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ABSTRACT 
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 Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous 

physicochemical/biological characteristics such as good biocompatibility and similarity 

of the mechanical properties to the human bone tissue, which renders this material a 

promising candidate for the biomedical and implant applications. One of the most 

attractive features of Mg-based materials is the degradability in the physiological 

environment. With the burst of research on the biodegradable materials for the healthcare 

device applications, Mg and its alloys attracted a strong attention in the bioengineering 

field in recent years. However, the major limitation of applying Mg-based materials to 

biomedical applications is the fast degradation/corrosion rate with regards to the healing 

process time-span. In the present thesis, an atomistic model employing the density-

functional theory (DFT) has been developed to study the hydrolysis process by 

understanding the influences of commonly used alloying elements (zinc (Zn), calcium 

(Ca), aluminum (Al), and yttrium (Y)) and the crystallographic orientation of the 

dissolution surfaces (basal )0001( , prism )0110( , and pyramidal )1011(   planes) on the 

corrosion behavior. These parameters are known to strongly impact the initial hydrolysis 
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phenomena of Mg-based materials. To develop the atomistic computational model, we 

have implemented the Dmol3 software package in conjunction with PBE (Perdew, Burke 

and Ernzerhof) correlation energy functional in the GGA (generalized gradient 

approximation) scheme. Throughout the thesis, we performed three sets of calculations, i) 

surface energy, ii) dissolution potential, and iii) water adsorption computations, to 

examine the hydrolysis mechanism and the subsequent corrosion/degradation of Mg/Mg 

alloys. The total energy changes of various Mg-based systems in different conditions for 

these surface energies, dissolution behavior, and tendency of the system for adsorbing the 

water molecule were quantified. The results obtained from the atomistic model showed 

that these structural/compositional parameters (i.e., different types of alloying elements 

and surface planes) can considerably impact the stability of surfaces that are in contact 

with the corrosion media. The dissolution potential change computation predicted that Al 

can prevent the dissolution of Mg atoms from the surface of Mg-Al systems. In addition, 

it was found that the trend of water adsorption phenomena with different alloying 

elements/planes can be well-explained by the stability of corrosion surface.   
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Chapter 1: Introduction 

 In this introductory chapter of thesis, an overview for the magnesium (Mg) and 

Mg alloys for the biomedical device applications, and the motivation and the objective of 

research project are provided. 

1. Magnesium (Mg) alloys for biomedical applications: overview 

 There is a myriad number of material species that can be applied to develop 

medical devices, including various types of polymers, metals, and ceramics. Depending 

on the application and required properties, some materials possess more beneficial 

properties than the others. Some factors such as biocompatibility must be critically 

considered in the selection of materials for biomedical products, because the body 

reaction against some materials can cause irreparable problems for the patient. Chemical, 

physical, and mechanical properties, and even economical advantage should be 

considered, and the one that exhibit the optimum of these properties must be elaborately 

selected. However, the biocompatibility to physiological environment must be always 

confirmed prior to the application of biomaterials. 

 Among the three representative material types, i.e., metals, ceramics, and 

polymers, the metallic materials traditionally have been widely used in many biomedical 

applications due to their strong physical and mechanical properties. In the current thesis, 

we focus on the biomaterials made of metals/alloys. These biocompatible metallic 

materials include 316L stainless steels (STS), titanium (Ti) alloys, and cobalt-chromium 

(Co-Cr) alloys, but they do not degrade in the body fluid. On the other hand, there are 

some biodegradable metallic materials such as Mg and its alloys that spontaneously 
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disappear inside the human body. One of the most important trends in biomedical device 

technology is the incorporation of degradable materials to avoid complexities such as 

long-term adverse effects and secondary surgery, etc. By controlling the 

degradation/corrosion rate, these absorbable materials can be eliminated in a desired way 

after healing of injured sites. In addition, while most of the metallic materials have high 

strength that can consequently resist against the bone growth causing adverse problems in 

orthopedic applications, Mg alloys have similar elastic modulus (E) with natural bone 

material (the average E values of Mg alloys and natural bone are is 41-45 GPa and 3-20 

GPa, respectively, which causes less damages. The density of Mg alloys (1.74-2 g/cm3) is 

also close to natural bone density, which is 1.8-2.1g/cm3 (1; 2; 3; 4). Therefore, Mg and 

Mg alloys are considered as one of the unique metals that feature the combination of 

biocompatibility, degradability, and mechanical strength for biomedical device 

applications. 

 Mg and its alloys have been used as medical device applications since the late 

19th century. In 1878, Huse used an Mg wire ligature in radial artery and varicocele to 

stop bleeding vessels (5). First vessel connector made of Mg was tested on the femoral 

artery of dog in 1900 (6). The first use of Mg-based materials as an orthopedic implant 

was in 1907. Lambotte used a plate of pure Mg with gold (Au)-plated steel nails to secure 

a fracture involving the bones of the lower leg. The fast degradation (i.e., corrosion) of 

the implant, however, caused the failure of a complete support, and a considerable 

amount of gas amassed under the skin. In another trial in 1944, nine unsuccessful 

implantations were reported out of 34 cases for an Mg alloy containing a small amount of 

cadmium (Cd). The reasons for these failures were infection and also trapping of the gas 
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caused by mounted plaster cast. It was reported that these implants maintained their 

mechanical stability for 6-8 weeks and a complete desorption occurred after 10-12 

months (4; 6; 7). 

 More recent studies on in vivo degradation of Mg alloys were performed 

comparing the corrosion tendency of different compositions. A trial by Witte et al. (8) 

investigated the impacts of AZ31 and AZ91 Mg alloys containing aluminum (Al) and 

zinc (Zn), WE43 alloys containing some rare earth (RE) elements such as neodymium 

(Nd), cerium (Ce), and dysprosium (Dy), and, also LAE442 alloys with a mixture of Ce, 

lanthanum (La), Nd, and praseodymium (Pr). The results showed a modest corrosion rate 

for alloys with RE elements. 

 One of the most important issues with Mg implants is the high rate of disruption, 

which is localized and unpredictable. It has been reported that high-purity Mg corrodes 

uniformly in vivo with an average rate of 0.1 g per 3-4 weeks. Of course, the total Mg 

corrosion depends on the exposed surface area of the material to the corrosive media. The 

type of tissue is also the important factor to determine the corrosion rate of the implanted 

material (6). In addition, the hydrogen (H2) evolution causes the formation of gas packets 

that postpone the healing and cause to necrosis the tissue layers (9). It is thought that the 

research interest in Mg alloys for biomedical device applications is shifting toward 

investigating the effect of alloying elements on the formation of corrosion protective 

barrier in the interface of the alloy and the corrosive media (10).  

2. Motivations 

 As addressed in the prior section, Mg and Mg alloys are promising candidate 

materials for medical products. This group of metals has shown reasonable mechanical 
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properties including high stiffness and strength, resistance to heat, and creeping and high 

fracture elongation, and it exhibits good vibration and shock absorption (2; 3). In general, 

another reason that makes Mg attractive is that, Mg has a high strength to weight ratio 

and high castability (2). In addition to all of these mechanical benefits, the primary 

advantage of using Mg alloys comes from that Mg+2 is a requisite ion in the human body 

system and it exists in a considerable amount in the body (Mg+2 is the fourth abundant 

cation found in the body. The human body usually contains about 35 grams Mg per 

70Kg); a human adult is recommended to take 300-400 mg of Mg daily (2; 3). Mg is 

involved in many metabolic reactions and also physiological mechanisms as an essential 

material. Further, most importantly, Mg has a high biocompatibility, which is the vital 

property for implant materials (11). The presence of Mg in the body promotes the bone 

growth, and it shows non-toxic behavior and degrades in the body fluids (12). In addition, 

the extra amount of Mg has the possibility to be expelled through the urine after 

degradation.  

 Despite all of these advantages, the main problem with Mg is the elevated rate of 

corrosion (i.e., degradation), which strongly limits the use of Mg as a biomaterial. Mg 

would corrode at pH level of 7.4-7.6 and in the presence of high chloride environment of 

physiological system. Because the degradation rate of pure Mg is high, the mechanical 

properties will decrease before the healing process completes. The in vivo studies on 

corrosion resistance of Mg as medical implant material reported that the corrosion rate of 

0.02 mm/y would be acceptable (13). However, it should be noted that the required 

degradation rate will vary depending on the location of implants. In some cases, fast 

degradation is needed while in others a modified rate of corrosion is demanded. In 
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general, the degradation rate should be coherent with the healing rate of the body tissue; 

for example, for medical devices intended to be used about 12 weeks in the physiological 

environment, the implant material must corrode after this period (11). Also, the amount 

of corrosion products released in the body should be low enough to be tolerated easily 

(14).  

 Mg is a metal that degrades very fast in biological media. The degradation rate 

must be controlled by different ways such as alloying or surface treatments, which will be 

comprehensively discussed in the next chapters. Note that, though there is a rich list of 

experimental efforts to improve the degradation rate of Mg alloys for the biomedical 

applications, theoretical understanding of the impacts of the types and contents of alloys, 

microstructures, and the degree of crystallinity on the Mg degradation behavior is still not 

clear.   

3. Objective of Research 

 The ultimate goal of the current research is as follows. 

 Understand the corrosion/degradation mechanisms of Mg and Mg alloys intended 

for biomedical applications. 

 Toward this ultimate goal, in the present thesis, we have developed an atomistic 

density-functional theory (DFT) computational model to study the impacts of alloying 

element on the corrosion behavior of Mg alloys. Computational modeling approach is 

frequently used to predict complicated physicochemical phenomena to decrease the 

expense of experimental measurements and to save the labors. Understanding of 

degradation/corrosion mechanism in the atomistic and/or molecular levels can be 
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accomplished through the development of atomistic computational model. In the current 

work, we focused majorly on the hydrolysis mechanism (i.e., one of the two primary 

degradation mechanisms of Mg materials) of Mg/Mg alloys to study the onset of the 

corrosion with various Mg alloy systems. It is expected that the obtained results can be 

used to understand and ameliorate the corrosion behavior of Mg alloys in the biological 

atmospheres.  

 The objective of the current work is, therefore, summarized as: 

 Based on DFT, develop an atomistic computational model to quantitatively 

describe the initial degradation behavior of Mg/Mg alloys including the effects of 

alloying elements. 

 Using the developed DFT model, several physicochemical aspects, such as 

surface energies, water adsorption behaviors, and dissolution potentials, are studied and 

analyzed related to the degradation/corrosion mechanisms of Mg/Mg alloys. It is thought 

that the current work is one of the first attempts to understand the hydrolysis behavior of 

Mg/Mg alloy degradation for biomedical applications by using a DFT model. In 

following chapters, we will detail the background, computer model development, and 

results and discussion of the current work. 
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Chapter 2: Background 

In this chapter, we will provide the detailed background and discuss some 

applications of Mg and Mg alloys in biomedical devices such as cardiovascular stents and 

bone replacement implants. Degradability, as the most important advantage of Mg based 

devices over permanent materials, is the main focus of this chapter. In this chapter, we 

will address the general introduction of Mg alloys, details of degradation mechanisms, 

factors to influence the degradation behavior, and recent efforts to improve degradation 

properties of Mg and/or Mg alloys.  

1. Mg Alloys for Biomedical Applications 

 Proper implantation of external material in the body will require a variety of 

relevant physical, chemical, and mechanical properties; tissue-specific environment, the 

contact with blood, and the contact with different tissue-specific cell types should be 

adequately taken into account in the study of the material applicability in biomedical 

applications (15). In Table 2.1, some in-vivo physiological conditions that metallic 

implants should tolerate have been summarized. In addition to these conditions, implant 

metals should possess non-magnetic properties so that they can be tracked by magnetic 

resonance imaging MRI or X-ray imaging (1). 

Table 2.1 Body physiological condition (1) 

Condition Parameters Consequences 

Body temperature  37º C  Effect the kinetic of the reaction  

pH (16) 

Blood 

Intercellular matrix 

 

7.15-7.35 

7.0 

Even though the body fluids are buffered solutions, 

close to the implantation site the pH can decrease to 

5.2  
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Cells 6.8  

Dissolved oxygen (17) 

Arterial blood 

Venous blood 

Intercellular matrix  

 

100 mmHg 

40mmHg 

2-40mmHg  

Corrosive environment  

Chloride ion (16) 

Serum 

Interstitial fluid  

 

113mEq/l 

117mEq/l  

Corrosive environment  

Mechanical load (18)       

Cancellous bone 

Cortical bone 

Arterial wall 

Myocardium 

Muscle(Max) 

Tendon(Max)  

 

0-4MPa 

0-40MPa 

0.2-1MPa 

0-0.02MPa 

40MPa 

400MPa  

Could lead to fracture or stress corrosion cracking  

Load repetition (18) 

Myocardial 

Contraction          

Finger joint exercise 

Ambulation  

 

5 x 106- 4 x 107 /year 

105-106 /year 

2 x 106 /year 

Could lead to fatigue, wear and fretting  

 

Mg and/or Mg alloys have been advocated for several biomedical applications including 

cardiovascular stents and various forms of bone implants. Depending on required 

properties of different applications, different compositions can be applied to the Mg 

alloys. However, one of the major issues for development of biodegradable Mg alloys is 

the control of corrosion rate and the gap in understanding the relationship between alloy 

composition and the mechano-electrochemical behavior of the materials in vivo. Another 

limitation for these materials is that, the cytotoxicity standards developed for permanent 

materials (e.g., EN ISO Standards 10993:5) that can be applied to titanium (Ti) are not 

adequately applicable to Mg-based materials. Therefore, there is no established standard 
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for Mg alloys to evaluate their in vitro and in vivo corrosion behavior (19). In the 

following sub-sections, some examples of Mg alloys biomedical applications are 

introduced. 

Table 2. 2 Application of different Mg alloys (6) 

Magnesium (alloy) Application Human/animal 

model 

year 

Pure Mg Wires as ligature Humans 1878 

High-purity Mg Tubes(intestine, vessel, nerve connector), 

plates, arrows, wire, sheets, rods 

Humans, guinea 

pigs, rabbits, dogs 

1892-1905 

Pure Mg Mg cylinders as vessels connectors Dogs 1903 

High-purity Mg Tubes, sheets and cylinder intestine 

connector 

Humans, rabbits, 

dogs 

1900-1905 

Pure Mg (99.7%) Rods, plates, screws Humans 1906-1932 

Metallic Mg Ring-plates for anastomosis Dogs 1910 

Metallic Mg Interamedullar pegs in bone Rabbits 1913 

Pure Mg mix. of eq. 

part: Mg/Al, Mg/Cd, 

Mg/Zn 

Wires, clips as ligature, anastomosis Dogs 1917 

Pure Mg (99.99%), 

distilled in vacuum 

Wires, strips, bands Rabbits 1924 

Pure Mg (99.8-99.9%) Mg arrows Humans, rats, cats 1925 

Pure Mg Mg arrows Rabbits 1928 

Dow metal: Mg-Al6-

Zn3-Mn 0.2%-wt. 

Elektron Mg-Al 8%-wt. 

Plates, bands, screws, pegs Humans, dogs, 

rats, rabbits 

1933-1937 

Mg-Mn3%-wt., Mg-Al4-

Mn 0.3%-wt. 

Sheet, plate, band, screw, peg, wire Human, dogs 1938 

Elektron (alloy not 

specified) 

Rods Rabbits 1939 

Mg-Cd Plate, screws, rod-plate Human 1948 

Mg Band, suture from woven Mg wires, Human, rabbits 1940 
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fusiform pins 

Mg-Al2%-wt. pure Mg Wires for clotting aneurysms Dogs 1951 

Ind.-grade purity: 

Domal Mg (99.9%), 

T.I.H. Mg not reported 

lab-grade purity: “zone 

fondue ” Mg, R69Mg, 

MgMn1.5%.wt, 

MgAl:GAZ8%,GAZ6%, 

GAZ3% 

Pacemaker Dogs 1975 

Mg-Al2%.wt Wires intravascular Rats 1980 

Pure Mg (99.8%) Wires for hemangioma treatment Rats, rabbits 1981 

Pure Mg (99.8%) Wires for hemangioma treatment Humans 1981 

 

1.1 Degradable stents 

 As a major medical device utilizing biodegradable materials, we introduce the 

cardiovascular stent applications in this section, as it is considered one of the most 

important medical devices due to the increased risk of cardiovascular disease in the 

modern era. The first coronary stent implantation was reported in 1985 (20). The use of 

stents has been widespread in recent years, and it has been constantly reported that the 

occurrence of some problems such as stent thrombosis (i.e., obstructing the blood vessel 

by blood clots formation on the surface of the stent) were reduced by using of 

thienopyridines an antiplatelet agent that prevents platelet activation and high pressure 

stent implantation (21). 

 Coronary stents are intended to replace complicated percutaneous coronary 

intervention (PCI) or angioplasty (i.e., non-surgical treatment for narrowed coronary 

arteries) by restricting the early and late recoil. When permanent (i.e., non-degradable) 
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stents are used, they may cause several clinical adverse effects including thrombogenicity 

(i.e., the tendency of material to produce thrombus during the contact with blood), 

permanent physical irritation, mismatches in mechanical behavior between stented and 

non-stented vessel areas, long term endothelial dysfunction (imbalance between products 

of blood vessel expansions), and chronic inflammatory local reactions. These permanent 

stents may increase the risk of injuries such as chronic inflammatory reaction or long-

term endothelial dysfunction caused by continuous interaction between the stent and the 

surrounding tissue (22). In addition, in some cases (such as Lekton Magic stent), the stent 

is radiolucent that makes it difficult to be detected after implantation. To decrease the risk 

of embolism and blockage of the blood vessel by a detached intravascular mass, some 

sleeves on the delivery balloon at either side of the crimped stent are required (23). 

 To overcome these limitations, stents made of degradable materials were 

proposed. Such degradable stents have ability to offer more effective physiological 

repair, reconstitution of local vascular compliance, and they exhibit a temporary, limited, 

longitudinal, and radial strengthening effect (1; 24). Most importantly, the patients with 

permanent stent implantation often suffer from the long-term adverse effects. Comparing 

the permanent and bioabsorbable/biodegradable stents, there is indeed a need to design a 

bioabsorbable stent that disappears after healing (25).  

  The materials used for the components of these degradable stents must possess 

some necessary properties. For example, they must have enough radial strength during 

degradation period and also produce non-toxic and absorbable components during the 

corrosion (1). The local toxicity of biomaterials depends on the local concentration of 

elements over time (25). Further Colombo et al. (26) reported that a cardiovascular stent 
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endures a pressure of 1.0 to 1.4 MPa during its function. This pressure causes at least 

20% deformation in the stent. Only limited types of materials meet these requirements. 

Some polymeric materials seem to be appropriate for this application, but polymeric 

materials have some issues including limited availability, and severe adaptation and/or 

deformation with radial forces. Another problem associated with these polymeric 

materials is their slow bioabsorption rate that may give rise to enhanced restenosis (25). 

For metallic materials, Fe and Mg provide degradation with a good adoption by the body 

without toxicity. 

In Table 2.3, we display two examples of bioresorbable metallic stents from 

different manufacturers (25; 27; 28). As the table shows, peripheral Fe stent produced 

from iron tubes by Goodfellow Inc. (Hundington, UK). This stent is made of Fe with less 

than 0.5% of Al, Ca, Co, and other metallic impurities, and it has a design similar to the 

Saxx stent (CR Bard, Temp, AZ, USA). There are limited data available about this group 

of stents, but Waksman et al. (28) confirmed that the biocompatibility and mechanical 

properties of pure Fe seems to be reasonable but further studies are required for 

commercial application of these stents. Table 2.3 also shows the Mg stent (Biotronik, 

Erlangen, Germany) as an example of Mg based stents. The mechanical properties of 

Biotronik stent are similar to those of stainless steel stents, which provides enough 

support after implantation. It has been addressed that Biotronik also has acceptable 

biocompatibility (29). 
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Table 2.3 Bioabsorbable stent developments (25; 27) 

Stent  Fe Based Mg Based 

Picture 

  
Composition >99.5 mass% Fe Mg Alloy/ Pimecrolimus 

Features Balloon expanding stent Balloon expanding stent 

  

It is understood that the recoil resulted from mechanical degradation (i.e., 

corrosion) is the primary cause of restenosis in applying Mg-based stents; therefore, the 

solution suggested for these problems is to increase the degradation time so that the stent 

can provide sufficient support to the vessel following intervention. The most recent 

development of these stents is in their alloying and design modifications to decrease the 

corrosion rate and to load an anti-proliferative drug on the stent surface that can slow 

down neointima formation (25). The coronary restenosis (i.e., re-narrowing of the blood 

vessel after implantation) after endovascular procedures is one of the issues in using 

stents. The neointimal hyperplasia (i.e., thickening of the neointima in the blood vessel 

during the reconstruction procedure) can be reduced to below 10% by using drug-eluting 

stents (DES) (30). 

 The stability and efficiency of the implanted stent are influenced by various 

material properties. Surface characteristics such as surface energies, surface textures, 

surface potentials, and the stability of the surface oxide layer impact the chance of 

occurring thrombosis and neointimal hyperplasia. The thrombogenicity of a material 
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surface can be increased with increasing surface energy. Experiments by Hehrlein et al. 

(31) on two different surface deposition methods, i.e., galvanization and ion implantation, 

showed higher thrombogenicity and neointimal hyperplasia for the galvanized stent, and 

the reason was explained by the existence of pores and cracks created during expansion. 

It is thought that the surface roughness of the stent is an important parameter in their 

clinical success. This should be concerned as new coatings are being developed, 

especially for drug elution, due to difference in surface texture and the bare metal (32).  

1.2 Orthopedic applications 

 Metallic bone replacements and orthopedic implants are other common types of 

applications of Mg alloys. These implants are used to provide mechanical support during 

healing and fixation of broken bones. The benefit of using metallic materials compared to 

ceramics and polymeric materials is to have high mechanical strength and fracture 

toughness simultaneously (4). In 1878, Mg alloys were suggested as biomaterial in the 

shape of load-bearing implants for the first time (19). Permanent (non-degradable) 

materials such as stainless steels and titanium alloys were mostly used for these 

applications previously. To prevent osteopenia (i.e., decrease in the bone mineral density) 

resulted from long-term stress shielding, it is recommended to remove the material after 

recovery. A second surgery increases the risks and expenses for the patient. To avoid the 

health and financial costs, degradable materials such as Mg and Mg alloys were 

recommended (33). In addition, as addressed before, the mechanical properties of Mg and 

its alloys are similar to those of natural bone tissue material, which make Mg suitable for 

orthopedic applications (34). The orthopedic implant can be in different shapes such as 

plate, rod, or screw, as shown in Fig.2. 1. 
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Fig.2. 1 Mg based orthopedic implants (35) 

 The most essential requirement for a degradable implant is to provide sufficient 

mechanical support during healing. As the healing proceeds, the thickness of implant 

decreases and the bone grows, and due to this decrease in implant thickness, the 

mechanical stability drops. Considering this, selection of the initial thickness of the 

implants is critical. Higher thickness (larger volume) of materials will be needed in a 

highly corrosive media, but depending on the site of implantation, changing the size of 

implant thickness is not always possible (33). Fig.2.2 shows an image of implanted screw 

in the body illustrating the thread of the screw located in the hip and the head in contact 

with the soft tissue. In the figure, the hydroxide layer on the head is represented by white 

arrows which is thicker than the layer with the black arrow, emphasizing that the harder 

tissue around the thread slows down the corrosion rate while the material in contact with 

soft tissue corrode faster (36).  
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Fig.2. 2 different corrosion behavior for the screw depending on the implantation site (36) 

1.3 Other applications 

 There are several other possibilities of using Mg-based materials in biomedical 

applications. Nerve guidance conduits (NGC) are another example. This device is 

effective for injuries with more than 5 mm gap to mechanically support the axonal 

spouting between nerves. Also it has been reported that during corrosion, ions such as 

Mg2+ and SO4
2- form, and they result in the formation of MgSO4, which can functions as 

a neuroprotective agent (37). 

2. Degradation Mechanisms of Mg and Mg Alloys 

 As it was mentioned before, controlling the corrosion rate after implantation in 

the body is the most important and challenging issue with applying Mg as a biomaterial. 

Corrosion of Mg generally is described by the two mechanisms, i.e., hydrolysis and 

galvanic corrosion. In the following sub-sections, different types of corrosion 

mechanisms in Mg/Mg alloys are discussed. 
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2.1 Hydrolysis 

 Previous studies show that for all Mg alloys regardless of the corrosion types and 

compositions, the corrosion attack in aqueous environment can be described by the 

reaction given in Eq.2.1 (3; 38). 

Mg + 2H2O → Mg (OH) 2 + H2                                                                                Eq.2.1 

The overall reaction consists of these partial reactions: 

Mg → Mg2+ + 2e- (anodic reaction)                                                                          Eq.2.2 

2H2O + 2e- → H2 + 2OH- (cathodic reaction)                                                           Eq.2.3 

Mg2+ + 2OH- → Mg (OH)2 (product formation)                                                       Eq.2.4 

 The overall reaction only considers the pure Mg systems (without any alloying 

elements). Song et al. (39) showed that during anodic dissolution on Mg-Al-Zn alloys, 

Mg is the main metallic element participating in the reaction, although the influence of 

alloying elements on the corrosion behavior of the alloy cannot be neglected. In general, 

therefore, the above four reactions are widely used to describe the hydrolysis corrosion 

process. However, when the thermodynamics of corrosion for Mg is considered, a 

difference between theoretical and actual standard potential values is observed, and this 

difference can be explained by the formation of a passive film consists of Mg(OH)2 or 

MgO on the surface of the material. These films may contain some chlorides. When pH is 

greater than 9, a thick film of Mg(OH)2 forms on top of the inner film and protects the 

metal from corrosion. The formation of this film can be described through Pourbaix 

diagram, the potential-pH diagram depicted in (40). This diagram shows that the region 

of immunity is much lower than the water stability region resulting in the evolution of 
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hydrogen (H2) with dissolution in neutral and low pH conditions. In addition, it is seen 

that the passivation occurs by formation of Mg (OH) 2. 

  

Fig.2. 3 Pourbaix potenial-pH diagram (40) 

 However, this diagram shown in Fig.2.3 is not complete due to lack of some other 

thermodynamic data for Mg(OH)2 and Mg+. To complement such deficiency, Perrault 

modified the diagram of Fig.2.3 and considered the formation of Mg+ and some other 

components during the corrosion. The modified potential-pH diagram by Perrault’s is 

shown in Fig.2.4 (41). Involving MgH2 and Mg+ in the mechanism, Perrault showed that 

a thermodynamic equilibrium does not occur for Mg electrode in contact with an aqueous 

solution. Fig.2.4 exhibits the potential and pH ranges where the different corrosion 

products are stable taking to account the formation of Mg+ (42). Fig.2.3 (a) shows the 

Mg-H2O system in the presence of H2. As observed in Fig.2.4 (a), the formation of Mg+ 

intermediate ion is apparent in a wide range of pH. The Immunity region is right below 
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the region of Mg+ stability. From Fig.2.3 (b), when the hydrogen over potential is equal 

to 1 V, for the pH greater than 5 (point c), an equilibrium with existence of hydride is 

expected. In this case, the formation of a cathodic film is probable in the Mg electrode 

containing Mg(OH)2 and MgH2 (41). Eq.2.5-12 show relative reactions for each part of 

these two diagrams (3).  

 

Fig.2. 4 (a) Perrault's Pourbaix diagram equilibrium in the Mg-H2O system in the presence of H2 molecules 

(b) Range of stability for components containing Mg (41) 

2H++2e-→H2, E=-0.0592 pH                                                                                   Eq.2. 5 

MgH2→Mg2++H2+2e- , E0=-2.186V (NHE) (normal hydrogen electrode)             Eq.2. 6 

MgH2+2OH-→Mg (OH) 2+H2+2e-, E0=-2.512V (NHE)                                         Eq.2. 7 

Mg2+ +2OH- → Mg (OH)2                                                                                       Eq.2. 8 

Mg+→ Mg2++ e-, E0=-2.067V (NHE)                                                                      Eq.2. 9 

Mg++2OH-→ Mg (OH) 2+e-, E0=-1.065V (NHE)                                                   Eq.2. 10 

Mg++2OH-→ Mg (OH) 2+2H++ e-, E0=-1.065V (NHE)                                         Eq.2. 11 

MgH2→ Mg++H2+e-, E0=-2.304V (NHE)                                                               Eq.2. 12                                 
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 Experiments by Song et al. (43) on the anodic dissolution of Mg in MgCl2 and 

MgSO4 solutions showed that the intermediate ion Mg+ can form in the primary step of 

the corrosion in the absence of a protective film. After the corrosion is developed, the 

intermediate species would react with the water and the products of this reaction are H2 

and Mg2+. It should be noted that the intermediate ion Mg+ forms only in the film free 

surfaces (3). 

 

Fig.2. 5 Summary of some of the initial steps of corrosion under cell culture conditions (44) 

 The corrosion process in a biological environment occurs through several steps as 

illustrated in Fig.2.5, and it can be summarized as: 

1. Release of Mg ions to the corrosion media and formation of Mg(OH)2 caused by 

contact of the water molecules with Mg. 

2. The Mg ions can interact with some species such as CO2 in blood or form a 

deposition on the surface such as MgCO3. 

3. The corrosion slows down due to the formation of the passive layer on the 

surface. At this level, the interaction between amino acids and proteins takes 

place, which results in the formation of a less dense, second layer.  
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4. In the final step, the environment around the metallic Mg is shielded by two 

previously formed layers that would enable the cell to grow on the material. 

Biomineralization also occurs due to the insertion of Ca, and the possible products 

would be Ca3(PO4)2  and Ca5(PO4)3. In the figure, X represents OH and/or Cl 

(44). 

2.2 Micro-galvanic corrosion 

 Galvanic corrosion is another primary mechanism to account for the corrosion of 

metallic materials. It occurs when two dissimilar metals are coupled in an electrolyte. 

Similar condition applies in a micro-scale to the alloy when two different phases with 

different corrosion resistances coexist and one of them corrodes preferentially to another. 

As an example, because metals with low hydrogen overvoltage (e.g., Ni, Fe, and Cu) 

create efficient cathodic sites for Mg, they can easily cause galvanic corrosion. On the 

other hand, metals with high hydrogen overvoltage (e.g., Al, Zn) are relatively less 

damaging with reference to the degree of galvanic corrosion. This galvanic corrosion is 

influenced by several parameters; high conductivity of media, large potential difference 

between anode and cathode, large area ratio of cathode to anode and small distance from 

anode to cathode are the parameters enhancing the rate and degree of galvanic corrosion 

(3). 

 Song et al. (39) showed that the α-matrix (Mg-rich solid solution) in the absence 

of β-phase (Mg17Al12), initially undergoes a uniform oxidation and then after a few 

minutes the uniform corrosion is altered to pitting corrosion. Fig.2.6 illustrates 

schematically how micro and macro galvanic corrosion take place in Mg alloys. In 

Fig.2.6 (a) shows that the connection of an external metal with a higher potential forms a 



22 
 

 

galvanic cell and the potential difference between two metals would cause a galvanic 

effect. Fig.2.6 (b) describes an example of a micro-galvanic corrosion. In this case, the 

precipitated secondary phases play the role of the cathode and the Mg in the α-phase 

oxidizes as the anode of the galvanic cell (13). 

 

Fig. 2. 6 (a) Macro-galvanic corrosion, and (b) Micro-galvanic corrosion (13) 

As mentioned earlier, the second phases form due to the presence of different 

alloying elements. These phases ordinarily have higher corrosion resistance compared to 

pure Mg (38). Table2.4 summarizes the corrosion potential of the intermetallic 

compounds existing in Mg alloys. From the table, it is clearly seen that the pure Mg has 

an anodic role and the seconadary phases are the cathode. Among these compounds, 

Mg17Al12 (β) phase is the most frequently observed secondary phase that accelerates the 

corrosion rate by serving strong cathodic areas (45). 

Table2.4 Corrosion potential of Mg and common secondary phases containing Mg after 2 hours in 

deaerated 5% NaCl solution saturated with Mg (OH)2 (pH equal to 10.5) (38) 

Metal Ecorr, VSCE 

Mg -1.65 
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Mg2Si -1.65 

Al6Mn -1.52 

Al4Mn -1.45 

Al8Mn5 -1.25 

Mg17Al12 (β) -1.20 

Al8Mn5 (Fe) -1.20 

Beta-Mn -1.17 

Al4MM -1.15 

Al6Mn(Fe) -1.10 

Al6(MnFe) -1.00 

Al3Fe(Mn) -0.95 

Al3Fe -1.74 

 

 In an overall view, the corrosion behavior of the Mg alloy is strongly dependent 

upon the composition of the alloy. The chart presented in Fig.2.8 shows the corrosion rate 

and corrosion type for different Mg alloys (9). In the chart, the symbol (G) stands for the 

general corrosion, (P) describes the pitting corrosion, and (X) refers to extremely 

localized corrosion, respectively. The detailed effect of different alloying elements will 

be discussed in this chapter, section 3.1.  
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Fig.2. 7 Experimentally determined corrosion rate for Mg alloys at the temperature of 37˚C in Minimum 

Essential Medium (13) 

2.3 Negative difference effect (NDE) 

 During its corrosion process, Mg shows a strange behavior known as negative 

difference effect (NDE). NDE is described by an extremely high H2 evolution rate with 

the applied potential. On the contrary, for most of metals, H2 evolution decreases with 

increasing the applied potential. In this process, the current density increases in several 

orders of magnitude by a small differentiation of the potential above the threshold 

potential (3; 38; 46; 47; 48). Fig.2.9 presents the relationship between the potential and 

the current for corrosion of Mg. The solid lines in Fig.2.9 represent the cathodic and 

anodic partial reactions, Ic and Ia, respectively. It is assumed that the both cathodic and 

anodic parts obey the Tafel kinetic given in Eq.2.13. 

                                                                                         Eq.2. 13 
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 where n is the number of electrons involved in the reaction, F is the Faraday 

constant overpotential, k is the rate constant of the electrode reaction, α is the charge 

transfer coefficient, R is the universal gas constant, T is the absolute temperature and i is 

the current density. And, the plus and minus signs in the equation represent the anodic 

and cathodic reactions, respectively, 

 The corrosion rate for anode increases and the corrosion rate of the cathode 

decreases by increasing the current density in normal condition of corrosion for typical 

metals such as Fe, Zn, and etc. However, the behavior of Mg described by the potential 

difference graph in (49) Fig.2.9 shows an opposite trend. Dash lines in Fig.2.9 denoted by 

IMg and IH indicate the Mg dissolution and H2 evolution, respectively. For an applied 

potential of Eapp, the hydrogen corrosion rate is given by IH,m and the corrosion rate of Mg 

is represented by Img,m . The value of Δ is negative for Mg corrosion, where Δ= I0 – IH,m  

and I0 is the spontaneous H2 evolution rate (HER) at the corrosion potential. NDE is a 

polarization phenomenon that occurs when Δ<0. But, this definition has some 

deficiencies; it does not cover HER behavior when the external applied current is 

cathodic. If the HER in cathodic region is always higher than their corresponding anodic 

HER, most of the normal electrodes with “positive difference effect” will show NDE (3; 

38). To eliminate the defects of previous definition, a new definition has been suggested 

to describe NDE in both anodic and cathodic regions as Δ= (I0- Ic) I /│I│(3). 
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Fig.2.8 negative difference effects for Mg corrosion (49) 

3. Factors impacting degradation of Mg alloys 

3.1 Alloying materials 

 There are many other elements that can be added in Mg alloys. According to 

ASTM nomenclature principles of Mg alloys, 22 alloying elements have been used to 

enhance the properties of pure Mg, including Al, Bi, Cu, Cd, Fe, Th, Sr, Zr, Li, Mn, Ni, 

Pb, Ag, Cr, Si, Sn, Gd, Y, Ca, Sb, Zn and RE. These elements are generally categorized 

into 5 groups. The first group contains Fe, Cu, Ni, and Co elements that cause the high 

corrosion rate even in low concentrations. The second group elements are toxic metals 

including Pb, Cd, and Th. The third group belongs to nutrient elements in human such as 

Ca, Mn, Zn, Sn, Cr, and Si. The next group contains nutrient elements found in plants and 

animal including Al, Li, Ag, Sr, and Zr, and the last group contains other elements such 

as Sb, Gd, Y, and RE (rare-earth elements). If the additional element has a detrimental 

effect on Mg corrosion, it is considered as an impurity. Most of the impurities have a 

slight effect under specific concentration considering their tolerance limit. At impurity 
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concentrations above tolerance limit, the corrosion rate would accelerate. The graph in 

Fig.2.9 (3) shows the tolerance level of different alloying elements when they are 

combined with Mg. 

 

Fig.2. 9 Corrosion rate for binary alloys exposed during 16 weeks to immersion in 3% NaCl (30 s in 

solution; 2 min in air). Where Mdd is milli gram deci meter square per day (3) 

3.1.1 Nutrient elements in human (Ca, Mn, and Zn) 

 Ca is one of the required elements in the body and is essential for chemical 

signaling within cells. Mg-Ca alloy density is close to bone which facilitates the 

incorporation of calcium to the bone. An Mg-Ca alloy with the composition of Mg-0.5Ca 

has been reported to be an acceptable alloy for biomedical implants due to the high 

corrosion resistance and low degradation rate (12; 13; 50). Hassel et al. (51) showed the 

improvement of mechanical and corrosion properties of Mg in NaCl solution by adding 

Ca. On the other hand, by addition of Ca, Mg2Ca intermetallic phase formation is more 

probable. Kirkland et al. (52) reported that the newly formed phase is a stronger anode 

and more electrochemically active compared to α-Mg because of its chemistry, crystal 
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structure, and also the Pilling-Bedworth ratio (PBR) ≤1. Here, PBR is the volume of the 

elementary cell of the metal oxide divided by the volume of the elementary cell of the 

corresponding metal. This ratio basically indicates the tendency of the metal to passivate. 

If this ratio is less than one the coating layer is too thin that breaks and provides no 

protection. The values for a and c in hexagonal Mg are 0.32093 and 0.52107, 

respectively, whilst Mg2Ca has a and c value of 0.623 and 1.012, respectively (greater 

than those of pure Mg). Ca increases the corrosion resistance of alloy but by passing the 

tolerance level the amount of Mg2Ca phase increases so the anodic surface area ratio on 

the Mg matrix augments and the H2 evolution rate increases, which can lead to a higher 

corrosion rate. Therefore, proper control of Mg2Ca phase distribution will lead to 

improvement of corrosion resistance of the alloy (53; 54). 

 Mn is one of the tolerable elements in the body and it shows no toxic effect except 

after extreme exposure. The highest tolerable value for avoiding toxicity for Mn is 

1.8±0.5 µM/L in binary Mg alloys, but other alloying elements such as Zn can aid to 

overcome this limitation; for instance, it was observed that an Mg-Mn-Zn alloy shows an 

acceptable behavior in vivo (12). Mn also demonstrates positive effect on the mechanical 

property of the alloy by refining the grains. The saltwater corrosion resistance of the alloy 

is possible by the support of the protective brucite layer with formation of manganese 

oxide (MgO) and its incorporation with Mg(OH)2. Mn also eliminates the destructive 

effect of Fe and Ni; in these cases the Fe-Mn ratio is more critical rather than the absolute 

value of the Mg content. The tolerable value for this ratio is 0.032. 

 Zn in smaller amounts is tolerable and it increases the strength of the alloy due to 

solid solution strengthening (55; 56). Zn also decreases the harmful effect of Fe and Ni 
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on the corrosion of the alloy, but at the same time the hydroxide layer of this element is 

not stable (57). The most effective influence of zinc in the alloys modification is due to 

incorporation with other alloying elements such as Al, Ca and P. For concentrations 

higher than 2 wt% in combination with Al, it was found that Zn can lead to an 

embrittlement of the alloy (58). Formation of a protective layer of Zn3(PO4)2 has been 

reported in the case of resolving of Mg-Zn-Mn alloy in Hank’s solution (59; 60; 61). The 

combination of Ca and Zn modifies the degradation behavior of the alloy, but in presence 

of Ca3(PO4)2 for higher than 2 wt% Zn, there is a chance for cytotoxicity (62). 

3.1.2 Nutrient elements found in plants and animal (Al) 

 One of the most common alloying elements added to Mg is Al. There are 

numerous documentations to show that addition of Al to Mg alloys increases their 

corrosion resistance (49; 63; 64). The stabilization of the protective Mg(OH)2 layer in the 

media containing Cl- has been reported (8). The decrease in the corrosion rate is 

considerably rapid by addition of up to 4% Al and the rate would decrease modestly 

between 4 to 9%. Al is partially soluble in Mg alloys and also precipitates as Mg17Al12 in 

the grain boundaries forming a lamellar or a continuous structure. In some cases, other 

precipitations such as Mg2Al3(Mg5Al8) form. Mg17Al12 is more corrosion resistant than 

pure Mg. Although the Mg(OH)2 and MgO layers on the surface of Mg alloy are 

protective, they can be easily cracked. Mg17Al12 acts as a corrosion barrier and improves 

the corrosion behavior of the alloy compared to the pure Mg. 

  On the other hand, Al can cause a negative effect on the corrosion resistance of 

Mg alloy by decreasing the tolerance limit of Fe from 170 wt- ppm to 20 wt-ppm. This 

trend in the Fe tolerance limit appears to be consistent with the formation of a passive Fe-
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Mn-Al intermetallic phase during solidification. In addition, Al can have different 

influences depending on its concentration. The Al-rich zones adjusted to the precipitates 

are more corrosion resistant than Al-depleted bulk matrix (3; 48). If the alloy contains 

both Al and Mn, the formation of intermetallic components can extract Fe from the alloy 

and modify the corrosion behavior of the alloy. Song et al. (49) observed a decrease in 

the corrosion rate of the alloys with Al concentration in the range of 2-9 wt% in 5% NaCl 

solution media. The most important concern in application of Mg alloys containing Al is 

the poor biocompatibility of Al. the combination of Al+3 ions with inorganic phosphates 

causes lack of PO4
3- in the body and leads to neurological disorders such as dementia, 

senile dementia and Alzheimer’s disease (12; 65). Due to the toxic effect of Al, 

elimination of this element in implants biomaterials has been sometimes suggested (10). 

3.1.3 Other elements (Sb, Gd, Y, and RE) 

 Compounds of Sb, Gd, Y, and RE elements with Mg have not been mentioned to 

be essential for the body, and also they are not found in the body. RE ions form pores in 

the red blood cells even in low concentration and cause hemolytic effect which is the 

rupture of red blood cells and release of their contented to the surrounding area. In 

addition, RE elements can produce colloid in the blood but the colloidal components can 

be eliminated from the body by the phagocytic cells of liver and spleen. This group of 

alloying elements is not highly toxic and had been used to cure cancer and synovitis, still 

more studies are needed to discover the degree of toxicity of these elements (12). Y is 

one of the most frequently used RE alloying elements. Y increases the value of the 

corrosion potential (Ecorr) and decreases the value of anodic current density, hence, it 

causes the reduction in the corrosion rate of the alloy. In the solid solution case, the 
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passive film thickness increases which seem to be more protective. Presence of Y in the 

surface composition causes the formation of a more protective layer (13; 50; 66). 

Although the formation of intermetallic phases such as Mg24Y5 increases the chance of 

micro-galvanic and filform corrosion (i.e., a form of corrosion that occurs under the 

coating and appears as a thread-like filament), but there are evidences that the surface 

film protection is high and the film retards the corrosion for a range of concentration of Y 

up to 3-7 wt%. Additionally, the formation of RE oxide film is known to be responsible 

for the passivation in alloys containing Y and Nd, also, Y has standard electrochemical 

potential equal to that of Mg (-2.372 V for both) (13; 66; 67; 68). 

3.2 Microstructures 

 Previous experiments on Mg alloys emphasize on the effect of microstructure on 

corrosion behavior of Mg alloys (69; 70). Formation of secondary phases, grain size, and 

crystallographic orientation are features that influence the corrosion behavior of the alloy. 

3.2.1 Formation of the secondary phases 

When intermetallic compounds are adhesive enough to isolate the surface from 

corrosive media and if they have higher cathodic reaction activity compared with the 

matrix, they can function as corrosion barrier and protect the alloy surface against the 

corrosive media. On the other hand, formation of secondary phases increases the chance 

of galvanic corrosion. The protection by the surface film is strongly dependent on its 

homogeneity. If the protective film breaks down, due to the contact of the surface with 

the destructive media the corrosion accelerates. The second phase in the shape of small 

particles provides cathodic sites and increases the corrosion rate; for instance, even 

though the β-phase in AZ91 (Mg17Al12) has small size and homogeneous distribution, the 
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combination of solid solution matrix and secondary phase creates micro-galvanic cells 

and speeds up the corrosion (69; 71). In general, the presence of the second phases causes 

the acceleration of the corrosion rate in most of the Mg alloys such as AZ91 and ZE41. 

The formation of micro-galvanic cells between the matrix and intermetallic phases such 

as Mg12Ce, Mg12La and Mg3Nd is responsible for this high rate (11). 

3.2.2 Grain size effect 

Grain boundaries are defects in crystal structure. Due to the high concentration of 

dislocations (imperfection in crystal structure) and because of their high internal energy, 

grain boundaries often offer low corrosion resistance. Segregation of the alloying element 

in the grain depending on the alloying element type, and the solidification rate decreases 

the stability of the grain boundary. However, as for the segregation, the small grain 

structure is preferred because of less composition gradient. The combination of grain 

refining process and secondary phases (β phase) formation in some cases provides 

continuous and homogeneous precipitates around the finer solid solution of Mg and 

alloying elements (α phase). This may protects the alloy from pitting corrosion (13; 71). 

In general, to increase the corrosion resistance in the alloy due to the presence of grain 

boundaries and also to avoid great composition gradient inside the grain, the size of the 

grains should be optimized. 

3.2.3 Crystallographic orientation 

It is well understood that the crystallographic orientation and therefore the 

packing density of atoms on the surface is important to describe the corrosion behavior 

(72); a loosely packed crystallographic plane shows higher tendency for dissolution of 

metallic ions compare to densely packed planes. This variation in corrosion behavior is 
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due to the difference in atomic coordination and binding energies in unlike 

crystallographic orientations (73). For both of pure Mg or Mg alloys, the atomic density 

appears to have influence on the surface energy and accordingly on the corrosion rate of 

the alloy. Figs.2.11 (a) and (b) show the crystallographic orientation and Fig. 2.11 (c) 

shows corrosion behavior of AZ31 Mg alloy with two different surface orientations (70). 

From figures, it is clearly observed that the basal plane (0001) (i.e., crystallographic 

orientation of the rolled surface (RS)) is much more resistant to the corrosive media than 

the other surface comprised of the combination of  and  planes (70). The 

result of experimental work by Liu et al. (73) emphasizes on the stability of the basal 

plane by measuring the depth of corrosion in different grains. Calculating the surface 

energies of these planes clarified that surfaces with lower surface energy are more stable 

(70; 73; 74).  

 

(a) RS (b) CS 
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Fig.2.10 Crystallographic orientation and immersion corrosion behavior (a) rolling surface with dominant 

crystallographic orientation of (0001) basal plane, (b) cross-section surface with crystallographic 

orientation of  and , and (c) immersion result (70) 

3.3 Corrosion media 

Different environmental conditions affect the corrosion rate of the Mg alloys. For 

example, Mg is nearly resistant to alkaline media. For pHs higher than 10.5 that 

corresponds to saturated Mg(OH)2, the corrosion resistant Mg(OH)2 barrier protects the 

alloy from corrosion. NaCl solution attacks Mg alloys has a slow rate (13; 39), while Cl- 

ions encourage corrosion in an aqueous neutral environment and even may break the thin 

protective hydroxide layer. The corrosion attack by SO4
2- , NO3

- , or PO4
3-ions seems to 

be less destructive compared to Cl- (43; 75). Some ions existing in the media such as 

fluoride have beneficial influence on the corrosion behavior of the Mg and provide 

corrosion resistant surface film on the alloy (34; 76). The dominant physiological 

characteristics of the body have been summarized in Table 2.1. 

Even though the pH of the body fluid including blood, intercellular liquid, and cells’ 

liquid are about 7, and they show buffered solution behavior, in some cases, the pH of the 

sites close to the implants drops to acidic pH (16). Oteyaka et al. (77), reported that in the 

(C) Immersion 

result 
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presence of Cl- ions, the corrosion potential stops from increasing after 30 min and 

becomes constant caused by several phenomena called constant process of breakdown 

and repair of the passivation. In these phenomena the Cl- ions interrupt the formation of 

the protective film and delay the production of the surface layer. In addition, the 

dissolved oxygen in the blood makes the media more corrosive (17).  

4. Efforts to Improve Corrosion of Mg Alloys 

 In this section, we will introduce the recent efforts exerted to pure Mg to improve 

its corrosion behavior. Corrosion properties of the most common Mg alloys will be 

discussed and different forms of microstructure modifications will be suggested in this 

section. 

4.1 Alloying 

 As it was mentioned in section 3.1, adding some alloying elements to pure Mg 

improves the mechanical properties and corrosion behavior. These effects will be 

discussed for commercially used Mg alloys in this subsection. 

4.1.1 WE43 

WE43 with composition of 4% Y, 2.25% Nd, and 0.15%Zr, and remaining Mg 

offers high mechanical properties combined with slow corrosion rate and low density. 

Although intermetallic components such as Mg24Y5 and Mg12Nd can function as cathodic 

sites and cause galvanic corrosion (12), Kalb et al. (78) reported that the chromatography 

of free Mg2+ shows less ion release for WE43 compared to pure Mg, which verifies the 

high corrosion resistance of this alloy. Due to its reasonable corrosion rate and high 
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biocompatibility, WE43 is applicable in biomedical devices such as bone fracture 

implants and Coronary stent (2; 11; 79).  

4.1.2 AZ91 

AZ91 has the composition of 90.04% Mg, 9.0% Al, 0.7% Zn, 0.04% Si, 0.22% 

Mn, and less than 0.02% of Cu, Fe, and Be. Even though the existence of intermetallic 

components in the composition of the alloy increases the risk of galvanic corrosion, 

depending on the size and distribution of the secondary phase particles, the galvanic 

corrosion may be avoided. For instance, AZ91 containing Al and Zn as main alloying 

elements provide tolerable corrosion resistance due to the formation of Mg17Al12 and 

Mg4Al3 in the shape of a non-porous protective layer (12; 39; 80). In vivo tests by Witte 

et al. (8) on AZ91 clarified that this alloy shows biocompatibility in the body. They 

suggested, although AZ91 contains 9% Al, but due to the low corrosion rate of the alloy, 

the existing amount of Al for a short length of time does not exceed the tolerance level. 

4.1.3 AZ31 

AZ31 has 96.23% Mg, 2.51% Al, 1.03% Zn, 0.2% Mn, 0.02 Si and less than 

0.01% Cu, Ni and Fe. The low amount of alloying elements in AZ31 causes acceptable 

biocompatibility of this alloy. AZ31 is a good candidate for bone implant and 

biodegradable stent applications. In addition, due to small amount of secondary phases 

distributed in the structure, the alloy is considered almost single phase and shows 

negligible micro-galvanic coupling. Although formation of intermetallic corrosion barrier 

is not expected in AZ31, the hydroxide layer is still probable to form and protect the alloy 

(70; 81; 82).  
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4.1.4 MgCa0.8 

 Investigating corrosion behavior of Mg with different amount of Ca shows that 

the alloy containing 0.6-0.8 wt% Ca has the highest corrosion resistance (83; 84). 

MgCa0.8 is a binary alloy of Mg with high biocompatibility, reasonable degradation rate 

and acceptable mechanical behavior. This alloy is candidate for implant applications such 

as bone screws and cardiovascular stent (84; 85). In addition to improving corrosion 

behavior, Ca causes grain refinement and enhancement of mechanical behavior of the 

alloy. 

4.2 Microstructure 

 Altering the microstructure of the alloy, minimizing the grain boundaries and 

phase separations, or reproducing the porous structure of the natural bone to increase the 

similarity with the body tissue might be effective to get better mechanical or corrosion 

behavior from the alloy.  

4.2.1 Porous structure  

 Different methods have been used to produce porous structure in Mg alloy 

including powder metallurgy (86), casting in negative salt pattern molding process (87), 

thermal decomposition of pine wood using unidirection solidification (88), and 

supersaturating the melt with hydrogen and unidirectional upward solidification (89). 

The experimental work by Capek et al. (86) on Mg based porous materials for scaffold 

application produced by powder metallurgy showed lower corrosion resistance due to 

more contact area as a result of penetration of the corrosive media into the porous 

structure. The advantage of this structure is its close mechanical properties to the bone 

material. In another experiment, Witte et al. (87) used moistened NaCl to generate 
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negative salt pattern and casted the AZ91D Mg alloy. Fig.2.12 shows a scheme of their 

work. In part (a) of this image, the porous structure of the implant is obvious, the red 

rectangular in the right knee is the inserted cylinder implanted into the bonehole via a 

special pestle which has been shown in part (b). The Mg scaffold and the autologous 

bone implant site have been shown in part (c) and (d) of Fig.2.12, respectively. They 

concluded even with fast degradation rate of the porous Mg alloy, the material seems to 

be appropriate for biomedical applications due to elimination of the hydrogen evolution 

and no report for clinical infection. In another experiment by Gu et al. (89), the porous 

implants produced by the saturated melt with hydrogen and unidirectional solidification 

of pure Mg showed slower corrosion rate and better mechanical behavior compared to the 

compact pure Mg. 

 

Fig.2. 11 Cylandrical implants of AZ91D magnesium alloy (87). 
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4.2.2 Amorphous microstructure  

 Another way to ameliorate the corrosion behavior of Mg alloys is avoiding 

composition gradient and phase variation by formation of single phase amorphous 

structure (i.e., metallic glass). The amorphous structure of the alloy has a metastable 

phase with some tendency to crystallize. Rapid solidification is a method to produce a 

non-crystalline structure. The alloy with amorphous structure dissolves faster at the 

beginning of the corrosion process due to its higher corrosion activity, but as the anodic 

polarization potential increases, there is only one phase existing in the structure, 

therefore, galvanic corrosion is not expected to occur (90; 91). 

 Metallic glasses containing alloying elements such as Zn, Ca and Pd, show 

acceptable biocompatibility and moderated corrosion rate. Zberg et al. (90) reported that 

increasing the amount of Zn content of the Mg60+xZn35-xCa5 where ( ) improves 

corrosion protection of the biodegradable material by formation of a protective corrosion 

barrier. Gu et al. (91) emphasized on the promising behavior of Mg-Zn-Ca bulk metallic 

glasses in biomedical applications due to the single phase structure produced after 

solidification.  

4.2.3 Coating and surface modification 

 Preventing the direct contact of the corrosive media with the metal and applying 

some barrier between the media and the implant may be effective to delay the initiation 

of the corrosion reaction (92). The first method of coating, known as chemical protection, 

is provided by removing the primary non protective oxide layer and producing a 

protective layer with strong chemical bonding between the surface film and the alloy. 

Etching the surface with some acids such as phosphoric acid causes the adhesive 
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corrosion resistance layer of Mg3(PO4)2 to form. This film stops the corrosion reaction 

from progressing (93). Fluoride treatment is another useful method that takes advantage 

of formation of homogenous MgF2 film. This layer is dense and does not dissolve in 

water easily (94). Other methods categorized as chemical processing include electron 

beam treatment, anodizing coating, and ion implantation (92). 

 Coating with organic polymers such as poly (lactide-co-glycolide) (PLGA) (95), 

polycaprolactone (PCL) (96), or apatite coatings, including hydroxyapatite (HA, 

Ca10(PO4)6(OH)2) (97) does not involve chemical bounding between the coating and the 

surface of the alloy. This group of coatings is known as physical coating. Combining 

physical and chemical methods has been recommended to gain a higher protection on the 

alloy. For instance, the protective behavior for combination of micro-arc oxidation 

(MAO) and poly-L lactic acid (PLLA) has been shown on WE42 alloy (92). 
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Chapter 3: Density Functional Theory (DFT) Model Development 

 Computations using the density-functional theory (DFT) have become a common 

tool for many-body problems in atomic and molecular solid state applications. It is used 

to calculate properties such as equilibrium geometries, activation energies, and reaction 

energies. In this chapter, we will briefly discuss the general theory and background about 

DFT. We will also define some important concepts in DFT. Then some previous 

examples of DFT calculations related to the current thesis will be introduced. 

1. Density functional theories (DFT) 

1.1 DFT: general 

 DFT is a method in quantum mechanical modeling that studies the behavior of the 

material by solving the Schrödinger equation (SE) and finding the ground state of the 

system. Ground state is defined as the state in which the system has the lowest possible 

energy. On the other hand, the excited state of a quantum mechanical system is any state 

that has energy greater than the ground state. This DFT theory applies to many-body 

systems and considers the interaction between electrons and nuclei (98). The ground state 

can be found by solving SE, which is a partial differential equation that describes the 

behavior of the quantum state of a physical system. This equation may be independent or 

dependent on time, and it has the general form of Eq.3.1.  

                                                                                         Eq.3. 1  
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 This function describes the position of electron. In Eq.3.1,  is the wave function 

that represents the behavior of the electron. In time dependent case,  is replaced by  

which is a function of time and position. And, m is the (rest) mass of electron, the reduce 

Planck constant  , where h is the Planck constant (6.626×10-34 m2kg/s), and E is 

the total energy that provides the allowed values for the energy of the system, which is 

typically defined as the sum of kinetic ( ) and potential energy (V) as Eq.3.2. 

                                                                                                              Eq.3. 2 

 In any atomistic and/or molecular type of computations, the background theory 

can be based on ab initio or semiempirical potentials. The ab initio type of methods does 

not use any extrapolated and/or interpolated data, or any empirical data. However, the 

semiempirical approach fits the approximation function calculations with the data from 

the system. Therefore, they are only accurate if the fitted data is similar to the exact data 

for the system. The pure ab initio DFT approximation is suitable for public users that use 

commercial packages but not ideal for software developers because it does not provide 

enough space for creativity. On the other hand, the semiempirical methods offer enough 

room for “anything that works”, but, at the same time, the accuracy decreases by using 

these approximations. In general, all the practical computations are partly ab initio and 

partly empirical. In the following section, different ab initio and semiempirical DFT 

functionals and their applications will be discussed (99). 
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1.2 Parameters for DFT 

 For better understanding of DFT, some fundamental parameters need to be 

identified. In this section, we briefly introduce some required concepts, general principles 

of DFT, and some developments on the proposed solutions for SE. 

 Hartree-Fock (HF) approximation is a primitive solution for many-electron 

theory. This calculation finds the best spin orbitals to the ground state that minimize the 

electronic energy (100). On the other hand, Born-Oppenheimer approximation suggests 

that to solve the SE the Hamiltonian ( ) and the total energy (E) of the system must be 

identical as in Eq.3.3, where  represents the eigenvalues or eigenfunctions for the 

system (i.e., values of energy that provide certain solution for the SE). 

                                                                                                             Eq. 3. 3 

 Following the quantum mechanical researches since 1920’s, Hohenberg and Kohn 

(101) developed their model to describe the behavior and distribution of electrons in the 

material. They suggested that the mutual Coulomb repulsion and external potential, , 

provide a Hamiltonian which is the operator for the energy of the system in quantum 

mechanics and is defined as a functional containing the kinetic energy (T), the interaction 

with the external potential which is the interaction of electrons with the nuclei (V), and 

the electron-electron interaction (U) as it is given in Eqs.3.4-8. 

                              Eq.3. 4 

                                                                                             Eq.3. 5 

                                                                                             Eq.3. 6 
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                                                              Eq.3. 7  

                                                                                        Eq.3. 8 

 Where r is the particle’s coordinate, and is the state of the electron and 

is the complex conjugate of , and they are related through Eq.3.9, showing the 

probability of finding a particle in space is one. 

                                                                                        Eq.3. 9 

 Hohenberg and Kohn reported that the potential  is a unique functional 

of , which is the density of the ground state  They also defined the universal 

functional, , valid for any number of particles and any external potential. As a result 

the energy functional can be expressed as Eq.3.10 given below. They proposed that the 

correct  gives the ground state energy  as given in Eq.3.10 (98; 101). 

                                                                                Eq.3. 10 

1.2.1 Exchange-correlation function 

 In developing the Hohenberg and Kohn theory, two types of electron density 

approximations, i.e., localized and generalized, were considered (102; 103). Based on the 

theory proposed by Kohn and Sham (KS) (104) in real systems such as atoms and 

molecules in solid states, the electronic density is not uniform. The modern KS DFT 

defines self-consistent equations. These equations apply to the condition when orbitals 

have densities identical to the densities of real system (105), which is the basis of 
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developing the idea of local density approximation (LDA) (105). It defines the ground 

state energy of nonuniform electron gas considering a static potential  as Eq.3.11. 

                                                   Eq.3. 11 

 In this equation,  stands for a universal functional of the density. KS defined 

a local approximation for  which directs to the Hartree’s method considering the 

effects of exchange and correlation energy for an interacting system. In this 

approximation, the energy depends only on the density at the specific point where the 

functional has been defined. Considering the exchange correlation energy ( ) 

containing the real space cutoff ( ) and the reciprocal space cutoff ( ), , 

as a function of spin densities, (density of electrons with upward spin) , (density of 

electrons with downward spin), , the exchange local spin density 

 functional can be approximated (i.e., local spin approximation, LSA). 

                                                                       Eq.3. 12 

Eq.3.12 describes the corresponding function for , where  stands 

for the exchange correlation energy per particle of a uniform electron gas. However, it 

was found that the existing LDA underestimates the exchange energy of the system, 

therefore, aiming to improve the deficiencies of LDA theory such as unsuccessful 

respond to rapid changes in electrons density, generalized gradient approximation (GGA) 

was suggested by Perdew et al (103; 106).  

 Because this new functional depends on electron density and its gradient, it 

provides a better solution for the case of inhomogeneous electron densities. In general, it 
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is known that GGA can improve the computational accuracies for total energies, 

atomization energies, structural energy differences, and energy barriers compared to 

LDA. Eq.3.13 defines the exchange correlation energy for the GGA (103). 

                                                                 Eq.3. 13 

 To simplify the practical calculation,  and (i.e., the free energy of 

interacting electrons) must be well-defined. Although GGA in general offer more 

accurate approximations, there are some limitations in it, therefore, a development of 

newer functional was required for more complicated molecules and metals, 

when . Perdew and Wang (107) suggested the PW91 

analytical function to improve GGA calculations. PW91 keeps the positives features of 

LSD while applying to some inhomogeneity effects. However, there are still some 

limitations for PW91 including long complicated derivation that is dependent on 

mathematical details to be carefully defined, and the relationship between parameters are 

not clearly defined. The functional proposed by Perdew, Burke and Ernzerhof (PBE) 

correlation energy functional was the next functional proposed by Perdew et al. (103) to 

simplify the GGA. It is known that this PBE functional is efficient and it produces 

accurate results for structural properties, but it is less accurate for estimating other 

properties (101; 103; 108). Further development of the functional resulted in other 

exchange correlation energies such as B3LYP, meta-GGA, and B2PLYP. B3LYP is a 

hybrid DFT functional that combines GGA with HF. Meta-GGA is a recent version of  

the GGA functional to contain advanced higher derivatives. B2PLYP by Grimme et al. 

(109; 110) is considered as the most advanced functional that can improve the energetic 
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and spectroscopic properties. B2PLYP has not yet been employed in any commercialized 

DFT package, but it is claimed that it has a high potential to be applied for a wide range 

of material systems. 

1.2.2 k-points 

 The calculation of ground state based on KS theory needs some simplifications 

and approximations. The system with electron-electron interactions can be mapped to non 

interacting electron system, and an infinite solid bulk may be considered periodic. 

Consequently, SE can be solved for finite number of electrons. It has been suggested that 

by choosing appropriate supercell the Bloch’s theory may be applied even to aperiodic 

structures such as surfaces. A supercell in DFT consist of the vectors that show the cell 

volume that can be repeated in three dimensions and produces the required crystal 

structure and also the atom positions in the cell (111). Bloch’s theorem states that the 

electrons in a periodic system have the work function as Eq.3.14.  

                                                                                           Eq.3. 14 

 Where a periodic function and k is is the k-point that refers to all the values in 

the first Brillouin zone. The first Brillouin zone is the primitive cell in the reciprocal 

space, and it is given by the volume surrounded by the surfaces with the same distance 

from one element point of the lattice and its neighbors. The reciprocal space in solid-state 

physics stands for the array of reciprocal lattices. Fig.3.1 shows the first Brillouin zone of 

hcp structure (112). Table 3.1 shows the critical points of this structure in reciprocal 

space.  
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Fig.3. 1First Brillouin zone of hexagonal (112) 

Table 3.1 Hexagonal critical parameters 

Sign Defenition 

A Center of a hexagonal face 

 Center of the crystal momentum space 

H Corner point 

K Middle of an edge joining two rectangular faces  

L Middle of an edge joining a hexagonal and rectangular face 

M Center of a rectangular face 

b1, b2, b3 Reciprocal vectors 

 

 In crystallography, reciprocal lattice is the encoded version of the real space by 

Fourier transforms. Eqs.3.15-17 represent the relationship between the real space unit 

vectors, a1, a2, a3, and the reciprocal space unit vectors, b1, b2, and b3. By using the 

relationships in Eqs.3.15-17, it is possible to convert the real space lattice vector ( ) 

defined in Eq.3.18 to reciprocal space lattice vector ( ) in Eq.3.19.  
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                                                                                                 Eq.3. 15 

                                                                                                 Eq.3. 16 

                                                                                                 Eq.3. 17 

 Knowing all these definitions now we are able to define k-point. The k-points 

appear in the wave function of the first Brillouin zone and are defined in Eq.3.19. 

                                                                                           

Eq.3. 18 

                                                                                       Eq.3. 19 

 Where n and x are the integers to produce the linear combination vectors in real 

and reciprocal space, respectively. In DFT, the k-point of each system must be carefully 

selected before performing the computation. As the number of k-point increases, it is in 

general known that the computational accuracy increases whereas the computation time 

increases. The total energy of different structures can be an important parameter to select 

the k-point of each system. To compare the stability of different systems, their total 

energies are computed and compared. In calculating the total energies of systems with 

same crystallographic structures and similar lattice parameters, it is important to apply 

consistent k-point values because the computed results can show some variations 

depending on the selected k-points (113). 
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1.2.3 Pseudo-potentials 

 In quantum mechanics, especially in DFT, considering all of the electrons in the 

computational system by calculating all available Coulombic potential is very expensive. 

When the pseudo-potential calculations are employed, we assume that the change in the 

surrounding atoms does not affect states of the nuclei and the core electrons (i.e., the 

electrons other than the valance electrons). Since valance electrons are the only electrons 

participating in the bonding, the pseudo-potential calculation solves the DFT equations 

based on the modified potential. Although the pseudo-potential does not give the exact 

result compared with the Coulomb potential, it is generally accepted that the plane wave 

basis set can represent both the pseudo-potentials and pseudo-wave functions. Also, there 

are fewer numbers of electronic states that can simplify the solid state calculations (114; 

115). 

1.3 DFT calculations 

 In any DFT calculations for polycrystalline materials, the crystal structure of the 

system must be identified. Then, the crystal structure needs to be optimized so as to be 

adapted to the computational condition of interest. Further calculations and studies on the 

system are based on this optimized crystal structure with the calculated total energy. 

Some of these important DFT calculation aspects related to the current thesis are 

discussed in this section. 

1.3.1 Crystal structures 

 Empirical observations show that the size of atom is important for determining the 

crystal structure. The electronic configurations of material systems are important to 

determine the structural chemistry. Crystal structure is a unique arrangement of atoms. A 



51 
 

 

polycrystalline material is made up of repeating the unit cell which is the smallest set of 

atoms that represents the properties of bulk material. Stacking the unit cell in three 

dimensions generates a supercell. A supercell is the most frequently used unit of material 

for geometry optimization and other DFT calculations. Using DFT calculations, we can 

predict which crystal structure is more stable compared to the others. Thus, identification 

of the stable unit cell structure for polycrystals is considered as the first step in many 

DFT computations (98).  

1.3.2 Total energy  

 DFT calculations can solve the many electron wave functions that can produce 

many useful results. The most useful information in our work calculated from DFT is the 

total energy of the system. The total energy is the energy value which is used in the 

ground state calculations and it is calculated from Eq.3.20 including the kinetic 

energy , the Hartree energy (electron-electron repulsion) , the exchange and 

correlation energy , and the potential energy  (116). Hohenberg and Kohn 

(101) reported that the Hamiltonian and the total energy of the system both are unique 

functional of ground state electron density, n(r). This means that if there are two different 

external potentials for the ground state electron density, they are identical. As a result, if 

n(r) is known for the system, the external potential, the H, and also the total energy of the 

system of interacting electrons are known. In other words, by calculating the total energy, 

the system is sufficiently defined. 

                                                                 Eq.3. 20 



52 
 

 

1.3.3 Geometry optimization 

 To calculate the ground state energy and to find the equilibrium configuration of 

the atoms, the structure of the system needs to be optimized. Geometry optimization is 

the scheme to find the most stable state of the system and other types of system energies 

such as the transition state (TS) energy and the reaction energy. Potential energy surfaces 

(PES) are one of the methods to represent the equilibrium state of the system based on the 

Born-Oppenheimer approximation. This approximation separates the motion of electrons 

from the nuclei and considers the nuclei to have fixed position due to its negligible 

movement compared to the electrons. It is known that solving the electronic structure of 

the system gives the corresponding PES. An example of PES has been presented in 

Fig.3.2 (18). As it was mentioned, the PES graph shows the stability of the materials 

based on their energy and their configurations and shapes. The vertical axis in most of 

PES graphs (Fig. 3. 2) shows the energy of the system while other axis represent different 

aspects of geometry such as distances and angles between system parts. Using this graph, 

the energy of the reaction can be calculated by finding the energy difference between the 

product and the reactant points (117).  
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Fig.3. 2 PES with minima, transition structure and reaction paths (117) 

 Although DFT is a suitable theory to study the behavior of material, it has some 

limitations. One of the most important disadvantages of DFT is that, this theory is not 

able to describe the dispersion interactions (i.e., a long range energy contribution from 

the interaction of dipoles). To solve this problem, different approaches have been 

proposed, such as finding a truly non-local exchange-correlation functional or applying 

the symmetry-adapted perturbation theory to find the intermolecular potential. All these 

methods are known as density functional theory dispersion (DFTD) (118). 

2. DFT computations: examples 

 In this section, some examples of DFT calculations that are closely related to the 

corrosion/degradation problems addresses in the current thesis will be presented. The 

DFT topic examples contained here include the interaction of polar molecules with 

metallic surfaces, the adsorption of water molecule on different surfaces, the dissolution 
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of surface atoms in presence of alloying elements, and the formation of hydroxides in Mg 

alloys. 

2.1 Adsorption Models 

 Several DFT investigations have been conducted to study the interaction of a 

molecule with polycrystalline solid surface and the corresponding adsorption energy 

(119; 120; 121). Here, we introduce two examples by Akinaga et al. (119) and Zhao et al. 

(121; 122). 

2.1.1 Akinaga et al., 2001 (119) 

 Akinaga et al. (119) studied the adsorption of SCH3 on the (111) surfaces of noble 

metals. It is well-known that SCH3 is a polar molecule, and the system was modeled to 

study the interaction of polar molecules and the adsorption behavior of metallic surfaces. 

The authors considered a variety of molecule configurations with the surface and 

concluded that the position of the SCH3 molecule and the orientation of the molecule in 

addition to the nature of the surface atoms influence the adsorption energy. 

 In their work, the (111) surface was chosen due to the highest stability compared 

to other planes in the face centered cubic (fcc) crystal structure. The adsorption energy 

for Cu, Ag, and Au showed that the most inert element (Au) has the lowest adsorption 

energy, and the Ag and Cu have higher adsorption energy, respectively. The highest 

adsorption energy for Cu clarified that the low atomic radius of Cu causes more 

interaction of these atoms with the SCH3 molecule.  
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2.1.2 Zhao et al., 2011 and 2012 (121; 122) 

 The DFT calculation done by Zhao et al. (121; 122) concentrated on the 

interaction of the water molecule and the TiO2 surface. Interaction with the (101) TiO2 

surface was discussed in this work as the primary habitual orientation for the anatase 

TiO2 phase. The first concern of the research was to find the most stable state for water 

adsorption configuration. The PES was calculated considering the oxygen atom 

coordinate. Fig.3.3 shows the computed and fitted results for the relative energies with 

the molecular and dissociative adsorptions. 

 

Fig.3. 3 The interaction of the water molecule with the TiO2 surface (121). 

 In another work (122), the authors concentrated on the transition state and the 

energy path during the adsorption and dissociation processes of water molecule. Fig.3.4 

shows the energy changes with different states for the system during the reaction. In the 

figure, SS stands for the separate state, IS denotes the initial state, TS is the transition 
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state, and FS stands for final state, respectively. The result of their work illuminated that 

the bridge site between Ti and O is the most stable site for molecular adsorption. In 

addition to (101) surface, they studied the behavior of other surfaces such as (103), (100), 

and (001), and for each case, they found the activation energy as the barrier required to 

overcome the transition state. 

 

Fig.3. 4 Reaction pathway and the energy state for water adsorption and decomposition on TiO2 surface 

(122).  

2.2 Effect of alloying elements models 

 Addition of alloying elements can significantly alter the physical properties of 

metallic materials. There were many DFT computation efforts to reveal the fundamentals 

of alloying effect on such physical property behaviors. In this subsection, we introduce a 

couple of previous DFT models regarding the effect of alloying elements on the corrosion 

behavior of metals. 
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2.2.1 Liu et al. 2011 (123) 

 The DFT study by Liu et al. (123) focused on the surface dissolution behavior of 

Al (100) surface including the effect of different alloying elements such as Zn, Ga, In, 

Sn, and Pb. In the calculation, they tested the Al (100) surface with different coverage by 

adding alloying elements and also by producing cavity as shown in the images of Fig.3.5. 

 

 

Fig.3. 5 Aluminum surface with different coverages 1/9 ML (a and b), 1/4 ML (c and d), 1/2 ML (e and f) 

and 3/4 ML (g and h) (123) 

 Alloying elements were doped on the surface with coverage of 1/9, 1/4, 1/2, and 

3/4 monolayer (ML). By comparing the surface energies for pure Al and the Al alloy, it 

has been shown that the systems including alloying elements have lower surface energy. 

The authors explained this by the lower surface energy of alloying elements compared to 

that of pure Al. Consequently, the surface energies were calculated to decrease by 

increasing the number of doped atoms on the surface. An exception of this trend is the 

system containing Zn. The surface energy in this case decreases for a small number of 
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doped atoms, but by increasing the number of atoms higher than 1/2 ML, the surface 

energy of the system increases. They related this different behavior to the nature of Zn as 

a transition metal compared to the other alloying elements which are sp metals. Thus, this 

strange behavior might be explained by the different valance for Zn. Fig.3.6 shows the 

summary results of the surface energies for Al  (100) containing Zn, Ga, In, Sn, and Pb 

impurities. 

 

Fig.3. 6 Surface energy for the Me-Al (100) surface (data adapted from (123)). 

2.2.2 Velikokhatnyi and Kumta, 2010 (57) 

 Using DFT, Velikokhatnyi and Kumta (57) studied the thermodynamics of 

hydrolysis and the effect of different alloying elements on the stability of the Mg 

hydroxides. In developing their model, they compared the free energies of the hydrolysis 

from the pure Mg and binary Mg alloys as given in Eqs.20-26. 

                                                             Eq.3. 21 
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                                      Eq.3. 22 

                                      Eq.3. 23 

                                       Eq.3. 24 

            Eq.3. 25 

             Eq.3. 26  

                Eq.3. 27 

 Where we consider that  is the free energy of the products and  is the free 

energy of reactants of pure Mg in Eq. 3. 21, respectively, the free energy change of the 

reaction (  can be calculated from the following Eq. 3. 28: 

                                                                                                     Eq.3. 28 

 And for Mg alloys in Eq.3.22-27, when the  represents the free energy of the 

products and  represents the free energy of reactants, then the free energy change of 

the reaction can be given by Eq. 3. 29: 

                                                                                                   Eq.3. 29 

 In Eq.3.29, the more negative the , the more probable the reaction. 

Additionally, they suggested that if  is a positive value, then 

the alloying element delays the hydroxide formation. Considering G=H-TS, they 

assumed that the temperature for their calculation is absolute zero which means the Gibbs 

free energy is equivalent to the formation enthalpy ( ). To complete the first 
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principle study of total energy calculation, they found the formation energy of the 

possible compounds including Mghcp, Mg1-xCax, Mg1-xZnx, Mg1-xYx, Mg17Al12, etc., 

where x takes the values between 1-10 at.%. Using Eqs.3.20-26 and calculating the 

formation energy of each phase, the authors proposed that either of solid solution or 

phase separation is favorable. For instance, the formation energy ( ) of  

is presented in Eq.3.30. In this case, the positive values of  result in phase 

separation.  

      Eq.3. 30 

 

Fig.3. 7 Tendency of hydrolysis for different percentage of alloying elements doping (57). 

 Their computations ended with the results presented in Fig.3.7. The values of 

 (i.e., the change in the ) in this graph represent the chemical affinity of Mg 

alloys for hydrolysis. The negative enthalpies and the resultant free energies for Ca and Y 

are evidences for the higher thermodynamic driving force for the hydrolysis. On the other 
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hand, addition of Al, Fe, and/or Zn decelerates the hydrolysis reaction compared with the 

pure Mg system since they exhibit positive values for . 

 

Fig.3. 8 DOS for pure hydroxides (57). 

 In their work, the authors reported another aspect that might be helpful for better 

understanding of the phase stability, the density of electronic states (DOS). The result of 

DOS as a function of energy for hydroxides is shown in Fig.3.8. In these graphs, Eg 

stands for the band gap, i.e., the energy difference between conduction band and valence 

band, and the arrows show the Fermi energy (EF) position. Comparing Eg of different 

hydroxides, it was demonstrated that materials with higher  have wide band gaps, 

including Ca(OH)2, Mg(OH)2, Y(OH)3, and Al(OH)3. It is considered that the large band 

gap will contain a higher cohesive energy, and consequently it will generate a more stable 

hydroxide. 
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3. DFT model development in our work 

 The DMOL3 package, i.e., local density functional calculations on molecules, 

implementing DFT was used throughout this work (102). The exchange-correlation 

energy was treated with PBE functional in the GGA scheme (107). The ground state 

energy of the system is defined to be functional of the charge density and it can be 

calculated using minimization of the functional (102). The basis set used in this 

calculation was double numerical basis set developed by polarization function (DNP) 

(124). The charge density of self-consistent iteration tolerance was set as 10-6. To speed 

up the self consistent field (SCF) convergence, direct inversion in the iterative subspace 

(DIIS) with the size of 6 and 0.005 Ha smearing were used in our calculations. The k-

points was set to 2x2x1 for 3x3x2 supercells and 1x1x1 for larger (4x4x2) supercells, and 

all of the electrons were involved in the calculations. Using the mentioned parameters, 

we firstly optimized pure Mg structure. The optimized cell lattice parameters were 

a=b=3.2246 Å and c=4.9657 Å, which shows a consistent results with experimental 

values a=b=3.2095±0.0002 Å and c=5.2107±0.0002 Å (125). Fig.3.9 shows the unit cell 

of Mg which contains two atoms. 

 

Fig.3. 9 Unit cell of Mg 
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 We then optimized the unit cell to (3x3x2) or (4x4x2) (x, y, and z directions, 

respectively) super-cells, and cleaved them to the basal )0001( , prism )0110(  planes and 

to a pyramidal plane )1011( . The vacuum slab thickness was chosen to be 30 Å. 

Structural images for the 3x3x2 supercell and cleaved slab models are shown in Fig3.10 

and Fig.3.11, respectively. In these calculations, the position of bottom layer was fixed to 

represent the bulk region, and the top three layers were relaxed. A 3x3x2 slab model of 

Mg with one doped atom was used to study the effect of alloying elements. The doped 

impurity atom was either of Al, Zn, Ca, or Y. 

 

 

 

 

 

Fig.3. 10 3x3x2 supercell of Mg 

 

 

 

 

 

 

 

 

Fig.3. 11 Crystallographic orientation of Mg slab. From the left to the right, the slabs contain the basal 

, prism  and pyramidal  planes. 
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Another set of computations in this work was the dissolution potential calculation. 

Same computation parameters were used to perform the dissolution potential 

computations. Based on these computations, the chemical potential and the changes in 

dissolution potential were obtained. For this set of calculations, dissolution of Mg atoms 

was simulated by creating a vacancy and removing the atoms from the surface layer. The 

change of the energy from the perfect suppercell to the supercell with vacancies provides 

the chemical potential, and the comparison of the chemical potentials for the pure and 

alloyed Mg results in the prediction of dissolution potential. Using these data, the 

tendency of material for corrosion can be estimated.  

The final set of calculations focused on the adsorption energy of the water 

molecule on the surfaces of pure Mg and Mg with one impurity atom doped on the 

surface layer. The optimum potential energy and the equilibrium configuration were 

calculated by changing the position of water molecule on top of the metal surface. To 

calculate the adsorption energy, we have set the locations of the water molecule on top of 

the alloying element as position one (P1) and above the Mg atom as position two (P2). For 

P3 position, an arbitrary position between the alloying element and the Mg atom was 

chosen. Fig.3.12 shows the positions of water molecule on top of the Mg alloy surface in 

three different cases. The equilibrium distances/configurations of a water molecule for 

these positions (P1, P2, and P3 as shown in Fig.3.12) by minimizing the potential energy 

were calculated. The density of states (DOS) of the system before and after the 

interaction was also examined. The details of all of these results including analyses will 

be provided in the next chapter. 
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Fig.3. 12 Water molecule position on top of the Mg alloy surface From Left to right P1 the water molecule 

is located on top of the Mg atom, P2 the water molecule is on top of the alloying element and P3 the water 

molecule is in between the Mg and the alloying atom.  
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Chapter 4: Results and Discussion 

 In this chapter, the results from the developed DFT models are presented and 

discussed. The results consist of three parts, i) surface energy calculation, ii) dissolution 

potential calculation, and iii) water molecule adsorption calculation of Mg based alloys. 

These are the most important aspects of Hydrolysis mechanisms closely related to the 

corrosion/degradation behavior of Mg/Mg alloys.  

1. Surface energies of Mg and Mg alloys 

 As it was mentioned before, surface energy of Mg/Mg alloys can play an 

important role in the corrosion behaviors. It is claimed that sometimes, the surface energy 

of different alloys can assist the estimation of their corrosion resistance. Eq.4.1 given 

below is the DFT formula to calculate the surface energy of Mg alloys.  

                                               Eq.4. 1 

 In this equation, the slab energy of the alloyed Mg (0001), , is the total 

energy of the system when the three top layers are free for optimization and one bottom 

layer is fixed.  and  are the numbers of Mg atoms and the alloying atoms, and 

 and , are their corresponding bulk energies, respectively.  is the energy 

of the system when all the atoms are fixed in their Cartesian and fractional positions. The 

factor 0.5 comes from the freedom of the upper part of the slab for relaxation and fixation 

of the lower portion, and A is the surface area of the slab model. In the pure Mg system, 
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there are no alloying atoms in the composition, therefore,  is equal to zero, which 

reduces Eq.4.1 to Eq.4.2. 

                                                                                 Eq.4. 2 

1.1 Surface energy of different crystallographic orientations  

 It has been shown that pure Mg and Mg alloys such as AZ31 exhibit different 

corrosion behaviors depending on the crystallographic orientation of the surface in 

contact with corrosive media (70; 72; 126). To study this effect, the pure Mg slab was 

cleaved to contain the basal )0001( , prism )0110( , and pyramidal )1011(   planes. The 

cleaved slabs were separated from each other by a vacuum space to avoid the interaction 

of the layers resulted from periodic boundary condition along the vertical direction. The 

thickness of this vacuum space was 30 Å in the slab thickness direction (z-direction), as 

shown in the previous chapter (see Fig.3.11). The structures were optimized and their 

total energies were converged to the lowest possible values. For the first set of 

calculations, all of the three models were pure Mg. Therefore, Eq.4.2 was used to 

calculate their surface energies. Fig.4.1 shows the visualization of the surface atoms for 

three different crystallographic planes. Surface atoms are indicated as gray spheres in this 

image while the bulk atoms are colored as bright green. 
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Fig.4.1 DFT vacuum slab models to show the surface atomic layer of Mg with (a) basal, (b) prism, and (c) 

pyramidal planes 

 Fig.4.1 shows that there are different number densities of atoms on the surface for 

each crystallographic orientation, and also it shows unequal lattice parameters for each of 

these systems. We calculated the density of atoms for these surfaces by dividing the 

number of atoms to the corresponding surface area. Fig.4.2 shows the density of atoms in 

selected surfaces. Basal plane has the highest atomic density among these three surfaces 

followed by prism and pyramidal planes. Later we can use these data to verify if there is 

any relationship between the density of atoms in the surface and the surface energy.  
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Fig.4. 2 Density of atoms per unit of area for selected crystallographic planes 

 Fig.4.3 presents the surface energies calculated from DFT computations in this 

work. It was found that the lowest energy for the Mg surfaces is associated with the basal 

plane. The numerical value calculated from Eq.4.2 for this plane was 0.75 J/m2, which is 

consistent with the reported experimental surface energy, 0.76 J/m2 for pure Mg (127). 

From Fig.4.2 and Fig.4.3, the well-known reverse relationship between the density of 

atoms on the surface and the surface energy is clearly seen. It shows that the system with 

highest packing density provides lowest surface energy and highest stability. In other 

words, the closely packed surface for the metal is more stable compared to the loosely 

packed surfaces. The higher stability comes from the fact that the closed packed surface 

encloses higher binding energy and higher atomic coordination resulting in lower surface 

energy. As Fig.4.2 and Fig.4.3 show, the basal plane has the highest atomic density and 

the lowest surface energy resulting in the highest stability, followed by the prism plane. 

The least stable plane among these three planes is the pyramidal plane. This plane has an 

atomic density less than half of the basal plane. The small number of atoms on the 
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surface in this plane means that each atom has less number of neighbors and 

consequently there is less attraction for the surface atoms from their surrounding atoms, 

resulting on instability of the surface. 

 

Fig.4. 3Surface energy of surfaces with different orientations 

 As it was mentioned the corrosion rate depends on the surface behavior and 

specially the surface energy of the system. Sometimes, it is thought that the packing 

density has a direct relationship with the activation energy for dissolution rate of metal 

surface. In general, due to the higher stability of the surface with high packing density, 

the activation energy of stable surface is higher and removing metallic ions from the 

surface is more difficult. Such relationship can be proved by applying Tafel equation and 

by comparing the dissolution rate for different planes. Tafel equation is widely used 

expression to quantify the dissolution/electrochemical reaction rates of metallic materials, 

as given in Eq.4.3 (128). 
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                                                                                            Eq.4. 3 

 

 In this equation, n is the number of electrons, F is the Faraday constant, k is the 

reaction constant, Q is the activation energy to remove a metallic ion from the lattice and 

dissolve in the solution, E is the surface energy, R is the gas constant, and T is the 

absolute temperature. Calculating the ratio of corrosion rates for two different planes in 

the form of  provides an estimation of the effect of crystallographic orientation on 

the corrosion rate with reference to the basal plane. This ratio can be calculated from 

Eq.4.4 (128). 

                                                                            Eq.4. 4 

 Where  is the proportionality coefficient when the surface energy is used instead 

of the activation energy in this Arrhenius type of equations. The surface energy of basal, 

prism, and pyramidal planes are calculated as 0.75, 0.76, and 0.81 J/m2, respectively, 

which can be converted to 40430, 76879 and 119749 J/mol. The body temperature is 

considered to be 310 K and R is 8.314  . If these values are plugged in Eq.4.4, based 

on the 1.1-2 range for dissolution ratio of prism over basal planes ( ) from the 

experimental results from (128; 126) the proportionality coefficient α is obtained as 

0.007-0.049. In this calculation, we assumed the average value of 0.028 for α, then the 

 ratio for  and then become 1.486 and 2.367 respectively. These are 

considered as the approximated prediction value for the dissolution rate ratios of prism to 
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basal and pyramidal to basal planes, respectively. Note that it is based on the assumption 

that the surface energy is primarily determining the dissolution rate and the 

proportionality coefficient  is constant regardless of the surface orientation. Later we 

will apply the same proportionality coefficient to provide similar calculations using the 

Tafel equation to estimate the impacts of alloying elements on the dissolution potential. 

Considering that the surface energy of Mg with basal plane is the lowest, the primary 

focus of the rest of calculations in the present study is on the results from the systems 

with the basal (0001) plane orientation. 

1.2 Effects of alloying elements on surface energy 

 Alloying elements were presented as one of the effective factors to influence the 

corrosion behavior of Mg alloys in chapter 2, section 3.1. Our computations for the 

surface energy of selected binary alloys including Mg-Al, Mg-Ca, Mg-Zn, and Mg-Y 

shows that the surface energy of Mg varies with doping a substitutional atom to the 

surface. In these calculations, one atomic position of Mg on the surface was occupied by 

the alloying atom. The interaction between the doped atom and the Mg matrix and the 

electron exchange among them determine the stability of the surface. To estimate the 

effect of present alloying element on the improvement of the surface stability, the surface 

energy of basal plane of pure Mg was set as the reference.  

 Fig.4.4 shows the calculated surface energies of Mg alloys with each of the 

impurity elements using Eq.4.1. As it is obvious in the data presented in Fig.4.4, doping 

Zn on the surface of the Mg slightly decreases the surface energy of the alloy resulting in 

small improvement on the stability of the system. On the other hand, incorporation of Ca, 

Al, and Y shows negative effect on the stability of the surface. The destructive effect of 
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Al and Y is more considerable, while doping the Ca atom on the surface does not seem to 

cause a critical change in the surface energy. This trend can be explained by the fact that 

the surfaces including alloying atoms (Zn2+ and Ca2+) that have identical number of 

valance electrons with Mg metals (Mg2+) can maintain their stability and show slight 

difference in their energy. However, as the doped atom varies to an atom with different 

number of valence electrons, the surface energy increases and causes instability in the 

system. In this case, Al and Y have respectively incomplete p and d orbitals while Zn, Ca, 

and Mg have their valance electrons in orbital s Therefore, doping Ca or Zn on the Mg 

surface does not influence on the density of electrons of other orbitals rather than s. In 

other words, since the shared electrons for Zn and Ca are from the same orbinal as Mg, 

the electrons density for the surface does not change considerably. However, the presence 

of Al and Y on the surface changes the density of electrons in p and d orbitals 

respectively. It is thought that this change in the density of electrons in other orbitals than 

the pure Mg (i. e., the s orbital) can cause the instability for the surface. The involved 

orbital and the number of valance electrons in system are the most important factors 

influencing the surface energy and independent of the atomic size may result in a 

vulnerable surface. In other words, same number of valence electrons in the outer shell 

orbital of the atoms of Mg, Zn, and Ca causes homogenous distribution of electrons in the 

system, and differences in the number of valance between Mg and Y/Al can cause less 

stable surfaces and decrease the stability of the system. 
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Fig.4. 4 Surface energy of Mg alloyed with different doping elements. 

 Comparison of the ionic radius of the metallic elements from Table 4.1 shows the 

dependence of the surface energy on the size of the doped atom (129). The results show 

that larger atomic radius of Ca shifts the surface energy of the alloy slightly toward 

higher values and decreases the stability of the surface by causing distortion in the 

structure, whereas the presence of Zn in the same position stabilizes the surface and shifts 

the surface energy toward lower values due to its similar ionic radius to Mg2+. Similar 

scenario is true for Y and Al. In other words, the Y atom causes more instability in the 

surface than Al due to its higher atomic radius. As a result, the difference in size of atoms 

is another factor and the valance number seems to be more important. Organizing the 

data, Y with highest surface energy affects the steadiness of Mg due to variant number of 

valance electrons and larger atomic radius, followed by Al with only different number of 

electrons in valance band and even smaller atomic radius. Although Ca has same number 

of electrons in the valance band as Mg but the larger atomic radius results in a slight raise 

in the surface energy. Finally the least destructive alloying element from the surface 
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energy point of view seems to be Zn with smaller atomic size compared to Mg and 

similar number of valance electrons. 

Table 4.1 Ionic radius of some metals (129)  

Metal Mg2+ Ca2+ Zn2+ Y3+ Al3+ 

Ionic radius (nm) 0.072 0.100 0.074 0.090 0.054 

The surface energy of pure alloying elements is the third parameter that can 

influence the surface energy of Mg alloys. Table 4.2 presents the surface energy of these 

pure metals (127). Comparing the data from this table for Mg and the alloying elements 

shows that the alloying elements such as Y and Al that have considerably larger surface 

energies compared to pure Mg, increase the surface energy of the alloy. On the other 

hand, Ca and Zn with smaller difference in surface energy with the pure Mg do not cause 

significant changes in the surface energy of the Mg alloy. Although the surface energy of 

pure Zn is higher than the pure Mg, doping of Zn to the Mg surface decreases the surface 

energy of the system the reason for this unusual change may be the small difference 

between the ionic radius of the Zn2+ and Mg2+. In conclusion, several parameters 

influence the surface energy of the Mg alloy, and among them, it is thought that the most 

important one is the similarity in the number of electrons in the last orbital of the 

elements. The ionic radius and the surface energy of the alloying elements are also 

important, but their influence is not as important as the valency. 

Table 4.2 Surface energy of pure metals (127). 

Metal Mg Ca Zn Y Al 

Surface energy (J/m2) 0.76 0.49 0.99 1.125 1.160 
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 Fig.4.5 shows the effect of percentage of alloying element on the surface energy 

of the alloy. The doping of the alloying element on the surface of the alloy is based on the 

assumption that there are  alloying atoms on the surface of the alloy and that the surface 

energy is not strongly influenced by the inner (bulk) composition of Mg alloys. 

Consequently, it can be approximated that we have 11.1% (i.e., 1/9) alloying atoms on 

the surface layer. Using this data, the effect of different amounts of alloying elements on 

the surface energy of Mg alloys can be estimated. For this, we have also assumed that the 

surface energy changes are linearly proportional to the contents of alloying element. In 

other words, there are no interactions between impurity atoms on the surface and the 

impurity atoms are majorly surrounded by the Mg matrix atoms. These are not unrealistic 

approximations when the contents of impurity elements are sufficiently small (i.e., dilute 

solution situation) as in Fig.4.5. Based on these assumptions, we have plotted the 

estimated surface energies of Mg alloys with % contents of impurities. In the figure, the 

symbols represent the surface energies at 1, 2, 3, 4, and 5 at. % additions of alloying 

elements and the dotted lines are the trend lines for the four alloying systems. As it is 

shown in Fig.4.5, increasing the amount of alloying elements from zero to 5% highlights 

the influence of each alloying element on the surface energy. As expected, among these 

results, the effect of Y and Al is more obvious while adding higher amount of Zn or Ca 

does not affect the surface energy significantly. 
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Fig.4. 5 Amount of alloying elements and the surface energy of Mg alloys 

Next, we explored the impact of alloying elements on the Mg surface using the 

Tafel equation. As it was mentioned before an equation similar to Eq.4.4 (i.e., Tafel 

equation) can be used to study the effect of alloying elements and compare the corrosion 

rate for different compositions of Mg alloys. Here, Eq.4.5 given below can be applied to 

quantify the dissolution rate ratios of alloys to the pure Mg system.  

                                                                                                Eq.4. 5 

In applying Eq.4.5, the proportionality coefficient () must be specified again. 

Here, we assumed that this proportionality coefficient is similar to the value 

approximated through the previous analysis. In other words, when the surface energy 

difference is used to measure the dissolution rates in Mg/Mg alloys (low alloying 

contents), we assume that the proportionality coefficient in the Tafel expression obtained 

in the pure Mg can be applied to the Mg alloys. In our following analysis, we have used 



78 
 

 

0.028 as the coefficient value of  in Eq.4.5. With this, Fig.4.6 shows the ratio of 

dissolution potential for pure Mg and the Mg alloys. As it is obvious in this graph, for 

small amounts of alloying elements and up to 3%, the dissolution rate ratio is 

approximately calculated as 1, which means that the alloying elements have relatively 

minor effects on the dissolution rate. Also for the case of Zn and Ca, the ratio stays in the 

same range even for up to 5% of alloying elements. On the other hand, the influence of 

amount of alloying elements is more highlighted for Al and Y. 

As a comparison, it is thought that stability of the system is more influenced by 

the crystallographic orientation rather than the composition at least for the surface energy 

and resultant dissolution rate perspective. Note that this is based upon the dissolution rate 

analysis dependent only on the surface energy differences. However, it is considered that 

the macroscopic hydrolysis and corrosion behavior are influenced by many other factors 

and/or mechanisms such as galvanic corrosion, formation and fracture of hydroxide 

films, and other microstructures.  
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Fig.4. 6 Effect of alloying elements on the dissolution rate of Mg  

1.3 Enthalpy of mixing 

In the previous section, the effect of surface energy was examined. In the surface 

energy calculations, the bulk material is assumed to be pure Mg. In this sub-section, we 

study the bulk behavior of Mg, when other alloying elements are present in it. In these 

computations, the enthalpy of mixing with respect to the bulk energy is calculated. The 

results of these calculations (i.e., the changes in the total energies) are presented in 

Fig.4.6. The changes in the total energies for all of the systems are positive, considering 

the minor effect for the entropy changes in their solid states. From Fig.4.7, it is seen that 

the lowest mixing energy belongs to Al due to its small ionic radius, and Ca with the 

largest ionic radius has the highest enthalpy of mixing. Zn and Y have intermediate 

values for the enthalpy of mixing. Checking the ionic radius of Zn and Y (shown in Table 

4.1) clarifies that although the atomic radius is an important factor but it is not the only 

parameter influencing the mixing of alloying elements in the matrix. However, by 

comparing the Figs.4.4 and 4.7, it is certain that the effects of allying elements on the Mg 
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surface and Mg bulk energy changes are different. Also, the electron valency argument 

used in describing the surface energy changes does not apply to the bulk energy changes. 

Comparing Fig.4.5 and Fig.4.8 gives an idea if adding different amounts of alloying 

elements has the same influence on the bulk energy as on the surface energy. These two 

graphs show that although adding alloying elements to the composition of the alloy 

causes changes in both bulk and the surface, but depending on the position of alloying 

element (bulk or surface) it may increase or decrease the stability of the system.  

 

Fig.4. 7 Enthalpy of mixing for different Mg alloys  

 We performed a similar analysis to the Fig. 4.5, to estimate the total bulk energy 

changes through the mixing of alloying element with at. %. Again, it must be noted that 

we assumed a linear relationship between the mixing energy changes and the contents of 

alloying element by ignoring the interactions of alloying elements themselves at these 

lower impurity levels.  
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Fig.4. 8 Enthalpy of mixing and alloying elements effect 

Apparently, there must be other factors other than the surface energy that will 

influence the corrosion rate of the metal. In the following sections, some of these factors 

such as the dissolution potential and the water molecule adsorption energy will be 

discussed. 

2. Electrochemical Potential Shift of the Me-Mg (0001) Surfaces 

From Fig.4.4, it was found that the presence of some alloying atoms (Ca, Al, Y) 

on the surface of pure Mg will make the alloys more active in corrosive media. To study 

the behavior of the alloy system, an anodic polarization curve is often used. This curve 

describes the electrochemical behavior of the surface and the dissolution of the ions. 

Dissolution potential is a measurement of dissolution progress calculated from the 

difference in the rate of detachment of cations and anions (130). Thus, the electrode 

potential for pure Mg and Mg alloys are unequal. Keeping this in mind and assuming that 

the electrochemical reactions shown in Eq.4.6 and Eq.4.10 are the electrode reactions for 
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dissolutions of pure Mg and Mg alloys, respectively, the chemical potential of different 

systems can be calculated. Eq.4.7 represents the change in Gibb’s free energy over the 

number of dissolved atoms in constant pressure and temperature. Such free energy 

change (i.e., chemical potential) can be approximated to the form of Eq.4.8 where  is 

the energy of slab with perfect surface and  is the energy of the same system with 

one vacancy on the surface, respectively.  

                                                                                             Eq.4. 6 

                                                                                                                       Eq.4. 7 

                                                                                                                       Eq.4. 8 

                                                             Eq.4. 9 

The chemical potential changes of the components in Eq.4.6 are presented in 

Eq.4.9, where , , and are the chemical potentials of H+ and H2 at 

standard condition, the chemical potential of pure metal Mg atom dissolving from the 

surface, and the chemical potential of the dissolved ions, respectively, and  is 

the electrode potential. Fig.4.9 shows the schematics of perfect slab and also the position 

of vacancy on the surface of pure Mg (0001).  
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Fig.4. 9 Dissolution of pure Mg 

Taking the same path, similar equations for the estimation of the electrochemical 

potential changes can be derived for Mg alloys, as given in Eqs.4.10 and 4.11. 

                                                                              Eq.4. 10 

                                                    Eq.4. 11 

 Combining Eq.4.9 and Eq.4.11, the dissolution potential difference (i.e., 

electrochemical potential difference) between the pure Mg and Mg alloys can be obtained 

using Eq.4.12. 

                                                               Eq.4. 12 

The dissolution potential difference with reference to the pure Mg for different 

Mg alloys has been presented in Fig.4.10. The results show positive dissolution potential 

difference for Mg-Al system. The values are negative for three other alloying elements; 

the difference is negligible for Mg-Zn alloy and relatively small for Mg-Ca alloy, but the 

dissolution potential difference is considerably large (-0.45 V) for alloy containing Y 

atoms. Comparing the data from Fig4.10, adding Al to the pure Mg increases the stability 
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of the material surface and avoids dissolution. It can be interpreted that once an Al atom 

is positioned on the surface of Mg system, the chance of losing the neighbor Mg is 

smaller than other systems. On the other hand, it is predicted that, some alloying elements 

such as Y, increase the tendency for dissolution of the metal. Zn and Ca seem to be less 

effective from a dissolution behavior point of view since they do not have a significant 

difference with the pure case, though they impose a negative influence on the dissolution 

of Mg atoms. 

To have a better understanding of the dissolution process, Mg- Al system was 

used to study the dissolution process. The dissolution potential was calculated for 

different cases to test the total energy differences for different situations in atomic sites 

for Mg corrosion. The atomic positions for the vacancies are shown with cross (X) 

symbols in Fig.4.11. As represented in the figure, we first tested dissolution scenarios of 

losing Mg and Al atoms (middle column in Fig. 4.11), and we investigated the three more 

cases for losing second atoms when the Mg atom is initially removed (right-hand side 

column in Fig. 4.11). Because the system consists of two types of elements (binary 

system), the first choice for dissolution sites can be either the alloying atom or one of the 

Mg atoms. When the alloying atom dissolves, the system becomes essentially identical to 

the pure Mg case, but if the first option is the Mg atom, three different cases are possible 

in our supercell structure for the second dissolving atom as shown in Fig.4.11. When an 

Mg atom was initially removed (bottom image in the middle column in Fig. 4.11), we 

considered three different situations for the second surface atoms to dissolve during 

corrosion.  
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Fig.4. 10 Dissolution potential difference of Mg alloys with pure Mg 

 

Fig.4. 11 Dissolution sites 3x3x2 Mg-Al alloy 
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Fig.4. 12 Total energy level for different dissolution cases 

The dissolution potential for different atomic sites presented in Fig.4.11 has been 

calculated using Eq.4.12, and the results from each case are presented in Fig.4.12. In the 

results of Fig.4.12, the energy levels of the systems are given by the horizontal bar in the 

diagram. These results show that by dissolving the atoms from the surface, the total 

energy of the system increases irrespective of the dissolving position. As it can be seen in 

this diagram, the perfect system has the lowest total energy (left bottom image). The total 

energy of the system (E) increases to (Eˊ) when one atom is dissolved from the surface. 

Here, E' and E" in general represent the total energies when the first and second atoms are 

removed from the surface, respectively. From the results, it is seen that Eˊ is higher when 

the alloying atom is removed which means that the dissolution of the alloying atom (i. e., 
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Al atom) causes more instability compared to the dissolution of the Mg atoms. Next, 

three cases were studied to find the most probable choice for dissolution of the second 

atom. The energy of the system increases to E ̋ by removing the second atom. It was 

predicted that this energy value for E ̋ depends on the position of the second removed 

atom (the three images on the top right corner). Results show that the highest energy and 

consequently the least stable condition belong to the case when the Al atom is removed 

(Case 3 in Fig. 4. 11), which means that dissolution of Al as the second atom is not 

favorable. On the other hand, the total energies of the system show small difference 

between the case 1 and case 2 with a slightly higher chance for the case2. Later, we will 

compare these two positions in a larger system to verify their differences. The dissolution 

potential calculation results from these three cases in Fig. 4.13 show that, after the first 

Mg atom is removed, dissolution of an atom in the position similar to case 1 is easier than 

case 2, because the dissolution potential is more negative for case 1 compared to case 2. 

On the other hand, as we mentioned from the total energy point of view, it is unlikely that 

Al will dissolve in the next due to the high dissolution potential (i.e., 574.83 V) (case 3). 

Accordingly, it seems that there is a large attraction between the alloying element and the 

surrounding Mg atoms compared to the atoms that are not in direct contact with the Al 

atom. 
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Fig.4. 13 Dissolution potential of 3x3x2 Mg-Al alloy 

To verify the difference between case 1 and case 2 from the previous calculation, 

another set of DFT computations was performed for a larger system (4x4x2 systems as 

displayed in Fig4.14). As seen in the schematic images of Fig.4.14, the first, second, and 

third nearest neighbors of the Al atom were removed in separate computations. The total 

energies of these systems have been compared in Fig.4.15. The results show that 

dissolution of the first atomic neighbor of Al atom has the highest total energy, followed 

by third and then second atomic neighbors. Dissolution of the second atom is the easiest 

cases because the system is more stable after removing this atom compared with the other 

two cases. Also, the higher total energy of the system after removing the first neighbor 

indicates that the dissolution of this atom is not favorable. Comparing the dissolution 

potential of these three systems in Fig.4.16 shows that the dissolution potential difference 

for the first neighbor is highest, followed by the third neighbor and the second neighbor. 

The reason for this in thought to be the smaller size of the alloying atom. Here, the Al 

atom has a small ionic radius that can cause a distortion in the surface atoms as it is 
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schematically illustrated in Fig.4.17; the first nearest neighbors will move toward the Al 

atom, and due to this movement of atoms the first atomic neighbors have strong attraction 

with the Al atom. On the other hand, the distortion and movement of first neighbors 

produces a larger space between the first neighbors and the second neighbors, which will 

in turn results in the instability of the second neighbors. Although it is thought that the 

third neighbors will also be influenced by these larger spaces, but assuming the 

periodicity of the system, the first neighbors that are adjacent to the second nearest 

neighbors will produces a larger gap. Therefore, dissolution of the second neighbors 

would be easier compared to the third neighbors. 

 

Fig.4. 14 Dissolution sites 4x4x2 Mg-Al alloy 
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Fig.4. 15 Dissolution of first, second and third neighbors of the Al atom 

 

Fig.4. 16 Dissolution potential of 4x4x2 Mg-Al alloy 
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Fig.4. 17 Distortion of atoms due to presence of Al atom in the Mg surface 

3. Adsorption energy 

 A critical step to study the hydrolysis process of materials is to understand the 

interaction of the surface with the water molecule. The attraction or repulsion of the 

molecule by the surface illuminates if the surface is ammoniated ageist corrosion. Our 

calculations are performed by comparison between the energies of the individual 

reactants and the final products (i.e., combined configuration). The reactants were pure 

Mg containing a vacuum slab with 30 Å height and one isolated water molecule in a box 

with the same size as the pure metal slab. To avoid the complication of comparing the 

water-water and water-surface interactions, only one water molecule was considered in 

the system. Vertical position of water molecule with different distances for the oxygen 

atoms from the metal surface was optimized. The adsorption energy was calculated from  

Eq.4.1. In this equation,  is the adsorption energy,  is the total energy and 

 is the energy of isolated water molecule, respectively. In this formula,  

shows the energy of the slab.  

                                                                            Eq.4. 13  
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 In the DFT computation, the total energy of the system is dependent upon the 

initial position of the water molecule. In other words, depending on the accuracy of the 

first estimation, the total energy calculation for the system is converged toward the 

equilibrium case. Therefore, the final position of the oxygen atom and accordingly the 

water molecule and the adsorption energy of the system are determined from a function 

of the initial position of the water molecule. Also, depending on the initial position of the 

water molecule, the attraction or repulsion may be favorable. 

3.1 Water adsorption on pure Mg surface 

Since the basal plane is considered as the most stable plane and it is one of the 

habit crystallographic planes, the water adsorption phenomena prediction was primarily 

based on the DFT total energy calculations for slab systems with basal planes. One of the 

critical parameters to estimate the water adsorption behavior of the material is the 

position of the water molecule compared to the surface. Depending on this position, the 

surface may attract or repel the molecule. To find the equilibrium position of water 

molecule to the surface, two sets of computations were performed. The first computation 

concentrates on the vertical position of the water molecule and the distance of the water 

molecule from the metallic surface, and the second one is based on the in-plane position 

(i.e., x- and y-positions) of the molecule. A vertical V shape configuration for the water 

molecule was considered, and the atomic position of oxygen (O atom) as the closest atom 

to the surface was used as the reference to find the equilibrium position of the molecule.  

For calculating the vertical equilibrium distance, the initial distances for the O 

atom and the surface were chosen to be 0.5, 1, 2, 3 and 6 Å. According to Table 4.3 and 

extrapolating the result in Fig.4.18, there is a critical distance from the surface of the Mg. 
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If the water molecule approaches to the surface (closer than the equilibrium distance with 

the lowest energy), due to the repulsion from the nucleus, the relative energy rises to high 

positive values resulting in instability of the system, which in turn pushes the molecule 

away. On the other hand, maintaining large distance from the surface neutralizes the 

repulsion and attraction between the surface and water, causing a zero relative energy 

(i.e., no interaction for the molecule and the surface). In between these two cases, there is 

an equilibrium distance which has the lowest possible relative energy. From the graph of 

Fig.4.18, it is considered that the equilibrium distance for the water molecule from the 

surface is about 1.33 Å. In other words, if the water molecule takes a Z position close 

enough to 1.33 Å from the Mg surface the most stable position and the highest adsorption 

tendency would be reached. For Z coordinates less than this value, for instance 0.5 Å, the 

surfaces repels the water molecule, and on the other hand, if the Z distance is large 

enough, for example about 20Å, the surface does not interact with the water molecule and 

the relative energy becomes zero which is similar to the case that the water molecule and 

the surface are in isolated condition with no effect on each other. 

Table 4.3 Initial and final position and the adsorption energy of the water molecule on the Mg surface 

Initial Z Final Z Eads (eV) 

6 5.30042132 -0.11096818 

3 2.79226747 -0.146642141 

2 1.47583231 -0.474893048 

1 1.3300611 -0.486049715 

0.5 1.3408082 -0.468500074 
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Fig.4. 18 Adsorption energy for Mg surface and water molecule 

Next, we examined the changes of the Density of States (DOS) for the water 

adsorption computations. The blue line in Fig.4.19 represents the distribution of the 

energy of the electrons in isolated water molecule. The distribution of energy for 

electrons contains a wide range of energies but the density of electrons per unit energy is 

not high, with numerical values less than 200 electrons/Ha. On the other hand, the 

electrons in the pure Mg show a narrow range of energies with higher density of electrons 

up to 500 electron /Ha. The data for pure Mg is marked with red color in the same graph. 

These two pure systems have been combined to study the effect of adsorption on DOS, 

and the results for two different Z positions (2.79 Å in blue color and 1.36 Å in red color) 

have been reported in Fig.4.20. 
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Fig.4. 19 DOS of isolated water molecule and pure Mg 

 

Fig.4. 20 DOS of the water adsorption after interaction 
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Comparison of Fig.4.19 and Fig.4.20 clarifies that after mixing water and Mg, 

high energy peaks from the isolated water molecule disappear. Interaction of the water 

molecule and the metallic surface also eliminates the peaks from electrons with high 

energies by sending those electrons to lower energy states and increasing the density of 

electrons in lower energy levels. Such changes in DOS confirm the tendency for 

adsorbing the water molecule. 

 As shown in Fig.4.20, when the molecule position gets close to the equilibrium 

position, the energy distribution of electrons exhibit the combined behavior of peaks from 

the isolated water molecule and the dry metallic surface. This graph also shows a slight 

shift for the peaks toward lower energy states for the water molecule when it is 

positioned closer to the surface. Therefore, it is thought that when the water molecule 

gets close to the surface (1.36 Å); the configuration becomes more favorable compared to 

the isolated case, as a result of number of electrons with low energies states. Presence of 

more peaks in low energy regions for the Z position of 1.39 Å compared to 2.79 Å 

supports this explanation as well. 

3.2 Water adsorption on Mg alloys 

As it was mentioned before, the vertical position of the water molecule compared 

with the metallic surface is a critical parameter to estimate the behavior of the system. 

The optimized vertical position of the water molecule was discussed in the previous 

sections. In this sub-section, we compare the horizontal movement of the water molecule 

on top of the surface and describe the influence of alloying elements in these interactions. 

Starting from the equilibrium vertical distance as constant (Z=1.33 Å), the water 

molecule was located on top of one Mg atom on the surface named as position 1 and also 
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in a site in between the alloying atom and two Mg atoms called as position 2. The 

positions of water molecule atoms, for these two cases have been presented in Table4.4 

and Fig.4.21 shows the top view for these positions.  

 

Fig.4. 21 top view for position of water molecule for an adsorption process 

 

Table 4. 4 Position of water molecule for adsorption process 

 Position 1 Position 2 

 Oxygen Hydrogen 1 Hydrogen 2 Oxygen Hydrogen 1 Hydrogen 2 

x 2.0079 1.85706 2.22174 3.72 3.5696 3.9343 

y 3.1611 2.26626 4.04182 3.045 2.1498 3.9253 

z 1.33 1.96923 1.97086 1.33 1.9692 1.9709 

 

Results presented in Fig.4.22 show that, comparing the energy for the pure Mg 

when the water molecule is in position 1 and position 2, the degrees of attraction from the 

surface for the water molecule are different. The water molecule prefers position 2 for 

adsorption rather than position 1 because the energy of the system is lower when it is 

located at position 2. For the pure Mg system, adsorption of water molecule is more 

probable when the molecule is located in the area between atoms. The reason for this may 
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be the difference in the electronegativity of Mg and the oxygen atom that is equal to 2.2. 

As a result of such large difference in the electronegativity, the water molecule may be 

adsorbed if it is close enough to the surface atoms. Comparing position 1 and 2 shows 

that when the water molecule (O atom) is located in a site similar to position 2, the O 

atom is under attraction of three atoms, while in position 1, only one surface atom is close 

to the O atom to attract it. Consequently, in position 2 there is more attraction for the 

water molecule compare to position 1. 

 When there is an alloying element on the surface of the metal, adsorption energy 

is influenced by the nature of doped atom. Comparing the trend of results for position 1 

in Fig. 4.22 with the surface energy from Fig.4.4 confirms the relationship between the 

surface energy and the water adsorption; surfaces with higher stability show less 

attraction for the water molecule and vice versa. In this condition, the surface with Y 

doping has the highest attraction for the water molecule with relative energy equal to -

0.38 eV. The surface containing Al shows relatively high attraction for the water 

molecule as well due to its instability. In contrast, the Zn and Ca atoms cause negligible 

attraction on the surface for the water molecule. As it was mentioned, the reason for this 

difference in the adsorption behavior of the alloys is related to the same valance number 

of the alloying atom with Mg and the resultant stability of the surface. Although the trend 

seems to be the same for the Mg alloy systems irrespective of the water molecule 

positions, the values of relative energy are different from case by case depending on the 

positions of the water molecule. 

As the second case, we studied a position in between the alloying atom and the 

two Mg atoms (position 2). The results are given in the bottom of Fig.4.22. The behavior 
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of alloys follows the same order as previous case (position 1), but at this time, the 

attraction has increased considerably due to the shift of energies toward more negative 

values. This means that the tendency for water molecule adsorption becomes stronger if 

we locate the molecule in between three atoms, regardless of the alloying element type. 

Therefore, it is considered that this position (position 2) is more stable location of the 

water molecule for the adsorption process. The differences in the behaviors of water 

molecule in these two positions indicate that the interaction of the water molecule and the 

surface is sensitive to the site of adsorption, and the position 2 is more favorable for the 

water molecule adsorption due to the stronger influence of three metallic atoms compared 

to one metallic atom for position 1. 

 



100 
 

 

 

Fig.4. 22 Adsorption energy for Mg alloys with different water molecule positions 

3.3 Water adsorption on different crystallographic planes 

As a final set of computations, we tested the impacts of crystallographic 

orientations on the water adsorption. From the surface energy computations, it was found 

that the crystallographic orientation of the surface has an important role in stability of the 

system. The slab models in this case were 3x3x2 supercells cleaved to contain basal and 

prism planes with a 30Å vacuum slab.  A water molecule was located in position 2 as 

Table4.4 (in-between the Mg and alloy atoms) to study the behavior of the surfaces in 

presence of water molecule. Fig.4.23 shows the result of these calculations. From this 

figure, it is seen that the basal plane with higher stability has lower tendency to absorb 

the water molecule, while the loosely packed prism plane more strongly attracts the water 

molecule toward itself. Thus, it is clear that the adsorption energy has a reverse 

relationship with the surface energy of the system; the basal plane has lower surface 

energy and a high stability that results in a weaker attraction for the water molecule, and 

consequently, lower hydrogen evolution and lower corrosion rate compared to the prism 
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plane. This result also has agreement with experimental work by Song et al. (128) that 

reported lower hydrogen evolution for the densely packed plane. Note that the impact of 

surface orientation on the adsorption energy is not as high as that of Y or Al, but it is 

comparable to the effect of Ca (see Fig.4.22 position 2 case). 

 

 

Fig.4. 23 Water adsorption energies from the Mg systems with different crystallographic orientations 

 

 

 

 

 

 

 

 

 

 



102 
 

 

 

Chapter 5: Summary 

 In the current thesis, we address the corrosion and/or degradation rate of 

biodegradable Mg-based medical devices in biological environment as the main 

limitation for their biomedical applications. Especially, we focused on the development 

of the atomistic DFT computational model to study the initial hydrolysis of Mg/Mg 

alloys.  It is widely recognized that the corrosion behavior of the Mg-based material is 

strongly influenced by the composition and the crystallography of the system. In this 

work, the impacts of these factors were studied using i) the surface energy, ii) the 

dissolution potential, and iii) the tendency of the surface for adsorbing the water 

molecule, since they are considered as one of the most important properties in the initial 

hydrolysis degradation behavior. 

 The surface crystallographic orientations of the Mg/Mg alloy system were chosen 

to be basal )0001( , prism )0110( , and pyramidal )1011(  planes as they represent the most 

common indices in the hexagonal structures. The model indicated a positive relationship 

between the density of atoms on the surface and the stability of the system; for example, 

the surface energy of the basal plane with the highest atomic density was found to be the 

smallest value, resulting in the highest stability for this plane. The prism and the 

pyramidal planes showed relatively lower stability due to their smaller number of atoms 

on the surface. By comparing the surface energy results from the computational model 

and the previous experimental observations, the ranges of proportionality coefficient in 

the Tafel equation were extrapolated. It was also found that the presence of alloying 

elements on the surface layer of pure Mg influences the surface energy, the dissolution 
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behavior, and also the interaction of the surface with the water molecule. Mg alloy 

systems containing Al, Zn, Ca, and Y were tested in our study as they are the most 

commonly applied alloying elements in Mg systems for biomedical applications. It was 

explained that the surface energies of these alloy systems can be dependent on the 

valency, the ionic radius, and also the surface energy of the alloying elements. It is 

thought that the atoms with different valency from the Mg ions cause instability in the 

surface of Mg, and the ionic radius of the alloying atom and their elemental surface 

energies are other parameters influencing the stability.  

 The results from water adsorption process indicated that the more stable surfaces 

have fewer tendencies to absorb the water molecule. By introducing a water molecule on 

the metal surface, the energies of the system were lowered with the order of Y, Al, Ca, 

and Zn. From the water molecule adsorption calculations, the lowest energy 

configurations of all of the alloy systems with a water molecule were identified. For all of 

the Mg-based systems examined in our work, it was observed that there is a reverse 

relationship between the surface stability and the water adsorption tendency. It seems that 

surfaces with lower stabilities approach the equilibrium by adsorbing the water molecule. 

It was explained that due to the relatively large differences between the electronegativity 

of the oxygen atom and the metallic atoms, it is likely that the stronger attraction will 

occur between the water molecule and the surface atoms. It was found that the presence 

of oxygen atom of the water molecule on top of three metallic atom on the surface 

magnifies the attracting forces and this results in stronger water adsorption compared to a 

position that has only on metallic atom close to the oxygen atom. Therefore, for position 

of the water molecule on the metal surface seems to be an important parameter. 
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It was also found that although the surface containing Al exhibits relatively higher 

surface energy compared with Ca and Y, it was calculated that the dissolution potential of 

Mg-Al systems is the highest, which means that removing the atoms from the surface of 

this alloy is more difficult compared to the other cases. The reason for this resistance may 

be the small ionic radius of Al. In other words, due to the small size of the Al atom, its 

first nearest neighbors on the surface will move toward it, and such a positive distortion 

gives rise to the displacement of atoms closer to each other that causes less tendency of 

these atoms for dissolution. From these findings, it is thought that the surface energy 

cannot solely determine the dissolution behaviors of Mg alloys. 

The developed model is only applicable for the small systems due to the general 

limitation of DFT computational technique for the size of the system. The model does not 

consider the formation of hydroxide layer, and the model only focuses on the initial 

mechanism of hydrolysis. Further, there is a need to develop a more comprehensive 

model to include the pitting and/or galvanic corrosion phenomena in addition to 

hydrolysis. As a future work, we will conduct a more advanced study on the combination 

effect of different alloying elements and also the effect of combining the alloying 

elements with crystallographic orientation. It is expected that the theory that includes the 

interaction of the water molecule and the proteins present in the body along with the 

hydroxide layer formation on the surface of the metal also can lead to better 

understanding of the corrosion behavior of Mg alloys and to find the optimized 

composition for the Mg alloy. Finally, we also plan to develop a larger scale model (i.e., 

meso-scale model) or multi-scale model to integrate the two major mechanisms of Mg 

degradation, hydrolysis and galvanic corrosion. 
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 The findings, limitations, and future work of the current thesis are summarized as 

follows. 

Findings 

1. Surface energy and Mg corrosion/dissolution 

- The basal plane shows the lowest surface energy in Mg systems. 

- The proportionality coefficient in the Tafel expression is in the range of 0.007 and 

0.049. 

- The Mg alloy systems containing Al and Y show higher surface energies than 

pure Mg materials, and the Mg alloys incorporating Zn show lower surface 

energy. 

- When the contents of alloying element is sufficiently low (i.e., less than 5 at.%) 

and the proportionality coefficient in the Tafel expression is assumed as a 

constant, the impact of surface orientation on the dissolution behavior is higher 

than that of alloying element. 

2. Dissolution potential and Mg corrosion/dissolution 

- Mg-Al alloy shows the highest dissolution potential difference compared to the 

pure Mg while this difference for Mg-Y system is the lowest; addition of Ca and 

Zn do not cause considerable changes on dissolution potential from the pure Mg 

system. 

- In the Mg alloy system containing Al, dissolution of Mg atoms is much easier 

compared to that of the alloying atom (Al). 
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- In the Mg-Al system, the first nearest neighbors of the alloying atom are the most 

difficult atoms to remove, followed by the third and then the second nearest 

neighbors on the alloy surface. 

3. Water adsorption and Mg corrosion/dissolution 

- The trend of water adsorption behavior is consistent with the surface energy 

changes in the Mg-alloy systems. The lowest water adsorption energy was 

expected in the system (i.e., Mg-Y system) with the highest surface energy, and 

vice versa.  

- There is an equilibrium height for the water molecule from the metallic surface 

equal to 1.33Å (when the in-plane position of water molecule is fixed as the 

center of the surface Mg atom) that results in the lowest energy of -0.48 eV for 

the system considered in our work. 

- If the water molecule is located in a height more than 20 Å from the surface the 

water molecule and the metallic surface show no interaction with each other. 

- There is a lower tendency of water adsorption when the water molecule is 

positioned on the top of surface Mg atom compared with the center of three 

surface atoms. 

- The basal plane adsorbs the water molecule less than the prism plane. 

Limitations 

- The model is limited to small systems due to the general nature of DFT 

calculations.  

- The model does not address the effects of multi-element alloying. 

- The formation of hydroxides has not been considered in the computations. 
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- The model is not useful to describe more complicated forms of corrosion 

mechanisms such as pitting and galvanic corrosion  

Future work 

- Develop a model to study the combination effect of multi-element alloying and 

also the combination effect of crystallographic orientation and alloying elements. 

- Study the behavior of the Mg surface after the formation of the various types of 

hydroxide layer. 

- Develop a multi-scale model that considers the effect of both hydrolysis and 

galvanic corrosion mechanisms. 

- Study the interaction of the surface with more complicated proteins (i.e., protein 

adsorption) existing in the adequate physiological environment. 
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