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ABSTRACT 
MATHEMATICAL MODELING OF PHYSIOLOGICAL 

CHARACTERISTICS IN FEMALE SOCCER 
ATHLETES 

 
by 

 
Thomas S. Goeppinger 

 
 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Bruce Wade 

 
Intermittent sports create challenges regarding performance measurement.  Quantification 

of various physiological characteristics can lead to increased performance and injury 

reduction throughout a season of competition.  Currently, a variation of an athletes’ heart 

rate is the primary physiological characteristic used for quantifying load on the athlete.  

With increasing technology, we have the ability to gather additional characteristics 

regarding the physicality of athletes during competition.  This study statistically 

compares various models using these new characteristics as predictors to the athletes’ 

lactate concentration in their blood.  From this comparison, we determine which 

physiological characteristic(s) best represent the performance and fatigue of these 

athletes.  In addition to the characteristics, this study evaluated the best method of 

quantifying the load on an athlete based on the best-fit model of the aforementioned 

variables.  Finally, we use this model to calculate the load experienced by these athletes 

in a practice session to understand how this physical load quantity can be utilized in 

practices, matches and recovery. 
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Introduction 
 
 Modeling performance and fatigue within sports of an intermittent nature (i.e. 

soccer, hockey, football etc.) poses different challenges compared to continuous sports 

(i.e. running, triathlon etc.).  Intermittent sports generate a short period of elevated 

intensity, or load, followed by lower levels of load on an individual or team.  Many 

attempts at modeling this type of performance have proven successful.  The personnel 

that executed these previous studies possess strong backgrounds in physiological studies 

of the body.  However, this study focuses on the mathematics and statistics behind these 

studies.   

 In order to understand the load on these athletes we need to introduce a metric 

used to quantify the heart rate of an individual during exercise, the Fractional elevation of 

heart rate (FEHR).  FEHR is defined by equation 2 below: 

rest

restobs

HRHR
HRHRFEHR





max

           (1) 

Where HRobs is heart rate at exercising, HRrest is resting heart rate and HRmax is the 

maximum heart rate for an individual.  FEHR provides a metric that compares the current 

heart rate of the athlete to their resting and maximum heart rates.   

In an effort to understand fitness and fatigue of athletes, Banister, Calvert, 

Savage, & Bach (1975) introduced the idea of a Training Impulse, referred to as a 

TRIMP. A TRIMP is an arbitrary measurement that multiplies the training load (Stress) 

by the training intensity (Strain) (Bannister et al., 1975).  Stress was defined as the 

amount of exercise in the bout, usually measured in minutes.  Strain was calculated by 
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using the average heart rate of an exercise session to equate the FEHR. Equation 1 below 

describes this calculation. 

 

FEHRtStrainStresssTRIMP  )()('                        (2) 

Where t is the amount of exercise (duration of exercise) and FEHR is the fractional 

elevation of heart rate calculated using the average heart rate of the individual.  Let’s 

consider a soccer athlete that has a large range for their heart rate measurements (for 

example low of 120, high of 185) and an endurance athlete that has a more consistent 

heart rate (average of 150 bpm) during a 2 hour exercise bout.  Both of these athletes 

could end up with the same TRIMP’s, however, physiologically speaking the soccer 

athlete would experience more fatigue than the endurance athlete.  For this reason, Foster, 

Flouhaug, Franklin, Gottschall, Hrovatin, & Parker (2001) introduced a new method for 

measuring TRIMP’s developed for intermittent athletes. 

Rather than use the average heart rate Foster et al. (2001) suggested to break the 

session into stages (or zones), each identified at a given heart rate to create a weighting 

factor based on the zone the athlete is experiencing (Foster et al., 2001).  The amount of 

time an athlete spent in a zone would be multiplied by the weighting factor associated 

with each zone.  The values were then summed to create the TRIMP value.  One 

opportunity for improvement of this method was that the zones were modeled in a linear 

fashion; however, previous studies have shown that when an athlete reaches anaerobic 

threshold the lactate curve (an indicator of load on an athlete) does not follow a linear 

pattern (Wasserman, 1987).   



3 
 

  
 
 

Enter Stagno, Thatcher, & Van Someren (2007) who provided the groundwork for 

our study.  They created a method of quantifying this load in intermittent sports by using 

a modified TRIMP method (Stagno et al., 2007).  Stagno et al. (2007) believed that 

previous TRIMP methods were not efficacious indicators of work for intermittent sport 

athletes’ performance because it used the mean heart rate. Using the mean heart rate is 

not relevant to intermittent athletes, since the load varies significantly during exercise 

(Stagno 2007).  To combat this Stagno et al. (2007) used the lactate response of the 

athlete to determine the weighting factors.  As we will see in this paper, the lactate curve 

follows an exponential pattern.  The physiology behind this is that at higher intensities 

the weighting factor needs to indicate greater load on the athlete.  These weighting 

factors were then multiplied by the time spent in each zone to get the modified TRIMP 

value.  Even this weighting factor can be improved upon; this paper addresses such 

improvements.  The weighting factors of Foster et al. (2001) and Stagno et al. (2007) are 

compared in Table 1 below.   

Table 1: Comparison of weighting factors for Foster et al. (2001) and Stagno et al. 
(2007). 
 

Zone # Foster et al. (2001) Stagno et al. (2007) 
1 1 1.25 
2 2 1.71 
3 3 2.54 
4 4 3.61 
5 5 5.16 

 
Rob Wilson most recently studied these improvements in his PhD dissertation at 

the University of Wisconsin – Milwaukee. Wilson examined female soccer athletes to 

understand the physical load quantity (PLQ), a new variation on the TRIMP (Wilson 
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2012).  PLQ describes the load an athlete experiences by using a modeled equation for an 

athlete’s load rather than breaking the exercise session into zones.   

The goal of Wilson’s study was to generate a model to predict the performance of 

National Collegiate Athletic Association (NCAA) Division I competitive women’s soccer 

team to reduce injury and maximize performance. To understand this PLQ Wilson 

examined various characteristics (heart rate, breathing rate, body temperature etc) to 

generate an athlete’s lactate curve.  This lactate curve characterizes the work load 

experienced by an athlete (described in more detail in the next few paragraphs). This 

model would then provide a weighting factor for the intensity of an exercise session.  

Because of the heavy involvement of statistics in Wilson’s dissertation, the Department 

of Mathematical Sciences at The University of Wisconsin – Milwaukee worked to 

support Wilson.  By combining these two departments with a similar goal we were able 

to better understand how to model these intermittent sports and provide an end product 

that coaches can use to schedule their season.  

 The primary response variable used to indicate the PLQ an athlete has endured is 

their lactate concentration in their blood ([HLa]).  Lactate is a by-product created during 

intense exercise that accumulates within the body tissue.  The body then works to remove 

lactate from the system.  However, if the intensity is high and the duration is long, the 

rate that lactate is created can exceed the rate the body can remove the lactate.  As this 

concentration increases, it leads to more fatigued athletes.  As athletes get more fatigued, 

recovery time is necessary to allow [HLa] to decline. 

 Due to the aforementioned physiological effects, [HLa] has become the preferred 

indicator for work load experienced by an athlete.  Measuring [HLa] levels in individuals 



5 
 

  
 
 

is an intravenous process, creating difficulty in assessing the individuals’ load.  Rather 

than using [HLa], many instances exist where heart rate (or an iteration of heart rate) is 

used as a predictor for the [HLa] accumulation.  By using heart rate to determine the 

[HLa] build-up, one can understand the load an athlete experienced during an exercise 

session.  Stagno et al. (2007) introduced a model using heart rate stages (mentioned 

above) compared with the fractional elevation of heart rate (sometimes referred to the 

%HRR known as percent heart rate reserve).  Stagno et al. (2007) used this for his 

independent variable for predicting [HLa] concentration.  A primary concern in Stagno’s 

model is the starting point of FEHR.  Stagno et al. (2007) began their scaling at 65 % 

FEHR; however, with intermittent sports an athlete’s FEHR can drop well below 65 % 

FEHR during practice or competition. 

 In addition to gathering data below the 65 % FEHR, technological advancements 

have allowed physiologists to gather additional data.  Some additional variables (other 

than heart rate) that can now be measured include Skin Temperature (ST), Ventilation 

Rate (VR), Posture, Peak Acceleration (PA), % HR Max, and Activity (movement 

intensity).  With the assistance of the University of Wisconsin Milwaukee Human 

Performance Lab, we were able to compile data from the women’s soccer team.  

Physiological tests were performed in a range of intensities (less than 65 % FEHR) that 

allow us to expand beyond the intensities of previous models and incorporate these newly 

available variables.  We intend to model [HLa] using various iterations of these variables. 

 

1. Methods 

Background 
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Data for 22 athletes (n=22) playing for a National Collegiate Athletic Association 

(NCAA) Division I competitive women’s soccer team were provided from the Human 

Performance Lab at The University of Wisconsin - Milwaukee for analysis.  Female 

athletes were studied due to familiarity of the research team with the female coaching 

staff.  In addition, the men’s team was in the midst of hiring a coach, therefore the men’s 

coaches/team was not pursued immediately.  Table 2 provides the demographics of the 

athletes tested.  The necessary precautions were taken during testing, and consent was 

obtained from all individuals.  

Table 2:  Demographic data for the 22 female soccer athletes tested.  BMI = Body Mass 
Index. 
Demographic Mean Std Dev Max Min 
Age (yr) 19.5 1.14 22 18 
Height (in) 65.58 2.385 71 62 
Weight (lbs) 135.57 13.51 158 110 
BMI 22.19 1.729 25.2 19.3 
 

Two types of physiological tests were conducted: a submaximal (submax) and 

maximal (max) test. Both tests were performed on treadmills.  Submax tests were 

conducted in the Pre-season.  The max test data was generated mid-season, during a 

latent period of the season.  This was done to provide minimal fatigue in the athletes from 

a grueling season (end of season) or athletes not yet developed fully (pre-season).  The 

max test provides the maximum value (single data point) for [HLa] of the individual.  

The submax test keeps the individual below a peak level of intensity.  These two tests 

combined create the [Hla] curve of the individual.  [HLa] is typically modeled using 

FEHR as the independent variable, which typically appears like Figure 1 below 

(exponential or polynomial-like). 
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Figure 1:  Typical graph of [HLa] vs. FEHR for a single athlete.  The first 7 data points 
represent the submax test and the last data point represents the max data point. 
  
Prior to each test, athletes were fitted with a ZephyrTM Physiological Status Monitoring 

(PSM) device developed by Zephyr Technologies Inc., Auckland, New Zealand.  This 

device provided the data necessary for this study:  heart rate, skin temperature, breathing 

rate, posture, peak acceleration and activity.  The ZephyrTM has the ability to take 59 data 

points in one minute.  In addition, athletes wore the Polar Team1 Heart Rate Monitoring 

System (Polar Electro Oy, Kempele Finland) to capture heart rate data.  The Polar 

captures 12 data points in one minute. These devices are worn inferior to the pectoral 

muscles of each individual.  Table 3 describes each characteristic captured by the 

ZephyrTM and the Polar.  At select times of the experiment (depending on the type of test 

being executed), blood samples were gathered from the fingertip of the individual to 

determine their lactate level.  
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Table 3:  Variables gathered via the ZephyrTM (or Polar) device used for this study. 
Variable Description Units 

Hla Blood Lactate Concentration Millimole/L 

HR_abs 
Heart Rate measured by the Polar Team1 Heart Rate 
Monitor beats/min 

FEHR [HR(observed) - HR(rest)]/[HR(max) - HR(observed)] % 
HR_Zephyr Heart Rate measured by the zephyr device beats/min 
Skin Temp Skin Temperature Degrees Celsius 
Breathing Rate Breathing rate Breaths/min 
Posture Posture taken as degrees from normal (vertical) degrees 
HR% The HR calculated as a percent to maximum % 
Peak Accel The largest acceleration value in any one axial direction g force 

Activity 
Time integration (over 1 second intervals) of an average of 
three axial accelerations g force 

 

Submaximal Testing 

 Submax testing is performed keeping the individual below their maximum lactate 

levels.  This is required to ensure the athlete does not get fatigued during the test.  In this 

test, athletes completed 6 minute bouts (called a stage) of running/walking on a treadmill 

at an elevation of 1% to simulate resistance comparable to running outdoors (Jones, 

1996).  Target heart rate for the start of the first stage was 140 bpm (~70% maximum 

heart rate and ~57 % FEHR).  This heart rate was chosen because it should result in at 

least two stages before the participants reached their lactate threshold.  After the first 

stage, the treadmill was increased in speed by 0.5 miles/hour for each subsequent stage.  

As the test progressed, each stage would demand more exertion from the athlete.  At 30 

seconds prior to the end of a stage the athlete would grab the treadmill front rail for 

stability to allow for the blood draw.  Tests were stopped one stage after the participants 

reached their lactate threshold (measured as greater than 4 mmol/L and an increase of at 

least 1 mmol/L from the previous stage).  Athletes were allowed to continue past this 

point if they consent.  This would provide additional data for better modeling between 

lactate threshold and maximum lactate values (determined from the max test).  Upon 
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completion of this test, the data from the ZephyrTM and Polar were downloaded for 

analysis in conjunction with the lactate measurements. 

 

Maximal Testing 

 Maximal testing obtains the maximal lactate value.  This is a shorter test 

completed to exhaustion.  In this test, each stage was 1 minute in length.  For stage 1, the 

treadmill started with a speed of 6 km/hr and an incline of 0 %.  At each even stage the 

speed was increased by 1 km/hr and the incline unchanged and at each odd stage the 

incline was increased by 2 % with the speed unchanged. One of the criteria below would 

terminate the test: 

 Called by the research team for any safety concerns 

 No change in oxygen uptake (O2) with an increase in workload from one stage to 

the next.  

 Cessation by Athlete 

 Respiration Exchange Ratio (RER) greater than or equal to 1.1 (vol expire 

CO2/vol inspired O2) 

One minute after test completion the lactate of the individual was gathered and analyzed 

with the data from the PSM.  Three physiological criteria for a test to be considered a 

successful maximal effort test are listed below: 

 High O2 

 High [HLa] 

 Within 10 beats per minute of predicted HRmax 
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Data Setup  

Gathering the variables previously discussed is straightforward by utilizing the 

ZephyrTM system.  However, coordinating the blood draw with the ZephyrTM data 

provided some difficulties.  The primary challenge was reconciling the blood draw with 

the time stamp of the data from the ZephyrTM.   

We will first discuss how the submax data was gathered.  Since each athlete was 

providing the lactate measurement 30 seconds before the end of the stage we could use 

the start time of the test to pinpoint the time of the blood draw.  Due to the nature of the 

submax test we would expect a plateau in the heart rate (submax test keeps same 

treadmill speed for 6 minutes).  Depending on the nature of the heart rate curve, we 

would average data points near this blood draw to get the heart rate value corresponding 

to the blood draw.  An example where the exact time may not be used could be due to a 

dip in the heart rate, as the athlete would grasp the treadmill bar for the sample.  For this 

reason, we averaged 30 seconds of data prior to the sample draw time.  As an example, 

stage 1 of an athlete begins at time t=0 min and ends at t=6 min.  At 5 minutes 30 seconds 

the athlete grabbed the treadmill front rail for stability while the blood sample was drawn.  

At this 5 minute 30 second point we would average data points previous to this draw that 

show no erratic movement.  Figure 2 below depicts this process graphically.  With this 

process we now have a time interval that represents the heart rate of the individual 

compared to the blood draw.  This time interval is then used to obtain the average of the 

other variables available via the ZephyrTM (see Table 3 above). 
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Figure 2:  Submax test sample displaying the distinct stages (heart rate with time).  Each 
stage we pinpointed the time of the blood draw and averaged the data points prior to the 
draw to get the time interval t1.   
 

Max test data was gathered as a single blood draw.  With the single blood draw, it 

was less challenging to gather the heart rate at blood draw.  Observing the heart rate we 

would see the value ramp up until it rapidly ramped down indicating the test was 

complete (heart rate drops rapidly when exertion is ceased), see Figure 3 below.  The data 

points that are on this heart rate peak were averaged to provide the heart rate value.  The 

same time interval was used to gather the other variables. 

Blood draw 

t1 
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Figure 3:  Notice the ramp of the heart rate until a peak is reached and the rapid drop in 
heart rate.  This signifies the end of the test.  The data leading up to the peak (indicated in 
the interval labeled t2) was analyzed to determine the length of the interval the heart rate 
was at the maximum.  This interval was used to determine the value for the other 
physiological characteristics. 
 

 The initial plan was to obtain submax and max data from the same time of the 

season for each athlete. Factors that made this not possible include: varying training 

schedules, limited lab time, and sick athletes.  With this in mind, we focused on the 

submax data from the pre-season and the max data from the mid-season. Of the 22 

athletes tested (29 athletes total, 7 not tested), seven athletes were unable to provide 

submax data, and ten athletes were unable to provide max data.  This left five individuals 

(2, 15, 16, 22, G) that were able to provide submax and max data, as described in Table 4 

below.  With the limited individual athletes’ data, we chose to combine all data for a team 

analysis. 

 In order to determine entire teams’ lactate curve we combined all data regardless 

of the time of the season it was gathered.  In this method, of the 22 athletes that provided 

data we had submax data from 15 athletes and max data from 12 athletes.  All data was 

combined to create a single plot to represent all athletes on the team (with the exception 

of the goaltenders).  Table 4 describes what athletes’ data was available for these graphs.  

t2 
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Table 4:  All athletes tested and what data was available for analysis.  An “X” indicates 
that the data was available. 
Subject Sub-Max Max Comments 
1   X Sub-max data not usable, very erratic 
2 X X   
3 X   Max data not available. 
4 X   Max data not available. 
5 X   Max data not available. 
6     No data available 
7 X   Max data not available. 
8 X   Max data not available. 
9     No data available 
10   X Sub-max data not available 
11   X Sub-max data not available 
12   X Sub-max data not usable 
13 X   Max data not available. 
14 X   Max data not available. 
15 X X   
16 X X   
17   X Sub-max data not available 
18   X Sub-max data not available 
19 X   Max data not available. 
20 X   Max data not available. 
21   X Sub-max data not available 
22 X X   
A       
B       
C X   Max data not available. 
D     Goaltender 
E     Goaltender 
F     Goaltender 
G X X   
 

2. Mathematical & Statistical Modeling 

Heart Rate Determination 

 In addition to the ZephyrTM system, the Polar Team1 was used to gather Heart 

Rate data.  The reason for both monitors was to draw conclusions between the two.  It is 

not necessary to use the heart rate data from both the ZephyrTM and the Polar; however, 

we wanted to ensure the data was not statistically different.  To do this a paired sample t-

test was performed with the heart rate data from both devices.  The paired t-test takes the 
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difference in each data point (from the ZephyrTM  and Polar devices) then observes the 

mean of these differences.  The mean of these differences is then analyzed to determine 

how it compares to the value of 0.  The t-test was analyzed using Minitab version 16 

developed by Minitab Inc., State College PA and results in the parameters shown below 

in Table 5. 

Table 5:  Paired t-test for heart rate values from the Zephyr and the Polar device shows 
(p-value > .05) we cannot discern between the two devices. 
Paired T for HR_abs - HR_Zephyr 
 
              N    Mean  StDev  SE Mean 
HR_abs      101  167.21  19.19     1.91 
HR_Zephyr   101  166.36  18.69     1.86 
Difference  101   0.847  7.333    0.730 
 
 
95% CI for mean difference: (-0.600, 2.295) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 1.16  P-Value = 0.248 
  
For this t-test our hypotheses are below 

Null hypothesis, H0:   = 0  

Alternate hypothesis Ha:  ≠ 0 

Where  is the mean value of the differences between each ZephyrTM and Polar value.  

From the data in Table 5 we see that the p-value (which provides the probability of 

making a Type 1 error, that is, incorrectly rejecting H0) for this test is .248.  With α = .05 

we see that our p-value is greater than α so we would fail to reject our null hypothesis.  In 

addition, we see the 95 % confidence interval for the mean of the differences is (-.600, 

2.295), providing that we can be 95 % sure that the difference falls within this interval.  

Thus, our test value of zero is contained in this interval indicating that we cannot discern 

between the two measuring devices.  With this evidence, it does not matter which device 

we use when analyzing our heart rate.  We chose to use the data from the Polar as this 
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was also used to calculate their max heart rate in the calculation of the fractional 

elevation of heart rate and the Polar device was worn by individuals while in the field. 

 

Single Variable Modeling 

 Our first step in modeling was to understand how each variable behaved with 

respect to the [HLa] measurements.  Scatter plots of the combined team [HLa] values 

versus each independent variable are available in Appendix A (8 independent variables).  

Of the eight plots, five (Skin Temp, Breathing Rate, Posture, Activity, Peak Acceleration) 

do not display a recognizable pattern in the data, thus there was no modeling performed 

on these variables.  The data in the other 3, Heart Rate, FEHR, and HR % appear to have 

an exponential or polynomial behavior, however, we recognize for the Heart Rate the 

values are quite large, which is not possible to dampen the exponential curve, since for 

large values, the exponential grows rapidly.  This fit was attempted, but led to a near 

linear fit, which does not depict the data.  HR %, the % of maximum heart rate values, 

was not considered in final modeling as the range is limited compared to the FEHR.  For 

example, an athlete with a resting heart rate of 60 beats per minute and maximum heart 

rate of 200 beats per minute would have their HR % range from .3 to 1.0 and their FEHR 

range would 0 to 1.  Therefore we use the FEHR for our modeling.  In addition, the 

FEHR allows better comparison between individuals as it gives an idea of where each 

athlete’s heart rate is compared to their own resting and maximum heart rate.  The 

remainder of the study was carried out analyzing the FEHR with exponential, polynomial 

and affine models. 
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 Previous work (Stagno et al, 2007) performed exponential modeling in the form 

below (TRIMP mod model): 

))(*exp(][ 10 FEHRHLa                         (3) 

where [HLa] is the lactate value, θi (i=0, 1) are unknown parameters determined by the 

best-fit model, and FEHR is the FEHR. Our data will be modeled using equation 3 above 

along with an enhanced exponential equation.  Because our data exhibits a modified 

version of an exponential some form of shifting and scaling of the equation 3 is 

performed.  To account for this scaling and shifting we modeled the data based on 

equation 4 below (affine transformation of equation 3): 

310 ))(*exp(][   FEHRHLa                   (4) 

Where [HLa] is the lactate value, θi (i = 0, 1, 2) are unknown parameters determined by 

the best-fit model, and FEHR is the FEHR.   

 To determine these unknown parameters we used Minitab 16 statistical software 

by Minitab Inc., State College, PA.  We first obtain three approximate values for the θi’s 

by taking three points and solving three equations with three unknowns.  Minitab then 

uses the Gauss-Newton method which uses the least squares estimation to run through 

iterations of the θi’s until it finds the best-fit equation by minimizing the sum of squares 

error (SSE).  The Minitab output from this process can be found in Appendix C.  The 

information provided by the Minitab output is detailed below: 

1. Method 

a. Gauss-Newton method previously described. 

b. Max iterations is the maximum iterations Minitab will attempt o find the 

best-fit equation. 



17 
 

  
 
 

c. Tolerance 

2. Starting parameter values lists the starting values determined by solving three 

equations in three unknowns. 

3. Equation provides the equation of the best-fit equation 

4. Parameter estimates provides the estimates of the parameters from using the 

Gauss-Newton iterations minimizing the sum of the square errors in the model.  

This also provides the equation type used to fit the data. 

5. Lack of fit provides statistics if the model contains replicates (FEHR values with 

varying Lactate values).  We can use the p value in the lack of fit area to 

determine if there is a true lack of fit.  This information only becomes useful for 

the team data, which provides replicates. 

6. Summary provides the summary statistics of the model 

a. Iterations is the number of iterations the software used to minimize the 

SSE.  Fewer iterations will indicate that the software was more easily able 

to identify the best-fit model. 

b. Final SSE is the sum of the square error for the model, the value the 

software worked to minimize. 

c. DF is the degrees of freedom for the model. 

d. MSE is the mean square error calculated by dividing the final SSE by the 

DF. 

e. S is the root mean square, the square root of MSE.  S describes the 

deviation of the actual data to the fitted values.  This is the primary 
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statistic used in comparing our models, as it provides the error in the same 

units as the data (mmol/L). 

Now that we understand what the various statistics represent, the modeling will be 

presented in the following order. 

1. Team Data – Polynomial 
2. Team Data – Exponential 
3. Team Data – Affine 
4. Individual Data – Exponential 
5. Individual Data – Affine 

 
The above models’ statistics are available in Appendix D with the analysis continuing 

below. 

 

4. Mathematical/Statistical Analysis 

Polynomial Data – Team Data 

 The team raw data (as a scatterplot) can be seen in Figure A-2 (found in Appendix 

A).  Based on the nature of the data, it was meaningless to model using a 2nd degree 

polynomial, as a parabolic shape is not evident.  We then modeled this data as a 3rd 

degree polynomial in Figure D-1 (Appendix D).  From this regression, we recognize an 

R-squared value of 77.9 % and an S (RMSE) of 1.32, which provide a reasonable fit.  

However, if we extend the curve to smaller values for the FEHR (Figure D-2) we notice 

that the given model of FEHR generates negative values for [HLa] as FEHR gets smaller. 

The value where this curve crosses the line [HLa]=0 is .213.  Any FEHR values less than 

this value generates a negative lactate, which is not physically possible.  For this reason, 

we did not model the individual data using a 3rd degree polynomial and performed 

exponential and affine regression from this point forward (for team and individual data). 
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Exponential vs. Affine Modeling 

 Since the polynomial modeling proved ineffective, we modeled the team and 

individual data using exponential and affine regression.  Appendix D contains the 

exponential and affine regressions along with the 3rd degree polynomial regression (team 

only) for the team and individual data.  Table 6 (below) provides a summary of the plots 

in Appendix D.  

Table 6:  Glossary of figures in Appendix D.  Figures D-1 and 2 have already been 
discussed and discarded. 
Figure # Data Type Regression 
AIV-1 3rd Degree Polynomial Team 
AIV-2 3rd Degree Polynomial Extended Team 
AIV-3 Exponential Team 
AIV-4 Affine Team 
AIV-5 Exponential Athlete 2 
AIV-6 Affine Athlete 2 
AIV-7 Exponential Athlete 15 
AIV-8 Affine Athlete 15 
AIV-9 Exponential Athlete 16 
AIV-10 Affine Athlete 16 
AIV-11 Exponential Athlete 22 
AIV-12 Affine Athlete 22 
AIV-13 Exponential Athlete G 
AIV-14 Affine Athlete G 
 
 
Appendix E contains a table of the key statistics generated by the models in Table 6. 

 We first compared the team models to the individual models (exponential and 

affine).  We observe the final SSE values and notice the team models exhibit a much 

higher final SSE.  This can be described by the degrees of freedom of the model.  Since 

the DF is much higher for the team data we would expect a higher degree of deviation 

from the fitted line in the team data.  The DF is much higher due to more data points.  

Also, there are replicates (different Lactate values for the same FEHR values) in this data 

due to combining multiple athletes in one model, which leads to a higher degree of 
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variation in the [HLa] values for particular FEHR values.  For example, athlete 3 exhibits 

an [HLa] value of 1.44 at FEHR of .80 and athlete 5 has an [HLa] value of 3.90 at FEHR 

of .80.  This athlete variation creates a much higher SSE compared to the individual data.  

These higher SSE values result in higher values for RMSE (for the team model).  

Individual data does not generate these replicates, creating a better RMSE value, 

indicating that the individual models have less variation from the model.  With the 

combination of replicates and higher RMSE values, we conclude that an individual model 

will produce a more accurate description of an individuals’ load in practice or a match.  

The remainder of the discussion will use the individual models only. 

 When comparing the individual models to each other we want to figure out which 

regression, exponential or affine, creates a better fit.  On initial assessment we notice that 

athlete G has very high SE estimate values for the parameter estimates in the affine 

regression.  This is understandable by looking at the plot in Figure D-14 (see Appendix 

D), which is nearly linear.  These SE estimates indicate a poor fit, so this model was not 

used to determine a best-fit line for athlete G.  A recommendation would be to validate 

the data with athlete G, or understand the physical fitness of athlete G in more detail.  

Based on the RMSE values for the remaining athletes we see that athletes 2 and 15 

exhibit a better affine regression (based on the RMSE value) and athletes 16 and 22 have 

nearly the same RMSE values (exponential and affine).  Since 16 and 22 have nearly the 

same RMSE values we continue to look at the best fit equation for both regressions for all 

athletes.  We notice the differences between the exponential and affine equations by 

observing the each function evaluated at an FEHR of 0.  Table 7 below shows these 

values.  The average of this value for the individuals affine regression (excluding athlete 
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G) is 1.092 and for the exponential regression (excluding athlete G) is .079.  Research 

suggests that a resting conditioned athlete (FEHR = 0) will exhibit [HLa] values around 

1.  For this reason, we conclude that the affine regression equations for the individuals 

(excluding athlete G) are a better model for predicting an athletes [HLa] values. 

Table 7:  This table provides the value of each function evaluated at an FEHR of zero.  
Notice the higher values for the affine regression (excluding athlete G). 

Data Type 
Regression 

Type Equation f(0) S 
Team Exponential [HLa] = 0.0419446 * exp(5.33871 * FEHR) 0.042 1.337 
Team Affine [HLa] = 0.908886 + 0.00705673 * exp(7.03434 * FEHR) 0.916 1.321 
Athlete 2 Exponential [HLa] = 0.0887819 * exp(4.20084 * FEHR) 0.089 0.656 
Athlete 2 Affine [HLa] = 1.19761 + 0.00107693 * exp(8.43556 * FEHR) 1.199 0.428 
Athlete 15 Exponential [HLa] = 0.128738 * exp(3.7926 * FEHR) 0.129 0.656 
Athlete 15 Affine [HLa] = 1.56216 + 0.000244061 * exp(9.81577 * FEHR) 1.562 0.420 
Athlete 16 Exponential [HLa] = 0.088292 * exp(4.756 * FEHR) 0.088 0.960 
Athlete 16 Affine [HLa] = 0.942088 + 0.0270559 * exp(5.85742 * FEHR) 0.969 1.043 
Athlete 22 Exponential [HLa] = 0.0111148 * exp(6.8082 * FEHR) 0.011 0.803 
Athlete 22 Affine [HLa] = 0.63657 + 0.00239875 * exp(8.29292 * FEHR) 0.639 0.793 
Athlete G Exponential [HLa] = 0.275954 * exp(3.41615 * FEHR) 0.276 1.065 
Athlete G Affine [HLa] = -17.9874 + 12.3732 * exp(0.749261 * FEHR) -4.975 1.084 

 
Physical Load Quantity 

 Now that we have determined the better models for predicting an athletes [HLa] 

values are generated by the individual, we can use this information to understand what 

load an athlete has experienced during a practice or match.  From the UWM Human 

Performance Lab we were able to obtain practice data for the athletes.  Data was gathered 

using the Polar Team1 heart rate monitor.  This monitor gathers 12 data points in one 

minute (as opposed to the ZephyrTM, which gathers 59 data points in one minute).  The 

Polar device is the choice of the athletes because it is smaller and less cumbersome to 

wear.  For each 5-second interval, we generate the FEHR value and plug this into the 

athlete specific [HLa] equation from Table 6 to get an [HLa] value for that interval.  This 

value is then multiplied by 1/12, since that data point was gathered over 1/12 of a minute.  
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Over the course of the practice, we sum these values for each interval.  The equation for 

this Physical Load Quantity is described in equation 5 

12

)]([
1



n

i
iFEHRf

PLQ                                    (5) 

where PLQ is the physical load quantity for the practice/match, n is the number of 5-

second intervals, f is the [HLa] function from Table 6 based on the athlete and [FEHR]i is 

the FEHR for the ith  interval.  We then divide this by 12 to create the PLQ value in 

minute increments. 

 Table 8 below summarizes the PLQ values for athletes 2, 15, and 16 (22 did not 

have data from practice) using the individual model.  

Table 8:  PLQ values for athletes 2, 15 and 16. 

Athlete Equation PLQ 
2 Hla = 1.19761 + 0.00107693 * exp(8.43556 * FEHR) 211.516 
15 Hla = 1.56216 + 0.000244061 * exp(9.81577 * FEHR) 273.174 
16 Hla = 0.942088 + 0.0270559 * exp(5.85742 * FEHR) 262.908 

 

The PLQ values between individuals are not comparable due to athlete-to-athlete 

variation.  The use of the PLQ data is to understand what effort the athlete put forth in the 

practice session.  The numbers above would need to be calculated for many different 

practice types as defined by coaches.  Such practice types might be post match practice 

(recover practice), peak practice or somewhere in between.  By varying the practice 

regime, we can then observe an individual’s PLQ values to understand how the value 

varies based on the practice type.  Once the coaching staff begins to understand these 

numbers, the practices can be better coordinated utilizing PLQ data, rather than intuition, 

resulting in fewer injuries and peak performance in match play. 
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5. Conclusion 

 Previous models of intermittent sports have paved the way for more in depth 

analysis of the load applied to an athlete.  Previous modeling utilized the FEHR in an 

attempt to predict the [HLa].  New technology has created the opportunity to understand 

how other physiological characteristics may predict [HLa].  Additional variables 

considered in this study were breathing rate, acceleration, peak acceleration, body 

temperature, heart rate, activity (instrument calculation) and percent of maximum heart 

rate.  These additional variables did not show as good correlation in the [HLa] of an 

individual as compared to FEHR.  By determining that FEHR is the preferred variable for 

[Hla] modeling we were able to continue our study using this variable. 

Coupled with FEHR being the preferred variable, it has been shown that affine 

modeling creates a better root means square error (RMSE) compared to an exponential 

model, indicating a better fit.  This Affine behavior led to two types of modeling; 

individual and team based.  The data suggests that modeling an individual will best 

predict the generated load on an athlete.  The reason for this is that team data creates a 

higher degree of variation attributed to athlete-to-athlete variation. This allows us to 

conclude that individual models will better predict how an athlete has exerted himself or 

herself in practice or a match. 

Now that we have identified the ideal variable for modeling and the chosen 

method of modeling we can use this to evaluate the load exerted on our athletes.  This 

load is quantified by the PLQ (physical load quantity), which is the summation of [Hla] 

values for a given athlete at each measured FEHR during the session.  The higher the 
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number the more fatigue an athlete will experience.  This value can be utilized by 

coaches throughout a season to gauge the fitness and fatigue of a team, hence tailoring 

practice schedules according to obtain an optimum output for the team. 

 

Next Steps 

 To solidify this study, it is recommended to further test the athletes to confirm 

their lactate curves.  This would include multiple tests for each athlete to generate an 

average [Hla] curve.  In addition, more robustly designing the experiment to ensure all 

data is gathered (currently underway with men’s data in the Human Performance Lab at 

UWM).  After these above have been complete, then perform tests in practice to generate 

varying practice levels based on the models.  Then utilize this data to determine what 

practice type is necessary to optimize fitness for the match play. 
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Appendix A 
This appendix contains the single variable modeling for each of the variables in Table 2 
using Method 2 (team data). 
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Figure A-1:  Plot of Hla vs. HR. 
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Figure A-2:  Plot of Hla vs FEHR. 
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Figure A-3:  Plot of Hla vs Skin Temp. 
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Figure A-4:  Plot of Hla vs Ventilation Rate. 
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Figure A-5:  Plot of Hla vs Posture. 
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Figure A-6:  Plot of Hla vs HR %. 
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Figure A-7:  Plot of Hla vs Peak Acceleration. 
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Figure A-8:  Plot of Hla vs Activity. 
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Appendix B 
This appendix contains the single variable modeling for each the Heart Rate, FEHR and 
HR % for subjects 2, 15, 16, 22, and G. 
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Figure B-1:  Scatterplot of Hla vs HR for Athlete 2. 
 

1.00.90.80.70.60.5

6

5

4

3

2

1

FEHR (%)

H
la

 (
m

m
ol

)

Athlete 2
Hla vs FEHR

 
Figure B-2:  Scatterplot of Hla vs FEHR for Athlete 2. 



31 
 

  
 
 

100959085807570

6

5

4

3

2

1

HR%

H
la

 (
m

m
ol

)

Athlete 2
Hla vs HR%

 
Figure B-3:  Scatterplot of Hla vs HR% for Athlete 2. 
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Figure B-4:  Scatterplot of Hla vs HR for Athlete 15. 
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Figure B-5:  Scatterplot of Hla vs FEHR for Athlete 15. 
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Figure B-6:  Scatterplot of Hla vs HR % for Athlete 15. 
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Figure B-7:  Scatterplot of Hla vs HR for Athlete 16. 
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Figure B-8:  Scatterplot of Hla vs FEHR for Athlete 16. 
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Figure B-9:  Scatterplot of Hla vs HR% for Athlete 16. 
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Figure B-10:  Scatterplot of Hla vs HR for Athlete 22. 
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Figure B-11:  Scatterplot of Hla vs FEHR for Athlete 22. 
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Figure B-12:  Scatterplot of Hla vs HR% for Athlete 22. 
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Figure B-13:  Scatterplot of Hla vs HR for Athlete G. 
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Figure B-14:  Scatterplot of Hla vs FEHR for Athlete G. 
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Figure B-15:  Scatterplot of Hla vs HR% for Athlete G. 
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Appendix C 
This appendix provides a breakdown of what the Minitab output statistics are when 
performing nonlinear regression (affine). 

 
Figure C-1:  Minitab statistical output for Hla vs. FEHR 
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Appendix D 
This Appendix contains the fitted models discussed throughout the paper. 
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Figure D-1:  Fitted line plot of Hla vs. FEHR using a 3rd degree polynomial regression 
for the team data. 
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Figure D-2:  Fitted line plot of the Hla vs. FEHR using a 3rd degree polynomial extended 
to smaller values of the FEHR for the team data. 



40 
 

  
 
 

 

1.00.90.80.70.60.50.4

12

10

8

6

4

2

0

FEHR (%)

H
la

 (
m

m
ol

)

Fitted Line Plot - Team
Hla = 0.0419446 * exp(5.33871 * FEHR) 

 
Figure D-3:  Fitted line plot of Hla vs. FEHR using exponential regression for the team 
data. 
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Figure D-4:  Fitted line plot of Hla vs. FEHR using affine regression for the team data. 
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Figure D-5:  Fitted line plot of Hla vs. FEHR using exponential regression for Athlete 2. 
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Figure D-6:  Fitted line plot of Hla vs. FEHR using affine regression for Athlete 2. 
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Figure D-7:  Fitted line plot of Hla vs. FEHR using exponential regression for Athlete 
15. 
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Figure D-8:  Fitted line plot of Hla vs. FEHR using affine regression for Athlete 15. 
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Figure D-9:  Fitted line plot of Hla vs. FEHR using exponential regression for Athlete 
16. 
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Figure D-10:  Fitted line plot of Hla vs. FEHR using affine regression for Athlete 16. 
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Figure D-11:  Fitted line plot of Hla vs. FEHR using exponential regression for Athlete 
22. 
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Figure D-12:  Fitted line plot of Hla vs. FEHR using affine regression for Athlete 22. 
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Figure D-13:  Fitted line plot of Hla vs. FEHR using exponential regression for Athlete 
G. 
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Figure D-14:  Fitted line plot of Hla vs. FEHR using affine regression for Athlete G.



 

        

Appendix E 
This appendix provides the models and key statistics from the graphical models of Appendix D. 

 

Data 
Type 

Regression 
Type Equation 

Θ0 SE 
Estimate 

Θ1 SE 
Estimate 

Θ2 SE 
Estimate 

Final 
SSE DF MSE S 

Team Exponential [HLa] = 0.0419446 * exp(5.33871 * FEHR) 0.0137 0.3473N/A 171.733 96 1.789 1.337
Team Affine [HLa] = 0.908886 + 0.00705673 * exp(7.03434 * FEHR) 0.4199 0.00797 1.10071 165.800 95 1.745 1.321
Athlete 2 Exponential [HLa] = 0.0887819 * exp(4.20084 * FEHR) 0.0774 0.662351N/A 2.149 5 0.430 0.656
Athlete 2 Affine [HLa] = 1.19761 + 0.00107693 * exp(8.43556 * FEHR) 0.3300 0.00281 2.5689 0.916 5 0.183 0.428
Athlete 15 Exponential [HLa] = 0.128738 * exp(3.7926 * FEHR) 0.0774 0.662351N/A 2.149 5 0.430 0.656
Athlete 15 Affine [HLa] = 1.56216 + 0.000244061 * exp(9.81577 * FEHR) 0.3161 0.00084 3.40281 0.706 4 0.177 0.420
Athlete 16 Exponential [HLa] = 0.088292 * exp(4.756 * FEHR) 0.0583 0.712202N/A 4.606 5 0.921 0.960
Athlete 16 Affine [HLa] = 0.942088 + 0.0270559 * exp(5.85742 * FEHR) 1.7845 0.0772 2.72533 4.349 4 1.087 1.043
Athlete 22 Exponential [HLa] = 0.0111148 * exp(6.8082 * FEHR) 0.0100 0.932679N/A 3.868 6 0.645 0.803
Athlete 22 Affine [HLa] = 0.63657 + 0.00239875 * exp(8.29292 * FEHR) 0.5751 0.00492 2.03874 3.141 5 0.628 0.793
Athlete G Exponential [HLa] = 0.275954 * exp(3.41615 * FEHR) 0.1896 0.760371N/A 4.533 4 1.133 1.065
Athlete G Affine [HLa] = -17.9874 + 12.3732 * exp(0.749261 * FEHR) 99.2576 87.1342 3.2732 3.528 3 1.176 1.084
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