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ABSTRACT 

A STUDY OF NONLINEAR APPROACHES TO PARALLEL 
MAGNETIC RESONANCE IMAGING 

 

by 

Yuchou Chang 

 

The University of Wisconsin-Milwaukee, 2012  

Under the Supervision of Professor Jun Zhang 

 

 

Magnetic resonance imaging (MRI) has revolutionized radiology in the past 

four decades by its ability to visualize not only the detailed anatomical 

structures, but also function and metabolism information. A major limitation 

with MRI is its low imaging speed, which makes it difficult to image the 

moving objects. Parallel MRI (pMRI) is an emerging technique to increase 

the speed of MRI. It acquires the MRI data from multiple coils 

simultaneously such that fast imaging can be achieved by reducing the 

amount of data acquired in each coil. Several methods have developed to 

reconstruct the original image using the reduced data from multiple coils 
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based on their distinct spatial sensitivities. Among the existing methods, 

Sensitivity Encoding (SENSE) and GeneRally Autocalibrating Partially 

Parallel Acquisition (GRAPPA) are commercially used reconstruction 

methods for parallel MRI. Both methods use linear approaches for image 

reconstruction. GRAPPA is known to outperform SENSE because no coil 

sensitivities are needed in reconstruction. However, GRAPPA can only 

accelerate the speed by a factor of 2-3. The objective of this dissertation is to 

develop novel techniques to significantly improve the acceleration factor 

upon the existing GRAPPA methods. Motivated by the success of recent 

study in our group which has demonstrated the benefit of nonlinear 

approaches for SENSE, in this dissertation, nonlinear approaches are studied 

for GRAPPA. Based on the fact that GRAPPA needs a calibration step 

before reconstruction, nonlinear models are investigated in both calibration 

and reconstruction using a kernel method widely used in machine learning. 

In addition, compressed sensing (CS), a nonlinear optimization technique 

will also be incorporated for even higher accelerations. In order to reduce the 

computation time, a nonlinear approach is proposed to reduce the effective 

number of coils in reconstruction. The imaging speed is expected to improve 

by a factor of 4-6 using the proposed nonlinear techniques. These new 
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techniques will find many applications in accurate brain imaging, dynamic 

cardiac imaging, functional imaging, and so forth. 
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1. Introduction  

 

1.1 Magnetic Resonance Imaging 

1.1.1 General Introduction 

Since the first successful nuclear magnetic resonance (NMR) experiments were 

performed in 1946, many scientists over the next more than a half-century developed MR 

Imaging into the technology that we now know today. Magnetic Resonance Imaging 

(MRI) has increasingly become one of the preferred imaging modalities in modern times 

to examine the structures inside the body, which enables physicians to visualize 

differences among soft tissue with incredible acuity [1].  

MRI provides an imaging technique which is practically non-invasive and without 

any ionizing radiation. In comparison with other imaging modalities including X-ray, 

ultrasound, or computed tomography (CT) scan, MRI provides more information about 

structures inside the body in many cases. Unlike other imaging techniques, MRI uses a 

strong magnetic field and radio waves to create computerized images of the body that 

include head, chest, blood vessels, abdomen, pelvis, bones, joints, spine, and so forth. A 

commercial MRI scanner is demonstrated in Figure 1. It is used to identify problems such 

as tumors, bleeding, injury, blood vessel diseases, or infection. Furthermore, contrast 

agents may be used during MRI to show abnormal tissue more clearly. 



2 

 

 

 

 

Figure 1. Demonstration of a MRI scanner (picture acquired from GE MRI scanner, GE 

Healthcare, Waukesha, Wisconsin) 

1.1.2 K-Space and Image Reconstruction 

The readout MR signals that include radio frequency (RF) waves with different 

amplitudes, frequencies, and phases contain spatial information of the structures inside 

the body. These MR signals are digitized, and then written into a data matrix called k-

space, which is the 2D or 3D Fourier transform of the MR image measured. An inverse 

Fourier transform is applied on k-space to produce an image [2, 3], as shown in Figure 2. 

In k-space, kx-coordinates represent frequency-encoding (FE) direction (horizontal 

direction), and ky-coordinates denote phase-encoding (PE) direction (vertical direction). 

Low frequency signals locate near the center of k-space, while high frequency signals 

locate near the periphery of k-space. As shown in Figure 2, after two square windows 
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with different sizes are applied on k-space to truncate the data, the corresponding 

reconstructed images display different spatial resolutions. The reconstructed image with a 

smaller square window for data truncation is blurred due to loss of high frequency signals 

near the periphery of k-space. After incorporating more high frequency signals with a 

larger square window, resolution of the reconstructed image is improved. 

 

Figure 2. A k-space data to an image requires using a 2D inverse Fourier transform. k-

space contains both low frequency signals and high frequency signals. 
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Furthermore, the differences in the spatial, temporal, and resolution of the MR images 

depend on how MR signals are mapped into the k-space. Three gradients:  slice selection 

(Gz), frequency encoding (Gx), and phase encoding (Gy) are used to spatially encode the 

signals in MRI. Each gradient is characterized by its strength (magnetic field variation for 

the same unit of distance), duration of time, and direction. The net strength and duration 

of the frequency-encoding gradient Gx and phase-encoding gradient Gy decide the 

locations (kx and ky coordinates) of data on k-space: 

1) A low-amplitude or short-duration gradient encodes low frequency information; 

this kind of information is generally mapped at round the center of k-space. 

2) A high-amplitude of long-duration gradient encodes high frequency information; 

this kind of information is mapped to the periphery of k-space. 

As shown in Figure 2, the greater the net strength of the phase-encoding gradient Gy (or 

the longer the gradient is on), the farther from the k-space center the data belong, in the 

upper direction if the gradient is positive or in the lower direction if the gradient is 

negative. As the duration of phase-encoding gradient is most often constant, the strength 

of the phase-encoding gradient governs the location on the vertical axis (ky-coordinate). 

On the other hand, the longer the frequency-encoding gradient Gx is on (or the greater the 

net strength of the gradient is), the farther from the k-space center the data belong, in the 

right direction if the gradient is positive or in the left direction if the gradient is negative. 

As the strength of the frequency-encoding gradient is most often constant, the duration of 

the frequency-encoding gradient governs the location on the horizontal axis (kx-

coordinate). 
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As we can see, after the entire k-space is collected, inverse Fourier transform can be 

used to reconstruct the image. Typically, k-space is filled with raw data during the scan, 

usually one phase-encoding line per TR (repetition time). Between each repetition, there 

is a change in phase-encoding-gradient strength, corresponding to a change in ky-

coordinate. This allows filling of all the lines of k-space from top to bottom. Therefore, 

more PE lines are filled, more scanning time is consumed. Full k-space reconstruction 

can achieve the best quality due to all signals have been sampled and filled on the k-space. 

Considering the scanning time consumed, some researchers applied partial k-space 

reconstruction that only undersamples a part of k-space signals to reconstruct the image. 

Furthermore, MR image reconstruction is ill-posed as an inverse problem [71], so that 

quality of reconstructed images would be deteriorated. In order to evaluate reconstruction 

performance, image quality can be measured qualitatively and quantitatively, which will 

be presented in the next sub-section. 

1.1.3 Image Quality 

In MRI, there are some issues on image quality. In this section, we will present the 

concepts of spatial resolution, noise, and artifacts. These measures will be used to 

evaluate the reconstruction quality in comparison with the proposed methods and existing 

methods in the dissertation.  

Spatial resolution corresponds to the size of the smallest detectable detail. The 

smaller the voxels are, the higher the spatial resolution will be. Spatial resolution that 

depends on the properties of the imaging system generally quantifies how close lines can 

be to each other and still be visibly resolved in content of the MR image. As shown in 
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Figure 2, different resolutions of the reconstructed images are compared and details are 

difficult to be resolved in the low resolution image. 

Noise presents irregular patterns on the MR image, whose random variations in signal 

degrade image quality. The sources of MR image noise are very complex that depend on 

some factors including MR scanner specifications, tissue characteristics, coil design, 

pulse sequence design, and so forth. The signal-to-noise ratio (SNR) that is equivalent to 

the ratio of the signal power over the noise power is usually used for measuring noise. 

Furthermore, g-factor was also used for reconstruction evaluation and its details can be 

seen in the content of the dissertation. 

Artifacts often deteriorate MR Images. Similar to noise, there are many sources of 

artifacts on MR images, which can be classified into image reconstruction-related 

artifacts, system-related artifacts, physiology-related artifacts, and so forth. In this 

dissertation, artifacts are mainly originated from image reconstruction-related artifacts 

due to limitations intrinsic to the reconstruction algorithm. For example, aliasing artifacts 

appear by reducing the number of sampled signals on k-space, as shown in Figure 3 (b).  

1.2 Parallel MRI 

1.2.1 Parallel Imaging 

Imaging speed is one of the most important considerations in clinical MRI. In practical 

acquisition, frequency encoding generally takes only milliseconds, but phase encoding 

has to be done line by line with appropriate TR elapsing between each line acquisition, 

which is time consuming and it sometimes takes several minutes depending on the RF 

sequence. Therefore, as mentioned above, only a portion of k-space data is needed to be 
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acquired to accelerate imaging speed. Parallel MRI is a technique to increase the speed of 

MRI acquisition, which can accelerate image acquisition dramatically by extracting 

spatial information from an array of phased coils simultaneously. Each coil has distinct 

spatial sensitivities. Fast imaging is achieved by skipping a number of phase-encoding 

lines and the reduced data from multiple coils are then used to reconstruct the original 

image. Theories of parallel MRI were developed in late 1980’s but the practical 

implementation was carried out until the end of 1990’s. The technique has been widely 

used in clinical settings since 21st century and its improvement is still undergoing in 

recent years. 

The acquisition time depends on the procedure of filling up the k-space. One way to 

accelerate this phase encoding step is to reduce the number of phase encoding lines by 

the acceleration factor R that increases the distance of equidistantly sampled k-space lines. 

In image space, this kind of undersampling the k-space generates a reduced field of view 

(FOV) in phase encoding direction associated with fold over artifacts in the coil images 

presented in Figure 3. 

In parallel MRI, undersampling acquisition requires multiple coils to cover the entire 

FOV. A basic idea of parallel MRI is the following: acquire reduced FOV covering a 

portion of the entire image by each coil and combine the images from all the coils 

together to produce full-FOV image. Each element of a phased coil array is related to a 

separate independent receiver system. So, multiple images can be reconstructed for a 

given imaging.  Roemer et al explored how to combine these images for optimal SNR [4], 
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whose study shows that, in order to optimally reconstruct array coil images, we need to 

explicitly know the coil sensitivities at all pixel locations. 

 

Figure 3. (a) Fully sampled k-space provided by conventional acquisition, resulting in a 

full FOV image after inverse Fourier transform. (b) Undersampled acquisition (R=2), 

resulting in a reduced FOV (FOV/2) with aliasing artifacts. 

Image acquisition is accelerated by the acceleration factor (R-factor).  Theoretically, 

imaging time can be reduced by R-factor equal to the number of array coil elements [5]. 

However, decreased SNR and increased image non-uniformities limit acceleration factor 

well below the theoretical maximum R in actual reconstruction methods. Both image-

based reconstruction methods and k-space-based reconstruction methods in parallel MRI 

have this problem. 
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1.2.2 Image-Based Reconstruction Methods 

Reconstruction methods of parallel MRI can be categorized into two groups: image-based 

parallel imaging reconstruction and k-space-based parallel imaging reconstruction. For 

image-based parallel imaging reconstruction, the unaliasing process is done after the 

Fourier transform. To perform the image-based reconstruction, it is necessary to estimate 

the coil sensitivities. These estimates can be obtained from a separate calibration scan 

from calibration data, which is contained in the acquisition. The commonly used image-

based reconstruction methods contain: 

• SENSE [6] (SENSitivity Encoding); 

• PILS [7] (Partially Parallel Imaging with Localized Sensitivity). 

The typical one of image-based reconstruction methods is SENSE, for which the 

unaliasing process is done in the image domain. Figure 4 shows the SENSE 

reconstruction that is done in the image domain after inverse Fourier transforming the k-

space data. When the undersampled k-space data is inverse Fourier transformed to the 

image domain, the field of view (FOV) is reduced by the 1/R. This means that the same 

information is contained in a smaller area which leads to fold over type aliasing artifacts. 
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Figure 4. Work flow of SENSE reconstruction 

In the following equation, the signal in one pixel at a certain location (x, y) received 

in the Nth component coil image gN for the case where R=2. The g vector represents the 

complex coil image values including fold over artifacts at the chosen pixel. The matrix S 

denotes the sensitivities for each coil at the R=2. To generate the f vector, the inverse of 

the S matrix is calculated. This effectively combines the reference data of coil 

sensitivities and the sub-sampled target data.  

1 11 1

( , )
( , ) ( , )( , )        ( , )

2
                           

( , )       ( , )( , ) ( , )( , )
2 2

N NN N

f x yFOVg x y n x ys x y s x y

FOV FOVs x y s x yg x y n x yf x y

     −           = +           −  −       

M
M M

M M
                         (1) 

However, with this sequential processing, any inaccuracy in sensitivity estimation can 

be propagated to the reconstructed image. Furthermore, sensitivity maps are required to 

be explicitly estimated for reconstruction. 

1.2.3 K-Space-Based Reconstruction Methods 

In image-based parallel imaging reconstruction, the unaliasing process is done after the 

Fourier transform. To perform the image-based reconstruction, it has to estimate the coil 

sensitivities. These estimates can be obtained from a separate calibration scan from 

calibration data, which is contained in the acquisition. In contrast, k-space-based 

reconstruction directly reconstructs missing k-space signals without requiring the prior 

knowledge of coil sensitivities and then generates images by inverse Fourier transform. 

The commonly used k-space-based reconstruction methods contain: 
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• SMASH [8] (SiMultaneous Acquisition of Spatial Harmonics); 

• GRAPPA [9] (GeneRalized Autocalibrating Partially Parallel Acquisitions); 

• AUTO-SMASH [10] (AUTO-calibration SiMultaneous Acquisition of Spatial 

Harmonics); 

• VD-AUTO-SMASH [11] (VD-AUTO-calibration SiMultaneous Acquisition of 

Spatial Harmonics). 

In conventional GRAPPA, the central k-space of each coil is sampled at the Nyquist 

rate to obtain ACS data, while the outer k-space is undersampled by some outer reduction 

factors (ORF). The missing k-space data is estimated by a linear combination of the 

acquired undersampled data in the neighborhood from all coils, which can be represented 

mathematically as 

( ) ( ) ( )
2 2

1 1

,
1

, , , , ,    1,..., ,  ,   
B HL

j y y x j r l y y x x
l t B h H

S k r k k w l t h S k tR k k h k j L r tR
= = =

+ ∆ = × + ∆ + ∆ = ≠∑∑∑     (2) 

where ( ),j y y xS k r k k+ ∆  denotes the unacquired k-space signal at the target coil, 

( ),l y y x xS k tR k k h k+ ∆ + ∆  denotes the acquired undersampled signal, and ( ), , ,j rw l t h  denotes 

the linear combination coefficients. Here R represents the ORF, l counts all coils, t and h 

transverse the acquired neighboring k-space data in ky and kx directions respectively, and 

the variables kx and ky represent the coordinates along the frequency- and phase-encoding 

directions, respectively. Figure 5 presents a demonstration of GRAPPA reconstruction as 

mentioned above, in which the white dots represent the missing k-space signals, the black 
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dots denote the acquired undersampled data, and the green dots represent auto-calibration 

signals. 

 

Figure 5. GRAPPA reconstruction demonstration 

When the acceleration factor is high, GRAPPA reconstruction can suffer from 

aliasing artifacts and noise amplifications. Several methods have been developed in 

recent years to improve GRAPPA, such as localized coil calibration and variable density 

sampling [12], multicolumn multiline interpolation [13], regularization [14,15], 

iteratively reweighted least-squares [16], high-pass filtering [17], cross validation [18,19], 

iterative optimization [20], GRAPPA operator [21,22], virtual coil using conjugate 

symmetry [23], multi-slice weighting [24], infinite pulse response (IIR) filtering [25], 

cross sampling [26], and filter bank methods [27,28]. The problems of GRAPPA will be 

detailed in the next chapter, where the contribution of the dissertation will also be given. 

1.3 Compressed Sensing MRI 

Compressed sensing [67, 68] is a technique for finding sparse solutions to 

underdetermined linear systems. In electrical engineering field, particularly in signal 

processing, compressed sensing is the process of acquiring and reconstructing a signal 
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that is supposed to be sparse or compressible. Medical images can be compressed with 

little or no perceptible loss of information. For example, some compression standards 

including JPEG, JPEG-2000, and MPEG are widely used compression strategies for 

transform-based compression. 

Imaging speed is one of the most challenges in MRI due to an inherently slow data 

acquisition process. The application of CS to MRI has the potential for significant scan 

time reductions, with benefits for patients and health care economics. MRI obeys two key 

requirements for successful application of CS [45, 46]: (1) medical imaging is naturally 

compressible by sparse coding in an appropriate transform domain (e.g., by wavelet 

transform); (2) MRI scanners naturally acquire samples of the encoded image in spatial 

frequency, rather than direct pixel samples. For MRI, CS is also a nonlinear 

reconstruction process with iterations. 

Because parallel MRI and CS reduce sampling based on complementary information, 

several methods [30, 32, 47, 48] have been developed to combine pMRI and CS for 

further reduction. Among these methods, the ones that sequentially carry out CS 

reconstruction for the aliased image of each channel and parallel imaging for the final 

unfolded image have demonstrated several advantages [32, 47]. Firstly, because the CS 

and pMRI procedures are clearly decoupled, any CS or pMRI methods are directly 

applicable without modifications. Secondly, the sampling pattern can be designed to 

satisfy different requirements for CS and pMRI. Finally, the acceleration factor of the 

combined approach is a product of the factors achieved by CS and pMRI individually.  
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1.4 Motivation and Organization 

Both SENSE and GRAPPA are both commercially used reconstruction methods. For both 

techniques, GRAPPA as a k-space-based reconstruction technique has the advantage that 

it doesn’t need to estimate sensitivity maps explicitly and thus avoids error propagation in 

the whole reconstruction procedure.  However, there still exist several issues with 

GRAPPA.  

For example, when acceleration factor is high, reconstruction quality will be 

deteriorated by noise. Current net acceleration factor of commercially used GRAPPA in 

SIEMENS MRI scanner is around 2.6, which is far below the number of coils. In addition, 

more and more channels have been used in parallel MRI for improving SNR. The 

reconstruction time becomes very significant with a large number of channels. These 

problems will be analyzed and presented in details in the problem statement of chapter 2. 

To address these issues, we study nonlinear approaches for GRAPPA reconstruction in 

this dissertation. Furthermore, the study is also motivated by the success of the previous 

research in our group which has demonstrated the benefits of nonlinear approaches for 

SENSE [29-32].  

The dissertation is organized as follows. Chapter 1 presents the introduction of the 

MRI, the parallel MRI techniques and relevant issues for GRAPPA reconstruction. 

Problem statement and contribution of the dissertation will be given in the chapter 2. 

After present these basic materials, we will present three novel techniques for improving 

GRAPPA in chapter 3, 4, and 5, respectively. The work is summarized and future work 

will be presented in chapter 6. Finally, reference will be given. 
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Furthermore, within chapter 3, 4, and 5, we will analyze the specific problem firstly, 

and then improved methods will be proposed via some nonlinear approaches. Finally, 

experimental results, discussion, or remaining problems to be solved will be presented. 
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2. Problem Statement and Contribution of the Dissertation 

2.1 Problem Statement 

2.1.1 Low SNR with High Imaging Acceleration 

As pointed out in the chapter 1, SNR is deteriorated when acceleration factor is 

increasing. GRAPPA reconstruction has the same problem. As a concrete example, noise 

and aliasing artifacts increase with higher reduction factor as shown in Figure 6. The 

conventional GRAPPA method [9, 13] reconstructs the missing k-space data by a linear 

combination of the acquired data, where the coefficients for combination are estimated 

using some auto-calibration signal (ACS) lines usually acquired in the central k-space. 

Huang et. al. [49] analyzed two kinds of errors in GRAPPA reconstruction: truncation 

error and inversion error. Nana et. al. [18, 19] extended the analysis and used more 

general terms: model error and noise-related error. The first kind of error mainly 

originates from a limited number of ACS lines and data truncation. When a limited size 

of k-space signals is observed or inappropriately chosen instead of the whole k-space, 

model errors occur in GRAPPA reconstruction. This type of error usually varies with the 

amount of ACS data, reduction factor, and the size of the coefficients to be estimated for 

reconstruction. For example, a reduction in ACS acquisition usually results in degraded 

image quality. Therefore a large amount of ACS data is needed to reduce this model error 

but at the cost of prolonged acquisition time. The second kind of errors originates from 

noise in the measured data and noise-induced error in estimating the coefficients for 

linear combination. Regularization [14, 15] has been used in solving the inverse problem 
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for the coefficients, but significant noise reduction is usually at the cost of increased 

aliasing artifacts. Iterative reweighted least-squares [16] method reduces the noise-

induced error to a greater extent by ignoring noise-induced “outliers” in estimating the 

coefficients. However, the method is computational expensive.  

In general, the coefficients depend on the coil sensitivities and are not known a priori. 

The ACS data are used to estimate these coefficients. Among all the ACS data fully 

acquired at the central k-space, each location is assumed to be the “missing” point to be 

used on the left-hand side of Eq. (2). The neighboring locations with a certain 

undersampling pattern along the phase encoding direction are assumed to be the 

undersampled points that are used on the right-hand side of Eq. (2). This is repeated for 

all ACS locations (except boundaries of the ACS region) based on the shift-invariant 

property to fit GRAPPA coefficients to all ACS data. This calibration process can be 

simplified as a matrix equation 

=b A x                                                                      (3)
 

where A represents the matrix comprised of the undersampled points of the ACS, b 

denotes the vector for the “missing” points of the ACS, and x represents the coefficients 

to be fitted. The matrix A is of size M×K with M being the total number of ACS data 

(excluding the boundaries) and K being the number of points in the neighborhood from 

all coils that are used in reconstruction.  The least-squares method is commonly used to 

calculate the coefficients: 

2ˆ min= −
x

x b Ax                                                                (4) 
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Figure 6. Lower SNR as increasing outer reduction factor. The reconstruction parameters 

of 8-channel brain data are 40 ACS lines, coefficient size of convolution is 4x5. 

When the matrix A is ill-conditioned, the noise can be greatly amplified in the 

estimated coefficients. To address the ill-conditioning issue, regularization methods [14, 

15] have been used to solve for coefficients using a penalized least-squares method, 

2ˆ min ( )Rλ= − +
x

x b Ax x                                                     (5)
 

where R(x) is a regularization function (e.g., R(x) = ||x||2 in Tikhonov) and λ is 

regularization parameter. Regularization can effectively suppress noise to a certain level. 

However, aliasing artifacts usually appear in reconstruction at the same time while large 

noise is suppressed. 
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Another source of noise-induced error in GRAPPA is “outliers”. Outliers are k-space 

data with large measurement errors due to noise and low sensitivity. They lead to large 

deviations in the estimated coefficients from the true ones when the least-squares fitting 

is used. Iterative reweighted least-squares method [16] has been proposed to minimize 

the effect of outliers in least-squares fitting. The method iteratively assigns and adjusts 

weights for the acquired undersampled data. “Outliers” are given less weights or removed 

in the final estimation so that the fitting accuracy and reconstruction quality is improved. 

However, the high computational complexity of the method limits its usefulness in 

practice. 

2.1.2 Imaging Acceleration Is Not High Enough 

Besides SNR problem, higher acceleration is also another problem of parallel MRI 

reconstruction methods. As stated previously, following the increasing acceleration, noise 

deteriorates reconstruction quality in parallel MRI. More efficient reconstruction that 

needs both high acceleration and high SNR should be achieved simultaneously. GRAPPA 

reconstruction has been commercially used on SIEMENS scanner, on which the 

acceleration factor is usually set as 3 and the net acceleration factor provided by general 

parameter settings is around 2.6 for acceptable reconstruction quality, which is not high 

enough for even faster imaging. 

In the dissertation, although reconstruction quality provided by nonlinear GRAPPA 

has been improved to some extent, its net accelerations factor is still not high enough. 

Compressed sensing has been combined with parallel MRI for higher imaging 

acceleration [30, 32, 47, 48]. For the existing methods that serially combine CS and 
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parallel MRI, both reconstructed signals by CS and pMRI are not as accurate as acquired 

MR signals, so that errors of CS reconstruction as the first step will be propagated and 

even amplified to deteriorate pMRI reconstruction quality in the second step. Therefore, 

robust method is required to achieve high SNR and high acceleration simultaneously. 

2.1.3 Computation Cost of Reconstruction Is Large with Many Coils 

Due to success of parallel MRI methods, more and more coils have been used in 

commercial MRI systems for good reconstruction quality and high acceleration such as 

128 coil arrays on research MRI scanners [50]. However, computational cost provided by 

a large number of element coils increases significantly. Some channel reduction methods 

[43, 44, 51-54] have been proposed to reduce reconstruction time and keep the almost the 

same reconstruction quality by using a subset of channels (virtual channels). For example, 

coil array compression using PCA for MRI with large coil arrays was proposed for 

SENSE reconstruction [51, 52]. The number of channels can be largely reduced instead 

of a little SNR loss, so that reconstruction time is accelerated with sacrificing only a very 

little degeneracy of quality. Furthermore, channel reduction technique by PCA was also 

successfully applied on GRAPPA as a k-space-based reconstruction approach [43, 44]. 

Due to reduced channels of having very low sensitivities make little contribution to the 

SNR of the final reconstructed image [43], two-stage channel compression method has 

been used for reducing computational cost of GRAPPA reconstruction [44]. However, 

reconstruction quality is still a little degenerative, although computational and memory 

costs have been largely reduced. A trade-off exists between loss of information that 

degenerates reconstruction quality and reduced computational cost. Furthermore, a small 
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set of neighbor channels were selected based on correlation among channels for reducing 

computation cost [53]. The reconstruction quality is almost the same in comparison with 

reconstruction using full channels. A hardware RF signal combiner inline after 

preamplification was placed to construct an eigencoil array [54]. Optimal SNR can be 

achieved with receiver channel reduction.  

For software-based methods [43, 44, 51-53], due to the loss information caused by 

channel reduction, reconstruction quality using a reduced subset of virtual coils is 

equivalent to or a little worse than the reconstruction quality by using full channels. In 

other words, current software-based channel compression techniques for parallel MRI 

only focus on accelerating reconstruction time and don’t improve reconstruction quality. 

Therefore, parallel MRI reconstruction with many channels (such as 32-channels, 64-

channels) for simultaneously reducing computational cost and achieving high 

reconstruction quality is another challenge topic that would be solved in the dissertation.  

2.2 Dissertation Contribution 

Considering the three problems mentioned above, the dissertation is addressing these 

problems on enhancing SNR at high reduction factors, increasing imaging acceleration, 

and reducing channels of parallel MRI, respectively. 

For SNR problem, we focus on the nature of noise-induced error and develop a novel 

nonlinear method to reduce such kind of error. Errors-in-variables problem that exists in 

the conventional GRAPPA reconstruction was analyzed, and nonlinear noise was 

generalized and suppressed by using kernel method. The proposed nonlinear GRAPPA 

(NLGRAPPA) not only has the advantage of nonlinear methods in representing 
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generalized models that include linear ones as a special case, but also maintains the 

simplicity of linear methods in computation. 

In order to achieve even higher imaging acceleration, we proposed a novel serial 

combination method of CS and NLGRAPPA (CS-NLGRAPPA) reconstruction based on 

the first work – nonlinear GRAPPA. The generalized kernel regression model of 

NLGRAPPA can remove error effects of inaccurate signal reconstruction by CS. The 

experimental results using phantom and in vivo data demonstrate the proposed CS-

NLGRAPPA method can significantly improve the reconstruction quality over the 

existing method and push net reduction factor around 4. The general guideline of 

selecting sampling patterns is presented based on the discussion of the experimental 

results. 

For computational costs of parallel MRI with many channels, we aimed at combining 

reduced channels and improving reconstruction quality simultaneously via software-

based method. The proposed channel reduction method – kernel PCA (KPCA) based 

reduction not only reduces computational cost for the conventional GRAPPA 

reconstruction, but also enhances reconstruction quality. 
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3. Nonlinear GRAPPA - A Kernel Approach to Parallel MRI 

Reconstruction 

 

GRAPPA linearly combines the undersampled k-space signals to estimate the missing k-

space signals where the coefficients are obtained by fitting to some auto-calibration 

signals (ACS) sampled with Nyquist rate based on the shift-invariant property. At high 

acceleration factors, GRAPPA reconstruction can suffer from a high level of noise even 

with a large number of auto-calibration signals. In this work, we propose a nonlinear 

method to improve GRAPPA. The method is based on the so-called kernel method which 

is widely used in machine learning. Specifically, the undersampled k-space signals are 

mapped through a nonlinear transform to a high-dimensional feature space, and then 

linearly combined to reconstruct the missing k-space data. The linear combination 

coefficients are also obtained through fitting to the ACS data but in the new feature space. 

The procedure is equivalent to adding many virtual channels in reconstruction. A 

polynomial kernel with explicit mapping functions is investigated in this work. 

Experimental results using phantom and in vivo data demonstrate that the proposed 

nonlinear GRAPPA method can significantly improve the reconstruction quality over 

GRAPPA and its state-of-the-art derivatives. 

Kernel methods [33-37] have been successfully applied to a number of real-world 

problems and are now considered state-of-the-art in various domains such as 

classification, pattern analysis, machine learning, regression, and so forth. Recently, it 
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has been successfully applied on signal processing [34] for robust regression and least-

squares solution. Due to versatile tools of solving problems kernel methods offer, we 

study it for GRAPPA reconstruction which is essential a linear filtering or regression 

problem. 

In this research, we focus on the nature of noise-induced error and develop a novel 

nonlinear method to reduce noise-induced error. We identify the nonlinear relationship 

between the bias in the estimated GRAPPA coefficients and the noise in the measured 

ACS data due to the errors-in-variables problem in the calibration step. This relationship 

suggests that the finite impulse response (FIR) model currently used in GRAPPA 

reconstruction is not able to remove the nonlinear noise-induced bias even if 

regularization is used. We thereby propose a nonlinear approach to GRAPPA using the 

kernel method, named nonlinear GRAPPA. (Note this kernel is a terminology in machine 

learning and is different from the GRAPPA kernel for linear combination.) The method 

maps the undersampled data onto a high dimensional feature space through a nonlinear 

transform and the data in the new space are then linearly combined to estimate the 

missing k-space data. Although the relationship between the acquired and missing k-

space data is nonlinear, the relationship can be easily and linearly found in the high 

dimensional feature space using the ACS data. It is worth noting that the nonlinearity of 

this approach is completely different from that in the GRAPPA operator formulation in 

Refs. [21, 22] where the former is on the k-space data while the latter is on the GRAPPA 

coefficients through successive application of linear operators. The proposed method not 

only has the advantage of nonlinear methods in representing generalized models that 
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include linear ones as a special case, but also maintains the simplicity of linear methods 

in computation. 

3.1 Errors-in-variables Model of GRAPPA 

The conventional GRAPPA formulation in Eq. (2) or (3) models the calibration and 

reconstruction as a standard linear regression and prediction problem, where the 

undersampled part of the ACS corresponds to the regressors and the rest is the 

regressands. With this formulation, if the undersampled points of the ACS (regressors) 

are measured exactly or observed without noise, and noise is present only in the 

“missing” ones of the ACS (regressands), then the least-squares solution is optimal and 

the error in the reconstruction is proportional to the input noise. However this is not the 

case in GRAPPA because all ACS data are obtained from measurement and thus contain 

the same level of noise. 

To understand the effect of noise in both parts of the ACS data (regressors and 

regressands), we describe the regression and prediction process of GRAPPA using latent 

variables [55]. Specifically, if A and b are observed variables that come from the ACS 

data with measurement noise, we assume that there exist some unobserved latent 

variables value A%  and b%  representing the true, noise-free counterparts, whose true 

functional relationship is modeled as a linear function f. We thereby have 

:f

δ

δ

 = +


= +
 =

A

b

A A

b b

b Ax

%

%

%% %

                                                                   (6)
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where δA and δb represent measurement noise that are present in the ACS data and 

assumed to be independent of the true value A%  and b% , and x%  denotes the latent true 

coefficients for the linear relationship between A% and b% without the hidden noise. 

In the standard regression process, the coefficients x is estimated by fitting to the 

observed data in A and b: 

( )δ δ= → + = +b Ab Ax b A x%%
   

                                             (7)
 

Therefore, there is a bias δx = x- x%  in the coefficients estimated from the least-squares 

fitting, where 

( ) ( ) ( )1[ ] ( )
T T

δ δ δ δ−= + + + +A A A bx A A A b% % % %
 
                                     (8)

 

For example, consider the simplest case where x is a scalar and b and A are both column 

vectors whose elements bt and at represent measurements at index t. The estimated 

coefficient is given by 

2

1 1

T T

t t t
t t

a b a
= =

=∑ ∑x
  
                                                            (9)

 

which deviates from the true coefficient x%  = b% / a% . When the number of measurements 

T increases without bound, the estimated coefficient converges to 

2 2(1 / )b Ax x σ σ= +%
  
                                                             (10)

 

where the noise in A and b is assumed to have zero mean and variance of 2
Aσ  and 2

bσ  

respectively. It suggests that even if there are an infinite number of measurements, there 

is still a bias in the least-squares estimator. Since the bias depends on the noise in both A 

and b, its effects on the estimated coefficients x are also noise-like. In the multivariable 
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case, the bias of GRAPPA coefficients is not easily characterized analytically, but is 

known to be upper bounded by (Theorem 2.3.8 in Ref [56]) 

2

2

|| || || || || || || || || ||
( )

|| || || || || || || || || ||
x A b A bδ δ δ δ δ

κ
 

≤ + + 
 

A
x A b A b

%
% %   

                                      (11)
 

where ( )Aκ % is the condition number of matrix A% . The bound in Eq. (11) suggests that 

the bias in GRAPPA coefficients can be large at high reduction factors due to ill-

conditioned A [14]. In addition, the bias is not a linear function of the noise in the ACS. 

This is known as the errors-in-variable problem in regression. Figure 7 uses an example 

to demonstrate the nonlinearity of the bias for GRAPPA coefficients as a function of 

noise in the ACS data. Specifically, a set of brain data with simulated coil sensitivities 

(obtained from http://www.nmr.mgh.harvard.edu/~fhlin/) was used as the noise-free 

signal. We calculated the bias for GRAPPA coefficients (with the coefficients obtained 

from the noise-free signal as reference) when different levels of noise were added on all 

24 lines of the ACS data. We plotted the normalized bias for GRAPPA coefficients as a 

function of the normalized noise level added to the ACS data. It is seen that the bias is 

not a linear function of noise level. However, when the noise is sufficiently low, the 

curve is well approximated by a straight line and the bias-noise relationship is 

approximately linear. Total least squares [57, 58] is a linear method used to alleviate the 

problem by solving Eq. (7) using the total least squares instead of least squares. It 

addressed the error-in-variable problem to some extent when the noise is low. In the 

reconstruction step of GRAPPA, when the biased coefficients x are applied upon the 

noisy undersampled data A to estimate the missing data in outer k-space, errors presented 

in the reconstruction are given by 



28 

 

 

 

( )( )δ δ δ δ δ δ− = + + − = + +A x x A A xy Ax A x Ax A x% % % %% % % %                                   (12) 

It shows the effect of biased coefficients on the estimated missing k-space data is also 

nonlinear and noise-like. A comprehensive statistical analysis of noise in GRAPPA 

reconstruction can be found in [59]. 

 

Figure 7. Nonlinearity of the bias for GRAPPA coefficients as a function of noise in ACS 

data. 

3.2 Proposed Nonlinear GRAPPA 

All existing GRAPPA derivatives are based on the linear model in Eq. (2) without 

considering the nonlinear bias due to noise in the ACS data. To address the nonlinear, 

noise-like errors in GRAPPA reconstruction, a kernel method is proposed to describe the 



29 

 

 

 

nonlinear relationship between the acquired undersampled data and the missing data in 

present of noise-induced errors. Please note that the kernel used in this paper is different 

from the kernel usually used in GRAPPA literature to represent the k-space neighborhood 

for linear combination. 

3.2.1 General Formulation Using Kernel Method 

Kernel method [33-36] is an approach that is widely used in machine learning. It allows 

nonlinear algorithms through simple modifications from linear ones. The idea of kernel 

method is to transform the data nonlinearly to a higher dimensional space such that linear 

operations in the new space can represent a class of nonlinear operations in the original 

space. Specifically, given a linear algorithm, we map the data in the input space A to the 

feature space H via a nonlinear mapping Φ(·): A→H, and then run the algorithm on the 

vector representation Φ(a) of the data. However, the map may be of very high or even 

infinite dimensions and may also be hard to find. In this case, the kernel becomes useful 

to perform the algorithms without explicitly computing Φ(·). More precisely, a kernel is 

related to the mapping Φ in that 

( ) ( ) ( )1 2 1 2 1 2, , , ,k =< Φ Φ > ∀ ∈a a a a a a A
  
                                          (13)

 

where <,> represents the inner product. Many different types of kernels are known [36] 

and the most general used ones include polynomial kernel [60] and Gaussian kernel [61]. 

To introduce nonlinearity into GRAPPA, we apply a nonlinear mapping to the 

undersampled k-space data ai={ ( ),l y y x xS k tR k k h k+ ∆ + ∆ } in the neighborhood of each 

missing point where l counts all coils and t and h transverse the acquired neighboring k-
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space data in ky and kx directions respectively. Under such a mapping, Eq. (3) is 

transformed to the following new linear system of x: 

( )= Φb A x
 
                                                                 (14)

 

where ( ) ( ) ( ) ( )1 2, , ,
T

MΦ = Φ Φ Φ  A a a aL  with ai being the ith row vector of the matrix A 

defined in Eq. (2). The new matrix Φ(A) is of KM N× , where NK is the dimension in the 

new feature space which is usually much higher than K. Equation (14) means the missing 

data in b is a linear combination of the new data in feature space which are generated 

from the original undersampled k-space data A. Although Eq. (14) is still a linear 

equation of the coefficients x, it mathematically describes the nonlinear relationship 

between the undersampled and missing data because of the nonlinear mapping function 

Φ(·). With the ACS data, the regression process to find the coefficients x in Eq. (14) for 

the proposed nonlinear GRAPPA can still be solved by a linear, least-squares algorithm 

in feature space 

( ) ( )( ) ( )
1

ˆ H H−
= Φ Φ Φx A A A b

 

                                                   (15)
 

Once the coefficients are estimated in Eq. (15), they are plugged back in Eq. (14) for the 

prediction process to reconstruct the missing data in outer k-space, like the conventional 

GRAPPA does. Figure 8 summarizes the above procedure and illustrates the nonlinear 

and linear parts of the proposed method (NLGRAPPA) in comparison to the conventional 

GRAPPA. It can be seen that the proposed method introduces an additional nonlinear 

mapping step into GRAPPA to pre-process the acquired undersampled data while the 

computational algorithm to find the coefficients is still the linear least-squares method. 
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Other linear computational algorithms such as reweighted least-squares and total least-

squares methods can also be used here. 

 

Figure 8.  Illustration of the calibration procedure for GRAPPA and nonlinear (NL) 

GRAPPA. 

3.2.2 Choice of nonlinear mapping Φ(·) 

To choose the optimal kernel or feature space is not trivial. For example, Gaussian kernel 

has been proved to be universal, which means that linear combinations of the kernel can 

approximate any continuous function. However, overfitting of the calibration data may 

arise as a result of this powerful representation. Given the success of GRAPPA, we want 

the nonlinear mapping to be a smooth function that includes the linear one as a special 

case when the dimension of the feature space is as low as the original space. Since 

polynomials satisfy the desired properties, we choose an inhomogeneous polynomial 

kernel of the following form 

( ) ( ),
dT

i j i j rκ γ= +a a a a
 
                                                      (16)
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where γ and r are scalars and d is the degree of the polynomial. Another advantage of 

polynomial kernel lies in the fact that its corresponding nonlinear mapping Φ(a) such that 

( ) ( ) ( )1 2 1 2, ,k =< Φ Φ >a a a a
 
has explicit representations. For example, if γ = r = 1 and d = 2, 

Φ(a) is given by [62] 

( ) 2 2
1 1 1 2 11, 2 , , 2 , , , , 2 , , 2 , , 2

T

K K i j K Ka a a a a a a a a a−
 Φ =  a K K K K                        (17) 

where a1, a2, …, aK  are components of the vector a and there are (K+2)(K+1)/2 terms in 

total. It is seen that the vector includes the linear terms in the original space as well as the 

constant and second-order terms. 

When all possible terms in Φ(a) are included, direct use of the kernel function may be 

preferred over the use of nonlinear mapping in Eq. (14) for the sake of computational 

complexity. However our experiment (See Figure 14 in Results) shows that the 

reconstruction using kernel functions suffers from blurring and aliasing artifacts. This is 

because the model is excessively complex and represents a too broad class of functions, 

and thus the model has been overfit during calibration but poorly represents the missing 

data. This overfitting problem can be addressed by reducing the dimension of the feature 

space [63]. The reduction of feature space is achieved here by keeping the constant term 

and all first-order terms 12 , , 2 Ka aK , but truncating the second-order terms in vector 

Φ(a).  Specifically, we sort the second-order terms according to the following order. We 

first have the square terms within each coil, and then the product terms between the 

nearest neighbors, the next-nearest neighbors, and so on so forth in k-space.  The above 

order is then repeated for terms that are across different coils.  With the sorted terms, we 

can truncate the vector Φ(a) according to the desired dimension of the feature space. 
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The performance of the proposed method depends on the number of second-order 

terms. If the number is too low, prediction is inaccurate because the feature space is not 

complex enough to accurately describe the true relationship between the calibration and 

undersampled data in presence of noise, and thus the reconstruction resembles GRAPPA 

and still suffers from noise-like errors. On the other hand, if the dimension is too high, 

the model is overfit by the calibration data but poorly represents the missing data, thus 

leading to aliasing artifacts and loss of resolution in reconstruction. This is known as the 

bias-variance tradeoff and is demonstrated using an example in Results section. 

3.2.3 Explicit implementation of nonlinear GRAPPA 

We find heuristically (elaborated in Results) that it is sufficient to keep the number of the 

second-order terms to be about three times that of the first-order terms. That is, the 

feature space is reduced to 

( ) 2 2 2
1 2 1 2 1 2 1 1 3 2

~ ~ 

[1, 2 , 2 , , 2 , , , , , , , , , , , , , , ]K K i j K K p q K K

K K K

a a a a a a a a a a a a a a a a a a− −Φ =a% L L L L L L
1442443 14444244443 14444244443

      (18) 

where (ai, aj) are nearest neighbors and (ap, aq) are next-nearest neighbors in k-space 

along kx within each coil. We also find that a slight increase in the number of second-

order terms does not change the reconstruction quality, but increases the computation. 

After plugging the above truncated mapping vector ( )Φ a%  in Eq. (18) into the matrix 

representation in Eq. (14) and changing to the notations in conventional GRAPPA, the 

proposed nonlinear GRAPPA method is thereby formulated as 
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(19) 

where the same notations are used as in Eq. (2).

 
The above nonlinear formulation represents a more general model for GRAPPA, 

which includes the conventional GRAPPA as a special case. It is seen that the first-order 

term of nonlinear GRAPPA in Eq. (19) is equivalent to the conventional GRAPPA, 

which mainly captures the linear relationship between the missing and acquired 

undersampled data in the absence of noise and approximations. The second-order terms 

of Eq. (19) can be used to characterize other nonlinear effects in practice such that noise 

and approximation errors are suppressed in reconstruction. The proposed formulation is a 

nonlinear model in the sense that nonlinear combination of acquired data contributes to 

estimation of missing k-space data. However the computational algorithm is still linear 

because the new system equation in Eq. (19) is still a linear function of the unknown 

coefficients and can still be solved by the linear least-squares method. 

To better interpret the nonlinear GRAPPA method, we can consider the nonlinear 

terms as additional virtual channels as done in Ref. [23]. For example, the first-order 

terms in Eq. (19) represent a linear combination of L physical channels, while each 

second-order term represents a set of additional L virtual channels. Therefore there are 4L 

channels in total when Eq. (19) is used. More second-order terms provide more virtual 
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channels. It is worth noting that different from the true physical channel, there is no 

equivalent concept of coil sensitivities for the virtual channels. This is because the 

additional virtual channels are nonlinear function of the original physical channels. For 

example, the “square channel” takes the square of the k-space data point-by-point. In 

image domain, this is equivalent to the sensitivity-modulated image convolves with itself. 

Therefore the resulting image cannot be represented as the product of the original image 

and another independent “sensitivity” function. Another point to be noted is that the 

virtual channels are not necessarily all independent. Only adding channels that are 

linearly independent can improve the reconstruction performance. Choosing independent 

channels needs further study in our future work. 
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Figure 9.  Phantom images reconstructed from an eight-channel dataset with an ORF of 6 

and 38 ACS lines (denoted as 6-38 on the right corner of each image). With the SOS 

reconstruction as the reference, the proposed nonlinear GRAPPA (NL-GRAPPA) method 

is compared with conventional GRAPPA, regularized GRAPPA, and IRLS methods. The 

corresponding difference images with the reference (7× amplification) and g-factor maps 

are also shown on the right two columns respectively. 
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3.3 Experimental Results 

3.3.1 Experiment Settings 

The performance of the proposed method was validated using four scanned datasets. 

The first three scanned datasets were all acquired on a GE 3T scanner (GE Healthcare, 

Waukesha, WI) with an 8-channel head coil, and the last one was acquired on a Siemens 

3T scanner (Siemens Trio, Erlangen, Germany). In the first dataset, a uniform water 

phantom was scanned using a gradient echo (GRE) sequence (TE/TR = 10/100 ms, 31.25 

kHz bandwidth, matrix size = 256×256, FOV = 250 mm2).  The second dataset was an 

axial brain image acquired using a 2D spin echo (SE) sequence (TE/TR = 11/700 ms, 

matrix size = 256 × 256, FOV = 220 mm2). The third one was a sagittal brain dataset 

acquired using a 2D spin echo (SE) sequence (TR = 500 ms, TE = min full, matrix size = 

256 × 256, FOV = 240 mm2). In the fourth dataset, cardiac images were acquired using a 

2D trueFISP sequence (TE/TR=1.87/29.9 ms, bandwidth 930 Hz/pixel, 50 degree flip 

angle, 6mm slice thickness, 34 cm FOV in readout direction, 256x216 acquisition matrix) 

with a 4-channel cardiac coil. Informed consents were obtained for all in vivo 

experiments in accordance with the institutional review board policy. 

The proposed method was compared with conventional GRAPPA, as well as two 

existing methods that improve the SNR, Tikhonov regularization [14] and iterative 

reweighted least-squares (IRLS) [16]. The root sum of squares (SOS) reconstruction from 

the fully sampled data of all channels was shown as the reference image for comparison. 

The size of the coefficients (blocks by columns) was chosen optimally for each individual 

method by comparing the mean-squared errors resulting from different sizes. The g-factor 
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map was calculated using Monte Carlo simulations as described in [64] and used to show 

noise amplification. It is worth noting that for nonlinear algorithms, the SNR loss 

depends on the input noise level, and the g-factors shown in Results are valid only in a 

small range around the noise level used in this study. Difference images were used to 

show all sources of error, including blurring, aliasing and noise. All methods were 

implemented in MATLAB (Mathworks, Natick, MA). To facilitate visual comparison, 

difference images from the reference and zoomed-in patches were also shown for some 

reconstructions. A software implementation of the proposed nonlinear GRAPPA method 

is available at https://pantherfile.uwm.edu/leiying/www/index_files/software.htm. 

3.3.2 Results of Phantom and In Vivo Datasets 

Figure 9 shows the reconstructions of the phantom using SOS, GRAPPA, Tikhonov 

regularization, IRLS, and the proposed nonlinear GRAPPA for an ORF of 6 and the ACS 

of 38 (net acceleration of 3.41). The size of the coefficients was chosen optimally for 

each individual method, though the image quality is not sensitive to the change of size 

within a large range of the optimal choice. The size of the coefficients for nonlinear 

GRAPPA was 2 blocks and 15 columns and that for the other methods was 4 blocks and 

9 columns. It is seen that the conventional GRAPPA suffers from serious noise. 

Tikhonov regularization and IRLS can both improve the SNR to some extent but at the 

cost of aliasing artifacts. The proposed nonlinear GRAPPA method suppresses most of 

the noise without additional artifacts or loss of resolution. In addition, difference images 

with the reference and g-factor maps shown in Fig. 9 also suggest that the noise-like 
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errors have quite different distributions spatially and they are more uniformly distributed 

in nonlinear GRAPPA than in other methods. 

 

Figure 10.  Axial brain images reconstructed from a set of eight-channel data with an 

ORF of 5 and 48 ACS lines using GRAPPA, regularized GRAPPA, IRLS, and the 

proposed nonlinear method. The corresponding difference images with the reference (5× 

amplification) are shown on the middle column and g-factor maps on the right column. 
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Figure 11.  Sagittal brain images reconstructed from a set of eight-channel data with an 

ORF 5 and 48 ACS lines and their corresponding difference images on the right. The 

proposed nonlinear GRAPPA suppresses most noise without aliasing artifacts. 
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Figure 12.  Results from the four-channel cardiac dataset with an ORF 5 and 48 ACS 

lines. The reconstructed images, zoomed ROI, difference images, and g-factor maps are 

shown from left to right respectively. They show that the proposed method can remove 

more noise than other methods while still preserving the resolution. 
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Figures 10 and 11 show the reconstruction results for the two in vivo brain datasets, 

axial and sagittal respectively. An ORF of 5 and the ACS of 48 were used with a net 

acceleration of 2.81. Nonlinear GRAPPA used a size of 2 blocks and 15 columns, while 

the other methods used that of 4 blocks and 9 columns. The difference images with the 

reference are also shown (amplified 5 and 9 times for display) in both Figs. 10 and 11 and 

g-factor maps are shown for the axial dataset in Fig. 10. It is seen that the reconstruction 

using the proposed method achieves a quality superior to all other methods. The proposed 

method effectively removes the spatially-varying noise in the conventional GRAPPA 

reconstruction without introducing aliasing artifacts as Tikhonov regularization and IRLS 

methods do. Furthermore, the proposed method also preserves the resolution of the axial 

image without blurring. There is only a slight loss of details in the sagittal image due to 

the tradeoff between noise suppression and resolution preservation (discussed later in Fig. 

14). 

Figure 12 show the results for the in vivo cardiac dataset in long axis. The ORF is 5 

and number of ACS lines is 48 (net acceleration of 2.60). The size of the nonlinear 

GRAPPA coefficients was 4 blocks and 15 columns. The other methods used a size of 4 

blocks and 3 columns. The ventricle areas are zoomed to show more details. Both the 

difference images and the g-factor maps are shown for all methods. The same conclusion 

can be made that the nonlinear GRAPPA method can significantly suppress the noise in 

GRAPPA and still preserve the resolution and avoid artifacts. 
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Figure 13.  NMSE curves of the proposed method as a function of the number of the 

second-order terms using the long-axis cardiac dataset. The “U” shape of the curve 

suggests that some intermediate number should be chosen. 

We also used the cardiac dataset to study how the number of second-order terms 

affects the nonlinear GRAPPA reconstruction quality. Specifically, we truncate all the 

sorted second-order terms to keep the number to be N times (e.g., 3 times in Eq. (19)) that 

of the first-order terms. The normalized mean squared errors (NMSE) was calculated and 

plotted as the function of the number of the first-order terms in Figure 13. In 

consideration of computational complexity, only the central 64 columns of the 48 ACS 

lines were used here for calibration. The two endpoints of the curve are the extreme cases 

of the proposed method. The left one corresponds to conventional GRAPPA without the 

second-order terms, and the right one is the case where all second-order terms are 

included (implemented efficiently using kernel representation directly). Figure 14 shows 

the corresponding reconstructions at some points of the curve. Both the curve and the 
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images suggest that too small or too large N deteriorates reconstruction quality. When the 

number N increases, noise is gradually suppressed, but the resolution gradually degrades 

and aliasing artifacts gradually appear due to the overfitting problem. The optimal range 

for the value of N to balance the tradeoff between noise, resolution, and aliasing artifacts 

is seen to be 3-4 times of the number of the first-order terms, according to both the 

NMSE curve and the images. Because the value of N directly affects the computational 

complexity, N = 3 was chosen and shown to work well for all datasets tested in this study. 
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Figure 14.  The nonlinear GRAPPA reconstructions with an increasing number of the 

second-order terms show that the noise is gradually removed but artifacts gradually 

increase. In the extreme case when all second-order terms are included, both blurring and 

aliasing artifacts are serious. 

3.4 Discussion 

We have shown in results that the proposed nonlinear GRAPPA method can outperform 

GRAPPA at high ORFs but also with a large number of ACS lines. It is interesting to see 

how the method behaves at lower ORFs or with fewer ACS lines. In Figure 15, we 

compare GRAPPA and nonlinear GRAPPA with decreasing ORFs when the number of 

ACS lines is fixed to be 40. At a low ORF of 2, both methods perform similarly well. The 

proposed method has a slightly lower level of noise. As ORF increases, GRAPPA 

reconstruction begins to deteriorate due to the increased level of noise. In contrast, the 

nonlinear GRAPPA method can maintain a similar SNR. Therefore the benefit of 

nonlinear GRAPPA becomes more obvious at high ORFs. On the other hand, as ORF 

increases, the required number of ACS lines usually needs to increase to avoid aliasing 

artifacts. 
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Figure 15.  Comparison between GRAPPA and nonlinear GRAPPA when ORF increases 

with fixed ACS lines. Contrary to GRAPPA, noise in the proposed method does not 

increase with the ORF. 
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Figure 16.  Comparison of GRAPPA and nonlinear GRAPPA reconstructions when ACS 

increases with fixed ORF. It shows nonlinear GRAPPA needs more ACS lines than 

GRAPPA to avoid aliasing artifacts, but GRAPPA has more noise than nonlinear 

GRAPPA. 
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Figure 17. Comparison between GRAPPA and nonlinear GRAPPA when different 

numbers of columns are chosen for the coefficients. Contrary to GRAPPA, the use of 

more columns in nonlinear GRAPPA can suppress more noise in reconstruction. 

Theoretically the proposed method needs more ACS lines than GRAPPA to set up 

sufficient number of equations to avoid the aliasing artifacts. This is because there are 

more unknown coefficients to be solved for in the high dimensional feature space. Figure 

16 shows how the reconstruction quality improves when increasing the number of ACS 
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lines. The improvement of GRAPPA is primarily in terms of noise suppression while the 

improvement of nonlinear GRAPPA is in aliasing-artifacts reduction. Although more 

number of ACS lines is needed in the proposed method to avoid artifacts, the ORF can be 

pushed much higher than GRAPPA and thereby the net acceleration factor can remain 

low. For example, the combination of ORF of 5 and 48 ACS lines (denoted as 5-48) in 

Fig. 12 has a higher net acceleration factor to that of 4-40 (net acceleration of 2.57) in Fig. 

15 and 3-32 (net acceleration of 2.30) in Fig. 16. The nonlinear GRAPPA reconstruction 

with 5-48 is always superior to GRAPPA with 5-48, 4-40, or 3-32 combinations. 

In GRAPPA, it is known that the size of the coefficients also affects the 

reconstruction quality. More columns usually improves the data consistency and reduces 

aliasing artifacts, but at the cost of SNR and computation efficiency [65]. A rather small 

number of columns (e.g., 3-5 columns) are typically used to balance the trade-off. In the 

proposed nonlinear GRAPPA, the size of coefficients also plays an important role. Figure 

17 shows the GRAPPA and nonlinear GRAPPA reconstructions with 5, 9, and 15 

columns of coefficients. Contrary to the observation in GRAPPA, more columns in 

nonlinear GRAPPA can improve the SNR due to the higher degree of freedom in 

calibration. In consideration of the computation cost, 15 columns were chosen to be used 

in our experiments. 

The computation time of the proposed method is about 2-5 times that of conventional 

GRAPPA and Tikhonov-regularized GRAPPA, while IRLS is the most time consuming 

among all. Furthermore, regularization can also be easily incorporated into the proposed 

reconstruction method. 
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4. Accelerating Nonlinear GRAPPA by Compressed Sensing 

 

As experimental results presented in nonlinear GRAPPA reconstruction, although 

reconstruction quality can be improved by increasing SNR, net acceleration factor is still 

around 2.8 for 256 phase encoding k-space lines. Compressed sensing (CS) and parallel 

imaging (PI) have been widely studied for accelerating MRI reconstruction. Furthermore, 

the serial combination methods of CS and PI have been proposed for even higher speed 

of reconstruction. However, both reconstructed signals by CS and PI are not as accurate 

as acquired MR signals, so that errors of CS reconstruction as the first step will be 

propagated and even amplified to deteriorate PI reconstruction quality in the second step. 

Based on our previous work – nonlinear GRAPPA (NLGRAPPA), we proposed a novel 

serial combination of CS and NLGRAPPA (CS-NLGRAPPA) reconstruction. The 

generalized kernel regression model of NLGRAPPA can remove error effects of 

inaccurate signal reconstruction by CS. Experimental results using phantom and in vivo 

data demonstrate that the proposed CS-NLGRAPPA method can significantly improve 

the reconstruction quality over the existing method and push net reduction factor around 

4. 

4.1 Combination Methods of CS and pMRI 

MR imaging speed is usually limited by the large number of samples needed along the 

phase encoding direction. In conventional MRI using Fourier encoding, the required 

number of samples is determined by the field of view and the resolution of the image 



51 

 

 

 

based on the Shannon sampling theory. To accelerate conventional MRI, both parallel 

MRI (pMRI) and compressed sensing (CS) have been used to reduce the number of 

acquired data. In pMRI, due to the availability of multi-channel coils, the MR images can 

be reconstructed from multi-channel k-space data sampled below the Nyquist sampling 

rate using reconstruction methods such as SENSE [6] and GRAPPA [9]. Theoretically, 

the maximum reduction factor can be up to the number of channels under ideal conditions. 

However, this maximum usually cannot be achieved due to practical limitations such as 

noise and imperfect coil geometry. CS-MRI [45, 46] is based on CS theory [67, 68], a 

new framework for data sampling and signal recovery. CS-MRI takes advantage of the 

fact that MRI meets two conditions of CS. One is the MR images are sparse or 

compressible after certain transformations. The other is the Fourier encoding is 

incoherent with these sparse transformations. Therefore, the MR images can be 

reconstructed using a nonlinear convex program from data sampled at a rate close to their 

intrinsic information rate which is well below the Nyquist rate. 

Because pMRI and CS reduce sampling based on complementary information, 

several methods [30, 32, 47, 48] have been developed to combine pMRI and CS for 

further reduction. Among these methods, the ones that sequentially carry out CS 

reconstruction for the aliased image of each channel and parallel imaging for the final 

unfolded image have demonstrated several advantages [32, 47]. First, because the CS and 

pMRI procedures are clearly decoupled, any CS or pMRI methods are directly applicable 

without modifications. Second, the sampling pattern can be designed to satisfy different 



52 

 

 

 

requirements for CS and pMRI. Finally, the acceleration factor of the combined approach 

is a product of the factors achieved by CS and pMRI individually. 

4.2 Serial Combination of CS and NLGRAPPA 

However, an issue with the sequential method is error propagation. The error in CS 

reconstruction may propagate and be amplified in the pMRI step according to the g-factor. 

For example in CS-SENSE [32], SENSE with inaccurate coil sensitivities accentuates the 

CS reconstruction error. In CS-GRAPPA [47], the g-factor of GRAPPA increases 

dramatically with the acceleration factors and thus magnifies the CS error. We have 

recently developed a nonlinear GRAPPA (NLGRAPPA) method [66, 69] using kernel 

method. The method has shown to reduce the g-factor significantly at high acceleration 

factors. 

In this research, we propose a novel sequential approach that performs CS followed 

by nonlinear GRAPPA.  The proposed method, named CS-NLGRAPPA, first employs 

CS to reconstruct a set of multi-channel aliased images (i.e., k-space data on a uniformly 

undersampled grid in each channel), and then applies NLGRAPPA to reconstruct the 

missing k-space data for the final root sum-of-squares (SOS) reconstruction. Due to the 

nonlinear characterization ability in the generalized regression model, the kernel method 

can remove error effects generated by CS reconstruction to certain extent. Experimental 

results demonstrate that the proposed method outperforms CS-GRAPPA in suppressing 

the spatial-varying noise and aliasing artifacts with high accelerations. 
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4.2.1 Sampling Pattern 

The sampling pattern for the proposed method has two parts. The first part is the same as 

the sampling used in CS-SENSE [32]. Specifically, a variable-density random sampling 

scheme [45] is employed to further undersample the data along the phase encoding 

direction that is already undersampled in pMRI, as shown in Figure 18 from (a) to (b), 

where the white lines represent the uniformly undersampled k-space locations, while 

black regions denote the unacquired locations. The other part acquires the fully sampled 

auto-calibration signal (ACS) at the central k-space. Because the variable-density 

sampling usually acquires the central k-space in full as well, the two parts have many 

overlapping lines. The union of the randomly undersampled k-space lines (Figure 18 (b)) 

and the auto-calibration signal (ACS) lines (Figure 18 (c)) produces the ultimate 

sampling pattern as shown in Figure 18 (e) for the proposed method. The net reduction 

factor is calculated by the total number of acquired lines divided by the number of lines 

when full sampling is employed.  As we can see, the net reduction factor for the proposed 

method in Figure 18 (e) is higher than that for conventional GRAPPA which uses the 

sampling in Figure 18 (d). 
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Figure 18. Sampling pattern and CS reconstruction demonstration of the proposed 

method. 
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4.2.2 Sequential Reconstruction 

The proposed method carries out CS and NLGRAPPA reconstructions sequentially. In 

the CS step, the uniformly undersampled data are reconstructed from the randomly 

undersampled data as shown in Figure 18 from (b) to (a). To this end, CS is used to 

reconstruct the aliased image in each channel and then Fourier transformed to obtain the 

uniformly undersampled k-space data.  If Alf  is a vector for the aliased reduced FOV 

image from the l-th channel, the data consistence comes from 

u A u
l l=F f d                                                             (20) 

where uF  represents Fourier encoding operation and u
ld  is the undersampled k-space data 

from l-th channel. Therefore, the aliased image A
lf  at each channel can be reconstructed 

using CS 

( ){ }2

1 22 1
arg min TV

A
l

u A u A A
l l l lλ λ− + +

f
F f d ψf f                                        (21) 

where ψ adopts wavelet transform and TV represents total variation. 

In the NLGRAPPA steps, the ACS data in Figure 18 (c) are used for calibration and 

the uniformly undersampled data in Figure 18 (a) obtained from the CS step are used for 

reconstruction of the final image. NLGRAPPA is used for calibration and reconstruction. 

The method has shown to suppress the nonlinear error in GRAPPA due to the errors-in-

variables problem. In NLGRAPPA, a generalized, nonlinear model is exploited to 

characterize the relationship between the acquired data and missing data. Kernel method 

is used to represent the nonlinear relationship such that the linear least squares algorithm 
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is still applicable for the underlying nonlinear problem. Specifically, NLGRAPPA 

transforms original input space (original k-space here) to a high dimensional feature 

space using a nonlinear mapping. A polynomial kernel is used here so that the acquired k-

space data are nonlinearly mapped using a truncated second-order polynomial function. 

The unacquired k-space signal Sj is obtained by a nonlinear combination of the acquired 

k-space signals Sl: 
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where w denotes the coefficient set, R represents the outer reduction factor,  j is the target 

coil, l counts all coils, b and h transverse the acquired neighboring k-space data in ky and 

kx directions respectively, and the variables kx and ky represent the coordinates along the 

frequency- and phase-encoding directions, respectively. The nonlinear formulation of Eq. 

(19) represents a more general model for GRAPPA, which includes the conventional 

GRAPPA as a special case. It is seen that the first-order terms of nonlinear GRAPPA is 

equivalent to the conventional GRAPPA, which mainly captures the linear relationship 

between the missing and acquired undersampled data in the absence of noise and 

approximations. The second-order terms of Eq. (19) can be used to characterize other 
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nonlinear effects in practice such that noise and approximation errors are suppressed in 

reconstruction. The proposed formulation is a nonlinear model in the sense that nonlinear 

combination of acquired data contributes to estimation of missing k-space data. 

Under such a mapping, we still only need to solve the following linear system 

equation in the feature space: 

( )= Φb A x                                                                 (14)
 

where x represents the reconstruction coefficients, ( )Φ A is a matrix representing the 

nonlinear mapping. It is seen that the calibration process to find x can still be easily and 

linearly solved in the high dimensional feature space by a linear algorithm: 

( )( ) ( )( )( ) ( )( )
1

ˆ
H H−

= Φ Φ Φx A A A b                                              (15)
 

although the relationship between the acquired and missing k-space data is nonlinear. 

Other linear computational algorithms such as reweighted least-squares and total least-

squares methods can also be used here. Once the coefficients are estimated in Eq. (15), 

they are plugged back in Eq. (14) to reconstruct the missing data in outer k-space, like the 

conventional GRAPPA does. 

4.3 Experimental Results 

4.3.1 Experiment Settings 

The proposed method was tested on both phantom and in vivo data sets. An 8-channel 

phantom dataset was acquired using a Gradient Echo sequence (TE/TR = 10/100 ms, 

31.25 kHz bandwidth, matrix size = 256×256, FOV = 250 mm2). An 8-channel brain 
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dataset was obtained using a 2D spin echo (SE) sequence (TE/TR = 11/700 ms, matrix 

size = 256 × 256, FOV = 220 mm2). A set of cardiac cine images was acquired using a 

2D trueFISP sequence (TE/TR=1.67/50.1 ms, bandwidth 903 Hz/pixel, 45 degree flip 

angle, 8mm slice thickness, 34 cm FOV in readout direction, 256x146 acquisition 

matrix) with a 12-channel cardiac coil but combined to 4 channels. All data sets were 

acquired in full and then manually undersampled to simulate the accelerated acquisition. 

The sum-of-squares (SoS) reconstruction from the fully sampled data of all channels was 

used as the reference image for comparison. The reconstructions from reduced data using 

the CS-GRAPPA [15], the proposed CS-NLGRAPPA method, and SPIRiT method [16] 

were compared. In both CS-GRAPPA and CS-NLGRAPPA methods, the number of 

blocks (size of b) is 2 and the number of columns (size of h) is 15 for all datasets. For the 

eight-channel phantom data, a net reduction factor of 4 was achieved by a combination of 

1.5 for CS and outer reduction factor (ORF) = 6 with 42 ACS for GRAPPA/NLGRAPPA. 

For the eight-channel brain data, the net reduction factor is 3.93 with CS 1.7, ORF = 4, 

and ACS = 36. In the four-channel cardiac experiment, the net reduction factor is 4.12 

with CS 2.0, ORF = 4, and 40 ACS lines. 

4.3.2 Results of Phantom and In Vivo Datasets 

Figure 19 shows the reconstructions of the phantom using SOS, CS-GRAPPA, and the 

proposed CS-NLGRAPPA for a net reduction factor 4.00. The size of the coefficients for 

GRAPPA and nonlinear GRAPPA was 2 blocks and 15 columns. The size of the 

coefficients could be chosen optimally for each individual method, but the image quality 

is not sensitive to the change of size within a large range of the optimal choice, so we 
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fixed its size for both GRAPPA and nonlinear GRAPPA. Furthermore, a small region is 

zoomed to show more details. It is seen that the CS-GRAPPA suffers from large noise 

and aliasing artifacts at a net reduction factor of 4.00. The proposed CS-NLGRAPPA 

method can suppress both noise and artifacts at such a high acceleration without 

additional artifacts or loss of resolution. 

 

Figure 19. With (a) the SoS reconstruction of the 8-chanel phantom image as the 

reference, we compare (b) CS-GRAPPA and (c) the  proposed method at a net reduction 

factor of 4. Subfigures (d) – (f) show zoomed-in regions of (a) – (c) respectively. 
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Figure 20. With (a) the SoS reconstruction of the 8-chanel brain image as the reference, 

we compare (b) CS-GRAPPA and (c) the  proposed method at a net reduction factor of 

3.93. 

 

Figure 21. Comparison of (a) SoS, (b) CS-GRAPPA and (c) the proposed method in 

reconstructing the four-chanel cardiac image at a net reduction of 4.12. 
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Figure 20 shows the reconstruction results from a set of in vivo axial brain data. An 

ORF of 4 and the ACS of 36 were used with reduction for CS 1.7, so that a net 

acceleration of 3.93 can be achieved. Both GRAPPA and nonlinear GRAPPA still used a 

size of 2 blocks and 15 columns. It is seen that the reconstruction using the proposed 

method achieves a quality superior to CS-GRAPPA method. As shown in the zoomed 

regions, the proposed method not only effectively removes the spatial-varying noise and 

aliasing artifacts in the CS-GRAPPA reconstruction, but also preserves details well 

without blurring boundaries. The CS-NLGRAPPA can push the net reduction factor to 

3.93. 

The reconstruction results of the cardiac dataset in long axis are presented in Figure 

21. The ORF is 4 with reduction for CS 2.0 and number of ACS lines is 40 (net 

acceleration of 4.12). The size of the GRAPPA and the nonlinear GRAPPA coefficients 

were 4 blocks and 15 columns. The difference images with the reference are also shown 

(amplified 5 times for display) in Fig. 4. In contrast to the CS-GRAPPA reconstruction, 

the reconstruction by the proposed method is much cleaner with a slight loss of resolution 

at a high net reduction factor of 4.12. The same conclusion can be made that the CS-

NLGRAPPA method can significantly suppress the noise in CS-GRAPPA and still 

preserve the resolution and avoid artifacts at very high net acceleration factors. 

Furthermore, all methods were implemented in MATLAB programming environment, 

and codes were run on a HP workstation with four 3.2-GHz processors and 32-GB RAM. 

The computational time of both methods is compared in Table 1. The proposed method 

takes about 1.7 - 2 times of CS-GRAPPA for reconstruction. 
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 Phantom Brain Cardiac 

CS-GRAPPA 208 s 140 s 67 s 

CS-NLGRAPPA 429 s 267 s 116 s 

Table 1 Comparision of computational time between CS-GRAPPA and CS-NLGRAPPA 

We also compare the proposed method with SPIRiT [48] - an integrated approach of 

CS+pMRI reconstruction, which needs to modify the form of the traditional GRAPPA 

that undersamples k-space along 1D phase encoding direction. Because SPIRiT method 

has different sampling pattern that adopts 2D random sampling on k-space, central 32x32 

calibration area is fully sampled here, while outside k-space is randomly sampled. But the 

net acceleration factor of the SPIRiT method is strictly set as 3 and 4 for the phantom and 

brain datasets for comparison with the proposed method. As we can see in Figure 22, due 

to random sampling on 2D direction, SPIRiT method displays incoherent aliasing 

artifacts in the reconstructed image. On the other hand, the proposed CS-NLGRAPPA 

method can outperform the SPIRiT reconstruction without incoherent aliasing artifacts 

and with higher SNR. 
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Figure 22. The performance comparison between SPIRiT and the proposed CS-

NLGRAPPA method. Reconstructions of the phantom and the brain data sets are 

presented at net reduction factor 3.0 and 4.0, respectively. 

4.4 Discussion 

We investigate how different numbers are to be distributed among the CS, ORF and ACS 

to achieve the optimal quality at a fixed net reduction factor. It is known that high 

accelerations in CS can lead to aliasing artifacts and loss of resolution. On the other hand, 

high ORFs usually deteriorate SNR and require more ACS to avoid aliasing. The study 

was carried out on the eight-channel brain dataset. The results are shown in Figure 23. 

For a fixed net reduction factor of 3.93 and ORF of 4 for the NLGRAPPA step, we tested 

on three different combinations of ACS and reduction for CS (RCS). When 26 ACS lines 

and RCS = 1.4 were used, aliasing artifacts appear due to insufficient number of ACS 

lines. The appearance of artifacts is in form of folding that is typical of parallel imaging. 

When 44 ACS lines and RCS = 2.0 were used, aliasing artifacts appear due to propagation 

of CS reconstruction error. The appearance is rather incoherent due to the random 

sampling. The intermediate combination of 36 ACS and RCS = 1.7 generates the optimal 

reconstruction for this dataset. 

On the other hand, we fixed ACS to observe reconstruction results by various ORFs 

and reductions for CS as shown in Figure 24. For the fixed 44 ACS lines, ORF of 4 and 5 

were used on the horizontal direction; reductions for CS were sets as 1.5, 2.0, and 2.5 on 

vertical direction, respectively. Following the increasing ORF, aliasing artifacts in form 

of folding gradually appear as we can see from left to right side on the horizontal 
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direction, which is also a typical parallel imaging observation. From the top to bottom in 

the same column, some additional incoherent aliasing artifacts deteriorate the 

reconstructed image due to randomly sampling for CS reduction, which has the same 

conclusion in Figure 23. Therefore, both kinds of aliasing artifacts caused by parallel 

imaging and compressed sensing exist in the proposed method. If reconstruction quality 

is acceptable, both ORF and reduction for CS can be pushed even higher for fast imaging 

with balance of both aliasing artifacts. In general, the reduction in CS cannot be high due 

to error propagation. A factor of lower than 2 is usually used. 

 

Figure 23. CS-NLGRAPPA reconstructions with three different combinations of ACS 

and RCS with fixe ORF of 4 and a net reduction factor of 3.93. 

In this research, we propose a novel method that combines CS with nonlinear 

GRAPPA sequentially for fast imaging. NLGRAPPA is applied on the k-space data 

reconstructed by CS. The experimental results demonstrate that the proposed CS-

NLGRAPPA [70] method is superior to CS-GRAPPA in suppressing both noise and 

artifacts when a high net reduction factor is used. However, more experiments are needed 

to be done to study noise source in k-space, based on which, general guidelines of 
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choosing sampling pattern may be concluded. Iterative strategy will also be studied for 

even better CS-NLGRAPPA reconstruction. 

 

Figure 24. CS-NLGRAPPA reconstructions with six different combinations of RCS with 
various ORF used the fixed ACS.
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5. Nonlinear Channel Reduction for Efficient GRAPPA 
Reconstruction 

5.1 Review of Channel Compression 

Due to success of pMRI methods, more and more coils have been used in MRI systems 

[50, 72-74] for higher reconstruction quality and acceleration such as 128 coil arrays on 

research MRI scanners [50].  

However, computational cost provided by a large number of element coils can be 

significant. Some channel reduction methods [43-44, 51-54, 75-84] have been proposed 

to reduce reconstruction time. A hardware RF signal combiner inline after 

preamplification was placed to construct an eigencoil array [54, 75] by using the noise 

covariance of the receiver array. Optimal SNR can be achieved with receiver channel 

reduction, and the almost the same reconstruction quality can be kept by using a subset of 

channels (virtual channels). However, it needs hardware design and is not suitable for 

commonly used coils that have existed in the scanner.  

In contrast, software-based channel reduction methods provide a flexible way to 

reduce the computation cost for parallel MRI reconstruction. For example, coil array 

compression using principal component analysis (PCA) for MRI with large coil arrays 

was proposed for SENSE reconstruction [51] that is a sensitivity-based parallel imaging 

reconstruction method. The combination of coils can be expressed as a linear 

transformation matrix which reduces the number of physical coil channels to a subset of 

virtual channels. The number of channels can be largely reduced instead of only a little 

SNR loss, so that reconstruction time is accelerated with sacrificing only a very little 



68 

 

 

 

degeneracy of quality. Doneva et al [52] proposed an automatic coil selection approach 

using singular value decomposition (SVD) in SENSE-based parallel imaging 

reconstruction. The approach makes use of the coil sensitivity information and takes 

reduction factor and phase encoding direction into account. Although the proposed 

method is computationally efficient without remarkable image quality degradation, it still 

can’t improve reconstructed image’s quality. Furthermore, channel reduction technique 

was also successfully applied on k-space-based reconstruction approach such as 

GRAPPA. Due to reduced channels of having very low sensitivities make little 

contribution to the SNR of the final reconstructed image [43], two-stage channel 

compression and incorporation of all acquired data into the final reconstruction have been 

used for reducing computational time of GRAPPA reconstruction [44]. However, 

reconstruction quality is still a little degenerative, although computational and memory 

costs have been largely reduced. A trade-off exists between loss of information that 

degenerates reconstruction quality and reduced channels that reduce computational cost. 

Furthermore, the increase in computation time and memory provided by channel-by-

channel reconstruction can also be addressed by Direct Virtual Coil (DCV) technique [76] 

that synthesizes unaccelerated data for a virtual coil from undersampled data acquired by 

multiple source coils. Through the image quality comparison between channel-by-

channel parallel imaging reconstruction and the DVC reconstruction approach [77], the 

DVC reconstructions were determined to be nearly identical to the channel-by-channel 

reconstructions. Similarly, a single synthetic target coil [78] was proposed to combine 

images prior to the training instead of the channel-by-channel reconstruction, so that 
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significant computation gain can be achieved since image combination is performed on 

much smaller matrix size. Convolution based training and aliasing only need to be 

performed once a time instead of for each channel. 

In addition, a dynamic coil selection algorithm [79] is presented by a subset of 

receive coils that are selected for reconstruction using a coil ranking based on the 

distance to the current slice or catheter position. The center-of-sensitivity coordinates and 

relative signal intensities have to be determined for each coil in a prescan. Animal 

experiments involving catheter manipulation in the aorta and the right heart chamber 

demonstrate that the anatomy was successfully visualized at frame rates of about 5Hz 

using active catheter tracking in interventional applications. Similarly, since the channel 

sensitivity is localized in large arrays, channel reduction is achieved through channel 

cross correlation for channel-by-channel reconstruction [53]. The almost the same 

reconstruction quality compared with reconstruction using all channels can be achieved. 

Furthermore, computational burden was reduced by omitting information from physical 

coils or “virtual coils” that don’t contribute significantly to image SNR in ROI [80]. The 

sampled data from coil arrays with low signal energy content are discarded. 

Due to the success of software channel reduction methods have been applied on 

reconstruction by 2D data acquisition, these methods are also extended to 3D datasets [81, 

82]. A PCA-based software channel compression method was proposed for 3D datasets, 

and the compressed data was then reconstructed by GRAPPA with sliding blocks. A 

novel channel compression technique for 3D Cartesian sampling dataset was proposed 

recently [82] that exploits the spatial varying coil sensitivities along fully sampled 
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directions for better compression and computation reduction. From the experimental 

results, 3D datasets from a 32 channel pediatric coil can be effectively compressed into 6 

virtual coils without noticeable compression loss. 

Besides the reduction of the computation load, channel reduction can also have the 

denoising effect [83]. For the regions of low signal intensity in the straight root of sum of 

squares reconstruction of MR data, increased number of channels implies more noise.  

The property of PCA is to concentrate the useful information into fewer channels. The 

channels with low Eigen values (for example less than 1% of the maximum) can be 

considered as noise and hence the corresponding channels can be left unused and 

discarded. However, such denoising effect was only briefly discussed in Ref. [83]. No 

significant improvements have been reported. Furthermore, channel compression 

techniques have been also extended to other imaging methods such as BLADE [84]. In 

this dissertation, I apply kernel PCA to suppress noise and aliasing artifacts as well as 

compress channels for accelerating reconstruction time. 

 

5.2 The Proposed Method: Kernel PCA-based GRAPPA 

5.2.1 PCA-based GRAPPA 

PCA [38] is a basis transformation to diagonalize an estimate of the covariance matrix of 

the data. The new coordinates in the Eigenvector basis are called principal components. 

PCA finds an orthogonal linear transformation that transforms the data to a new 

coordinate system such that the greatest variance by any projection of the data comes to 

lie on the first coordinate, the second greatest variance on the second coordinate, and so 
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on. When applied to channel reduction, the ACS data is used to obtain the transformation 

which is then applied to all acquired data to obtain a new set of data in the new 

coordinate system. Mathematically, the linear transformation W can be obtained by the 

eigen-decomposition of the covariance matrix of the ACS data: 

                          H H=A A W ΣW                                                              (22) 

where A = [a1, a2, …, aL] is composed of vector al formed from the ACS data of the l th 

channel (L channels in total) after removing the mean, and W and Σ are matrices with 

eigenvectors and eigenvalues. The new coordinates in the eigenvector basis are known as 

principal components. It is assumed that the directions of largest variance represent 

interesting information and those of smallest variance represent uninteresting noise. For 

reduction, only the first few eigenvectors which correspond to the largest eigenvalues are 

kept to form the linear transformation T. This transformation matrix is then applied to the 

acquired k-space data to obtain the orthogonal projections onto the eigenvectors, which 

gives a new set of reduced virtual channels. Conventional GRAPPA reconstruction is 

then applied on the new dataset to reconstruct missing data in the transform domain. In 

Ref. [43], it is noted that the number of source channels (Nsch) and the number of target 

channels (Ntch) after PCA reduction can be different and one might be larger than the 

other to obtain the best results with the same computation time. The final root sum-of-

square (SOS) combines all the images from the virtual channels to generate the final 

image.  

Kernel principal component analysis (kernel PCA) is an extension of principal 

component analysis (PCA) by using techniques of kernel methods. Using a kernel, the 
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originally linear operations of PCA are done in a reproducing kernel Hilbert space with a 

nonlinear mapping. It can be considered as a natural extension of linear PCA and is very 

well suited to extract interesting nonlinear structures in the data. It has proved useful for 

various applications, such as denoising [39-41] and as a pre-processing step in regression 

problems [42]. Since PCA only linearly transforms data to new coordinates in the given 

space so that data relationship can’t be described more accurately than that in input space. 

KPCA can be used by explicit or implicit mapping [39]. The first one directly nonlinearly 

maps original k-space data into new coordinates by a nonlinear mapping Φ to construct 

the covariance matrix, and then uses conventional linear PCA to decompose the 

covariance matrix to obtain the compressed signals, which has the almost the same 

procedures with linear PCA. The second one uses kernel trick for predicting missing k-

space data, which needs longer computational time and more memory, since kernel trick 

matrix is generally very large. Since PCA has been successfully applied on channel 

reduction for GRAPPA reconstruction [43, 44], we studies kernel PCA for better channel 

reduction with the almost same reconstruction time and improved reconstruction quality. 

As shown in Figure 25, compressed signals produced by PCA are input into 

GRAPPA reconstructor and then final image is obtained by sum-of-square (SOS) to 

combine each image that is produced by IFT each virtual channel. Our investigation is 

replacing PCA with kernel PCA for better GRAPPA reconstruction with almost the same 

computational costs. 
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Figure 25. Demonstration of PCA and KPCA roles in channel reduction for GRAPPA 

reconstruction. 

5.2.2 Proposed Kernel PCA-based GRAPPA 

KPCA can be used by explicit or implicit mapping [40]. In this paper, we adopts explicit 

mapping in KPCA. To apply KPCA to channel reduction, we map the ACS data matrix A 

into a new feature space ( )Φ A  through a nonlinear transformation, and then the data in 

the new space is ensured to have zero-mean by subtracting the average value among all 

ACS data points. PCA can be worked in the feature space constructed by products of 

vector elements, which takes into account higher-order statistics. We then do linear PCA 

for the new data in the feature space. Specifically, for the covariance matrix ( ) ( )T
Φ ΦA A , 

eigenvectors that correspond to the largest few eigenvalues are maintained in matrix T, 

which will be used to project the data in feature space to a new space with reduced 

number of virtual channels. Parallel imaging reconstruction methods such as GRAPPA 

can then be applied to this new dataset, where the computation time can be reduced due 

to fewer channels. 

Since polynomials are widely used to approximate smooth unknown functions, we 

choose an inhomogeneous polynomial kernel for Φ mapping. It has the following form 
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( ) ( ),
dT rκ γ= +a b a b                                                      (23) 

where λ and r are scalars and d is the degree of the polynomial. Another advantage of 

polynomial kernel lies in the fact that its corresponding nonlinear mapping Φ(a) such that 

( ) ( ) ( ), ,k =< Φ Φ >a b a b
 
has explicit representations. For example, if d = 2, Φ(A) maps the 

original L-channel data A to: 

( ) 2 (2) (2)
1 1

1 2 1

[ , 2 , , 2 , , , ,

2 , , 2 , , 2 ]

L L

T
i j L L

r r rλ λ λ λ

λ λ λ −

Φ =A a a a a

a a a a a a

K K

	 K 	 K 	
                                    (24) 

where a1, a2, …, aL are vectors representing different channels, superscript (2) means 

piecewise square, and 	  denotes piecewise multiplication. It is seen that the vector 

includes the linear terms in the original space as well as the constant and second-order 

terms, and Φ(A) has (L+2)(L+1)/2 terms in total. 

Since there are too many terms, we truncate the second order terms to save 

computation. Specifically, we sort the second-order terms according to the following 

order. We first have the square terms within each coil, and then the product terms 

between the nearest neighbors, the next-nearest neighbors, and so on so forth in k-space.  

The above order is then repeated for terms that are across different coils. With the sorted 

terms, we can truncate the vector Φ(a) according to the desired dimension of the feature 

space. If we truncate all second-order terms, the proposed method is equivalent to linear 

PCA-based channel reduction. 

The target channels are defined as the data that correspond to the left hand side of Eq. 

(2) and source channels as those for the right hand side of (2). Since the target channel 

and source channel in GRAPPA are rather independent [44], different feature spaces can 
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be used. We choose the original space for the target channel to avoid the complication of 

transforming data back from the feature space to the original space. The source channels 

are only used for estimation and thereby do not need to be transformed back to the 

original space. In this study, we choose the number of second-order terms to be three 

times of that of the first-order terms for constructing the source channels. 

The parameters r and λ control the nonlinearity incorporated into the new coordinates. 

If the nonlinearity is too high, original channel information will be lost and the 

reconstructed image will be seriously distorted. On the other hand, if the nonlinearity is 

too small, it is almost equivalent to original PCA-based channel reduction method, in 

which case the noise is not suppressed. We let 2 1rλ = and adjust λ for optimal 

performance. Specifically, we first find the maximum absolute value M2nd of the second-

order terms to be used for constructing the feature space. We then let λsource take any 

value in the range between (1/ M2nd,10/ M2nd). It is found empirically that the 

performance is insensitive to the values within this range. 

5.3 Analysis of Computational Expense 

The computational expense can be quantitatively evaluated by using matrix 

multiplication measure [85]. For the 2D GRAPPA [13], the dominant calibration cost is 

the matrix inversion step that requires NpNx(Ncdxdy)
2 complex-valued multiplications, 

where Np is the number of phase-encoding lines that are possible fit locations along 

phase-encoding direction, Nx is the number of points along the frequency-encoding 

direction, Nc is the total number of all channels for original k-space data, and dx and dy 

are the convolution size of 2D GRAPPA along the frequency-encoding and phase-
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encoding directions respectively. Furthermore, the dominant computational expense for 

the synthesis step of GRAPPA needs NuNxNc
2dxdy(R-1) complex-valued multiplications, 

where Nu is the number of phase-encoding lines to be synthesized at a particular phase-

encoding offset location, and R is outer reduction factor (ORF). Therefore, the whole 

computational expense for 2D GRAPPA reconstruction [85] is 

NpNx(Ncdxdy)
2+NuNxNc

2dxdy(R-1). Due to PCA-based channel reduction for GRAPPA 

reconstruction, the computational expense can be reduced to 

NpNx(Nschdxdy)
2+NuNxNschNtchdxdy(R-1) [44], where Nsch and Ntch are the number of 

source channels and target channels reduced by PCA. 

Dominant computational expense of PCA or KPCA hasn’t been analyzed so far. 

Similar to GRAPPA reconstruction, channel reduction is also an essential part of the 

whole reconstruction procedure. The whole computational cost depends on both of them. 

If we can prove that the dominant computational expense of PCA and KPCA only take a 

very small portion of the computational cost of GRAPPA reconstruction, we can explain 

why KPCA-GRAPPA could achieve the almost the same reconstruction time to PCA-

GRAPPA, since GRAPPA takes the dominant reconstruction time in the whole procedure.  

The dominant computational expense of KPCA focuses on the construction of 

covariance matrix and SVD. For the first one, the construction of covariance matrix in 

KPCA requires NacsNx (4Nc)
2 complex-valued multiplications. Furthermore, the 

computational cost of SVD for a complex-valued matrix with m x n size is 

16m2n+24mn2+29n3 [86]. Therefore, set m=n=4Nc, and total computational expense for 

KPCA is NacsNx(4Nc)
2+4416Nc

3. Similarly, the computational expense for PCA is 
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NacsNx(Nc)
2+69Nc

3. After obtain these computational expenses, ratios of computational 

expenses can be obtained as follows. 

( ) ( )

( )

2

2 3

1

4 4166

p x x y sch u x sch tch x yGRAPPA

KPCA acs x c c

N N d d N N N N N d d RCE

CE N N N N

+ −
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+
                            (25) 
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CE N N N N

+
=

+
                                           (26) 

If we adopt commonly used reconstruction parameters [65] that Nacs=40, Nx=256, dx=9, 

dy=4, R=4, Nu=168, Nsch=Ntch=16, Nc=32, SlideBlock=2, 

( )1 240p acsN SlideBlock N R≈ × × − = , then the ratios are 

70.9GRAPPA

KPCA

CE

CE
≈  and 23.9KPCA

PCA

CE

CE
≈                                            (27) 

, respectively. Although the computational expense of KPCA is about 24 times of PCA, 

computational expense of GRAPPA using reduced channels is much larger than KPCA. 

Therefore, both PCA and KPCA only take a very tiny portion of the whole computational 

expense and they have the almost same computational cost in the whole reconstruction 

process. 
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5.4 Experimental Results 

5.4.1 Experiment Settings 

The performance of the proposed method was validated using three scanned datasets. The first 

scanned dataset was acquired on a GE 3T scanner (GE Healthcare, Waukesha, WI) with a 32-

channel coil, and the last two datasets were acquired on a Siemens 3T scanner with an 32-channel 

coil (Siemens Trio, Erlangen, Germany). In the first dataset, a uniform water phantom was 

scanned using a gradient echo (GRE) sequence (TE/TR = 10/100 ms, 15.63 kHz bandwidth, 

matrix size = 256×256, FOV = 250 mm2, Slice Thickness=3.0mm).  The other second datasets 

were an axial brain image and coronary brain image acquired using a 2D spin echo (SE) sequence 

(TE/TR = 2.29/100 ms, matrix size = 256 × 256, FOV = 240 mm2, Slice Thickness=3.0mm). 

Informed consents were obtained for all in vivo experiments in accordance with the institutional 

review board policy. 

The proposed method was compared with the conventional GRAPPA [13] and PCA-

based GRAPPA [43, 44]. The root sum of squares (SOS) reconstruction from the fully 

sampled data of all channels was shown as the reference image for comparison. The size 

of the coefficients (blocks by columns) was chosen as 2x15 for each individual method 

by comparing the mean-squared errors resulting from different sizes. Difference images 

from the reference were used to show all sources of error, including blurring, aliasing and 

noise. All methods were implemented in MATLAB (Mathworks, Natick, MA). To 

facilitate visual comparison, zoomed-in patches were also shown for some 

reconstructions. 
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Figure 26. For the 32-channel phantom dataset, reference and reconstructions by the 

conventional GRAPPA, PCA-GRAPPA, KPCA-GRAPPA are presented, respectively. 

Their difference maps are also given for performance comparison. 

5.4.2 Results of Phantom and In Vivo Datasets 

Figure 26 shows the reconstructions of the phantom using the conventional GRAPPA, 

GRAPPA using PCA-based channel reduction, and the proposed GRAPPA using KPCA-
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based channel reduction for an ORF of 5 and the ACS of 42 (net acceleration of 3.01). 

The size of the coefficients was 2 blocks and 15 columns. Both target and source have the 

same number of virtual channels, which are set as 12 and 16 for performance comparison. 

Furthermore, they have two combinations of Ntch=12, Nsch=18 and Ntch=18, Nsch=12 for 

testing performance. Similar to the conventional GRAPPA, it is seen that GRAPPA with 

PCA-based channel reduction suffers from serious noise. The proposed KPCA-based 

channel reduction can suppresses most of the noise without additional artifacts or loss of 

resolution. In addition, the proposed method has almost the same reconstruction time in 

comparison with PCA-based channel reduction, which is much faster than the 

conventional GRAPPA reconstruction. More details of the CPU time can see the Table 2 

(a). It can be seen that the proposed method not only can reduce the reconstruction time 

to as low as around 6% of the conventional GRAPPA, but also it can achieve better 

reconstruction quality in comparison with the conventional GRAPPA and PCA-based 

GRAPPA. 
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                                                (a) REF                (b) GRAPPA 

                                                

                                                         (c) PCA-GRAPPA   (d) KPCA-GRAPPA 

Figure 27. For the 32-channel brain (axial) dataset, reference and reconstructions by the 

conventional GRAPPA, PCA-GRAPPA, KPCA-GRAPPA are presented, respectively. 

Their difference maps are also given for performance comparison. 

Figure 27 shows the reconstruction results for a vivo dataset of axial brain. An ORF 

of 4 and the ACS of 48 were used with a net acceleration of 2.56. The numbers of target 

and sources channels are both 16, and λsource is 1.23e-9. It is seen that the reconstruction 

using the proposed method is able to suppress the spatially-varying noise in both 

conventional GRAPPA and PCA-reduced GRAPPA reconstructions. Furthermore, the 

proposed method also preserves the details of the image without blurring. The proposed 

method takes almost the same time (863 seconds) as the PCA-based channel reduction 

method, and it takes only about 11% reconstruction time of the conventional GRAPPA 

(7771 seconds) to reconstruct the image but with better quality. 
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Figure 28. For the 32-channel brain (coronary) dataset, reference and reconstructions by 

the conventional GRAPPA, PCA-GRAPPA, KPCA-GRAPPA are presented, respectively. 

Figure 28 shows the reconstruction results for a vivo dataset of coronary brain. 

Reconstruction parameters are 48 ACS lines, ORF 4 and 6, Coefficient size 2x15, original 

channels 32, number of reduced channels 20, and net reduction factor 2.56 and 3.01. As we can 

see, the proposed method still outperforms both conventional GRAPPA using full channels and 

PCA-GRAPPA method. The CPU time is presented in Table 2 (b) for comparison. 
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Furthermore, NMSE and reconstruction time have been presented in Figure 29. The 

left sub-figure in Figure 29 shows the normalized mean-squared error (NMSE) for the 

conventional GRAPPA, PCA-GRAPPA, and KPCA-GRAPPA at ORF 4, 5, and 6, 

respectively. The right sub-figure in Figure 29 presents the corresponding reconstruction 

times in the left figure. It can be seen that reconstructions by the conventional GRAPPA 

have the longest reconstruction times and the worse reconstruction quality. Following the 

increasing ORF, the proposed method can still preserve lowest NMSE, but 

reconstructions of GRAPPA and PCA-GRAPPA are gradually deteriorated. Furthermore, 

the proposed method can reduce reconstruction time to a large extent. Although PCA-

GRAPPA can also accelerate reconstruction time as well as the proposed method, its 

reconstruction quality is the worst among the all methods. The proposed method not only 

reduces the reconstruction time to around 15% of the conventional GRAPPA, but also 

keeps lowest NMSE in comparison with the conventional GRAPPA and PCA-GRAPPA.  

 



84 

 

 

 

Figure 29. Quantitative comparison among GRAPPA, PCA-GRAPPA, and KPCA-

GRAPPA at ourter reduction factors 4, 5, and 6. 

 

(a) 

ORF=5 N=32 Ntch=Nsch=12 Ntch=Nsch=16 Ntch=12,Nsch=18 Ntch=18,Nsch=12 

GRAPPA 6197 s     

PCA  400 s 930 s 601 s 785 s 

KPCA  397 s 939 s 600 s 782 s 

 

(b) 

 ORF = 4 ORF = 6 

GRAPPA 5735 s 9587 s 

PCA-GRAPPA 1448 s 2269 s 

KPCA-GRAPPA 1452 s 2273 s 

 

Table 2. (a) CPU times for 32-channel phantom dataset using different combinations of 

source and target channels, (b) reconstruction times for 32-channel brain (coronary) 

dataset. 

Furthermore, computational costs of PCA and KPCA are extracted independently for 

evaluating their proportions in the whole reconstruction procedure. For 32-channel 
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datasets and 48 ACS lines, if the number of the reduced set of target and source channels 

is 8, 12, 16, 20, 24 respectively, the computational costs via CPU time of PCA and 

KPCA are presented as shown in Table 3. Although KPCA consumes more computation 

costs than PCA, it only takes a very small portion of the CPU times in the whole 

reconstruction procedure that are presented in Table 2. For this reason, whole 

reconstruction times of PCA-GRAPPA and KPCA-GRAPPA are almost the same. 

 PCA KPCA 

Ntch=Nsch=8 0.30 s 3.93 s 

Ntch=Nsch=12 0.33 s 4.23 s 

Ntch=Nsch=16 0.37 s 4.34 s 

Ntch=Nsch=20 0.39 s 4.52 s 

Ntch=Nsch=24 0.43 s 4.75 s 

Table 3. The computational costs via CPU time of PCA and KPCA at reduced 8, 12, 16, 

20, and 24 channels. 

5.5 Discussion 

The parameter λsource have different selections to control the reconstruction quality. The 

sensitivity map of one channel is generated from the division of the individual low-

resolution image and the SOS of all channels. For 32 channels, we select 8 channels: 1, 5, 

9, 13, 17, 21, 25, and 29 to demonstrate the changes of sensitivity maps, in which each 
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sensitivity maps is displayed using the same scale (bright means large magnitude value 

and dark denotes low magnitude value). As shown in Figure 30, sensitivity maps of 

original channels (without channel reduction) display normal magnitudes and each 

channel has sensitivity distribution with almost the same magnitudes. On the other hand, 

many channels corresponding to small eigenvalues after PCA reduction present very little 

magnitudes of sensitivity maps that contribute little to the SNR of the final reconstructed 

image. Generally, the first channel that corresponds to the largest eigenvalue has the 

largest magnitudes on the sensitivity map. Following the decreasing eigenvalues, 

magnitudes of the sensitivity map become smaller and make little contribution to SNR of 

the final reconstructed image. For KPCA, if λsource is too small, sensitivity distribution for 

each channel after channel reduction is almost the same to that of PCA channel reduction. 

Following the increasing value of λsource, sensitivity maps are gradually changed in 

comparison with PCA channel reduction, because new coordinates have been changed 

nonlinearly. 
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Figure 30. Comparison of sensitivity maps among original channels, reduced channels by 

PCA, reduced channels by KPCA with different parameters. 
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6. Conclusion 

In summary, the problems of GRAPPA reconstruction are low SNR at high acceleration 

factor, low imaging acceleration, and significant computational costs with many coils. 

Since nonlinear approaches have been proposed and successfully applied on SENSE 

reconstruction in our group, in order to improve GRAPPA reconstruction efficiently, 

three nonlinear approaches have been proposed for the contribution in the dissertation. 

In order to enhance SNR of GRAPPA reconstruction at high acceleration factors, we 

proposed a novel kernel-based nonlinear reconstruction algorithm for GRAPPA. The 

proposed method [66, 69] provides a more general model to characterize the noise 

behavior in GRAPPA reconstruction and thereby improves the SNR significantly. 

Experimental results demonstrate that the nonlinear GRAPPA is superior to conventional 

GRAPPA and other two methods at the same net acceleration factor. We anticipate that 

the proposed nonlinear approach can bring further benefits to current applications of 

conventional GRAPPA. 

Compressed sensing (CS) and parallel MRI (pMRI) have been widely studied for 

accelerating MRI reconstruction. However, both reconstructed signals by CS and PI are 

not as accurate as acquired MR signals, so that errors of CS reconstruction as the first 

step will be propagated and even amplified to deteriorate pMRI reconstruction quality in 

the second step. We proposed a novel method [70] that combines CS with nonlinear 

GRAPPA sequentially for fast imaging. NLGRAPPA is applied on the k-space data 

reconstructed by CS. The generalized kernel regression model of NLGRAPPA can 

remove error effects of inaccurate signal reconstruction by CS. The experimental results 
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demonstrate that the proposed CS-NLGRAPPA method is superior to CS-GRAPPA in 

suppressing both noise and artifacts when a high net reduction factor is used.  

Furthermore, in order to reduce the computational costs caused by many coils in 

reconstruction, we studied channel reduction technique for fast reconstruction. We 

proposed a novel nonlinear channel reduction for GRAPPA reconstruction. A novel 

kernel-PCA-based channel reduction method is proposed for parallel MRI. The method 

maps the data onto a higher dimensional space through a nonlinear transformation and 

PCA is performed to generate a reduced set of new channels. Experimental results 

demonstrate that the proposed KPCA-based channel reduction method is able to not only 

reduce the computational time, as the PCA-based method does, but also suppress noise in 

GRAPPA reconstruction. 
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