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ABSTRACT

A STUDY OF NONLINEAR APPROACHES TO PARALLEL
MAGNETIC RESONANCE IMAGING

by

Yuchou Chang

The University of Wisconsin-Milwaukee, 2012

Under the Supervision of Professor Jun Zhang

Magnetic resonance imaging (MRI) has revolutionizadiology in the past
four decades by its ability to visualize not onhetdetailed anatomical
structures, but also function and metabolism inftram. A major limitation
with MRI is its low imaging speed, which makes iffidult to image the
moving objects. Parallel MRI (pMRI) is an emergiteghnique to increase
the speed of MRI. It acquires the MRI data from tmpild coils
simultaneously such that fast imaging can be aeliely reducing the
amount of data acquired in each coil. Several nustHmave developed to

reconstruct the original image using the reduced d@m multiple coils
i



based on their distinct spatial sensitivities. Aigpahe existing methods,
Sensitivity Encoding (SENSE) and GeneRally Autdwaliing Partially
Parallel Acquisition (GRAPPA) are commercially useeconstruction
methods for parallel MRI. Both methods use lineggpraaches for image
reconstruction. GRAPPA is known to outperform SEN&ttause no coil
sensitivities are needed in reconstruction. Howe@RAPPA can only
accelerate the speed by a factor of 2-3. The abgeof this dissertation is to
develop novel techniques to significantly improve tacceleration factor
upon the existing GRAPPA methods. Motivated by shecess of recent
study in our group which has demonstrated the literoéf nonlinear
approaches for SENSE, in this dissertation, noal@g@proaches are studied
for GRAPPA. Based on the fact that GRAPPA needsldration step
before reconstruction, nonlinear models are ingagtd in both calibration
and reconstruction using a kernel method widelydusemachine learning.
In addition, compressed sensing (CS), a nonlingdimazation technique
will also be incorporated for even higher acceleret. In order to reduce the
computation time, a nonlinear approach is propdeettduce the effective
number of coils in reconstruction. The imaging spmseexpected to improve

by a factor of 4-6 using the proposed nonlineahneqes. These new



techniques will find many applications in accurbtain imaging, dynamic

cardiac imaging, functional imaging, and so forth.
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1. Introduction

1.1 Magnetic Resonance Imaging

1.1.1 General Introduction

Since the first successful nuclear magnetic resmma(NMR) experiments were
performed in 1946, many scientists over the nextentioan a half-century developed MR
Imaging into the technology that we now know tod&agnetic Resonance Imaging
(MRI) has increasingly become one of the prefemeaging modalities in modern times
to examine the structures inside the body, whiclabtas physicians to visualize
differences among soft tissue with incredible aclii.

MRI provides an imaging technique which is pradhcaon-invasive and without
any ionizing radiation. In comparison with otheraigng modalities including X-ray,
ultrasound, or computed tomography (CT) scan, MRWVides more information about
structures inside the body in many cases. Unlikeroimaging techniques, MRI uses a
strong magnetic field and radio waves to createmdarized images of the body that
include head, chest, blood vessels, abdomen, péleres, joints, spine, and so forth. A
commercial MRI scanner is demonstrated in Figuré i$.used to identify problems such
as tumors, bleeding, injury, blood vessel diseasesnfection. Furthermore, contrast

agents may be used during MRI to show abnormaldissore clearly.



Figure 1. Demonstration of a MRI scanner (pictuwquared from GE MRI scanner, GE

Healthcare, Waukesha, Wisconsin)

1.1.2 K-Space and Image Reconstruction

The readout MR signals that include radio frequerfR¥) waves with different
amplitudes, frequencies, and phases contain spat@mation of the structures inside
the body. These MR signals are digitized, and thatien into a data matrix callekl
space, which is the 2D or 3D Fourier transformh&f MR image measured. An inverse
Fourier transform is applied daspace to produce an image [2, 3], as shown inr€igu
In k-space, kcoordinates represent frequency-encoding (FE)ctae (horizontal
direction), and {coordinates denote phase-encoding (PE) directierti¢al direction).
Low frequency signals locate near the centek-epace, while high frequency signals

locate near the periphery &fspace. As shown in Figure 2, after two square sl



with different sizes are applied daspace to truncate the data, the corresponding
reconstructed images display different spatialltggms. The reconstructed image with a
smaller square window for data truncation is bldrmee to loss of high frequency signals
near the periphery df-space. After incorporating more high frequencynalg with a

larger square window, resolution of the reconseddmage is improved.

K-Space Image

-

Inverse
I
—

2DFT

Inverse

2DFT

Inverse

2DFT

Figure 2. Ak-space data to an image requires using a 2D invesséer transformk-

space contains both low frequency signals and thegfuency signals.



Furthermore, the differences in the spatial, terap@nd resolution of the MR images
depend on how MR signals are mapped intokispace. Three gradients: slice selection
(G,), frequency encoding (& and phase encoding {)Gare used to spatially encode the
signals in MRI. Each gradient is characterizedtbysirength (magnetic field variation for
the same unit of distance), duration of time, amdation. The net strength and duration
of the frequency-encoding gradient, @nd phase-encoding gradient, @ecide the
locations ( and k coordinates) of data daspace:

1) A low-amplitude or short-duration gradient encott®s frequency information;

this kind of information is generally mapped atmduhe center df-space.

2) A high-amplitude of long-duration gradient encothégh frequency information;

this kind of information is mapped to the periphefk-space.

As shown in Figure 2, the greater the net streofjtiie phase-encoding gradieng &r
the longer the gradient is on), the farther fromkispace center the data belong, in the
upper direction if the gradient is positive or imetlower direction if the gradient is
negative. As the duration of phase-encoding gradsesmost often constant, the strength
of the phase-encoding gradient governs the locairothe vertical axis (kcoordinate).
On the other hand, the longer the frequency-engpgliadient Gis on (or the greater the
net strength of the gradient is), the farther frin@k-space center the data belong, in the
right direction if the gradient is positive or imetleft direction if the gradient is negative.
As the strength of the frequency-encoding gradentost often constant, the duration of
the frequency-encoding gradient governs the lopatom the horizontal axis (K

coordinate).



As we can see, after the entiespace is collected, inverse Fourier transform lwan
used to reconstruct the image. Typicakygpace is filled with raw data during the scan,
usually one phase-encoding line per TR (repetitioe). Between each repetition, there
is a change in phase-encoding-gradient strengtiresonding to a change in-k
coordinate. This allows filling of all the lines &fspace from top to bottom. Therefore,
more PE lines are filled, more scanning time isscomed. Fullk-space reconstruction
can achieve the best quality due to all signal&eHhmeen sampled and filled on thspace.
Considering the scanning time consumed, some &dsar applied partiak-space
reconstruction that only undersamples a pak-sppace signals to reconstruct the image.
Furthermore, MR image reconstruction is ill-posedaa inverse problem [71], so that
guality of reconstructed images would be deterextain order to evaluate reconstruction
performance, image quality can be measured guaétatand quantitatively, which will

be presented in the next sub-section.

1.1.3 Image Quality

In MRI, there are some issues on image qualitythia section, we will present the
concepts of spatial resolution, noise, and arsfadthese measures will be used to
evaluate the reconstruction quality in comparisath the proposed methods and existing
methods in the dissertation.

Spatial resolution corresponds to the size of thmallest detectable detail. The
smaller the voxels are, the higher the spatiallogism will be. Spatial resolution that
depends on the properties of the imaging systerargby quantifies how close lines can

be to each other and still be visibly resolved amtent of the MR image. As shown in



Figure 2, different resolutions of the reconstrdci®ages are compared and details are
difficult to be resolved in the low resolution inmeg

Noise presents irregular patterns on the MR imadp@se random variations in signal
degrade image quality. The sources of MR imageenaie very complex that depend on
some factors including MR scanner specificatiomssue characteristics, coil design,
pulse sequence design, and so forth. The signabise ratio (SNR) that is equivalent to
the ratio of the signal power over the noise poisansually used for measuring noise.
Furthermore, g-factor was also used for reconstmatvaluation and its details can be
seen in the content of the dissertation.

Artifacts often deteriorate MR Images. Similar toige, there are many sources of
artifacts on MR images, which can be classified imhage reconstruction-related
artifacts, system-related artifacts, physiologwtedl artifacts, and so forth. In this
dissertation, artifacts are mainly originated framage reconstruction-related artifacts
due to limitations intrinsic to the reconstructialigorithm. For example, aliasing artifacts

appear by reducing the number of sampled signaksspace, as shown in Figure 3 (b).

1.2 Parallel MRI

1.2.1 Parallel Imaging

Imaging speed is one of the most important conatdsrs in clinical MRI. In practical
acquisition, frequency encoding generally takesy anllliseconds, but phase encoding
has to be done line by line with appropriate TRosilag between each line acquisition,
which is time consuming and it sometimes takes reg¢vainutes depending on the RF

sequence. Therefore, as mentioned above, onlytepaf k-space data is needed to be



acquired to accelerate imaging speed. Parallel igIRItechnique to increase the speed of
MRI acquisition, which can accelerate image actjoisi dramatically by extracting
spatial information from an array of phased coitaudtaneously. Each coil has distinct
spatial sensitivities. Fast imaging is achievedskipping a humber of phase-encoding
lines and the reduced data from multiple coils then used to reconstruct the original
image. Theories of parallel MRI were developed atel1980’s but the practical
implementation was carried out until the end of @99The technique has been widely
used in clinical settings since 2tentury and its improvement is still undergoing in

recent years.

The acquisition time depends on the procedurellofgiup thek-space. One way to
accelerate this phase encoding step is to redcaumber of phase encoding lines by
the acceleration factd that increases the distance of equidistantly sadipspace lines.
In image space, this kind of undersampling kkspace generates a reduced field of view
(FOV) in phase encoding direction associated wolld bver artifacts in the coil images
presented in Figure 3.

In parallel MRI, undersampling acquisition requiresltiple coils to cover the entire
FOV. A basic idea of parallel MRI is the followingcquire reduced FOV covering a
portion of the entire image by each coil and corabihe images from all the coils
together to produce full-FOV image. Each elemend ghased coil array is related to a
separate independent receiver system. So, muitipdges can be reconstructed for a

given imaging. Roemer et al explored how to coraltirese images for optimal SNR [4],



whose study shows that, in order to optimally restarct array coil images, we need to

explicitly know the coil sensitivities at all pix&lcations.

(a) K-Space Image Space

Inverse

FOV
2DFT
Inverse

2 FOV
2DFT

Figure 3. (a) Fully samplekispace provided by conventional acquisition, résglin a
full FOV image after inverse Fourier transform. (@hdersampled acquisitiorR€2),
resulting in a reduced FOV (FOV/2) with aliasingfacts.

Image acquisition is accelerated by the accelerdfotor R-factor). Theoretically,
imaging time can be reduced Byfactor equal to the number of array coil elem¢ggjs
However, decreased SNR and increased image nooroniiies limit acceleration factor
well below the theoretical maximumR in actual reconstruction methods. Both image-
based reconstruction methods &mspace-based reconstruction methods in parallel MRI

have this problem.



1.2.2 Image-Based Reconstruction Methods

Reconstruction methods of parallel MRI can be aaiegd into two groups: image-based
parallel imaging reconstruction arkdspace-based parallel imaging reconstruction. For
image-based parallel imaging reconstruction, thaliasing process is done after the
Fourier transform. To perform the image-based rsitantion, it is necessary to estimate
the coil sensitivities. These estimates can beimdtafrom a separate calibration scan
from calibration data, which is contained in theusition. The commonly used image-

based reconstruction methods contain:
e SENSE [6] (SENSitivity Encoding);
e PILS [7] (Partially Parallel Imaging with Localiz&Ensitivity).

The typical one of image-based reconstruction mithe SENSE, for which the
unaliasing process is done in the image domainurBigd shows the SENSE
reconstruction that is done in the image domaieraftverse Fourier transforming tke
space data. When the undersamp{espace data is inverse Fourier transformed to the
image domain, the field of view (FOV) is reducedtbg 1R. This means that the same

information is contained in a smaller area whicdketo fold over type aliasing artifacts.
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Figure 4. Work flow of SENSE reconstruction
In the following equation, the signal in one pigt¢la certain location (x, yeceived
in the N™ component coil imaggy for the case wherB=2. Theg vector represents the
complex coil image values including fold over aatifs at the chosen pixel. The matsix
denotes the sensitivities for each coil atR¥2. To generate thevector, the inverse of
the S matrix is calculated. This effectively combinese theference data of coill

sensitivities and the sub-sampled target data.

a(xY | [s(xy  s(x y%/) :f(xy) n(xy
: . . ' : 1)

=\ : +

S
g% Y] |S(x Y %(xy%/) f(x,y—%/) oY)

However, with this sequential processing, any ine&cy in sensitivity estimation can
be propagated to the reconstructed image. Furthretrsensitivity maps are required to

be explicitly estimated for reconstruction.

1.2.3 K-Space-Based Reconstruction Methods

In image-based parallel imaging reconstruction, thaliasing process is done after the
Fourier transform. To perform the image-based rsttantion, it has to estimate the coll
sensitivities. These estimates can be obtained faoseparate calibration scan from
calibration data, which is contained in the acqusi In contrast, k-space-based

reconstruction directly reconstructs missikgpace signals without requiring the prior
knowledge of coil sensitivities and then generatesges by inverse Fourier transform.

The commonly usekspace-based reconstruction methods contain:
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e SMASH [8] (SiMultaneous Acquisition of Spatial Haomics);
e GRAPPA [9] (GeneRalized Autocalibrating PartiallgrBllel Acquisitions);

e AUTO-SMASH [10] (AUTO-calibration SiMultaneous Actpition of Spatial

Harmonics);

e VD-AUTO-SMASH [11] (VD-AUTO-calibration SiMultanea Acquisition of

Spatial Harmonics).

In conventional GRAPPA, the centiakpace of each coil is sampled at the Nyquist
rate to obtain ACS data, while the outespace is undersampled by some outer reduction
factors (ORF). The missingspace data is estimated by a linear combinatiothef
acquired undersampled data in the neighborhood &ibooils, which can be represented

mathematically as

L B H
Si(k+mk, k)=D>>> w (lthx g k+ Bk k A, L., L+ R (2)

I=1t=B, h=H,

where s;(k + mk, k) denotes the unacquired-space signal at the target coil,
S(k+tRk, k+ i k) denotes the acquired undersampled signal,vgnd,t,h) denotes

the linear combination coefficients. HeRaepresents the ORFcounts all coilst andh
transverse the acquired neighborkagpace data iky andky directions respectively, and
the variablek, andky represent the coordinates along the frequencypaade-encoding
directions, respectively. Figure 5 presents a destnation of GRAPPA reconstruction as

mentioned above, in which the white dots repreentnissing-space signals, the black
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dots denote the acquired undersampled data, argitéka dots represent auto-calibration

signals.

O Unacquired Pixel

Coj_l;.i-: O " 3,

Coil 37 - Coil 37

@ ~c quired Pixel

7 WGI‘ Coil 4 oneﬁpd‘

@ ACS Pixel

B onelLine
Figure 5. GRAPPA reconstruction demonstration

When the acceleration factor is high, GRAPPA retrocton can suffer from
aliasing artifacts and noise amplifications. Selvenethods have been developed in
recent years to improve GRAPPA, such as localizgldcalibration and variable density
sampling [12], multicolumn multiline interpolatiof13], regularization [14,15],
iteratively reweighted least-squares [16], highspitering [17], cross validation [18,19],
iterative optimization [20], GRAPPA operator [21]2%irtual coil using conjugate
symmetry [23], multi-slice weighting [24], infinitpulse response (lIR) filtering [25],
cross sampling [26], and filter bank methods [2F.,2Z8e problems of GRAPPA will be

detailed in the next chapter, where the contributibthe dissertation will also be given.

1.3 Compressed Sensing MRI

Compressed sensing [67, 68] is a technique for ifghdsparse solutions to
underdetermined linear systems. In electrical eswging field, particularly in signal

processing, compressed sensing is the processqafriag and reconstructing a signal
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that is supposed to be sparse or compressible.dsledhages can be compressed with
little or no perceptible loss of information. Faxaenple, some compression standards
including JPEG, JPEG-2000, and MPEG are widely ussupression strategies for

transform-based compression.

Imaging speed is one of the most challenges in M to an inherently slow data
acquisition process. The application of CS to MB$ lthe potential for significant scan
time reductions, with benefits for patients andlteeare economics. MRI obeys two key
requirements for successful application of CS M, (1) medical imaging is naturally
compressible by sparse coding in an appropriatesfitan domain (e.g., by wavelet
transform); (2) MRI scanners naturally acquire sl®@f the encoded image in spatial
frequency, rather than direct pixel samples. For IMRS is also a nonlinear
reconstruction process with iterations.

Because parallel MRI and CS reduce sampling basesbmplementary information,
several methods [30, 32, 47, 48] have been develépecombine pMRI and CS for
further reduction. Among these methods, the oned #Hequentially carry out CS
reconstruction for the aliased image of each chHaané parallel imaging for the final
unfolded image have demonstrated several advanfd@ged7]. Firstly, because the CS
and pMRI procedures are clearly decoupled, any €PpMRI methods are directly
applicable without modifications. Secondly, the péng pattern can be designed to
satisfy different requirements for CS and pMRI. dHy, the acceleration factor of the

combined approach is a product of the factors &edidy CS and pMRI individually.
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1.4 Motivation and Organization

Both SENSE and GRAPPA are both commercially usednstruction methods. For both
techniques, GRAPPA askaspace-based reconstruction technique has the @ayeathat

it doesn’t need to estimate sensitivity maps expliand thus avoids error propagation in
the whole reconstruction procedure. However, ther exist several issues with

GRAPPA.

For example, when acceleration factor is high, metmiction quality will be
deteriorated by noise. Current net acceleratiotofaaf commercially used GRAPPA in
SIEMENS MRI scanner is around 2.6, which is faolethe number of coils. In addition,
more and more channels have been used in paraldl sk improving SNR. The
reconstruction time becomes very significant withaege number of channels. These
problems will be analyzed and presented in deitaitee problem statement of chapter 2.
To address these issues, we study nonlinear agmedor GRAPPA reconstruction in
this dissertation. Furthermore, the study is alstivated by the success of the previous
research in our group which has demonstrated thefib® of nonlinear approaches for
SENSE [29-32].

The dissertation is organized as follows. Chaptg@relsents the introduction of the
MRI, the parallel MRI techniques and relevant issdier GRAPPA reconstruction.
Problem statement and contribution of the dissertawvill be given in the chapter 2.
After present these basic materials, we will presleree novel techniques for improving
GRAPPA in chapter 3, 4, and 5, respectively. Thekws summarized and future work

will be presented in chapter 6. Finally, referendiébe given.
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Furthermore, within chapter 3, 4, and 5, we wilalgme the specific problem firstly,
and then improved methods will be proposed via sowdinear approaches. Finally,

experimental results, discussion, or remaining lemol to be solved will be presented.
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2. Problem Statement and Contribution of the Dissdation

2.1 Problem Statement

2.1.1 Low SNR with High Imaging Acceleration

As pointed out in the chapter 1, SNR is deteriatatéhen acceleration factor is
increasing. GRAPPA reconstruction has the samelgmobAs a concrete example, noise
and aliasing artifacts increase with higher redurctiactor as shown in Figure 6. The
conventional GRAPPA method [9, 13] reconstructsrthssingk-space data by a linear
combination of the acquired data, where the caefits for combination are estimated
using some auto-calibration signal (ACS) lines Uguacquired in the centrat-space.
Huang et. al. [49] analyzed two kinds of errorsGRAPPA reconstruction: truncation
error and inversion error. Nana et. al. [18, 19leaded the analysis and used more
general terms: model error and noise-related erfbie first kind of error mainly
originates from a limited number of ACS lines araladtruncation. When a limited size
of k-space signals is observed or inappropriately ahasstead of the whol&-space,
model errors occur in GRAPPA reconstruction. Thigetof error usually varies with the
amount of ACS data, reduction factor, and the sizthe coefficients to be estimated for
reconstruction. For example, a reduction in ACSugition usually results in degraded
image quality. Therefore a large amount of ACS dateeeded to reduce this model error
but at the cost of prolonged acquisition time. Bleeond kind of errors originates from
noise in the measured data and noise-induced errestimating the coefficients for

linear combination. Regularization [14, 15] hasrbased in solving the inverse problem
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for the coefficients, but significant noise redoatiis usually at the cost of increased
aliasing artifacts. Iterative reweighted least-sgqea[16] method reduces the noise-
induced error to a greater extent by ignoring naiskeiced “outliers” in estimating the

coefficients. However, the method is computatiangdensive.

In general, the coefficients depend on the coikgetities and are not knowa priori.
The ACS data are used to estimate these coefficidmhong all the ACS data fully
acquired at the centrétspace, each location is assumed to be the “mispinigt to be
used on the left-hand side of Eq. (2). The neiginigorocations with a certain
undersampling pattern along the phase encodingctiire are assumed to be the
undersampled points that are used on the right-satedof Eq. (2). This is repeated for
all ACS locations (except boundaries of the ACSaepbased on the shift-invariant
property to fit GRAPPA coefficients to all ACS dafBhis calibration process can be
simplified as a matrix equation

b =Ax 3)

where A represents the matrix comprised of the undersamptents of the ACSh
denotes the vector for the “missing” points of &k@S, andx represents the coefficients
to be fitted. The matriA is of sizeMxK with M being the total number of ACS data
(excluding the boundaries) akdbeing the number of points in the neighborhooanfro
all coils that are used in reconstruction. Theteguares method is commonly used to

calculate the coefficients:

X = minb— Ax| (4)
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Figure 6. Lower SNR as increasing outer reductamtdr. The reconstruction parameters

of 8-channel brain data are 40 ACS lines, coefficgze of convolution is 4x5.

When the matrixA is ill-conditioned, the noise can be greatly arigdi in the
estimated coefficients. To address the ill-conditig issue, regularization methods [14,

15] have been used to solve for coefficients usipgnalized least-squares method,
% = min|b - Ax||* + AR(x) (5)
X

where R(x) is a regularization function (e.gR(x) = |k|k in Tikhonov) andi is
regularization parameter. Regularization can eiffebt suppress noise to a certain level.
However, aliasing artifacts usually appear in retarction at the same time while large

noise is suppressed.
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Another source of noise-induced error in GRAPPAPoigtliers”. Outliers arek-space
data with large measurement errors due to noisd@amdensitivity. They lead to large
deviations in the estimated coefficients from thetones when the least-squares fitting
is used. Iterative reweighted least-squares mefh6fhas been proposed to minimize
the effect of outliers in least-squares fitting.eTimethod iteratively assigns and adjusts
weights for the acquired undersampled data. “Ostliare given less weights or removed
in the final estimation so that the fitting accyrand reconstruction quality is improved.
However, the high computational complexity of thethod limits its usefulness in

practice.

2.1.2 Imaging Acceleration Is Not High Enough

Besides SNR problem, higher acceleration is alsoth&m problem of parallel MRI
reconstruction methods. As stated previously, foihg the increasing acceleration, noise
deteriorates reconstruction quality in parallel MRlore efficient reconstruction that
needs both high acceleration and high SNR shoulttheeved simultaneously. GRAPPA
reconstruction has been commercially used on SIEBIE®¢anner, on which the
acceleration factor is usually set as 3 and theaocegleration factor provided by general
parameter settings is around 2.6 for acceptablenstauction quality, which is not high
enough for even faster imaging.

In the dissertation, although reconstruction quahitovided by nonlinear GRAPPA
has been improved to some extent, its net accielesafactor is still not high enough.
Compressed sensing has been combined with par®Rl for higher imaging

acceleration [30, 32, 47, 48]. For the existing ods that serially combine CS and
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parallel MRI, both reconstructed signals by CS phtRI are not as accurate as acquired
MR signals, so that errors of CS reconstructionthasfirst step will be propagated and
even amplified to deteriorate pMRI reconstructiarality in the second stefherefore,

robust method is required to achieve high SNR agll &icceleration simultaneously.

2.1.3 Computation Cost of Reconstruction Is Large ith Many Coils

Due to success of parallel MRI methods, more andenuwils have been used in
commercial MRI systems for good reconstruction dyaind high acceleration such as
128 coil arrays on research MRI scanners [50]. Hemecomputational cost provided by
a large number of element coils increases sigmfigaSome channel reduction methods
[43, 44, 51-54] have been proposed to reduce réetmti®n time and keep the almost the
same reconstruction quality by using a subset ahobls (virtual channels). For example,
coil array compression using PCA for MRI with largeil arrays was proposed for
SENSE reconstruction [51, 52]. The number of chiEnoan be largely reduced instead
of a little SNR loss, so that reconstruction tirmeccelerated with sacrificing only a very
little degeneracy of quality. Furthermore, chanmeluction technique by PCA was also
successfully applied on GRAPPA ak-apace-based reconstruction approach [43, 44].
Due to reduced channels of having very low sensds/ make little contribution to the
SNR of the final reconstructed image [43], two-stafpannel compression method has
been used for reducing computational cost of GRAR&#Nstruction [44]. However,
reconstruction quality is still a little degenevati although computational and memory
costs have been largely reduced. A trade-off exbstisveen loss of information that

degenerates reconstruction quality and reduced ctatipnal cost. Furthermore, a small
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set of neighbor channels were selected based oelatton among channels for reducing
computation cost [53]. The reconstruction qual#yaimost the same in comparison with
reconstruction using full channels. A hardware REna combiner inline after
preamplification was placed to construct an eigérenway [54]. Optimal SNR can be
achieved with receiver channel reduction.

For software-based methods [43, 44, 51-53], duth@oloss information caused by
channel reduction, reconstruction quality usingeauced subset of virtual coils is
equivalent to or a little worse than the recongstamcquality by using full channels. In
other words, current software-based channel commegechniques for parallel MRI
only focus on accelerating reconstruction time dad’'t improve reconstruction quality.
Therefore, parallel MRI reconstruction with manyanhels (such as 32-channels, 64-
channels) for simultaneously reducing computatiortaist and achieving high

reconstruction quality is another challenge topat twould be solved in the dissertation.

2.2 Dissertation Contribution

Considering the three problems mentioned above dibsertation is addressing these
problems on enhancing SNR at high reduction faciogeasing imaging acceleration,
and reducing channels of parallel MRI, respectively

For SNR problem, we focus on the nature of noiskexed error and develop a novel
nonlinear method to reduce such kind of error. Srn-variables problem that exists in
the conventional GRAPPA reconstruction was analyzadd nonlinear noise was
generalized and suppressed by using kernel meiftusl proposed nonlinear GRAPPA

(NLGRAPPA) not only has the advantage of nonlineaethods in representing



22

generalized models that include linear ones asegiapcase, but also maintains the
simplicity of linear methods in computation.

In order to achieve even higher imaging accelenatiwe proposed a novel serial
combination method of CS and NLGRAPPA (CS-NLGRAPP&gonstruction based on
the first work — nonlinear GRAPPA. The generalizkeinel regression model of
NLGRAPPA can remove error effects of inaccuratemaigeconstruction by CS. The
experimental results using phantom and in vivo digeonstrate the proposed CS-
NLGRAPPA method can significantly improve the resioaction quality over the
existing method and push net reduction factor atodn The general guideline of
selecting sampling patterns is presented basecherdiscussion of the experimental
results.

For computational costs of parallel MRI with marannels, we aimed at combining
reduced channels and improving reconstruction tyuaimultaneously via software-
based method. The proposed channel reduction methikeinel PCA (KPCA) based
reduction not only reduces computational cost fbe tconventional GRAPPA

reconstruction, but also enhances reconstructiatitgu
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3. Nonlinear GRAPPA - A Kernel Approach to Parallel MRI

Reconstruction

GRAPPA linearly combines the undersampkespace signals to estimate the misding
space signals where the coefficients are obtaineditting to some auto-calibration
signals (ACS) sampled with Nyquist rate based @ndhift-invariant property. At high
acceleration factors, GRAPPA reconstruction cafesdfom a high level of noise even
with a large number of auto-calibration signals.this work, we propose a nonlinear
method to improve GRAPPA. The method is based ersthcalled kernel method which
is widely used in machine learning. Specificallye tundersample#-space signals are
mapped through a nonlinear transform to a high-dsimnal feature space, and then
linearly combined to reconstruct the missikgpace data. The linear combination
coefficients are also obtained through fittinghie ACS data but in the new feature space.
The procedure is equivalent to adding many virtaahnnels in reconstruction. A
polynomial kernel with explicit mapping functions iinvestigated in this work.
Experimental results using phantom and in vivo dd¢anonstrate that the proposed
nonlinear GRAPPA method can significantly improve treconstruction quality over

GRAPPA and its state-of-the-art derivatives.

Kernel methods [33-37] have been successfully edpio a number of real-world
problems and are now considered state-of-the-artvamious domains such as

classification, pattern analysis, machine learnimegression, and so forth. Recently, it
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has been successfully applied on signal proceg8iigfor robust regression and least-
squares solution. Due to versatile tools of solvomgblems kernel methods offer, we
study it for GRAPPA reconstruction which is ess&né linear filtering or regression
problem.

In this research, we focus on the nature of nmsieigéed error and develop a novel
nonlinear method to reduce noise-induced error.ifféatify the nonlinear relationship
between the bias in the estimated GRAPPA coeffisi@amd the noise in the measured
ACS data due to the errors-in-variables problerthencalibration step. This relationship
suggests that the finite impulse response (FIR) ehadirrently used in GRAPPA
reconstruction is not able to remove the nonlineaise-induced bias even if
regularization is used. We thereby propose a neatimpproach to GRAPPA using the
kernel method, named nonlinear GRAPPA. (Note tbisé&l is a terminology in machine
learning and is different from the GRAPPA kerndl lioear combination.) The method
maps the undersampled data onto a high dimensfeatlre space through a nonlinear
transform and the data in the new space are tmmarly combined to estimate the
missing k-space data. Although the relationship betweenaitguired and missing-
space data is nonlinear, the relationship can Ilsdyeand linearly found in the high
dimensional feature space using the ACS data.vitoish noting that the nonlinearity of
this approach is completely different from thatine GRAPPA operator formulation in
Refs. [21, 22] where the former is on thepace data while the latter is on the GRAPPA
coefficients through successive application ofdineperators. The proposed method not

only has the advantage of nonlinear methods inesgmting generalized models that
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include linear ones as a special case, but alsotamas the simplicity of linear methods

in computation.

3.1 Errors-in-variables Model of GRAPPA

The conventional GRAPPA formulation in Eqg. (2) &) (models the calibration and
reconstruction as a standard linear regression uediction problem, where the
undersampled part of the ACS corresponds to theessgrs and the rest is the
regressands. With this formulation, if the undergia points of the ACS (regressors)
are measured exactly or observed without noise, ramde is present only in the
“missing” ones of the ACS (regressands), then #astlsquares solution is optimal and
the error in the reconstruction is proportionathe input noise. However this is not the
case in GRAPPA because all ACS data are obtaimad fneasurement and thus contain

the same level of noise.

To understand the effect of noise in both partdhef ACS data (regressors and
regressands), we describe the regression and poadprocess of GRAPPA using latent
variables [55]. Specifically, if A and b are obsedwariables that come from the ACS
data with measurement noise, we assume that thast ®ome unobserved latent
variables valueA and b representing the true, noise-free counterpartspsehtrue

functional relationship is modeled as a linear fiorcf. We thereby have

A
b=b+3, (6)
f
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where dp and J, represent measurement noise that are presenti@S data and
assumed to be independent of the true va@luand b , andx denotes the latent true
coefficients for the linear relationship betwe&nand b without the hidden noise.

In the standard regression process, the coeffebens estimated by fitting to the
observed data iA andb:

b=AXx — b+5,=(A+3,)x (7)

Therefore, there is a biag = x-X in the coefficients estimated from the least-sgsar
fitting, where

x:[(A+5A)T(A +o, 1A +5A)T(5 +3,) (8)

For example, consider the simplest case whkasea scalar and andA are both column
vectors whose elements and a represent measurements at indexrhe estimated

coefficient is given by
T T
x=Y ah / >.a (9)
which deviates from the true coefficiedt = b /a . When the number of measurements
T increases without bound, the estimated coeffiaenwerges to
x=%/(1+0Z/c2) (10)
where the noise iR andb is assumed to have zero mean and varianeg &nd o}

respectively. It suggests that even if there arefinite number of measurements, there
is still a bias in the least-squares estimatorc&ihe bias depends on the noise in l#oth

andb, its effects on the estimated coefficiertare also noise-like. In the multivariable
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case, the bias of GRAPPA coefficients is not eashigracterized analytically, but is

known to be upper bounded by (Theorem 2.3.8 in[&R&)

15, |£SK(A)(||6~A I Wy 1| dia IHLJ (11)
I AT B A bl

where «(A) is the condition number of matrik . The bound in Eqg. (11) suggests that

the bias in GRAPPA coefficients can be large athhigduction factors due to ill-
conditionedA [14]. In addition, the bias is not a linear fuoctiof the noise in the ACS.
This is known as the errors-in-variable problenragression. Figure 7 uses an example
to demonstrate the nonlinearity of the bias for GRA coefficients as a function of
noise in the ACS data. Specifically, a set of brdata with simulated coil sensitivities
(obtained from http://www.nmr.mgh.harvard.edu/~fflinvas used as the noise-free
signal. We calculated the bias for GRAPPA coeffitse(with the coefficients obtained
from the noise-free signal as reference) when wiffelevels of noise were added on all
24 lines of the ACS data. We plotted the normalized for GRAPPA coefficients as a
function of the normalized noise level added to A@S data. It is seen that the bias is
not a linear function of noise level. However, wh#e noise is sufficiently low, the
curve is well approximated by a straight line ar tbias-noise relationship is
approximately linear. Total least squares [57,158] linear method used to alleviate the
problem by solving Eq. (7) using the total leastiags instead of least squares. It
addressed the error-in-variable problem to somengxivhen the noise is low. In the
reconstruction step of GRAPPA, when the biasedficosfits X are applied upon the
noisy undersampled dafato estimatehe missing data in out&rspace, errors presented

in the reconstruction are given by
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y—AZ =(A+35, )R +5,) ~AX =A 5 +X 5, + 553, (12)

It shows the effect of biased coefficients on tkéneated missing-space data is also
nonlinear and noise-like. A comprehensive staasti@nalysis of noise in GRAPPA
reconstruction can be found in [59].
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Figure 7. Nonlinearity of the bias for GRAPPA caaénts as a function of noise in ACS

data.

3.2 Proposed Nonlinear GRAPPA

All existing GRAPPA derivatives are based on theedr model in Eq. (2) without
considering the nonlinear bias due to noise INARKS data. To address the nonlinear,

noise-like errors in GRAPPA reconstruction, a kemethod is proposed to describe the
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nonlinear relationship between the acquired undepged data and the missing data in
present of noise-induced errors. Please note hieakernel used in this paper is different
from the kernel usually used in GRAPPA literatwedpresent thke-space neighborhood

for linear combination.

3.2.1 General Formulation Using Kernel Method

Kernel method [33-36] is an approach that is widedgd in machine learning. It allows
nonlinear algorithms through simple modificationsnfi linear ones. The idea of kernel
method is to transform the data nonlinearly toghlar dimensional space such that linear
operations in the new space can represent a dassnbnear operations in the original
space. Specifically, given a linear algorithm, wapnthe data in the input spa&do the
feature spacél via a nonlinear mappin@(-): A—H, and then run the algorithm on the
vector representatiof(a) of the data. However, the map may be of very higlewen
infinite dimensions and may also be hard to fimdthis case, the kernel becomes useful
to perform the algorithms without explicitly commg @®(-). More precisely, a kernel is

related to the mapping in that
k(a,8,)=<®(a) ®(8)> Va gecA (13)

where <,> represents the inner product. Many dffetypes of kernels are known [36]

and the most general used ones include polynorarakk [60] and Gaussian kernel [61].

To introduce nonlinearity into GRAPPA, we apply anhnear mapping to the

undersampledk-space dataai={ s (k + Rk, k+ u k) } in the neighborhood of each

missing point wheré counts all coils antlandh transverse the acquired neighboriag
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space data irk, and ky directions respectively. Under such a mapping, ). is
transformed to the following new linear systenxof

b =d(A)X (14)
WherecD(A)=[cp(al),q)(az),«--,cD(aM)]T with & being theith row vector of the matri

defined in EqQ. (2). The new matrix(A) is of M xN, , whereNk is the dimension in the

new feature space which is usually much higher #aBquation (14) means the missing
data inb is a linear combination of the new data in featspace which are generated
from the original undersampleklispace dataA. Although Eq. (14) is still a linear
equation of the coefficientg, it mathematically describes the nonlinear retatiop
between the undersampled and missing data beculke nonlinear mapping function
®(-). With the ACS data, the regression processtbthe coefficientx in Eq. (14) for
the proposed nonlinear GRAPPA can still be solved liinear, least-squares algorithm

in feature space
x=(0" (A)D(A)) ‘D" (A)D (15)

Once the coefficients are estimated in Eq. (19®y tre plugged back in Eq. (14) for the
prediction process to reconstruct the missing datauterk-space, like the conventional
GRAPPA does. Figure 8 summarizes the above proeeahd illustrates the nonlinear
and linear parts of the proposed method (NLGRAPIRApmparison to the conventional
GRAPPA. It can be seen that the proposed methaddmtes an additional nonlinear
mapping step into GRAPPA to pre-process the acduiredersampled data while the

computational algorithm to find the coefficientssisll the linear least-squares method.
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Other linear computational algorithms such as rghted least-squares and total least-

squares methods can also be used here.

GRAPPA
Linear
(f ¥ Least-Squares —> GRAPPACoefficients
Acquired ‘H
Undersampled
Data ACS Data (Size M)
(Size K)
- Datain ﬂ
Nonlinear Feature Space Linear L,
E: Mapping > NL-GRAPPA Coefficients
®(-) (Size N, >> K) Least-Squares
NL-GRAPPA

Figure 8. lllustration of the calibration proceduior GRAPPA and nonlinear (NL)

GRAPPA.

3.2.2 Choice of nonlinear mappingd(-)

To choose the optimal kernel or feature space tigrivial. For example, Gaussian kernel
has been proved to be universal, which means itiedrl combinations of the kernel can
approximate any continuous function. However, dtterfy of the calibration data may

arise as a result of this powerful representaii@men the success of GRAPPA, we want
the nonlinear mapping to be a smooth function theludes the linear one as a special
case when the dimension of the feature space isvasas the original space. Since
polynomials satisfy the desired properties, we skoan inhomogeneous polynomial

kernel of the following form

c(a.a)=(rdq+r) (16)
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wherey andr are scalars and is the degree of the polynomial. Another advantafye
polynomial kernel lies in the fact that its corresding nonlinear mappin@(a) such that

k(a,a)=<®(a)®(a)> has explicit representations. For example, #r = 1 andd = 2,
®(a) is given by [62]
o(a)=[1V2a,... N2 & ... &V 2aa.. v 2a.. Y 2,a] (17)

whereay, a,, ..., ak are components of the veceand there arek+2)(K+1)/2 terms in
total. It is seen that the vector includes thedimerms in the original space as well as the
constant and second-order terms.

When all possible terms i(a) are included, direct use of the kernel functicayrbe
preferred over the use of nonlinear mapping in @¢) for the sake of computational
complexity. However our experiment (See Figure 1™ Results) shows that the
reconstruction using kernel functions suffers frblurring and aliasing artifacts. This is
because the model is excessively complex and repies too broad class of functions,
and thus the model has been overfit during caliimabut poorly represents the missing
data. This overfitting problem can be addressededycing the dimension of the feature
space [63]. The reduction of feature space is aeldidere by keeping the constant term
and all first-order terms/2a,,... /23, , but truncating the second-order terms in vector
®(a). Specifically, we sort the second-order termsoating to the following order. We
first have the square terms within each coil, amehtthe product terms between the
nearest neighbors, the next-nearest neighborssamuh so forth irk-space. The above
order is then repeated for terms that are acrdBetit coils. With the sorted terms, we

can truncate the vectdr(a) according to the desired dimension of the feaspice.
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The performance of the proposed method dependhi@mumber of second-order
terms. If the number is too low, prediction is ioa@te because the feature space is not
complex enough to accurately describe the trudioekship between the calibration and
undersampled data in presence of noise, and tleusetonstruction resembles GRAPPA
and still suffers from noise-like errors. On théethand, if the dimension is too high,
the model is overfit by the calibration data bubpyp represents the missing data, thus
leading to aliasing artifacts and loss of resoluiilo reconstruction. This is known as the

bias-variance tradeoff and is demonstrated usingxample in Results section.

3.2.3 Explicit implementation of nonlinear GRAPPA

We find heuristically (elaborated in Results) thas sufficient to keep the number of the
second-order terms to be about three times thaheffirst-order terms. That is, the

feature space is reduced to

d(a)=[1v2a, V28, 28 & & . a3 RA R BF A3 w@sa  (18)

~K ~K

where (@ g) are nearest neighbors ang, (&) are next-nearest neighbors krspace
along ke within each coil. We also find that a slight inase in the number of second-
order terms does not change the reconstructiontgualit increases the computation.

After plugging the above truncated mapping vedi@s) in Eqg. (18) into the matrix

representation in Eq. (14) and changing to thetimois in conventional GRAPPA, the

proposed nonlinear GRAPPA method is thereby fortedlas
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W (1 h hx S K+ bRk ke th,k

I=1 b=, h= " (19)

where the same notations are used as in Eq. (2).

The above nonlinear formulation represents a memeigl model for GRAPPA,
which includes the conventional GRAPPA as a speaaek. It is seen that the first-order
term of nonlinear GRAPPA in Eq. (19) is equivaléatthe conventional GRAPPA,
which mainly captures the linear relationship betwethe missing and acquired
undersampled data in the absence of noise and»apm@tions. The second-order terms
of Eq. (19) can be used to characterize other neatieffects in practice such that noise
and approximation errors are suppressed in recaisin. The proposed formulation is a
nonlinear model in the sense that nonlinear contioinaf acquired data contributes to
estimation of missinds-space data. However the computational algorithrstiislinear
because the new system equation in Eqg. (19) isastihear function of the unknown
coefficients and can still be solved by the lineast-squares method.

To better interpret the nonlinear GRAPPA method, cae consider the nonlinear
terms as additional virtual channels as done in RS]. For example, the first-order
terms in Eqg. (19) represent a linear combinatiorL gbhysical channels, while each
second-order term represents a set of additiownatual channels. Therefore there ate 4

channels in total when Eqg. (19) is used. More seaoder terms provide more virtual
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channels. It is worth noting that different frometkrue physical channel, there is no
equivalent concept of coil sensitivities for thetwal channels. This is because the
additional virtual channels are nonlinear functmfnthe original physical channels. For
example, the “square channel” takes the squardek-space data point-by-point. In

image domain, this is equivalent to the sensitimiydulated image convolves with itself.

Therefore the resulting image cannot be represeagdatie product of the original image
and another independent “sensitivity” function. Arer point to be noted is that the
virtual channels are not necessarily all independ@mly adding channels that are
linearly independent can improve the reconstrucgieriormance. Choosing independent

channels needs further study in our future work.



36

Reference

Regularization

NL-GRAPPA  6-38

.

0 8
Figure 9. Phantom images reconstructed from an eight-chatataket with an ORF of 6
and 38 ACS lines (denoted as 6-38 on the rightetoai each image). With the SOS
reconstruction as the reference, the proposedmearliGRAPPA (NL-GRAPPA) method
is compared with conventional GRAPPA, regularizeRIABPPA, and IRLS methods. The
corresponding difference images with the referdieeamplification) and g-factor maps

are also shown on the right two columns respegtivel
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3.3 Experimental Results

3.3.1 Experiment Settings

The performance of the proposed method was vatidageng four scanned datasets.
The first three scanned datasets were all acquired GE 3T scanner (GE Healthcare,
Waukesha, WI) with an 8-channel head coil, anddseone was acquired on a Siemens
3T scanner (Siemens Trio, Erlangen, Germany). & fitst dataset, a uniform water
phantom was scanned using a gradient echo (GREEseq (TE/TR = 10/100 ms, 31.25
kHz bandwidth, matrix size = 256x256, FOV = 250 fimThe second dataset was an
axial brain image acquired using a 2D spin echo) (&fjuence (TE/TR = 11/700 ms,
matrix size = 256 x 256, FOV = 220 MmThe third one was a sagittal brain dataset
acquired using a 2D spin echo (SE) sequence (TBO=ts, TE = min full, matrix size =
256 x 256, FOV = 240 mfh In the fourth dataset, cardiac images were aeduising a
2D trueFISP sequence (TE/TR=1.87/29.9 ms, bandw8@th Hz/pixel, 50 degree flip
angle, 6mm slice thickness, 34 cm FOV in readorgation, 256x216 acquisition matrix)
with a 4-channel cardiac coil. Informed consentsrewebtained for allin vivo
experiments in accordance with the institutionale® board policy.

The proposed method was compared with conventiGRAPPA, as well as two
existing methods that improve the SNR, Tikhonovutagzation [14] and iterative
reweighted least-squares (IRLS) [16]. The root sfisquares (SOS) reconstruction from
the fully sampled data of all channels was showthageference image for comparison.
The size of the coefficients (blocks by columnsywhosen optimally for each individual

method by comparing the mean-squared errors regdtbm different sizes. The g-factor
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map was calculated using Monte Carlo simulationdessribed in [64] and used to show
noise amplification. It is worth noting that for mimear algorithms, the SNR loss
depends on the input noise level, and the g-fadbosvn in Results are valid only in a
small range around the noise level used in thidystDifference images were used to
show all sources of error, including blurring, aliey and noise. All methods were
implemented in MATLAB (Mathworks, Natick, MA). Taatilitate visual comparison,

difference images from the reference and zoomgehiohes were also shown for some
reconstructions. A software implementation of theposed nonlinear GRAPPA method

is available at https://pantherfile.uwm.edu/leiyimgw/index_files/software.htm.

3.3.2 Results of Phantom and In Vivo Datasets

Figure 9 shows the reconstructions of the phantesmguSOS, GRAPPA, Tikhonov
regularization, IRLS, and the proposed nonlineaABRA for an ORF of 6 and the ACS
of 38 (net acceleration of 3.41). The size of tbefticients was chosen optimally for
each individual method, though the image qualitypas sensitive to the change of size
within a large range of the optimal choice. Theestf the coefficients for nonlinear
GRAPPA was 2 blocks and 15 columns and that foother methods was 4 blocks and
9 columns. It is seen that the conventional GRAP$UAfers from serious noise.
Tikhonov regularization and IRLS can both improlie SNR to some extent but at the
cost of aliasing artifacts. The proposed nonline®&APPA method suppresses most of
the noise without additional artifacts or loss eéalution. In addition, difference images

with the reference and g-factor maps shown in Bigilso suggest that the noise-like
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errors have quite different distributions spatialhyd they are more uniformly distributed

in nonlinear GRAPPA than in other methods.

Figure 10. Axial brain images reconstructed froraea of eight-channel data with an
ORF of 5 and 48 ACS lines using GRAPPA, regularif2dAPPA, IRLS, and the
proposed nonlinear method. The corresponding eéifiee images with the reference (5x

amplification) are shown on the middle column aAdgor maps on the right column.
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Reference

Regularization 5-48

Figure 11. Sagittal brain images reconstructecthfeoset of eight-channel data with an
ORF 5 and 48 ACS lines and their correspondingeifice images on the right. The

proposed nonlinear GRAPPA suppresses most noikewtitliasing artifacts.
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Regulanigation #5=48

Figure 12. Results from the four-channel cardiataset with an ORF 5 and 48 ACS
lines. The reconstructed images, zoomed ROI, @iffee images, and g-factor maps are
shown from left to right respectively. They shovaitthe proposed method can remove

more noise than other methods while still presegytire resolution.
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Figures 10 and 11 show the reconstruction resattshie twoin vivo brain datasets,
axial and sagittal respectively. An ORF of 5 and &CS of 48 were used with a net
acceleration of 2.81. Nonlinear GRAPPA used a siz2 blocks and 15 columns, while
the other methods used that of 4 blocks and 9 amdurhhe difference images with the
reference are also shown (amplified 5 and 9 tiroeslisplay) in both Figs. 10 and 11 and
g-factor maps are shown for the axial dataset gn F0. It is seen that the reconstruction
using the proposed method achieves a quality supterall other methods. The proposed
method effectively removes the spatially-varyingseoin the conventional GRAPPA
reconstruction without introducing aliasing artiaas Tikhonov regularization and IRLS
methods do. Furthermore, the proposed method atsegves the resolution of the axial
image without blurring. There is only a slight lasfsdetails in the sagittal image due to
the tradeoff between noise suppression and resolptieservation (discussed later in Fig.
14).

Figure 12 show the results for threvivo cardiac dataset in long axis. The ORF is 5
and number of ACS lines is 48 (net acceleratior2.60). The size of the nonlinear
GRAPPA coefficients was 4 blocks and 15 columnse ®ther methods used a size of 4
blocks and 3 columns. The ventricle areas are zdaimeshow more details. Both the
difference images and the g-factor maps are showallf methods. The same conclusion
can be made that the nonlinear GRAPPA method gamfisantly suppress the noise in

GRAPPA and still preserve the resolution and aaoidacts.
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Figure 13. NMSE curves of the proposed method as a functiothe@ number of the
second-order terms using the long-axis cardiacsdatalrhe “U” shape of the curve
suggests that some intermediate number shoulddseenh

We also used the cardiac dataset to study how tingber of second-order terms
affects the nonlinear GRAPPA reconstruction qual@pecifically, we truncate all the
sorted second-order terms to keep the number dtbees (e.g., 3 times in Eq. (19)) that
of the first-order terms. The normalized mean sgdi@rrors (NMSE) was calculated and
plotted as the function of the number of the fosder terms in Figure 13. In
consideration of computational complexity, only ttentral 64 columns of the 48 ACS
lines were used here for calibration. The two emugmf the curve are the extreme cases
of the proposed method. The left one correspond®nwentional GRAPPA without the
second-order terms, and the right one is the cdserevall second-order terms are

included (implemented efficiently using kernel reggntation directly). Figure 14 shows

the corresponding reconstructions at some pointhefcurve. Both the curve and the
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images suggest that too small or too laxgaeteriorates reconstruction quality. When the
numberN increases, noise is gradually suppressed, buewution gradually degrades
and aliasing artifacts gradually appear due toothexfitting problem. The optimal range
for the value oN to balance the tradeoff between noise, resolutiad, aliasing artifacts
is seen to be 3-4 times of the number of the @rder terms, according to both the
NMSE curve and the images. Because the valug difectly affects the computational

complexity,N = 3 was chosen and shown to work well for all data tested in this study.

Referenggy,

NL-GRARPA

NL-GRARPA STimes|Full Kerngl,
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Figure 14. The nonlinear GRAPPA reconstructions with an iasmeg number of the
second-order terms show that the noise is gradualtyoved but artifacts gradually
increase. In the extreme case when all second-tedes are included, both blurring and

aliasing artifacts are serious.

3.4 Discussion

We have shown in results that the proposed nonliGEAPPA method can outperform
GRAPPA at high ORFs but also with a large numbek@S§ lines. It is interesting to see
how the method behaves at lower ORFs or with fed€6 lines. In Figure 15, we
compare GRAPPA and nonlinear GRAPPA with decrea€fs when the number of
ACS lines is fixed to be 40. At a low ORF of 2, Ihotethods perform similarly well. The
proposed method has a slightly lower level of noide ORF increases, GRAPPA
reconstruction begins to deteriorate due to theeamed level of noise. In contrast, the
nonlinear GRAPPA method can maintain a similar SNRerefore the benefit of
nonlinear GRAPPA becomes more obvious at high ORIfsthe other hand, as ORF
increases, the required number of ACS lines usuabds to increase to avoid aliasing

artifacts.
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SRAP P

Figure 15. Comparison between GRAPPA and nonlinear GRAPPAWDIRF increases
with fixed ACS lines. Contrary to GRAPPA, noise time proposed method does not

increase with the ORF.
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Referenggy,

GRAP P

Figure 16. Comparison of GRAPPA and nonlinear GRAPPA recaesisns when ACS
increases with fixed ORF. It shows nonlinear GRAPR&eds more ACS lines than
GRAPPA to avoid aliasing artifacts, but GRAPPA hasre noise than nonlinear

GRAPPA.
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9Columns NL-GRARPA 9Columas

Figure 17. Comparison between GRAPPA and nonlinear GRAPPA wiierent
numbers of columns are chosen for the coefficie@Gtmtrary to GRAPPA, the use of
more columns in nonlinear GRAPPA can suppress maise in reconstruction.
Theoretically the proposed method needs more AG&slthan GRAPPA to set up
sufficient number of equations to avoid the aligsartifacts. This is because there are
more unknown coefficients to be solved for in tighhdimensional feature space. Figure

16 shows how the reconstruction quality improvegmvincreasing the number of ACS
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lines. The improvement of GRAPPA is primarily imrtes of noise suppression while the
improvement of nonlinear GRAPPA is in aliasingfadis reduction. Although more

number of ACS lines is needed in the proposed ndeth@avoid artifacts, the ORF can be
pushed much higher than GRAPPA and thereby theaceleration factor can remain
low. For example, the combination of ORF of 5 aBdALS lines (denoted as 5-48) in
Fig. 12 has a higher net acceleration factor to@hd-40 (net acceleration of 2.57) in Fig.
15 and 3-32 (net acceleration of 2.30) in Fig. Ti&e nonlinear GRAPPA reconstruction
with 5-48 is always superior to GRAPPA with 5-484@, or 3-32 combinations.

In GRAPPA, it is known that the size of the coeéiits also affects the
reconstruction quality. More columns usually impe\the data consistency and reduces
aliasing artifacts, but at the cost of SNR and cotamon efficiency [65]. A rather small
number of columns (e.g., 3-5 columns) are typicaigd to balance the trade-off. In the
proposed nonlinear GRAPPA, the size of coefficies® plays an important role. Figure
17 shows the GRAPPA and nonlinear GRAPPA reconsbng with 5, 9, and 15
columns of coefficients. Contrary to the observatio GRAPPA, more columns in
nonlinear GRAPPA can improve the SNR due to thehdrigdegree of freedom in
calibration. In consideration of the computatiostcd5 columns were chosen to be used
in our experiments.

The computation time of the proposed method is aPdutimes that of conventional
GRAPPA and Tikhonov-regularized GRAPPA, while IRISSthe most time consuming
among all. Furthermore, regularization can als@&sly incorporated into the proposed

reconstruction method.
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4. Accelerating Nonlinear GRAPPA by Compressed Seing

As experimental results presented in nonlinear GIRAPreconstruction, although
reconstruction quality can be improved by incre@g$$NR, net acceleration factor is still
around 2.8 for 256 phase encodiagpace lines. Compressed sensing (CS) and parallel
imaging (PI) have been widely studied for accelegaMRI reconstruction. Furthermore,
the serial combination methods of CS and Pl haes lpgoposed for even higher speed
of reconstruction. However, both reconstructed agmy CS and Pl are not as accurate
as acquired MR signals, so that errors of CS raoactton as the first step will be
propagated and even amplified to deteriorate Rinsttuction quality in the second step.
Based on our previous work — nonlinear GRAPPA (NIXPRA), we proposed a novel
serial combination of CS and NLGRAPPA (CS-NLGRAPP#construction. The
generalized kernel regression model of NLGRAPPA camove error effects of
inaccurate signal reconstruction by CS. Experimamisults using phantom and in vivo
data demonstrate that the proposed CS-NLGRAPPA adethn significantly improve
the reconstruction quality over the existing metlod push net reduction factor around

4.

4.1 Combination Methods of CS and pMRI

MR imaging speed is usually limited by the largentner of samples needed along the
phase encoding direction. In conventional MRI uskaurier encoding, the required

number of samples is determined by the field ofwand the resolution of the image
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based on the Shannon sampling theory. To accelecateentional MRI, both parallel
MRI (pMRI) and compressed sensing (CS) have beed ts reduce the number of
acquired data. In pMRI, due to the availabilitynedilti-channel coils, the MR images can
be reconstructed from multi-chanriebpace data sampled below the Nyquist sampling
rate using reconstruction methods such as SENSEBA6]GRAPPA [9]. Theoretically,
the maximum reduction factor can be up to the nurobehannels under ideal conditions.
However, this maximum usually cannot be achieveel upractical limitations such as
noise and imperfect coil geometry. CS-MRI [45, #&6pased on CS theory [67, 68], a
new framework for data sampling and signal recov@$-MRI takes advantage of the
fact that MRl meets two conditions of CS. One ig tMIR images are sparse or
compressible after certain transformations. Theermwtis the Fourier encoding is
incoherent with these sparse transformations. Towexe the MR images can be
reconstructed using a nonlinear convex program flata sampled at a rate close to their

intrinsic information rate which is well below tiNyquist rate.

Because pMRI and CS reduce sampling based on comaptary information,
several methods [30, 32, 47, 48] have been develépecombine pMRI and CS for
further reduction. Among these methods, the oned #Hequentially carry out CS
reconstruction for the aliased image of each chHaané parallel imaging for the final
unfolded image have demonstrated several advanfadged7]. First, because the CS and
pPMRI procedures are clearly decoupled, any CS oRpMethods are directly applicable

without modifications. Second, the sampling pattesin be designed to satisfy different
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requirements for CS and pMRI. Finally, the accelerafactor of the combined approach

is a product of the factors achieved by CS and pM&ividually.

4.2 Serial Combination of CS and NLGRAPPA

However, an issue with the sequential method isregpropagation. The error in CS
reconstruction may propagate and be amplified enpMRI step according to the g-factor.
For example in CS-SENSE [32], SENSE with inaccucatésensitivities accentuates the
CS reconstruction error. In CS-GRAPPA [47], theagtdbr of GRAPPA increases
dramatically with the acceleration factors and tmeggnifies the CS error. We have
recently developed a nonlinear GRAPPA (NLGRAPPAXhud [66, 69] using kernel
method. The method has shown to reduce the g-fagjaificantly at high acceleration

factors.

In this research, we propose a novel sequentialoapp that performs CS followed
by nonlinear GRAPPA. The proposed method, namedNDOSRAPPA, first employs
CS to reconstruct a set of multi-channel aliasealges (i.e.k-space data on a uniformly
undersampled grid in each channel), and then appieGRAPPA to reconstruct the
missingk-space data for the final root sum-of-squares (S@&nstruction. Due to the
nonlinear characterization ability in the genemdizegression model, the kernel method
can remove error effects generated by CS reconstinuto certain extent. Experimental
results demonstrate that the proposed method dotper CS-GRAPPA in suppressing

the spatial-varying noise and aliasing artifactdwigh accelerations.
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4.2.1 Sampling Pattern

The sampling pattern for the proposed method haspwts. The first part is the same as
the sampling used in CS-SENSE [32]. Specificallyadaable-density random sampling
scheme [45] is employed to further undersample da@ along the phase encoding
direction that is already undersampled in pMRIshswn in Figure 18 from (a) to (b),
where the white lines represent the uniformly usdempledk-space locations, while
black regions denote the unacquired locations. ather part acquires the fully sampled
auto-calibration signal (ACS) at the centrialspace. Because the variable-density
sampling usually acquires the centkadpace in full as well, the two parts have many
overlapping lines. The union of the randomly undergledk-space lines (Figure 18 (b))
and the auto-calibration signal (ACS) lines (Figut® (c)) produces the ultimate
sampling pattern as shown in Figure 18 (e) forghmposed method. The net reduction
factor is calculated by the total number of acqliliees divided by the number of lines
when full sampling is employed. As we can seenitereduction factor for the proposed
method in Figure 18 (e) is higher than that forvamional GRAPPA which uses the

sampling in Figure 18 (d).
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Figure 18. Sampling pattern and CS reconstructiemahstration of the proposed

method.
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4.2.2 Sequential Reconstruction

The proposed method carries out CS and NLGRAPPAnsuctions sequentially. In
the CS step, the uniformly undersampled data actenstructed from the randomly
undersampled data as shown in Figure 18 from (kpYoTo this end, CS is used to

reconstruct the aliased image in each channeltardFourier transformed to obtain the
uniformly undersampled-space data. If* is a vector for the aliased reduced FOV

image from thé-th channel, the data consistence comes from
Fuf|A =d|u (20)

whereF" represents Fourier encoding operation ahds the undersamplddspace data

from I-th channel. Therefore, the aliased im#&@et each channel can be reconstructed

using CS

FUfA—df

At 2 TV A)} (21)

arg min{
A

wherey adopts wavelet transform and TV represents t@ahtion.

In the NLGRAPPA steps, the ACS data in Figure 18afe used for calibration and
the uniformly undersampled data in Figure 18 (apmed from the CS step are used for
reconstruction of the final image. NLGRAPPA is usedcalibration and reconstruction.
The method has shown to suppress the nonlinear iarGRAPPA due to the errors-in-
variables problem. In NLGRAPPA, a generalized, mmdr model is exploited to
characterize the relationship between the acquledd and missing data. Kernel method

is used to represent the nonlinear relationshij st the linear least squares algorithm
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is still applicable for the underlying nonlinearoptem. Specifically, NLGRAPPA
transforms original input space (originkispace here) to a high dimensional feature
space using a nonlinear mapping. A polynomial Keeesed here so that the acquiked
space data are nonlinearly mapped using a truncaechd-order polynomial function.
The unacquired-space signa§ is obtained by a nonlinear combination of the &egu
k-space signalS:

0 L B H,
S (K + k)= W <1 D DTS A (1o { f+ BR K ke sk

I=1b=B, h=H,
B H

DTS Ol bR g, ke b 4

|=1b=B, h=H,

L & S (Lb,h) < (kbR i, ke A e
éélh;ﬁ(w bR k, k+( RDA K)
A0S 1+ 0B . ke b R

SHBI

(19)
|:1b:Blh=H15|(|S/+ bRk, k+( h2A k)

wherew denotes the coefficient s&® represents the outer reduction factpis the target
coil, I counts all coilsh andh transverse the acquired neighboriagpace data ik, and

k« directions respectively, and the variabkgsindk, represent the coordinates along the
frequency- and phase-encoding directions, respgtiThe nonlinear formulation of Eq.
(19) represents a more general model for GRAPPAchwincludes the conventional
GRAPPA as a special case. It is seen that thedidsdr terms of nonlinear GRAPPA is
equivalent to the conventional GRAPPA, which maioaptures the linear relationship
between the missing and acquired undersampled idathe absence of noise and

approximations. The second-order terms of Eq. ¢E8) be used to characterize other
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nonlinear effects in practice such that noise gout@imation errors are suppressed in
reconstruction. The proposed formulation is a ma@r model in the sense that nonlinear
combination of acquired data contributes to estmnadf missingk-space data.

Under such a mapping, we still only need to sole tollowing linear system

equation in the feature space:

b = ®(A)xX (14)
where x represents the reconstruction coefficieats,) is a matrix representing the
nonlinear mapping. It is seen that the calibrapoocess to find can still be easily and
linearly solved in the high dimensional featurecgphy a linear algorithm:

%=((@(A)" (@A) (@)D (15)

although the relationship between the acquired rars$ing k-space data is nonlinear.
Other linear computational algorithms such as rghted least-squares and total least-
squares methods can also be used here. Once thieients are estimated in Eqg. (15),
they are plugged back in Eq. (14) to reconstruetntiissing data in outérspace, like the

conventional GRAPPA does.

4.3 Experimental Results

4.3.1 Experiment Settings

The proposed method was tested on both phantomnawido data sets. An 8-channel
phantom dataset was acquired using a Gradient Eehboence (TE/TR = 10/100 ms,

31.25 kHz bandwidth, matrix size = 256x256, FOV 502nnf). An 8-channel brain
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dataset was obtained using a 2D spin echo (SE)eseqUTE/TR = 11/700 ms, matrix
size = 256 x 256, FOV = 220 njnA set of cardiac cine images was acquired uaing
2D trueFISP sequence (TE/TR=1.67/50.1 ms, bandw8@t Hz/pixel, 45 degree flip
angle, 8mm slice thickness, 34 cm FOV in readouéation, 256x146 acquisition
matrix) with a 12-channel cardiac coil but combirted4 channels. All data sets were
acquired in full and then manually undersampleditoulate the accelerated acquisition.
The sum-of-squares (SoS) reconstruction from thg $§ampled data of all channels was
used as the reference image for comparison. Tlomsétictions from reduced data using
the CS-GRAPPA [15], the proposed CS-NLGRAPPA metlaodi SPIRIT method [16]
were compared. In both CS-GRAPPA and CS-NLGRAPPAhpus, the number of
blocks (size ob) is 2 and the number of columns (sizehpfs 15 for all datasets. For the
eight-channel phantom data, a net reduction faftdrwas achieved by a combination of
1.5 for CS and outer reduction factor (ORF) = ehwi2 ACS for GRAPPA/NLGRAPPA.
For the eight-channel brain data, the net redudaator is 3.93 with CS 1.7, ORF = 4,
and ACS = 36. In the four-channel cardiac experimére net reduction factor is 4.12

with CS 2.0, ORF =4, and 40 ACS lines.

4.3.2 Results of Phantom and In Vivo Datasets

Figure 19 shows the reconstructions of the phanising SOS, CS-GRAPPA, and the
proposed CS-NLGRAPPA for a net reduction factof4The size of the coefficients for
GRAPPA and nonlinear GRAPPA was 2 blocks and 1%maok. The size of the

coefficients could be chosen optimally for eachvidlial method, but the image quality

is not sensitive to the change of size within gdarange of the optimal choice, so we
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fixed its size for both GRAPPA and nonlinear GRARPFArthermore, a small region is
zoomed to show more details. It is seen that theGBBPPA suffers from large noise
and aliasing artifacts at a net reduction factod@0. The proposed CS-NLGRAPPA
method can suppress both noise and artifacts dt sudigh acceleration without

additional artifacts or loss of resolution.

Figure 19. With (a) the SoS reconstruction of theh8nel phantom image as the
reference, we compare (b) CS-GRAPPA and (c) thepgeed method at a net reduction

factor of 4. Subfigures (d) — (f) show zoomed-igioas of (a) — (c) respectively.
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Figure 20. With (a) the SoS reconstruction of theh8nel brain image as the reference,
we compare (b) CS-GRAPPA and (c) the proposed ade#th a net reduction factor of

3.93.

Figure 21. Comparison of (a) SoS, (b) CS-GRAPPA fr)dthe proposed method in

reconstructing the four-chanel cardiac image ataeduction of 4.12.
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Figure 20 shows the reconstruction results froneteoin vivo axial brain data. An
ORF of 4 and the ACS of 36 were used with reduction CS 1.7, so that a net
acceleration of 3.93 can be achieved. Both GRAPRRArenlinear GRAPPA still used a
size of 2 blocks and 15 columns. It is seen thatr#tonstruction using the proposed
method achieves a quality superior to CS-GRAPPAhotet As shown in the zoomed
regions, the proposed method not only effectivelpoves the spatial-varying noise and
aliasing artifacts in the CS-GRAPPA reconstructibnt also preserves details well
without blurring boundaries. The CS-NLGRAPPA carsipihe net reduction factor to
3.93.

The reconstruction results of the cardiac datasétng axis are presented in Figure
21. The ORF is 4 with reduction for CS 2.0 and nambf ACS lines is 40 (net
acceleration of 4.12). The size of the GRAPPA dmronlinear GRAPPA coefficients
were 4 blocks and 15 columngBhe difference images with the reference are disova
(amplified 5 times for display) in Fig. 4. In coast to the CS-GRAPPA reconstruction,
the reconstruction by the proposed method is miedner with a slight loss of resolution
at a high net reduction factor of 4.12. The sameckssion can be made that the CS-
NLGRAPPA method can significantly suppress the eais CS-GRAPPA and still
preserve the resolution and avoid artifacts at vergh net acceleration factors.
Furthermore, all methods were implemented in MATLAB gramming environment,
and codes were run on a HP workstation with foRr@Hz processors and 32-GB RAM.
The computational time of both methods is compame@iable 1. The proposed method

takes about 1.7 - 2 times of CS-GRAPPA for recasion.
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Phantom Brain Cardiadg
CS-GRAPPA 208 s 140 s 67 s
CS-NLGRAPPA 429 s 267 s 116 s

Table 1 Comparision of computational time betwe&G@RAPPA and CS-NLGRAPPA
We also compare the proposed method with SPIRIT {48 integrated approach of
CS+pMRI reconstruction, which needs to modify tbenf of the traditional GRAPPA
that undersamplels-space along 1D phase encoding direction. BecaB$ReiB method
has different sampling pattern that adopts 2D remdampling ork-space, central 32x32
calibration area is fully sampled here, while aded-space is randomly sampled. But the
net acceleration factor of the SPIRIT method iEtyrset as 3 and 4 for the phantom and
brain datasets for comparison with the proposedhotetAs we can see in Figure 22, due
to random sampling on 2D direction, SPIRIT methadpldys incoherent aliasing
artifacts in the reconstructed image. On the otterd, the proposed CS-NLGRAPPA
method can outperform the SPIRIT reconstructiorhauit incoherent aliasing artifacts

and with higher SNR.
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Figure 22. The performance comparison between SPiid the proposed CS-
NLGRAPPA method. Reconstructions of the phantom #mel brain data sets are

presented at net reduction factor 3.0 and 4.0exctsely.

4.4 Discussion

We investigate how different numbers are to beibisted among the CS, ORF and ACS
to achieve the optimal quality at a fixed net radurc factor. It is known that high
accelerations in CS can lead to aliasing artifaot$ loss of resolution. On the other hand,
high ORFs usually deteriorate SNR and require @& to avoid aliasing. The study
was carried out on the eight-channel brain datddet. results are shown in Figure 23.
For a fixed net reduction factor of 3.93 and ORR &6r the NLGRAPPA step, we tested
on three different combinations of ACS and reducfar CS (Rs). When 26 ACS lines
and Rs = 1.4 were used, aliasing artifacts appear dumdofficient number of ACS
lines. The appearance of artifacts is in form ddlifoy that is typical of parallel imaging.
When 44 ACS lines andd3 = 2.0 were used, aliasing artifacts appear dygdpagation
of CS reconstruction error. The appearance is ratm@herent due to the random
sampling. The intermediate combination of 36 AC8 Bgs = 1.7 generates the optimal
reconstruction for this dataset.

On the other hand, we fixed ACS to observe recaaostm results by various ORFs
and reductions for CS as shown in Figure 24. Feffited 44 ACS lines, ORF of 4 and 5
were used on the horizontal direction; reductiansdS were sets as 1.5, 2.0, and 2.5 on
vertical direction, respectively. Following the reasing ORF, aliasing artifacts in form

of folding gradually appear as we can see from tfeftright side on the horizontal
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direction, which is also a typical parallel imagiolgservation. From the top to bottom in
the same column, some additional incoherent alisartifacts deteriorate the
reconstructed image due to randomly sampling forr&iction, which has the same
conclusion in Figure 23. Therefore, both kinds b&sang artifacts caused by parallel
imaging and compressed sensing exist in the praposthod. If reconstruction quality
is acceptable, both ORF and reduction for CS capuisbed even higher for fast imaging
with balance of both aliasing artifacts. In gengtia¢ reduction in CS cannot be high due

to error propagation. A factor of lower than 2 sually used.

V7

ACS 26 ====R_CS 1.4 ACS 36 ==R_CS 1.7 ACS 44 ====R_CS 2.0

1/

Figure 23. CS-NLGRAPPA reconstructions with threffecent combinations of ACS
and Rswith fixe ORF of 4 and a net reduction factor 33

In this research, we propose a novel method thatboges CS with nonlinear
GRAPPA sequentially for fast imaging. NLGRAPPA igpaed on thek-space data
reconstructed by CS. The experimental results detrete that the proposed CS-
NLGRAPPA [70] method is superior to CS-GRAPPA imppressing both noise and
artifacts when a high net reduction factor is us¢éalvever, more experiments are needed

to be done to study noise sourcekispace, based on which, general guidelines of
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choosing sampling pattern may be concluded. lieratirategy will also be studied for

even better CS-NLGRAPPA reconstruction.

ORF 4, R_.E8 1S, ORF 5, R_E815.,

Figure 24. CS-NLGRAPPA reconstructions with siXetiént combinations of RCS with
various ORF used the fixed ACS.
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5. Nonlinear Channel Reduction for Efficient GRAPPA
Reconstruction

5.1 Review of Channel Compression

Due to success of pMRI methods, more and more baN® been used in MRI systems
[50, 72-74] for higher reconstruction quality anct@eration such as 128 coil arrays on
research MRI scanners [50].

However, computational cost provided by a large Ipeinof element coils can be
significant. Some channel reduction methods [4351454, 75-84] have been proposed
to reduce reconstruction time. A hardware RF sigmambiner inline after
preamplification was placed to construct an eigéramoay [54, 75] by using the noise
covariance of the receiver array. Optimal SNR canabhieved with receiver channel
reduction, and the almost the same reconstructiatity can be kept by using a subset of
channels (virtual channels). However, it needs \Wward design and is not suitable for
commonly used coils that have existed in the saanne

In contrast, software-based channel reduction nasthmrovide a flexible way to
reduce the computation cost for parallel MRI retarcdion. For example, coil array
compression using principal component analysis (PfoA MRI with large coil arrays
was proposed for SENSE reconstruction [51] that sensitivity-based parallel imaging
reconstruction method. The combination of coils doa® expressed as a linear
transformation matrix which reduces the numberlofsical coil channels to a subset of
virtual channels. The number of channels can lgelgrreduced instead of only a little

SNR loss, so that reconstruction time is acceldratgh sacrificing only a very little
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degeneracy of quality. Doneva et al [52] proposedatomatic coil selection approach
using singular value decomposition (SVD) in SENSEdd parallel imaging
reconstruction. The approach makes use of the sawibitivity information and takes
reduction factor and phase encoding direction iatcount. Although the proposed
method is computationally efficient without remabsl@image quality degradation, it still
can’t improve reconstructed image’s quality. Fumiere, channel reduction technique
was also successfully applied daspace-based reconstruction approach such as
GRAPPA. Due to reduced channels of having very Isensitivities make little
contribution to the SNR of the final reconstructedage [43], two-stage channel
compression and incorporation of all acquired datathe final reconstruction have been
used for reducing computational time of GRAPPA nretauction [44]. However,
reconstruction quality is still a little degenevati although computational and memory
costs have been largely reduced. A trade-off existisveen loss of information that
degenerates reconstruction quality and reducednetsathat reduce computational cost.
Furthermore, the increase in computation time amsory provided by channel-by-
channel reconstruction can also be addressed legtDtirtual Coil (DCV) technique [76]
that synthesizes unaccelerated data for a virmidfrom undersampled data acquired by
multiple source coils. Through the image qualitynparison between channel-by-
channel parallel imaging reconstruction and the D¥Construction approach [77], the
DVC reconstructions were determined to be nearntidal to the channel-by-channel
reconstructions. Similarly, a single synthetic &rgoil [78] was proposed to combine

images prior to the training instead of the chaimyethannel reconstruction, so that
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significant computation gain can be achieved sint&ge combination is performed on
much smaller matrix size. Convolution based trgjnand aliasing only need to be
performed once a time instead of for each channel.

In addition, a dynamic coil selection algorithm 78 presented by a subset of
receive coils that are selected for reconstructismg a coil ranking based on the
distance to the current slice or catheter posifidie center-of-sensitivity coordinates and
relative signal intensities have to be determined dach coil in a prescan. Animal
experiments involving catheter manipulation in #ém@ta and the right heart chamber
demonstrate that the anatomy was successfully haedaat frame rates of about 5Hz
using active catheter tracking in interventiongplagations. Similarly, since the channel
sensitivity is localized in large arrays, channedluction is achieved through channel
cross correlation for channel-by-channel reconstvnc[53]. The almost the same
reconstruction quality compared with reconstructismg all channels can be achieved.
Furthermore, computational burden was reduced biytioginformation from physical
coils or “virtual coils” that don’t contribute sigitantly to image SNR in ROI [80]. The
sampled data from coil arrays with low signal eyergntent are discarded.

Due to the success of software channel reductiothede have been applied on
reconstruction by 2D data acquisition, these mettard also extended to 3D datasets [81,
82]. A PCA-based software channel compression ndeties proposed for 3D datasets,
and the compressed data was then reconstructedRAPEBA with sliding blocks. A
novel channel compression technique for 3D Camesampling dataset was proposed

recently [82] that exploits the spatial varying Iceensitivities along fully sampled
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directions for better compression and computatieduction. From the experimental
results, 3D datasets from a 32 channel pediatilccan be effectively compressed into 6
virtual coils without noticeable compression loss.

Besides the reduction of the computation load, schhreduction can also have the
denoising effect [83]. For the regions of low sibméensity in the straight root of sum of
squares reconstruction of MR data, increased numbehannels implies more noise.
The property of PCA is to concentrate the useftdrmation into fewer channels. The
channels with low Eigen values (for example lesnti% of the maximum) can be
considered as noise and hence the correspondingnelsacan be left unused and
discarded. However, such denoising effect was onigfly discussed in Ref. [83]. No
significant improvements have been reported. Fumbee, channel compression
techniques have been also extended to other imagetgods such as BLADE [84]. In
this dissertation, | apply kernel PCA to suppresse and aliasing artifacts as well as

compress channels for accelerating reconstrudatos. t

5.2 The Proposed Method: Kernel PCA-based GRAPPA

5.2.1 PCA-based GRAPPA

PCA [38] is a basis transformation to diagonalinesatimate of the covariance matrix of
the data. The new coordinates in the Eigenvectsistae called principal components.
PCA finds an orthogonal linear transformation thetnsforms the data to a new
coordinate system such that the greatest variap@p projection of the data comes to

lie on the first coordinate, the second greategamae on the second coordinate, and so
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on. When applied to channel reduction, the ACS thatesed to obtain the transformation
which is then applied to all acquired data to abtai new set of data in the new
coordinate system. Mathematically, the linear tfamsation W can be obtained by the

eigen-decomposition of the covariance matrix ofAlGS data:
APA =wHzw (22)

whereA = [ay, @, ..., a] is composed of vecta formed from the ACS data of th8
channel L channels in total) after removing the mean, #WdndX are matrices with
eigenvectors and eigenvalues. The new coordinatdgeieigenvector basis are known as
principal components. It is assumed that the doast of largest variance represent
interesting information and those of smallest va@arepresent uninteresting noise. For
reduction, only the first few eigenvectors whichrregpond to the largest eigenvalues are
kept to form the linear transformatidn This transformation matrix is then applied to the
acquiredk-space data to obtain the orthogonal projectiorte tme eigenvectors, which
gives a new set of reduced virtual channels. Camwesd GRAPPA reconstruction is
then applied on the new dataset to reconstructimgistata in the transform domain. In
Ref. [43], it is noted that the number of sourcarutels Nsc) and the number of target
channels Np) after PCA reduction can be different and one iigh larger than the
other to obtain the best results with the same coation time. The final root sum-of-
square (SOS) combines all the images from the alithannels to generate the final
image.

Kernel principal component analysis (kernel PCA)ais extension of principal

component analysis (PCA) by using techniques ohddlemethods. Using a kernel, the
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originally linear operations of PCA are done ireproducing kernel Hilbert space with a
nonlinear mapping. It can be considered as a rlantansion of linear PCA and is very
well suited to extract interesting nonlinear stanes in the data. It has proved useful for
various applications, such as denoising [39-41] @nd pre-processing step in regression
problems [42]. Since PCA only linearly transforms data to new datates in the given
space so that data relationship can’t be descnimm@ accurately than that in input space.
KPCA can be used by explicit or implicit mappin@]3The first one directly nonlinearly
maps originak-space data into new coordinates by a nonlineapmgpb to construct
the covariance matrix, and then uses conventiomsat PCA to decompose the
covariance matrix to obtain the compressed signalsch has the almost the same
procedures with linear PCA. The second one usasekétick for predicting missing-
space data, which needs longer computational timden@ore memory, since kernel trick
matrix is generally very large. Since PCA has beeaocessfully applied on channel
reduction for GRAPPA reconstruction [43, 44], wedsés kernel PCA for better channel
reduction with the almost same reconstruction tme improved reconstruction quality.
As shown in Figure 25, compressed signals produmgdPCA are input into
GRAPPA reconstructor and then final image is oladily sum-of-square (SOS) to
combine each image that is produced by IFT eadhalichannel. Our investigation is
replacing PCA with kernel PCA for better GRAPPAaestruction with almost the same

computational costs.



73

PCA

. ] IFFT, SoS [
K-Space DataJ GRAPPA Recon Final Image

Kernel PCA

Figure 25. Demonstration of PCA and KPCA roles lrarmel reduction for GRAPPA
reconstruction.

5.2.2 Proposed Kernel PCA-based GRAPPA

KPCA can be used by explicit or implicit mappin@][4In this paper, we adopts explicit
mapping in KPCA. To apply KPCA to channel reductiaie map the ACS data matrx

into a new feature space(A) through a nonlinear transformation, and then the da

the new space is ensured to have zero-mean byastiby the average value among all
ACS data points. PCA can be worked in the featpares constructed by products of

vector elements, which takes into account highdewostatistics. We then do linear PCA
for the new data in the feature space. Specificédlythe covariance matricp(A)T ®(A),

eigenvectors that correspond to the largest fewnsiglues are maintained in matfix
which will be used to project the data in featupace to a new space with reduced
number of virtual channels. Parallel imaging retartdion methods such as GRAPPA
can then be applied to this new dataset, wheredhgutation time can be reduced due
to fewer channels.

Since polynomials are widely used to approximat@atim unknown functions, we

choose an inhomogeneous polynomial kernefbfenapping. It has the following form
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x(ab)=(ya'b+r) (23)
where/ andr are scalars and is the degree of the polynomial. Another advantaige
polynomial kernel lies in the fact that its corresding nonlinear mapping)(a) such that
k(a,b)=<®(a),®(b)> has explicit representations. For exampled # 2, ®(A) maps the
original L-channel dat& to:

®(A)=[r*V2ira,,... NV2Ira_2&? ... 142,
V22a,0 a,,... N 2231 a ... N2a,0af

(24)
whereay, a, ..., a_ are vectors representing different channels, sepiet ® means
piecewise square, and denotes piecewise multiplication. It is seen tted vector
includes the linear terms in the original spacevell as the constant and second-order
terms, andb(A) has [+2)(L+1)/2 terms in total.

Since there are too many terms, we truncate thenseorder terms to save
computation. Specifically, we sort the second-ortigms according to the following
order. We first have the square terms within eagih, @and then the product terms
between the nearest neighbors, the next-nearegtbwes, and so on so forth krspace.
The above order is then repeated for terms thaaenass different coils. With the sorted
terms, we can truncate the vectigfa) according to the desired dimension of the feature
space. If we truncate all second-order terms, tbpgsed method is equivalent to linear
PCA-based channel reduction.

The target channels are defined as the data thaspmnd to the left hand side of Eq.
(2) and source channels as those for the right satedof (2). Since the target channel

and source channel in GRAPPA are rather indeperjdéhtdifferent feature spaces can
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be used. We choose the original space for thettalganel to avoid the complication of
transforming data back from the feature space e@ootiginal space. The source channels
are only used for estimation and thereby do nodrteebe transformed back to the
original space. In this study, we choose the nunubesecond-order terms to be three
times of that of the first-order terms for constnug the source channels.

The parametensand control the nonlinearity incorporated into the nevordinates.
If the nonlinearity is too high, original channaifarmation will be lost and the
reconstructed image will be seriously distorted. t&m other hand, if the nonlinearity is
too small, it is almost equivalent to original P®Ased channel reduction method, in
which case the noise is not suppressed. WeJ#t —1and adjusti for optimal
performance. Specifically, we first find the maximuabsolute value My of the second-
order terms to be used for constructing the feasy@ce. We then lefouce take any
value in the range between (1/,M10/ Myg. It is found empirically that the

performance is insensitive to the values withiis tlainge.

5.3 Analysis of Computational Expense

The computational expense can be quantitativelyluated by using matrix
multiplication measure [85]. For the 2D GRAPPA [18je dominant calibration cost is
the matrix inversion step that requiregl\l}(chxdy)2 complex-valued multiplications,
where N is the number of phase-encoding lines that aresiplesfit locations along
phase-encoding direction,xNs the number of points along the frequency-enupdi
direction, N is the total number of all channels for origikedpace data, and énd ¢

are the convolution size of 2D GRAPPA along thegdiency-encoding and phase-
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encoding directions respectively. Furthermore, dbeninant computational expense for
the synthesis step of GRAPPA needechdxdy(R-l) complex-valued multiplications,
where N, is the number of phase-encoding lines to be sgitbd at a particular phase-
encoding offset location, and R is outer reductiactor (ORF). Therefore, the whole
computational expense for 2D GRAPPA reconstructior85] 5
NpNx(Ncdxdy)*+NyNN*dxdy(R-1). Due to PCA-based channel reduction for GRAPP
reconstruction, the computational expense can be duces to
NpNX(NSmedy)2+NuNstcﬂ\ltchdxdy(R-l) [44], where N, and Nq, are the number of
source channels and target channels reduced by PCA.

Dominant computational expense of PCA or KPCA habeen analyzed so far.
Similar to GRAPPA reconstruction, channel reductisralso an essential part of the
whole reconstruction procedure. The whole companali cost depends on both of them.
If we can prove that the dominant computationalezrge of PCA and KPCA only take a
very small portion of the computational cost of GRPA reconstruction, we can explain
why KPCA-GRAPPA could achieve the almost the sapwmstruction time to PCA-
GRAPPA, since GRAPPA takes the dominant reconstnut¢ime in the whole procedure.

The dominant computational expense of KPCA focusesthe construction of
covariance matrix and SVD. For the first one, tbhastruction of covariance matrix in
KPCA requires NNy (4No)? complex-valued multiplications. Furthermore, the
computational cost of SVD for a complex-valued mxatwith m Xx n size is
16nfn+24mif+29r? [86]. Therefore, set m=n=4Nand total computational expense for

KPCA is NicNx(4N)*+4416N3. Similarly, the computational expense for PCA is
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NacdNx(No)*+69NS. After obtain these computational expenses, ratfosomputational

expenses can be obtained as follows.

2
CEamappa NNy (dydy Nog)™ + NN NG N d( R1)

X (25)
CEpca NacsN (4N )+ 4166N2

, and

CBpea _ NacsNx(4NC)2 + 4166N7
CEpca NN, N2 +69N3

(26)

If we adopt commonly used reconstruction paramd@skthat N.=40, N=256, ¢=9,
dy=4, R=4, N=168, Nici=Nch=16, N=32, SlideBlock=2,

N, ~ SlideBlock« N.x( R1)=240, then the ratios are

CEsrarpa. 70,9 and SExeea L 239 27)
CEKPCA CA

, respectively. Although the computational expeosEPCA is about 24 times of PCA,
computational expense of GRAPPA using reduced aans much larger than KPCA.
Therefore, both PCA and KPCA only take a very fpoytion of the whole computational
expense and they have the almost same computatioeiin the whole reconstruction

process.
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5.4 Experimental Results

5.4.1 Experiment Settings

The performance of the proposed method was vatidasing three scanned datasets. The first
scanned dataset was acquired on a GE 3T scanneHéa@Ehcare, Waukesha, WI) with a 32-
channel coil, and the last two datasets were aequin a Siemens 3T scanner with an 32-channel
coil (Siemens Trio, Erlangen, Germany). In thetfidataset, a uniform water phantom was
scanned using a gradient echo (GRE) sequence (TE/TR/100 ms, 15.63 kHz bandwidth,
matrix size = 256x256, FOV = 250 mMnSlice Thickness=3.0mm). The other second dataset
were an axial brain image and coronary brain inmeggiired using a 2D spin echo (SE) sequence
(TE/TR = 2.29/100 ms, matrix size = 256 x 256, FE\240 mn3, Slice Thickness=3.0mm).
Informed consents were obtained for all in vivo exments in accordance with the institutional
review board policy.

The proposed method was compared with the convait®RAPPA [13] and PCA-
based GRAPPA [43, 44]. The root sum of squares §S&®nstruction from the fully
sampled data of all channels was shown as theereferimage for comparison. The size
of the coefficients (blocks by columns) was choas2x15 for each individual method
by comparing the mean-squared errors resulting fidfaerent sizes. Difference images
from the reference were used to show all sourcesrof, including blurring, aliasing and
noise. All methods were implemented in MATLAB (Matbrks, Natick, MA). To
facilitate visual comparison, zoomed-in patches ewealso shown for some

reconstructions.
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Figure 26. For the 32-channel phantom datasetremée and reconstructions by the
conventional GRAPPA, PCA-GRAPPA, KPCA-GRAPPA areganted, respectively.
Their difference maps are also given for perforneacm@mparison.
5.4.2 Results of Phantom and In Vivo Datasets

Figure 26 shows the reconstructions of the phantsimg the conventional GRAPPA,

GRAPPA using PCA-based channel reduction, and tbegsed GRAPPA using KPCA-
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based channel reduction for an ORF of 5 and the AC& (net acceleration of 3.01).
The size of the coefficients was 2 blocks and 16roas. Both target and source have the
same number of virtual channels, which are seaentl 16 for performance comparison.
Furthermore, they have two combinationsNgf=12, Nsc=18 andNic=18, Nsci=12 for
testing performance. Similar to the conventionalABPRA, it is seen that GRAPPA with
PCA-based channel reduction suffers from seriousendrhe proposed KPCA-based
channel reduction can suppresses most of the maiseut additional artifacts or loss of
resolution. In addition, the proposed method hasoat the same reconstruction time in
comparison with PCA-based channel reduction, whishmuch faster than the
conventional GRAPPA reconstruction. More detailshaf CPU time can see the Table 2
(a). It can be seen that the proposed method rigtocam reduce the reconstruction time
to as low as around 6% of the conventional GRAPPBY, also it can achieve better
reconstruction quality in comparison with the cami@nal GRAPPA and PCA-based

GRAPPA.
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(b) GRAPPA

(c) PCA-GRAPPA (d) KPCA-GRAPPA

Figure 27. For the 32-channel brain (axi@étaset, reference and reconstructions by the
conventional GRAPPA, PCA-GRAPPA, KPCA-GRAPPA areganted, respectively.
Their difference maps are also given for perforneacmmparison.

Figure 27 shows the reconstruction results forva dataset of axial brain. An ORF
of 4 and the ACS of 48 were used with a net acagtar of 2.56. The numbers of target
and sources channels are both 16, Apgeis 1.23e-9. It is seen that the reconstruction
using the proposed method is able to suppress phtaby-varying noise in both
conventional GRAPPA and PCA-reduced GRAPPA recanstns. Furthermore, the
proposed method also preserves the details ofntlhge without blurring. The proposed
method takes almost the same time (863 seconddleaBCA-based channel reduction
method, and it takes only about 11% reconstrudiime of the conventional GRAPPA

(7771 seconds) to reconstruct the image but wittebguality.
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Figure 28. For the 32-channel brain (coronatgjaset, reference and reconstructions by
the conventional GRAPPA, PCA-GRAPPA, KPCA-GRAPPA presented, respectively.
Figure 28 shows the reconstruction results for \& wlataset of coronary brain.

Reconstruction parameters are 48 ACS lines, ORmdl & Coefficient size 2x15, original
channels 32, number of reduced channels 20, antedettion factor 2.56 and 3.01. As we can
see, the proposed method still outperforms botlveotional GRAPPA using full channels and

PCA-GRAPPA method. The CPU time is presented inéral{b) for comparison.
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Furthermore, NMSE and reconstruction time have lesented in Figure 29. The
left sub-figure in Figure 29 shows the normalizedamsquared error (NMSE) for the
conventional GRAPPA, PCA-GRAPPA, and KPCA-GRAPPAGRF 4, 5, and 6,
respectively. The right sub-figure in Figure 29genets the corresponding reconstruction
times in the left figure. It can be seen that retarctions by the conventional GRAPPA
have the longest reconstruction times and the wesanstruction quality. Following the
increasing ORF, the proposed method can still pveseowest NMSE, but
reconstructions of GRAPPA and PCA-GRAPPA are griyldeteriorated. Furthermore,
the proposed method can reduce reconstruction tinee large extent. Although PCA-
GRAPPA can also accelerate reconstruction time &l ag the proposed method, its
reconstruction quality is the worst among the atimods. The proposed method not only
reduces the reconstruction time to around 15% efdbnventional GRAPPA, but also

keeps lowest NMSE in comparison with the converi@®@RAPPA and PCA-GRAPPA.

——GRAPPA_Phantom
PCA-GRAPPA_Phantom
——KPCA-GRAPPA_Phantom
--=- GRAPPA_Brain
*- PCA-GRAPPA_Brain
--=- KPCA-GRAPPA_Brain
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Figure 29. Quantitative comparison among GRAPPAARBRAPPA, and KPCA-

GRAPPA at ourter reduction factors 4, 5, and 6.

(@)

ORF=5 | N=32| N=Nsc=12 | Nen=Nsci=16 | Nen=12,Nser=18 | Nicr=18,Nseri=12

GRAPPA | 6197 s

PCA 400 s 930 s 601 s 785 s
KPCA 397 s 939 s 600 s 782 s
(b)
ORF =4 ORF =6
GRAPPA 5735 s 9587 s
PCA-GRAPPA 1448 s 2269 s
KPCA-GRAPPA 1452 s 2273 s

Table 2. (a) CPU times for 32-channel phantom @atasing different combinations of
source and target channels, (b) reconstructionstifioe 32-channel brain (coronary)
dataset.

Furthermore, computational costs of PCA and KPCGAextracted independently for

evaluating their proportions in the whole reconsinn procedure. For 32-channel
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datasets and 48 ACS lines, if the number of thaaed set of target and source channels
is 8, 12, 16, 20, 24 respectively, the computatiawsts via CPU time of PCA and
KPCA are presented as shown in Table 3. AlthougleKRonsumes more computation
costs than PCA, it only takes a very small portadfnthe CPU times in the whole
reconstruction procedure that are presented in eTdbl For this reason, whole

reconstruction times of PCA-GRAPPA and KPCA-GRAP#&A almost the same.

PCA KPCA
Nich=Nsc=8 0.30s 3.93s
Ntch=Nscr=12 0.33s 423 s
Nich=Nsci=16 0.37s 4.34 s
Nich=Nsci=20 0.39s 452s
Ntch=Nscr=24 0.43s 4.75s

Table 3. The computational costs via CPU time oARMDd KPCA at reduced 8, 12, 16,

20, and 24 channels.

5.5 Discussion

The parameteisource have different selections to control the recortdiom quality. The
sensitivity map of one channel is generated from division of the individual low-
resolution image and the SOS of all channels. Bart&nnels, we select 8 channels: 1, 5,

9, 13, 17, 21, 25, and 29 to demonstrate the clsaofysensitivity maps, in which each
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sensitivity maps is displayed using the same s@aight means large magnitude value
and dark denotes low magnitude value). As showrigure 30, sensitivity maps of
original channels (without channel reduction) digplnormal magnitudes and each
channel has sensitivity distribution with almost #ame magnitudes. On the other hand,
many channels corresponding to small eigenvalues BCA reduction present very little
magnitudes of sensitivity maps that contributéelito the SNR of the final reconstructed
image. Generally, the first channel that correspgotad the largest eigenvalue has the
largest magnitudes on the sensitivity map. Follgwithe decreasing eigenvalues,
magnitudes of the sensitivity map become smalldrraake little contribution to SNR of
the final reconstructed image. For KPCAZdfurcelS too small, sensitivity distribution for
each channel after channel reduction is almossanee to that of PCA channel reduction.
Following the increasing value ofsource Sensitivity maps are gradually changed in
comparison with PCA channel reduction, because cmovdinates have been changed

nonlinearly.
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6. Conclusion

In summary, the problems of GRAPPA reconstructialaw SNR at high acceleration
factor, low imaging acceleration, and significaoimputational costs with many coils.
Since nonlinear approaches have been proposed wamessfully applied on SENSE
reconstruction in our group, in order to improve AFHRA reconstruction efficiently,
three nonlinear approaches have been proposedgaontribution in the dissertation.

In order to enhance SNR of GRAPPA reconstructionigth acceleration factors, we
proposed a novel kernel-based nonlinear recongirucligorithm for GRAPPA. The
proposed method [66, 69] provides a more generaleinto characterize the noise
behavior in GRAPPA reconstruction and thereby impsothe SNR significantly.
Experimental results demonstrate that the nonliGRAPPA is superior to conventional
GRAPPA and other two methods at the same net aatele factor. We anticipate that
the proposed nonlinear approach can bring furtlesrefits to current applications of
conventional GRAPPA.

Compressed sensing (CS) and parallel MRI (pMRI)ehbgen widely studied for
accelerating MRI reconstruction. However, both retnucted signals by CS and PI are
not as accurate as acquired MR signals, so thatseof CS reconstruction as the first
step will be propagated and even amplified to datate pMRI reconstruction quality in
the second step. We proposed a novel method [&l] abmbines CS with nonlinear
GRAPPA sequentially for fast imaging. NLGRAPPA igpied on thek-space data
reconstructed by CS. The generalized kernel reigressiodel of NLGRAPPA can

remove error effects of inaccurate signal recoesitva by CS.The experimental results
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demonstrate that the proposed CS-NLGRAPPA methalipgrior to CS-GRAPPA in
suppressing both noise and artifacts when a highedection factor is used.

Furthermore, in order to reduce the computatiomeits caused by many coils in
reconstruction, we studied channel reduction tephmifor fast reconstruction. We
proposed a novel nonlinear channel reduction forABRA reconstruction. A novel
kernel-PCA-based channel reduction method is pegdsr parallel MRI. The method
maps the data onto a higher dimensional space ghraunonlinear transformation and
PCA is performed to generate a reduced set of neanreels. Experimental results
demonstrate that the proposed KPCA-based chantheéttien method is able to not only
reduce the computational time, as the PCA-basetlodetoes, but also suppress noise in

GRAPPA reconstruction.



90

7. Reference

[1] Z.P. Liang, and P.C. Lauterbur, “Principlesrmégnetic resonance imaging: a signal
processing perspective”, Wiley-IEEE press, 1999.

[2] D.B. Twieg, “The k-trajectory formulation of ¢h NMR imaging process with
applications in analysis and synthesis of imagirghods”, Medical Physics, vol. 10, pp.
610-621, 1983.

[3] S. Ljunggren, “A simple graphical representatmf Fourier-based imaging methods”,
Journal of Magnetic Resonance, vol. 54, pp. 338-3983.

[4] P.B. Roemer, W.A. Edelstein, C.E. Hayes, Sduza, and O.M. Mueller, “The NMR
phased array”, Magnetic Resonance in Medicine, Ml pp. 192-225, 1990.

[5] L. Ying, and Z.P. Liang, “Parallel MRI using gabed array coils — multichannel
sampling theory meets spin physics”, IEEE SignalcBssing Magazine, vol. 27, pp. 90-
98, 2010.

[6] K.P. Pruessmann, M. Weiger, M.B. Scheideggerd &. Boesiger, “SENSE:
Sensitivity encoding for fast MRI”, Magnetic Resaoa in Medicine, vol. 42, pp. 952-
962, 1999.

[7] M.A. Griswold, P.M. Jakob, M. Nittka, J.W. Gdaib, and A.Haase, “Partially
parallel imaging with localized sensitivities (PSMagnetic Resonance in Medicine,
vol. 44, pp. 602-609, 2000.

[8] D.K. Sodickson, and W.J. Manning, “Simultane@cguisition of spatial harmonics
(SMASH): Fast imaging with radiofrequency coil a8 Magnetic Resonance in

Medicine, vol. 38, pp. 591-603, 1997.



91

[9] M.A. Griswold, P.M. Jakob, R.M. Heidemann, MitiKa, V. Jellus, J. Wang, B.
Kiefer, and A. Haase, “Generalized autocalibratipgrtially parallel acquisitions
(GRAPPA)”, Magnetic Resonance in Medicine, vol. gjg, 1202-1210, 2002.

[10] P.M. Jakob, M.A. Griswold, R.R. Edelman, andKDSodickson, “AutoSMASH: a
self-calibrating technique for SMASH imaging”, Madit Resonance Materials in
Physics, Biology and Medicine, vol. 7, pp. 42-5898.

[11] R.M. Heidemann, M.A. Griswold, A. Haase, andVP Jakob, “VD-AutoSMASH
imaging”, Magnetic Resonance in Medicine, vol. gp, 1066-1074, 2001.

[12] J. Park, Q. Zhang, V. Jellus, O. Simonettd &n Li, “Artifact and noise suppression
in GRAPPA imaging using improve#i-space coil calibration and variable density
sampling”, Magnetic Resonance in Medicine, vol. i3, 186-193.

[13] Z. Wang, J. Wang, and J.A. Detre, “Improvedadaeconstruction method for
GRAPPA”, Magnetic Resonance in Medicine, vol. 54, p38-742, 2005.

[14] P. Qu, C. Wang, and G.X. Shen, “Discrepancyeokaadaptive regularization for
GRAPPA reconstruction”, Journal of Magnetic Res@ealmaging, vol. 24, pp.248-255,
2006.

[15] F.H. Lin, “Prior-Regularized GRAPPA Reconstiioa”, Proceedings of the 14th
Annual Meeting of ISMRM, Seattle, 3656, 2006.

[16] D. Huo, and D.L. Wilson, “Robust GRAPPA rectmstion and its evaluation with
the perceptual difference model”, Journal of Magn®esonance Imaging, vol. 27, pp.

1412-1420, 2008.



92

[17] F. Huang, Y. Li, S. Vijayakumar, S. Hertel, darG.R. Duensing, “High-pass
GRAPPA: an image support reduction technique fgrrowed partially parallel imaging”,
Magnetic Resonance in Medicine, vol. 59, pp. 649;@008.

[18] R. Nana, T. Zhao, K. Heberlein, S.M. LaCorated X. Hu, “Cross-validation-based
kernel support selection for improved GRAPPA retartsion”, Magnetic Resonance in
Medicine, vol. 59, pp. 519-825, 2008.

[19] R. Nana, and Hu X. Data consistency critefi@nselecting parameters for k-space-
based reconstruction in parallel imaging. MagnB&sonance Imaging, vol. 28, pp. 119-
128, 2010.

[20] T. Zhao, and X. Hu, “lterative GRAPPA (iIGRAPPfor improved parallel imaging
reconstruction”, Magnetic Resonance in Medicing, ¥8, pp. 903-907, 2008.

[21] M.A. Griswold, M. Blaimer, F. Breuer, R.M. H#mann, M. Mueller, and P.M.
Jakob, “Parallel magnetic resonance imaging udnegGRAPPA operator formalism”,
Magnetic Resonance in Medicine, vol. 54, pp. 155361 2005.

[22] M. Bydder, and Y. Jung, “A nonlinear regulaion strategy for GRAPPA
calibration”, Magnetic Resonance Imaging, vol. g3, 137-141, 2009.

[23] M. Blaimer, M. Gutberlet, P. Kellman, F.A. Brer, H. Kostler, and M.A. Griswold,
“Virtual coil concept for improved parallel MRI ergying conjugate symmetric signals”,
Magnetic Resonance in Medicine, vol. 61, pp. 93; ZU®9.

[24] M. Honal, S. Bauer, U. Ludwig, and J. Leupolbhcreasing efficiency of parallel
imaging for 2D multislice acquisitions”, Magneticegonance in Medicine, vol. 61, pp.

1459-1470, 2009.



93

[25] Z. Chen, J. Zhang, R. Yang, P. Kellman, L.Ahdston, and G.F. Egan, “lIR
GRAPPA for Parallel MR Image Reconstruction”, Matim&esonance in Medicine, vol.
63, pp. 502-509, 2010.

[26] H. Wang, D. Liang, K.F. King, G. Nagarsekar, @hang, and L. Ying, “Improving
GRAPPA using cross-sampled autocalibration datadgiMetic Resonance in Medicine,
vol. 67, pp. 1042-1053, 2011.

[27] L. Ying, and E. Abdelsalam, “Parallel MRI rexdruction: a filter-bank approach”,
Proceedings of the IEEE Engineering in Medicine Bralogy Conference (EMBC), pp.
1374-1377, 2005.

[28] B. Sharif, and Y. Bresler, “Distortion-optimaelf-calibrating parallel MRI by blind
interpolation in subsampled filter banks”, Proceegdi of the IEEE International
Symposium on Biomedical Imaging (ISBI), pp. 52-3611.

[29] L. Ying, and J. Sheng, “Joint image recondinrc and sensitivity estimation in
SENSE (JSENSE)”, Magnetic Resonance in Medicink, 5/ pp. 1196-1202, 2007.

[30] B. Liu, F.M. Sebert, Y. Zou, and L. Ying, “Ss@SENSE: randomly-sampled
parallel imaging using compressed sensing”, Prangedf the 16th Annual Meeting of
ISMRM, Toronto, 3154, 2008.

[31] B. Liu, K.F. King, M. Steckner, J. Xie, J. Sig and L. Ying, “Regularized
sensitivity encoding (SENSE) reconstruction usingeddnan iterations”, Magnetic
Resonance in Medicine, vol. 61, pp. 145-152, 20009.

[32] D. Liang, B. Liu, J. Wang, and L. Ying, “Aceghting SENSE using compressed

sensing”, Magnetic Resonance in Medicine, vol.(§2,1574-1584, 20009.



94

[33] P. Tomaso, and S. Steve, “The mathematicearhing: dealing with data”, Notices

of the American Mathematical Society, vol. 50, §p7-544, 2003.

[34] W. Liu, P.P. Pokharel, and J.C. Principe, “Hegnel least-mean-square algorithm”,
IEEE Transactions on Signal Processing, vol. 565g8-554, 2008.

[35] G. Camps-Valls, J.L. Rojo-Alvarez, and M. Madgz-Ramon, “Kernel methods in

bioengineering, signal and image processing”, deaup Publishing, London, 2007.

[36] B. Schilkopf, and A.J. Smola, “Learning withrkels: support vector machines,
regularization, optimization, and beyond (adapteenputation and machine learning)”,

The MIT Press, Boston, 2001.

[37] H. Takeda, S. Farsiu, and P. Milanfar, “Kernegression for image processing and
reconstruction”, IEEE Transactions on Image Praongssol. 16, pp. 349-366, 2007.

[38] I.T. Jolliffe, “Principal component analysispringer Series in Statistics, Spinger,
2" Edition, 2010.

[39] B. Scholkopf, A. Smola, and K.R. Muller, “Keghprincipal component analysis”,

International Conference on Atrtificial Neural Netiks, LNCS, vol. 1327, pp. 583-588,

1997.

[40] S. Mika, B. Scholkopf, A. Smola, K.R. Mullek). Scholz, and G. Ratsch, “Kernel

PCA and de-noising in feature space”, Neural Infmion Processing Systems
Conference (NIPS), 1998.

[41] P. Gruber, K. Stadlthanner, M. Bohm, F.J. Shand E.W. Lang, “Denoising using

local projective subspace methods”, Neurocomputing,69, pp. 1485-1501, 2006.



95

[42] M. Berar, M. Desvignes, G. Balilly, Y. PayamdaB. Romaniuk, “Missing data
estimation using polynomial kernels”, Internatio@@nference on Advances in Pattern
Recognition, LNCS, vol. 3686, pp. 390-399, 2005.

[43] F. Huang, S. Vijayakumar, Y. Li, S. Hertel,da. Duensing, “A software channel
compression technique for faster reconstructionhwmany channels”, Magnetic
Resonance Imaging, vol. 26, pp. 133-141, 2008.

[44] F. Huang, W. Lin, G.R. Duensing, and A. Reylsbw “A hybrid method for more
efficient channel-by-channel reconstruction withnpahannels”, Magnetic Resonance
in Medicine, Early View Online, 2011.

[45] M. Lustig, D. Donoho, and J.M. Pauly, “SpaMRI: The application of compressed
sensing for rapid MR imaging,” Magnetic ResonanteViedicine, vol. 58, pp. 1182-
1195, 2007.

[46] M. Lustig, D.L. Donoho, J.M. Santos, and JRauly, “Compressed sensing MRI”,
IEEE Signal Processing Magazine, vol. 25, pp. 722808.

[47] K.F. Kevin, D. Xu, A.C. Brau, P. Lai, P.J. Baa and L. Marinelli, “A new
combination of compressed sensing and data drigeallpl imaging”, Proceedings of the
18th Annual Meeting of ISMRM, Toronto, 4881, 2010.

[48] M. Lustig, and J.M. Pauly, “SPIRIT: iterativeelf-consistent parallel imaging
reconstruction from arbitrary k-space,” Magnetics®@ance in Medicine, vol. 64, pp.
457-471, 2010.

[49] F. Huang, and G.R. Duensing, “A theoreticahlgsis of errors in GRAPPA”,

Proceedings of the 14th Annual Meeting of ISMRMatHe, 2468, 2006.



96

[50] M. Schmitt, A. Potthast, D.E. Sosnovik, J.Rolifeni, G.C. Wiggins, C.
Triantafyllou, and L.L. Wald, “A 128-channel receronly cardiac coil for highly
accelerated cardiac MRI at 3 Tesla”, Magnetic Raroa in Medicine, vol. 59, pp. 1431-
1439, 2008.

[51] M. Buehrer, K.P. Pruessmann, P. Boesiger,&nidozerke, “Array compression for
MRI with large coil arrays”, Magnetic ResonanceMedicine, vol. 57, pp. 1131-1139,
2007.

[52] M. Doneva, and P. Bornert P, “Automatic codlection for channel reduction in
SENES-based parallel imaging”, Magnetic Resonana&eNals in Physics, Biology and
Medicine, vol. 21, pp. 187-196, 2008.

[53] S. Feng, Y. Zhu, J. Ji, “Efficient large-arrkydomain parallel MRI using channel-
by-channel array reduction”, Magnetic Resonanceglntgg vol. 29, pp. 209-215, 2011.
[54] S. King, S. Varosi, G. Duensing, “Optimum SNRta compression in hardware
using an eigencoil array”, Magnetic Resonance irdidlee, vol. 63, pp. 1346-1356,
2010.

[55] M.A. Carreira-Perpifian, “Continuous latent iabfe models for dimensionality
reduction and sequential data reconstruction”, BiE3is, University of Sheffield, UK,
2001.

[56] D. Watkins, “Fundamentals of matrix computast, 2nd edition. Wiley-
Interscience, New York, USA, 2002.

[57] G. Golub, “Some modified matrix eigenvalue lplems”, Society for Industrial and

Applied Mathematics (SIAM) Review, vol. 15, pp. 3384, 1973.



97

[58] G. Golub, and C.V. Loan, “An analysis of tlogdl least squares problem”, Society
for Industrial and Applied Mathematics (SIAM) Joaton Numerical Analysis, vol. 17,
pp. 883-893, 1980.

[59] S. Aja-Fernandez, A. Tristan-Vega, W.S. Hod8tatistical noise analysis in
GRAPPA using a parameterized noncentral Chi appraton model”, Magnetic
Resonance in Medicine, vol. 65, pp. 1195-1206, 2011

[60] T. Frieb, and R. Harrison, “A kernel-based lagd, Proceedings of the 7th
European Symposium on Artificial Neural Networksu@es, Belgium, pp. 245-250,
1999.

[61] K. Kim, M.O. Franz, and B. Scholkopf, “Iteraéi kernel principal component
analysis for image modeling”, IEEE Transactions Pattern Analysis and Machine
Intelligence, vol. 27, pp. 1351-1366, 2005.

[62] Y.W. Chang, C.J. Hsieh, K.W. Chang, M. Ringghaand C.J. Lin, “Training and
testing low-degree polynomial data mappings viedmSVM”, Journal of Machine
Learning Research, vol. 11, pp. 1471-1490, 2010.

[63] T. Zhang T, “Learning bounds for kernel regies using effective data
dimensionality”, Neural Computation, vol. 17, pp.72-2098, 2005.

[64] P.M. Robson, A.K. Grant, A.J. Madhuranthakdnattanzi, D.K. Sodickson, C.A.
McKenzie, “Comprehensive quantification of signartoise ratio and g-factor for
image-based and k-space-based parallel imagingsecations”, Magnetic Resonance

in Medicine, vol. 60, pp. 895-907, 2008.



98

[65] S. Bauer, M. Markl, M. Honal, and B.A. Jungihe effect of reconstruction and
acquisition parameters for GRAPPA-based parallehgimg on the image quality”,
Magnetic Resonance in Medicine, vol. 66, pp. 402;2011.

[66] Y. Chang, D. Liang, and L. Ying, “Nonlinear GRPA: a kernel approach to
parallel MRI reconstruction”, Magnetic ResonanceMedicine, vol. 68, pp. 730-740,
September, 2012.

[67] E. J. Candes, J. Romberg, and T. Tao, “Robuosertainty principles: exact signal
reconstruction from highly incomplete frequencyormhation,” IEEE Transactions on
Information Theory, vol. 52, pp. 489-509, 2006.

[68] D. Donoho, “Compressed sensing,” IEEE Transaston Information Theory., vol.
52, pp. 1289 - 1306, 2006.

[69] Y. Chang, D. Liang, and L. Ying, “A kernel apach to parallel MRI
reconstruction”, IEEE International Symposium ommedical Imaging: From Nano to
Macro (ISBI), pp. 389-392, 2011.

[70] Y. Chang, K. King, D. Liang, Y. Wang, and L.ing, “A kernel approach to
Compressed Sensing parallel MRI”, IEEE InternatioBgmposium on Biomedical
Imaging: From Nano to Macro (ISBI), pp. 78-81, 2012

[71] A.N. Tikhonov, V.Y. Arsenin, “Solutions of Hposed problems”, New York:
Winston & Sons, 1977.

[72] J.R. Porter, S.M. Wright, A. Reykowski, “A Jement phased array head coil”,

Magnetic Resonance in Medicine, vol. 40, pp. 272;2B98.



99

[73] Y, Zhu, C. Hardy, D. Sodickson, R. Giaquintd, Dumoulin, G. Kenwood, T.
Niendorf, H. Lejay, C. McKenzie, M. Ohliger, and NRofsky, “Highly parallel
volumetric imaging with a 32-element RF coil arrayfagnetic Resonance in Medicine,
vol. 52, pp. 869-877, 2004.

[74] M. McDougall, and S. Wright, “64-channel arragil for single echo acquisition
magnetic resonance imaging”, Magnetic Resonanddadicine, vol. 54, pp. 386-392,
2005.

[75] S. King, G. Duensing, “The MRI Eigencoil: 2Nwnnel SNR with N-receivers”,
Proceedings of the 11th Annual Meeting of ISMRMydrdo, 712, 2003.

[76] P. Beatty, W. Sun, A. Brau, “Direct virtual itdDVC) reconstruction for data-
driven parallel imaging”, Proceedings of the 16ttmAal Meeting of ISMRM, Toronto, 8,
2008.

[77] P. Beatty, J. Holmes, S. Chang, E. BayrarByiftain, S. Reeder, A. Brau, “Coil-by-
coil vs. direct virtual coil (DVC) parallel imagingeconstruction: an image quality
comparison for contrast-enhanced liver imaging”’pdeedings of the 18th Annual
Meeting of ISMRM, Stockholm, 2879, 2008.

[78] W. Chen, P. Hu, C. Meyer, “Rapid partially plel reconstruction using single
synthetic target coil”, Proceedings of the 16th AalnMeeting of ISMRM, Toronto, 1296,
2008.

[79] S. Muller, R. Umathum, P. Speier, S. Zuhlstio#. Ley, W. Semmler, M. Bock,
“Dynamic coil selection for real-time imaging in temventional MRI", Magnetic

Resonance in Medicine, vol. 56, pp. 1156-1162, 2006



100

[80] L. Marinelli, C.J. Hardy, “Coil selection optization using mean-field annealing
and its application to 128-channel imaging”, Pralbegs of the 15th Annual Meeting of
ISMRM, Berlin, 750, 2007.

[81] F. Huang, S. Vijayakumar, J. Akao, “Softwarenmgpression for partially parallel
imaging with multi-channels”, Proceedings of theEEE Engineering in Medicine and
Biology Society, Shanghai, pp. 1348-1351, 2005.

[82] T. Zhang, J. Pauly, S. Vasanawala, M. Lustigoil compression for accelerated
imaging with Cartesian sampling”, Magnetic ResomaincMedicine, Early View Online,
2012.

[83] S. Vijayakumar, F. Huang, J.H. Akao, M.K. Lietkan, G.R. Duensing, “Channel
compression and denoising”, Proceedings of the ABtiual Meeting of ISMRM, Berlin,
1908, 2007.

[84] A. Stemmer, V. Jellus, S. Kannengiesser, Beféli, “Channel compression for
BLADE", Proceedings of the 16th Annual Meeting 8MRM, Toronto, 1274, 2008.

[85] A. Brau, P.J. Beatty, S. Skare, R. Bammer, fiparison of reconstruction accuracy
and efficiency among autocalibrating data-drivenafd@ imaging methods”, Magnetic
Resonance in Medicine, vol. 59, pp. 382-395, 2008.

[86] M. Arakawa, “Computational workloads for comntp used signal processing
kernels”, Lincoln Laboratory Project Report SPRMT, May 28 2003, Reissued Nov.
30 2006.



101

8. Curriculum Vitae

Education

Ph.D., Electrical Engineering, University of Wiscosin - Milwaukee, USA, Expect 12/2012
Concentrations: Magnetic Resonance Imaging, Biooadimaging, Signal Processing
Dissertation: A Study of Nonlinear Approaches toafal Magnetic Resonance Imaging
M.S., Pattern Recognition & Intelligent Systems, Sanghai Jiao Tong Univ., China, 2006
Concentrations: Pattern Recognition, Image Proaogss§lomputer Vision, Machine Learning
Thesis: Color Image Segmentation with Application@ontent-Based Image Retrieval

B.S., Automatic Control, Northwestern PolytechnicalUniversity, China, 2003

Graduation Design: Unix/Linux Shell Programming

Experience

C++ Software Engineer, 06/2012 — 08/2012

The Neat Company, Philadelphia, Pennsylvania, USA
Research Assistant, 01/2009 — 12/2011

University of Wisconsin — Milwaukee, Milwaukee, Wansin, USA
Teaching Assistant, 09/2006 — 12/2006 & 09/2008 2/2008
Brigham Young University, Provo, Utah, USA

Research Assistant, 01/2007 — 08/2008

Brigham Young University, Provo, Utah, USA

Intern, 04/2006 — 07/2006

Microsoft Research Asia, Beijing, China

Intern, 10/2005 - 03/2006

Hitachi (China) Research & Development Corp., SHaigChina
Intern, 05/2005 — 08/2005

Centaline China Real Estate Corp., Shanghai, China

Publication



102

[1] Yuchou Chang, Dong Liang, and Leslie Ying, “Norear GRAPPA: A Kernel Approach to
Parallel MRI Reconstruction”, Magnetic Resonance Medicine, vol. 68, pp. 730-740,
September, 2012.

[2] Haifeng Wang, Dong Liang, Kevin F. King, Gajan&lagarsekar, Yuchou Chang, and Leslie
Ying, “Improving GRAPPA Using Cross-Sampled Autoitethtion Data”, Magnetic Resonance
in Medicine, vol. 67, pp. 1042-1053, April, 2012.

[3] Dong Liang, Haifeng Wang, Yuchou Chang, and li®sYing, “Sensitivity Encoding
Reconstruction with Nonlocal Total Variation Regtifation”, Magnetic Resonance in
Medicine, vol. 65, pp. 1384-1392, May, 2011.

[4] Yuchou Chang, Kevin F. King, Dong Liang, Yongang, and Leslie Ying, “A Kernel
Approach to Compressed Sensing Parallel MRI”, IEE¥#mposium on Biomedical Imaging:
From Nano to Macro (ISBI), Barcelona, Spain, May 3, 2012.

[5] Haifeng Wang, Yihang Zhou, Yuchou Chang, Yongaig, “Smoothed Random-Like
Trajectory for Compressed Sensing MRI”, 34th Annuialernational Conference of the IEEE
Engineering in Medicine and Biology Society (EMB®an Diego, California, Aug. 28 — Sep.
1, 2012.

[6] Yong Wang, Dong Liang, Yuchou Chang, and Les¥éng, “A Hybrid Total-Variation
Minimization Approach to Compressed Sensing”, IEBEmposium on Biomedical Imaging:
From Nano to Macro (ISBI), Barcelona, Spain, May 3, 2012.

[7] Yihang Zhou, Yuchou Chang, Dong Liang, and liesYing, “K-T CSPI: A Dynamic MRI
Reconstruction Framework for Combining Compressethstng and Parallel Imaging”, IEEE
Symposium on Biomedical Imaging: From Nano to Ma¢r®Bl), Barcelona, Spain, May 2 — 5,
2012.

[8] Yuchou Chang, Kevin F. King, Dong Liang, and dle Ying, “Combining Compressed
Sensing and Nonlinear GRAPPA for Highly Acceleratarallel MRI”, 20th Annual Meeting in
International Society for Magnetic Resonance in Mate (ISMRM), Melbourne, Australia,

May 5 — 11, 2012.



103

[91 Yuchou Chang, and Leslie Ying, “A Nonlinear ARM Model for GRAPPA

Reconstruction”,20th Annual Meeting in Internatibn8ociety for Magnetic Resonance in
Medicine (ISMRM), Melbourne, Australia, May 5 — 12012.

[10] Yihang Zhou, Yuchou Chang, and Leslie Ying, -ttkCS-NLG: Dynamic Imaging

Reconstruction with Compressed Sensing and Nontir@RAPPA”, 20th Annual Meeting in
International Society for Magnetic Resonance in Mate (ISMRM), Melbourne, Australia,
May 5 — 11, 2012.

[11] Haifeng Wang, Yuchou Chang, Dong Liang, Kevmn King, and Leslie Ying, “Cross
Sampled Nonlinear GRAPPA for Parallel MRI”, 20th Wual Meeting in International Society
for Magnetic Resonance in Medicine (ISMRM), Melboer Australia, May 5 — 11, 2012.

[12] Yuchou Chang, Dong Liang, and Leslie Ying, ‘el GRAPPA: A General Nonlinear
Framework for GRAPPA Regularization”,19th Annual &g in International Society for
Magnetic Resonance in Medicine (ISMRM), Quebec, &bm 4394, May 7-13 2011.

[13] Yuchou Chang, Dong Liang, and Leslie Ying, “KRernel Approach to Parallel MRI
Reconstruction”, IEEE Symposium on Biomedical Intagi From Nano to Macro (ISBI),
Chicago, lllinois, pp. 389-392, Mar. 30 — Apr. 2120

[14] Yuchou Chang, Dong Liang, and Leslie Ying, “Nmear GRAPPA Using Volterra Filter”,
2nd Madison-Freiburg Workshop on Accelerated Mebieaaging, Madison, Wisconsin, Jun.
17-18 2010.

[15]Yuchou Chang, Dong Liang, and Leslie Ying, “AoNlinear GRAPPA Method for
Improving SNR”, 18th Annual Meeting in Internatidn&ociety for Magnetic Resonance in
Medicine (ISMRM), Stockholm, Sweden, May 1-7 2010.

[16] Huajun She, Rong-Rong Chen, Dong Liang, Yuch®bang, and Leslie Ying, “Image
Reconstruction from Phased-Array MRI Data BasedMartichannel Blind Deconvoltuion”, in

IEEE Symposium on Biomedical Imaging: From Nano #acro (ISBI), Rotterdam,

Netherlands, Apr. 14-17 2010.



	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2012

	A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging
	Yuchou Chang
	Recommended Citation


	Microsoft Word - 181589_supp_undefined_262289E8-335B-11E2-A876-2C192E1BA5B1.doc

