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ABSTRACT 

DC MICROGRID MODELING AND ENERGY 
STORAGE PLACEMENT TO ENHANCE 

SYSTEM STABILITY 
by  

Carl Benjamin Westerby 

 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of David Yu, PhD 

 
 

 The work of this thesis represents a joint venture between the University 

of Wisconsin-Milwaukee and the University of Wisconsin-Madison. A DC 

microgrid is selected for the efficiency benefits, lack of reactive power in the 

system, and ease of connecting to an AC grid. The system modeling relies on 

physical parameters and industry standard methods for the estimation of loads 

and lines. An example model is created for the University of Wisconsin - 

Milwaukee’s Campus. Due to the high penetration of renewable energy sources 

in the example model, system stability is a concern. To help mitigate stability 

issues, analysis is performed to have the ideal placement of energy storage. The 

analysis relies heavily on the deep properties of the system such as Eigenvalues 

and system controllability. Energy storage placement is verified and evaluated 

with model simulations.  
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Dedicated to Talia, Jane, and Bryan. 

“Courage is not simply one of the virtues, but the form of every virtue at the 

testing point.”  

-C. S. Lewis 

With enough voltage everything conducts electricity. 
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1 Introduction 

With a recent push for clean and renewable sources of energy, the 

popularity of microgrids has increased significantly. [1]  Microgrids can provide a 

great option for integrating localized renewable generation. Power quality and 

reliability can be insured with energy storage and generators to support loads 

through the loss of a renewable source. While the majority of microgrid research 

is focused on alternating current (AC) systems, direct current (DC) offers many 

advantages. 

For instance, the system efficiency is boosted by reducing the losses 

created by conversion from DC to AC. Since the voltage is constant, the system 

does not have reactive power and is therefore simpler. Also, when connecting to 

an AC utility there is no need to worry about synchronization, since the microgrid 

does not have a frequency. While there are many advantages of DC microgrids, 

stability is concern due to the high penetration and variability of renewable 

resources. The loss of power for even small periods can be an incredible 

nuisance for the consumer. Frequent power outages disrupt customer activity but 

can be particularly troublesome on a college campus, as outages may destroy 

research efforts. In order to prevent stability issues, energy storage is 

incorporated into the microgrid. Energy storage, such as batteries, work by 

injecting current into the system during periods when renewable resources are 

unavailable. Energy storage is not free, so optimal placement of storage can 

reduce system installation costs. 
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This thesis documents techniques for creating a dynamic system model. 

The process relies heavily on physical information such as estimated cable 

distances and building footprints. A Dual-Active Bridge (DAB) DC-DC converter 

technology is used to connect sources and loads to the grid. This converter 

topology is included in the system modeling. The final focus of this paper is 

analyzing the system to achieve optimal placement of energy storage. The 

methodology relies on the properties of the state space model for the system. 

The system’s controllability is considered in order to maintain the voltage. 

Additionally, system eigenvalues are used to help determine the placement of 

energy storage. The results of the analysis are evaluated using simulations of the 

system model.
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The GMD for a single conductor, in a multi-conductor cable, can be 

approximated as shown in equation (2.4) where D1N represents the distance from 

conductor 1 to the Nth conductor at the same voltage level. The GMS is the 

geometric mean distance of a single conductor. 

૚ࡰࡹࡳ  (2.4)  = ሼ(ࡿࡹࡳ)(ࡰ૚૛)(ࡰ૚૜) …  ࡺ/ሽ૚(ࡺ૚ࡰ)

The GMS of a single circular conductor is calculated using (2.5), where r is the 

radius of a conductor. 

ࡿࡹࡳ  (2.5) =  ૙.૛૞ [2]ିࢋ࢘
The GMD for the multi-conductor cables is the geometric mean of the GMD of all 

conductors, as shown in (2.6). 

ࢋ࢒࢈ࢇࢉࡰࡹࡳ   (2.6) = ሼ(ࡰࡹࡳ૚)(ࡰࡹࡳ૛)(ࡰࡹࡳ૜) … ሽ૚(ࡺࡰࡹࡳ) ൗࡺ  [2]  

The GMR for a multiconductor cable is similar to the GMD. Except that it is 

the distance to cables at different potentials.  Equation (2.7) illustrates this 

relationship, where D1N represents the distance from the first cable to the Nth 

cable at a different voltage potential. 

૚ࡾࡹࡳ  (2.7) = ሼ(ࡰ૚૚)(ࡰ૚૛) … ሽ૚(ࡺ૚ࡰ) ⁄ࡺ  [2]  

The composite GMR is the geometric mean of the individual conductors’ GMR. 

ࢋ࢒࢈ࢇࢉࡾࡹࡳ  (2.8) = ሼ(ࡾࡹࡳ૚)(ࡾࡹࡳ૛) … ሽ૚(ࡺࡾࡹࡳ) ⁄ࡺ  

The interconnection cables are sized using the National Electrical Code 

(NEC). Table 2.1 gives ampacity limitations for different sizes of conductors. By 
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Figure 5.3 shows the estimated energy usage for various voltages. The 400 VDC 

system uses less than 90% of the energy in a traditional AC system.[9]  For all of 

these benefits, the system voltage level will be 380 V. 

In order to complete the model, system parameters need to be calculated 

from the physical dimensions. The areas for the buildings are estimated from 

satellite images; the solar capacity and load estimate are created using the 

square footage and techniques described in previous sections. 

 Name 
Area 
(ft2)  Stories

Total Area 
(ft2) 

Load 
(kW)  Solar(kW) Bus # 

Physics Building 1  12500 4 50000 245  90 11

Physics Building 2  7500 1 7500 36.75  54 11

EMS  5000 11 55000 269.5  36 12

EMS small  7500 3 22500 110.25  54 12

Kunkle Center  28125 3 84375 413.4375  202.5 11

UWM Union  75000 3 225000 1102.5  540 10

Vogel and Curitn  10000 9 90000 441  72 9

Mitchell Hall  22500 3 67500 330.75  162 9

Mellencamp Hall  10000 2 20000 98  72 9

Art Building  30000 3 90000 441  216 9

Pearse and Garland Hall  15000 4 60000 294  108 8

Johnston and Holton Hall  10000 3 30000 147  72 2

Sabin Hall  10000 4 40000 196  72 6

Klotsche  20000 2 40000 196  144 6

Pavillion  30000 2 60000 294  216 6

Library  80000 2 160000 784  576 3

Ender Hall  10000 11 110000 539  72 3

Norris Health Center  2500 2 5000 24.5  18 3

Chapman Hall  625 4 2500 12.25  4.5 4

Architechure Building  7500 4 30000 147  54 5

Engleman and Cuningham Hall  28125 3 84375 413.4375  202.5 5

Lapham Hall  7500 5 37500 183.75  54 7

Lubar Hall  25000 5 125000 612.5  180 7

Chemistry Building  11250 4 45000 220.5  81 12

Table 5.1 Summary of Loading and Solar Capacity per Building 
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Table 5.2 shows the solar capacity and load per bus. The resistance is calculated 

using load in kW and the bus voltage of 380 V. 

Bus  Bus Load (kW)  Rload (ohms)  Generation (kW)  # of Converters  C (F) 

1  Line Parasitics  1000  3000  15  0.015 

2  147  0.982  147  7  0.007 

3  1347.5  0.107  650  33  0.033 

4  12.25  11.788  0  1  0.001 

5  560.44  0.258  250  13  0.013 

6  686  0.210  420  21  0.021 

7  796.25  0.181  230  12  0.012 

8  294  0.491  100  5  0.005 

9  1310.75  0.110  510  26  0.026 

10  1102.5  0.131  540  27  0.027 

11  695.2  0.208  34  2  0.002 

12  600.25  0.241  160  8  0.008 

Table 5.2 Bus Summary of Loading and Solar Capacity 

The capacitance is calculated using the number of converters and an individual 

converter capacitance of 1 mF. 

The distances between busses are measured and used to calculate cable 

distances. The cables are sized for 3 MW since the cables are radially fed, with a 

near equal split at Bus 2. In order to meet the ampacity requirements a quantity 

of 12, 2000 kcmil cables are used. The cables are spaced in a duct bank using 

the NEC rules for percent conduit fill and conduit spacing.[3]  The layout is shown 

in Figure 5.4. 
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  D1, D2, D5, D6 D3, D4 D7, D8, D9, D10 D11, D12 GMR

Cond1≈ 
Cond2 

6*3 6*9 5.25*12 5.41*12 
40.64

18 54 63 64.92 

Table 5.4 Sample GMR Calculation for Conductors 1 and 2 

Table 5.5 tabulates the individual conductor GMR and GMD. It also shows the 

composite values for the entire cable. The cable composite is calculated as the 

geometric mean of the individual conductors. 

   1 & 2 3 & 4 5 & 6 7 & 8 9 & 10 11 & 12 
Cable 

Composite
GMD 23.11 20.21 16.99 22.22 23.11 20.21 20.86 
GMR 40.64 33.67 27.33 32.82 40.64 33.67 34.48 

Table 5.5 Composite Cable GMD and GMR 

The inductance per foot is calculated using equation (2.3). Table 5.6 details the 

calculation. Using the result of Table 5.6 and the line distances measured from 

the map, the interconnection cable distances can be calculated. 

 
GMD GMR μo/2π ft/m L/d=(μo/2π)ln(GMD/GMR)/(ft/m)
20.86 34.48 2.00E-07 3.28 -3.06E-08 H/ft 

Table 5.6 Inductance per Foot 

 The resistance per foot is calculated using the individual conductor 

resistance and number of conductors. In this case the resistance per foot is 

calculated using an ohmic density of copper equal to 10.371 and 2 million circular 

mils of the 2,000 MCM cable. With 12 conductors, the value is 0.864 micro-ohms 

per foot. Table 5.7 summarizes the cable inductance and resistances for the 12 

bus system. 
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Name Distance (feet) R (Ω) L (H) 
Bus 1-2 3000 0.0051855 9.38E-05 
Bus 2-3 500 0.00086425 1.56E-05 
Bus 2-6 500 0.00086425 1.56E-05 
Bus 3-4 625 0.001080313 1.95E-05 
Bus 4-5 300 0.00051855 9.38E-06 
Bus 5-7 600 0.0010371 1.88E-05 
Bus 2-8 300 0.00051855 9.38E-06 
Bus 9-8 600 0.0010371 1.88E-05 
Bus 10-9 1100 0.00190135 3.44E-05 
Bus 11-10 1600 0.0027656 5.00E-05 
Bus 12-11 600 0.0010371 1.88E-05 

Table 5.7 System Impedances 

Using the system parameters of line inductance, line resistance, node 

resistance (load), and node capacitance, a state space model of the system is 

created using equation (4.1). A 23 x 23 Ap matrix is created with a differential 

equation for each node voltage (x12) and each line current (x11). The voltage 

differential equation can be defined solely using the states, with the exception of 

the current injection at each bus. The current injection is chosen to be the system 

input and results in a Bp matrix which is highly sparse. It only has values along 

the diagonal that are equal to 1 divided by the capacitance at that bus. The 

Model is similar to Figure 4.4 but much larger.
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6 System Analysis 

System stability is important, because the owner of the microgrid does not 

make any money if the microgrid is down. Prolonged outages also create angry 

customers. With a high penetration of renewable energy, system voltages and 

currenets can drop quickly unless corrective action is taken. One form of 

corrective action is adding energy storge. During times when renewables 

generate excess power the batteries store the energy, and when the wind stops 

or sun is blocked, the batteries output power to the microgrid. Energy storage is 

not cheap, and in order to achieve the maximum system impact for the lowest 

cost, care must be taken to place energy storage in the correct location.  

In order to analyze the system, the differential equations that comprise the 

state space model are borken into two parts as in equation (6.1).  

ሶ࢞  (6.1) (࢚) = ሿ(࢚)࢞ሾ࢖࡭ +  ሿ(࢚)࢛ሾ࢖࡮
The first part of the equation is the system Matrix (Ap) and it relates the current 

values of the states to the differential change in the states. This type of analysis 

deals with system dynamics in order to see which nodes are the most unstable. 

The second part of the analysis is related to how the input (u) affects changes to 

the states (Bp). This type of analysis will show which node gives the best bang for 

the buck in terms of current injection to change in node voltages. 

 A major method of analyzing the system matrix (Ap) is to look at the 

eigenvalues. The system eigenvalues derive from the fact the system is 
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damping (under 0.05), and are the best candinates for battery placement. 

Another parameter to consider is system speed. 

 The eigenvalues each have a natural frequency. The natural frequency 

can be calculated using equation (6.4). 

࢔࣓  (6.4) = ૛ࢇ√ +  ૛࢈

The speed of the system eigenvlaues is shown in Figure 6.3. 

 

Figure 6.3 System Eigenvalue Natural Frequency 

The voltages with the lowest speed will be more dominant modes, because it will 

take longer for their oscilations to cease. Of the busses that are the most lightly 

damped, Bus 7 and Bus 8 are the slowest making them likely candiates for the 

most unsatble bus. 

In order to consider how the input affects the change of states, the system 

must be converted to modal coordinates. Equations (6.5), (6.6), and (6.7) give 

the formulas for the change of basis, using the eigenvectors (V) as the basis 

vectors. 
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 Based on the analysis in this section, Bus 4, Bus 8, and Bus 2 are the best 

candidates for battery placement. Those busses have the highest index for the 

Bm matrix, thus giving the best voltage change per current injected and will help 

maintain controlability. This set of busses also fall into the category of being 

lightly damped (<0.05) meaning they will respond agressively to distrubances. If 

energy storage placement is limited to 2 busses, the analysis indicates that the 

combination of bus 4 and 8 will yield the most stable results. This placement will 

workout nicely from a geographical stand point as well since bus 4 and bus 8 are 

on separate radial feeders. If the entire system is covered by clouds, injecting 

current at two busses that are close together would cause the voltage at far ends 

of the system to drop father. So by placing energy storage on both radial feeders, 

voltage drop issues will be mitigated. 
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8 Conclusion 

The driving factors for the research presented in this thesis are the 

potential energy efficiency benefits of a DC Microgrid, and the importance of 

maintaining system stability. The loss of a system can be dangerous and at the 

very least is costly to the utility that owns it. Frequent outages will frustrate 

customers. Optimal placement of energy storage will help reduce costs and 

ensure that the system is operational for longer. In order to prevent outages 

analysis needs to be performed on system models. Creating system models can 

be difficult early in a project, but is crucial for proper planning. 

This paper uses a very practical approach, grounded in the physical 

system layout, to model a DC microgrid. Building square footage is used to 

estimate loads and PV source sizes. System interconnection cables are 

estimated using distances from overhead maps. The system is designed with 

large quantities of renewable energy from solar on the roofs of buildings, to off-

shore wind turbines in Lake Michigan. In order for such a system to be 

successful, energy storage measures will need to be added in order to maintain 

system stability.   

The system analysis takes a look at stability using the system model 

created. The analysis focuses on the eigenvalues for node stability as well as the 

input matrix for the locations which have the highest impact on bus voltages. The 

eigenvalue analysis uses the damping and speed of the eigenvalues to 

determine busses that are most easily changed by disturbances. The input matrix 
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analysis looks at the input matrix (Bm) converted to modal coordinates with all the 

modes of the system decoupled. The method of indexing the input matrix sums 

the magnitude of the columns and weights the sum according to the number of 

non-zero elements. The goal of analyzing the Bm matrix is to both identify busses 

where the amount of current injection has the greatest effect on the modes of the 

system and can affect as many modes as is possible.   

In a microgrid with a high penetration of renewable energy, fluctuations in 

sources are expected in addition to stepped load changes that all electrical 

systems experience. The analysis is evaluated using simulations of a drop in PV 

irradiance, 5% stepped load increase, and 5% step load decrease. In each of the 

simulations 3,000 kW is placed at 2 busses, and the results of every two bus 

combination are tabulated. Overall, the system simulations confirm the 

predictions of the system analysis. The tools used in the analysis and modeling 

sections are ways that designers can create better models, and the methods 

should help with the planning of future projects.
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