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ABSTRACT 

RAPID KNOWLEDGE ASSESSMENT (RKA): ASSESSING STUDENTS CONTENT KNOWLEDGE 

THROUGH RAPID, IN CLASS ASSESSMENT OF EXPERTISE 

by 

Erin O’Connell 

The University of Wisconsin-Milwaukee, 2012 

Under the Supervision of Professor Kristen Murphy 

Understanding how students go about problem solving in chemistry lends many possible 

advantages for interventions in teaching strategies for the college classroom. The work 

presented here is the development of an in-classroom, real-time, formative instrument to assess 

student expertise in chemistry with the purpose of developing classroom interventions. The 

development of appropriate interventions requires the understanding of how students go about 

starting to solve tasks presented to them, what their mental effort (load on working memory) is, 

and whether or not their performance was accurate. To measure this, the Rapid Knowledge 

Assessment (RKA) instrument uses clickers (handheld electronic instruments for submitting 

answers) as a means of data collection. The classroom data was used to develop an algorithm to 

deliver student assessment scores, which when correlated to external measure of standardized 

American Chemical Society (ACS) examinations and class score show a significant relationship 

between the accuracy of knowledge assessment (p=0.000). Use of eye-tracking technology and 

student interviews supports the measurements found in the classroom. 
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Chapter 1: Introduction and Background 

1. Introduction 

Is it possible to learn more about a student’s understanding of a concept than whether or not 

the student can correctly solve a problem or task? What is meant when an instructor says that a 

student does not understand a concept? Developing a way to understand more about our 

student’s problem solving processes in relationship to their performance would provide valuable 

insight into instructional methods and interventions where needed. Traditional methods of 

assessment primarily include performance evaluation. These methods have been used to 

determine instructional strategy and pace in the classroom, but with advancements in 

educational psychology these methods are no longer the optimal measurement of knowledge, 

“…knowledge levels of learners need to be assessed and monitored continuously during 

instructional episodes to dynamically determine the design of further instruction”(Kalyuga, 

2006). Developments in theories such as cognitive load theory, schema learning theory, and 

adaptive control of thought-rational have led to research on how students learn and integrate 

information into a domain of knowledge (where a domain is considered any category of related 

information on a subject) (Anderson, 1996; Marshall, 1995; van Merrienboer & Sweller, 2005). 

This project draws from all of these theories, however, the project primarily arose from studies 

done by Kalyuga and Sweller (2004, 2005) involving problem solving in algebra using cognitive 

load theory. 
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1.2 Theories on Learning 

1.2.1 Schema 

Schemata are mental models made of information treated as a single unit that allow for quick 

information retrieval if well developed. When learning, new information is incorporated into 

long-term memory structures known as schemata. Schemata are the mental models of 

information built by a person over time as new knowledge is made into its own domain or 

connected into a previously established domain through organization into groups or “chunks” of 

related concepts to decrease the load on working memory (Chi, Glaser, & Rees, 1982; Larkin, 

McDermott, Simon, & Simon, 1980). The amount of information that is processed and placed 

into schema is based on the load that may be handled by working memory. Working memory 

may process 7±2 pieces of new information at a time (Miller, 1956). A piece of information is 

any new information that is not currently connected to a schema, or that a person does not 

recognize as relating to an existing schema. Since the load that working memory can handle is 

small compared to the amount of information learned in a lecture, it is necessary to understand 

the efficiency with which students map new information. With the establishment of a measure 

of efficiency, one can determine how to best approach the development and application of 

appropriate learning interventions.  

In 2004 Kalyuga and Sweller used the idea of schemata to determine if the first step in problem 

solving by student’s related to the efficiency of the students’ schema in algebra. They found that 

first step was a valid measure of schema for algebra, and repeated the study in geometry with 

the same outcome. The steps chosen by students were directly related to a point in the thought 

process by the students, as the steps for a math problem could be listed sequentially and 

followed. The more advanced the process the more advanced the first step in the problem 
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solving process. In subjects such as chemistry the process is often not a direct step-wise 

pathway. However, if first steps truly relate to the level of development in schema as is 

suggested by Kalyuga and Sweller (2004), then first steps in chemistry should also relate to the 

development of a student’s schema for the topic being assessed.  Sweller, van Merrenboer, and 

Paas (1998)and Paas, Tuovinen, Tabbers, and Van Gerven (2003) discussed the use of schema in 

the role of cognitive load measurement as part of cognitive load theory (CLT).  

1.2.2 Cognitive Load Theory 

Cognitive load is the amount of information that working memory may cognitively process at 

any given time (Paas & van Merrienboer, 1994a). The limit on working memory of 7±2 pieces of 

information as discussed earlier has been carried through further study of working memory. 

Working memory is the cognitive system associated with handling information brought into 

working memory for the purpose of understanding and interpretation as a means of learning 

(Baddeley, 1986; Sweller et al., 1998).  

Initial studies to investigate the difference between one person’s level of knowledge and that of 

another person found that the difference did not lie in the conscious processing being done, but 

in the vast knowledge base acquired over exposure to similar or related information (Chase & 

Simon, 1973). This knowledge base for information is long-term memory. Long-term memory is 

the storage space for more permanent information that may be used individually or for 

understanding of more complex matters (Ericsson & Kintsch, 1995), where this information is 

stored as schemata (discussed in the previous section). A well-developed schema is automated 

and has efficient “chunking” of information. Working memory is the processing center between 

information stored in long-term memory and new information or stimuli to be stored in long-

term memory from working memory (Baddeley, 1986). The more automated and chunked the 
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information in a domain within long-term memory is, the less capacity it takes up in working 

memory, therefore decreasing the load on working memory (Paas et al., 2003). Many studies 

measuring working memory to aid in the development of instruction have been performed 

(Chandler & Sweller, 1991, 1996; Mayer & Moreno, 2003; Sweller et al., 1998).  

In order to measure load on working memory during learning one must look at what affects 

cognitive load on learning, or germane cognitive load. Sweller, van Merriënboer, & Paas (1998) 

published an article in which three types of load were addressed as affecting/determining 

cognitive load. Intrinsic cognitive load is the load imposed by the material itself. This load cannot 

be altered, as it is based on the nature of the material being learned. Extraneous cognitive load 

is the load imposed on cognition by the environment (i.e. instruction, distractions in the 

surroundings, or superfluous information). Extraneous load may be changed by changing the 

way in which the material is presented, or altering the environmental settings if not applicable 

to active learning. Finally there is germane cognitive load. Germane cognitive load is the load 

imposed on working memory when processing and integrating information into a schema. 

Changing instruction or task representation affects the amount of germane cognitive load 

imposed on a learner by creating extraneous load. Sweller (1994) discusses the ability to change 

germane cognitive load via instruction.  

1.2.2.1 Germane Cognitive Load 

Germane cognitive load consists of three factors: mental load, mental effort, and performance 

(Sweller et al., 1998). Mental load represents the load on cognition that stems from the task 

itself (intrinsic load) and its interaction with a subject’s long-term memory. The better the 

schema in long-term memory, the less controlled processing needs to occur in working memory. 

Mental effort (ME) is the amount of cognitive resources in working memory directed at task 
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solution. Mental effort is directly related to the mental load because as the expertise of the 

learner increases, the germane load occurring from the task decreases and the load on the 

working memory decreases (as the schema that is called into working memory is more advanced 

and requires less load on working memory). If mental load decreases it is expected that mental 

effort would decrease, and vice versa. This is due to schema development and activation, and to 

mental load. Both the mental load and ME are related to performance. Performance, or how 

well one succeeds at a task, is measured in mistakes, time on task (TOT), and if an answer is 

correct or incorrect (Paas, van Merrienboer, & Adam, 1994). The more the automated the 

processing of long-term memory information becomes, the more mental effort decreases as the 

information becomes more automated in working memory. Since the three layers of germane 

load are so interconnected, it is important to understand how and why measuring them is 

important. 

1.2.2.2 Measuring Cognitive Load 

Measuring cognitive load has been done using several techniques. The techniques of concern 

here are the ones involving the measurement of mental effort (Sweller et al., 1998). One of 

these techniques is subjective, and involves student self-reporting. For subjective reporting 

there are several methods that involve single or multiple scales for self-reporting (Hendy, 

Hamilton, & Landry, 1993). In the subjective technique a subject reports his or her mental effort 

using a provided scale. The scale used by Paas and van Merriënboer (Paas & van Merrienboer, 

1994a) involved nine points that looked into very fine detail. The scale ranged from “very, very, 

very little” to “very, very, very high”. It was later argued that there is little difference between 

some of the finer points and that a person cannot tell the difference between “very, very, very 

little” and “very, very little”. Therefore it was suggested that the scale could be trimmed down 
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to a seven-point scale (Marcus, Cooper, & Sweller, 1996). For determining mental effort in math 

only a five-point scale was utilized; this was based on the determination that only a general 

understanding of mental load by the students was needed to be understood for a true measure 

of mental effort (Kalyuga & Sweller, 2005). This scale has since been modified and validated for 

use in chemistry (Figure 1)(Knaus et al., 2009)  

How much mental effort did you expend on the previous question? 

A. Very little 

B. Little 

C. Moderate amounts 

D. Large amounts 

E. Very large amounts 

Figure 1. Mental effort scale used in chemistry assessment testing. 

 

Other methods of measuring mental effort include physiological and task/performance-based 

techniques (Sweller et al., 1998). Physiological techniques involve measurements of heart rate, 

brain activity, and eye activity, while task and performance-based techniques involves taking 

measurements while two tasks are performed concurrently (Sweller et al., 1998). Of these two 

methods neither of them is practical for large-scale use in the classroom for rapid knowledge 

instrumentation on single tasks. The ease of use and cost effectiveness of subjective reporting 

via a validated scale is therefore much more appropriate for large-scale classroom 

measurements. The only contention one might have is the ability to know students are 

accurately reporting and gauging their mental effort. However, measurements of pupil size can 

be done practically in an interview setting lending support to the validity of subjective reporting 
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of mental effort by students .1 To do this, an instrument known as an eye-tracker is required 

(Eye-tracking will be discussed later in this chapter.)  

1.2.3 Adaptive control of thought- rational (ACT-R) 

Another theory of cognition uses production sets. Production sets are a series of rules for 

matching information in memory to response outcomes. Unlike in cognitive load theory where 

information is networked, recall in production sets is based on exposure. This idea of producing 

an outcome through exposure comes from a theory on adaptive control of thought-rational 

(ACT-R). ACT-R helps to understand how students might use their schema, which suggests 

productions are used as a representation of knowledge to be accessed for use when problem 

solving2.  It is a way to describe how schema may function through deriving information or 

knowledge through exposure to situations and information, an idea known as abstraction8. 

Abstraction lends to the idea that schema may be generalized and not concrete linkages of 

information, thereby suggesting that through ACT-R, one gains information by exposure to 

concrete examples that signal a set of production rules. This then allows for the relationship of 

new information to other sets of information stored in memory.  The more advanced a learner is 

in a domain (degree of expertise), the more likely their schema are abstracted or generalized 

giving them greater utility and faster searching. 

“According to the ACT-R theory, the power of human cognition depends on the amount of 

knowledge encoded and the effective deployment of the encoded knowledge” (Anderson, 1996, 

p. 355).  

                                                           
1
 Eye-tracking studies have shown that pupil size is an accurate measure of mental effort (Beatty, 1982), 

therefore the assumption is made that if ME is measured through tracking it can be compared to a self- 
assigned ME for comparison and support of a subjective system. 
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Therefore ACT-R is concerned with declarative knowledge (the schema mapping from long-term 

memory, or the “chunking” of information of what you need), and the production rules (on how 

to perform a task either physically or cognitively) (Anderson, 1983)2 of memory. Later studies 

and expansions on ACT-R lead to further information on long-term memory structures, allowing 

for the connection in how to determine when and why to use procedural (knowledge that has 

become automated) and declarative knowledge, known as conditional knowledge (Figure 2) 

(Brunning, Schraw, Norby, & Ronning, 2004).  

The use of ACT-R to understand how we as humans perform functions of retrieval, input, and 

use of knowledge is pertinent when contemplating efficiency of a student’s thought process and 

goal state (i.e. conclusion or answer).  While the math studies do not specifically measure all 

three areas of knowledge involved in long-term memory, it does note the importance it plays in 

the use of schema which is what the instrument sets out to measure. In the RKA, the 

understanding ACT-R is important for the same reason. The instrument developed here in this 

thesis is intended to look at a student’s efficiency through first step in problem solving, which is 

a measure of the student’s use of schema. By relating the first step to the performance the 

measurement taken is essentially referencing the use of procedural, declarative, and conditional 

knowledge through long-term memory.  

 

 

 

 

                                                           
2
 The original work on ACT-R done by Anderson came from his earlier works on his theory of ACT done in 

1983. 
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          Figure 2: The relationship between the different types of knowledge in memory. 

 

The connections of pieces  of information(Miller, 1956) into a network of knowledge that a 

person forms about a topic that can be used when “problem solving” is the basis for schema 

(Marshall, 1995, Chapter 2). Kalyuga and Sweller developed an instrument to help assess 

students’ expertise and understanding of algebra (Kalyuga & Sweller, 2004, 2005). Expertise is a 

measure of how well a schema in the domain of study has been developed. Through ranking 

expertise Kalyuga and Sweller were able to specifically look at a student’s increasing or stable 

level of understanding in the domain of math. They were able to determine expertise by looking 

at an individual’s first step in his or her problem solving process (Kalyuga & Sweller, 2004), and 

in 2005 they added a mental effort portion to allow for an efficiency evaluation. Students were 

instructed to report their mental effort using a scale ranging from “extremely easy” to 

“extremely difficult” (Kalyuga & Sweller, 2005). Efficiency was calculated through a comparison 
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of mental effort and performance, to determine the degree to which the load on working 

memory affected performance. Kalyuga and Sweller found that one’s expertise in math could be 

assessed using the difficulty level of the first step used during problem solving. The 

measurements taken by Kalyuga and Sweller (2004, 2005) show promise for measuring 

understanding (expertise) of students’ individually in math, but math is a linear process and the 

developed procedure lacks the ability to test for expertise in interdependent domains such as 

chemistry on a large scale.  

The study of problem solving in chemistry will help lead to a larger knowledge base for use in 

classroom instruction and general conveyance of chemical knowledge in a public forum. In as 

such, it is necessary to determine how one will appropriately measure a student’s current 

understanding of chemistry. Because the domain of chemistry is vast and contains many sub-

domains, the best place to begin collecting knowledge on understanding in chemistry is at the 

beginning of knowledge development in the domain. For this reason an instrument, Rapid 

Knowledge Assessment (RKA), was designed to work within the general chemistry curriculum. 

This study draws from the principles used by Kalyuga and Sweller in their 2004 and 2005 studies, 

but expands upon them for use in a classroom setting. Development of this instrument also 

lends to the development of complementary classroom interventions for varying groups of 

learners and knowledge levels. No intervention will ever be able to benefit an entire group, but 

if interventions that will target a larger portion of the classroom population based on classwide 

information are developed, a higher success rate can be achieved.  The problem has been 

finding a way for instructors to determine what types of interventions will be needed in the 

classroom. The RKA instrument acts as an in-classroom instrument to measure students’ 

knowledge in chemistry through assessing individual and class-wide expertise.  
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1.3 Expertise in Math: why a look at math sheds light on 

chemistry 

The 2004 study by Kalyuga and Sweller involved the development of a system to measure an 

individual’s knowledge in specific areas of math using the person’s own schema. The 

expectation was that if students could be identified at different levels of knowledge in different 

content areas within algebra, then better instructional strategies could be implemented. The 

goal was to reduce expertise reversal effect (regression to a less efficient method of problem 

solving or understanding (Kalyuga, Ayres, Chandler, & Sweller, 2003)) through new instructional 

strategies, as studies show that this may occur if students are directed towards only one method 

of thinking about problem solving (Kalyuga, 2007). This is typically identified through lower 

performance. Expertise reversal effect occurs when instructional procedures do not work well 

for both lower-level novices and higher-level novices (Kalyuga et al., 2003). If an instructional 

procedure does not teach to every knowledge level of learner, but caters towards teaching only 

the lower level knowledge students, there exists the possibility that the higher knowledge level 

students may stop progressing and reverse to a lower level function of their knowledge. The 

theory behind this is based on cognitive load theory, where the processing capacity of working 

memory may be benefited or hindered by instruction and the student’s current schema (van 

Merrienboer & Sweller, 2005). This is because external information competing with information 

needed for concept processing may become integrated into the schema being developed by the 

student, and become part of the normal recall of information in the future.  

Another theory includes the use of production sets. Production sets are a series of rules for 

matching information in memory.  The study also contains theory from Adaptive Control of 

Thought- Rational to understand how students might use their schema, which suggests 
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production sets are used as a representation of knowledge to be accessed for use when 

problem solving (Anderson, 1996). It is a way to describe how schema may function through the 

idea of abstraction (Anderson & Lebiere, 1998). By developing a measurement technique using 

the student’s own schema, Kalyuga and Sweller therefore intended to measure the student’s 

level of knowledge and assign students a level of expertise that would help the instructor better 

design instructional presentations within the classroom. 

To begin, Kalyuga and Sweller (Kalyuga & Sweller, 2004) needed to develop a rapid cognitive 

diagnostic test that measured long-term working memory (schema) and working memory while 

performing knowledge-driven tasks. Through reviewing the path experts take based on their 

ability to recall essential elements in the task, Kalyuga and Sweller were able to design four 

experiments that were used to help determine a student’s expertise level. They found 

tendencies for assessing correct solution paths to be an effective measure of cognitive processes 

in problem-solution schemas when comparing these first steps identified by the students to the 

continuum of the problem-solving pathway (a linear pathway for these tasks). For these reasons 

the four experiments were designed around the idea that the first step in the problem solving 

process would lead to subtasks within an overall goal. If the subtasks were correctly identified, 

and if an advanced first step was given and carried out, the learner (student) would have 

identified with larger chunks of information in their long-term memory and come closer to the 

correct solution for the task, therefore showing a higher level of expertise with each subtask 

completed.  The first-step approach was used for comparison of the instrument in external 

validation of the efficiency ratings to exam scores of this concept.  The information from these 

results was then used to develop instructional strategies 
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Kalyuga and Sweller's (2004) first experiment was designed based on the first-step taken in the 

problem solving process for finding the solution of a task within algebra. In the tasks set to 

rapidly measure students’ knowledge, the students were asked to give their immediate next 

step towards finding a solution to the task presented.  They were then asked to find the solution 

for the task provided. This process allows for the students to connect process with solution, and 

to accurately relate a “step” during the task. It is important to group these two pieces together, 

so as to have an accurate reporting of the information. If asked to recall later what was done in 

the beginning, students may not be able to identify with their thought process.  Three tasks 

were given, and the time taken to complete the tasks was recorded.  More knowledgeable 

learners should identify more advanced steps (moves) for the problem states perceived, while 

less knowledgeable learners should identify less advanced steps, as their perceived problem 

states would be less efficient.  The performance on the tasks was also measured with scoring on 

a basis of correct or incorrect.  The results from the rapid measurement were then correlated to 

the results from a list of 12 similar tasks.  What was found was concurrent validity for the rapid 

assessment, as demonstrated by the Pearson correlation scores between the traditional and 

rapid tests, where at the 95% confidence interval a high significance was found; r(44)=0.92, 

p=0.01, CI=95% (Kalyuga 2004).  Experiment two was used to see if similar results could be seen 

within a different domain in mathematics, and the same experiment was applied using 

geometry instead of algebra.  Similar results were found for the geometry study. One could 

argue that while both geometry and algebra are in the domain of math, that both types of math 

require a separate set of knowledge to draw upon for problem solving. Because separate 

schema may be activated during problem solving in algebra than in geometry, this lends towards 

validity of the instrument in other domains of knowledge and subdomains. 
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In experiment three, Kalyuga and Sweller (2004) studied whether the expertise reversal effect 

could be measured and adjusted for using the rapid measurement idea to assess the students, 

and then develop an instructional format to limit such an effect.  In this experiment the steps to 

the task were mapped out in a grading rubric and assigned efficiency levels starting with the 

most basic part of the task solution as “1” and ending with the final step in the task solution as 

the highest number.  Here students were also asked just as before to solve the problems and 

give a first step.  However, this time the point at which the student started, according to the 

rubric, was used to indicate the knowledge level of student.  This was appropriate, as the higher-

knowledge level learners would use more efficient steps as theorized earlier using CLT.  This 

efficiency number summed with the performance score (correct 1, incorrect 0) and the time for 

the assessment helped to determine the level of knowledge of each student. At this point in the 

experiment, different instruction was presented for students of different knowledge levels.   

They found statistically significant correlations (p<0.01) between high-level knowledge and low- 

level knowledge learners to suggest that different levels of knowledge may be measured using 

the rapid measurement tasks utilizing efficiency ratings. The success of an instrument in one 

domain supports the development of an instrument in other domains.  Indeed, this was 

specifically addressed by the authors: 

“In more complex domains involving multiple-step problems, students might be able to 

take many different routes to problem solutions.  If all those routes are identifiable, the 

method still could be used in both paper-based and electronic forms.”  (Kalyuga and 

Sweller, 2004, p. 566) 

 Experiment four then went on to test if what was found in experiments one through 

three could be used effectively when training students on computers.  Because math is a linear 
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process, the program was set up to walk students through the information in a linear style.  

There were four stages, and in each stage the students were given less guidance than in the 

previous stages.  By stage four only problem-solving exercises were given.  A diagnostic test was 

given at the beginning of the program to assess where in the computer training process to begin 

students.  Students with the lowest level of knowledge were started at the first stage, while 

students with a higher level of knowledge were started at the fourth stage.  The diagnostic test 

based students’ knowledge on the number of tasks the students correctly solved.  To be 

considered to have a higher knowledge level at least two of the problems had to be solved 

correctly.  It was found that using such a strategy limited the expertise reversal effect for higher 

knowledge students, along with advancing the expertise of the lower knowledge students.  The 

results in this experiment were also found to be statistically significant for the learner adapted 

format between the two knowledge level groups (t(24)=2.26, p<.05).  The important aspect of 

this experiment is that by using computers and having a more controlled environment for each 

level of learner, it can be seen that using a rapid measure of students’ level of expertise based 

on cognitive processes is functional. Because of this there is reason to believe that an electronic 

system for a classwide rapid measurement may also be possible. This strategy can help to 

improve instruction within the learning environment, while aiding different knowledge level 

students.  

Further studies by these researchers included experiments where mental effort (ME) was used 

to help assign an expertise rating to students (Kalyuga and Sweller, 2005).  Mental effort was 

done via self-reporting by students through use of a seven-point quasi-interval scale (“extremely 

easy” to “extremely difficult”). The scale was administered as a survey after completion of the 

task, where the students were asked to provide the difficulty the task posed for them. The 

mental effort rating was combined with the performance rating to produce an efficiency rating. 
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From the efficiency rating the treatment and non-treatment group were found to have 

significantly different average efficiency gains ( t(14)=1.89, p<0.05)(Kalyuga & Sweller, 2005). 

The mental effort rating is combined with performance to form efficiency, as it is a measure of 

expertise. The more “difficult” the task is reported by the students, the more load there is on 

working memory. Because working memory is the location of information processing from and 

into schema, the more difficult the task is rated, the less developed a schema the student 

possesses on a topic, and therefore the less expertise they have. This also shows that the 

complexity of the information is being reported from a subjective standpoint. The more complex 

the information is viewed to be, the more load is imposed on working memory. The objective 

complexity of the task is based on the actual components required for task solution.  

1.4 Summary 

The efficiency rating, in conjunction with the experiments from 2004, helped to develop the 

basis for the RKA experiment, in which a proxy for the cognitive processes of the working 

memory can be measured and used to determine expertise in a more complex domain, such as 

chemistry, using multiple-step problems with multiple solution possibilities.  The RKA uses a 

five-point scale for in classroom activities as well as interviews, and checks the reliability of 

student self-reporting as a valid method of measurement using measurements of pupil dilation 

found through eye-tracking, something that was not done in the studies by Kalyuga and Sweller 

to check reliability of student mental effort.  

Because using computers in a classroom is not practical for lecture settings, the RKA needed to 

be developed for class-wide measurements using alternate techniques. The use of clicker 

systems allows for computer data analysis while collecting information of a large set of 

individual users. Students will not be allowed to jump across multiple tasks, but the design of 
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the instrument is to assess student knowledge to lead classroom instruction. Therefore, it is not 

being used as a direct tool to teach information, and expertise reversal is minimized. 

1.5 Using pupil diameter as a measure of mental effort through 

eye-tracking 

Kalyuga and Sweller decided to measure mental effort using a subjective seven-point rating 

scale ranging from “Extremely easy” to “Extremely difficult” (Kalyuga & Sweller, 2005). While 

their results tracked with the expectation that higher performance would track with lower ME 

for higher expertise students, the article does not mention how the study went about assuring 

validity of ME. For this reason in the development of the RKA eye-tracking technology was 

utilized to assess validity of subjective reporting of ME by students. Research on the use of pupil 

size to measure cognitive function has taken place since the late 1800s (Beatty & Wagoner, 

1978). Since then great progress has been made in the use of pupil size as a measure of load on 

working memory (Beatty & Wagoner, 1978; Kahneman & Jacson, 1966; Stone, Lee, Dennis, & 

Nettelbeck, 2004). Research has found not only links between pupil dilation and mental effort, 

but those measurements can also be differentiated to show the load on cognition at different 

points in time during a task  (Kahneman & Jacson, 1966). The importance of tracking pupil 

measurements is therefore paramount in determining if subjective reporting of ME by 

participants is an accurate measure of ME in research. To carry out this research one must first 

consider how to track pupil diameter of participants. Earlier methods of tracking used to be 

through restrictive devices that allowed for measurements to be taken and/or photographs of 

the eye that were turned into slides for measurement. More recently, computer based 

technology allowing for video eye-tracking has been developed to record such information using 
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less restrictive measures (Jacob & Karn, 2003). Recent studies have even utilized mobile eye-

tracking systems to measure pupil dilation (Klingner, Kumar, & Hanrahan, 2008).  

The importance of eye-tracking can be seen in works such as Keith Rayner’s 1998 article 

following a history of 20 years of eye movement research. This work shows that there is more to 

eye-tracking than just measurements of pupil diameter. Data on what information in a task is 

accessed, how long it is accessed (fixations), the path in which information is accessed 

(saccades), and how often something is accessed are all important pieces of the process that can 

be collected for analysis. Through using an eye-tracker all of this information and more can be 

obtained for a single individual in now non-invasive, user-friendly formats.  For this reason 

computer-based eye-tracking was implemented in the RKA interviews to establish validity and 

reliability of subjective measures of ME by students. 

1.6 Summary: 

With chemistry being such a complex domain that does not follow a linear path, we want to see 

if the students schema may be used to measure their expertise based on how much information 

the students can take in and process based on their cognitive load.  The mental effort rating 

they choose will relate to the student's cognitive load and be used as an indicator for his or her 

expertise level in conjunction with his or her performance and first step, same as in the 

experiments in math.  

Through evaluating Kalyuga and Sweller's studies (Kalyuga & Sweller, 2004, 2005) we expect it is 

possible to create an instrument that will assess a more complex domain, because there was 

success determining knowledge level (expertise) of students using linear processes such as in 

algebra and geometry.  The RKA will use the concepts of the math studies (mental effort, first 

step, and performance) to assign expertise ratings to the students and class as a whole.  
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Chapter 2: Instrument Design and Implementation 

2. Methods 

The purpose of this system is to help collect information on how students build a knowledge 

base, or schema, when learning chemistry. In class the tasks are presented as “spot review” 

questions. This allows the students to feel more relaxed and view the tool as being there to 

assist them, rather than as a way to test how quickly they can solve a problem. To accomplish 

this, a methodology was developed that allows for quick and accurate data collection of several 

constructs (performance, ME, and first step), using clickers. 

2.1 Demographic Information 

The Rapid Knowledge Assessment study underwent development and testing at the University 

of Wisconsin-Milwaukee. Demographics about the university were obtained from the University 

of Wisconsin website2: ‘The University is located in Milwaukee, Wisconsin and is a Research 1, 

urban, doctoral degree-granting university consisting of 14 schools and colleges that together 

offer 180 degree programs. UW-Milwaukee is reported to be the most diverse of the University 

of Wisconsin system universities’.3 The University has an enrollment of 29,768 students, of 

which 5,090 are in postgraduate studies4.  

 

 

 

 

 

                                                           
3 Obtained from UWM website: http://www4.uwm.edu/discover/about.cfm (accessed June, 
2012) 
4 Obtained from UWM website: http://www4.uwm.edu/discover/facts.cfm (accessed June, 
2012) 
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Table 1. Institutional Data 

Institution Type Size* Location Demographic 

University of Wisconsin-

Milwaukee 
Doctoral 29,768 Milwaukee, WI 52% Female 

    
17% Targeted 

Minority 

*Both undergraduate and graduate students  **Targeted minority excludes Asian 

students 

 

2.2 Overview of Classroom Study 

The study took place in the Chemistry and Biochemistry Department over eleven semesters, 

from the spring of 2007 through the fall of 2011. Students from a Preparatory Chemistry course 

and the first semester of a two part General Chemistry course took part in the study over these 

semesters. Of these 2188 students, 1521 consented to participate in the study via an approved 

IRB protocol (IRB #09.047).  Only data from consenting students was included in the study. 

Prerequisites for preparatory chemistry consist of a C grade or better in college algebra. The 

class meets for three lectures a week for 50 minutes each and one discussion for 50 minutes, 

without a laboratory section. This adds up to 60 hours over the course of the semester. A 

professor or academic staff from the chemistry department at the university teaches the 

lecture, while either graduate or undergraduate teaching assistants teach the discussions. 

Undergraduate teaching assistants must be chemistry or biochemistry majors and have 

completed the majority of their required courses for their degree. Preparatory chemistry is not 

designed for non-science majors.  Students required to take a chemistry course(s) for their 

major must take preparatory chemistry if they are not prepared for their required chemistry 
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course(s) as determined by a chemistry placement test. The lectures from this course used in 

the study were taught by one of three instructors trained in use of the instrument. Prerequisites 

for general chemistry included a grade of C or better in college level algebra and preparatory 

chemistry. Those placing out of preparatory chemistry or college level algebra through 

placement testing were not required to have completed these prerequisites before participating 

in general chemistry. The course meets for 3 lectures (50 minutes each), 1 discussion (50 

minutes), and 1 laboratory section (2 hours, 50 minutes) per a week adding up to 105 hours over 

the semester. A professor or academic staff from the chemistry department at the institution 

teaches the lecture, while graduate and undergraduate students teach the discussions and labs. 

The same requirements are set for undergraduate teaching assistants for this course as for 

preparatory chemistry. General chemistry is designed for students who intend to take higher 

level chemistry courses for their major. Students required to take a specialized chemistry course 

such as nursing chemistry do not participate in general chemistry, however some students with 

attaining a degree that has a specialized chemistry course offered still take general chemistry. 

An example of this is engineering, where a student may intend on obtaining a certification that 

requires a more in-depth knowledge of chemistry. Demographic data for the two courses is 

listed in Table 2. 
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Table 2. Demographic Characteristics of Students in General Chemistry I and 
Preparatory Chemistry 

 Accepted IRB 
(n=1331) 

Did not accept IRB 
(n=595) 

 N (%) N (%) 

Gendera 

   Female 866 (56.9) 314 (47) 
   Male 654 (43) 354 (53) 
   Unknown 1 (0.1) 0 (0.0) 
 p=0.000 
Year in School 
   Freshman 388 (30.3) 140 (25.5) 
   Sophomore 547 (42.7) 262 (47.6) 
   Junior 213 (16.6) 100 (18.2) 
   Senior 133 (10.4) 48 (8.7) 
 p=0.077 
 Mean (SD) Mean (SD) 

ACTb Composite Score 22.76 (3.444) 22.18 (3.685) 
 p=0.001 
ACTb Math Score 22.92 (4.000) 22.36 (4.157) 
 p=0.005 
ACTb  Science and Reasoning 
Score 

22.90 (3.531) 22.46 (3.723) 

 p=0.012 
a Gender was obtained through institutional research. Not every 
participant’s gender was identified. 
b ACT scores were obtained through institutional research and were not 
available for all students. 

 
 

 

2.3 Task Design 

The principal investigator initially designed tasks for the instrument through collaboration with 

another departmental staff member for use in the earliest phase of the study in 2007. The tasks 

were designed based on review information in different content areas within chemistry that 

were considered important for the understanding of chemistry. The tasks were designed to 

cover various aspects within the different content areas being tested. The content areas 

identified for testing initially included properties of matter (formula calculations), stoichiometry, 
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aqueous reactions, and gases. In time, the instrument was expanded to include general chemical 

knowledge (unit conversion, temperature conversion, etc.), atomic structure, electronic 

structure, periodicity, chemical bonding and molecular structure, liquids and solids, reactions, 

and thermochemistry. The list consisted of fifteen tasks. In 2008, the collaboration of the 

principle investigator and I began for the purpose of determining task revisions, additions, and 

deletions. Initial task revisions were carried out based on performance and open-response 

submissions (2008- 2009). If performance ratings ran too low or too high for the class overall, 

the tasks were not accurately measuring a range of student abilities. At the same time, if the 

open-ended responses collected were too vague, continually contained too high a count of 

complete answers, and/or did not yield a fair number of first steps or had too many first steps 

for coding the task was not effectively measuring varying mental efforts. Therefore, task 

revisions were carried out if a general issue or theme was prevalently apparent and could be 

changed to allow for further testing of the task and its possible use in the final iteration of the 

task list. To test the tasks, Pearson correlations were performed between internal and external 

measures of mental effort, efficiency, performance, final examination performance, and percent 

grade in the class. This allowed for testing of reliability of the information. 

2.4 Data Collection 

2.4.1 Open-ended Response Collection 

Open-ended responses on the first step in a student’s problem solving process were collected 

on paper during the submission of the task response. Paper sheets were distributed to the 

students before the projector displayed the task and the timer started for data collection 

(Appendix A). The top area of the sheet provided a space for the students to record their first 

step, while the bottom portion of the sheets provided space for the students to work out their 
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solution to the task. During the collection time for task responses, the top portion containing the 

first step open-response was torn off and handed in. The bottom portion was retained by the 

student to allow for review and comparison when the instructor provided a method of task 

solution. 

2.4.2 System for Classwide Data Collection 

The classwide data was collected with a personal response system (or student “clickers”) and 

the system that was used is a product of eInstruction called Classroom Performance System 

(CPS) (einstruction, 2007). The system works through using a receiver and software that can 

accept information sent to the computer by clickers that are compatible with the CPS unit. The 

system can be set up to accept open responses as numbers or letters and has a timer function 

that can be used in the data collection phase.  Additionally, this system gives feedback to the 

students through both their clicker and the software (projecting on a screen) that their response 

has been received by the system.  The clickers also have an LCD screen to allow them to view 

their response before submitting.  Students can submit multiple responses while the question is 

still open with only the last response graded by the system.  The students are trained on using 

the clickers and are expected to purchase, register, and use their clickers as part of their final 

grade. The data is then exported into excel.  

To begin with, each task, or question, is posed to the students using the system and/or on 

paper. Each task has three areas where data is collected. The first area is performance, the 

second is mental effort, and the third is the first step in the student’s task solving process.  
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2.4.2.1 Area 1: Performance  

 

Performance is collected as open response via the clicker system. The students are given 2 to 3 

minutes to solve each task. The tasks presented to the students come from one of twelve 

content areas: General, Atomic Structure, Electronic Structure, Periodicity, Chemical Bonding 

and Molecular Structure, Liquids and Solids, Properties of Matter- Formula Calculations, 

Reactions, Stoichiometry, Aqueous Reactions, Gases, and Thermochemistry. Multiple tasks were 

developed for each content area based on collaboration between the principle investigator and 

myself. The tasks were written to assess concepts that would be present in most general 

chemistry courses at many universities, and that would assess various levels of student 

understanding. The design and order of the tasks focuses on assessing those students with 

average and slightly less than average understanding of the concepts presented, since this is the 

group often most affected by interventions.  

Once the students have solved the task, they enter their response using their clicker. The 

answer is coded into the system often with a 5% error range for numerical answers.  In the case 

of an integer response (such as atomic number), no range was allowed.  

2.4.2.2Area 2: Mental Effort 

  

Students are next prompted to report their mental effort, which is collected using five quasi-

interval ratings. This quasi-interval scale used here was developed based on the project done by 

Kalyuga and Sweller(2005) (Figure 3). The students are given a maximum of 30 seconds to enter 
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in a response. Once the students have gotten used to the order of the system, this part normally 

takes much less time (approximately 10 seconds).  

2.4.2.3 Area 3: First Response 

  

The students are provided with 30 seconds to 1 minute to complete this segment. The time 

allowed varies depending on the amount of reading required. The order of the steps was always 

listed in typed length from shortest to longest. This deterred the students from selecting an 

answer based on the order it appeared in the list. 

  It is important that this information was collected last so as not to influence the answers to the 

previous two areas of data collected. It is important to note that the students were only able to 

answer the question that was open on the screen in front of them. The order in which 

information was presented to the students in the first phase of the study may be seen in Figure 

3. Once an area was closed, the responses for it were not available to the students to prevent 

back entering information. Normally the amount of time given above in each area was adequate 

for that given area; however, discretion was applied based on the instructors feeling for how 

students were moving along.  

 Once the system was closed so that no more answers could be accepted, the solution 

for the task was presented to the students. By walking the students through how to solve the 

task, it allows for them to reflect on their previous responses they gave and gauge their 

understanding of the concepts involved in solving the task. It also gives the students a chance to 

ask questions they may have related to the topics being covered. The students were told to 

focus on the explanation being presented as the task is being solved, and not on copying the 

solution down. All of the answers were later posted to each question on the web page for the 

class. 
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Figure 3: Primary phase of the study: Shows the order and time allotted for each area within the 
system. 

 

2.5Instrument Development: 

 

  The beginning of the RKA was undertaken in the spring semester of 2007. Information 

collected in this semester was from three lecture sections of preparatory chemistry students at 

the University of Wisconsin-Milwaukee (instructor 1, N= 135; instructor 2, N= 229). In this 

instance, only open responses (OR) were collected from the class. An open response was 

considered a student-generated first step in the problem solving process undertaken by the 

student. The purpose of the OR, and the reason why it is referred to here as information instead 

of data, was to cultivate a basic understanding of student-generated first steps in problem 

solving. The basis of the instrument, as mentioned earlier, is to create a comparison between 

several different levels: performance, mental effort, and first step in one’s problem solving 

process. Therefore, in order to create a balanced instrument for classroom use that could be 
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entirely clicker based, it had to be determined if students overlapped significantly in their first 

steps.  

 To cultivate data in this manner, a classwide system for collecting student OR needed to 

be generated. It was determined that the simplest, fastest, and most accurate way to collect this 

information would be through the use of a paper system. At the beginning of several classes, 

students were given sheets of paper on which to record his or her first step in their problem 

solving process (Appendix A). The students were then presented with a task and given five 

minutes to work on solving the task. After the task was solved students clicked in their answers 

to CPS. Students were instructed to record the first step in their problem solving process on the 

slip of paper and hand it in. Once the OR slips were collected, and the five minutes had passed, 

the instructor for the lecture would go through the solution for the task. It is important to note 

that when the solution was presented to the class, there was no inference to any specific correct 

way to solve the task. This was done to keep students from thinking any one process was more 

correct than another.  

2.5.1 Data information and processing 

The data collected on the OR forms was taken and coded into a response type. The types of 

responses were then reviewed for similarities. For example, if response A said “writing the 

formula for aluminum acetate” and response B said “Al(CH3COO)3”, both of these responses 

were grouped together as the same type of response. If this was an appropriate step in the 

problem solving process, the grouped response was coded into an option for use in the 

electronic response system (Figure 4). The final step entered into the electronic list was always 

the “out” response “Reading the exercise, however I am not sure how to start the exercise”. This 
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allowed for students to present a first step of reviewing the task without selecting a random first 

step from the list provided to them. 

Exercise: What is the percent composition by mass of oxygen in aluminum acetate? 

Steps- “For this exercise, my first step is…” 

A writing the chemical formula 

B determining the mass of oxygen 

C determining the number of moles of oxygen 

D determining the molar mass of aluminum acetate 

E reading the exercise, however I am not sure how to start the exercise 

 

 

 

 

 

 

 

 

The mental effort and task performance data collected via the clicker system were recorded by 

the CPS software and later exported to excel. The data was organized for analysis in excel, and 

then loaded into SPSS for analysis. Once in SPSS, Pearson correlations were performed between 

the task performance, mental effort, final exam scores, and class grades (percentage scores). 

Example of OR answers that were used to determine Step A: 

   “Al(CH3COO)3” 

                “Al(C2H3O2)3” 

   “writing the formula for aluminum acetate” 

   “writing the chemical formula” 

Figure 4 Example of a task where open response options were coded into response 

types and entered into the electronic  CPS system as an option for multiple choice 

response. 
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2.5.2 Continuing RKA development on a larger scale 

The project was continued as described above and expanded upon in the fall of 2008. In the fall 

semester instructor 1 taught both the preparatory chemistry course (N=183) and the general 

chemistry course (N=150) (there was more than one lecture section of each course during this 

semester). The data obtained was once again based on the information collected from the OR 

forms in lecture, with the addition of one important step: mental effort. The students were 

asked to report mental effort (ME) using a Likert scale5. During this semester only a general list 

of first steps was beginning to be generated. Starting in the fall of 2008 student data was 

needed to test the reliability and validity of the system. For this reason students were provided 

with a consent form approved by the internal review board (IRB 09.047). Only students who 

signed the consent form and authorized the use of their class data were used in the study.  

 

2.5.3 Task Development 

Development of tasks for further use in the study was carried out through review of earlier 

semester’s class materials to cover varying aspects within each of the twelve noted content 

areas. These tasks were written through collaboration of the principal investigator, another 

university instructor (proof of concept phase only), and myself (after the proof of concept phase 

data collection). The list of tasks may be found in Appendix B. After the tasks were developed, 

they were tested through classroom application. Students were presented with the tasks during 

the “spot review”. After data collection was completed, the tasks were reviewed based on the 

amount of time the students’ required to complete the task, the overall class performance (did 

high performing and low performing students in other areas still show a difference in 

                                                           
5
 Explained in section 2.7.4 
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performance for the given task), and the quality/type of open-responses submitted by the 

students. If the task took too long to complete and showed overall low performance with OR 

submissions indicating little understanding of what the task was asking, the task was reviewed. 

If upon reviewing the task it was apparent that minor changes would allow for continued use of 

the task (a point of clarification in the task, or a simple rewording), the task was altered for re-

testing. However, if the task showed that little information would be able to be determined on 

the classes understanding of the concept, even with small changes, the task was discarded. 

Discarded tasks were replaced with new tasks if another task did not test the same concept. If 

other tasks tested the same concept, no new tasks were created and tested for inclusion in the 

system.  

2.5.3.1 OR for multiple choice development 

 

The method described on OR above was used to generate first step responses by students over 

four semesters in eight lectures (N=1331). Individuals submissions from OR were collected and 

coded, as in Figure 5, and used to create an electronic list of steps for use in collecting clicker 

data on first step in one’s problem solving process.  

 

This coding process of OR to MC was followed for the spring and fall of 2009 semesters. Over 

these two semesters two classes General Chemistry 1 (N=521) and Preparatory Chemistry 

N=176) were provided with the secondary phase of the system (Figure 2). In this phase students 

were asked to provide a written first step (OR) and then later select their first step from a list of 

multiple-choice options. The other parts of the phase remained the same as in phase 1 of the 

instrument. 

 



32 
 

 

 
Figure 5 Secondary Phase of the study: Shows the addition of the multiple choice step in the 
order and the amount of time allotted for it in the system. 
 
During the secondary phase of the instrument, the OR and MC responses by students were 

compared for consistency (Figure 6). Students who selected from the MC list a first step that 

corresponded with the OR they listed received a score of 1, while those students that did not 

match received a score of zero. 
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Exercise: What is the percent composition by mass of oxygen in aluminum acetate? 

Steps- “For this exercise, my first step is…” 

A 1 writing the chemical formula 

B 0 determining the mass of oxygen 

C 0 
determining the number of moles of 
oxygen 

D 0 
determining the molar mass of aluminum 
acetate 

E 0 
Reading the exercise, however I am not 
sure how to start the exercise 

 
 

2.5.4 Complete electronic testing 

After collecting data for comparison of OR to MC in 2009, the study moved on to phase 3 in the 

spring of 2010 (Figure 7). In phase 3 of the instrument OR was no longer collected. The 

remainder of the areas of the instrument remained the same. Data collected here in CPS was 

exported to excel where it was organized for use in SPSS. Once in SPSS that data was analyzed. 

 

 

 

 

Example of OR answers that were used to determine Step A: 

   “Al(CH3COO)3” 

                “Al(C2H3O2)3” 

   “writing the formula for aluminum acetate” 

   “writing the chemical formula” 

Figure 6 Example of a task where open response options were matched to multiple choice 

responses in the CPS system. 
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Figure 7. Phase 3: Electronic data collection 

2.6 Efficiency and Complexity Rating System: 

 

 Four experts from two universities were asked to review each task in the inventory list for task 

complexity and efficiency of the first step responses. The complexity rating ratings were done 

using a method developed by the American Chemical Society Exams Institute (Knaus, Murphy, 

Blecking, and Holme, 2011). The experts were first provided a list of tasks. Each task was 

accompanied by instructions for assigning complexity, a response sheet for recording complexity 

and the rubric to assign complexity. A sample of these instructions, response sheet, and rubric 

may be found in Appendix C.  

 The experts were also asked to rate the efficiency of each of the first step responses 

created from the open responses given by the students (see data information and processing). It 

was explained to the raters that each answer set would end with the same possible response to 

allow students to say they do not know how to solve the problem. This was to be rated as “1”, 

as there is no efficiency in problem solving if this step was selected. The rest of the responses 

were then numbered in order of efficiency for solving the task, with 1 being the least efficient 
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and the final number being the most efficient. The number of first responses available varies. 

This is due to the fact that the choices available were generated from student responses.  

 

2.7 Eye-tracking 

Over four semesters from spring 2009 through Fall 2010, 73 novice and 12 expert interviews 

were conducted using SensoMotoric Instruments (SMI) eye-tracking technology (Figure 8) 

(Sensomotoric Instruments, 2011c). Novice interviews consisted of undergraduate students 

completing the first semester of general chemistry, or who had just completed the first 

semester of general chemistry and were just beginning general chemistry 2. Expert interviews 

were conducted for further clarification on possible task improvement, while novice interviews 

were done to collect information on use of mental effort and first steps in the classroom 

instrument. A total of 48 tasks from the classroom instrument were coded into webpages using 

HTML. Their corresponding OR, ME, MC components were also coded into the system using the 

same method.  ME and MC options were coded for selection by participants through use of 

radial buttons. The interviews were designed to take place in one-hour blocks, in which the 

participant would complete as many of the tasks and their corresponding components as 

possible. The participants were encouraged to talk through their thought process while solving 

the task. Participants who did not complete all the exercises were invited back for another 

interview. Not all participants returned to finish the set of tasks. 
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Figure 8. Eye-tracking computer and RED tracker set-up. 

2.7.1 Interview Design 

The interviews were set up to follow phase 2 of the classroom study (see open response for 

multiple choice development). Participants in the interview were presented with a task on 

screen with an area to type in an answer (Figure 9). Once the participants submitted their 

response they would click to proceed to the next page. The following page prompted the 

participants, and presented the participant with an area in which, to provide his or her OR. Upon 

completing the OR the participant would click a designated key on the keyboard to continue. 

The participant was then prompted to provide his or her mental effort. After completing this 

and clicking to move on, the participant was provided a list of electronic first steps with which to 

choose the first step in his or her own problem solving process (Figure 10).  
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Figure 9. Screenshot of how the task appears. 

 

 

Figure 10. a) Screenshot of how the ME appears. b) Screenshot of how the MC appears.  

b 

a

a 
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  2.7.2 Data Collection  

The SMI tracker collects data using software programs, iView and an experiment center program 

(Sensomotoric Instruments, 2011b). The iView software operates and runs the tracker itself, 

while the experiment center program is used to create the experiment to be run, and connects 

with the iView software to overlay tracking information onto the experiment file. To allow for 

accurate tracking of a participant’s eye movements in relation to the information presented on 

the computer screen, a calibration is run at the computer. The calibration functions by providing 

what appear to the participant as a random point on the screen. The participant follows the 

point as it changes location on the screen. To adjust calibration and to make sure the 

participants’ eye-movements are recorded properly, the height and distance of the monitor may 

be adjusted. The way the participant sits may also be adjusted. The system is set so calibration 

occurs within a set space. The space the participant has to move around during the experiment 

is 40cmx20cm at 70cm distance from the tracker. The calibration is accurate within 0.4˚ when 

set to these specifications. Through looking at the laptop monitoring experiment center 

software, the interviewer can see when tracking is lost and when it is recovered. This allows for 

the interviewer to let the participant know when to adjust their posture while sitting at the 

tracker during the interview. When tracking was lost from participants’ change in posture, it 

occurred because the distance from the participants’ eyes to the tracker moved outside of the 

calibrated range. Tracking was also lost of the participants looked away from the screen. The 

tracker only records eye data when the reflection of the light from the tracker is bounced back 

off of the eye. When participants look away from the screen, tracking is lost. This often occurs 

when the participant looks up and to the left while thinking, or when the participant looks down 

at the desk while working problems on paper. To accommodate for the precision of the tracker, 

the pages were coded with a font size large enough to allow for judgment as to what the 
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participant was looking at. This was the set-up for the RED tracker running at 60Hz. The 

remainder of the data collection occurs via manual work or student entered information. 

Participants enter in their answers via the computer system through the method discussed in 

the interview design of the tracker. Meanwhile, the interviewer (myself) recorded notes on 

comments made by participants. The task solution, ME, and MC selection were also recorded 

manually. All of this information is available via the computer database that is created for each 

participant; however, due to errors encountered during initial trial testing of the system, 

information was kept manually via a record sheet in case the data needed to be accounted for.  

2.7.3 Data Evaluation 

Upon completion of the interview the data is available for analysis through the BeGaze software 

(Sensomotoric Instruments, 2011a)that accompanies the system. The BeGaze software allows 

for analysis of responses through looking at time-on-task, or the amount of time a participant 

spent on a given area of the task or the task as a whole; heat maps, areas of focus by a 

participant generated via the amount of time spent looking at a given area; scan paths, or the 

path the participants eyes created when solving the task; fixations, which are places a 

participants eyes lingered and the time for that fixation was recorded; areas of interest (AOI) in 

which a specific area of a task or its component may be specified for extra information (this 

information includes the number of times the piece of information was referenced and the total 

time spent on the area); and pupil diameter, where the tracker takes measurements of the pupil 

size throughout tracking. All of this data may be viewed individually for participants or for all 

participants as a whole in the BeGaze program through videos and screenshots of the 

information as it was recorded. The information may also be exported into excel as raw 

numerical data for analysis.  
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All of the above mentioned methods of data analysis were utilized during 

evaluation of the tracker data collected for this project. 2.7.4 Statistical 

Methods and Data Collection 

2.7.4.1 Likert Scale 

A Likert scale is a scale which measures attitude or opinion based on a range of provided 

responses (Likert, 1932). Since its development in 1932 the Likert scale has been used in 

research (many examples of which are given in chapter 1.2.2.2 ). The scale ranges based on the 

number of response options provided. Typically Likert scales range between five and seven 

response options. In the case of the Rapid Knowledge Assessment, a five point Likert scale is 

used to determine mental effort (Chapter 2, section 4.2.2). 

2.7.4.2 Pearson Correlations versus Spearman Correlations 

Pearson product-moment correlations coefficient, r, is used to assess the direction and strength 

of the relationship between two continuous variables (Gravetter and Wallnau, 2007). The closer 

the value is to 1 (or -1, depending on the direction of the relationship expected), the stronger 

the relationship between the two variables. The significance of the value (α) is then compared 

to the probability of obtaining the values calculated (p-value). If the α -value is 0.01 (1%) or 0.05 

(5%), it means that there is less than a 1% or 5% chance of the result occurring by chance. 

Therefore, if the p-value comes back less than the α-value it is statistically significant. This 

means that under the most stringent of circumstances it is highly unlikely that the result 

occurred by chance, i.e. it is 99% or 95% certain that that is the true correlation. In most social 

science research, an alpha of 0.05 is the minimum acceptable value, which is the standard 

followed in this research. 

Spearman correlations are correlations run between two variables where the variables have no 

implied numerical value. Data for comparison is therefore assigned numerical values. Since 
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there is no set numerical value, or integers between the assigned values of the data, the 

Spearman correlation accounts for this fact during analysis. Spearman correlations are 

measured using Spearman’s rank correlation coefficient, rho.  The Spearman correlation then 

measures the relationship between the two values, as is done in the Pearson correlation. The 

significance of this value is also measured in the same manner as it is for the Pearson 

correlation. 

2.7.4.3 Cronbach’s Alpha 

Cronbach’s alpha is a measurement of reliability. The analysis compares the number of useable 

cases, cases that include all pertinent information, against one another. It then looks at the 

repeatability of the information analyzed for consistency amongst the cases. In social science 

statistical analysis, a value of 0.70 is considered an acceptable value for consistency. This same 

value will be used to check for acceptable consistency, and therefore reliability, in this work. 
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Chapter 3: Assessing viability of the Instrument 

3. Introduction to proof of concept 

The concept of rapidly assessing student knowledge in the classroom holds great potential and 

use in the lecture setting. Kayluga and Sweller (2004, 2005) found this to be true for the linear 

domain of math. In order to develop such an instrument in a complex domain like chemistry, 

one first needs to determine if students approach problem solving in similar measurable 

manners, and, if so, whether those processes relate enough to one another to be categorized in 

recognizable units by novices.  This means that one must first determine the multiple ways 

students approach solving the same task. 

To test the concept that an in-classroom instrument may be able to measure knowledge in real 

time, based on the theory of previous work, the collection and validity of the first steps needed 

to be established for continuation of the project. To accomplish this, first steps of the 

participants needed to be evaluated in comparison to other measures of assessment used 

within the classroom. The traditional model of assessment is performance, and therefore is 

widely accepted for use in assessment studies. Therefore, the aggregate scores for the areas of 

performance and first-step performance were used for each participant in comparison to his or 

her third exam score, two final exam scores, and percent grade in the course.  Aggregate scores 

were used to allow for a comparison of the class as a whole over the course of the semester.  

Each first-step performance was coded as correct or incorrect based on the submitted open 

responses application to the task. This allowed for generation of a multiple choice list of first 

steps (discussed later).  If the solution provided for the step was completed properly, data was 

generated based on the type and number (correct or incorrect) of responses submitted by each 
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lecture section. Through comparison of students’ performance on the task response and first 

step a better relationship between the initial thought and final solution is visible.  All three 

lecture sections of the course were compared using Pearson correlations, and then combined 

together to test for overall validity of the instrument. This is an important comparison as the 

three lecture sections were taught using either didactic or active learning. This final piece allows 

one to look at the possibility of the validity to be disrupted based on the type of learning 

environment.  

3.1 Determination of step viability 

To determine if students commonly agreed on how to start solving tasks, a range of fifteen tasks 

were developed for testing and comparison. Of the fifteen tasks, twelve were valid for 

comparison. Tasks one and ten were not included in the analysis, as only one lecture section 

was used to collect data for the tasks, and task thirteen was excluded based on missing task 

performance data.  The areas within the tasks compared included performance on the task, 

performance on the first step reported (i.e. if the first step was performed correctly or not), 

score on the ACS standardized final exam, the second final exam (written by the course 

instructors), and the third hourly exam (which covered aspects of each of the twelve task 

categories listed in Appendix B, and the final percent grade in the class. These areas were 

compared using Pearson product-moment correlations (Appendix D) to determine the degree to 

which students’ reported first steps are valid in the creation of a rapid knowledge assessment 

instrument.  

Two of the six areas used for the correlations were coded dichotomously (task performance and 

first step performance). These two aspects were coded this way as they fit the profile for 

categorical data, or data that only fits directly into a specific description (i.e. correct or 
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incorrect).  The data was coded in this way for both lecture types. Table 3 shows the data for the 

correlations comparing the traditional didactic lecture (lecture 401, treatment 3) and the two 

active learning lecture sections (lectures 402, treatment 1, and 403, treatment 2). In the didactic 

lecture, significant correlations were present at the 95% and 99% confidence intervals across all 

six areas of comparison for the tasks. In the first active learning lecture significant correlations 

were present for all areas except first step performance. Pearson correlations for first step 

performance to Final 1, Final 2, Exam 3, and class percent were found to not be significant. Upon 

examining the first steps submitted, it was found that a higher number of students in treatment 

one attempted to solve the problem completely. Often the students were incorrect in this 

attempt. It is possible that this does not correlate to the external measures because the 

complete problem as a first step was incorrect due to calculation error, or that the students 

became clear in their error post task. However, in the second active learning lecture section 

these correlations were found to be significant at the 0.01 level. In this section the only 

discrepancy was found between Task performance and the Exam 3 score. Here no significance 

was noted. In the addition, if all three lecture sections are combined for comparison each area 

correlated within the tasks comes back as significant at the 0.01 level. 
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Table 3. Correlation Values Spring 2007 

 

Lecture 
401 

Lecture 
402 

Lecture 
403 

All 
Lectures 

 
(n=51) (n=69) (n=43) (n=163) 

Task Performance to:  

First Step Performance  (TP:FS) 0.642** 0.274* 0.511** 0.458** 

Final 1   (TP:F1) 0.415** 0.450** 0.539** 0.388** 

Final 2   (TP:F2) 0.546** 0.398** 0.470** 0.406** 

Exam 3   (TP:E3) 0.486** 0.563** 0.278 0.426** 

Percent in Class   (TP:PC) 0.650** 0.527** 0.379* 0.520** 

First Step Performance to:  

Final 1   (FS:F1) 0.547** 0.170 0.433** 0.353** 

Final 2   (FS:F2) 0.459** 0.203** 0.584** 0.384** 

Exam 3    (FS:E3) 0.291* 0.117 0.408** 0.263** 

Percent in Class   (FS:PC) 0.511** 0.136 0.446** 0.310** 

Final 1 to:  

Final 2   (F1:F2) 0.664** 0.843** 0.708** 0.777** 

Exam 3   (F1:E3) 0.621** 0.709** 0.426** 0.583** 

Percent in Class   (F1:PC) 0.714** 0.897** 0.641** 0.742** 

Final 2 to:  

Exam 3   (F2:E3) 0.626** 0.624** 0.583** 0.599** 

Percent in Class   (F2:PC) 0.792** 0.881** 0.797** 0.803** 

Exam 3 to:  

Percent in Class   (E3:PC) 0.811** 0.791** 0.664** 0.735** 

*p<0.05 (2-tailed) **p<0.01 (2-tailed) 

  

3.1.1 Didactic versus Active learning 

Since the three lecture sections were not taught by the same instructor, but by two different 

instructors, any differences needed to be examined for a relationship to the instructors’ 

methods. One of the active learning lectures was taught by one instructor (treatment 1), while 

the other active learning lecture (treatment 2) and the didactic lecture (treatment 3) were 

taught by another instructor. This allowed for a comparison of differences between didactic and 

active-learning, as being taught by the same instructor allowed for a direct comparison. The fact 
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that a second active learning section was taught by another instructor allowed for comparison 

of instructor effect through examination of the two active learning sections to one another.  

When looking at the didactic lecture section significant correlations appeared between all six 

areas of comparison. Significance between these areas shows that there is internal (between 

the areas of first step performance and performance on task) and external validity (first step 

performance and performance to final exam scores exam scores, grade in class, and third class 

exam) for use of the correctness of first steps to measure a student’s ability to problem solve 

within a task. This is not yet looking at the efficiency of the step, so much as it is looking at if the 

student performed their first step correctly. Since there is significance at the 0.01 level between 

the first step performance and the task performance, one can see that there is a relationship 

between correctly identifying and carrying out a first step and the performance to any of the 

exam scores or the percent grade in the course. In terms of treatment 3, it proved worthwhile to 

investigate the use of first steps to rapidly measure one’s understanding in the problem solving 

tasks.  

In comparison to treatment 1, however, one sees that significance was not always found when 

looking at external measures of validity. Here, first step performance to exam three and percent 

course grades was not found to be significant, but the final exam scores were found to be 

significant. External validity here appears to be contradictory, but when compared to treatment 

2 one sees significance for each area compared to the first step performance. It is not clear why 

there are contradictory measures of significance between the two lecture sections; one possible 

reason is the difference in class size.  However, enough evidence is present to support using first 

performance measures as a means to determine a students’ understanding of a concept within 

an active learning environment.  
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When comparing the two types of lecture style, didactic versus active learning, one sees that 

overall independent of the type of lecture there is a relationship between the first step 

submitted by students and the students’ performance and understanding of the concept of the 

task. This is seen in the combination of the three lecture sections, when significance is shown 

across all six areas of comparison at a 0.01 level. 

3.2 First step viability 

When determining the usefulness of first steps in rapidly assessing chemistry it helps to look at 

whether the steps were carried out correctly. This is something that lends towards the reliability 

of using first steps in assessment measurements. Kalyuga and Sweller (2004, 2005) did not 

include this in their study on algebra. The correlations described in this section of the study will 

show that success on the task is directly related to the success on the first step, which is why it is 

not necessary to measure each separately. The performance on the task alone will give a 

measurement of the success of the first step. 

In addition to examining the teaching methods employed in the lectures, the fifteen tasks were 

analyzed and coded for first steps (described in the methods section). The number of steps 

submitted by the students per lecture varied depending on the task. In general each lecture 

section provided similar numbers of first steps (Table 4), except on tasks 9, 12, and 13 where a 

discrepancy was noted. Task 9 showed that treatment 3 submitted a higher number of 

responses than treatments 1 and 2. On task 12 treatment 3 submitted four more steps than 

treatment 1, which submitted four more steps than treatment 2. On task 13 treatment 2 

submitted a greater number of steps than the other two lecture sections. Figure 11 shows the 

comparison of the number of responses by step per lecture section to the steps provided in the 

open response.  This figure demonstrates that students gravitate towards certain first steps 
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when solving tasks. The tasks varied in the number of steps submitted, and, in general, it can be 

seen that the number of responses remained similar across the sections for the majority of the 

tasks. However, this does not mean that the first steps submitted were the same or similar for 

each lecture section. By comparing the open-response submissions to one another, and the 

number of responses of each type of open-response, it is possible to determine if the students 

largely agree on a series of first steps for certain concepts.  

 

 
Table 4. Spring 2007 Rapid Knowledge Assessment  

Task Number 
Number of Steps Per Lecture Section Total 

Steps/Task 

# Excluded 

as Steps 401 
(treatment 2) 

402 
(treatment 1) 

403 
(treatment 3) 

1 6 - - 6 1 
2 4 4 4 4 1 
3 6 6 6 6 1 
4 7 7 7 7 1 
5 7 8 8 9 2 
6 5 5 5 5 1 
7 9 9 9 9 2 
8 10 10 11 13 1 
9 17 12 11 19 1 

10 - 6 - 6 1 
11 13 12 13 14 1 
12 16 12 8 21 1 
13 11 10 24 28 1 
14 13 15 14 22 2 
15 6 9 7 10 1 

“Others”/”No Clue”/Miscellaneous Steps excluded from total steps per task. This count is 

given in the last column. 
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Figure 11. Comparison of first steps via OR by lecture. Where 402 is treatment 1, 401 is 
treatment 2, and 403 is treatment 3. 
 

3.2.1Step analysis 

Because the number of steps varied based on the task provided to the students, and some tasks 

differed by lecture sections (tasks 9, 12, and 13), one must look at the variation in the number of 

steps across the lecture sections. In task 9, treatment 3 submitted a higher number of responses 

than treatments 1 and 2, which might lead one to believe that the type of lecture plays a role in 

a student’s method to solving a task. When looking at task 12, one sees that there is a difference 

in four submitted steps between each treatment group, and in task 13 treatment 2 submitted a 

greater number of steps than the other two treatments. There is no explanation why this 

occurred, and because the variations were across both the didactic and the active learning 

lectures, one cannot make the assumption that the differences demonstrate a relationship to 

the type of learning (active versus didactic) done in the lecture sections. This is due to the fact 
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that the number of responses varied within the active learning sections as well, and not just 

between the didactic and active learning sections. Also, one cannot claim to know the type of 

learning taking place by the students, just the instructional method presented. This is why the 

instrument is designed to evaluate student process, which lends toward student efficiency in 

problem solving. The instructor’s role is to facilitate a student’s own construction of knowledge. 

3.3 Step Processing 

In task 2 for Figure 11 there are 5 steps provided by the students across the three lecture 

sections. It can be seen that of the five first steps provided only four steps are actual processes 

that would lead to the solution of the task. For this reason, the final step labeled “other” is 

discarded. “Other” is considered to be anything not related to the solution of the task at hand. 

Figure 12 gives the responses by step for task 12 across all three lecture sections. The figure 

shows that although many steps are present – 21 first steps were provided in the open response 

section, with the step “other” once again discarded – not all of them are present for each 

lecture section, nor are they represented in similar proportions when present in multiple lecture 

sections.  
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Figure 12. Comparison of first steps via OR by lecture section, where many first steps were 
submitted. 
 
In comparison, Figure 13 and Figure 14 show the collection of first steps in comparison by total 

across lecture sections. It is seen that in Figure 13, with only four first steps submitted, there is a 

high percentage of students who agree on the number of overall applicable steps. In Figure 14 

even though there are 21 valid steps provided by the students, only nine of the steps show a 

high agreement amongst the steps submitted. However, many of the steps did not represent 

enough of the students to justify inclusion in the instrument. This information distracts from 

outcome of the matching student population. Because the goal of the instrument is to include as 

many students as possible while coding open-ended responses into potential first steps, by 

setting a threshold of 5% for inclusion in coded first step responses those open-ended responses 



52 
 

 

not in agreement with the class are sorted out (Figure 15). This allows for a clearer view of 

where the class lies as a whole, and shows that there is still agreement among first steps. 

 

With the possible diversity in the number and type of steps submitted by students, one might 

have cause to argue that the steps cannot be paired down into a useable list for an electronic 

instrument. However, if one examines the first step by frequency as in Figure 14 versus Figure 

16, where the average percent response to a given first step is shown, one sees that the nine 

first steps that were submitted and agreed upon the most still cover a large range of the class 

(from 32.87% to 3.37%, which covers 92.42% of the class as a whole). This same agreement 

among over 90% of the respondents is found within the majority of the other tasks. 

 

 

Figure 13.  Open-ended response submissions and the number of responses for Gen Chem I. 
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Figure 14. All open-ended response submissions for task 12 from Gen Chem I. 
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Figure 15. Viable open-ended response submissions for task 12 after inclusion threashold of 

5% was set. 
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Figure 16. Percent response of students to each open-ended response before 5% threshold set 

for task 12. 

3.3.1 Process analysis 

Upon analyzing the first steps submitted by the students, it is seen that the number of first-steps 

responses varied based on the task assigned to the students. In tasks 2 and 12, shown in Figures 

11 and 12, the number of steps varied greatly. Although the number of steps varied, it is seen 

that there is agreement across the sections on the steps submitted, even if it is not complete 

agreement. Figure 11 and Figure 12 demonstrate that the number of steps present allows for 

providing as little as five first steps for a student to consider when solving a task. In comparison 

to Figures 13 and 14, where tasks 2 and 12 are viewed by total respondents to a step across all 

three lecture sections, one can see that not every step submitted is necessary for student to 

have an option when it came to solving the task. That is, more than one step can be combined 

into a single option presented to the students. In fact, if one considers what was discussed in 
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section III above, and what is seen in Figures 13,14, and 16, the great amount of agreement 

upon the top most first steps shows that the majority of the students are in agreement upon the 

range of first steps to solve the tasks. This demonstrates that student generation of steps may 

be combined to provide a set of first steps for the student to choose from, and to accommodate 

the majority of the students utilizing the instrument. As discussed in section III, not all tasks 

found high levels of agreement for a few steps within each task. However, when only a small 

subset of students selected these options it was not an issue, but when a high percentage 

selected them it showed actual difference between the treatment groups. This demonstrated 

that there was a difference between the types of learning (active versus didactic) taking place. 

This does not mean that an instrument designed to rapidly assess knowledge would not work 

for a task such as this, but that the tasks require refinement for further testing and analysis.  

3.4 What this all means 

When developing a multiple-choice list from open responses the number of first steps given in 

open response format by students to a complex task is limited for even a large sample. This is 

beneficial for turning open-ended responses into multiple-choice responses. The performance 

on the task in comparison to these first step responses correlate well with other measures, 

indicating that performance alone is a valid way of assessing performance on the first step 

submissions. Therefore, it is not necessary to develop a measure to assess the performance on 

the step itself. Through analysis of the type and number of first steps provided by the students, 

in comparison to various forms of external and internal sources to test validity, first steps are 

found to a compelling way to assess students’ knowledge. From the number of first steps 

provided by students, to the categorization of the these steps while eliminating “other” 

responses, and determination that performance on task will correctly evaluate performance on 



57 
 

 

first step, one can use external measures of proficiency to understand how a student starts to 

solve a task, while providing valuable insight into how well a student has learned a concept. First 

steps provide a rich set of information not see in performance alone, demonstrating that more 

research on the development of the instrument will be beneficial towards understanding how to 

determine appropriate assessment of students’ knowledge. Therefore, through development 

and implementation of a rapid knowledge assessment instrument in the classroom, one can gain 

a better understanding of how a student’s processes are related to his or her knowledge base in 

chemistry. The way a student approaches solving a problem is directly related to his or her 

schema. 
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Chapter 4: Confirmation of student and expert agreement for use of 

electronic first step implementation 

4.1 Establishing Reliability 

It was explained earlier that the multiple-choice first steps were determined through open-

ended response. This process stemmed from the work done by Kalyuga and Sweller (2004 and 

2005), where students listed a first step in the task solution. The math tasks used in their work 

followed a linear process, and therefore only had a set range of first steps. Chemistry tasks, not 

being linear processes, therefore, need to be vetted for first step options. Then, it needs to be 

determined if open-responses are able to be grouped for a reasonable number of electronic 

options. A larger question which needs to be addressed in this phase is, “How does the 

presentation of first steps in a multiple-choice format affect the reported first step of students?”  

Another way to ask this is, “Can a student’s first step be accurately captured through the use of 

multiple choice responses compared to open responses?”  The following chapter reflects upon 

the analysis of the percent response by students as a means to establish reliable first steps for 

the instrument. It will also discuss how these steps were then analyzed for use in the instrument 

to determine student efficiency using Cronbach’s alpha (a reliability analysis) to determine 

agreement amongst experts. The agreement amongst experts, in terms of efficiency, is used to 

determine the efficiency rating applied to each of the first-steps provided by the students. To 

ensure the reliability of the efficiency ratings applied to the first-steps, percent agreement 

amongst the experts on the ratings will also be examined.  
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4.1.1 Collection of First Steps 

As discussed in the methods section all first steps were collected on paper starting in the fall of 

2008. During this time the coded steps were counted per grouped answers (i.e. if one person 

gave the formula “CO2” and someone else wrote out “carbon dioxide” that would be grouped 

together). These answers were then taken as a percentage of the total responses (Figure 17). 

The purpose was to determine if the students as a whole agreed on any number of steps. It was 

determined from the collected data that in general at least 90% of students could agree on 

between four to eight steps. This was very important for reliability, as the instrument needed to 

have a set of reliable student based answers to move forward with the multiple choice steps. It 

also showed validity in ability to capture a majority of possible student responses. A retesting of 

the pilot phase (from spring 2007) was carried out for one semester in fall 2009, in both general 

and preparatory chemistry before compilation of the first multiple choice selection list in spring 

2009.  This retesting was important for multiple reasons, including establishing preliminary 

validity and reliability.  The second testing also included a new course (General Chemistry I). 

Here, retesting and finding the same or similar responses to the first step request supports the 

conclusion that the tasks themselves, and the first step reported for each task, was valid for 

introductory chemistry in general.  Secondly, the reliability of the first step reporting, in an 

open-response format, was established for both preparatory and general chemistry students.  

The multiple-choice selection list was then used as a way to the test the degree to which the 

students’ responses during the open-response phase accurately were reflected in the multiple-

choice selections.  
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Figure 17. Responses from general chemistry students to a task regarding properties of 

matter. 

 

4.1.1.1 Generation of electronic response options 

As discussed earlier, multiple choice options for the electronic portion of the system were 

generated from open-response items that were coded into groups of same responses (just 

different variations), and then scored as “1” or “0” for matching and non-matching (Figure 18). It 

is important to note that students were provided with an “out” response “reading the exercise, 

however I am not sure how to start the exercise”, and that full solutions of the problem were 

excluded, as they did not signify the use of a specific first step but rather a misunderstanding of 

how to report their first step, which was addressed with more refined training on the use of the 

instrument. The coded and grouped steps were then organized into a list for testing, in which 

the tasks were ordered from shortest to longest length (with the exception of the final step 
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always being the “out” step). The ordering of the tasks was done to reduce cuing of a particular 

step being more accurate than another. 

 

Exercise: What is the percent composition by mass of oxygen in aluminum acetate? 

Steps- “For this exercise, my first step is…” 

A 1 writing the chemical formula 

B 0 determining the mass of oxygen 

C 0 determining the number of moles of oxygen 

D 0 determining the molar mass of aluminum acetate 

E 0 
Reading the exercise, however I am not sure how to start the 
exercise 

 

 

Through use of the discussed coding measures, class OR types were compared. Figure 19 shows 

a comparison of open-responses between the two courses, and how these were related to the 

generation of the first step items in the electronic instrument. Once MC lists were generated, it 

was possible to compare OR submissions to MC selections of students utilizing phase 2 of the 

instrument.   Figure 20 demonstrates the ability of students to match their first step during OR 

to the MC list provided. 

Example of OR answers that were used to determine Step A: 

   “Al(CH3COO)3” 

                “Al(C2H3O2)3” 

   “writing the formula for aluminum acetate” 

   “writing the chemical formula” 

Figure 18. Example of a task where OR options were matched to MC responses in the 

CPS system. 

 



 
 

 

 

 

 

 

                                                                                                 

 

 

 

 

Task:     What is the mass of oxygen in a sample of 

aluminum sulfite which contains 1.00 g of  aluminum? 

1. Writing the chemical formula 

2. Finding moles of oxygen 

3. Finding moles of aluminum 

4. Finding the mass of aluminum sulfite 

5. Finding the moles of aluminum sulfite 

6. Identifying the mole ratio of oxygen to 

aluminum 

7. Reading the exercise, however I am not sure 

how to start the exercise 

 

Figure 19. Comparison of a formula calculation tasks multiple-choice first steps generated through OR submissions by 

preparatory and general chemistry students. Numbers on the x-axis correspond to the numbers of the multiple choice 

selections listed for the electronic instrument. 
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Figure 20. Distribution of open-response and multiple choice responses for general chemistry and preparatory chemistry students for the 

same task and steps represented in figure 19. The numbers on the x-axis here correspond to the step numbers listed in figure 19. 
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From comparison of the OR alone one can see that students’ open-responses matched within 

seven similar steps at least 85% of the time for both general and preparatory chemistry students 

(Figure 20). While this number is not the 90% mentioned earlier, it does show that a set of steps 

are validly determined for a majority of students through OR collection. From Figure 19, one can 

see that when comparing open-response answers to multiple-choice answers by step type for 

both classes (n=228), 74.6% of students match their open-ended response to their multiple-

choice response. However, this also demonstrates that not every student matches. While 

students not matching their open-response to their multiple choice response presents a 

concern, at the point in time this data was collected it was not yet able to be determined if the 

students were changing responses due to cueing (cueing is when a stimulus alerts the subject to 

another piece of knowledge not originally accessed or connected to his or her original thought 

process), pressure to present the what the student perceived to be the best or most accurate 

step, or because they could not remember what they had originally submitted on the open-

response form. Because previous studies on the capacity of working memory with access to 

long-term memory showed the capacity of memory to be 7 ± 2 pieces of information in working 

memory (Miller, 1956), and the fact that this phase of the experiment was designed to minimize 

the amount of time between submission of the open-response and the selection of the multiple-

choice first step, it is reasonable that students do not forget the first-step that was submitted on 

paper. For this reason our attention turned to the factors of cueing and the pressure to provide 

what the student perceived to be the best possible step. In order to rule out the perception that 

there was a “correct” response for a first step, the following semester instructions were given to 

the class on what the first-step means and that there was no such thing as a correct or incorrect 

first step. By providing this instruction a comparison can be made between open-ended and 
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multiple choice responses including or excluding external responses (Figure 21, Table5). By 

removing students whose open-ended responses did not relate to the task, or the solution of 

the task, there is improved reliability of the students selecting the open-response submitted 

during the first portion of the task response. However, it is also noted that after instruction the 

reliability of the students to select the same multiple-choice step as was submitted during the 

open-response time also improved for those students who gave an external type response (a 

response that was not coded into a multiple choice option due to it being reported by less than 

5% of respondents for the class). This can be seen in the changes that occur for content areas 

that had multiple tasks tested. Since each task had steps that did not fit into the steps coded 

into the instrument, it was expected that some reliability percentages would be low. In the 

oxygen example (Figure 18) it was shown how tasks were coded (1=match, 0=no match), and 

how there was no room given for partial matches. The strictness of this coding ensures there is 

no interpretation as to what the student may have been thinking. Therefore, steps not coded 

into the multiple-choice list may have an aspect to them that the student called out when 

choosing a first step from the multiple-choice list. This would cause the reliability to seem lower 

than it actually stands. This shows that the electronic first steps provided to the students are a 

reliable way to collect first steps needed for the instrument. 



 
 

 

 

Figure 21. Comparison of open-ended responses to multiple choice responses across task areas. Areas that are listed multiple times represent 
clones of the original task or another task presented in the category. 
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Table5. Percent Matching for Open-Response to Multiple Choice Response 

Task Number Content Area Included External Responses Excluded External Responses 

35 Stoichiometry 82.1 83.0 

33 Stoichiometry 77.1 76.8 

42 Aqueous Reactions 70.2 77.6 

47 Gases 69.1 72.2 

18 Liquids/Solids 62.2 67.7 

19 Liquids/Solids 62.1 63.1 

43 Aqueous Reactions 61.6 68.1 

16a Chemical Bonding 60.9 67.7 

13 Periodicity 53.9 85.7 

17 Chemical Bonding 50.7 67.3 

48 Gases 47.4 68.0 

50 Thermochemistry 40.7 54.1 

11 Electronic Structure 38.8 73.8 

49 Thermochemistry 34.9 48.9 

16b Chemical Bonding 30.8 48.3 

12 Periodicity 29.1 57.9 

21 Liquids/Solids 23.6 35.1 

15 Chemical Bonding 17.5 48.3 

44 Gases 14.3 33.3 

8 Electronic Structure 13.8 26.3 

40 Aqueous Reactions 9.8 22.5 

Comparison of percent matching for open-response to multiple choice options when external responses are included or 
excluded. External responses are those responses that did not have a multiple choice option. In most cases these responses 
were incorrect paths to solving the task, or were more basic than the most basic step provided based on formation of steps 
from other semesters 
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With a list of compiled first steps completed (Appendix B) and reliability of first steps confirmed 

for those specific tasks, it needed to be determined if the same steps would be reliable if the 

task was cloned. Clones of tasks are tasks that should test exactly the same as the original task. 

However, while performance would be expected to remain constant assuming no change in 

schema, the problem-solving process may change. For this reason, the first step list must also be 

tested for clones. Because slight wording and content changes should not affect the outcome of 

the task there is no difference expected in reliability between clones and original tasks in terms 

of reliability for electronic first steps. The clones tested for open-ended response showed that 

the electronic first steps held reliable for the cloned tasks (Figure 22).  What we see in figure 6 is 

the number of students that OR related to one of the multiple-choice options listed for the 

original task. The cloned task given in figure 22 yielded a 43% match between OR and MC with 

external responses removed.  

 



 
 

 

 

 

 

 

 

 

                 

 

 

 

Figure 22.  Comparison of original to cloned item with open-ended responses compared to electronic first steps provided. Numbers on the 

x-axis represent the electronic first step given to the left of the graph. 

 

Original item 

How many atoms of hydrogen are in the empirical 

formula for a hydrocarbon containing 83.6% carbon by 

mass? 

Cloned item 

How many atoms of hydrogen are in the empirical 

formula for a hydrocarbon containing 93.70% carbon by 

mass? 

 

1. 83.6% carbon = 83.6g carbon 

2. Calculating the number of moles of carbon 

3. Calculating the number of moles of hydrogen 

4. 100g total – 83.6g carbon = 16.4g hydrogen 

5. 100% total – 83.6% carbon = 16.4% hydrogen 

6. Knowing that hydrocarbons contain only carbon 

and hydrogen 

7. Reading the exercise, however I am not sure 

how to start the exercise 

 

The large number of students in the “other” category reflects both complete 

problem solving and steps not selected for electronic responses (highly 

inefficient). 
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The training on “first step in your problem-solving process” to attempt to address the problem of 

disagreement between MC and OR, discussed earlier, was determined though implementation of 

“Think-a-loud” interviews.  The original design of the interviews was meant to collect further 

information from students on their thoughts during problem solving. During these interviews little data 

was collected on first steps, as students did not provide a common set of methods on how their first 

steps were determined. Instead, students provided their first steps as how they viewed the organization 

of the material to be used.  This approach to the entire task solution, versus one step in the task 

solution, even when prompted for the first step in the problem solving process, led to the decision to 

implement the instruction in class on what is meant by the “first step” in problem solving. 

4.1.2 Generation of Efficiency Measurement 

With the first-step-generated response list proving to be reliable from the student generated steps, it 

needed to be determined if the list of steps provided could be ranked for efficiency as discussed in the 

methodology, and if the number of appropriate steps could be agreed upon for inclusion in the 

instrument. Expert responses to the first steps provided electronically were assessed through a 

reliability analysis using Cronbach’s  alpha. The steps were ranked with 1 being the lowest efficiency 

(“Reading the exercise, however I am not sure how to start the exercise”), and the highest efficiency 

being determined by the maximum number of steps available. A threshold of 0.8 was set to ensure 

significant agreement on efficiency across all tasks and content areas. Table 6 shows that all α-cronbach 

measurements surpassed the determined threshold, thereby suggesting that the the experts can agree 

upon what step is more or less efficient than another. The reliability of efficiency ratings was 

determined to be 0.9303 using the α-cronbach measurement.  
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When determining the reliability by content area, the method used (Cronbach’s-alpha) makes the 

assumption that the data is set in intervals. The ratings given by the raters have no definite interval, but 

are subjective. Therefore, while there is high agreement amongst the raters, to confirm that the 

reliability is being accurately measured it is important to look at the efficiency ratings amongst the 

experts in terms of agreement by percentage (Table 7). Here the percent agreement amongst the raters 

surpasses 50%, for the highest number of steps available, demonstrating that efficiency of problem 

solving is measurable by a developed rating scale. While the agreement may not appear high, it does 

demonstrate that the reliability values calculated for the agreement on efficiency for the content areas 

is valid. Two options were available for determining the efficiency ratings for steps based on these 

findings. These options were to meet with all of the raters and discuss the ratings as a group until a 

unanimous agreement could be reached amongst the group, or to use the mode of the raters by 

developing a logical progression of the provided ratings. Example A below shows the submitted 

efficiency ratings for each of the four experts for a single task, and the final ratings based on the logical 

progression determined by the mode of the supplied ratings. 

First Step 
Response: 

A B C D E 

Rater 1 4 2 5 3 1 

Rater 2 4 2 5 3 1 

Rater 3 3 2 5 4 1 

Rater 4 5 2 4 3 1 

Average Rating 4 2 4.75 3.25 1 

Final Rating 4 2 5 3 1 

Figure 22b. Rater efficiency responses for task 23, and their development into a final efficiency rating. 
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Table 6. Reliability analysis of steps 

Cronbach’s alpha Content Area 

0.950 General Chemistry 
0.921 Atomic Structure 
0.885 Electronic Structure 
0.986 Periodicity 
0.960 Chemical Bonding 
0.924 Liquids and Solids 
0.924 Formula Calculations 
0.943 Reactions 
0.932 Stoichiometry 
0.866 Aqueous Reactions 
0.840 Gases 
0.878 Thermochemistry 

 

 

 

 

 

 

With the reliability established for the tasks and steps it was also important to consider the complexity 

of the tasks provided. Complexity ratings were obtained via the previously discussed method. The 

overall complexity, difficulty, of the different content areas (Table 8) when examined using alpha-

Cronbach’s found a reliability of 0.8694. This too surpasses the threshold for supported reliability, and 

therefore the determined complexities are accurately applied to the content areas within the 

instrument. This shows that when assigning complexity the experts had high agreement on the overall 

difficulty of the tasks. The complexity ratings therefore allow for proper organization of the task within 

the content areas. By starting with the lowest complexity within each content area, when utilizing the 

instrument, the goal is to decrease the load on the working memory to allow for better integration of 

information into the students schema. If the information is integrated properly, then as the tasks build 

Table 7. Percentage agreement by number of steps 

Number of 
Steps 

Percent Agreement 
(including out 

response) 

Percent Agreement 
(excluding out response) 

Five 75 68.75  

Six 74 68  
Seven 64 58 
Eight 61 56 
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in complexity, the chance to overload the working memory decreases. The goal of this is to help make 

sure student efficiency is being properly assessed when being measured by the instrument. 

 

 

 

 

 

 

 

 

 

4.2 Discussion 

Through examining student open-ended responses it was determined that students were able to use the 

instrument in an open-ended form, and that there was agreement amongst students on a general set of 

“first steps” when it came to task solutions. These generated first steps from open-responses were 

successfully coded and grouped into electronic options for open-ended responses and implemented in 

the second phase of the instrument. The electronic options given in multiple choice format were found 

to match student open-responses and therefore were reliable, but students did not always pick the 

matching multiple choice option for their given open-response. Training on instrument use increased 

this agreement between open-response and multiple-choice, thereby increasing the reliability of the 

electronic options. Finally, analysis using Cronbach’s alpha to determine reliability between experts was 

performed to determine complexity of the tasks, and to determine efficiency of electronic first steps for 

Table 8. Expert complexity ratings by content area 

Content Area  Complexity 

General  4.3 

Atomic Structure  4.8 

Electronic Structure  5.7 

Periodicity  5.3 

Chemical Bonding  6.0 

Liquids and Solids  6.6 

Formula Calculations  5.7 

Reactions  6.3 

Stoichiometry  7.4 

Aqueous Reactions  6.9 

Gases  6.3 

Thermochemistry  8.6 
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the tasks, for the different content areas within the instrument. Experts were able to agree on the 

complexity of the tasks and a general efficiency for each step within the tasks. This agreement allows for 

implementing the instrument in the most effective manner by providing an efficiency rating scale in 

which the majority of students fit, and by confirming organization of the items within the instrument to 

most accurately measure the load on working memory.  These ratings also provided the ranking of the 

first steps by efficiency, allowing the comparison of the problem-solving efficiency by first step, task 

performance, mental effort and the combination of these measures into an overall assessment of the 

student’s efficiency in problem solving as a measure of their schema development. 
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Chapter 5: Confirmation of successful instrument development  

In the previous chapter the concept of creating a usable list of electronic multiple-choice first steps was 

established through analyzing the matching and non-matching responses of students’ open-ended 

responses to their electronic first step selection. The reliability of efficiency ratings for the same 

electronic first steps was established using experts. This information is the support for the data found 

here. This chapter will examine the use of efficiency of an individual’s first step in conjunction with his or 

her task performance and mental effort for the generation of an overall assessment score using Pearson 

and Spearman correlations. T-test data examining the differences between preparatory chemistry and 

general chemistry will also be shown to give support as to why the two courses data must be analyzed 

separately. 

5.1 Determination of Data Evaluation 

The method of data collection for phase 2 of the instrument was applied in the spring semester of 2009 

for both preparatory and general chemistry courses involved in the study. This was the first semester in 

which both course levels were provided tasks with electronic multiple-choice first steps. As discussed in 

the methods section of this work, efficiency ratings for an individual’s first step were converted into 

percent efficiency of the step. It was important to determine if the instrument would accurately 

measure information for multiple course levels, and to gain an understanding in the differences 

between the knowledge levels of the learners. To accomplish this only tasks that were asked in both 

courses were evaluated. An aggregate score for each of the constructs was generated for each 

participant, and descriptive statistics (Table 9; see Appendix E for graphs) and independent t-tests (Table 

10) were performed for both groups on the four major measurements of the instrument (task 

performance, mental effort, percent efficiency of the first step, and generated assessment scores). The 

two types of assessment scores listed show the order of importance in which the three areas of data 



76 
 

 

collection were analyzed, where the first area is given the highest priority (see Appendix B for list of 

tasks included). It was determined from comparison of the t-value, -8.498 (p=0.000), that there was a 

significant difference between the two groups for performance on the tasks. The t-values for percent 

efficiency on selection of first step and the generation of assessment scores showed similar results. 

However, no significant difference was found between the two groups on self-reporting of mental 

effort, t=-1.075(p=0.284). 

Table 9. T-test Descriptive Statistics for Preparatory Chemistry and General Chemistry 

 
Chem 100 Chem 102 

 
(n=101) (n=80) 

 
Mean (SD) Mean (SD) 

Task Performance 0.290317 (0.1581) 0.539049 (0.2345) 

Mental Effort 0.529096 (0.1299) 0.550527 (0.1372) 

Percent Efficiency of First Step 0.569062 (0.0948) 0.53748  (0.0931) 

Assessment Score 1 
(Task Performance: Mental Effort: 
Percent Efficiency of First Step) 

1.708725 (0.4909) 2.249869 (0.7597) 

Assessment Score 2 
(Task Performance: Percent 
Efficiency of First Step: Mental 
Effort) 

1.69565 (0.4683) 2.214881 (0.7389) 

 

Table 10. T-test Table for Preparatory Chemistry and General Chemistry 

Construct t df Sig. (2-tailed) 

TP -8.498 179 0.000 

ME -1.075 179 0.284 

Percent Efficiency of First Step 2.243 179 0.026 

Assessment Score 1 
(Task Performance: Mental Effort: 
Percent Efficiency of First Step) 

-5.794 179 0.000 

Assessment Score 2 
(Task Performance: Percent 
Efficiency of First Step: Mental 
Effort) 

-5.754 179 0.000 
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The use of the t-test allowed for the direct comparison of the two courses on each of the analyzed 

constructs to determine significance.  It was expected that the general chemistry I students would 

outperform the students in preparatory chemistry.  Interestingly, the lack of a significant difference in 

the means of the means of the reported mental effort suggests that although there is increased 

performance in general chemistry I over preparatory chemistry students on these items, there is not a 

significant increase in mental efficiency.  This is further corroborated in the efficiency measure where 

the difference in the means of these values is significantly different with the preparatory chemistry 

students solving these problems more efficiently.  A possible explanation of this unexpected result could 

be that the instruction of the preparatory chemistry students includes much discussion on problem 

solving of these basic problems.  In general chemistry I, less attention is given to the problem solving of 

these basic tasks and more time is focused on the understanding and problem solving of more complex 

concepts.  It is also possible that this reflects the many types of backgrounds of students in general 

chemistry I, including high school preparation that may give a specific process for solving problems 

without further elaboration or generalization of the process.  To further analyze the two courses it was 

necessary to run correlations to determine any specific differences that occurred.  

When comparing the preparatory and general chemistry data both Pearson and Spearman correlations 

were performed. Pearson correlations were used for data that was nominal or scale (task performance 

and mental effort), while Spearman correlations were used for data that was ordinal (percent efficiency 

of the first step and assessment scores 1 and 2). The task performance, mental effort, and percent 

efficiency of the first step were used to generate the two assessment values analyzed (Appendix I). It 

was expected that task performance would be negatively correlated to mental effort, as performance 

should increase as load on working memory decreases due to an improved schema. The correlation of 

mental effort to efficiency should be negative as well. If the first step is becoming more efficient, then 

schema should have improved causing load on working memory to decrease. What was found is that 



78 
 

 

these trends were supported by the collected data. Table 11 (see Appendix F for graph) shows the 

correlations between the two courses for each of the constructs to one another and to external 

measures (the fourth class exam (cumulative), the two standardized final exam scores, and the percent 

score earned in the class) where “*” (p=0.01) and “**” (p=0.05) indicate the threshold for the level of 

significance. Pearson correlations showed significance for the two courses in a majority of the 

constructs. For the general chemistry sample and the preparatory chemistry sample, both of the 

Assessment Score variables were moderately to strongly correlated with the final exam scores and the 

students’ percent grade in class scores. Correlations ranged from 0.328 to 0.573, indicating that as 

Assessment Score1 and 2 increased, the scores on Final 1, Final 2, and the percent grade in class also 

increased (p<0.001). There was also a significant correlation in both samples between the students’ task 

performance scores and the percent efficiency of their first step. While the correlation for the general 

chemistry sample (r=0.245, p<0.05) would be considered a weak correlation, it is still significant and in 

the direction expected. The correlation coefficient for the preparatory chemistry sample was somewhat 

higher (r=0.337, p<0.05) and would be considered a moderate correlation. Both correlation coefficients 

suggest that as task performance scores are higher, the percent efficiency of the first step is also higher, 

or more efficient. This finding is also in the expected direction. 

There were a few variables that were not significantly correlated in either sample. Task performance 

was not significantly correlated with mental effort, and the correlation coefficient for both samples was 

negative. In addition, the mental effort score was not significantly correlated with the percent efficiency 

of the first step. In this case, the correlation coefficient for both samples was also negative. Although the 

correlation was not significant in either case, it was in the expected direction for both. It was expected 

that higher task performance scores would be associated with lower mental effort, and that higher 

efficiency of the first step would also be associated with lower mental effort. Figure 23 illustrates these 

trends.  
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Despite the lack of significant correlation between mental effort with task performance scores and 

percent efficiency of first step scores, it is apparent that when examining the combination of mental 

effort, performance, and efficiency to create an assessment score that there is a significant correlation 

to all of the external measures (p=0.000). This supports the use of the instrument in measuring the 

efficiency as a gauge for complementary classroom instruction, as well as for the use of first steps to 

predict student performance. 

Table 11. Pearson and Spearman Correlations for Preparatory and General Chemistry 

Correlation Area Preparatory Chemistry General Chemistry 

 
(n=100) (n=79) 

 Correlation Value (sig.) Correlation Value (sig.) 
Task Performance to:   
Mental Effort -0.170 (0.091) -0.145 (0.202) 
Percent Efficiency First Step .337** (0.001) .245* (0.030) 
Mental Effort to:   
Percent Efficiency First Step -0.148 (0.142) -0.117 (0.306) 
Assessment Score 1 to:   
Final 1 .545** (0.000) .392** (0.000) 
Final 2 .492** (0.000) .328** (0.003) 
Percent Grade in Class .513** (0.000) .551** (0.000) 

Assessment Score 2 to:   

Final 1 .553** (0.000) .392** (0.000) 
Final 2 .518** (0.000) .348** (0.002) 
Percent Grade in Class .573** (0.000) .555** (0.000) 



 
 

 

 

Figure 23.  Correlation graph of preparatory and general chemistry constructs. 
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5.1.1 Discussion 

The t-test scores for comparison of the preparatory and general chemistry data indicate that there is a 

significant difference between the two courses for task performance (p=0.000), percent efficiency of the 

first step (p=0.026), and assessments 1 and 2 (p=0.000), but not for mental effort (p=0.284). The t-scores 

for each of these areas indicates that the difference appears as expected showing greater expertise for 

students taking general chemistry, except for in percent efficiency of the first step t=2.243 (p=0.026) 

where preparatory chemistry shows to be more efficient in the selection of their first steps. This 

difference between the two groups in terms of first step efficiency may be the result of differences in 

sample numbers, or have to do with the amount of extra information general chemistry I students are 

being taught causing extra load on working memory. This shows that the two groups of students cannot 

be directly compared due to the differences in their levels of understanding. The correlation data 

supports the use of the instrument in both preparatory and general chemistry courses. Both courses 

showed correlations for areas in the direction expected, and showed significant at the 0.01 and 0.05 

level. 

5.2 Semester Comparison Using Correlations 

Phase two of the study was carried out through the fall of 2009. In the spring of 2010 phase three was 

implemented, and data began to be collected solely electronically.  However, the tasks are still 

comparable across semesters from the spring of 2009 through the fall of 2010, as the task list remained 

consistent with only addition of task clones. The data collected in these semesters consisted of task 

performance, mental effort, and first step efficiency. The first step selected was coded into a percent 

efficiency rating, and then compared to the task performance and mental effort to generate an 

assessment score as described in the methods. The aggregate scores of task performance, mental effort, 

percent efficiency of the first step, and the assessment values (calculations described in methods) were 
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correlated to one another using Pearson and Spearman correlations as described above in the spring 

2009 analysis. Running the correlations in the same manner allowed for an overall comparative analysis 

of each semester. Table 12 shows the correlation data for all of the tasks collected each semester, 

including the clones, for each internal and external construct. Correlation values marked with asterisks 

indicate the threshold for the level of significance met for the value [“*” (p=0.01); “**” (p=0.05)]. Table 

13 shows the correlations for each semester with the clones excluded from the analysis. By analyzing 

the data with and without the correlations it is possible to determine if tasks generate a significant 

result due to the nature of the task, or based on how the task was presented. Of interest to note, is that 

in comparison to the spring 2009 semester data, the fall of 2009 through the fall of 2010 showed 

significant correlations between task performance and mental effort (p=0.000 to p=0.002) with the 

clones included or excluded. This data again trended as expected (see Appendix G for figures). 
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Table 12. Pearson and Spearman Correlations by Semester: Including Clones of Tasks 

  
Preparatory 
Chemistry 

General Chemistry 

 
S09 S09 F09 S10 F10 

 
(n=100) (n=79) (n=195) (n=184) (n=114) 

 
Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Task Performance to:      

Mental Effort -0.170 (0.091) -0.145 (0.202) 
-.372** 
(0.000) 

-.305** (0.000) -.290** (0.002) 

Percent Efficiency of 
First Step 

.337** (0.001) .245* (0.030) 
.270** 
(0.000) 

.163* (0.027) 0.148 (0.117) 

Mental Effort to:      

Percent Efficiency of 
First Step 

-0.148 (0.142) -0.117 (0.306) 
-.331** 
(0.000) 

-.232** (0.002) -.250** (0.007) 

Assessment 1 to:      

Final 1 .545** (0.000) .392** (0.000) 
.533** 
(0.000) 

.387** (0.000) .391** (0.000) 

Final 2 .492** (0.000) .328** (0.003) 
.527** 
(0.000) 

.365** (0.000) .376** (0.000) 

Percent Grade in 
Class 

.513** (0.000) .551** (0.000) 
.608** 
(0.000) 

.470** (0.000) .480** (0.000) 

Assessment 2 to:      

Final 1 .553** (0.000) .392** (0.000) 
.535** 
(0.000) 

.394** (0.000) .435** (0.000) 

Final 2 .518** (0.000) .348** (0.002) 
.525** 
(0.000) 

.367** (0.000) .395** (0.000) 

Percent Grade in 
Class 

.573** (0.000) .555** (0.000) 
.604** 
(0.000) 

.479** (0.000) .507** (0.000) 
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Table 13. Pearson and Spearman Correlations by Semester: Excluding Clones of Tasks 

 
Preparatory 
Chemistry 

General Chemistry 

 
S09 S09 F09 S10 F10 

 
(n=100) (n=79) (n=195) (n=184) (n=114) 

 
Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Correlation 
Value (Sig.) 

Task Performance to:      

Mental Effort -0.139 (0.168) -0.145 (0.202) 
-.373** 
(0.000) 

-.305** (0.000) -.286** (0.002) 

Percent Efficiency of 
First Step 

.252* (0.011) .245* (0.030) 
.256** 
(0.000) 

.163* (0.027) 0.137 (0.147) 

Mental Effort to:      

Percent Efficiency of 
First Step 

-0.145 (0.150) -0.117 (0.306) 
-.334** 
(0.000) 

-.232** (0.002) -.248** (0.008) 

Assessment 1 to:      

Final 1 .542** (0.000) .392** (0.000) 
.530** 
(0.000) 

.387** (0.000) .376** (0.000) 

Final 2 .462** (0.000) .328** (0.003) 
.529** 
(0.000) 

.365** (0.000) .362** (0.000) 

Percent Grade in 
Class 

.494** (0.000) .551** (0.000) 
.603** 
(0.000) 

.470** (0.000) .466** (0.000) 

Assessment 2 to:      

Final 1 .560** (0.000) .392** (0.000) 
.532** 
(0.000) 

.394** (0.000) .412** (0.000) 

Final 2 .487** (0.000) .348** (0.002) 
.520** 
(0.000) 

.367** (0.000) .370** (0.000) 

Percent Grade in 
Class 

.556** (0.000) .555** (0.000) 
.598** 
(0.000) 

.479** (0.000) .490** (0.000) 

 

Significant correlation values at the 0.01 and 0.05 level for both internal and external constructs across 

the semesters supports the use for analyzing the data as a whole. Because it was previously determined 

that preparatory chemistry and general chemistry show a significant difference in task performance and 

assessment scores in the independent t-test (p=0.000), only data from general chemistry courses may 

be successfully combined for correlations. As in the previous correlations in this section aggregate 

numbers were calculated for task performance, mental effort, percent efficiency of first step, and the 

assessment scores. The data was generated for the combined general chemistry sections, and then 
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correlated using Pearson correlation coefficients and Spearman rho correlation coefficients including 

and excluding clones (Table 14). All correlations including and excluding clones proved to be significant 

(p=0.000, n=572) (exception: excluded clones for percent efficiency of first step to final 2 p=0.013) for 

both internal and external constructs. Figure 24 shows a comparison of the correlations for included and 

excluded clones of tasks. 
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Table 14. Pearson and Spearman Correlations: All General Chemistry 
Semesters Combined 

 
Including Clones Excluding Clones 

 
(n=572) (n=572) 

 
Correlation Value 

(Sig.) 
Correlation Value 

(Sig.) 

Task Performance to:   

Mental Effort -.250** (0.000) -.247** (0.000) 

Percent Efficiency of First Step .178** (0.000) .171** (0.000) 

Mental Effort to:   

Percent Efficiency of First Step -.227** (0.000) -.235** (0.000) 

Assessment 1 to:   

Final 1 .444** (0.000) .440** (0.000) 
Final 2 .411** (0.000) .408** (0.000) 

Percent Grade in Class .513** (0.000) .511** (0.000) 

Assessment 2 to:   

Final 1 .459** (0.000) .456** (0.000) 
Final 2 .406** (0.000) .402** (0.000) 

Percent Grade in Class .520** (0.000) .518** (0.000) 



 
 

 

 

Figure 24. Correlations for all combined general chemistry courses. 
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5.2.1 Discussion 

Examination of independent t-test descriptive statistics and t-scores showed preparatory 

chemistry and general chemistry students cannot be combined when analyzing data in regards 

to student efficiency. This was found in the significant difference between performance and 

assessment scores of the two groups. The results found for mental effort in this test showed 

that students’ ability to report load on working memory does not vary by course, and therefore 

is still accurately utilized when applied to preparatory chemistry. Results from the Pearson and 

Spearman correlation coefficients suggest that the instrument accurately measures task 

performance, mental effort, and efficiency of first steps for both general and preparatory 

chemistry. This is seen the internal validity of the trends between the constructs. External 

validity is also seen in the significant correlations between the internal and external measures. 

High significance and accurate trends of the internal measures to external measures of final 

exams along with an internal measure to the fourth class exam indicates that the values for the 

instrument measurements are consistent. Finally the combination of the general chemistry data 

for an overall correlation analysis shows that correlations between internal and external 

measures are highly significant for the course as a whole, and that therefore the measures taken 

with the instrument are in fact valid. 
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Chapter 6: Use of Eye-tracking to objectively evaluate student subjective 

reporting of mental effort, and confirm reliability of electronic first step 

options 

6.1 Eye-tracking technology in Rapid-Knowledge Assessment 

In order to establish continual reliability of the multiple choice steps provided to the students, 

an eye tracker was used to study the reliability of students’ self-reported mental effort and the 

relationship between time spent on tasks, mental effort, performance, and efficiency of first 

steps. An eye-tracker was used specifically for its ability to measure pupil size and movement in 

response to a stimulus, known as task evoked pupillary response (TEPR). The use of pupil size 

allows for the measurement of mental effort (Beatty & Wagoner, 1978; Kahneman & Jacson, 

1966; Stone et al., 2004), and together with the student’s self- reported mental effort, validity of 

using student self-reported effort is confirmed. The use of the tracker also allows for further 

collection of data for checking the use of a multiple choice for first steps in the instrument. As in 

the classroom testing, open-ended responses to multiple choice responses were scored on a 

matching to non-matching basis and taken as a percentage for overall matching. The tracker 

also records the time on task, allowing for comparison of time spent on the task to pupil size 

from task evoked pupillary response (TEPR) and mental effort, using Pearson’s correlation 

coefficient, r, in relation to the logic of numerical scale associated with these types of measures, 

while Spearman correlations for normally non-scaled data are applied when a scale is imposed 

on a piece of information to allow for comparative analysis. Because individual responses to 

multiple levels of measurement vary, a direct value cannot be reported for these correlations, 
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but will lend towards establishment of a pattern to lend for future use in the next phase of the 

project. 

6.1.1 Reliability of Electronic First Steps 

Just as in the classroom experiment, the eye-tracking experiment looked to confirm the 

reliability of the multiple choice options for first steps provided to the students by comparing to 

the open response of their first step. In addition, we investigated the pathways used by the 

students to select their first step.  To accomplish this, tracking experiments incorporated an 

open-ended response section as described in the methodology. The data from this section was 

coded in the same fashion as for the lecture portion of the experiment, and scored using “1” for 

matching and “0” for non-matching responses between OR and MC. Reliability was determined 

as a matching percentage for each content area. Figure 25 shows the reliability analysis in 

comparison to the content areas tested. Reliable data is defined as any category that meets or 

exceeds an alpha value of 0.7 (this is considered an acceptable mark in social sciences). The 

higher the alpha value, the more reliable the construct is and the more internal consistency that 

exists between the open-ended response and the electronic multiple choice option chosen. 

When developing an instrument based on open-ended response coded into groupings a goal of 

0.6 is reasonable, as the stringency of the coding often alters the actual reliability of the 

information to rule out any type of “guessing” as to what the person writing the response meant 

their remark. Of the seven content areas tested during the first part of the interviews, 5 areas 

showed an alpha score at or above 0.7. The atomic structure content area fell in the 0.6-0.7 

range showing low reliability, but not complete dismissal of the electronic steps provided. The 

periodicity content showed reliability in the 0.5 -0.6 range, showing poorer reliability of 

provided electronic first steps. However, the number of participants in this part of the study 

(n=73) was smaller, and because not every participant was usable for each task in every content 



91 
 

 

area the actual number of participants varied for each area. Because the majority of the content 

areas surpass the 0.6 to 0.7 threshold for reliability even at such a small n value, the use of 

multiple choice first steps formed from open-ended responses is a reliable way to collect first 

steps in individual students’ problem solving processes. Therefore, it can also be concluded that 

the use of multiple choice first steps to assign problem solving process efficiency is valid.  

 

Figure 25  Reliability of open-ended responses to electronic first steps during eye-tracking 

interviews. 
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measure as a way to confirm self-reporting of mental effort as a measure of load on working 

memory and the subjective complexity of the material. The studies also did not examine the use 

of TEPR for measurement of maximum pupil dilation in conjunction with self-reported mental 

effort. If TEPR and self-reported mental effort are measuring the same load on working memory, 

then appropriate correlations between the two areas and objective measures (such as time on 

task, performance, and efficiency) should be found. 

 To test for accurate reporting of mental effort by students, time on task (measured in seconds) 

was compared to maximum pupil diameter (measured in millimeters) (Figure 26). The 

correlations suggest that there is a relationship between time on task and the maximum pupil 

diameter, but that there is not enough information to conclude that both measures are measure 

the same load on working memory. Time on task was also compared to students self-reported 

mental effort ratings (Likert scale rating of 1 through 5) (Figure 27).  Results are reported as 

individual student examples for 13 participants across a set of 23 tasks. Here it can be seen that 

the two are positively correlated, suggesting that there is a relationship between the amount of 

time spent on a task and student reported mental effort. A direct comparison of subjective 

mental effort ratings by students was correlated with the average maximum pupil diameter 

(Figure 28). In all three cases Pearson correlation coefficients were generated. The values for 

participants are expected to be positively correlated for time on task (TOT) to maximum pupil 

diameter due to the relationship each has with cognitive load or subjective complexity. The 

results shown do not match the expected outcome, nor do they contradict the expected 

outcome. With the TOT to mental effort ratings a positive correlation is expected based on the 

cognitive load concepts discussed earlier. The expected trend is demonstrated for all 13 

participants. For the comparison of mental effort to maximum pupil diameter the same results 
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are predicted as with the TOT to maximum pupil diameter based on the relationship both share 

with mental effort. 

 

Figure 26. Pearson correlation coefficients for 13 participants on 23 tasks.  

 

 

Figure 27. Individual participant Pearson correlations for TOT and mental effort based on 23 

eye-tracking tasks. 
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Figure 28. Pearson correlations for mental effort and maximum pupil diameter for 23 eye-

tracking tasks. 
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correlating as predicted, the next logical step was to examine the maximum pupil diameter in 

relation to performance. Pearson correlations were run to determine the relationship (Figure 

30). Because data here was inconclusive, the performance was then compared to mental effort 

to determine if the two areas would change inversely as student efficiency increased lessening 

cognitive load (Figure 31). This final analysis involved running Spearman correlations of the 

efficiency measurements of the participants’ first steps to the performance outcome (Figure 32).  

Here Spearman correlations were used in place of Pearson correlations accommodate for the 

shift in data type. While the steps for the tasks were ranked numerically for efficiency, the 

efficiency rating is an applied value and not an interval or scaled value. Therefore, the use of 

Spearman correlations acts as a more accurate predictor of the relationship of these two values.  

 

Figure 29.  Comparison of 13 participants performance to their time on task. 

 

-0.800

-0.700

-0.600

-0.500

-0.400

-0.300

-0.200

-0.100

0.000

0.100

0.200

1 2 3 4 5 6 7 8 9 10 11 12 13

P
e

a
rs

o
n

 C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t,

 r
 

Individual Participants 

Correlations of Performance to Time on Task 



96 
 

 

 

Figure 30.  Comparison of performance with task evoked pupillary response data. 

 

 

Figure 31.  Comparison of performance and mental effort for 13 participants. 
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Figure 32. Comparison of performance to efficiency for 13 participants, where two 

participants did not contain values that allowed for Pearson correlations to be performed. 
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and the most efficient score always received the highest number.  Because individual efficiency 

and time on task varies by task and by person, the information does not yield a single 

correlation value, but rather gives an indication of correlation trend between the efficiency and 

the time on task. Rather than normalize all time on task values between the participants 

(necessitating more extensive question calibration with the participants), the analysis was only 

conducted across individual participants.  Variation in time is expected to fluctuate with 

efficiency of the step, as with mental effort. The correlations for 13 individual participants show 

a trend in relationship between the two areas (Figure 33). 

 

Figure 33.  Comparison of efficiency of electronic multiple-choice response with the time on 

task for 13 participants. 
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inverse relationship of the two pieces of cognitive information. While 9 of the 13 participants 

show this trend to be accurate, the four participants that do not follow the trend show 

maximum pupil diameter to be inconclusive in determination of a pattern (Figure 34).  

 

Figure 34.  Comparison of efficiency with TEPR data. 

 

6.1.5 Discussion 
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further advancement of information in the instrument design. The alternate areas associated 

with measurement in the instrument measured using the eye tracker showed support of each 

measure for use in the classroom. The construct of mental effort showed positive correlations 

with time on task, lending towards time being a predictor that the load on working memory is 

related to the amount of mental effort applied during task solving. However, when examining 

the measure of maximum pupil diameter in comparison to mental effort, the mix of positive and 

negative correlations are inconclusive. Further investigation into this shows that the issue may 
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not be in measuring average or single pupil diameters themselves, but in use of the tracking 

technology and the type of task used in the instrument. The methodology applied provides 

participants with use of paper to perform task solutions. In order for participants to utilize the 

paper focus must be taken away from the screen. This causes loss of tracking during task 

solution, and leads to missing pupil data during overall data evaluation (Figure 35).  

 

Figure 35.  Pupil Diameter versus time map as an explanation for why TEPR is inconclusive, but 

may still be valid. 

 

This could also explain why the results of mental effort to maximum pupil diameter are 

inconclusive. The subjective mental effort measure cannot be compared to maximum pupil 

diameter measures if data on pupil diameter is lost. However, the general trend shown in figure 

35 supports the concept of change in pupil diameter during task solution, showing a link 

between pupil measurements and mental effort. Additionally, the trend of pupil diameter and 

loading of working memory while reading and executing a task prior to the loss of tracking also 

supports this conclusion.  The pupil diameter profile shown in Figure 35 exemplifies the 
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taking place while further loading is presumably occurring.  The tracking resumes with the 

delivery or reporting of the response.  While the data here may be inconclusive for a 

relationship between task-evoked pupillary response (as measured through the maximum pupil 

diameter) and mental effort, the use of subjective mental effort ratings is still supported 

through the use of time on task. Support is also seen in the performance and efficiency 

measurements. The expectation of a negative correlation for performance is expected because 

performance should increase as information in schema becomes more automated. This then 

leads to a decrease in demand on working memory, lowering mental effort. Negative r-values 

for the performance to mental effort comparison demonstrates this relationship. If students 

were not able to accurately gauge their own load on working memory, a more positive 

correlation would be expected. This was also demonstrated in the class wide data collected 

during the semester of these interviews (Figure 36).  

 

Figure 36.  Trend line demonstrating the relationship of mental effort to performance on a 

single task during classroom application of the instrument. 
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In comparison using performance and efficiency in comparison of one another a positive r-value 

would be expected. Here if efficiency increases so should performance, and vice versa. 

Therefore efficiency acts as a predictor of performance. If a comparison of the three areas of 

mental effort, performance, and efficiency are taken; each pair of constructs serves as a 

predictor of the third construct, showing validity of the instrument in turn. Efficiency 

measurement comparisons of TOT and maximum pupil diameter are, however, not conclusive. 

While the negative r-values are seen as expected, it is not a prevalent outcome for the 13 

participants. In both of these measurements approximate 30% of the participants correlated 

positively when compared to the efficiency construct. While the use of maximum pupil diameter 

in this study has already been discussed, the use of TOT up to this point has proved to be an 

accurate measure. The information shown suggests that as with the TOT/maximum pupil 

diameter correlation, maximum pupil diameter does not follow the expected trend. Reasons for 

the inconclusive results for TOT to efficiency and maximum pupil diameter then will require 

further investigation, as will the use of maximum pupil diameter as a single construct in future 

work on this project. In the meantime other issues involving technology glitches that occurred 

during tracking, such as screen freezes, may also account for some of the time issues seen when 

comparing efficiency and TOT and TOT to maximum pupil diameter.  
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Chapter 7: Future work 

7.1 Eye Tracking 
In continuation of this study in the future, inconsistencies in maximum pupil diameter and TOT 

can be addressed through developing a method allowing students to perform problem-solving 

while working on the screen. Integration of a tablet or SMART board system and a hat mounted 

versus desk mounted eye-tracker is one possible solution. Research has been done that shows 

coding may be done to integrate tools such as a calculator into the screen(Tang, Topczewski, 

Topchewski, & Pienta, 2012). Further information is also available through a more in-depth 

analysis of individual student information using scan path and heat maps (Figure 37). These give 

more detailed information of the exact information from a task that is accessed, how often it is 

accessed, and the amount of time it is utilized. 
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Figure 37. Data is shown for one participant for one task. The top version of the task shows 

scan path data with fixations represented as overlapping circles. The darker the color of the 

overlapping circles the more times the item was accessed. The bottom figure represents the 

amount of time an item was accessed. The scale on the bottom demonstrates the color 

intensity associated with the time. The cooler the color the less time was spent looking at the 

area, while the warmer the color the more time that was spent on the area. 
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Chapter 8: Conclusions 

The use of cognitive load theory in conjunction with schema learning theory and adaptive 

control of thought-rational gives a solid foundation for the use of an instrument that measures 

load on working memory as part of an efficiency assessment. Through mapping the beginning of 

student’s problem solving strategies in first steps, and comparing this to the load on working 

memory, a higher predictability of performance on current and future tasks is possible. This 

ability to measure the students’ problem-solving skills and relate it back to an expected 

outcome based on the mapped compared efficiency of problem processes, allows for the 

establishment of appropriate interventions when cognitive mapping demonstrates inefficient 

processes. Through intervening earlier in the schema formation of new information, the 

likelihood of redirecting schema pathways to more efficient methods is possible.  

By developing an instrument that is completely electronic it is in fact possible to have real-time, 

formative assessment in the classroom based on task performance, mental effort, and efficiency 

of first step. The use of student generated first step lists for a large scale electronic instrument is 

supported by the 90% agreement of students across open-response items for a task, and the 

continual agreement of students at the 90% level in multiple iterations of testing. Combining 

this with efficiency ratings developed by experts, and a valid method of testing load on working 

memory through a five-point Likert scale, allowed for the creation of student individual and 

class wide assessment scores when combined with performance on a task. The eye-tracking 

data reported demonstrates that load on working memory is in fact reliable when self-reported 

by students, through use of measurements involving time-on-task and task evoked pupillary 

response and is accurately measured when posed on a five point quasi-interval scale.  
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With support from classroom data measurements and eye-tracking data collected in interviews, 

the development of the RKA for use in the chemistry classroom is a valid tool for assessing 

student knowledge on individual concepts within the chemistry curriculum. The data also 

supports the need for an instrument to give a rapid measure of knowledge to allow for timely 

interventions to aid in the development of more efficient schema and ultimately better learning 

of the domain. 
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Appendix A: Example of Spot Review Sheet 
Spot Review Problems (Lec 401)   December 1, 2008 

Problem: How many types of intermolecular forces does ammonia have? 

Your work:      Your answer: __________________ 

 

 

 

 

 

 

 

 

 

 

 

 

Please tear off and hand in: 

 

Name:________________________________  DS Section: _____________ 

For today’s problem, your first step is: 
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Appendix B: Master Task Document 
 

Rapid Knowledge Assessment Problems 

General 

1 What is 225 Kelvin in degrees Fahrenheit? –54oF 

A solving for the temperature in degrees Celsius 

B writing the equation to convert Kelvin to Celsius 

C writing the equation to convert Celsius to Kelvin 

D writing the equation to convert Kelvin to Fahrenheit 

E 
combining the equation to convert Kelvin to Celsius and the equation to convert Celsius to 
Fahrenheit 

F reading the exercise, however I am not sure how to start the exercise 

 

2 How many 1.0 cm3 cubes of gold have a collective mass of 1.0 kg? 52 

A calculating the volume 

B looking up the density of gold 

C converting kilograms to grams 

D writing the equation for density 

E solving the density equation for volume 

F reading the exercise, however I am not sure how to start the exercise 

 

3 A nanoparticle is 85 nm in size.  What magnification must be used to view this particle to 

a size of 3 cm?  350k X 

A converting nanometers to meters 

B convert all of the units into meters 

C converting nanometers to centimeters 
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D finding the difference in the order of magnitudes 

E writing an equation and filling in the appropriate numbers 

F reading the exercise, however I am not sure how to start the exercise 

 

Atomic Structure 

4 What is the atomic number of an alkali metal with 20 neutrons? 19 

F09 steps 

 A listing the alkali metals 

B A - (number of neutrons) = Z 

C Z + (number of neutrons) = A 

D finding the element with A = 40 

E finding group 1 on the periodic table 

F finding the group 1 element with A – Z = 20 

G reading the exercise, however I am not sure how to start the exercise 

 

5 What is Z for an ion with a charge of 3– and 36 electrons? 33 

A writing Z = 36 – 3  

B finding Z on the periodic table 

C # protons = # electrons in a (neutral) atom 

D solving for the # electrons in a (neutral) atom 

E solving for # protons, given the number of electrons 

F reading the exercise, however I am not sure how to start the exercise 

 

 

 



113 
 

 

6 What is the mass of nitrogen-15, if nitrogen has two stable isotopes and nitrogen-14 has 

a mass of 14.003074 amu and a relative abundance of 99.632?  Use 14.007 amu for the 

average atomic mass of nitrogen.  15.1 

A solving %15N = 0.378% 

B writing %15N = 100 – %14N 

C making a table of the given data 

D 
writing the equation    

15 14
15 14% N % N

N N N
100 100

   
    
   

 

E 
writing the equation    

15
1599.632% % N

14.007 amu 14.003074 amu N
100 100

  
   
   

 

F reading the exercise, however I am not sure how to start the exercise 

 

Electronic Structure 

7 Of the four visible lines in the hydrogen atomic emission spectrum, what is the value of 

nhi for the line of the shortest wavelength? 6 

 A 
writing H 2 2

i f

1 1
E h R

n n

 
     

 
 

B drawing a picture of the Bohr model 

C looking at the hydrogen emission spectrum 

D knowing that the Balmer series is for nlow = 2 

E listing the series of transitions for the Balmer series 

F knowing the relationship between wavelength and energy 

G reading the exercise, however I am not sure how to start the exercise 
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8 What is the lowest value of ml for any d atomic orbital?  –2 

A listing the values of ml 

B knowing that ml = -l…0…+l 

C finding the values for a d orbital 

D calculating the number of orbitals 

E knowing that the highest value of l is n - 1 

F finding the value of l which corresponds to a d sublevel 

G reading the exercise, however I am not sure how to start the exercise 

 

9 There are two elements in period 3 which have 2 unpaired electrons in the ground state.  

What is the sum of Z for these two elements? 30 

A writing an orbital diagram 

B finding period 3 on the periodic table 

C writing the electron configurations for period 3 elements 

D knowing that all of these elements contain 1s2 2s2 2p6 

E writing the orbital diagram for only the nonmetals in period 3 

F writing the orbital diagram for only silicon, phosphorus and sulfur 

G knowing that only the 3p sublevel will have more than one unpaired electron 

H reading the exercise, however I am not sure how to start the exercise 
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10 How many electrons are in the 3rd energy level for a ground state atom of manganese? 

 13 

A finding Mn on the periodic table 

B writing the full electron configuration 

C writing the noble gas electron configuration 

D finding the number of electrons in 3s, 3p, and 3d 

E knowing that there are only s, p, and d sublevels in the 3rd energy level 

F reading the exercise, however I am not sure how to start the exercise 

 

11 How many elements in period 3 have atoms which are paramagnetic in the ground 

state? 6 

A writing an orbital diagram 

B finding period 3 on the periodic table 

C finding the number of paramagnetic elements 

D finding the number of paired and unpaired spins 

E knowing how many electrons are in s and p orbitals 

F writing the electron configurations for period 3 elements 

G reading the exercise, however I am not sure how to start the exercise 
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Periodicity 

12 What is the atomic number for a period 3 element with 578 kJ·mol–1, 1820 kJ·mol–1, 

2750 kJ·mol–1, 11,600 kJ·mol–1 as the first four ionization energies? 13 

A listing the elements in period 3. 

B locating the largest difference in IE. 

C following the trend for IE in period 3. 

D finding period 3 on the periodic table. 

E knowing that the largest IE increases indicates core electrons. 

F finding the number of valence electrons for the elements in period 3. 

G reading the exercise, however I am not sure how to start the exercise 

 

13 What is the atomic number for the element in group 2 most likely to form covalent 

bonds with hydrogen? 4 

A defining a covalent bond 

B listing the group 2 elements 

C locating group 2 on the periodic table 

D knowing the periodic trend of electronegativity 

E using trend for electronegativity to find the highest and lowest electronegative element. 

F reading the exercise, however I am not sure how to start the exercise 
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Chemical Bonding and Molecular Structure 

14 What is the subscript for lead when lead with 78 electrons combines to form an ionic 

compound with sulfate? 1 

A writing the atomic number of lead 

B writing the charge on the sulfate ion 

C writing the formula of the sulfate ion 

D determining the charge on the lead ion 

E determining the number of electrons on lead 

F reading the exercise, however I am not sure how to start the exercise 

 

15 How many lone pairs of electrons on one molecule of nitrogen trichloride?  10 

A identifying the central atom 

B writing the skeletal structure 

C writing the Lewis dot structure 

D determining the number of valence electrons 

E determining the number of bonds in the molecule. 

F determining the number of electrons pairs in the molecule 

G reading the exercise, however I am not sure how to start the exercise 

 

15b What is the total number of valence electrons in one molecule of PCl3? 26 

A finding P and Cl on the periodic table. 

B finding the group number for P and Cl. 

C reading the formula for which elements are present. 
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D determining the number of valence electrons for each atom. 

E determining the number of valence electrons for each element. 

F reading the formula for how many atoms of each element are present. 

G reading the exercise, however I am not sure how to start the exercise 

 

16 What is the bond angle in the carbonate ion? 120 

A finding the central atom 

B writing the Lewis dot structure 

C placing the atoms in the structure 

D finding the number of electron groups 

E writing the formula for the carbonate ion 

F calculating the total number of valence electrons 

G finding the number of valence electrons for each element 

H reading the exercise, however I am not sure how to start the exercise 

 

16b How many sigma bonds are in one molecule of allene, H2CCCH2?  6 

A defining a sigma bond. 

B drawing the structural formula 

C drawing the Lewis dot structure 

D placing the atoms in the structure 

E identifying the number of single bonds 

F determining the total number of valence electrons 

G reading the exercise, however I am not sure how to start the exercise 
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17 What is the bond order is N2
+? 2.5 

A drawing a Lewis dot structure 

B writing the equation for bond order 

C writing the molecular orbital diagram  

D finding nitrogen on the periodic table 

E determining the number of electrons for the ion 

F finding the number of valence electrons in nitrogen 

G reading the exercise, however I am not sure how to start the exercise 

 

Liquids and Solids 

18 How many types of intermolecular forces does carbon tetrachloride have? 1 

A writing the chemical formula 

B drawing the Lewis dot structure 

C determining the polarity of the molecule 

D determining the number of valence electrons 

E determining the types of bonds in the molecule 

F reading the exercise, however I am not sure how to start the exercise 

19 How many types of intermolecular forces does ammonia have? 3 

A determining the shape 

B determining the polarity 

C writing the chemical formula 

D writing the Lewis dot structure 
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E listing the possible intermolecular forces 

F listing the intermolecular forces for ammonia 

G reading the exercise, however I am not sure how to start the exercise 

 

20 What is Z for the noble gas with the lowest boiling point? 2 

A knowing that Z = # of electrons for atoms 

B finding the noble gases on the periodic table 

C knowing the noble gases only have dispersion forces 

D knowing the correlation between strength of IMF and boiling point 

E knowing the correlation between strength of dispersion forces and total number of electrons 

F reading the exercise, however I am not sure how to start the exercise 

 

21 Polonium is the only element which packs in a simple cubic structure in its crystalline 

form.  Polonium has an atomic radius of 164 pm.  What is the density of polonium? 

 9.83 g·cm–3 

A converting pm to cm 

B defining simple cubic 

C writing the equation for density  

D drawing a picture of the unit cell 

E finding the molar mass of polonium 

F determining the volume of one atom 

G writing the equation to solve for one side of the unit cell 

H reading the exercise, however I am not sure how to start the exercise 
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22 The molar heat of vaporization of benzene is 31.0 kJ·mol–1 and the normal boiling point 

is 80.1oC.  What is the vapor pressure of benzene at room temperature (25oC)? 108 

mmHg 

A writing the value for R 

B writing the ideal gas law 

C converting the temperature into kelvin 

D writing the Clausius-Clayperon equation 

E knowing the vapor pressure at the normal boiling point 

F reading the exercise, however I am not sure how to start the exercise 

 

Properties of Matter – Formula Calculations 

23 What is the mass of 1.0  1023 molecules of oxygen molecules? 5.32 g 

A determining the molar mass of oxygen 

B writing the formula for molecular oxygen 

C calculating the number of moles of oxygen 

D understanding that 6.022 x 10
23

 molecules = 1 mole 

E reading the exercise, however I am not sure how to start the exercise 

 

24 What is the percent composition by mass of oxygen in aluminum acetate?  47.03% 

A writing the chemical formula 

B determining the mass of oxygen 

C determining the number of moles of oxygen 

D determining the molar mass of aluminum acetate 

E reading the exercise, however I am not sure how to start the exercise 
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25 What is the mass (in g) of sodium in a 10.0 g sample of sodium phosphite? 4.66 g 

A writing the chemical formula 

B writing the molar mass of sodium 

C determining the molar mass of sodium phosphite 

D determining the number of moles of sodium phosphite 

E reading the exercise, however I am not sure how to start the exercise 

 

27 What is the mass of oxygen in a sample of aluminum sulfite which  contains 1.00 g 

of aluminum?  2.67 g 

A writing the formula 

B finding the moles of oxygen. 

C finding the moles of aluminum. 

D finding the mass of aluminum sulfate. 

E finding the moles of aluminum sulfate. 

F identifying the mole ratio of oxygen to aluminum. 

G reading the exercise, however I am not sure how to start the exercise 

 

27_cl What is the mass of oxygen in a sample of sodium nitrate which contains 1.00 g of 

sodium?  2.09 g 

 Use same steps as 27 above and swap substance 
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28 How many atoms of hydrogen are in the empirical formula for a hydrocarbon containing 

83.6% carbon by mass? 7 

A 83.6% carbon = 83.6 g carbon 

B calculating the number of moles of carbon. 

C calculating the number of moles of hydrogen. 

D 100 g total – 83.6 g carbon = 16.4 g hydrogen. 

E 100% total – 83.6% carbon = 16.4% hydrogen. 

F knowing that hydrocarbons contain only carbon and hydrogen. 

G reading the exercise, however I am not sure how to start the exercise 

 

28_cl How many atoms of hydrogen are in the empirical formula for a hydrocarbon containing 

93.70% carbon by mass? 4 

 Use same steps as 28 above and swap values 

 

Reactions 

29 What is the sum of the stoichiometric coefficients (balanced to the lowest common 

denominator) for the balanced reaction of benzene (C6H6) reacting with oxygen to form 

carbon dioxide and water? 35 

A writing the formula for water 

B writing the formula for oxygen 

C identifying products and reactants 

D writing the formula for carbon dioxide 

E writing the skeletal equation for the reaction 

F reading the exercise, however I am not sure how to start the exercise 

 



124 
 

 

 

29_cl What is the sum of the stoichiometric coefficients (balanced to the lowest common 

denominator) for the balanced reaction of methanol (CH3OH) reacting with oxygen to 

form carbon dioxide and water? 11 

A writing the formula for water 

B writing the formula for oxygen 

C identifying products and reactants 

D writing the formula for carbon dioxide 

E writing the skeletal equation for the reaction 

F reading the exercise, however I am not sure how to start the exercise 

 

30 What is the sum of the stoichiometric coefficients (balanced to the lowest common 

denominator) for the balanced reaction of zinc with hydrochloric acid (HCl)? 5 

A identifying the type of reaction 

B identifying the reactants and products 

C writing the skeletal chemical equation 

D writing the chemical formula for the products 

E writing the chemical formula for the reactants 

F reading the exercise, however I am not sure how to start the exercise 
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31 What is the sum of the stoichiometric coefficients (balanced to the lowest common 

denominator) for the balanced net ionic reaction of iron(III) chloride and potassium 

hydroxide?  5 

A writing the skeletal equation 

B writing the total balanced equation 

C writing the formula for the products 

D writing the formula for the reactants 

E writing the total ionic balanced equation 

F reading the exercise, however I am not sure how to start the exercise 

 

Stoichiometry 

32 How many molecules of water are produced when 10 molecules of octane are 

completely combusted in excess oxygen?   90 

A calculating mass of water 

B calculating moles of water 

C calculating mass of octane 

D calculating moles of octane 

E writing the balanced equation 

F use a mole ratio for comparing moles of octane to water 

G use the mole ratio for comparing molecules of octane to water 

H reading the exercise, however I am not sure how to start the exercise 
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33 What mass of oxygen is needed to completely combust 1.00 g of ethanol to produce 

carbon dioxide and water vapor?  2.08 g 

A using a mole ratio 

B writing the balanced equation 

C calculating the moles of oxygen 

D calculating the moles of ethanol 

E calculating molar mass of ethanol 

F writing the chemical formula for ethanol. 

G reading the exercise, however I am not sure how to start the exercise 

 

35 What is the percent yield for a reaction of lithium hydroxide with carbon dioxide to yield 

lithium bicarbonate in which 50.0 g of lithium hydroxide is reacted and 72.8 g of lithium 

bicarbonate is experimentally obtained? 51.3% 

A writing the balanced equation 

B writing the formula of all compounds 

C writing the equation for percent yield 

D calculating moles of lithium hydroxide 

E finding the molar mass of lithium hydroxide 

F finding the molar mass of lithium bicarbonate 

G calculating the theoretical yield of lithium bicarbonate 

H reading the exercise, however I am not sure how to start the exercise 
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Aqueous Reactions 

37 How many grams of sodium nitrate must be used in order to prepare 5.00  102 mL of a 

0.100 M solution? 4.25 g 

A knowing that M = mol / L 

B converting the volume from mL to L 

C determining the molar mass of sodium nitrate 

D writing the chemical formula for sodium nitrate 

E calculating the number of moles of sodium nitrate. 

F reading the exercise, however I am not sure how to start the exercise 

 

38 It is desired to add H2O to 50.0 mL of a 9.00 M aq solution of sodium phosphate in order 

to decrease the concentration to 0.245 M. What should the final volume be (in L)?   

 

40 37.2 mL of 0.142 M NaOH is needed for complete neutralization of 25.0 mL of a solution 

of H2SO4.  What is the molar concentration of the acid?   0.106 M 

A writing the balanced equation 

B converting the volume into liters 

C determining the molar mass of NaOH 

D determining the molar mass of H2SO4 

E determining the number of moles of NaOH 

F determining the number of moles of H2SO4 

G knowing that the dilution equation is M1V1 = M2V2 

H reading the exercise, however I am not sure how to start the exercise 
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42 If 20.25 mL of calcium nitrate and an excess of sodium phosphate are mixed, and 0.250 

g of the precipitate forms at a 95.5% yield, what is the molar concentration of calcium 

nitrate? (310.18) 0.125 M 

A converting mL to L 

B writing the balanced chemical equation. 

C determining the formula of the precipitate. 

D determining the molar mass of calcium nitrate 

E determining the theoretical yield of the precipitate. 

F determining the number of moles of calcium nitrate 

G reading the exercise, however I am not sure how to start the exercise 

 

43 What is the oxidation state (entered without a sign) for chromium in iron(III) 

dichromate?  6 

A writing the charge on each ion 

B writing the charge on dichromate ion 

C determining the oxidation number on iron 

D writing the chemical formula of dichromate 

E determining the oxidation number on oxygen 

F writing the chemical formula for iron(III) dichromate. 

G reading the exercise, however I am not sure how to start the exercise 

 

 

 

 

43_c What is the oxidation state (entered without a sign) for chlorine in iron(III) perchlorate?  

7 
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A writing the charge on each ion 

B writing the charge on perchlorate ion 

C determining the oxidation number on iron 

D writing the chemical formula of perchlorate 

E determining the oxidation number on oxygen 

F writing the chemical formula for iron(III) perchlorate. 

G reading the exercise, however I am not sure how to start the exercise 

 

Gases 

44 What is molar mass of a gas with a density of 1.96 g·L–1 at STP? 44.0 

A writing the ideal gas law 

B listing standard conditions 

C writing the equation for density 

D writing the formula, density = MMP / RT 

E calculating molar mass from the ideal gas law 

F combining the equations for density and the ideal gas law 

G reading the exercise, however I am not sure how to start the exercise 

 

46 Ammonia, NH3, is made commercially by reacting N2 and H2. How many liters of NH3 can be 

made from 4.62 L of H2 if both gases are measured at the same temperature and pressure? 

 

 

 

 

47 What is the root mean square speed (in m/s) of hydrogen at 0oC? 1836 
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A writing the equation for speed. 

B writing the formula for hydrogen. 

C writing the value for R in J/(mol K). 

D converting the temperature to Kelvin. 

E determining the molar mass for hydrogen. 

F reading the exercise, however I am not sure how to start the exercise 

 

48 What mass (in g) of nitrogen must be added to 15.0 g of neon in a 50.0 L container at 

50.0oC to yield a final pressure of 1050 mmHg? 52.2 g 

A writing the ideal gas law. 

B converting mmHg to atm. 

C converting the temperature into Kelvin. 

D writing Dalton’s Law of Partial Pressures. 

E determining the partial pressure of neon. 

F determining the number of moles of neon. 

G reading the exercise, however I am not sure how to start the exercise 

 

48_c What mass (in g) of oxygen must be added to 15.0 g of neon in a 50.0 L container at 

50.0oC to yield a final pressure of 950 mmHg? 51.6 g 
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Thermochemistry 

49 What is the final temperature (in oC) when 1 gallon of water evolves 118.8 kJ of heat 

when it cools from 32.5oC?  1 gallon = 3790 mL; sH2O = 4.18 J·g–1·oC–1  25.0oC 

A converting kJ to J. 

B writing the equation for heat. 

C converting the volume into metric. 

D converting the mass of water to grams. 

E solving the heat equation for change in temperature. 

F writing the equation for heat with both initial and final temperature. 

G reading the exercise, however I am not sure how to start the exercise 

 

50 How much heat (in kJ) is generated when 100.0 g of iron reacts with excess oxygen 

under standard conditions (and constant pressure) to form iron(III) oxide if the standard 

enthalpy of formation for iron(III) oxide is –822.2 kJ·mol–1  –736 kJ 

A writing the formula for iron(III) oxide 

B determining the number of moles of iron 

C determining the molar mass of iron(III) oxide 

D determining the number of moles of iron(III) oxide 

E writing the chemical equation for the formation of iron(III) oxide 

F reading the exercise, however I am not sure how to start the exercise 
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50_c1 How much heat (in kJ) is generated when 100.0 g of copper reacts with excess oxygen 

under standard conditions (and constant pressure) to form copper(I) oxide if the 

standard enthalpy of formation for copper(I) oxide is –166.69 kJ·mol–1 –131 kJ 

A writing the formula for copper(I) oxide 

B determining the number of moles of copper 

C determining the molar mass of copper(I) oxide 

D determining the number of moles of copper(I) oxide 

E writing the chemical equation for the formation of copper(I) oxide 

F reading the exercise, however I am not sure how to start the exercise 

 

50_c2 How much heat (in kJ) is generated when 100.0 g of aluminum reacts with excess 

oxygen under standard conditions (and constant pressure) to form aluminum oxide if 

the standard enthalpy of formation for aluminum oxide is –1669.8 kJ·mol–1  –3095 kJ 

A writing the formula for aluminum oxide 

B determining the number of moles of aluminum 

C determining the molar mass of aluminum oxide 

D determining the number of moles of aluminum oxide 

E writing the chemical equation for the formation of aluminum oxide 

F reading the exercise, however I am not sure how to start the exercise 
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51 What mass (in g) of ethane (C2H6) is needed to boil to completion 1 gallon (3790 g) of 

water initially at 20oC if the standard molar enthalpy of combustion for ethane is –

1558.8 kJ·mol–1?   Assume the process is only 50% efficient.   sH2O = 4.18 J·g–1·oC–1 and 

∆Hvap = 40.656 kJ·mol–1  379 g 

A writing the formula for heat 

B determining the molar mass of water 

C determining the molar mass of ethane 

D determining the number of moles of water 

E calculating the change in temperature of the water 

F writing the balanced chemical equation for the combustion of ethane 

G reading the exercise, however I am not sure how to start the exercise 

 

51_c What mass (in g) of methane is needed to boil to completion 1 liter of water initially at 

40oC if the standard molar enthalpy of combustion for methane is –890.25 kJ·mol–1?   

Assume the process is only 50% efficient.   sH2O = 4.18 J·g–1·oC–1 and ∆Hvap = 40.656 

kJ·mol–1  90.3 g 

A writing the formula for heat 

B determining the molar mass of water 

C determining the molar mass of methane 

D determining the number of moles of water 

E calculating the change in temperature of the water 

F writing the balanced chemical equation for the combustion of methane 

G reading the exercise, however I am not sure how to start the exercise 
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Appendix C: Complexity Rubric 
 

Rubric for assigning task complexity and an example of the worksheet used by raters to assign 

task complexity. 

To assign complexity 

(1) Read the task. 

(2) Count the number of pieces of knowledge 

(3) Estimate from the perspective of a student a relative difficulty rating to each 

(4) Use the rubric to add up the component complexities to determine a numerical 
complexity rating 

(5) Increase the overall complexity rating of an item by estimating how interrelated or 
interactive the chemistry knowledge must be for the task  

 

 

 

 

 

 

 

Objective complexity rubric

5 – 6 7

3 – 4 6

23 – 4 3

25 – 6 5

13 – 4 5 – 64

122

11

difficultmediumeasy

Number & relative difficulty/complexity of 

component concepts or skills needed to 

master item

R
a

ti
n

g

+1Basic

+2complex

0Non-significant

Concept/skill 

interactivity
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Complexity Analysis of Item #1 

Elements 

Difficulty 
of each 
element 

Total 
number of 
each 
category 

Ranking of 
elements 

Sum of 
ranking  

Complexity 
rating 

  
Easy: Easy: 

  

Medium: Medium: 

Hard: Hard: 

Interactivity rating: 
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Appendix D: Comparison of Preparatory Chemistry Lectures in 2007 
 

 

 

Figure  : Comparison of Pearson Correlation values for Task Performance (TP), First Step 

Performance (FS), Final 1 (F1), Final 2 (F2), Third Exam (E3), and Percent  Grade in Class (PC). 

	



 
 

 

Appendix E: Comparison of Data for 2009 and 2010 Including Cloned Tasks 
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Appendix G: Comparison of Data for 2009 and 2010 Excluding Cloned Tasks 
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Appendix F: Comparison of Preparatory and General Chemistry for 2009 
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Appendix H: Spring 2007 Rapid Knowledge Assessment Problems 
 

1. What is the mass of 1.0 x 1023 molecules of oxygen molecules? (5.32 g) 

2. What is the percent composition by mass of oxygen in aluminum acetate? (47.03%) 

3. What is the molar mass for an ionic compound which contains 75.9% nickel by mass and 

nitrogen? (232.11 g·mol-1) 

4. What is the mass of oxygen in a sample of aluminum sulfite which contains 1.00 g of 

aluminum? (2.67 g) 

5. How many molecules of carbon dioxide are produced when 10 molecules of octane are 

completely combusted in excess oxygen? (80) 

6. What mass of oxygen is needed to completely combust 1.00 g of ethanol to produce 

carbon dioxide and water vapor? (2.08 g) 

7. 56.6 g of calcium combines with excess nitrogen to form calcium nitride. If 32.4 g of 

calcium nitride is recovered, what is the percent yield for the reaction? (46.5%) 

8. What is the percent yield for a reaction of lithium hydroxide with carbon dioxide to yield 

lithium bicarbonate in which 50.0g of lithium hydroxide is reacted and 72.8 g of lithium 

bicarbonate is experimentally obtained? (51.3%) 

9. What mass of octane is combusted in excess oxygen to produce 355 L of carbon dioxide  

(density = 1.96 g·L-1) at an 80.0% yield for the reaction? (282 g) 

10. How many grams of sodium nitrate must be used in order to prepare 5.00 x 102 mL of a 

0.100 M solution? (4.25 g) 

11. It is desired to add water to 50.0 mL of a 0.900 M aqueous solution of sodium 

phosphate in order to decrease the concentration to 0.245 M. What should the final 

volume be (in L)? (0.184 L) 

12. 32.7 mL of 0.142 M NaOH is needed for complete neutralization of 25.0 mL of a solution 

of H2HO4. What is the molar concentration of the acid? (0.106 M) 

13. If 25.0 mL of each 0.200 M Ca(NO3)2 and 0.100 M Na3PO4 are mixed, how many grams of 

solid Ca3(PO4)2 are mixed, how many grams of solid Ca3(PO4)2 (molar mass = 310 g·mol-

1) are formed? (0.388 g) 

14. The density of phosphine gas has been found to be 1.26 g·L-1 at 50℃ and 747 mmHg. 

Calculate the molar mass of phosphine. (34.0 g/mol) 
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15. Ammonia, NH3, is made commercially by reacting N2 and H2. How many liters of 

ammonia can be made from 4.62 L of H2 if both gases are measured at the same 

temperature and pressure? (3.08 L)



 
 

 

Appendix I: Organization to Determine Assessment Scores I and II 

 

Assessment Score I 

 

 

 

If ME < 0.6
(low)

If Efficiency of Step  
> 0.55
(high) 

1
 

5
 

If ME < 0.6
(low)

3
 

If Efficiency of Step  
> 0.55
 (high)

2
 

4
 

If Efficiency of Step  
> 0.55
(high) 

6
 

8
 

If Efficiency of Step  
>0.55
(high)

7
 

IF TP > 0.5
(high)

No Yes

No Yes

No Yes No Yes

No Yes

No Yes No Yes
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