative βi = 0.25 + i−1
n/2−1

for i ≤ n
2

and 1 otherwise.

In the following tables, for any sample size combination we present results for

the empirical size (left panels) and empirical power (right panels). We collect results

for Swamy type test and ∆̂ test for each case. In addition, for both location and

location-scale models, we report the results that use the true sparsity (for the three

quartiles), the estimated sparsity with adjusted Hall-Sheather bandwidth rule (for
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the median), and the estimated sparsity with adjusted Bofinger bandwidth rule (for

the median).

Testing with the Nonsandwich Form

We first investigate the location model (γ = 0). When data are generated by a

location model, the sandwich form of the asymptotic covariance described previously

in Ṽi simplifies to τ(1− τ)E(Xi1X
>
i1)−1/f 2

U(xp), where Xi1 = (1, xi1)> and fU is the

density of FU .

Table 3.1 displays the results for normal N(0, 1) and beta B(2, 6) innovations

with the true sparsity functions. From Table 3.1, we see that for all the three

quartiles, the empirical sizes are close to 5% and most of the empirical powers are

close to 100% if not 100%.

Tables 3.2 presents the empirical size and power for the N(0, 1) and B(2, 6) inno-

vations with the adjusted Hall-Sheather and Bofinger bandwidths when estimating

the sparsity functions. We present results for models with two different bandwidths,

namely, the Hall-Sheather, h = 1.7hHS, and the Bofinger, h = 1.8hB. The results

indicate that the tests have good sizes, with empirical sizes close to the nominal 5%,

and large power independent of the bandwidth choice. In addition, the results show

similar performance for both Hall-Sheather and Bofinger bandwidths for the differ-

ent sample sizes and innovations. Thus, the results are robust to the distributions

of innovations and sample sizes.

Testing with the Sandwich Form

Next, we investigate the performance of our tests under the location and location-

scale models. In particular, we focus on the sandwich form variance which is robust

to the location-scale model. Again, assuming that the true sparsity function is

known, we first study the empirical size and power. The results are listed in Table
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3.3.

Table 3.3 shows good empirical size and high power for the location and location-

scale models for N(0, 1) and B(2, 6) innovations and for the three quartiles. The

results for the sandwich form presented in Table 3.3 are analogous to those in Table

3.1. Thus, once again one can observe that most of the empirical sizes are close to

5% and most of the empirical powers are close to 100%, if not 100%. In addition,

one can observe that the results for the location model (γ = 0) in Table 3.3 are

similar to those in Table 3.1. This shows evidence that estimation of the sandwich

variance in location models does not affect the size and power of the proposed tests.

Now, we report the simulation results with the sparsity being estimated. As

in the previous case we present results for two different choices of bandwidth. For

this exercise, for the location model, we set the bandwidths as h = 0.5hHS and

h = 0.4hB, and for the location-scale model, the bandwidths are given by h = 0.8hHS

and h = 0.6hB. The results are summarized in Table 3.4. The results suggest that,

in general, the empirical sizes are close to the nominal 5%. However, one can

observe that for small samples and HS bandwidth there is a slight size distortion in

both Swamy and standardized Swamy tests. But the size distortion disappears as

the sample size increases in both cases. The empirical power is again large for both

tests regardless of the sample size and distributions of innovations. Finally, as in the

previous case, the results given in Table 3.4 for the estimated sandwich variance are

comparable to those in Table 3.2. Therefore, there is evidence that the estimation

of the sandwich variance does not affect the properties of the tests.

3.5.2 Dynamic Model

In this subsection, we investigate the finite sample properties of the tests for a

dynamic model. We report empirical size and power at nominal 5% level for various
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pairs of n and T . The model under study is a dynamic model as

yit = αi + βiyit−1 + uit

for t = 1, ..., T and i = 1, ..., n. Innovations uit are i.i.d. with distribution function

Fu. We set Fu as a standard normal (N(0, 1)) and a beta with shape parameters 2

and 6 (B(2, 6)). In generating yit we also set yi,−49 = 0, drop the first 50 observations,

and use the last T observations for estimation.

We would like to test the null hypothesis H0 : βi = βj for all i, j against H1 :

βi 6= βj for any i 6= j. In the simulations, we set αi = i−1
n−1

. Under the null, we

set βi = 0.5 for all i; under the alternative βi = 0.05 + 0.8(i−1)
n/2−1

for i ≤ n
2

and 0.5

otherwise.

Tables 3.5 and 3.6 summarize the empirical size and power respectively. In Table

3.5, we use the true sparsity at the quantile index of interest. The empirical sizes

are around 5% for all the quartiles and both the errors, and the empirical sizes are

getting closer to 5% as T increases or when both n and T increase. The empirical

powers for the normal errors are in general higher than 70%; and the empirical

powers are higher than 50% in most cases for B(2, 6) errors.

Table 3.6 reports the empirical size and power using the estimated sparsity with

adjusted Hall-Sheather and Bofinger bandwidths. In particular, we use bandwidths

h = 1.7hHS and h = 1.8hB, as in the static case. The results in Table 6 show

evidence that the empirical size is, in general, better when using 1.7hHS. But both

cases present reasonably good empirical sizes. The empirical powers are similar for

both bandwidths, and they are large, mostly higher than 90%.
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3.6 An Application: Target Capital Structure Ad-

justment

In this section, we illustrate the testing procedure with an application to a study of

speed of capital structure adjustment. From the usual model in the literature, one

can compute this speed by subtracting the estimated autoregressive coefficient in the

dynamic model from one. With panel datasets, many studies assume that the speed

of capital adjustments are the same across firms. In a recent paper, Oztekin and

Flannery (2012) explore the potential heterogeneity in the coefficients of interest

by studing the relationship between the capital structure adjustment speeds and

the institutional determinants. To determine whether the institutional environment

significantly affects firms’ adjustment speeds, they estimate the partial adjustment

model of leverage for 37 countries allowing heterogeneity across countries.

We build on this literature by estimating a panel data QR model to study the ho-

mogeneity of the speed of capital structure adjustment. The proposed model allows

us to make two important contributions. First, we apply the tests proposed in this

chapter to test the standard assumption in the literature that imposes homogeneity

of speed of convergence across firms. More specifically, we test the null hypothesis

that, for a fixed τ , the coefficient describing the speed of convergence across firms

is homogeneous. Second, we estimate the model for several quantiles and examine

heterogeneity across the conditional distribution. Using the model of Flannery and

Rangan (2006), we have

MDRit+1 = δαi +Xit(δβ) +MDRit(1− δ) + uit, (3.3)

where the coefficient δ is the adjustment speed toward the target, MDRit is a firm’s

market debt ratio as a measure of leverage, and Xit is a set of covariate.

In this study, our data are from the Compustat Industrial Annual dataset be-
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tween the year 1971 and 2005. Following existing literature, we drop financial firms

(SIC codes 6000–6999), regulated utilities (SIC codes 4900–4999), and non-profit

organizations (SIC codes greater than or equal to 9000). We exclude firm-years

with missing or negative value for fixed assets and sales, with missing or less-than-

ten-million 1983 dollar book value of total assets, and with growth rates of fixed

assets, sales, and book value of total assets greater than 100%. We also omit firms

that do not have enough variation in MDR: the ones with MDR mostly zero. The

log of total assets is adjusted to the 1983 dollar with the consumer price index from

the Bureau of Labor Statistics, as is in Galvao and Montes-Rojas (2010). The final

sample includes 255 firms with 25–31 years of data.

To study a range of covariate effects in equation (3.3), Galvao and Montes-Rojas

(2010) estimate the following model

QMDRit(τ |αi(τ),MDRit−1, Xit−1) = αi(τ) + ρ(τ)MDRit−1 +X>it−1β(τ) (3.4)

where ρ(τ) = (1−δ(τ)), and Xit is a vector of regressors containing several covariates

such that X =(EBITTA, MB, DEPTA, LnTA, FATA, RDDum, RDTA) with the

following definitions.2 “MDR: market debt ratio = book value of (short-term plus

long-term) debt/market value of assets. EBITTA: earnings before interest and

taxes, as a proportion of total assets; it is a measure of profitability. MB: market

to book ratio of assets–book liabilities plus market value of equity divided by book

value of total assets. DEPTA: depreciation as a proportion of total assets. LnTA:

log of asset size, measured in 1983 dollars ×1,000,000, deflated by the consumer

price index. FATA: fixed asset proportion–property, plant, and equipment/total

assets. RDDum: dummy variable equal to one if red the firm did not report R&D

expenses. RDTA: R&D expenses as a proportion of total assets.”

It is standard in the literature to implicitly assume that in Model (3.4) the

2The computation with the Compustat reference is relegated to Appendix C2.
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autoregressive coefficients are all the same across firms for a given τ . However,

assuming that all the firms share the same ρ(τ) implies that all the firms have the

same rate of adjustment of the market debt ratio. Intuitively, this assumption seems

unrealistic and might not hold for vastly different firms. For example, small firms

might have more difficulties in adjusting the market debt ratio in contrast to large

firms. So before we pool the data of the firms together, we should formally test the

assumption that all the firms share the same rate of adjustment.

Formally, the null hypothesis is

H0 : ρi(τ) = ρ(τ)

for all i and some τ . We apply the suggested Swamy Ŝ and ∆̂ tests to the data, and

thus supply formal tests for the assumption that all the firms share the same rate

of adjustment.

We first report estimates of a quantile regression model for each firm separately.

We estimate the model for several quantiles; in particular, τ ∈ {0.1, 0.25, 0.5, 0.75,

0.9}. The descriptive statistics and the histogram of ρ̂i(τ) are shown in Table

3.7 and Figure 3.1, respectively. This procedure could indicate whether there is

evidence of heterogeneity across the firms. From the results, one can see that, for

a given quantile, there is evidence of heterogeneity across individuals. This pattern

is common for all selected quantiles. Moreover, the histograms show that the mass

is relatively dispersed. Thus, the evidence provided in the table and figure casts

doubts on the assumption that all firms share the same rate of adjustment.

The next step is to apply formal tests to the data. We report results for Swamy

(Ŝ) and standardized Swamy (∆̂) tests for the selected quantiles. We also provide the

minimum distance estimates defined in equation (3.2) (ρ̂MD) for selected quantiles.

When estimating the variances, we use both HS and Bofinger bandwidths, with

h = 0.5hHS, h = 0.8hHS, h = 0.4hB, and h = 0.6hB. We implement our tests using
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Table 3.7: The Summary Statistics of ρ̂i(τ) for All Firms

min 1st quartile Median Mean 3rd quartile max

τ = 0.1 -0.5107 0.1621 0.3531 0.3413 0.5100 1.0570

τ = 0.25 -0.3297 0.2035 0.3834 0.3721 0.5508 1.0850

τ = 0.5 -0.2421 0.2027 0.3811 0.3914 0.5972 1.3320

τ = 0.75 -0.3854 0.1674 0.3827 0.3765 0.5873 1.4870

τ = 0.9 -0.8164 0.1022 0.3254 0.3374 0.6071 1.1690

only the sandwich form to estimate the variances, since the Monte Carlo simulations

show evidence that the use of the sandwich variance does not affect the properties

of the tests. Table 3.8 reports the resulting test statistics. One can see that the null

hypothesis, namely, all firms share the same rate of adjustment, is strongly rejected

for both Ŝ and ∆̂ tests for each τ . Thus, the formal tests reject the hypothesis

that all the firms share the same rate of adjustment. From this, although firms can

consider target debt ratio when making their decisions, the results from formal tests

provide evidence that the heterogeneity is too large for the researchers to assume

that firms share the same speed of adjustment. Hence, one should be cautious

when analyzing the results provided in the literature for polling estimates. Another

interesting feature described in Table 3.8 is the MD coefficients. The results show

that the speed of adjustment also varies substantially across quantiles. The highest

convergence speed is associated with high quantiles of debt ratio, about 70%. For

the median the speed is about 50%, and for the first decile around 60%. Therefore,

the exercise we conduct uncovers two new insights. First, we provide evidence of

strong heterogeneity in the rate of adjustment of the market debt ratio. Second,

there is also large heterogeneity and asymmetry in the speed of adjustment across

the quantiles of the conditional of debt ratio.

Reviewing Table 3.7, we find some unusual phenomena. The minima of ρ̂i(τ) are

negative for all quantiles. In addition, some of the estimates are greater than 1. This

indicates that some of the firms do not converge to their target market debt ratios
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Table 3.8: The Test Statistics for All the Firms

h 0.5hHS 0.8hHS 0.4hB 0.6hB

τ = 0.1

ρ̂MD 0.378 0.381 0.370 0.379

Ŝ 611??? 368??? 789??? 602???

∆̂ 15.5??? 4.85??? 23.7??? 15.4???

τ = 0.25

ρ̂MD 0.430 0.417 0.442 0.426

Ŝ 853??? 487??? 1080??? 737???

∆̂ 26.2??? 10.1??? 36.5??? 21.4???

τ = 0.5

ρ̂MD 0.463 0.482 0.461 0.473

Ŝ 1020??? 660??? 1186??? 852???

∆̂ 33.5??? 17.7??? 41.2??? 26.4???

τ = 0.75

ρ̂MD 0.399 0.395 0.401 0.398

Ŝ 793??? 471??? 999??? 687???

∆̂ 23.5??? 9.38??? 32.9??? 19.1???

τ = 0.9

ρ̂MD 0.308 0.333 0.315 0.308

Ŝ 686??? 460??? 893??? 681???

∆̂ 18.8??? 8.88??? 28.3??? 18.9???

ρ̂MD denotes the minimum distance estimator in equation(3.2). Ŝ is the Swamy
test, and ∆̂ the standardized Swamy test. ?p < 10%, ??p < 5%, ???p < 1%. The
10%, 5%, and 1% critical values for Ŝ are χ2

254,0.1 = 283.3, χ2
254,0.05 = 292.2, and

χ2
254,0.01 = 309.4, respectively, and for ∆̂ those values are z0.1 = 1.28, z0.05 = 1.64,

and z0.01 = 2.32, respectively.
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Table 3.9: The Summary Statistics of ρ̂(τ) for All Firms with 0 < ρ̂i(τ) < 0.97

min 1st quartile Median Mean 3rd quartile max

τ = 0.1 0.0409 0.2790 0.4026 0.4229 0.5602 0.8669

τ = 0.25 0.0123 0.2904 0.4582 0.4427 0.5881 0.9362

τ = 0.5 0.0092 0.2924 0.4441 0.4567 0.6280 0.9638

τ = 0.75 0.0146 0.3080 0.4458 0.4628 0.6255 0.9564

τ = 0.9 0.0043 0.2983 0.4399 0.4601 0.6367 0.9688

for various reasons. To avoid the unit root problem and lack of convergence, we drop

the firms with ρ̂i(τ) > 0.97 and ρ̂i(τ) < 0 Thus, as a robustness check, to study

rates of convergence to the target market debt ratios, we drop those unusual firms.

As a result, we obtain a sample with 164 firms. Table 3.9 shows the descriptive

statistics, and Figure 3.2 presents the histogram of the estimated ρ̂i(τ).

After dropping the unusual firms, the mean and median are slightly larger than

those in the previous case. The histograms also show great dispersion of the esti-

mated ρ for all quantiles. Formal tests for the null of homogeneity across individuals

are reported in Table 3.10. The results for Bofinger bandwidth strongly reject the

null hypothesis that the firms share the same rates of adjustment for all quantiles.

The results regarding 0.5hHS also reject the null for all quantiles. However, the re-

sults for the 0.8hHS are mixed. The tests only reject the null hypothesis for τ = 0.25

and τ = 0.5. These results somewhat show that after we selected a more homoge-

neous sample by excluding unusual firms, it is possible to observe homogeneity for

restricted parts of the distribution. Further evidence of an increase in homogeneity

is given by the MD estimates. One can observe from Table 3.10 that the estimates

of speeds of convergence do not vary as much as in the previous case across the

quantiles.

Lastly, we attempt to test the null hypothesis for a set of firms that are in

principle even more homogeneous. To this end, we choose firms that survive for

an extended period of time. We work with a balanced panel containing only firms
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Table 3.10: The Test Statistics for All the Firms with 0 < ρ̂i(τ) < 0.97.

h 0.5hHS 0.8hHS 0.4hB 0.6hB

τ = 0.1

ρ̂MD 0.416 0.423 0.410 0.417

Ŝ 259??? 145 335??? 254???

∆̂ 5.23??? -1.04 9.46??? 4.99???

τ = 0.25

ρ̂MD 0.435 0.439 0.434 0.437

Ŝ 354??? 201?? 443??? 304???

∆̂ 10.5??? 2.02?? 15.4??? 7.73???

τ = 0.5

ρ̂MD 0.455 0.455 0.456 0.455

Ŝ 373??? 214??? 447??? 290???

∆̂ 11.5??? 2.77??? 15.6??? 6.98???

τ = 0.75

ρ̂MD 0.465 0.463 0.463 0.466

Ŝ 263??? 164 321??? 230???

∆̂ 5.46??? -0.01 8.69??? 3.64???

τ = 0.9

ρ̂MD 0.442 0.450 0.443 0.443

Ŝ 221??? 149 302??? 218???

∆̂ 3.15??? -0.82 7.60??? 3.01???

ρ̂MD denotes the minimum distance estimator in equation(3.2). Ŝ is the Swamy
test, and ∆̂ the standardized Swamy test. ?p < 10%, ??p < 5%, ???p < 1%. The
10%, 5%, and 1% critical values for Ŝ are χ2

163,0.1 = 186.5, χ2
163,0.05 = 193.8, and

χ2
163,0.01 = 207.9, respectively, and for ∆̂ those values are z0.1 = 1.28, z0.05 = 1.64,

and z0.01 = 2.32, respectively.
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Table 3.11: The Summary Statistics of ρ̂i(τ) for All Firms with 0 < ρ̂i(τ) < 0.97
and T = 31.

min 1st quartile Median Mean 3rd quartile max

τ = 0.1 0.0622 0.2544 0.3751 0.4051 0.5429 0.8284

τ = 0.25 0.0748 0.2503 0.3946 0.4090 0.5118 0.9362

τ = 0.5 0.0092 0.2408 0.4209 0.4241 0.6139 0.9638

τ = 0.75 0.0913 0.2814 0.4034 0.4265 0.5756 0.8459

τ = 0.9 0.0125 0.2569 0.3637 0.4001 0.5195 0.9455

that are in the sample for thirty-one years, T = 31. The rationale is that the firms

with the same life-span (assuming that the data availability reflects the life-spans

of the firms) might share similar features. So, we restrict the sample to firms with

0 < ρ̂i(τ) < 0.97 and T = 31. The new sample contains 73 firms. Table 3.11 and

Figure 3.3 report the descriptive statistics and the histogram, respectively. The

mean and median are similar to the last case, and the histograms show that the

mass is not concentrated at any value.

Formal tests are conducted using the new sample, and the test statistics are

reported in Table 3.12. The results are mixed. For the top of the conditional distri-

bution of debt ratio (τ = 0.9) all tests do not reject the null hypothesis of common

slope, but Ŝ which is significant only at 10%. Thus, there is evidence that for high

quantiles the firms behave similarly and adjust to the same target. For the remain-

ing quantiles, all the tests agree in rejecting the null but when h = 0.8HHS. When

performing the test with HS bandwidth and h = 0.8HHS the tests do not reject the

null of slope homogeneity with the exception of the median, which rejects at 5% level

of significance. This result indicates that when using a more homogeneous sample,

as expected, it is possible not to reject the hypothesis that firms have same rate of

adjustment of the market debt ratio. Finally, one can see from Table 3.12 that the

MD estimates are very homogeneous across quantiles. Thus, for more homogeneous

firms, we have evidence of homogeneity in both individual and quantile dimensions.
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Table 3.12: The Test Statistics for All the Firms with 0 < ρ̂i(τ) < 0.97 and T = 31.

h 0.5hHS 0.8hHS 0.4hB 0.6hB

τ = 0.1

ρ̂MD 0.402 0.412 0.389 0.403

Ŝ 151??? 84 196??? 147???

∆̂ 6.46??? 0.94 10.2??? 6.16???

τ = 0.25

ρ̂MD 0.414 0.414 0.417 0.414

Ŝ 140??? 78 183??? 117???

∆̂ 5.58??? 0.44 9.07??? 3.65???

τ = 0.5

ρ̂MD 0.418 0.420 0.418 0.418

Ŝ 173??? 100?? 203??? 133???

∆̂ 8.25??? 2.20?? 10.8??? 5.00???

τ = 0.75

ρ̂MD 0.426 0.422 0.427 0.424

Ŝ 112??? 67 138??? 96??

∆̂ 3.19??? -0.48 5.41??? 1.88??

τ = 0.9

ρ̂MD 0.374 0.392 0.361 0.376

Ŝ 76 61 90? 75

∆̂ 0.25 -1.00 1.44 0.19

ρ̂MD denotes the minimum distance estimator in equation(3.2). Ŝ is the Swamy test,
and ∆̂ the standardized Swamy test. ?p < 10%, ??p < 5%, ???p < 1%. The 10%, 5%,
and 1% critical values for Ŝ are χ2

72,0.1 = 87.7, χ2
72,0.05 = 92.8, and χ2

72,0.01 = 102.8,

respectively, and for ∆̂ those values are z0.1 = 1.28, z0.05 = 1.64, and z0.01 = 2.32,
respectively.
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3.7 Conclusion

We have proposed Swamy and standardized Swamy (∆) tests for the null hypothe-

sis of slope homogeneity for the panel data fixed effects quantile regression model.

These tests are important tools for practitioners, since they allow researchers to

investigate the poolability of individual slopes in FE QR framework, for selected

quantiles. We have derived the limiting distribution of the tests for large panels un-

der sequential and joint asymptotics. The interpretation of the test results is simple.

If the tests do not reject the null hypothesis of slope homogeneity across individuals,

one could estimate the standard fixed effects panel data model, e.g., implementing

FE QR estimation (Koenker (2004)). On the other hand, if our tests reject the null

hypothesis, one could estimate the parameters of interest using data for the individ-

uals; for instance, estimating individual quantile regressions using the time series

data. We have conducted a finite sample study, and suggested potential bandwidths

for estimating the nuisance parameters when using our proposed tests. Finally, we

have illustrated the tests using a panel dataset of the firms’ financial variables. We

reject the null hypothesis of the equality of the rates of capital structure adjustment

across firms.
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Appendix A

In Appendix A1, we provide asymptotic properties of a generic Z-estimator. More

specifically, we describe the model, provide conditions, and state results. The proofs

are collected in Appendix A2.

Appendix A1: Asymptotic Results for Generic Z-

Estimators

Let Θ and L denote Banach spaces, and H a norm space. Let Zn : Θ × H 7→ L,

Z : Θ×H 7→ L be random maps and a deterministic map, respectively. We suppress

the dependence of Z on n for simplicity. The Z-estimator θ̂ is defined as the root of

Z(θ, ĥ) = 0,

where ĥ is a first step estimator of a possibly infinite dimensional nuisance parameter.

This general theory is an extension of Theorem 1 of Chen et al. (2003) in that the

parameter of interest is a Banach valued quantity instead of a Euclidean vector, and

of Theorem 3.3.1 of van der Vaart and Wellner (1996) to the model with a nuisance

parameter.

Consistency

We first derive a general consistency result for a Z-estimator in a Banach space. To

obtain the consistency of the generic Z-estimator, we impose the following condi-

tions.

C.1 ||Z(θ̂, ĥ)||L = op∗(1).
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C.2 ||Z(θn, h0)||L → 0 implies θn → θ0 for any sequences θn ∈ Θ.

C.3 Uniformly in θ ∈ Θ, Z(θ, h) is continuous at h0.

C.4 ||ĥ− h0||H = op∗(1).

C.5 For all sequences δn ↓ 0,

sup
θ∈Θ,||h−h0||H≤δn

||Z(θ, h)− Z(θ, h)||L
1 + ||Z(θ, h)||L + ||Z(θ, h)||L

= op∗(1).

Condition C.1 requires that θ̂ solves the estimating equation ||Z(θ, ĥ)||L = 0

only asymptotically. Condition C.2 is an identification of the parameter. Condition

C.3 is a smooth assumption of Z in h only at h0. Condition C.4 requires that

the nuisance parameter is consistently estimated. Condition C.5 is a high level as-

sumption and can be stated in more primitive conditions for specific cases. Further,

condition C.5 is implied by the following uniform convergence condition of Z to Z.

C5S For any sequences δn ↓ 0,

sup
θ∈Θ,||h−h0||H≤δn

||Z(θ, h)− Z(θ, h)||L = op∗(1).

This set of conditions are similar to conditions of Theorem 1 of Chen et al. (2003).

The following lemma summarizes the consistency of a generic Z-estimator.

Lemma 1. Suppose that θ0 ∈ Θ satisfies Z(θ0, h0) = 0 with h0 ∈ H and that

conditions C.1–C.5 hold. Then ||θ̂ − θ0||Θ = op∗(1).

Proof. See Appendix A2.

Weak Convergence

Now we provide a general result for the Z-estimator. For the proof of weak conver-

gence of the Z-estimator, consistency is assumed without loss of generality. Therefore
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the parameter space is replaced by Θδ ×Hδ where Θδ := {θ ∈ Θ : ||θ − θ0||Θ < δ}

as in Chen et al. (2003) and Hδ := {h ∈ H : ||h− h0||H < δ}.

Because the parameter spaces are a Banach and a normed space, we need a

notion of derivatives for maps from a Banach or a normed space to a Banach space.

Let Θ and L denote Banach spaces, and H a normed space. Fréchet differentiability

of a map φ : Θ 7→ L at θ ∈ Θ means that there exists a continuous, linear map

φ′θ : Θ 7→ L with

||φ(θ + hn)− φ(θ)− φ′θ(hn)||
||hn||

→ 0

for all sequences {hn} ⊂ Θ with ||hn|| → 0 and θ+hn ∈ Θ for all n ≥ 1; see p. 26 of

Kosorok (2008). Pathwise derivative of a map ϕ : H 7→ L at h ∈ H in the direction

[h̄− h] is

ϕ′h[h̄− h] = lim
%→0

ϕ(h+ %(h̄− h))− ϕ(h)

%

with {h + %(h̄− h) : % ∈ [0, 1]} ⊂ H, provided that the limit exists; see Chen et al.

(2003). To obtain the weak limit, we impose the following sufficient conditions.

G.1 ||Z(θ̂, ĥ)||L = op∗(n
−1/2).

G.2 The map θ 7→ Z(θ, h0) is Fréchet differentiable at θ0 with a continuously in-

vertible derivative Z1(θ0, h0).

G.3 For all θ ∈ Θδ the pathwise derivative Z2(θ, h0)[h− h0] of Z(θ, h0) exists in all

directions [h − h0] ∈ H. Moreover, for all (θ, h) ∈ Θδn ×Hδn with a positive

sequence δn = o(1):

G31 ||Z(θ, h0)− Z(θ, h)− Z2(θ, h0)[h− h0]||L = 0 uniformly in θ.

G32 ||Z2(θ, h0)[h− h0]− Z2(θ0, h0)[h− h0]||L ≤ o(1)δn.
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G.4 The estimator ĥ ∈ H with probability tending to one; and ||ĥ − h0||H =

op∗(n
−1/4).

G.5 For any δn ↓ 0,

sup
||θ−θ0||≤δn,||h−h0||H≤δn

||
√
n(Z− Z)(θ, h)−

√
n(Z− Z)(θ0, h0)||L

1 +
√
n||Z(θ, h)||L +

√
n||Z(θ, h)||L

= op∗(1).

G.6
√
n(Z2(θ0, h0)[ĥ − h0] + (Z − Z)(θ0, h0)) converges weakly to a tight random

element G in L.

Condition G.1 requires θ̂ to solve the estimating equation only asymptotically.

Conditions G.2 is a smoothness condition for Z. Conditions G.3 and G.4 are the

same as conditions (2.3) and (2.4) of Chen et al. (2003). Conditions G.5 and G.6 are

high level assumptions, and correspond to conditions (2.5) and (2.6) of Chen et al.

(2003). More primitive conditions are provided for more specific cases. Moreover,

condition G.5 is implied by

G.5’ For any δn ↓ 0,

sup
||θ−θ0||≤δn,||h−h0||H≤δn

||
√
n(Z− Z)(θ, h)−

√
n(Z− Z)(θ0, h0)||L = op∗(1).

Now we provide a general result for Z-estimators.

Lemma 2. Suppose that θ0 ∈ Θδ satisfies Z(θ0, h0) = 0, that θ̂ = θ0 + op∗(1), and

that conditions G.1–G.6 hold. Then
√
n(θ̂ − θ0) Z−1

1 (θ0, h0)G.

Proof. See Appendix A2.

The Validity of the Bootstrap

There are two potential difficulties when constructing the confidence bands for the

DRF. First, closed-form expressions of the covariance kernel are hard to calculate.
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This mainly is due to the estimation of the nuisance parameters. Second, even

if closed-form expressions of the covariance kernel are available, they are useful

only when the set T is finite. Thus, we use the ordinary nonparametric bootstrap

method for inferences. We show that the bootstrap estimator of the asymptotic

distribution of
√
n(β̂(t) − β0(t)) is consistent. Let {(X∗i , Y ∗i , T ∗i )}ni=1 be randomly

drawn with replacement from {(Xi, Yi, Ti)}ni=1. Let π̂∗ be the estimator of π0 us-

ing {(X∗i , Y ∗i , T ∗i )}ni=1. Let Z∗(β, π) denote the resampled average. The bootstrap

estimator β̂∗ satisfies

||Z∗(β̂∗, π̂∗)|| = op∗(n
−1/2).

Following Chen et al. (2003), an asterisk denotes a probability or moment computed

using bootstrapped data conditional on the original data set. Now consider the

following conditions, which, respectively, correspond to conditions (2.4B), (2.5’B),

and (2.6B) of Chen et al. (2003):

G4B With P∗-probability tending to one, π̂∗ ∈ Π and ||π̂∗ − π̂||Π = op∗(n
−1/4).

G5B For any δn ↓ 0,

sup
||β−β0||≤δn,||π−π0||Π≤δn

||
√
n(Z∗ − Z)(β, π)−

√
n(Z∗ − Z)(β0, π0)||L = op∗(1).

G6B
√
n(Z2(β̂, π̂)[π̂∗ − π̂] + (Z∗ − Z)(β̂, π̂)) converges weakly to a tight random

element G in L in P∗-probability.

The following lemma is the version of Theorem B of Chen et al. (2003) with a

infinite dimensional parameter of interest.

Lemma 3. Replace “θ” and “h” by “β” and “π”, respectively, in conditions G.1–

G.6. Suppose β0 ∈ int(B) and β̂
a.s.→ β0. Assume that conditions G.1, G.4, and G.5

are satisfied with “in probability” replaced by “almost surely”. Let conditions G.2
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and G.3 hold with π0 replaced by π ∈ Πδn. Also, assume that Z1(β; π) is continuous

in π at β = β0 and π = π0. Then
√
n(β̂∗ − β̂) Z−1

1 (β0, π0)G in P∗-probability.

Proof. See Appendix A2.

Appendix A2: Proofs of the Results in Appendix

A1

This appendix collects the proofs for the asymptotic properties of a generic Z-

estimator described in Lemmas 1–3 above.

Proof of Lemma 1. By condition C.2, it suffices to show that ||Z(θ̂, h0)||L = op∗(1).

Using triangle inequality,

||Z(θ̂, h0)||L ≤ ||Z(θ̂, h0)− Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)− Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)||L.

By conditions C.3 and C.4, ||Z(θ̂, h0) − Z(θ̂, ĥ)||L = op∗(1). By condition C.1,

||Z(θ̂, ĥ)||L = op∗(1). Also,

||Z(θ̂, ĥ)− Z(θ̂, ĥ)||L = op∗(1) + op∗(||Z(θ̂, ĥ)||L) + op∗(||Z(θ̂, ĥ)||L)

= op∗(1) + op∗(1) + op∗(||Z(θ̂, h0)||L) + op∗(1)

where the first equality is by condition C.5 and the second equality is by conditions

C.1 and C.3. Therefore, we have ||Z(θ̂, h0)||L ≤ op∗(1) and hence the result.

Proof of Lemma 2. Step 1:
√
n-consistency

We start the proof by showing that θ̂ is
√
n-consistent for θ0 in Θ. By definition,

the Fréchet differentiability of Z(θ, h0) implies the existence of a continuous linear
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map Z1(θ0, f0) such that

||Z(θ, f0)− Z(θ0, f0)− Z1(θ0, f0)(θ − θ0)||L
||θ − θ0||Θ

= o(1).

By triangle inequality, it follows

||Z1(θ0, h0)(θ − θ0)||L ≤ ||Z(θ, h0)− Z(θ0, h0)||L + o(||θ − θ0||Θ).

Since the derivative Z1(θ0, h0) is continuously invertible by condition G.2, there

exists a positive constant c such that ||Z1(θ0, h0)(θ1− θ2)||L ≥ c||θ1− θ2||Θ for every

θ1 and θ2 ∈ Θδ. Therefore, it follows

(c− o(1))||θ − θ0||Θ ≤ ||Z(θ, h0)− Z(θ0, h0)||L, (A1)

and

(c− op∗(1))||θ̂ − θ0||Θ ≤ ||Z(θ̂, h0)− Z(θ0, h0)||L = ||Z(θ̂, h0)||L (A2)

with probability tending to one. By triangle inequality and conditions G.1 and

G.6, the right hand side of the previous inequality is bounded by

||Z(θ̂, h0)− Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L +Op(n
−1/2).

(A3)



128

For the first term, we have

||Z(θ̂, h0)− Z(θ̂, ĥ)||L ≤||Z(θ̂, h0)− Z(θ̂, ĥ)− Z2(θ̂, h0)[ĥ− h0]||L

+ ||Z2(θ̂, h0)[ĥ− h0]− Z2(θ0, h0)[ĥ− h0]||L

+ ||Z2(θ0, h0)[ĥ− h0]||L

≤op∗(1)||θ − θ0||Θ +Op∗(n
−1/2)

≤||Z(θ̂, h0)||L × op∗(1) +Op∗(n
−1/2),

where the first inequality is by triangle inequality, the second one by conditions G.3

and G.6, and the third by inequality (A1).

As for the second term in (A3), by condition G.5,

||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L =op∗(1/
√
n+ ||Z(θ̂, ĥ)||L + ||Z(θ̂, ĥ)||L)

=op∗(1/
√
n) + op∗(||Z(θ̂, ĥ)||L)

The second equality is by condition G.1, ||Z(θ̂, ĥ)||L = op∗(1/
√
n). By triangle

inequality,

||Z(θ̂, ĥ)||L ≤ ||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L +Op∗(1/
√
n).

It then follows

(1− op∗(1))||Z(θ̂, ĥ)− Z(θ̂, ĥ) + Z(θ0, h0)− Z(θ0, h0)||L ≤ op∗(1/
√
n)

Thus, formula (A3) is bounded by

||Z(θ̂, h0)||L × op∗(1) +Op∗(n
−1/2)
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and the right side of the equality in (A2) satisfies

(1− op∗(1))||Z(θ̂, h0)||L ≤ Op∗(n
−1/2). (A4)

Therefore, (c− op(1))
√
n||θ̂ − θ0||Θ ≤ Op∗(1) and θ̂ is

√
n-consistent for θ0 in Θ.

Step 2: Weak Convergence

Now we show the weak convergence. By conditions G.2 and G.3,

||Z(θ̂, ĥ)− Z(θ0, h0)− Z1(θ0, h0)(θ̂ − θ0)− Z2(θ0, h0)[ĥ− h0]||L

=||Z(θ̂, ĥ)− Z(θ̂, h0)− Z2(θ̂, h0)[ĥ− h0] + Z(θ̂, h0)− Z(θ0, h0)− Z1(θ0, h0)(θ̂ − θ0)

+ Z2(θ̂, h0)[ĥ− h0]− Z2(θ0, h0)[ĥ− h0]||L

≤||Z(θ̂, ĥ)− Z(θ̂, h0)− Z2(θ̂, h0)[ĥ− h0]||L

+ ||Z(θ̂, h0)− Z(θ0, h0)− Z1(θ0, h0)(θ̂ − θ0)||L

+ ||Z2(θ̂, h0)[ĥ− h0]− Z2(θ0, h0)[ĥ− h0]||L

=op∗(n
−1/2) + op∗(n

−1/2) = op∗(n
−1/2).

Therefore, it follows

Z1(θ0, h0)
√
n(θ̂ − θ0) +

√
nZ2(θ0, h0)[ĥ− h0] =

√
n(Z(θ0, h0)− Z(θ0, h0)) + op∗(1)

and

Z1(θ0, h0)
√
n(θ̂ − θ0) = −

√
n(Z2(θ0, h0)[ĥ− h0] + (Z− Z)(θ0, h0)) + op∗(1) G

by condition G.6.

Now by condition G.2 and the continuous mapping theorem, we have
√
n(θ̂ −

θ0) Z−1
1 (θ0, h0)G.
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Proof of Lemma 3. The assertion that ||β̂∗ − β̂|| = Op∗(n
−1/2) a.s. [P] can be

shown in a similar way as the proof of the
√
n-consistency of β̂. Therefore we

omit the proof and only show the weak convergence in probability of the bootstrap

estimator.

Note that

||Z∗(β̂∗, π̂∗)− Z∗(β̂, π̂)− Z1(β̂, π̂)(β̂∗ − β̂)− Z2(β̂, π̂)[π̂∗ − π̂]||

=||Z(β̂∗, π̂∗)− Z(β̂∗, π̂)− Z2(β̂, π̂)[π̂∗ − π̂] + Z(β̂∗, π̂)− Z(β̂, π̂)− Z1(β̂, π̂)(β̂∗ − β̂)

+ [(Z∗(β̂∗, π̂∗)− Z(β̂∗, π̂∗))− (Z∗(β̂, π̂)− Z(β̂, π̂))]

+ [(Z(β̂∗, π̂∗)− Z(β̂∗, π̂∗))− (Z(β̂, π̂)− Z(β̂, π̂))]

+ Z2(β̂, π̂)[π̂∗ − π̂]− Z2(β̂∗, π̂)[π̂∗ − π̂]||

≤||Z(β̂∗, π̂∗)− Z(β̂∗, π̂)− Z2(β̂, π̂)[π̂∗ − π̂]||

+ ||Z(β̂∗, π̂)− Z(β̂, π̂)− Z1(β̂, π̂)(β̂∗ − β̂)||

+ ||(Z∗(β̂∗, π̂∗)− Z(β̂∗, π̂∗))− (Z∗(β̂, π̂)− Z(β̂, π̂))||

+ ||(Z(β̂∗, π̂∗)− Z(β̂∗, π̂∗))− (Z(β̂, π̂)− Z(β̂, π̂))||

+ ||Z2(β̂, π̂)[π̂∗ − π̂]− Z2(β̂∗, π̂)[π̂∗ − π̂]||

=op∗(n
−1/2).

The first term is op∗(n
−1/2) by condition G3 (version of Lemma 3) and G4B.

The second term is op∗(n
−1/2) by condition G2 (version of Lemma 3) and

√
n-

consistency of θ̂∗. The third and fourth terms are op∗(n
−1/2) by the triangular

inequality and conditions G5’ (almost sure version) and G5B. And the fifth term

is op∗(n
−1/2) by condition G3 (version of Lemma 3) and

√
n-consistency of θ̂∗.
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Therefore, it follows

Z1(β̂, π̂)
√
n(β̂∗ − β̂) +

√
nZ2(β̂, π̂)[π̂∗ − π̂] =

√
n(Z∗(β̂∗, π̂∗)− Z∗(β̂, π̂)) + op∗(1)

=−
√
n(Z∗(β̂, π̂)− Z(β̂, π̂)) + op∗(1)

and

Z1(β̂, π̂)
√
n(β̂∗ − β̂)

=−
√
nZ2(β̂, π̂)[π̂∗ − π̂]−

√
n(Z∗(β̂, π̂)− Z(β̂, π̂)) + op∗(1) G

in L in P∗-probability by condition G.6. We can replace Z1(β̂, π̂) by Z1(β0, π0) with

probability one. Now by condition G.2 (version of Lemma 3) and the continuous

mapping theorem, we have
√
n(β̂ − β0) Z−1

1 (β0, π0)G.

Appendix A3: Long Proofs of the Results in Chap-

ter 1

This appendix collects the proofs for the results given in the text.

Proof of Theorem 1. Fixing t = t0, by law of iterated expectations,

E[m(Y (t0); β(t0))] = E{E[m(Y (t0); β(t0))|X]}. For the conditional expectation,

E[m(Y (t0); β(t0))|X] =E[m(Y (t0); β(t0))|X, T = t0] = E[m(Y ; β(t0))|X, T = t0]

= lim
∆t↓0

E[m(Y ; β(t0))|X, T ∈ [t0, t0 + ∆t]],

where the first equality is by condition I.II.1, the second equation is by the fact that

if T = t0, then Y = Y (t0), and the third equality is by condition I.III.2. Moreover,
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we have

E[m(Y ; β(t0))|X, T ∈ [t0, t0 + ∆t]]

= E[1(T ∈ [t0, t0 + ∆t])m(Y ; β(t0))|X, T ∈ [t0, t0 + ∆t]]. (A5)

By law of total expectation

E[1{T ∈ [t0, t0 + ∆t]}m(Y ; β(t0))|X]

=E[1{T ∈ [t0, t0 + ∆t]}m(Y ; β(t0))|X, T ∈ [t0, t0 + ∆t]]P(T ∈ [t0, t0 + ∆t]|X)

+E[1{T ∈ [t0, t0 + ∆t]}m(Y ; β(t0))|X, T /∈ [t0, t0 + ∆t]]P(T /∈ [t0, t0 + ∆t]|X),

the right hand side of equation (A5) equals

E[1{T ∈ [t0, t0 + ∆t]}m(Y ; β(t0))|X]

P(T ∈ [t0, t0 + ∆t]|X)

=
E[(1{T ≤ t0 + ∆t} − 1{T < t0})m(Y ; β(t0))|X]

FT |X(t0 + ∆t|X)− FT |X(t0|X)
,

where FT |X denotes the conditional distribution function of T given X. Noting that

E[(1{T ≤ t0 + ∆t} − 1{T ≤ t0})m(Y ; β(t0))|X = x]

=

∫∫
(1{t ≤ t0 + ∆t} − 1{t ≤ t0})m(y; β(t0))fT,Y |X(t, y|x) dtdy

=

∫ ∫ t0+∆t

t0

m(y; β(t0))fT,Y |X(t, y|x) dtdy,



133

it follows

lim
∆t↓0

E[m(Y ; β(t0))|X = x, T ∈ [t0, t0 + ∆t]]

= lim
∆t↓0

∫ ∫ t0+∆t

t0
m(y; β(t0))fT,Y |X(t, y|x) dtdy

FT |X(t0 + ∆t|x)− FT |X(t0|x)

= lim
∆t↓0

∫
m(y; β(t0))fT,Y |X(t0 + ε1∆t, y|x) dy

fT |x(t0 + ε2∆t|x)

=

∫
m(y; β(t0))fT,Y |X(t0, y|x)

fY |X(y|x)

fY |X(y|x)
dy

fT |X(t0|x)

=

∫
m(y; β(t0))fT |X,Y (t0|x, y)fY |X(y|x) dy

fT |X(t0|x)

=
E[m(Y ; β(t0))fT |X,Y (t0|x, Y )|X = x]

fT |X(t0|x)

where ε1 and ε2 are fixed numbers in [0,1]. The second equality is by mean value

theorems for differentiation and integration. And the third equality is by con-

dition I.III.1 and dominated convergence theorem. Hence E[m(Y (t0); β(t0))] =

E
[
m(Y ; β(t0))

fT |Y,X(t0|Y,X)

fT |X(t0|X)

]
.

Proof of Theorem 2. The general result in the previous lemma for consistency

of the Z-estimator can be applied to our continuous treatment model as stated

in the following theorem with θ0 = β0(t), h0 = π(·; t), Z(θ, h)(t) = Eψβ,π,t, and

Z(θ, h)(t) = Eψβ,π,t, where ψβ,π,t = m(y; β(t))π(u; t). In this case, Θ = L = `∞(T )

and || · ||Θ = || · ||L = | · |∞, while H = Π, a function class with domain U × T ,

and || · ||H = || · ||Π = supt∈T supu∈U | · | = | · |∞. For any δ > 0, Πδ = {π ∈ Π :

|π − π0|∞ < δ}.

First we show that condition C.3, the continuity of Em(Y ; β(t))π(U ; t) at π0

uniformly over β(t) ∈ `∞(T ), is satisfied. For any |π−π0|∞ ≤ δ, which is equivalent
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to supt∈T supu∈U |π(u; t)− π0(u; t)| ≤ δ, we have

|E[m(Y ; β(t))π(U ; t)]− E[m(Y ; β(t))π0(U ; t)]|∞

=|E[m(Y ; β(t))(π(U ; t)− π0(U ; t))]|∞ ≤ |E[m(Y ; β(t))]|∞δ.

Therefore, condition C.3 is implied by condition C.III.

Condition C.V’ and Corollary 9.27 of Kosorok (2008) imply condition C5S

which in turn implies C.5.

Proof of Corollary 1, Consistency of µ̂(t). To show consistency, we verify the con-

ditions of Theorem 2. Note that in this case we have a closed form solution

µ0(t) = EY π0(U ;t)
Eπ0(U ;t)

. Condition C.I is verified by the fact that µ̂ = EY π̂0(U)
Eπ̂0(U)

is the exact

zero of the estimating equation.

For condition C.II, if there is a sequence µn(t) such that E[(Y −µn(t))π0(U ; t)]→

0 uniformly, then µn(t) → EY π0(U ;t)
Eπ0(U ;t)

= µ0(t) uniformly. To see this, we note that

E[(Y − µn(t))π0(U ; t)] = o(1) implies µn(t) = EY π0(U ;t)
Eπ0(U ;t)

+ o(1)
Eπ0(U ;t)

= EY π0(U ;t)
Eπ0(U ;t)

+ o(1).

Condition C.III is verified by the direct calculation

|E[m(Y ;µ(t))]|∞ = |E[Y − µ(t)]|∞ = E|Y |+ |µ(t)|∞,

both of which are finite by condition AC.I.

As for condition C.V’, noting that ψ1µ,t = y − µ(t), automatically {ψ1β,t : β ∈

`∞(T ), t ∈ T } is Glivenko-Cantelli. To see this, note

sup
µ(t)∈`∞(T )

|E[Y − µ(t)]− E[Y − µ(t)]|∞ = |EY − EY | p→ 0

by Khintchine’s weak law of large numbers. It has envelope F1(y) = y + |µ(t)|∞ by

condition AC.I. Condition AC.II completes the verification of condition C.V’.



135

Hence, all the conditions of Theorem 2 are satisfied.

Proof of Corollary 2, Consistency of q̂τ (t). Condition C.I is satisfied by the com-

putational properties of quantile regression estimator of Theorem 3.3 of Koenker and

Bassett (1978) and conditions C.4 and QC.II

|E[(τ − 1{Y < q̂τ (t)})π̂(U ; t)]| ≤ const · sup
i≤n

π̂(Ui; t)

n

≤const · ||π̂(u; t)||Π
n

= const · ||π0(u; t)||Π + op(1)

n
= Op∗(1/n).

Condition C.II holds by condition QC.I. Condition C.III is satisfied because τ −

1{y < qτ (t)} is a bounded function. Condition CV’ is implied by the fact that

the function class {ψ1q,t : q ∈ `∞(T ), t ∈ T } is Glivenko-Cantelli because it is a

Vapnik-C̆ervonenkis class and by condition QC.III.

Proof of Theorem 3. We first verify condition G.3. To find the pathwise deriva-

tive of Z(β, π0) with respect to π, we conduct the following calculations. For any π̄

such that {π0 + α(π̄ − π0) : α ∈ [0, 1]} ⊂ Π,

E[m(Y ; β)(π0 + α(π̄ − π0))]− E[m(Y ; β)π0]

α
= E[m(Y ; β)(π̄ − π0)]

and has the limit E[m(Y ; β)(π̄ − π0)] as α → 0. Therefore Z2(β, π0)[π − π0] =

E[m(Y ; β)(π − π0)] in all directions [π − π0] ∈ Π.

Condition G31 is satisfied by noting

|E[m(Y ; β(t))π0(U ; t)]− E[m(Y ; β(t))π(U ; t)]− E[m(Y ; β(t))(π − π0)(U ; t)]|∞ = 0.
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And condition G32 is verified by

|E[m(Y ; β(t))(π − π0)(U ; t)]− E[m(Y ; β0(t))(π − π0)(U ; t)]|∞

=|E[m(Y ; β(t))−m(Y ; β0(t))(π − π0)(U ; t)]|∞

≤|E[m(Y ; β(t))]− E[m(Y ; β0(t))]|∞o(1) = δno(1),

where the last equality is by condition G.III.

As for condition G.5, by Corollary 9.32 (iii) of Kosorok (2008), condition G.V

implies that {ψβ,π,t : β ∈ `∞δ (T ), π ∈ Πδ, t ∈ T } is Donsker, which in turn implies

G.5’ by Lemma 3.3.5 of van der Vaart and Wellner (1996). Therefore, we obtain

condition G.5 by condition G.1 and inequality (A4).

Finally, G.VI is a representation of G.6.

Proof of Corollary 3, Weak Convergence of µ̂(t). Condition G.1 is satisfied be-

cause the estimator is an exact Z-estimator.

The map µ 7→E(Y − µ)f0(U) is Fréchet differentiable and is verified by the

following calculation

|E[(Y − µ(t))π0(U ; t)]− E[(Y − µ0(t))π0(U ; t)]− E[π0(U ; t)(µ(t)− µ0(t))]|∞
|µ(t)− µ0(t)|∞

= 0.

Thus the Fréchet derivative is Eπ0(U ; t). For any µ1 and µ2,

|E[π0(U ; t)µ1(t)]− E[π0(U ; t)µ2(t)]|∞ ≥ c|µ1(t)− µ2(t)|∞,

and therefore is continuously invertible.

Condition G.III is verified by

|E[Y − µ(t)]− E[Y − µ0(t)]|∞ = |µ(t)− µ0(t)|∞.
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Condition G.V is implied by Conditions AG.I and AG.II and Corollary 9.32

(i) of Kosorok (2008) completes the verification.

Finally condition G.VI is implied by condition AG.III.

Proof of Corollary 4, Weak Convergence of q̂τ (t). Condition G.I was verified in

the proof of Corollary 2. For condition G.II, note that

|E[(τ − 1{Y ≤ qτ (t)})π0(U ; t)]− E[(τ − 1{Y ≤ qτ0(t)})π0(U ; t)]

+ E[π0(U ; t)fY (qτ0)(qτ (t)− qτ0(t))]|∞

=|E[{1{Y ≤ qτ0(t)} − 1{Y ≤ qτ (t)}+ fY (qτ0)(qτ (t)− qτ0(t))}π0(U ; t)]|∞

�|E[{1{Y ≤ qτ0(t)} − 1{Y ≤ qτ (t)}+ fY (qτ0)(qτ (t)− qτ0(t))}]|∞Mπ

=|FY (qτ0(t))− FY (qτ (t)) + fY (qτ0)(qτ (t)− qτ0(t))|∞Mπ = o(|qτ (t)− qτ0(t)|∞).

Condition G.III is satisfied because the distribution function of Y is continuous.

And condition G.V was verified in the proof of Corollary 2. Condition G.VI holds

by condition QG.II.

Proof of Claim 1. A regular parametric submodel of the joint distribution of

(Y, T,X) with distribution function F (y, t,x; γ) has the log-likelihood

log f(y, t,x; γ) =

∫
ς∈T

[
log fY (ς)|X(y|x; γ) + log fT |X(ς|x; γ)

]
d1{ς ≥ t}+ log fX(x; γ)

=
[
log fY (t)|X(y|x; γ) + log fT |X(t|x; γ)

]
+ log fX(x; γ)
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with F (y, t,x; γ0) = F (y, t,x). The score of this model is

S(y, t,x; γ0) =
d

dγ
log f(y, t,x; γ0)

= Sy(y, t,x) + ST (t,x) + SX(x),

where

Sy(y, t,x) =
d

dγ
log fY (t)|X(y|x; γ0)

ST (t,x) =
d

dγ
log fT |X(t|x; γ0)

SX(x) =
d

dγ
log fX(x; γ0),

Therefore, the tangent set of this model is the collection of the score functions of

the form above and the tangent space ṖF is the closed linear span of the tangent

set.

Recall that E[m(Y (t); β(t))] = 0 if and only if β(t) = β0(t) for each t ∈ T . By

implicit function theorem,

∂β0(t)

∂γ
(γ) = −Γ−1

0 (t)Υ(γ0)

and

Υ(γ0) =
∂

∂γ

∫
m(Y (t); β(t)) dF (y, t,x; γ0)

=E[m(Y (t); β0(t))Sy(Y (t), t,X)] + E[m(Y (t); β0(t))SX(X)].

We need to find Ψβ(y, t,x) such that

∂β0(t)

∂γ
(γ) = E[Ψβ(Y, T,X)S(Y, T,X; γ0)]
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for all regular parametric submodels.

It can be verified that

Ψβ(y, t,x) = −Γ−1
0 (t)ψ(y, t,x, β0, π0, e0)

where ψ(y, t,x, β0, π0, e0) = π(y,x, t)m(Y ; β0(t))− (π(y,x, t)− 1)e0(X, β0(t)) with

e0(X, β(t)) = E[m(Y ; β(t))|X].

Proof of Theorem 4. We first verify that
√
nE[ψ(Yi,Xi, t, β0, π0, e0)] converges

weakly in `∞(T ). By condition G.V, ψt = ψ(y,x, t, β0, π0, e0) is Donsker, implying

the weak convergence.

The uniform semiparametric efficiency follows from the weak convergence above

and the pointwise semiparametric efficiency of Lemma 3 by Theorem 18.9 of Kosorok

(2008).

Now we verify that the formula in condition G.VI equals the left hand-side of

condition E., which implies that the influence function of the two-step estimator is

efficient. To this end, we begin with the formula in condition G.VI,

√
n(Em(Y ; β0(t))(π(U ; t)− π0(U ; t))|π=π̂ + Em(Y ; β0(t))π0(U ; t))

=
√
n(Em(Y ; β0(t))(π̂(U ; t)− π0(U ; t)) + Em(Y ; β0(t))π0(U ; t))

=
√
n(Em(Y ; β0(t))π̂(U ; t),

where the first equality is by condition G.5’ which in turn is implied by G.5’.

Proof of Claim 2. By Mean Value Theorem,

π(u; t; ϑ̂)− π(u; t;ϑ0) = π′(u; t;ϑ∗)(ϑ̂− ϑ0),
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where ϑ∗ is a convex combination of ϑ̂ and ϑ0. Therefore,

|π(u; t; ϑ̂)− π(u; t;ϑ0)|∞ = |π′(u; t;ϑ∗)(ϑ̂− ϑ0)|∞

≤|π′(u; t;ϑ∗)|∞||ϑ̂− ϑ0|| = Op(n
−1/2)

since |π′(u; t;ϑ∗)|∞ is bounded and ||ϑ̂− ϑ0|| = Op(n
−1/2). There, conditions C.IV

and G.IV are verified.

For condition C.V, by Theorem 19.7 of van der Vaart (1998), this parametric

Lipschitz continuous functional class is Donsker.

To verify the weak convergence of condition C.VI, we need to use the functional

delta method, which involves Hadamard differentiability of a map between norm

spaces. A map φ : Dφ 7→ E is Hadamard differentiable at θ ∈ D, tangentially to a

set D0, if there exists a continuous linear map φ′θ : D 7→ E such that

φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h),

as n→∞, for all converging sequences tn → 0 and hn → h ∈ D0, with hn ∈ D and

θ + tnhn ∈ Dφ for all n ≥ 1 sufficiently large; see p. 22 of Kosorok (2008).

We first verify that η is Hadamard differentiable at ϑ tangentially to Rdϑ . For

any ln → 0 and hn → h ∈ Rdϑ ,

η(ϑ+ lnhn)− η(ϑ)

ln
=
π(u; t;ϑ+ lnhn)− π(u; t;ϑ)

ln

=
π′(u; t;ϑ∗)lnhn

ln
→ π′(u; t;ϑ)h.

Using the functional delta method, since π′(u; t;ϑ) is uniformly bounded,

√
n(π(u; t; ϑ̂)− π(u; t;ϑ)) π′(u; t;ϑ)Zϑ in `∞(U × T )
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where Zϑ ∼ N(0,=−1
ϑ ).
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Appendix B

Appendix B1: Proofs of the Theorems in Chapter

2, Section 3

Consistency of β̂MD under Sequential Asymptotics

We first show the consistency of the QR estimators for each individual, from which

the desired result follows. Because of the non-differentiability of the criterion func-

tion of the QR estimator, we use the general theory of the M -estimator of van der

Vaart (1998).

Proof of Theorem 1.1. Recall that θi0 = (αi0,β
>
0 )>. First, we show that under

Conditions A1–A3, θ̂i
p→ θi0 as T → ∞ for each i. Since θ̂i is the M -estimator

that maximize the criterion function

θ 7→MiT (θ) = − 1

T

T∑
t=1

[ρτ (yit −X>it θ)− ρτ (yit −X>it θi0)],

we verify the two conditions in display (5.8) of Theorem 5.7 of van der Vaart (1998).

Let Mi(θ) denote EMiT (θ), and Θi be a compact set that contains θi0.

The first condition of Theorem 5.7 of van der Vaart (1998), the uniform conver-

gence of the criterion functions

sup
θ∈Θi

|MiT (θ)−Mi(θ)| p→ 0

as T →∞, holds if we verify the conditions of Corollary 3.1 of Newey (1991). Note

that Θi is a compact set. Also, the pointwise convergence of the criterion function

holds by weak law of large numbers (LLN) for i.i.d. data . Note that for any fixed
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θ ∈ Θi

E|ρτ (yit −X>it θ)− ρτ (yit −X>it θi0)|

=E
∣∣(X>it (θ − θi0))ψτ (yit −X>it θi0)

−
∫ X>it (θ−θi0)

0

(
1{yit −X>it θi0 ≤ s} − 1{yit −X>it θi0 ≤ 0}

)
ds

∣∣∣∣∣
≤E

∣∣(X>it (θ − θi0))
∣∣

+ E

∫ |X>it (θ−θi0)|

0

(
1{yit −X>it θi0 ≤ s}+ 1{yit −X>it θi0 ≤ 0}

)
ds

≤3E||Xit||||θ − θi0|| <∞.

The second line in the previous display holds by the identity of Knight (1998)

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

(1{u ≤ s} − 1{u ≤ 0}) ds.

Noting that

|ρτ (yit −X>it θ)− ρτ (yit −X>it θ̃)| ≤ 3||Xit||||θ − θ̃||

and that 1
T

∑T
t=1 E||Xit|| = O(1) which is implied by Condition 2, we finished veri-

fying conditions of Corollary 1 of Newey (1991).

For the second condition of Theorem 5.7 of van der Vaart (1998), note that by

the identity of Knight,

MiT (θ) =
1

T

T∑
t=1

{
(X>it (θ − θi0))ψτ (yit −X>it θi0)

−
∫ X>it (θ−θi0)

0

(
1{yit −X>it θi0 ≤ s} − 1{yit −X>it θi0 ≤ 0}

)
ds

}
,
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and

Mi(θ) =E

{
(X>it (θ − θi0))ψτ (yit −X>it θi0)

−
∫ X>it (θ−θi0)

0

(
1{yit −X>it θi0 ≤ s} − 1{yit −X>it θi0 ≤ 0}

)
ds

}

=− E

[∫ X>it (θ−θi0)

0

(Fi(s|Xit)− τ) ds

]
. (A6)

Thus, by Condition A3 and expression of Mi(θ) in display (A6), we see that for

every δ > 0,

sup
||θ−θi0||≥δ

Mi(θ) < Mi(θi0) = 0.

Since we verified that θ̂i
p→ θi0, we obtain that β̂i

p→ β0 as T → ∞ for each i.

Moreover, by Condition 6, V̂i
p→ Vi for each i, it follows that for fixed n, as T →∞

β̂MD =

(
n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i β̂i

p→

(
n∑
i=1

V −1
i

)−1 n∑
i=1

V −1
i β0 = β0.

Hence, it follows that β̂MD
p→ β0 as (T, n)seq →∞.

Remark 4. Strictly speaking, Condition 6 is not really necessary; V̂i can converge

to anything because the rightmost equality would hold as long as β̂i is consistent as

T →∞.

Consistency of β̂MD under Joint Asymptotics

To show Theorems 1.2 we first prove the following lemma, which provides the con-

sistency of the QR estimators uniformly across individuals.

Lemma 4. Under Conditions A1–A3, we have max1≤i≤n ||θ̂i − θi0|| = op(1) as

(n, T )→∞ and logn
T
→ 0.
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Proof. The proof of the uniform consistency of the QR estimators over i is similar

to that of Theorem 1 of Kato et al. (2012).

Let QiT (θ) = T−1
∑T

t=1 ρτ (yit−X>it θ)−T−1
∑T

t=1 ρτ (yit−X>it θi0), the centered

objective function for each i, and Qi(θ) = EQiT (θ). Fix any δ > 0. Let Bi(δ) :=

{θ : ||θ−θi0|| ≤ δ}, the ball with center θi0 and radius δ. For each θi /∈ Bi(δ), define

θ̃i = riθi + (1− ri)θi0, where ri = δ
||θi−θi0|| . So θ̃i ∈ ∂Bi(δ) := {θ : ||θ − θi0|| = δ},

the boundary of Bi(δ). Since QiT (θ) is convex, and QiT (θi0) = 0, we have

riQiT (θi) ≥ QiT (θ̃i) = Qi(θ̃i) + (QiT (θ̃i)−Qi(θ̃i)) > εδ + (QiT (θ̃i)−Qi(θ̃i)),

(A7)

the last inequality is by by the identity of Knight (1998) and Condition A3.

Thus, we have the following

{
max
1≤i≤n

||θ̂i − θi0|| > δ

}
(a)

⊆ {QiT (θi) ≤ 0,∃θi /∈ Bi(δ)}

(b)

⊆ ∪ni=1

{
sup

θi∈Bi(δ)
|QiT (θi)−Qi(θi)| ≥ εδ

}
.

Relation (a) holds because, by definition, θ̂i minimizes QiT (θ), and QiT (θi0) = 0.

Relation (b) holds by the rightmost inequality of line (A7). Then, it follows that

P

{
max
1≤i≤n

||θ̂i − θi0|| > δ

}
≤ P

{
∪ni=1

{
sup

θi∈Bi(δ)
|QiT (θi)−Qi(θi)| ≥ εδ

}}

≤
n∑
i=1

P

{
sup

θi∈Bi(δ)
|QiT (θi)−Qi(θi)| ≥ εδ

}

≤ n max
1≤i≤n

P

{
sup

θi∈Bi(δ)
|QiT (θi)−Qi(θi)| ≥ εδ

}
.
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Therefore, if we could show that

max
1≤i≤n

P

{
sup

θi∈Bi(δ)
|QiT (θi)−Qi(θi)| ≥ εδ

}
= o(1/n), (A8)

the proof of the lemma is completed.

Without loss of generality, we assume θi0 = 0 for all i. Then the balls Bi(δ) for all

i are identical, and thus we denote them by B(δ). In addition, the function g(θ) :=

ρτ (u−X>θ)− ρρ(u) has the following property |g(θ1)− g(θ2)| ≤ CM ||θ1−θ2|| for

some fixed constant C > 0 by the identity of Knight (1998). Let κ := CM .

Because the closed ball B(δ) is compact, there exist K balls with centers θj,

j = 1, ..., K, and radius ε
3κ

such that the collection of them covers B(δ). Therefore,

for any θ ∈ B(δ), there is some j ∈ {1, ..., K} such that

|QiT (θ)−Qi(θ)| − |QiT (θj)−Qi(θ
j)| ≤|QiT (θ)−Qi(θ)−QiT (θj) +Qi(θ

j)|

≤|QiT (θ)−QiT (θj)|+ |Qi(θ)−Qi(θ
j)|

≤CM ε

3κ
+ CM

ε

3κ
≤ 2ε

3
.

It then follows that for any ε > 0, supθ∈B(δ) |QiT (θ)−Qi(θ)| ≤ max1≤j≤K |QiT (θj)−

Qi(θ
j)|+ 2ε

3
, and

P

{
sup
θ∈B(δ)

|QiT (θ)−Qi(θ)| > ε

}
≤P

{
max

1≤j≤K
|QiT (θj)−Qi(θ

j)|+ 2ε

3
> ε

}
=P

{
max

1≤j≤K
|QiT (θj)−Qi(θ

j)| > ε

3

}
≤

K∑
i=1

P
{
|QiT (θj)−Qi(θ

j)| > ε

3

}
.

Because data are i.i.d. within each individual, the rightmost of the inequalities is
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less or equal to

2K exp

{
− ε2T

18M2δ2

}
= O(exp(−T ))

by Hoeffding’s inequality. Because logn
T
→ 0, it follows that O(exp(−T )) = o(1/n).

With the lemma of the uniform consistency in hand, we prove Theorem 1.2.

Proof of Theorem 1.2. To show the consistency of β̂MD for joint asymptotics, we do

the following computation.

β̂MD − β0 =

(
1

n

n∑
i=1

V̂ −1
i

)−1
1

n

n∑
i=1

V̂ −1
i (β̂i − β0)

=

(
1

n

n∑
i=1

V̂ −1
i

)−1
1

n

n∑
i=1

V̂ −1
i op(1) = op(1)

The last equality holds because max1≤i≤n ||θ̂i − θi0|| = op(1) by the Lemma 4 for

i.i.d. data .

Consistency of β̂FE under Sequential Asymptotics

Note that β̂FE is essentially the estimator of the slope coefficient of the pooled

panel data with individual dummy variables being added in the regression. More

specifically, β̂FE can be obtained by estimating the quantile regression model

y = ια0 + xβ0 + u

where y = (y11, ..., y1T , ..., yn1, ..., ynT )>, ι = I ⊗ (1, ..., 1)>, x = (x1, ...,xn)> with

xi = (xi1, ...,xiT ), u = (u11, ..., u1T , ..., un1, ..., unT )>, α0 = (α10, ..., αn0)>, and β0 is

the vector of slope coefficients.
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Proof of Theorem 2.1. Following the strategy of the proof of Theorem 1.1, we first

show that (α̂1, ..., α̂n, β̂
>
FE)

p→ (α>0 ,β
>
0 ) := θ0 as T → ∞. More specifically, the

estimator maximizes the following criterion function

θ 7→MnT (θ) = − 1

T

T∑
t=1

1

n

n∑
i=1

(ρτ (yit − αi − x>itβ)− ρτ (yit − αi0 − x>itβ0)),

where θ = (α1, ..., αn,β
>)>, therefore, we verify the conditions of Theorem 5.7 of

van der Vaart (1998). Let Mn(θ) denote EMnT (θ).

Using the identity of Knight (1998), we obtain

MnT (θ) =
1

T

T∑
t=1

{
1

n

n∑
i=1

(αi − αi0 + x>it(β − β0))ψτ (yit − αi0 − x>itβ0)

− 1

n

n∑
i=1

∫ αi−αi0+x>it(β−β0)

0

(
1{yit − αi0 − x>itβ0 ≤ s} − 1{yit − αi0 − x>itβ0 ≤ 0}

)
ds

}
,

and

Mn(θ) = − 1

n

n∑
i=1

E

[∫ αi−αi0+x>it(β−β0)

0

(Fi(s|Xit)− τ) ds

]
. (A9)

First, we show the uniform convergence of the criterion functions

sup
θ∈An×B

|MnT (θ)−Mn(θ)| p→ 0

as T →∞. This can be done by verifying the conditions of Corollary 3.1 of Newey

(1991) as in Theorem 1.1. Thus, we omit the details.

Second, using Condition A3 and expression of Mn(θ) in display (A9), we see

that for every δ > 0,

sup
||θ−θ0||≥δ

Mn(θ) < Mn(θ0) = 0.

Since (α̂1, ..., α̂n, β̂
>
FE)

p→ (α>0 ,β
>
0 ) as T → ∞, it follows that β̂FE

p→ β0 as
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T →∞. Hence β̂FE
p→ β0 as (T, n)seq →∞.

Consistency of β̂FE under Joint Asymptotics

The proof of Theorem 2.2 is given in Theorem 3.1 and Remark A1 of Kato et al.

(2012).

Asymptotic Normality of β̂MD under Sequential Asymptotics

We first show that as T →∞, the quantile regression estimators converge to a ran-

dom variable for each i. Then as n→∞, β̂MD converges to a normal distribution.

Proof of Theorem 3.1. First, we verify that for each individual i, Condition A1 on

p. 120 of Koenker (2005) is implied by Condition A4; Conditions A2 (i)–(ii) of

Koenker (2005) are implied by Conditions A4 and A5; and Condition A2 (iii) of

Koenker (2005) is implied by A2. Therefore, for each individual

√
T (β̂i − β0)

d→ N(0, Vi).

We first fix n and let T tend to infinity. It then follows that

√
nT (β̂MD − β0) =

(
1

n

n∑
i=1

V̂ −1
i

)−1
1√
n

n∑
i=1

V̂ −1
i

√
T (β̂i − β0)

d→

(
1

n

n∑
i=1

V −1
i

)−1
1√
n

n∑
i=1

V −1
i N(0, Vi)

=

(
1

n

n∑
i=1

V −1
i

)−1
1√
n

n∑
i=1

N(0, V −1
i )

The second line in the display above holds because
√
T (β̂i−β0)

d→ N(0, Vi), V̂i
p→ Vi

for each i as T →∞ by Condition 6, and Slutsky’s theorem.

Now let n tend to infinity, and we obtain
(

1
n

∑n
i=1 V

−1
i

)−1 p→ V . Moreover, by
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Lyapunov Central Limit Theorem, it follows that

1√
n

n∑
i=1

N(0, V −1
i )

d→ N(0, V −1).

Hence, by Slutsky Theorem, we obtain the desired result

√
nT (β̂MD − β0)

d→ N(0, V ).

Asymptotic Normality of β̂MD under Joint Asymptotics

To show this result, we provide the following auxiliary lemmas.

Lemma 5. If A is a nonsingular matrix, and ÂT = A+Op (ϑT ) is an estimator of

A, where ϑT → 0 as T →∞, then we have Â−1
T = A−1 +Op (ϑT ).

Proof. By Taylor theorem of the matrix form, we have

Â−1
T = A−1 − (A−2)>(ÂT − A) + op(ÂT − A) = A−1 +Op(ϑT ).

Lemma 6. If Xn = Yn + $n, where $n = Op(X
2
n) and Xn

p→ 0 as n → ∞, then

|Xn| is bounded by const.× |Yn| with probability approaching one.

Proof. We need to show there exists a constant c0, such that P(|Xn| > c0|Yn|)→ 0,

or P(|Yn + $n| > c0|Yn|) → 0, since Xn = Yn + $n. Noticing the events inclusion

{|Yn+$n| > c0|Yn|} ⊆ {|Yn|+|$n| > c0|Yn|}, it follows that P(|Yn+$n| > c0|Yn|) ≤

P(|Yn|+|$n| > c0|Yn|). Therefore, it suffices to show that P(|$n| > (c0−1)|Yn|)→ 0,

or P
(

|$n|
|Xn−$n| > c0 − 1

)
→ 0. Since $n = Op(X

2
n) and Xn

p→ 0, we obtain the

conclusion.
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Denote SiT (θ) := 1
T

∑T
t=1 ψτ (yit −X>it θ)Xit, where ψτ (u) := τ − 1{u ≤ 0}. Let

Si(θ) := E(SiT (θ)) = E[τ − Fi(Xi1(θ − θi0)|Xi1)]. It is well know that the term
√
T ([SiT (θ̂i) − SiT (θi0)] − [Si(θ̂i) − Si(θi0)]) = op(1) for each individual since it is

stochastic equicontinuous and θ̂i
p→ θi0. However, for the panel data, we need to

consider the order of max1≤i≤n{[SiT (θ̂i)−SiT (θi0)]−[Si(θ̂i)−Si(θi0)]}. The following

two lemmas provide such an order.

Lemma 7. If max1≤i≤n ||θ̂i − θi0|| = Op(δn), where lim
n→∞

δn = 0, then under Condi-

tions A1–A5 and A6’, we have max1≤i≤n{[SiT (θ̂i)− SiT (θi0)]− [Si(θ̂i)−Si(θi0)]} =

Op(dn), where dn = log δn
T
∨
√

δn| log δn|
T

.

Proof. Without loss of generality, we assume that θi0 = 0 for all i as in Kato et al.

(2012). Let gθ(X
∗
it) = [1{uit ≤ 0} − 1{uit −X>it θ ≤ 0}]Xit, where X∗it = (uit,Xit).

It then follows that

SiT (θ̂i)− SiT (0)

=
1

T

T∑
t=1

(τ − 1{yit −X>it θ̂i ≤ 0})Xit −
1

T

T∑
t=1

(τ − 1{yit ≤ 0})Xit

=− 1

T

T∑
t=1

[1{uit −X>it θ̂i ≤ 0} − 1{uit ≤ 0}]Xit

=
1

T

T∑
t=1

gθ̂i(X
∗
it).

So the assertion to be shown becomes max1≤i≤n
T∑
t=1

[gθ̂i(X
∗
it) − Egθ(X

∗
it)|θ=θ̂i

] =

Op(Tdn). Let G̃iδn = {gθ − E[gθ(X
∗
i1)] : ||θ|| < δn}. Thus, it suffices to show that

max1≤i≤n EZi = O(dnT ), where Zi :=

∣∣∣∣∣∣∣∣ T∑
t=1

g(X∗it)

∣∣∣∣∣∣∣∣
G̃iδ

.

To apply Proposition B.1. of Kato et al. (2012), we verify the conditions for G̃iδ.

First,it is pointwise measurable, and is bounded by 4M . Now we provide an upper

bound of the covering number for the class G̃iδ. Note that since G̃iδ is a subset of

{g−E[g(X∗it)] : g ∈ G∞}, where G∞ = {gθ : θ ∈ Rk+1}, we could instead estimate its
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covering number. Since G∞ is a subgraph class by Lemma 2.6.15 of van der Vaart

and Wellner (1996), it follows that N(4Mε, G̃∞, L2(Q)) ≤
(
A
ε

)v
, where A ≥ 3

√
e

and v ≥ 1 are independent of i and n, for every 0 < ε < 1 and every probability

measure Q by Theorem 2.6.7 of van der Vaart and Wellner (1996). Therefore, we

obtain N(4Mε, G̃iδ, L2(Q)) ≤
(
A
ε

)v
. Moreover, since Egθ(X

∗
it)

2 = E[|Fi(X>it θ|Xit)−

Fi(0|Xit)|Xit] ≤ CuM
3δ, G̃iδ satisfies all the conditions in Proposition B.1. of Kato

et al. (2012) with U = 4M + CuTM
3δ and σ2 = CuM

3δ. Therefore, we have

max1≤i≤n EZi = O(dnT ).

Lemma 8. Under the conditions of Lemma 7, we have max1≤i≤n ||θ̂i − θi0|| =

Op

(√
logn
T

)
.

Proof. Expanding Si(θ̂i) around θi0 and using Lemma 2.12 of van der Vaart (1998),

we obtain

Si(θ̂i) = Si(θi0) +
∂Si(θi0)

∂θi
(θ̂i − θi0) +Op((θ̂i − θi0)2).

After rearranging and noting that Γ̃i = ∂Si(θi0)
∂θi

, we have

θ̂i − θi0 =Γ̃−1
i

(
Si(θ̂i)− Si(θi0) +Op((θ̂i − θi0)2)

)
=Γ̃−1

i

(
−SiT (θi0) + (Si(θ̂i)− Si(θi0))− (SiT (θ̂i)− SiT (θi0)) + SiT (θ̂i)

+Op((θ̂i − θi0)2)
)

=− Γ̃−1
i SiT (θi0)− Γ̃−1

i [(SiT (θ̂i)− SiT (θi0))− (Si(θ̂i)− Si(θi0))]

+ Γ̃−1
i SiT (θ̂i) + Γ̃−1

i Op((θ̂i − θi0)2). (A10)

Because of the computational property of quantile regression estimators,

SiT (θ̂i) = Op

(
1

T

)
uniformly across i, and therefore max1≤i≤n ||θ̂i−θi0|| is bounded
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by

const. ·
[

max
1≤i≤n

||SiT (θi0)||+ max
1≤i≤n

||(SiT (θ̂i)− SiT (θi0))− (Si(θ̂i)− Si(θi0))||
]

+Op

(
1

T

)

with probability approaching one by Lemma 6. Now we determine the order of the

terms in the brackets.

First, by Hoeffding’s inequality, for any fixed K > 0,

P

{
max
1≤i≤n

||SiT (θi0)|| >
√

log n

T
K

}
≤

n∑
i=1

P

{
||SiT (θi0)|| >

√
log n

T
K

}
≤ 2n1− K2

2M2 .

Thus, max1≤i≤n ||SiT (θi0)|| = OP

(√
log n

T

)
.

Next, we show that

max
1≤i≤n

||(SiT (θ̂i)− SiT (θi0))− (Si(θ̂i)− Si(θi0))|| = op

(√
log n

T

)
.

Without loss of generality, we set θi0 = 0 for 1 ≤ i ≤ n as in Kato et al. (2012). So

we need to show that

max
1≤i≤n

∣∣∣∣∣
∣∣∣∣∣ 1

T

T∑
t=1

gθ̂i(X
∗
it)− E[gθ(X

∗
it)]|θ=θ̂i

∣∣∣∣∣
∣∣∣∣∣ = op

(√
log n

T

)
,

which is equivalent to that for any ε > 0,

P

(
max
1≤i≤n

∣∣∣∣∣
∣∣∣∣∣ 1

T

T∑
t=1

gθ̂i(X
∗
it)− E[gθ(X

∗
it)]|θ=θ̂i

∣∣∣∣∣
∣∣∣∣∣ > ε

√
log n

T

)
= o(1).

To this end, we only need to show that

max
1≤i≤n

P

(∣∣∣∣∣
∣∣∣∣∣ 1

T

T∑
t=1

gθ̂i(X
∗
it)− E[gθ(X

∗
it)]|θ=θ̂i

∣∣∣∣∣
∣∣∣∣∣ > ε

√
log n

T

)
= o

(
1

n

)
.

Because the QR estimators are uniformly consistent by Lemma 4, it suffices to
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show that for any ε > 0, there is a sufficiently small δ > 0 such that

max
1≤i≤n

P

(∣∣∣∣∣
∣∣∣∣∣
T∑
t=1

g(X∗it)

∣∣∣∣∣
∣∣∣∣∣
G̃iδ

> ε
√
T log n

)
= op

(
1

n

)
(A11)

where G̃iδ = {gθ − E[gθ(X
∗
i1)] : ||θ|| < δ}.

By Proposition B.2. of Kato et al. (2012) and setting s =
√

2 log n, we have

P

{
Zi ≥ EZi+√
4 log n{TCfM3δ + 2(4M + CfM3δ)EZi}+

2 log n

3
(4M + CfM

3δ)

}
≤ 1

n2
,

where Zi :=

∣∣∣∣∣∣∣∣ T∑
t=1

g(X∗it)

∣∣∣∣∣∣∣∣
G̃iδ

. Therefore,

P

{
Zi ≥ max

1≤i≤n
EZi +

√
4 log n{TCfM3δ + 2(4M + CfM3δ) max

1≤i≤n
EZi}

+
2 log n

3
(4M + CfM

3δ)

}
≤ 1

n2
.

Notice that in Lemma 7 we have shown that max1≤i≤n EZi ≤ const. × (log δ +√
Tδ| log δ|). Thus, for fixed ε > 0, we can find δ sufficiently small and n0 such that

when n ≥ n0, we have

max
1≤i≤n

EZi+
√

4 log n{TCfM3δ + 2(4M + CfM3δ) max
1≤i≤n

EZi}

+
2 log n

3
(4M + CfM

3δ) ≤ ε
√
T log n.

So we have equation (A11), and hence we have max1≤i≤n ||θ̂i − θi0|| = Op (δn),

where δn =
√

logn
T

.

Remark 5. From Lemmas 7 and 8, we see that dn =
(logn)1/4

√
| log δn|

T 3/4 .

Proof of Theorem 3.2. Consider the following
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√
nT (β̂MD − β0) =

(
1

n

n∑
i=1

V̂ −1
i

)−1(√
n

n

n∑
i=1

V̂ −1
i Ξ
√
T (θ̂i − θi0)

)

=

( 1

n

n∑
i=1

V −1
i

)−1

+Op

(
T−1/2h−1/2

n

)
×

(√
n

n

n∑
i=1

V −1
i Ξ
√
T (θ̂i − θi0) +Op

(
(log n)1/2n1/2T−1/2h−1/2

n

))

=

(
1

n

n∑
i=1

V −1
i

)−1 √
n

n

n∑
i=1

V −1
i Ξ
√
T (θ̂i − θi0) +Op

(
(log n)1/2n1/2T−1/2h−1/2

n

)
.

By Lemmas 7 and 8, we have for each i,

Ξ(θ̂i − θ0) =− ΞΓ̃−1
i SiT (θi0) +Op(dn) +Op

(
1

T

)
+ ΞΓ̃−1

i Op((θ̂i − θi0)2)

=− ΞΓ̃−1
i SiT (θi0) +Op (dn) . (A12)

Therefore, it follows that

√
n

n

n∑
i=1

V −1
i Ξ
√
T (θ̂i − θi0) = −

√
n

n

n∑
i=1

V −1
i Ξ
√
T Γ̃−1

i SiT (θi0) +Op(
√
nTdn).

The second term is op(1) by the assumption of the relative rates of n and T in the

theorem. For the first term, by Lyapunov central limit theorem, it converges in

distribution to N(0, limn→∞
1
n

∑n
i=1 V

−1
i ). Hence, by Slutsky Theorem,

√
nT (β̂MD − β0)

d→ N(0, V )

as (n, T )→∞ and
√
nTdn → 0.

Asymptotic Normality of β̂FE under Sequential Asymptotics

Next we present the proof of Theorems 4.1.
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Proof of Theorem 4.1. For the proof of the asymptotic normality for the sequential

asymptotics, define

H(1)
iT (αi,β) =

1

T

T∑
t=1

{τ − 1(yit ≤ αi + x>itβ)}

H
(1)
iT (αi,β) = E[H(1)

iT (αi,β)] = E[τ − Fi(αi − αi0 + x>i1(β − β0)|xit)]

H(2)
nT (α,β) =

1

nT

n∑
i=1

T∑
t=1

{τ − 1(yit ≤ αi + x>itβ)}xit

H
(2)
nT (α,β) = EH(2)

nT (αi,β) =
1

n

n∑
i=1

E[{τ − Fi(αi − αi0 + x>i1(β − β0)|xit)}xit],

where α = (α1, ..., αn)>. Note that the definitions listed above are similar to but

different from the ones defined in the proof of Theorem 3.2 of Kato et al. (2012) in

that our definitions depend on T directly.

Expanding H
(1)
iT (α̂i, β̂FE) and H

(2)
nT (α, β̂FE) around (αi0,β0), and (α0,β0), re-

spectively, we have

H
(1)
iT (α̂i, β̂FE) =− fi(0)(α̂i − αi0)

− γifi(0)(β̂FE − β0) +Op((α̂i − αi0)2 ∨ ||β̂FE − β0||2) (A13)

H
(2)
nT (α̂, β̂FE) =− 1

n

n∑
i=1

fi(0)γi(α̂i − αi0)−

{
1

n

n∑
i=1

Ef(0|xi1)xi1x
>
i1

}
(β̂FE − β0)

+Op((α̂i − αi0)2 ∨ ||β̂FE − β0||2) (A14)

Solving α̂i − αi0 from equation (A13)

α̂i − αi0 = −fi(0)−1H
(1)
iT (α̂i, β̂FE)

− γ>i (β̂FE − β0) +Op((α̂i − αi0)2 ∨ ||β̂FE − β0||2),
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and plugging in equation (A14), we have

H
(2)
nT (α̂, β̂FE) =

1

n

n∑
i=1

H
(1)
iT (α̂i, β̂FE)γi +

1

n

n∑
i=1

fi(0)γiγ
>
i (β̂FE − β0)

− 1

n

n∑
i=1

Ef(0|xi1)xi1x
>
i1(β̂FE − β0) +Op((α̂i − αi0)2 ∨ ||β̂FE − β0||2)

=
1

n

n∑
i=1

H
(1)
iT (α̂i, β̂FE)γi + Γn(β̂FE − β0) +Op((α̂i − αi0)2 ∨ ||β̂FE − β0||2)

where Γn = 1
n

∑n
i=1 Γi. Solving β̂FE − β0, we obtain

β̂FE − β0 + op(||β̂FE − β0||) = Γ−1
n

[
H

(2)
nT (α̂, β̂FE)− 1

n

n∑
i=1

H
(1)
iT (α̂i, β̂FE)γi

]

=Γ−1
n

{
−n−1

n∑
i=1

H(1)
iT (αi0,β0)γi + H(2)

nT (α0,β0)

}

− Γ−1
n

[
n−1

n∑
i=1

γi{H(1)
iT (α̂i, β̂)−H(1)

iT (α̂i, β̂)−H(1)
iT (αi0,β0)}

]
(A15)

+ Γ−1
n {H

(2)
nT (α̂, β̂)−H(2)

nT (α̂, β̂)−H(2)
nT (α0,β0)} (A16)

+Op(1/T ∨ max
1≤i≤n

|α̂i − αi0|2),

The second equality follows from the computational property of the QR estimator

|H(1)
iT (α̂i, β̂FE)| = Op(T

−1) and ||H(2)
nT (α̂, β̂FE)|| = Op(T

−1).

To derive the asymptotic normality of the FE-QR estimator, we set n to be

fixed now. Note that for each fixed n, the regression quantiles are
√
T -consistent,

therefore, we have Op(1/T ∨max1≤i≤n |α̂i−αi0|2) = Op(1/T ) and op(||β̂FE−β0||) =

op(1/
√
T ). Using Lemmas 6–7, the third and fourth terms in the rightmost equation

are ignorable, thus we have

β̂FE − β0 = Γ−1
n

{
−n−1

n∑
i=1

H(1)
iT (αi0,β0)γi + H(2)

nT (α0,β0)

}
+ o(1/

√
T )
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for fixed n and T →∞. The term in the braces can be rewritten as

1

n

n∑
i=1

1

T

T∑
t=1

{τ − 1(yit ≤ αi + x>itβ)}(xit − γi).

As T tends to infinity, the term in the display above converges in distribution to

1
n
√
T

∑n
i=1N(0, τ(1 − τ)E[(xit − γi)(xit − γi)>]) = 1

n
√
T
N(0, τ(1 − τ)

∑n
i=1 E[(xit −

γi)(xit − γi)>]) by Lindeberg-Levy Central Limit Theorem. Therefore, for fixed n,

we have
√
T (β̂FE − β0)

d→ 1
n
N(0, τ(1 − τ)Γ−1

n

∑n
i=1 E[(xit − γi)(xit − γi)>]Γ−1

n ) as

T →∞ by Slutsky’s Theorem.

Now we let n lend to infinity, and therefore,

√
nT (β̂FE − β0)

d→ N

(
0, τ(1− τ) lim

n→∞
Γ−1
n

1

n

n∑
i=1

E[(xit − γi)(xit − γi)>]Γ−1
n

)

as n→∞, as desired.

Asymptotic Normality of β̂FE under Joint Asymptotics

For the proof of Theorems 4.2 , see the proofs of Theorem 3.2 of Kato et al. (2012).

Appendix B2: Proofs of the Theorems in Chapter

2, Section 4

Consistency and Asymptotic Normality of β̂MD under Se-

quential Asymptotics

Now we present the proof of Theorem 5.1.

Proof of Theorem 5.1. The proof of consistency result is very similar to that of

Theorem 1.1. The only difference is the proof of the pointwise LLN for MiT (θ).

Instead of using the LLN for i.i.d. data, we use an LLN for β-mixing data.
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For weak convergence, we need to show for each individual, we have the weak

convergence

√
T (θ̂i − θ0)

d→ N(0, Ṽi)

as T →∞. This can be seen from equation (A10) while holding n fixed.

Consistency and Asymptotic Normality of β̂MD under Joint

Asymptotics

For the proof of the consistency with β-mixing data, we need the following lemmas.

Lemma 9. Under Conditions A2–A3 and B1, we have max1≤i≤n ||θ̂i−θi0|| = op(1)

as (n, T )→∞ and logn
T
→ 0.

Proof. The proof is similar to that of Lemma 4. We only need to prove line (A8) for

β-mixing data. If data are β-mixing stationary, we apply Lemma C.1 and Corollary

C.1 of Kato et al. (2012). Following their strategy, let s = 2 log n and q = [
√
T ] in

Corollary C.1, for any ε > 0 and large n (and therefore, large T ),

P
{
|QiT (θj)−Qi(θ

j)| > ε

3

}
≤P

{
|QiT (θj)−Qi(θ

j)| > const.

{√
2 log n

T
σq(f) +

2 log n

T
[
√
T ]M

}}

since logn√
T
→ 0 and σq(f) is bounded by the discussion after Lemma C.1 of Kato

et al. (2012). The right hand side of the inequality above is bounded by

const.×
(
n−2 +

√
TBa[

√
T ]
)

= o(n−1).

Since all the K terms are of o(n−1), we have completed the proof of line (A8) for

β-mixing data.
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Lemma 10. Assume conditions A2–A5 and B1–B2 hold. For any c ∈ (0, 1) and

δN such that | log δN | � logN , we have we have max1≤i≤n{[SiT (θ̂i) − SiT (θi0)] −

[Si(θ̂i)− Si(θi0)]} = Op(T
−(1−c)(log n) ∨ T−1/2δ

1/2
n (log n)1/2).

Proof. Without loss of generality, we assume that θi0 = 0 for all i as in Kato et al.

(2012). Let gθ(X
∗
it) = [1{uit ≤ 0} − 1{uit −X>it θ ≤ 0}]Xit, where X∗it = (uit,Xit).

We need to show max1≤i≤n
T∑
t=1

[gθ̂i(X
∗
it)− Egθ(X

∗
it)|θ=θ̂i

] = Op(Tdn). Denote G̃iδn =

{gθ − E[gθ(X
∗
i1)] : ||θ|| < δn}.

To apply Proposition C.1. of Kato et al. (2012), we verify the conditions for

G̃iδ. First,it is pointwise measurable, and is bounded by 4M . Now we provide

an upper bound of the covering number for the class G̃iδ. It can be show that

N(4Mε, G̃i,δn , L1(Q)) ≤
(
A
ε

)v
, where A ≥ 5e and v ≥ 1 are independent of i and

n, for every 0 < ε < 1 and every probability measure Q. Setting q = [T c] and

using Lemma C.1 of Kato et al. (2012), we have supg∈G̃i,δn Var{
∑q

t=1 g(X∗it)/
√
q} ≤

const. × δ
1/2
n . Using the condition on the dependence of the data, we obtain the

conclusion.

Lemma 11. Assume conditions A2–A5 and B1–B2 hold. We have max1≤i≤n ||θ̂i −

θi0|| = Op

(√
logn
T

)
for β-mixing data.

Proof. The proof is similar to that of Lemma 8, except that instead of using Ho-

effding inequality and Talagrand inequality, we apply a Bernstein inequality and

Talagrand inequality. Setting c to be sufficiently small, we complete the proof.

Proof of Theorem 5.2. The proof of the consistency result is similar to that of The-

orem 1.2 and is an application of Lemma 9 for β-mixing data. As for the proof of

the weak convergence, the only difference compared with that of Theorem 3.2 is the

application of Lemmas 10–11 to obtain equation (A12).
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Consistency and Asymptotic Normality of β̂FE under Sequen-

tial Asymptotics

The argument is the same as that of the proof of the consistency part of Theorem

5.1. As for the weak convergence, all arguments are similar to the proof of the results

for i.i.d. data, except that instead of using (A.10)–(A.11) of Kato et al. (2012), we

use their (A.17)–(A.18) to show that terms (A15) and (A16) are negligible.

Consistency and Asymptotic Normality of β̂FE under Joint

Asymptotics

The proof of Theorem 6.2 is given in Theorem 5.1 of Kato et al. (2012)
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Appendix C

Appendix C1: Proofs of the Theorems in Chapter

3

Proof of Theorem 1.1. For the Swamy type test

Ŝ =
n∑
i=1

(
β̂i − β̂

)>( V̂i
T

)−1 (
β̂i − β̂

)
=

n∑
i=1

(√
T (β̂i − β)−

√
T (β̂ − β)

)>
V̂ −1
i

(√
T (β̂i − β)−

√
T (β̂ − β)

)
=

n∑
i=1

√
T (β̂i − β)>V̂ −1

i

√
T (β̂i − β)> − 2

√
T (β̂ − β)>V̂ −1

i

√
T (β̂i − β)

+
√
T (β̂ − β)V̂ −1

i

√
T (β̂ − β)

=
n∑
i=1

√
T (β̂i − β)>V̂ −1

i

√
T (β̂i − β)>

− 2

( n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i (β̂i − β)

> n∑
i=1

V̂ −1
i

√
T (β̂i − β)

+

( n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i (β̂i − β)

> n∑
i=1

V̂ −1
i

( n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i (β̂i − β)


=

n∑
i=1

√
T (β̂i − β)>V̂ −1

i

√
T (β̂i − β)>

−

[
n∑
i=1

V̂ −1
i (β̂i − β)

]>( n∑
i=1

V̂ −1
i

)−1 n∑
i=1

V̂ −1
i

√
T (β̂i − β)

d→
n∑
i=1

Z>i V
−1
i Zi −

n∑
i=1

Z>i V
−1
i

(
n∑
i=1

V −1
i

)−1 n∑
i=1

V −1
i Zi,

where Zi are i.i.d. normal distributions with mean zero and variance Vi. The fact

that
√
T (β̂i − β)

d→ Zi is by the standard argument as in Koenker (2005) for i.i.d.

data. Thus, the asymptotic distribution of Ŝ is χ2(k(n − 1)) for fixed n and T
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tending to infinity. Intuitively, the degree of freedom of the χ2 distribution should

be kn instead of k(n − 1). However, because we are using β̂ for Ŝ rather than β,

the true value of the slope parameter, k degrees of freedom is lost. Therefore the

degree of freedom of the χ2 distribution is k(n− 1). For more details of the Swamy

type test, see pp. 149–153 and 323–324 of Rao (1965).

Proof of Theorem 1.2. Now we consider the standardized Swamy test,

∆̂ =
√
n

1
n
Ŝ−k√
2k

, for (T, n)seq → ∞. To show the result, we first fix n. From the

proof of Theorem 1.1, we know that for fixed n, Ŝ
d→ χ2(k(n − 1)) as T → ∞. By

continuous mapping theorem,
√
n

1
n
Ŝ−k√
2k

d→
√
n

1
n
χ2(k(n−1))−k√

2k
as T tends to infinity.

Now we work with
√
n

1
n
χ2(k(n−1))−k√

2k
and derive the asymptotic distribution as

n→∞. To this end, we transform
√
n

1
n
χ2(k(n−1))−k√

2k
as follows.

√
n

1
n
χ2(k(n− 1))− k

√
2k

=
χ2(k(n− 1))− nk√

2nk

=
χ2(k(n− 1))− k(n− 1)− k√

2(n− 1)k

√
2(n− 1)k√

2nk

=
χ2(k(n− 1))− k(n− 1)√

2(n− 1)k

√
2(n− 1)k√

2nk
− k√

2(n− 1)k

√
2(n− 1)k√

2nk
.

Using the fact that χ2(ν)−ν√
2ν

d→ N(0, 1) as ν →∞, we have

√
n

1
n
χ2(k(n− 1))− k

√
2k

d→ N(0, 1),

as n→∞. Hence, we conclude that ∆̂
d→ N(0, 1) as (T, n)seq →∞.

Now we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Using equality (A10), Lemmas 7 and 8, we have for each i,

β̂i − βi0 =− ΞΓ̃−1
i SiT (θi0) +Op(dn) +Op

(
1

T

)
+ ΞΓ̃−1

i Op((θ̂i − θi0)2)

=− ΞΓ̃−1
i SiT (θi0) +Op (dn)

Note that the remainder term Op (dn) depends on n only. So it is a uniform version

of a Bahadur representation.

Let V̂i = Ξ
̂̃
V iΞ

> and note that V̂i = Vi+Op

(
T−1/2h

−1/2
n

)
. Now we rewrite 1√

n
Ŝ.

1√
n
Ŝ =

1√
n

n∑
i=1

(
β̂i − β̂

)>( V̂i
T

)−1 (
β̂i − β̂

)

=
1√
n

n∑
i=1

β̂>i

(
V̂i
T

)−1

β̂i

− 1√
n

 n∑
i=1

(
V̂i
T

)−1

β̂i

> n∑
i=1

(
V̂i
T

)−1
−1 n∑

i=1

(
V̂i
T

)−1

β̂i


=

1√
n

n∑
i=1

(
β̂i − β0

)>( V̂i
T

)−1 (
β̂i − β0

)

− 1√
n

 n∑
i=1

(
V̂i
T

)−1 (
β̂i − β0

)> n∑
i=1

(
V̂i
T

)−1
−1 n∑

i=1

(
V̂i
T

)−1 (
β̂i − β0

)
For the first term, we have

1√
n

n∑
i=1

(
β̂i − β0

)>( V̂i
T

)−1 (
β̂i − β0

)
=

1√
n

n∑
i=1

(ΞΓ̃−1
i

√
TSiT (θi0) +Op(

√
Tdn))>

(
V −1
i +Op

(
T−1/2h−1/2

n

))
× (ΞΓ̃−1

i

√
TSiT (θi0) +Op(

√
Tdn))

=
1√
n

n∑
i=1

(ΞΓ̃−1
i

√
TSiT (θi0))>V −1

i (ΞΓ̃−1
i

√
TSiT (θi0)) +Op

(√
nTdn ∨ T−1/2h−1/2

n

)
.

Because
√
n(logn)1/4

√
| log δn|

T 1/4 → 0, the second term in the line above is op(1).
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Regarding the second term, we have

1√
n

∑n
i=1

(
V −1
i +Op

(
T−1/2h

−1/2
n

))(
ΞΓ̃−1

i

√
TSiT (θi0) +Op(

√
Tdn)

)
√
n

>

×

∑n
i=1

(
V −1
i +Op

(
T−1/2h

−1/2
n

))
n

−1

×

∑n
i=1

(
V −1
i +Op

(
T−1/2h

−1/2
n

))(
ΞΓ̃−1

i

√
TSiT (θi0) +Op(

√
Tdn)

)
√
n


=

1√
n

(∑n
i=1 V

−1
i ΞΓ̃−1

i

√
TSiT (θi0)√

n
+Op

(
T−1/2h−1/2

n ∨
√
nTdn

))>

×

( 1

n

n∑
i=1

V −1
i

)−1

+Op

(
T−1/2h−1/2

n

)
×

(∑n
i=1 V

−1
i ΞΓ̃−1

i

√
TSiT (θi0)√

n
+Op

(
T−1/2h−1/2

n ∨
√
nTdn

))

=
1√
n

(∑n
i=1 V

−1
i ΞΓ̃−1

i

√
TSiT (θi0)√

n

)>(
1

n

n∑
i=1

V −1
i

)−1

×

(∑n
i=1 V

−1
i ΞΓ̃−1

i

√
TSiT (θi0)√

n

)
+Op

(
T−1/2h−1/2

n ∨
√
Tdn

)
=Op

(
1√
n
∨ T−1/2h−1/2

n ∨
√
Tdn

)

Therefore, the second term is op(1) since
√
n(logn)1/4

√
| log δn|

T 1/4 → 0.

Consequently we can write

1√
n
Ŝ =

1√
n

n∑
i=1

(ΞΓ̃−1
i

√
TSiT (θi0))>V −1

i (ΞΓ̃−1
i

√
TSiT (θi0)) + op (1)

:=
1√
n

n∑
i=1

ẑi + op(1).
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Thus, for the standardized Swamy test, in the case when (T, n)→∞,

∆̂ : =
√
n

1
n
Ŝ − k
√

2k
=

1√
n
Ŝ −
√
nk

√
2k

=

1√
n

∑n
i=1 ẑi + op(1)−

√
nk

√
2k

=
1√
n

n∑
i=1

(
ẑi − k√

2k

)
+ op(1).

For some small positive constant ε̄, we have E|ẑi|2+ε̄ < K̄ <∞ by condition A2.

Also, Eẑi = k for all i. Therefore, by Lindberg-Feller Central Limit Theorem, we

have

∆̂
d→ N(0, ĝ2),

where ĝ2 := limn→∞
1
n

∑n
i=1

(
Var(ẑi)

2k

)
. Finally, it just remains to show that ĝ2 = 1,

and the proof is complete.

Since Var(ẑi) = E(ẑi)
2 − k2, we need to verify that E(ẑi)

2 = 2k + k2 + o(1)

uniformly across i as T → ∞. Let Zit = V
−1/2
i ΞΓ̃−1

i ψτ (yit −X>it θi0)Xit, we have

EZit = 0, and EZitZ
>
it = I. Let Zitl be the lth element of Zit. Since Zitl is linear

combination of the vector Xit, and ψτ (·) is a uniformly bounded function, it follows

that EZ2
itlZ

2
itm and EZ4

itl are both uniformly bounded for any l and m. Note that we

do not have that Zit follows normal distribution. Consequently, the elements in each

vector Zit need not be independent, although they are uncorrelated. Nonetheless,
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Zit are independent across i and t by Condition A1. Now we compute E(ẑi)
2.

E(ẑi)
2 = T 2E[S>iT (θi0)Γ̃−1

i Ξ>V −1
i ΞΓ̃−1

i SiT (θi0)]2

=
1

T 2
E

[
T∑
t=1

ψτ (yit −X>it θi0)X>it Γ̃
−1
i Ξ>V

−1/2
i

T∑
t=1

V
−1/2
i ΞΓ̃−1

i ψτ (yit −X>it θi0)Xit

]2

=
1

T 2
E

( T∑
t=1

Zit

)> T∑
t=1

Zit

2

=
1

T 2
E

 k∑
l=1

(
T∑
t=1

Zitl

)2
2

=
1

T 2

k∑
l=1

E

(
T∑
t=1

Zitl

)4

+
2

T 2

∑
m<l

E

(
T∑
t=1

Zitl

)2( T∑
t=1

Zitm

)2

=
1

T 2

k∑
l=1

(
T∑
t=1

EZ4
itl + 3T (T − 1)EZ2

i1lEZ
2
i1l

)
(A17)

+
2

T 2

∑
m<l

E

(
T∑
t=1

Z2
itl + 2

∑
s<t

ZitlZisl

)(
T∑
t=1

Z2
itm + 2

∑
s<t

ZitmZism

)

=3k +
1

T

k∑
l=1

(EZ4
itl − 3) +

2

T 2

∑
m<l

E

(
T∑
t=1

Z2
itl

T∑
t=1

Z2
itm + 2

∑
s<t

ZitlZisl

T∑
t=1

Z2
itm

+2
∑
s<t

ZitmZism

T∑
t=1

Z2
itl + 4

∑
s<t

ZitlZisl
∑
s<t

ZitmZism

)

Line (A17) follows since the expectations of all other terms from the expansion of

the fourth order polynomial are zeros. And the third term equals

2

T 2

∑
m<l

E

(
T∑
t=1

T∑
s=1

Z2
itlZ

2
ism + 2

∑
s<t

T∑
r=1

ZitlZislZ
2
irm + 2

∑
s<t

T∑
r=1

ZitmZismZ
2
irl

+4
∑
s<t

∑
r<q

ZitlZislZirmZiqm

)

=
2

T 2

∑
m<l

(
T∑
t=1

EZ2
itlZ

2
itm + T (T − 1) + 4

∑
s<t

EZitlZitmZislZism

)
(A18)

=k(k − 1) +
2

T 2

∑
m<l

(
T∑
t=1

EZ2
itlZ

2
itm − T

)
(A19)

=k(k − 1) +O(1/T ).
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Equality (A18) follows because the second and the third terms in the parenthe-

ses in the line above are zeros. Equality (A19) follows since EZitlZitmZislZism =

EZitlZitmEZislZism = 0. Thus, E(ẑi)
2 = 3k+k(k−1)+O(1/T ) = 2k+k2 +O(1/T ).

Proof of Theorem 2.1. The proof is similar to that of Theorem 1.1. The only differ-

ence is how to get
√
T (β̂i − β)

d→ Zi. Indeed, instead of using the standard results

for i.i.d. data, we apply asymptotic results for stationary β-mixing data.

Proof of Theorem 2.2. The proof uses the proof of Theorem 2.1 and follows the

same argument as that of the proof of Theorem 1.2.

Proof of Theorem 2.3. The proof is similar to that of Theorem 1.3. Instead of ap-

plying Lemmas 7–8, we apply Lemmas 10–11 of Appendix B.

Appendix C2: the Definitions of the Variables in

the Dataset

The following is quoted from Footnote 15 of Galvao and Montes-Rojas (2010).

“MDR: market debt ratio = book value of (short-term plus long-term) debt (Com-

pustat items [9]+[34])/market value of assets (Compustat items [9]+[34]+[199]*[25]).

EBITTA: profitability: earnings before interest and taxes

(Compustat items [18]+[15]+[16]), as a proportion of total assets (Compustat item

[6]). MB: market to book ratio of assets: book liabilities plus market value of

equity (Compustat items [9]+[34]+[10]+[199]*[25]) divided by book value of total

assets (Compustat item [6]). DEPTA: depreciation (Compustat item [14]) as a

proportion of total assets (Compustat item [6]). LnTA: log of asset size, measured

in 1983 dollars (Compustat item (6)*1,000,000, deflated by the consumer price in-

dex. FATA: fixed asset proportion: property, plant, and equipment (Compustat
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item [8)]/total assets (Compustat Item [6]). RDDum: dummy variable equal to

one if firm did not report R&D expenses. RDTA: R&D expenses (Compustat item

(46)) as a proportion of total assets (Compustat item [6]).”
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