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The power quality of a distribution system can greatly effect the way devices connected to 

that power source operate. Sometimes one poor power quality characteristic can lead to 

another poor power quality characteristic. In the case presented in this paper, severe voltage 

unbalance at the input of a variable frequency drive leads to increased harmonic content in 

the power distribution system and the devices under operation. This paper addresses, in 

particular, the effects of severe voltage unbalance on the DC bus of a 6-pulse variable 

frequency drive. The steady-state balanced voltage harmonic behavior of the DC bus is 

analyzed along with standard filtering techniques used to mitigate the characteristic 

harmonics on the DC bus. The steady-state severe unbalanced voltage harmonic behavior of 

the DC bus is then analyzed and additional filtering techniques are then introduced to 

mitigate the non-characteristic harmonics on the DC bus that were produced by the severe 

voltage unbalance. Simulations of the balanced and unbalanced conditions mentioned above 

are presented in MATLAB. Bode plots of the 6-pulse converter are then analyzed to measure 

the frequency response of the system under these conditions and the Fast Fourier Transform 

of different signals in the system are generated to graphically represent the harmonics in the 

system. Finally, experimental results will show the successful application of the filtering 

techniques, presented in this paper, on a 6-pulse variable frequency drive under severe 

voltage unbalance.
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Introduction

A power distribution system is often plagued by harmonics. Harmonics are undesired

currents and voltages on a power distribution system that lead to poor power quality.

These undesired currents and voltages are caused by non-linear loads. Non-linear

loads simply mean the voltage waveform and current waveform do not share a linear

relationship. The effects of harmonics on electronics on a power distribution system

with poor power quality can be further worsen by the presence of steady state voltage

unbalance. Steady state voltage unbalance typically arise from single phase equipment

connected to a three phase distribution. Figure 1 shows 90% of U.S. distribution

systems contain less than 3% voltage unbalance and 2% contain greater than 3%

unbalance [9]. Systems that have more than 3% voltage unbalance are considered to

be severely unbalanced in this paper.

One major contributor to harmonics on a power distribution system is a Variable

Frequency Drive (VFD). VFD’s use a three stage AC/DC, DC bus, DC/AC process

to intelligently control an AC motor. The AC/DC stage is where the non-linear

relationship develops between the voltage and current, which lead to harmonics on

the power distribution system. Under the effects of voltage unbalance, the AC/DC

stage of the VFD can enter into single phase operation. Under this mode of operation,

a dominant second order harmonic emerges in the DC bus of the VFD. Since the VFD

1
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uses a voltage source inverter topology, it is particularly important the DC bus remain

as steady as possible. A steadier DC bus voltage leads to better motor performance

and less torque pulsations during motor operation. The presence of a large second

harmonic on the DC bus will impede the stability of the DC bus.

Figure 1: Voltage Unbalance Percentage in U.S. Distribution Systems

0.1 Aim and Objective

The general aim of this paper is to investigate the effects of severe voltage unbalance

on the DC bus of a VFD and to also see the effects of passive filters on the DC bus

of the VFD. The objectives of this paper are as follows,

1. Present parameters used to measure harmonics in power distribution systems.

2. Present Bode plots of the DC bus with and without passive filters on the DC bus.

3. Implement a model in Simulink� to simulate a VFD operating a motor under

sever voltage unbalance conditions with and without passive filters on the DC bus.
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4. Create an experimental set up to simulate a VFD operating a motor under severe

voltage unbalance conditions with and without passive filters on the DC bus.

0.2 Chapter Outlines

Chapter 1: The Basics of Harmonics - Presents the basic calculations used to quantify

harmonics

Chapter 2: Problem Statement and Proposed Solution - Presents the problem state-

ment and the proposed solution investigated in this paper

Chapter 3: Simulation - Presents simulations of the different filter configurations on

combination with different voltage conditions

Chapter 4: Experimentation - Presents an experimental set up of the different filtering

configurations in combination with different voltage conditions

Chapter 5: Experimentation and Simulation Results Comparison - Presents an ex-

planation for any discrepancies between experimental and simulation data

Chapter 6: Conclusion - Explains the correlation between the simulation and exper-

imental results



Chapter 1

The Basics of Harmonics

1.1 Fourier Analysis

One of the most effective mathematical tools used in the study of power systems

harmonics is the Fourier Series analysis. This tool allows any periodic waveform to be

expressed as the sum of its individual harmonic components at different frequencies.

Any periodic wave can be expressed as the following Fourier expansion,

f(t) = A0 +
∞∑
h=1

[Ah cos(hω0t) + Bh sin(hω0t)] (1.1.1)

This equation can be simplified to,

f(t) = A0 +
∞∑
h=1

Ch cos(hω0t+ ψh) (1.1.2)

The coefficients are defined as follows,

A0 =
1

T

∫ T

0

f(t)dt

Ah =
2

T

∫ T

0

f(t) cos(hω0t)dt

Bh =
2

T

∫ T

0

f(t) sin(hω0t)dt

4
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Ch =
√
A2

h +B2
h

ψh = tan−1(
Ah

Bh

)

Equation (1.1.1) can be simplified based on the type of symmetry displayed by the

waveform. For waveforms that display odd symmetry, that is when f(−t) = −f(t),
the cosine term goes to zero in equation (1.1.1). For waveforms that display even

symmetry, that is when f(−t) = f(t), the sine term now goes to zero in Equation

(1.1.1). For waveforms that display half-wave symmetry, that is when f(t+−
T
2
) =

−f(t), the DC component goes to zero and there are no even harmonics in our

Fourier expansion. An example of an odd waveform is shown in Figure 1.1.

Figure 1.1: Example of an odd waveform

After simplifying the Fourier expansion for the odd waveform above and solving for

the coefficients, the Fourier series is shown below.

f(t) =
∞∑
h=1

Im
πh

[2− cos(
2πh

3
)− cos(

4πh

3
)] sin(hω0t)

This series can be simplified to,

f(t) =
∞∑
h=1

h �=3,6,9,12,...

3
Im
πh

sin(hω0t)

The MATLab plot in Figure 1.2 shows the waveforms for different series. From the

plots we can see that the waveforms better resembles the original waveform when we
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increase the number of harmonic orders.

Figure 1.2: Odd waveform expressed in terms of harmonics
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1.2 Voltage Unbalance

One major cause of steady state voltage unbalance are single phase loads in a three

phase system. This happens quite often in rural electric power systems with long

distribution lines and large urban power systems where heavy single phase demands,

such as lighting loads, are imposed by large commercial facilities [3]. Another cause of

voltage unbalance are single phase traction and electric transit and railroad systems.

Unless proper design steps are taken, these systems can cause considerable voltage un-

balance. Additionally, asymmetrical transformer winding impedances, open wye and

open delta transformer banks, asymmetrical transmission impedances possibly caused

by incomplete transposition of transmission lines, and blown fuses on three phase

capacitor banks, are all possible causes of power system voltage unbalance.Percent

voltage unbalance is defined in Equation 1.2.1.

%Unbalance =
|Vavg − VΦ|

Vavg
· 100% (1.2.1)

Vavg =
Va + Vb + Vc

3
(1.2.2)

Where VΦ is the maximum or minimum amplitude of the three phase input RMS

voltages (Va, Vb, Vc), while Vavg is the average voltage amplitude.

It becomes increasingly difficult to compensate for voltage unbalance when the

unbalance is continually varying as with large industrial loads. Additionally, when

variable frequency drives are employed for cost savings, the customer load can vary

continually with large hourly variations. If, for example, a large number of single

phase VFD’s are employed, then the results can be continually varying unbalanced

loads. The combination of VFD’s and single phase non-linear switch mode power
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supply based loads such as computers, can lead to unbalance levels of distortion

between phases [14].

1.3 Phase Sequence

In a three phase system that is balanced, the individual frequency harmonic compo-

nents will either be entirely positive sequence, entirely negative sequence, or entirely

zero sequence. To demonstrate this characteristic, the Fourier expansion of a three

phase system is shown below.

va(t) = V1 cos(ωot) + V2 cos(2ωot) + V3 cos(3ωot) (1.3.1)

+V4 cos(4ωot) + V5 cos(5ωot) + V6 cos(6ωot)

+V7 cos(7ωot) + . . .

vb(t) = V1 cos(ωot− 120o) + V2 cos(2ωot− 240o) + V3 cos(3ωot− 360o) (1.3.2)

+V4 cos(4ωot− 480o) + V5 cos(5ωot− 600o) + V6 cos(6ωot− 720o)

+V7 cos(7ωot− 840o) + . . .

= V1 cos(ωot− 120o) + V2 cos(2ωot+ 120o) + V3 cos(3ωot)

+V4 cos(4ωot− 120o) + V5 cos(5ωot+ 120o) + V6 cos(6ωot)

+V7 cos(7ωot− 120o) + . . .

vc(t) = V1 cos(ωot+ 120o) + V2 cos(2ωot+ 240o) + V3 cos(3ωot+ 360o) (1.3.3)

+V4 cos(4ωot+ 480o) + V5 cos(5ωot+ 600o) + V6 cos(6ωot+ 720o)

+V7 cos(7ωot+ 840o) + . . .

= V1 cos(ωot+ 120o) + V2 cos(2ωot− 120o) + V3 cos(3ωot)

+V4 cos(4ωot+ 120o) + V5 cos(5ωot− 120o) + V6 cos(6ωot)

+V7 cos(7ωot+ 120o) + . . .
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Table 1.1: Phase voltage sequence for the first 15 harmonics of a 3-phase system

Harmonic Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sequence + - 0 + - 0 + - 0 + - 0 + - 0

If the fundamental harmonics in Equations (1.3.1), (1.3.2), and (1.3.3) were looked

at individually, it can be seen that this harmonic contains only positive sequence

components. If the second harmonic is looked at individually, it can be seen that

this component only contains negative sequence components, if the third harmonic is

looked at individually, it can be seen that this component only contains zero sequence

components. The phasor diagrams for the phase sequence of the first three harmonics

are shown in Figure 1.3. This pattern continues every three harmonic orders, so the

Figure 1.3: Phasor diagram of first three harmonics

1st, 4th, 7th . . . harmonic order contain only positive sequence components, the 2nd,

5th, 8th . . . harmonic orders contain only negative sequence components, and the 3rd,

6th, 9th . . . , or triplen harmonic orders contain only zero sequence components. Table

1.1 shows the phase sequence for the first 15 harmonic orders. From the phase voltage

equations defined earlier, the phase to phase voltage equations can be derived. For
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instance, for a wye connected system, the line to line voltage can be defined as follows,

vab(t) = va(t)− vb(t) (1.3.4)

=
√
3[V1 cos(ωot+ 30o) + V2 cos(2ωot− 30o)

+V4 cos(4ωot+ 30o) + V5 cos(5ωot− 30o)

+V7 cos(7ωot+ 30o) + . . .]

1.4 Harmonic Indices

Harmonics are a sinusoidal component of a period and frequency that is an integer

multiple of the fundamental frequency [2]. Thus, if a system has a fundamental fre-

quency of fo, then the frequency of the hth harmonic order will be h× fo. Harmonics

are used to describe distorted sine waves that are associated with voltages and cur-

rents. There are several important indices used to describe the effects of harmonics

on a power system. The most commonly used, and maybe the most important, in-

dices are the total harmonic distortion (THD) of the current and voltage. In order to

define the total harmonic current and voltage distortion, the Fourier expansion form

of the current and voltage must first be expressed as shown in Equations (1.4.1) and

(1.4.2).

i(t) =
∞∑
h=1

Ih cos(hωot+ φh) (1.4.1)

v(t) =
∞∑
h=1

Vh cos(hωot+ φh) (1.4.2)

Note that any periodic wave form has a root sum square (RMS) value described by

Equation (1.4.3).

F 2
rms =

1

T

∫ T

0

f 2(t)dt =
1

2

∑
h=1

F 2
h =

∑
h=1

F 2
h,rms (1.4.3)
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Application of Equation (1.4.3) to Equations (1.4.1) and (1.4.2) yield the RMS values

for current and voltage shown in Equations (1.4.4) and (1.4.5) respectively.

Irms =

√√√√ ∞∑
h=1

I2h,rms (1.4.4)

Vrms =

√√√√ ∞∑
h=1

V 2
h,rms (1.4.5)

The total harmonic distortion for current and voltage are now defined in terms of the

RMS values for current and voltage in Equations (1.4.6) and (1.4.7).

THDI =
1

I1

√√√√ ∞∑
h=2

I2h =

√
(
Irms

I1rms

)2 − 1 (1.4.6)

THDV =
1

V1

√√√√ ∞∑
h=2

V 2
h =

√
(
Vrms

V1rms

)2 − 1 (1.4.7)

The THDI and THDV are the ratio of the RMS values of the harmonics to the RMS

value of the fundamental component. This index measures the deviation of the wave

form from an ideal sine wave, or in other words, if the THD is zero then the sine wave

is purely at the fundamental frequency. Another important measure to take notice of

is the harmonic distortion at a given harmonic order for current and voltage can be

defined as Ih
I1

and Vh

V1
.

Another important index used in the measure of power system harmonics is the

total demand distortion (TDD) shown in Equation (1.4.8).

TDD =
1

IL

√√√√ ∞∑
h=2

I2h (1.4.8)

Where the IL is the maximum demand load current (typically 15 or 30 minute de-

mand) at the fundamental frequency at the point of common coupling (PCC), which
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is typically located at the secondary of the utility distribution transformer, calculated

as the maximum demands for the previous twelve months [2].

A very important index used in the measure of system harmonics is the distortion

power factor and its effects on the true power factor. In power systems, the power

factor quantifies how efficiently the load utilizes the current it draws from an AC power

system [5]. In systems where load(s) are linear, the only power factor to consider is

the displacement power factor. Thus, the true power factor for a system with only

linear loads is given in Equation (1.4.9).

PFtrue =
P

S
=

P√
P 2 +Q2

=

V1√
2

I1√
2
cos(θ1 − φ1)
V1√
2

I1√
2

= cos(θ1 − φ1) = PFdisp (1.4.9)

For systems that contain current and voltage harmonics, the real power P for all

harmonics have to be taken into account and the apparent power S for all harmonics

have to be taken into account. The real power is shown in Equations (1.4.10) through

(1.4.12).

P =
1

T

∫ T

0

p(t)dt (1.4.10)

=
1

2

∞∑
h=1

VhIh cos(θh − φh) (1.4.11)

=
1

2

∞∑
h=1

Vh,rmsIh,rms cos(θh − φh) (1.4.12)

The apparent power is shown in Equations (1.4.13) through (1.4.16).

S = VrmsIrms (1.4.13)

=

√√√√ ∞∑
h=1

V 2
h,rmsI

2
h,rms (1.4.14)

= V1,rmsI1,rms

√
1 + THD2

V

√
1 + THD2

I (1.4.15)

= S1

√
1 + THD2

V

√
1 + THD2

I (1.4.16)
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In the scenario with the additional harmonics included, the true power factor becomes

the product of the displacement power factor (PFdisp) and the distortion power factor

(PFdist) as shown in Equations (1.4.17) through (1.4.19).

PFtrue =
P

S
=

P

V1,rmsI1,rms

√
1 + THD2

V

√
1 + THD2

I

(1.4.17)

=
P

S1

· 1

V1,rmsI1,rms

√
1 + THD2

V

√
1 + THD2

I

(1.4.18)

= PFdisp·PFdist (1.4.19)

The distortion power factor describes how the harmonic distortion of the load current

decreases the average power transfers between the source and the load. To take this

idea one step further, distortion power can be found once the reactive power Q is

known. Equations (1.4.20) and (1.4.21) define Q.

Q =
1

2

∞∑
h=1

VhIh sin(θh − φh) (1.4.20)

=
1

2

∞∑
h=1

Vh,rmsIh,rms sin(θh − φh) (1.4.21)

The distortion power D can now be defined as shown in Equation (1.4.22).

D2 = S2 − (P 2 +Q2) (1.4.22)

An index that is also closely monitored is the crest factor for both current and voltage.

The current crest factor (CCF) and voltage crest factor (VCF) are shown in Equations

(1.4.23) and (1.4.24) respectively.

CCF =
1

I1

∑
h=2

Ih (1.4.23)

V CF =
1

V1

∑
h=2

Vh (1.4.24)

The crest factor index is important in the selection of the circuit components [1]. For

instance, two loads can have the same RMS values for current, but different peak



14

current values as shown in Figure 1.4. The red and blue waveforms have same RMS

values, however the peak values vary.

Figure 1.4: Equivalent RMS currents with different peak values

A final index worth mentioning is the telephone interference factor (TIF). Har-

monics generate telephone interference through inductive coupling [15]. The tele-

phone interference factor for current and voltage are shown in Equations (1.4.25) and

(1.4.26).

TIFI =
1

Irms

√√√√ ∞∑
h=1

(ThIh)2 (1.4.25)

TIFV =
1

Vrms

√√√√ ∞∑
h=1

(ThVh)2 (1.4.26)

Where Th is a weighting that accounts for the audio and inductive coupling effects
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at the hth harmonic order. In practice, this distortion index is typically expressed

as the product of the TIF values and the RMS current or RMS voltage. They are

referred to as the IT product and the VT product. The IT and VT values are shown

in Equations (1.4.27) and (1.4.28).

IT =

√√√√ ∞∑
h=1

(ThIh)2 (1.4.27)

V T =

√√√√ ∞∑
h=1

(ThVh)2 (1.4.28)

1.5 Harmonics and Circuit Elements

In the study of harmonics, it is important to note the effects of harmonics on pas-

sive circuit elements. This section will look at the effects of harmonics on certain

parameters for resistors, inductors, and capacitors.

The power in a resistor is defined in Equation (1.5.1).

PR =
1

2

∞∑
h=1

VhIh =
1

2

∞∑
h=1

I2hRh =
1

2

∞∑
h=1

V 2
h

Rh

(1.5.1)

The power in the resistor in terms of THD voltage and current are shown in Equations

(1.5.2) and (1.5.3) respectively.

PR =
1

2R

∞∑
h=1

V 2
h =

V 2
1

2R
(1 + THD2

V ) = PR1(1 + THD2
V ) (1.5.2)

PR =
R

2

∞∑
h=1

I2h =
I21R

2
(1 + THD2

I ) = PR1(1 + THD2
I ) (1.5.3)

The per unit value of power in a resistor is defined in Equations (1.5.4) and (1.5.5)

in terms of THD voltage and THD current.

PRp.u. =
PR

PR1

= 1 + THD2
V =

∞∑
h=1

V 2
hp.u. (1.5.4)
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PRp.u. =
PR

PR1

= 1 + THD2
I =

∞∑
h=1

I2hp.u. (1.5.5)

From Equations (1.5.4) and (1.5.5), it is important to note that the total harmonic

distortion for voltage and current are equal for a resistive circuit element.

For inductive loads, the power in an inductor QL is defined in Equation (1.5.6).

QL =
1

2

∞∑
h=1

VhIh =
∞∑
h=1

Vh,rmsIh,rms (1.5.6)

The fundamental and harmonic voltage across the inductor are defined in Equation

(1.5.7) and (1.5.8) respectively.

V1 = j2πf0LI1 (1.5.7)

Vh = j2πf0LIh (1.5.8)

From Equations (1.5.7) and (1.5.8) the per unit value for the voltage can be defined,

as shown in Equation (1.5.9).

Vh
V1

= h
Ih
I1

(1.5.9)

Equation (1.5.9) can be used to define the per unit value of the reactive power QL

Q1

in terms of the harmonic voltages or the harmonic currents as shown in Equation

(1.5.10).

QL

Q1

=
1
2

∑∞
h=1 VhIh
1
2
V1I1

=
∞∑
h=1

h(
Ih
I1
)2 =

∞∑
h=1

1

h
(
Vh
V1

)2 (1.5.10)

The per unit reactive power QLp.u. in terms of per unit current and per unit voltage

is shown in Equation (1.5.11).

QLp.u. =
∞∑
h=1

hI2hp.u. =
∞∑
h=1

V 2
hp.u.

h
(1.5.11)

For a capacitive load, the reactive power QC in the capacitor is defined in Equation

(1.5.12).

QC = −1

2

∞∑
h=1

VhIh = −
∞∑
h=1

Vh,rmsIh,rms (1.5.12)
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The negative sign in Equation (1.5.12) comes from the loading convention used in

this particular analysis. The fundamental and harmonic voltages across the capacitor

are shown in Equations (1.5.13) and (1.5.14).

V1 =
I1

j2πf0C
(1.5.13)

Vh =
Ih

j2πhf0C
(1.5.14)

The per unit voltage values can be defined from Equations (1.5.13) and (1.5.14) as

shown in Equation (1.5.15).

Vh
V1

=
1

h

Ih
I1

(1.5.15)

Equation (1.5.15) can be used to define the per unit value of the reactive power QC

Q1

in terms of the harmonic voltages or the harmonic currents as shown in Equation

(1.5.16).

QC

Q1

=
−1

2

∑∞
h=1 VhIh

−1
2
V1I1

=
∞∑
h=1

h(
Vh
V1

)2 =
∞∑
h=1

1

h
(
Ih
I1
)2 (1.5.16)

The per unit value for the reactive QCp.u. can now be defined in terms of the per unit

value for current and voltage as shown in Equation (1.5.17).

QCp.u. =
∞∑
h=1

I2hp.u.
h

=
∞∑
h=1

hV 2
hp.u. (1.5.17)

1.6 Harmonic Resonance

In power systems, a large portion of consideration is given towards the selection

of passive circuit elements due to their effects on system harmonics. One major

phenomenon that can have potentially destructive effects on the system is harmonic

resonance. Harmonic resonance can produce large current and voltage spikes on the

system, which can cause the operation of protective devices or the failure of equipment
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[12]. Circuits that contain both capacitors and inductors have one or more natural

resonant frequencies [6]. A resonant condition occurs when the inductive reactance

and capacitive reactance become equal in an electrical system. The damage to the

system occurs when one of the natural resonant frequencies occur at or near a system

harmonic frequency. There are two main types of resonant conditions and they are

series resonance and parallel resonance. Based on this definition for resonance in an

RLC circuit, the angular resonance frequency can be defined as shown in Equation

(1.6.1).

XLr = ωrL = XCr =
1

ωrC
⇒ ωr =

1√
LC

(1.6.1)

The resonance frequency is now defined in Equation (1.6.2) based on Equation (1.6.1).

fr =
1

2π
√
LC

=
f0

ω0

√
LC

= f0

√
XC

XL

(1.6.2)

The harmonic order at which resonance will occur is given in Equation (1.6.3).

hr =
fr
f0

=
1

ω0

√
LC

(1.6.3)

1.6.1 Series Resonance

In a series RLC circuit, the impedance is shown in Equation (1.6.4).

Z = R + j(XL +XC) (1.6.4)

In terms of the harmonic content, the impedance can be defined as shown in Equation

(1.6.5).

Z(h) = R + j(hXL +
XC

h
) (1.6.5)

Where the magnitude of Z can be defined in Equation (1.6.6).

|Z(h)| =
√
R2 + (hXL − XC

h
)2 (1.6.6)
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Once the RLC circuit is at resonance, the following circuit parameters can be defined.

Equation (1.6.7) defines the reactance at resonance.

hrXL =
XC

hr
= Xr (1.6.7)

The harmonic order at resonance is defined in Equation (1.6.8).

hr =

√
XC

XL

(1.6.8)

The impedance at resonance is defined in Equation (1.6.9).

Z(hr) = R (1.6.9)

Finally the quality factor is defined in Equation (1.6.10).

Q =
Xr

R
(1.6.10)

Equation (1.6.10) shows the quality factor to be the ratio of the reactance of the tuned

circuit to the resistance. What Q really measures is the sharpness of the response

of the tuned circuit [8]. Thus, the higher the quality factor, the sharper the circuit

response at resonance.

Example 1 A series RLC circuit has the following parameters, XC =

1.6, XL = 0.064, and Q = 100, solve for the resonance harmonic, reso-

nance reactance, resistance, and perform a frequency scan of the impedance.

Solution: Equation (1.6.8) can be used to solve for the resonance har-

monic, Equation (1.6.7) can be used to solve for the resonance reactance,

Equation (1.6.10) can be used to solve for the resistance and Figure 1.5

shows a frequency scan of the impedance and phase angle.

hr = 5, Xr = 0.32, R = 0.0032
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Figure 1.5: Frequency scan of the impedance and phase angle

The dip in the impedance graph shown in Figure 1.5 is an important characteristic

of series resonance. Figure 1.6 shows a series resonant equivalent circuit. In this

circuit, if there is a large harmonic voltage close to or at the resonant frequency, the

current into the LC network will be the harmonic voltage divided by the LC network

impedance, which is very close to zero. This will in turn cause a current spike at that

specific harmonic order [10].
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Figure 1.6: Series Resonance Equivalent Circuit

1.6.2 Parallel Resonance

For the parallel RLC circuit, the impedance is shown in Equation (1.6.11).

Z =
R · −j XLXC

XL−XC

R− j XLXC

XL−XC

(1.6.11)

In terms of the harmonic content, the impedance is shown in Equation (1.6.12).

Z(h) =
−jRXLXC

R(hXL − XC

h
)− jXLXC

(1.6.12)

The magnitude of Z can now be defined as shown in Equation (1.6.13).

|Z(h)| = RXLXC√
[R(hXL − XC

h
)]2 + [XLXC ]2

(1.6.13)

With the RLC circuit at resonance, the following circuit parameters can be defined.

The reactance at resonance is shown in Equation (1.6.14).

hrXL =
XC

hr
= Xr (1.6.14)

The harmonic order at resonance is defined in Equation (1.6.15).

hr =

√
XC

XL

(1.6.15)
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The impedance at resonance is defined in Equation (1.6.16).

Z(hr) = R (1.6.16)

And finally, the quality factor is defined in Equation (1.6.17). It is interesting to note

that the quality factor for parallel resonance is the inverse of the quality factor for

series resonance.

Q =
R

Xr

(1.6.17)

Example 2 A parallel RLC circuit has the following parameters, XC =

60, XL = 0.495, and Q = 3, solve for the resonance harmonic, resonance

reactance, resistance, and perform a frequency scan of the impedance.

Solution: Equation (1.6.15) can be used to solve for the resonance har-

monic, Equation (1.6.14) can be used to solve for the resonance reactance,

Equation (1.6.17) can be used to solve for the resistance and Figure 1.7

shows a frequency scan of the impedance and phase angle.

hr = 11, Xr = 5.45, R = 16.35

For parallel resonance, Figure 1.7 shows that there is an impedance spike in the graph

for the frequency scan at the resonance harmonic.
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Figure 1.7: Frequency scan of the impedance and phase angle

Figure 1.8 shows a parallel resonance equivalent circuit. In this circuit, if there is

a harmonic current near the resonance frequency of the circuit, there will be a spike

in the voltage. This is because of the increase in impedance due to resonance and the

presence of the harmonic current [10].

At this point it is important to point out that there is a direct relationship between

the type of resonance (series or parallel) and the resulting frequency scan of the

impedance. For series resonance the is dip in the frequency scan at that harmonic,

and for parallel resonance there is a spike in the frequency scan at that harmonic.
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Figure 1.8: Parallel Resonance Equivalent Circuit

1.7 Bus Voltage Rise and System Resonance

Often in power systems, there is a desire to increase the voltage at a particular bus

by using a capacitor bank. The bank supplies the system with reactive power and

boosts the bus voltage. This section investigates the effects of bus voltage rise on the

system resonance.

Figure 1.9 shows a capacitor bank being switched at bus Vbus.

Figure 1.9: Capacitor Bank Switched at a Bus
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With the switch open Vbus is defined by Equation (1.7.1).

Vbus = Vs (1.7.1)

Once the switch is closed, the Vbus is defined in Equation (1.7.3) and (1.7.4).

VC = V 1
bus = VS − (Rs + jXs)IC (1.7.2)

=
−jXC

ZS − jXC

VS (1.7.3)

=
VS

1− ω2
oLSC + jωoCRS

(1.7.4)

The change in bus voltage and the magnitude of the bus voltage change are then

given by Equation (1.7.5) and (1.7.6) respectively.

V bus1 − Vbus = (RS + jXS)IC (1.7.5)

ΔVbus = |V 1
bus| − |Vbus| ≈ XS|IC | (1.7.6)

In typical power systems applications, a load is connected at the bus, in parallel

with a capacitor. The capacitor size is then based on the desired voltage rise for the

system. Equation (1.7.9) and Figure 1.10 depict a straight forward way to calculate

the capacitor bank size for a given system.

Figure 1.10: Bus voltage rise phasor diagram
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QC = Q1 −Q2 (1.7.7)

= P (tanφ1 − tanφ2) (1.7.8)

= P [tan(cos− 1pf1)− tan(cos− 1pf2)] (1.7.9)

Where P is the real power delivered by the system and absorbed by the load, Q1 is

the load reactive power, S1 is the load apparent power, Q2 is the system’s reactive

power with the capacitor bank connected, S2 is the system’s apparent power with the

capacitor bank connected, pf1 is the original power factor, and pf2 is the improved

power factor after the capacitor bank is connected. Once the capacitor bank size

is determined, the effect of the capacitor bank on the system can now be analyzed.

Figure 1.11 shows the Thevenin equivalent circuit for the given power system.

Figure 1.11: Bus voltage Thevenin equivalent circuit

Equations (1.7.10) through (1.7.13) define the reactance values for the inductor

and capacitor in Figure 1.11.

XS = ωoLS = 2πfoLs =
kV 2

n

SCC
(1.7.10)

The base impedance is defined as Zb =
kV 2

b

Sb
. The per unit (p.u.) reactance values are
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then shown in Equations (1.7.11) through (1.7.13).

XSp.u. =
XS

Zb

=
kV 2

n

SCC
kV 2

b

Sb

(1.7.11)

XSp.u. =
Sb

SCC
=

1

SCCp.u.

(1.7.12)

XCp.u. =
XC

Zb

=
1

QCp.u.

(1.7.13)

At this point it is a good time to determine what role the resonant frequency plays

in the bus voltage change. Equation (1.7.14) defines the resonant frequency of the

system for a given inductor and capacitor.

fr =
1

2π
√
LSC

=
ωo

2π
√

XSp.u.

XCp.u.

= fo

√
XCp.u.

XSp.u.

= fo

√
SCCp.u.

QCp.u.

(1.7.14)

Equation (1.7.15) now defines the harmonic order for the resonant frequency defined

in Equation (1.7.14).

hr =
fr
fo

=

√
XCp.u.

XSp.u.

=

√
SCCp..u.

QCp.u.

(1.7.15)

Where fo is the system’s fundamental frequency, SCCp.u. is the short circuit MVA at

the bus, and QCp.u. is the capacitor MVA rating. The bus voltage change can now

be defined as a function of the inductance, capacitance, and fundamental frequency.

Looking at Figure 1.11 for the Thevenin equivalent circuit, with the capacitor bank

disconnected, the source voltage is shown in Equation (1.7.16).

V 1
S = Vbus + jXSI (1.7.16)

Once the capacitor bank is reconnected, and assuming the source voltage remains

constant, Equations (1.7.18) and (1.7.19) show the capacitor voltage and current

values.

V 1
S = Vbusn + jXSI (1.7.17)
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IC = j
VC
XC

(1.7.18)

VC = Vbusn (1.7.19)

The bus voltage change and per unit bus voltage change are now defined in Equations

(1.7.20) and (1.7.21) respectively.

ΔVbus = |Vbusn | − |Vbus| = | − jXSIC | = XS

XC

|Vbusn | (1.7.20)

ΔVbusp.u. =
ΔVbus
|Vbusn |

=
XS

XC

= ωoLSC = (2π)2f 2
oLSC (1.7.21)

The resonant frequency of the bus voltage change is now shown in Equation (1.7.22).

fr =
1

2π
√
LSC

=
fo√

ΔVbusp.u.
(1.7.22)

The resonance harmonic order of the bus voltage change relationship is defined in

Equations (1.7.23) and (1.7.24).

hr =
1√

ΔVbusp.u.
(1.7.23)

ΔVbusp.u. =
1

h2r
(1.7.24)

Example 3 The circuit in Figure 1.12 was analyzed to see the effect

transformer short circuit capacity and capacitor bank size on the harmonic

order.
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Figure 1.12: Bus voltage change circuit example

Solution:First the base MVA and the base line to line voltage were chosen.

Second, the base current and base impendence were derived based on the

MVA and line to line voltage. Then the following circuit parameter values

were determined based on equations presented earlier in this paper, the

transformer reactance XT = 0.065pu, the total reactance referenced from

the 0.4kV side of the circuit was X400 = 0.165pu, the short circuit capacity

referenced from the 0.4kV side of the circuit was SCC400 = 6.06pu, the

capacitor bank reactive power and reactance were QC = 0.1pu and XC =

10pu respectively, and the resonance harmonic was determined to be hr =

7.785. The frequency scan of the impedance and phase angle are presented

in figure 1.13.
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Figure 1.13: Bus voltage change circuit example

A further analysis was carried out to show the effects of varied short circuit capacities

and capacitor bank reactive powers. The results are shown in Tables 1.2 and 1.3.

SCC = 80MVA

QC 100 200 300 400 500

hr 14.9 10.5 8.6 7.5 6.7

Table 1.2: Resonance harmonic for constant SCC and varying reactive power
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SCC = 20MVA

QC 100 200 300 400 500

hr 11 7.8 6.4 5.5 4.9

Table 1.3: Resonance harmonic for constant SCC and varying reactive power

A frequency scan of the impedance and phase angle was also performed on the data

shown in Table 1.2 and 1.3. The results are shown in Figure 1.14 and 1.15. Two very

important observations were made from the information presented in Table 1.2, Table

1.3, Figure 1.14, and Figure 1.15. One observation was, if the short circuit capacity

were kept constant and the capacitor bank size was increase, then the resonance

harmonic moves to a lower order. The second observation was, if the capacitor bank

size was kept constant and the short circuit capacity was increased, then the resonance

harmonic moved to a higher order. From the equations and example above, the

inductor and capacitor values can be chosen such that the voltage change shows up

at a particular harmonic frequency. This concept proves very useful when it comes

to circuit component selection in the simulation and experiment that are presented

in this paper.
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(a) Frequency scan at SCC = 80MVA and

QC = 100kV Ar

(b) Frequency scan at SCC = 80MVA and

QC = 200kV Ar

(c) Frequency scan at SCC = 80MVA and

QC = 300kV Ar

(d) Frequency scan at SCC = 80MVA and

QC = 400kV Ar

(e) Frequency scan at SCC = 80MVA and

QC = 500kV Ar

Figure 1.14: Frequency scan for 80MVA SCC with various kVAr
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(a) Frequency scan at SCC = 20MVA and

QC = 100kV Ar

(b) Frequency scan at SCC = 20MVA and

QC = 200kV Ar

(c) Frequency scan at SCC = 20MVA and

QC = 300kV Ar

(d) Frequency scan at SCC = 20MVA and

QC = 400kV Ar

(e) Frequency scan at SCC = 20MVA and

QC = 500kV Ar

Figure 1.15: Frequency scan for 20MVA SCC with various kVAr
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1.8 Harmonic in a VFD

Power electronic converters are the interface for many large electronic loads that

range from uninterruptible power supplies to motors operating at variable speeds

through the use of variable frequency drives (VFD). Figure 1.16 shows a simple VFD

schematic. Many converter schemes contain diode rectifier front ends and DC link

capacitors that convert the incoming AC voltage to a low ripple DC voltage. The in-

verter section of the VFD, which typically contains Insulated Gate Bipolar Transistors

(IGBT), convert the DC voltage back to variable three-phase AC. The magnetude and

frequency of the pulse width modulated (PWM) inverter output control the motor

speed [14].

Figure 1.16: Simple VFD Schematic

Three phase diode converter front ends converters draw non-sinusoidal currents

that contain odd harmonics. For converters supplied by a balanced voltage source,

the input current characteristic harmonics are determined by Equation (1.8.1).

h = kq ± 1 (1.8.1)
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Where h = the order of the harmonic, k = 1,2,3,. . . , q = number of pulses of the

rectifier system.

Traditional VFD’s utilize six-pulse rectifiers (q =6), which means the DC bus

voltage consists of portions of the line to line AC waveform and repeats with a 60o

duration, i.e. containing six pulses in 360o. Thus, the characteristic harmonics on the

input of a VFD are h = 5, 7, 11, 13, etc.

Once the supply voltage becomes unbalanced, the input harmonics are no longer

limited to the characteristic harmonics, and uncharacteristic triplen harmonics appear

such as the 3rd and the 9th. In addition, there is a noticeable increase in the 2nd

harmonic on the DC bus voltage. An interesting characteristic of the input current

harmonic is as the input voltage becomes more unbalanced, the input current becomes

significantly more unbalanced and changes from a double-pulse waveform to a single-

pulse waveform due to the asymmetric conduction of the diodes [14]. In some cases,

the voltage unbalance can lead to excessive current to flow in one or two of the diodes

and that can lead to overload-protection circuits tripping. In addition, the excess

current can overheat diodes in the converter and decrease the life-span of the DC link

capacitor.

1.9 IEEE Std. 519-1992

In industry, IEEE Std. 519-1992 is the standard for both voltage and current harmonic

distortion limits in a power distribution system. IEEE Std. 519 was introduced in

1981 and was revised in 1992. It was intended to provide direction on dealing with

harmonics introduced by static power converters and other non-linear loads [13].
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Figure 1.17: IEEE Std. 519-1992 Voltage Distortion Limits

Figure 1.18: IEEE Std. 519-1992 Current Distortion Limits

Figure 1.17 shows the IEEE Std. 519-1992 harmonic limits and Figure 1.18 shows

the IEEE Std. 519-1992 harmonic limits. The harmonic current limits define the

maximum amount of harmonic current the customer can inject into the system. The
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utility provider is responsible for providing clean (low distortion) voltage to its cus-

tomers. However, the utility provider can only do this when its customer meet the

harmonic current limits.

The general purpose of IEEE Std. 519-1992 is to limit the harmonic current

produced by individual customers and to limit the voltage distortion on the utility

provider’s voltage supply. One point of confusion in IEEE Std. 519-1992 is the Point

of Common Coupling (PCC) location. The PCC is a point where another customer

can be served, regardless of metering location or equipment ownership. Often in the

field, facility owners will define a PCC inside the facility distribution and require

providers of non-linear load equipment to meet IEEE Std. 519-1992 at these PCC’s.

The goal of IEEE Std. 519-1992 is to prevent one customer from causing harmonic

problems for the utility or other customers.



Chapter 2

Problem Statement and Proposed
Solution

2.1 Problem Statement

Harmonics are undesirable voltages and currents on a power distribution system

caused by non-linear loads. This paper investigates on non-linear load in particular,

a variable frequency drive. Under balanced voltage conditions, variable frequency

drives exhibit typical or characteristic harmonics on the power distribution system.

Under the presence of three phase voltage unbalance, the variable frequency drives

exhibit non-typical or non-characteristic harmonics (in addition to characteristic har-

monics) in the power distribution system. The goal of this paper will be to investigate

one of the many mitigation techniques to reduce the non-characteristic harmonics in-

troduced by the presence of voltage unbalance.

38
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2.2 Proposed Solution

One way to reduce the non-characteristic harmonics on the power distribution system

is through the use of notch filters on the DC bus of the variable frequency drive.

This paper will analyze the frequency response of the system with and without the

notch filters. Then the filters will be added to the DC bus to see how well they

reduce harmonics on the DC bus and on the input of the variable frequency drive.

Experimental and simulation data are then presented to verify the theories presented

in this paper.



Chapter 3

Simulation

3.1 Fast Fourier Transform (FFT)

In prior sections of this paper, the Fourier Transform was shown to be a useful

tool for periodic waveform decomposition into the sum of sine waves at different

frequencies with different amplitudes. In order to implement the Fourier Transform

on any periodic waveform without performing an integration of a function, a given

waveform is sampled at discrete values of time and a Discrete Fourier Transform

(DFT) is used to extract the power spectrum from the sampled values.

To implement a Discrete Fourier Transform, a given waveform must first be broken

down into a set ofN sampled discrete values. GivenN , theN -point DFT of a sampled

waveform, x[n] can be defined as shown in equation (3.1.1)

Xk =
N−1∑
n=0

x[n]e
−j2πnk

N (3.1.1)

The DFT is a versatile and accurate too for calculating the power spectrum of a

given periodic waveform. This accuracy and versatility come at the cost of computing

speed. In order to evaluate Xk, N complex multiplications and N − 1 additions must

be performed. There are N values of k, so the total number of complex operations

40
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are shown in Equation (3.1.2) [4]

N ·N +N(N − 1) = 2N2 −N ≡ N2 (3.1.2)

It is important to note that the complex multiplication function is very taxing com-

putationally since it requires four real multiplications and two real additions in order

to be performed. to compensate for the large amount of complex multiplications

performed, in 1965 James Cooley and John Tukey came up with the Fast Fourier

Transform (FFT) [11]. The FFT is a quicker way of calculating the Discrete Fourier

Transform of a given periodic waveform. The FFT algorithm requires that the num-

ber of data point be N = 2r for r = 1, 2, . . .. The FFT algorithm also relies on

the fact that the N -point DFT of a signal can be broken down into two tasks, each

involving an N
2
-point DFT. The process is repeated until a 1-point DFT is reached.

To better understand how this method for computing the FFT came about, a

weighting function, WN , is introduced as shown in Equation (3.1.3).

WN = e
−j2π
N (3.1.3)

The DFT equation defined earlier can now be rewritten as follows in Equation (3.1.4).

Xk =
N−1∑
n=0

x[n]e
−j2πnk

N =
N−1∑
n=0

x[n]W kn
N (3.1.4)

At this point, x[n] can be broken down into an odd and even signal as depicted in

Equation (3.1.5) and (3.1.6).

a[n] = x[2n] n=0,1,2,. . . N
2
− 1 (3.1.5)

b[n] = x[2n+ 1] n=0,1,2,. . . N
2
− 1 (3.1.6)

The N
2
-point DFT can now be determined for a[n] and b[n] as shown in Equations
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(3.1.7) and (3.1.8).

Ak =

N
2
−1∑

n=0

a[n]e
−j2πnk

N
2 k=0,1,2,. . . N

2
− 1 (3.1.7)

Bk =

N
2
−1∑

n=0

b[n]e
−j2πnk

N
2 k=0,1,2,. . . N

2
− 1 (3.1.8)

The FFT can then be calculated based on Ak and Bk as shown in Equation (3.1.9).

Xk =

⎧⎨
⎩
Ak +W k

NBk k = 0, 1, . . . N
2
− 1,

Ak−N
2
−W k

NBk k = N
2
, N

2
+ 1, . . . , N − 1.

(3.1.9)

The N
2
-point DFT’s, Ak and Bk are combine according to Equation (3.1.9) to compute

the N -point DFT Xk. It is important to note that this FFT algorithm requires

only N
2
log2N operations rather than N2. This greatly reduces the computing time

required to calculate the Fourier Transform of the given waveform.

Using the FFT increases the speed of the calculating the N -point DFT. The speed

comes at the cost of versatility, because the FFT function places some restrictions

on the signal under analysis. The main restriction being the FFT function requires

that there be 2r number of data points by definition, where r = 1, 2, 3, . . .. Even

though using the FFT reduces calculation versatility and accuracy, the power spec-

trum resolution is still high enough to produce information that is very meaningful.

For the purpose of this paper, the FFT Analysis Tool in Simulink� will be used as

the primary FFT technique.

3.2 Bode Plot

A Bode plot is a graph of the steady state response of a linear time-invariant (LTI)

system. A Bode plot can consist of up to two separate graphs. One graph plots the
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magnitude or gain versus the frequency, while another graph plots the phase versus

the frequency. Bode plots visually describe the system and they are one of the most

commonly used concepts in linear systems theory. A term often used in conjunction

with the Bode plot is it describes the frequency response of the system. this simply

means the steady state response of the system to a sinusoid of a particular frequency.

In general, a sinusoidal function sin(ωt) that enters a LTI system will leave the

system as A sin(ωt + θ), where A is some gain and θ is some phase change. Figure

3.1 represents the eigenfunction input of a continuous time (CT) system.

Figure 3.1: Transfer function block diagram

Figure 3.1 shows that the output is a product of the input and H(s), which is

known as the transfer function. The transfer function can also be used to create the

Bode plot. So the Bode plot is also a representation of the transfer function H(s)

evaluated along the jω-axis (s = jω).

A simple example can be used to better illustrate the mechanics behind creating

a Bode plot from the system transfer function. Equation (3.2.1) represents the trans-

fer function of a system. Table 3.1 shows the values that will be used to plot the

magnitude and phase graphs of the Bode plot.

H(s) =
1

s+ 10
(3.2.1)
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ω |H(jω)| ∠H(jω) 20 log10 |H(jω)|
0 0.1000 0.00o -20.00 dB

1 0.0995 -5.71o -20.04 dB

2 0.0981 -11.31o -20.17 dB

5 0.0894 -26.57o -20.97 dB

10 0.0707 -45.00o -23.01 dB

20 0.0447 -63.43o -26.99 dB

50 0.0196 -78.69o -34.15 dB

100 0.0100 -84.29o -40.04 dB

Table 3.1: Transfer function Bode plot values

Note that in Table 3.1 the magnitude of the H(jω) is described by |H(jω)| =
|Numerator|
|Denomonator| and the phase of H(jω) is described as ∠H(jω) = ∠Numerator −
∠Denomonator. The final column of Table 3.1 show the magnitude of the frequency

response on a logarithmic scale. The log scale is used on the horizontal axis to show

the frequency response over a wider range of frequencies than are available on a stan-

dard linear scale graph of the same physical space. The log scale is also used on the

vertical axis of the magnitude plot to compress larger changes and emphasize small

ones. On the vertical axis, the unit used to describe magnitude is the decibel dB.

The decibel is described as dB = 20log10(Amplitude). One final advantage of log

scale plots are the ease with which they can be made by hand.

An examination of Table 3.1, shows that there should be some straight lines on

the log-log bode plot of the magnitude. These straight lines are the asymptotes of
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the magnitude plot. The straight lines with different slopes meet at breakpoints,

which are pole or zero locations. It should be noted that the phase plot changes slope

at 0.1 × breakpoint and 10 × breakpoint. At the breakpoint, the actual phase plot

changes by 45o and crosses the asymptotic approximation line. I should be noted that

the actual magnitude of (20log(− 1√
2
)) or −3dB.

Using the transfer function presented in Equation (3.2.1), the asymptotic approx-

imations can be used to derive the Bode plot.

Figure 3.2: Bode plot of first order Transfer Function

Figure 3.2 shows, since s = jω, a breakpoint occurs at the pole ω = 10. For ω <

pole, the transfer function H(jω) ≈ 1
10

or −20dB. For ω > pole, the transfer function
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H(jω) ≈ 1
jω

or −20dB/decade. In the phase plot, for ω < 0.1 × pole,H(jω) ≈ 1
10

or

0o and for ω > 10 × pole, H(jω) ≈ 1
jω
, or 90o, and for ω = pole, H(jω) = 1

10j+10
or

−45o.
The transfer function plotted in Figure 3.2 only has one pole. On occasion, the

transfer function will consist of multiple poles and zeros. On these occasions, the

log-magnitude plot utilizes the log characteristic that the log of a product is the

sum of the logs. As for the phase plot, the phase of a product (division) is the sum

(difference) of the phases [7].

Another that often comes up when dealing with the Bode plot of transfer functions

is how to handle complex poles and zeros. The Bode plot historically only dealt with

real poles and zeros, however this does not mean complex poles and zeros can not

be plotted. There are no good rule(s) of thumb for plotting transfer functions with

complex poles and zeros. The best path forward is to use simulation software like

MATLAB�. There are some interacting observations to be made once the plots are

created through simulation software.

H(s) =
1

s2 + 0.4s+ 1.04
(3.2.2)

Figure 3.3 shows the Bode plot of the transfer function in Equation 3.2.2. Its

interesting to note the bump in the log-magnitude plot peaks where the product of

distances to the poles is minimized; this is approximately equal to the imaginary part

of the pole location if they are close to the jω-axis. Another interesting observation

is, the closer the poles are to the jω-axis, the larger the bump height [7]. This bump

height is typically based on there being a damping resistor in the circuit. How quickly

the phase changes is also based on how high this bump is, with a high spike meaning
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a quicker phase change.

Figure 3.3: Bode plot of second order Transfer Function

3.2.1 Bode Plot of DC Bus Low Pass Filter

The Bode plot was a useful tool that helped display the frequency response of the

DC bus before and after the passive filters were added. Figure 3.4 shows the low

pass filter LC circuit after the rectifier of the variable frequency drive used in the

simulation and experimentation portion of this paper.
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Figure 3.4: VFD Low Pass Filter Circuit

The Transfer Function for Figure 3.4 is shown in Equation (3.2.3).

H(s) =
1

s2LC + 1
(3.2.3)

The Bode plot for the Transfer Function in Equation (3.2.3) is shown in Figure 3.5,

where L = 600μH and C = 4300μF .

Figure 3.5: VFD Low Pass Filter Bode Plot
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As discussed earlier in this paper, under balanced voltage conditions, the largest

harmonic contributor is the 6th harmonic and the VFD is designed to especially

attenuate this harmonic. Figure 3.5 shows that the low pass filter design in the VFD

DC bus has a cutoff frequency of approximately ω = 630 rads
sec

or f = 100Hz, which is

below the 6th harmonic frequency of 360Hz. This means the low pass filter will start

attenuating signals beyond the cutoff frequency of 100Hz, which includes the 360Hz,

6th harmonic.

3.2.2 Bode Plot of DC Bus Low Pass Filter with Notch Fil-

ters

Under voltage unbalance conditions, the largest contributor to harmonics on the DC

Bus is the 2nd harmonic followed by the 6th. So the filters added to the DC bus will

target these two harmonics. Figure 3.6 shows the low pass LC circuit on the DC bus

along with the 2nd and 6th order notch filters.

Figure 3.6: VFD Low Pass Filter Circuit with Passive DC Filters
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The Transfer Function for Figure 3.6 is shown in Equation (3.2.4).

H(s) =
As4 +Bs2 + 1

Cs6 +Ds4 + Es2 + 1
(3.2.4)

Where,

A = [L1C1L2C2]

B = [L1C1 + L2C2]

C = [L1C1L2C2L3C3]

D = [C3(L1L2C2 + L2L1C1 + L2C2L3 + L1L3C1) + (L1C1L2C2)]

E = [C3(L1 + L2 + L3) + (L1C1 + L2C2)]

The resonance equations presented in earlier sections were used in the design of

the filter. The link choke inductor size was used as a starting point for tuning the

notch filters that were added to the DC bus. The calculated circuit parameters in

Figure 3.6 are L3 = 600μH, C3 = 4300μF , C1 = 978μF , L1 = 1800μH, L2 = 600μH,

C2 = 326μH. The Bode plot for the calculated circuit parameters are shown in Figure

3.7.

Due to limited equipment availability in the experimental set up, the circuit com-

ponents were chosen based on how close they were to the calculated circuit param-

eters. The actual circuit parameters in Figure 3.6 are, L3 = 600μH, C3 = 4300μF ,

C1 = 1000μF , L1 = 1620μH, L2 = 500μH, C2 = 330μF . The bode plot for actual

circuit parameters are shown in Figure 3.8.
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Figure 3.7: Calculated VFD Low Pass Filter Circuit with Passive DC Filters Bode

Plot

Figure 3.8: Actual VFD Low Pass Filter Circuit with Passive DC Filters Bode Plot
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Table 3.2 show show some critical frequency comparisons between the calculated

and actual circuit parameters.

Calculated and Actual Critical Frequencies

Type Calculated Component Values Actual Component Values

Spike

ω = 276 rads
sec

(f = 43Hz) ω = 290 rads
sec

(f = 46Hz)

ω = 1180 rads
sec

(f = 188Hz) ω = 1230 rads
sec

(f = 196Hz)

ω = 3380 rads
sec

(f = 538Hz) ω = 3490 rads
sec

(f = 555Hz)

Notch
ω = 753 rads

sec
(f = 120Hz) ω = 786 rads

sec
(f = 125Hz)

ω = 2260 rads
sec

(f = 360Hz) ω = 2460 rads
sec

(f = 392Hz)

Table 3.2: Calculated and Actual Critical Frequencies

From Table 3.2, the cutoff frequency of the LC low pass filter portion of the VFD

DC bus is at 43Hz for the calculated circuit parameters and 46Hz for the actual

circuit parameters. Since the fundamental frequency is 60Hz, which is beyond the

cutoff frequency, there will be some attenuation on the signal at the fundamental

frequency. Table 3.2 also shows a calculated notch at 120Hz and an actual notch

at 125Hz. This notch filter is used to reduce the second order harmonic. Table 3.2

also shows a calculated notch at 360Hz and an actual notch at 392Hz. this notch

filter is used to further reduce the sixth order harmonic. There are also additional

spikes at two frequencies in both the actual and calculated values. These spikes arise

due to unwanted series resonance paths in the circuit. It is important to make sure

these spikes do not occur at characteristic harmonics on the DC bus. It is a good

idea to select components such that these spikes occur at non-integer multiples of the



53

fundamental frequency. Dividing the two actual values by the fundamental frequency

yield harmonic orders of 3.3 and 9.3.

3.3 Simulation

The most common 6-pulse Variable Frequency Drive (VFD) topology is shown in Fig-

ure 3.9. Though the rectifier section utilizes a simple, cheap, and control-less design,

it does contain higher harmonic distortion than other types of AC/DC converters.

The rectifier operates by conducting the diodes when the AC voltage is greater than

the DC link voltage. When the diodes conduct, they cause pulses of current on the

DC bus. These current pulses must be handled by the DC link capacitor(s).

Figure 3.9: 6-Pulse VFD Topology

The first step in selecting the DC bus inductor and capacitor is to calculate the

ripple current on the DC bus. To calculate the ripple current, some information

must be gathered from the circuit. They include the line to line voltage (VLL), the

line frequency (fline), the total inductance (Ltotal, includes the source and DC link

inductance), and output current (Iout, current flowing to the inverter). Figure 3.10

better depicts the circuit parameters required to calculate the ripple current.
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Figure 3.10: 6-Pulse Converter Section of VFD Topology

Following the path of current in the circuit show that the total impedance given

in Equation (3.3.1).

LTotal = 2Ls + Ld (3.3.1)

The percent impedance is now defined in Equation (3.3.2).

%impedance = ω · LTotal · Irms

VLL
· 100% (3.3.2)

It is interesting to note that continuous conduction occurs when %impedance > 1.3%.

This means the total minimum inductance can be calculated as shown in Equation

(3.3.3).

LTotal Minimum =
1.3%

ω
· VLL
Irms

(3.3.3)

Under balanced conditions, Figure 3.11 shows the most significant contributor of

harmonics on the DC bus is the sixth harmonic. This is the reason the inductor and

capacitor on the DC bus are designed to reduce the sixth harmonic. The sixth order

harmonic current on the DC bus is calculated from Equation (3.3.4).

ic 6 rms =
2

35
· 1.35 · VLL√

2 · 6 · ω · LTotal

(3.3.4)
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The sixth order harmonic ripple current describes the peak ripple current that flows

in the capacitor. The peak ripple current (Ipeak), the ripple voltage (Δv), and the line

frequency (f) can be used to calculate the size of the capacitor, as shown in Equation

(3.3.5).

Cd =
2

Δv
·
√
2 · ic 6 rms

6 · ω (3.3.5)

Figure 3.11: Normalized Current vs. Impedance

3.3.1 MATLAB� Simulations

This MATLAB� simulation is broken down into multiple sections. The simulations

presented in those sections are based on an experimental set-up presented later in

this paper. All of the simulations presented utilize a 36KVA variable frequency drive

to run a 3HP motor. The drive was designed with a 600μH DC link chock inductor

and a 4300μF DC bus capacitor. The transformer supplying power to the VFD is
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rated at 27KVA. The first section will show readings from the system under balanced

voltage conditions. The second section will show readings from the system under

severe voltage unbalance conditions (> 3% voltage unbalance). Finally, the third

section will show readings from the system under severe voltage unbalance conditions

with passive filters on the DC bus.

3.3.2 Balanced Voltage Conditions Simulation

Figure 3.12 shows the Simulink� circuit diagram for a variable frequency drive run-

ning a motor under balanced voltage conditions.

Figures 3.13 and 3.14 show the input voltage waveform and the input current

waveforms respectively. The voltage waveforms show a flat-topping effect at the top

of the waveforms. These are caused by the characteristic harmonics present in the

system, i.e. the 5th, 7th, 11th, 13th, etc. The current waveforms show much more

severe contributions of the characteristic harmonics.

Figure 3.15 and Figure 3.16 show the THD spectrum for Vab and Ia respectively.

The FFT spectrum shows the amplitude of the characteristic harmonic contributors.

The spectrums also show the THD for the voltage waveform as 5.11% and the THD

for the current waveform as 79.94%. Figure 3.17 and Figure 3.18 show the harmonic

spectrum table for Vab and Ia respectively.

Figure 3.19 and Figure 3.20 show the harmonic spectrum graph and table for the

DC bus voltage. An interesting point to note is the size of the ripple voltage which

is only about 2 volts.
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Figure 3.12: Three Phase Balanced Voltage Circuit Simulation
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Figure 3.13: Three Phase Balanced Voltage Waveform

Figure 3.14: Three Phase Balanced Current Waveform
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Figure 3.15: Three Phase Balanced Vab Harmonic Spectrum Graph

Figure 3.16: Three Phase Balanced Ia Harmonic Spectrum Graph
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Figure 3.17: Three Phase Balanced Vab Harmonic Spectrum Table

Figure 3.18: Three Phase Balanced Ia Harmonic Spectrum Table
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Figure 3.19: Three Phase Balanced DC Bus Voltage Harmonic Spectrum Graph

Figure 3.20: Three Phase Balanced DC Bus Voltage Harmonic Spectrum Table
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3.3.3 Unbalanced Voltage Conditions Simulation

Figure 3.21 shows the Simulink� circuit diagram for the variable frequency drive

running a motor under unbalanced voltage conditions. The approximate voltage

unbalance on the three phase input is 3.1%.

Figure 3.22 and 3.23 show the input voltage waveform and input current wave-

forms respectively. The waveforms show that the voltage and current waveforms vary

more from one phase to the next than in the balanced voltage condition simulation.

The characteristic harmonics are still present in each phase, however the voltage

and current THD’s vary from one phase to the next. The THD for Vab=13.55%,

Vbc=11.76%, Vca=7.31%, Ia=73.75%, Ib=33.18%, and Ic=85.69%. Figure 3.24 and

3.25 show the FFT spectrum graph and table for Vab respectively. Figure 3.26 and

3.27 show the FFT spectrum graph and table for Vbc respectively. Figure 3.28 and

3.29 show the FFT spectrum graph and table for Vca respectively. Figure 3.30 and

3.31 show the FFT spectrum graph and table for Ia respectively. Figure 3.32 and

3.33 show the FFT spectrum graph and table for Ib respectively. Figure 3.34 and

3.35 show the FFT spectrum graph and table for Ic respectively.

Figure 3.36 and 3.37 show the harmonic spectrum graph and table for the DC bus

voltage. An interesting point to note here is the size of the voltage ripple which is

now about 6 volts.
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Figure 3.21: Three Phase Unbalanced Voltage Circuit Simulation
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Figure 3.22: Three Phase Unbalanced Voltage Waveform

Figure 3.23: Three Phase Unbalanced Current Waveform
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Figure 3.24: Three Phase Unbalanced Vab Harmonic Spectrum Graph

Figure 3.25: Three Phase Unbalanced Vab Harmonic Spectrum Table
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Figure 3.26: Three Phase Unbalanced Vbc Harmonic Spectrum Graph

Figure 3.27: Three Phase Unbalanced Vbc Harmonic Spectrum Table
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Figure 3.28: Three Phase Unbalanced Vca Harmonic Spectrum Graph

Figure 3.29: Three Phase Unbalanced Vca Harmonic Spectrum Table
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Figure 3.30: Three Phase Unbalanced Ia Harmonic Spectrum Graph

Figure 3.31: Three Phase Unbalanced Ia Harmonic Spectrum Table
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Figure 3.32: Three Phase Unbalanced Ib Harmonic Spectrum Graph

Figure 3.33: Three Phase Unbalanced Ib Harmonic Spectrum Table
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Figure 3.34: Three Phase Unbalanced Ic Harmonic Spectrum Graph

Figure 3.35: Three Phase Unbalanced Ic Harmonic Spectrum Table
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Figure 3.36: Three Phase Unbalanced DC Bus Voltage Harmonic Spectrum Graph

Figure 3.37: Three Phase Unbalanced DC Bus Voltage Harmonic Spectrum Table
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3.3.4 Unbalanced Voltage Conditions with DC Bus Filters

Simulation

Figure 3.38 shows the Simulink� circuit diagram for the variable frequency drive

running a motor under unbalanced voltage conditions. Two notch filters were added

to the DC minus side of the DC bus. The approximate voltage unbalance on the

input is now 3.4%.

Figure 3.39 and 3.40 show the input voltage waveforms respectively. The wave-

forms show that the voltage and current waveforms still vary from one phase to the

next. The characteristic harmonics are still present in each phase and they also vary

from one phase to the next. The THD for Vab=9.00%, Vbc=9.22%, Vca=3.47%,

Ia=59.15%, Ib=25.02%, and Ic=65.38%. Figure 3.41 and 3.42 show the FFT spec-

trum graph and table for Vab respectively. Figure 3.43 and 3.44 show the FFT

spectrum graph and table for Vbc respectively. Figure 3.45 and 3.46 show the FFT

spectrum graph and table for Vca respectively. Figure 3.47 and 3.48 show the FFT

spectrum graph and table for Ia respectively. Figure 3.49 and 3.50 show the FFT

spectrum graph and table for Ib respectively. Figure 3.51 and 3.52 show the FFT

spectrum graph and table for Ic respectively. Figure 3.53 and 3.54 show the harmonic

spectrum graph and table for the DC bus voltage. It is interesting to note that the

voltage ripple is now about 2 volts.
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Figure 3.38: Three Phase Unbalanced Voltage Circuit with Filters Simulation
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Figure 3.39: Three Phase Unbalanced Voltage with Filters Waveform

Figure 3.40: Three Phase Unbalanced Current with Filters Waveform
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Figure 3.41: Three Phase Unbalanced Vab with Filters Harmonic Spectrum Graph

Figure 3.42: Three Phase Unbalanced Vab with Filters Harmonic Spectrum Table
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Figure 3.43: Three Phase Unbalanced Vbc with Filters Harmonic Spectrum Graph

Figure 3.44: Three Phase Unbalanced Vbc with Filters Harmonic Spectrum Table
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Figure 3.45: Three Phase Unbalanced Vca with Filters Harmonic Spectrum Graph

Figure 3.46: Three Phase Unbalanced Vca with Filters Harmonic Spectrum Table
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Figure 3.47: Three Phase Unbalanced Ia with Filters Harmonic Spectrum Graph

Figure 3.48: Three Phase Unbalanced Ia with Filters Harmonic Spectrum Table
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Figure 3.49: Three Phase Unbalanced Ib with Filters Harmonic Spectrum Graph

Figure 3.50: Three Phase Unbalanced Ib with Filters Harmonic Spectrum Table



80

Figure 3.51: Three Phase Unbalanced Ic with Filters Harmonic Spectrum Graph

Figure 3.52: Three Phase Unbalanced Ic with Filters Harmonic Spectrum Table
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Figure 3.53: Three Phase Unbalanced DC Bus Voltage with Filters Harmonic Spec-

trum Graph

Figure 3.54: Three Phase Unbalanced DC Bus Voltage with Filters Harmonic Spec-

trum Table
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3.4 Simulation Summary

Simulation Results

Configuration
Input Voltage RMS (V) Input Current RMS (A) Input Voltage THD Input Current THD DC Bus 2nd

Harmonic (V)

DC Bus Approx

Voltage Ripple (V)Vab Vbc Vca Ia Ib Ic Vab Vbc Vca Ia Ib Ic

0% Unbalance no Filter 469 469 469 4.69 4.70 4.69 5.11% 4.40% 4.56% 79.94% 79.98% 79.95% 0.5 2

3.1% Unbalance no Filter 460 440 462 8.12 1.88 8.31 13.55% 11.76% 7.31% 73.75% 33.18% 85.69% 2.25 5

3.1% Unbalance with Filter 465 440 460 4.96 3.65 4.4 9.00% 9.22% 3.47% 59.15% 25.02% 65.38% 0.47 2

Table 3.3: Simulation Results Table

Table 3.3 shows the RMS values for input voltage and current, input THD for voltage

and current, the voltage magnitude of the second harmonic on the DC bus, and the

voltage ripple on the DC bus, for the three simulation scenarios presented in this

section. Some observations can be made from Table 3.3. One observation is the

introduction of voltage unbalance leads to a disproportionate distribution of current

among the three phases. The second observation is the presence of voltage unbalance

leads to a larger variance in THD between the three phases. Thirdly, the magnitude

of the second harmonic on the DC bus increases greatly and the DC bus voltage ripple

more than doubles.

With the presence of the DC bus filters, even with voltage unbalance present, the

current is more evenly distributed between the three phases and the input voltage and

current THD, the DC bus second harmonic voltage, and the DC bus voltage ripple

all reduce. This shows the presence of the filters improve the stability of the DC

bus and in turn improve the performance of the VFD under the presence of voltage

unbalance.



Chapter 4

Experimentation

4.1 Experimental Set Up

An experiment was carried out based on the information presented earlier in this

paper. The experimental set up mirrored the simulations presented in prior sections.

in the experimental set up a 27KVA transformer was used to power a 38KVA AC

drive, which would run a 3HP AC motor. The 3HP AC motor was mechanically

coupled to a 3HP DC motor. The DC motor would simulate the load on the AC

motor. The DC motor was then ran by a 125HP DC drive. The experimental set up

was used a 6.5mH line reactor to simulate the voltage unbalance conditions.

Figure 4.1 and 4.2 show the 27KVA power transformer and power transformer

nameplate respectively. Figure 4.3 shows the mechanically coupled AC and DC mo-

tor. Figure 4.4 and 4.5 show the AC motor nameplate and DC motor nameplate

respectively. Figure 4.6 and 4.7 show the AC drive and AC drive nameplate respec-

tively. Figure 4.8 and 4.9 show the DC drive and DC drive nameplate respectively.

Figure 4.10 shows the line reactor used to simulate the voltage unbalance. Figure

4.11 and 4.12 show the second order filter and sixth order filter respectively.

83



84

Figure 4.1: Power Transformer

Figure 4.2: Power Transformer Data Nameplate
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Figure 4.3: Coupled AC and DC motors

Figure 4.4: AC Motor Data Nameplate
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Figure 4.5: DC Motor Data Nameplate

Figure 4.6: AC Drive
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Figure 4.7: AC Drive Nameplate

Figure 4.8: DC Drive
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Figure 4.9: DC Drive Nameplate

Figure 4.10: Line Reactor Used to Create Voltage Unbalance
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Figure 4.11: Second Order Notch Filter

Figure 4.12: Sixth Order Notch Filter
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4.2 Experimentation Results

4.2.1 Balanced Voltage Conditions Experimentation

The first portion of the experiment began with signal readings under balanced volt-

age conditions. The following data was collected. Figure 4.13 show the voltage and

current waveforms for all three phases. Figure 4.14 shows the RMS values for voltage

and current on all three phases along with some other circuit parameters. Figure 4.15

shows the Vab voltage, Ib current, the DC bus voltage and DC bus current.

Figure 4.13: Experimental Balanced Three Phase Voltage and Current Waveforms
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Figure 4.14: Experimental Balanced Three Phase Parameter Values

Figure 4.15: Experimental Balanced Vab, Ib, DC Bus Voltage and Current
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4.2.2 Unbalanced Voltage Conditions Experimentation

The second portion of the experiment continued with signal readings under unbal-

anced voltage conditions. The following data was collected. Figure 4.16 show the

voltage and current waveforms for all three phases. Figure 4.17 shows the RMS

values for voltage and current on all three phases along with some other circuit pa-

rameters. Figure 4.18 shows the Vab voltage, Ib current, the DC bus voltage and DC

bus current.

Figure 4.16: Experimental Unbalanced Three Phase Voltage and Current Waveforms
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Figure 4.17: Experimental Unbalanced Three Phase Parameter Values

Figure 4.18: Experimental Unbalanced Vab, Ib, DC Bus Voltage and Current
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4.2.3 Unbalanced Voltage Conditions With DC Filters Ex-

perimentation

The third portion of the experiment continued with signal readings under unbalanced

voltage conditions with the passive filters on the DC bus of the AC drive. The follow-

ing data was collected. Figure 4.19 show the voltage and current waveforms for all

three phases. Figure 4.20 shows the RMS values for voltage and current on all three

phases along with some other circuit parameters. Figure 4.21 shows the Vab voltage,

Ib current, the DC bus voltage and DC bus current.

Figure 4.19: Experimental Unbalanced Three Phase With DC Filters Voltage and

Current Waveforms
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Figure 4.20: Experimental Unbalanced Three Phase With DC Filters Parameter Val-

ues

Figure 4.21: Experimental Unbalanced With DC Filters Vab, Ib, DC Bus Voltage

and Current
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4.3 Experimentation Summary

Experimentation Results

Configuration
Input Voltage RMS (V) Input Current RMS (A) Input Voltage THD Input Current THD

Vab Vbc Vca Ia Ib Ic Vab Vbc Vca Ia Ib Ic

0% Unbalance no Filter 475 473 474 5.20 5.00 5.30 2.84% 2.33% 2.58% 70.44% 70.11% 69.50%

3.1% Unbalance no Filter 463 442 464 8.00 1.50 7.90 3.85% 5.00% 5.65% 68.97% 74.60% 75.30%

3.1% Unbalance with Filter 463 441 456 5.60 3.30 5.00 3.54% 4.44% 3.79% 52.12% 42.00% 66.38%

Table 4.1: Experimentation Results Table

Table 4.1 shows the RMS values for input current and voltage and the THD values for

voltage and current. Some important observations can be made from Table 4.1. One

is, just as in the system simulation, the introduction of voltage unbalance leads to a

disproportionate distribution of current among the three phases. Also, the presence of

voltage unbalance leads to a larger variance in the THD between the three phases. The

experimental result in earlier sections of this paper show that the presence of voltage

unbalance leads to a flat-topping effect in the voltage waveform, which indicates the

presence of a third harmonic. In addition, the DC bus voltage waveform exhibits not

only increased voltage ripple, but also inconsistent bus voltage stability, with some

regions having less voltage ripple than others.

With the presence of the DC bus filters, even with voltage unbalance, just as in the

system simulation, the current is more evenly distributed between the three phases

and the input voltage and current THD, all reduce. The input voltage waveforms

show reduced flat-topping, which means a reduction in the third harmonic on the

input of the VFD and thus better DC bus voltage stability, which leads to improved

VFD performance under the presence of voltage unbalance.



Chapter 5

Experimentation and Simulation
Results Comparison

It should be noted the THD values for the input voltage and current do not exactly

line up for multiple reasons. One reason is the difficulty involved in the simulation

of the source in the experimental section. The actual experiment was conducted in a

facility that contained unknown harmonic content on the distribution. It was difficult

to determine and implement that harmonic content in Simulink�. Another reason for

the value discrepancy is that Simulink� calculated the THD values based on the first

332 harmonics, while the experimentation section only used the first 100 harmonics

to calculate THD. What should be taken away from the input THD values for the

simulation and experimentation section is that their behaviors are very similar.
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Chapter 6

Conclusion

The simulation and experimentation section of this paper conclude that a 6-pulse

VFD under severe voltage unbalance conditions exhibit some notable characteristics.

They include a disproportionate distribution of current among the three phases, a

larger variance in the THD between the three phases, and an increase in the DC bus

voltage ripple. The simulation and experimentation section of this paper then show

the presence of notch filters on the DC bus improve the distribution of current among

the three phases and improves DC bus voltage stability and in turn improves the

VFD’s capability to operate motor loads under voltage unbalance conditions.
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