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ABSTRACT 

SYNTHESIS AND COMPRESSIVE PROPERTIES OF Al-A206/SiC AND Mg-AZ91/SiC 

SYNTACTIC FOAMS 

by 

Gonzalo Rocha Rivero 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Pradeep Rohatgi 

Metal matrix syntactic foams are promising materials for energy absorption. Maximizing 

specific energy absorption requires a strong low density matrix and strong ceramic 

reinforcements. Very few studies on the use of SiC microballons in metal matrix 

syntactic foams have been published in the literature. The objective of this thesis was to 

study the effects of matrix strength on the quasistatic compressive properties of 

syntactic foams using SiC hollow spheres as reinforcement and Aluminum A206 and 

Magnesium AZ91 as matrices. The SiC hollow microspheres syntactic foams were 

synthesized by a sub-atmospheric pressure infiltration technique and the resulting 

samples were then tested in compression at a strain rate of 10-3 s-1 using a conventional 

load frame. The energy absorbed by syntactic foams in this study is represented by the 

area under the compressive stress-strain curve from the peak stress until densification 

again reaches the peak stress at a large strain.   Because Al-A206 is a heat treatable alloy, 

matrix strength can be varied by heat treatment condition and foams in as-cast, T4, and 

T7 conditions were tested in this study.  It is shown that the peak strength, plateau 
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strength and toughness of the foams increase with increasing yield strength of the 

matrix and that these foams show better performance than many syntactic foams 

reported in the literature, on a specific property basis. 

The peak strength, plateau strength and toughness of the foams studied increase with 

increasing yield stress of the matrix material. The increments for the peak stress were 

13% for T4 and 24% for T7 treatments, referred to the as cast condition. For the same 

heat treatments, the increments for the plateau stress were 27% and 37%, while for the 

Toughness the values were 17% and 26% respectively. 
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1. Introduction 

Metal matrix syntactic foams are a type of particulate composite in which hollow 

microspheres are contained within a metal matrix. With this approach, porosity is added 

to a monolithic metal in a controlled way, to improve some of the properties of the 

resulting composite.  Lower densities, higher energy absorption, heat insulation and 

sound absorption capabilities are some of the advantages of syntactic foams that have 

attracted the attention of industry and the academia.  Regarding their energy 

absorption properties, syntactic foams usually have a characteristic quasi-static 

compression stress strain curve consisting of an initial linear region followed by a long 

stress plateau. The behavior in the initial region is usually considered elastic, although 

due to the nature of syntactic foams, with a variety of spheres sizes and wall thicknesses, 

this region is not truly elastic and some deviations are observed. At the end of this 

region a drop in the stress is produced before the stress plateau appears. The plateau 

region is where most of the hollow spheres crush and the composite material absorb 

energy without any significant change in their strength.  The crushing of hollow spheres 

and their compaction lead to the densification of the composite material; once the 

densification is complete, the stress again increases steadily over the material.  The 

energy absorbed by syntactic foams synthetized in this study is represented by the area 

under the compressive stress-strain curve from the peak stress until densification again 

reaches the peak stress at a large strain [19, 20].   
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Extensive research has been done on metallic syntactic foams, especially with 

cenospheres and alumina hollow spheres, yet few studies have been published with the 

use of SiC hollow spheres as reinforcement in metal matrix syntactic foams [34]. 

The objective of this work was to study the effects of matrix strength on the quasistatic 

compressive properties of syntactic foams using SiC hollow spheres as reinforcement 

and Aluminum A206 and Magnesium AZ91 as matrices. 

2. Literature Review 

2.1 Synthesis of Metal Matrix Syntactic foams 

The methods used for the synthesis of metal matrix syntactic foams are basically the 

same as those used for the processing of metal matrix composites, though in this case 

the unique characteristic of the composites (hollow materials) may impose some 

restrictions in the use of these methods. In the following section the main processes 

used for the synthesis of metal matrix syntactic foams will be presented, as well as some 

of the problems found. The methods reported in the literature, can be divided in two 

approaches [1]: 

 Solidification techniques, processes that involve the incorporation of the spheres 

in the molten metal and casting to form a shape. Pressure infiltration and stir 

casting are the main processes within this group. 

 Powder Metallurgy, processes where the metal and the hollow spheres powders 

are mixed, consolidated, degasified and sintered to form a shape.  



3 
 

 
 

2.1.1 Pressure Infiltration 

Is the most used method for processing MMSF because the metal is forced to flow 

through the openings and crevices between the hollow spheres, overcoming the poor 

wetting observed between a metal matrix and ceramic materials used as hollow spheres. 

The method usually comprises the preparation of a preform with the hollow 

reinforcements; eventually the spheres can be loosely packed. The pressure needed to 

infiltrate the molten metal through the crevices of the preform can be applied through 

an inert gas [2-7], vacuum infiltration [8-11], mechanical pressure (squeeze or die 

casting) [12-17]. 

A good adhesion between the matrix and the reinforcement is crucial for an appropriate 

performance of any composite material. Wettability is the ability of a liquid to spread on 

a solid surface [77].  A good wettability between the melt and the hollow spheres is very 

important for a good adhesion between these surfaces; the liquid matrix must 

penetrate and wet the surface of the spheres to avoid an incomplete infiltration of the 

reinforcement. Usually the wetting of ceramic reinforcements by liquid metals is rather 

poor; hence an adequate selection of the infiltration parameters or the uses of preforms 

are options to improve this behavior. 

In the gas pressure infiltration technique, the preform is held in a mold or crucible, 

separated from the solid metal charge with a filter (ZrO2 or Y2O3). The chamber 

containing the mold is degassed to remove the gas in the preform, and heated to above 

the melting temperature of the metal. Once the metal is completely melted, an inert gas 
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is applied to the chamber to force the liquid metal into the preform. Afterwards, the 

infiltrated syntactic foam is allowed to solidify. Pressure and temperature of the system 

as well as wetting at the metal/reinforcement interface and permeability of the 

reinforcement bed are critical factors for a complete infiltration. These parameters 

should be chosen carefully, to avoid an incomplete infiltration (unintended porosity in 

the foam). However, higher temperatures could increase the possibility of formation of 

undesirable phases due to a chemical reaction between the matrix and the material of 

the spheres; on the other hand an excessive infiltration pressure could lead to the 

crushing of the spheres and their filling with metal [3]. Coating the hollow spheres with 

metals improve the wetting between the metal matrix and the spheres, allowing the use 

of a reduced infiltration pressure, as shown by Rohatgi et al. [18] where the infiltration 

pressure was reduced from 3 and 4 psi for uncoated fly ash to around 1 psi for Ni-coated 

fly ash. 

Vacuum infiltration is similar to gas pressure infiltration, i.e. vacuum is applied to the 

chamber and heat is applied until the metal is completely melted. The infiltration is 

achieved by applying a negative differential pressure between the metal and the hollow 

reinforcement with an inert gas. This approach shows advantages over the gas pressure 

infiltration when the hollow spheres are fragile and are damaged by high infiltration 

pressures. Usually this process is accomplished with the use of coatings that improve 

the wettability of the liquid metal and the hollow spheres. This method has been used 

by J. Santa Maria et al. to synthesize syntactic foams from Al-A380 and Al-A206 with 

Al2O3 hollow spheres [19-20].  
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Squeeze casting is an alternative method to apply the pressure needed for infiltration of 

hollow spheres preforms. In this process the upper part of the mold is pressed into the 

liquid melt forcing it to infiltrate the preform. This process presents some advantages 

like the ability to produce a near net shape piece, virtually free from porosity and with a 

finer grain size.  Several researchers [12-15] have used this method to infiltrate loose 

spheres and preforms and get aluminum matrix syntactic foams. 

2.1.2 Stir Casting 

Stir casting is a technique that describes several methods where a molten metal is 

agitated and stirred, usually with an impeller, to disperse a reinforcing phase 

throughout the metal. This method is particularly sensitive to segregation and 

agglomeration of the hollow reinforcement, therefore the melt has to be continuously 

stirred before being poured into the mold. Addition of compacted pellets with the 

reinforcement is the most common used method for transfer of the particles to the melt. 

Daoud et al. have successfully used this method to processing syntactic foams made of 

magnesium alloy ZC63 with 12-25% fly ash [21] and ZnAl22 with Ni-coated fly ash [22].   

2.1.3 Powder Metallurgy 

This method has been used successfully for the processing of syntactic foams using 

different matrices like aluminum, iron and titanium [13, 14, 23-26, 28-30]. The powder 

alloy and the hollow spheres are mixed in appropriate amounts, and then the mixture is 

compacted under pressure into a shape and sintered in a furnace to get a near full 

density piece. This method has been used in the processing of many metal matrix 
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composites, however in the case of syntactic foams; special care should be taken in the 

selection of a compaction pressure that minimizes the crushing of hollow spheres. Zhao 

et al. synthesized Fe and Ti syntactic foams by powder metallurgy, using compaction 

pressures of 100 and 150 MPa and E-spheres (hollow and porous) [15]; the results 

obtained showed that a significant number of spheres were crushed at the higher 

compaction pressure. In a similar study, Xue et al. synthesized Ti-ceramic microspheres 

syntactic foams, using compaction pressures of 45 and 200 MPa [69]. The density and 

porosity of the foams varied with compaction pressure, however a higher compaction 

pressure resulted in a large number of crushed microspheres.  

2.2 Processing Defects in Metal Matrix Syntactic Foams  

The processing of syntactic foams presents some technological problems that can have 

negative implications on the quality of syntactic foams; usually evidenced as defects in 

the foams. These defects have their origin in some characteristics inherent to the 

physico-chemical interactions between the metal matrix and the hollow particles added 

as well as the processing parameters and eventually in the quality of the hollow spheres. 

2.2.1 Physical and Chemical Interactions 

Most of the hollow reinforcements in metal matrix syntactic foams are ceramic; the 

wetting between these two surfaces is not good and this condition usually leads to a 

poor bonding and unintended porosity localized around the hollow sphere periphery [5, 

7, 31, 32]. It has been shown that unintended porosity has an adverse effect on the 

mechanical behavior of aluminum fly ash syntactic foams, by lowering the peak stress of 
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the stress-strain curve [31]. This defect becomes more critical as the size of 

microspheres becomes smaller due to capillary resistance to the flow of the melt 

through the voids between the microspheres [7]. Coating of the microspheres with 

metals (Al, Ag, Cu, Ni,) is an alternative that has been used to reduce unintended 

porosity [7]. Increasing the infiltration pressure is another option, although this also 

increases the possibility of infiltrating the cavity of the microspheres due to an excessive 

pressure.  

On the other hand, high temperature and pressure conditions, usually found in the 

processing of syntactic foams, can lead to chemical reactions between the matrix and 

hollow reinforcements. These reactions depend on the particular compositions of both 

elements of the foam and they may affect adversely the mechanical strength of the 

matrix due to modifications in its chemical composition and phases, as shown by Balch 

et al. [27] where the aluminum melt react with the ceramic microspheres leading to the 

formation of solid Silicon inclusions inside the matrix and alumina over the surface of 

the microspheres. These changes may also have a strong influence on the heat 

treatment of these composites as illustrated by the work of Orbulov et al. [6].   

The strength of the spheres may be also reduced by these chemical interactions due to a 

reduction in their wall thickness or other damage which can lead to infiltration of the 

spheres [4, 6, 7, 27]. 
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2.2.2 Processing Parameters 

Beside the pressure and temperature effects mentioned in the previous section, 

gradients in reinforcement have been found to be introduced in the foams due to 

interactions between the solid hollow spheres and the advancing liquid and 

solidification front of the matrix [7]. This effect may be adverse if the infiltration takes 

place through a loosely packed bed of hollow spheres because the liquid metal flow 

pushes and creates turbulence modifying the distribution of hollow spheres inside the 

foam; eventually this fact leads to non-consistent mechanical properties in the foam due 

to the presence of metal rich regions and regions with agglomerated hollow spheres in 

other ones. The use of preforms minimizes this problem when sintering or binding of 

the reinforcement is possible. Besides allowing more far consistent mechanical 

properties in metal matrix syntactic foams, preforms having a bimodal size distribution 

of hollow spheres may be made through this process. According to the literature, this 

distribution of hollow spheres could lead to an even greater enhancement of the peak 

stress and the plateau resistance of syntactic foams [16].  

2.2.3 Quality of the Hollow spheres 

Consistency in the properties of hollow spheres also plays a role in the mechanical 

behavior of syntactic foams. In this case the main factors involved are the size 

distribution of the spheres, microsphere wall thickness/diameter ratio and the amount 

of broken or porous microspheres. Figure 1 shows the appearance and inner surface of 

the most common types of microspheres reported in the literature (flyash cenosphere, 
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ceramic microballon (36-40% Al2O3, 55-60% SiO2, 1.4-1.6%TiO2, 0.4-0.5% Fe2O3) and SiC 

microspheres). It can be seen that microspheres are not completely spherical, their 

thickness is not uniform, they are porous and their inner cavities are not completely 

hollow. These characteristics may affect adversely the quality of MMSF and should be 

kept in mind when assessing the compressive behavior of these foams. Broken 

microspheres, usually present in these reinforcements, may be classified by buoyancy in 

a fluid with higher density than the microspheres [34]. 

 

FIG. 1 SEM images of microspheres in (a) broken fly ash, (b) ceramic, (c) SiC, (d) broken 
SiC [6, 34, 55] 
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2.3 Mechanical Behavior of Metal Matrix Syntactic Foams  

Most of research publications dealing with metal matrix syntactic foams report their 

compressive mechanical properties because these foams are designed to work mainly 

under compression, especially those applications related to impact energy absorption. 

The properties of metal matrix syntactic foams depend on several parameters like 

particle shell material, shell wall thickness to diameter ratio, matrix alloy, processing 

parameters, entrapped voids, and heat treatment conditions. In the following sections 

the general deformation behavior of MMSF will be described in terms of their stress-

strain compression curves as well as the effects of matrix strengthening, volume fraction 

and the t/D ratio on the behavior of these foams. 

 2.3.1 General Deformation Behavior 

The typical shape of a quasi-static compressive stress-strain curve for MMSF is shown in 

Figure 2 [55] where three clearly differentiated stages of deformation are observed. 

First, a linear elastic deformation represented by zone I, where the stress increases 

linearly with strain until reaches a peak stress (σ0). The second zone (II) starts with a 

sudden drop in the stress followed by an extended plateau where stress remains 

essentially constant until a relatively large strain is reached. This is the zone where the 

energy absorption of MMSF develops, due to a progressive collapse of the hollow 

spheres. The author differentiates two sub zones, II1 where disperse collapse of the 

hollow spheres is produced and II2 where bands of densification develop due to 

localized plasticity of the composite. Finally, the zone III represents the densification 
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stage, which starts with the densification strain (εD) and is characterized by a rapid 

increase in stress for a given differential strain.    

 

FIG. 2 Compressive stress-strain curve showing different stages of deformation [55] 

In this study the densification strain (εD) was determined as the intersection of the 

tangents to the plateau and densification regions, parameter that was used to evaluate 

the energy absorbed per volume unit (toughness of the MMSF). In reality, the plateau 

zone is not always as clearly demarked as shown in Figure 2, accordingly a variety of 

methods have been used in the literature to report the plateau strength of MMSF [8, 25, 

31] . In this study the energy absorbed is represented by the area under the 

compressive stress-strain curve from the peak stress until the densification stress 

reaches the magnitude of the initial peak stress. 

Quasi-static compressive curves exhibit different modes of failure at the peak stress and 

during densification, as was shown by Balch et al. [4] for commercially pure (cp-Al) and 

alloyed aluminum matrix syntactic foams. For the case of cp-Al foam Figure 3 shows a 
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well-rounded peak stress, which means that the matrix yields, i.e. deforms plastically, 

before the hollow spheres start to fail. The stress drop after the peak stress corresponds 

to the formation of 45° crush-bands, as indicated by the arrow in the plateau zone. 

Similar behavior has been also observed for aluminum alloyed syntactic foams with 

different types of hollow spheres [4, 5, 35, 55]. 

 

FIG. 3 Quasi-static compressive behavior of cp-Al and alloyed syntactic foams [4] 

In the case of the aluminum alloyed foams (O and T6) the hollow spheres failed before 

the matrix and, a very sharp primary drop and a more rounded secondary drop is 

observed. This behavior has been explained by the author as the result of two near-45° 

shear bands of collapsed spheres inside the specimens, probably due to a higher 

strength and reduced ductility of the matrices (compared with the cp-Al) and to the 

Secondary drop 
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presence of strong and brittle ceramic reinforcements in the foams. Similar results have 

been observed in other alloyed aluminum matrices [4, 6, 8, 15].  

A different behavior has been observed in metal matrix syntactic foams containing 

metallic hollow spheres. Figure 4 shows the stress–strain compressive curves for 

syntactic foams made up with steel hollow spheres in steel and aluminum matrices, by 

casting and powder metallurgy, respectively [26].  

 

FIG. 4 Strain-stress compressive curves for metallic hollow spheres syntactic foams [26] 

In this case the mode of failure under compression is ductile as opposed to brittle 

ceramic hollow spheres.  There is an initial region of elasto-plastic deformation, 

followed by a non pronounced drop in peak stress and an extended plateau region at a 

relatively constant stress. This behavior has been also observed in other syntactic foams 

containing metallic hollow spheres [13, 36]. 
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2.3.2 Matrix Strengthening Effect 

As it was shown in the previous section, increasing the peak and plateau stresses of a 

MMSF improve their energy absorption capabilities. One approach to achieve this aim is 

by increasing the strength of the matrix through a heat treatment, for those heat 

treatable alloys. Balch [4] and later on Orbulov [6] have shown the effect of a 

standardized heat treatment (T6) of aluminum based syntactic foams on their energy 

absorption capabilities. In both cases the heat treated alloys show higher peaks and 

energy absorption values that those non treated foams. A similar behavior has been 

reported by Daoud [37] for the heat treatment of ZnAll22 matrix syntactic foams. 

According to the author the heat-treated foams exhibit ductile deformation behavior 

due to their higher plasticity induced by the fine microstructure of the ZnAl22 matrix. 

Santa Maria et al. [20] has studied the effect of matrix strength, hollow spheres size and 

distribution on the compressive properties of syntactic foams made of Al-A206/Al2O3. 

The study covered three different hollow sphere size ranges and was tested in the as 

cast as well as in the T4 and T7 conditions. The results showed that the peak stress of 

the syntactic foams follow the yield strength of the heat treated matrices. Also, the peak 

strength, plateau strength and toughness of the foams increase with increasing the t/D 

ratio of the spheres.  

It should be noted that the increase in peak and plateau stresses of syntactic foams, due 

to their heat treatment, may be not as high as the values found for the heat treated 

matrix. For aluminum based syntactic foams this behavior has been attributed to a 
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modification in composition and phases of the original matrix, due to chemical reactions 

between the melt matrix and the silica of the hollow spheres, leading to the 

precipitation of silicon inside the matrix and the formation of alumina on the walls of 

the spheres [6, 27]. This type of chemical interactions between the melt and the hollow 

spheres can modified drastically the composition of the matrix after the heat treatment. 

2.3.3 Volume Fraction Effect 

The volume fraction of hollow spheres in syntactic foams will depend on their spatial 

arrangement inside the metal matrix. Sanders and Gibson [77, 78] studied the 

mechanics of hollow-sphere foams assuming ordered arrangements of the spheres in 

space, similar to those found in crystalline systems of metals, i.e. single cubic (SC), body-

centered cubic (BCC) and face centered cubic (FCC). Using the packing factors of these 

crystalline systems, it can be said that the maximum obtainable volume fractions of 

spheres in syntactic foams (theoretical) would be 0.52, 0.68 and 0.74 for SC, BCC and 

FCC respectively. After modeling the mechanics of hollow spheres following these 

arrangements, Sanders and Gibson found that the FCC packing has superior mechanical 

properties than BCC or SC systems. 

The effect of volume fraction on the compressive properties of MMSF has been studied 

by Tao et al. [17] by infiltrating a mixture of ceramic microballons and Al 6082 alloy 

powder with a melt of Al 6082 alloy, in this way the volume fraction of the matrix was 

varied between 37% and 70% of aluminum in the foams. The compressive stress-strain 

curves showed that as the volume fraction of microballons was decreased a higher peak 
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stress was higher and the length of the plateau stress was drastically shorter. Regarding 

the specific energy absorption capability the 50% aluminum foam showed the highest 

value followed by the 60% and 43% aluminum foams. Similar results were obtained by 

Daoud et al. [37] who used flyash spheres in a Zn22Al matrix; the same inverse 

relationship between volume fraction of microballons and peak stress was found, 

however no values for the specific energy absorption for different volume fractions of 

flyash was given, therefore no conclusions can be drawn on this parameter. 

Other research studies varying the volume fraction of microspheres have been 

published but using different sizes of spheres [14, 16, 35] with variable results. 

2.3.4 Microsphere Wall Thickness/Diameter Ratio (t/D) 

The energy absorption capability of MMSF depend on a number of parameters like the 

material of the hollow sphere, microsphere wall thickness/diameter ratio, microspheres 

size range, matrix alloy, processing parameters, unintended porosities and heat 

treatment conditions. In this section the microsphere wall thickness/diameter ratio (t/D) 

effect will be reviewed.  

This effect has been studied in detail by Kiser et al [9], where alumina microspheres of 

three different (t/D) ratios were infiltrated by A201 and A360 aluminum alloys. The 

stress-strain compressive curves shown that the peak stress increases as the wall 

thickness/diameter increases, by a factor of up to 3. This behavior was observed in the 

three matrices (A201-O, A201-T6 and A360-O). Santa Maria et al. [19] presented a graph 

with a review of published quasi-static compressive properties of syntactic foams with 
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approximately 60% of microspheres. The graph shows the same trend as Kiser’s work, 

there is direct relationship between peak stress and (t/D) ratio of microspheres. 

2.4 Applications of Metal Matrix Syntactic Foams 

During the last decade metallic foams, either with open or close cells has been used in 

industry, basically in transportation, defense and aerospace applications. MMSFs exhibit 

many desired combinations of physical and mechanical properties including high specific 

stiffness, high specific energy absorption, and low thermal conductivity that make them 

ideal for replacing metallic foams in many of their current applications.  

The growing importance of these metal matrix syntactic foams has been stressed by G. 

M. Gladysz et al. [52] in a graph that shows the steep increase of research publications 

on syntactic and composite foams since 2003, possible driven by the industry trend for 

increasing functionality; whether for reduced weight for fuel saving or for optimum 

functionality of biocompatible structures. 

 

FIG. 5 Increase in syntactic and composite foams publications (1965-May 2011) [52] 
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2.4.1 Ground transportation 

This segment has the largest share of the world market for metal matrix composites, 

and this is expected to grow with the demands for low fuel consumption and safety in 

the automotive transportation industry [53]. One approach to satisfy both demands is 

through the use of metallic foams and metal matrix syntactic foams. An aluminum-fly 

ash cenosphere composite is being promoted by an Australian company under the 

trademark ULTALITE® [54]. This MMC is made of A356 aluminum alloy with Fly-ash 

cenospheres, in the range of 10% to 50% by weight. The producer claims this composite 

could be used for manufacturing several automotive components like brake drums, 

brake discs, engine blocks, cylinder heads, pistons, con rods, oil pumps, and 

transmission components. 

MMSFs are excellent energy absorbers due to their deformation at a nearly constant 

stress level over a wide range of strain making them ideal for crash energy absorption 

zones in ground transportation [55]. Metallic foams and MMSFs have a low rebound 

performance in dynamic crash situations, e.g. aluminum foams with less than 3% in 

comparison with 15% of polyurethane foams [56]. Also, it should be noted that MMSFs 

have a much better performance as energy absorbers than metallic foams [57]. Some of 

the potential applications of foam-filled structures include crash boxes for head-on 

impacts, and under-ride protection for semi-trailer trucks.  

MMSF’s may be also used to improve crash energy absorption in high speed rail 

equipment as shown by a study by Kremer et al. to identify, investigate and 
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demonstrate specific applications for aluminum foam in high speed rail equipment [58].  

The application areas explored include: lightweight aluminum foam sandwich panels for 

flooring, partitions and electrical panel doors, primary impact energy absorption in 

sliding sills or crushable zones at the end of passenger cars, secondary head impact 

energy absorption to reduce head injury, and energy absorbing sliding seat rail to 

reduce injury to passengers on impact with seat backings. 

2.4.2 Aerospace 

A promising application of MMSF that has been explored by turbines manufactures is 

the construction of aerofoils. Rolls-Royce Plc has registered a patent in the USPTO for a 

method of manufacturing an aerofoil for a gas turbine engine, either for the rotor blade 

or the stator vane [59]. The aerofoil is made of a laminate with two metal sheets and a 

core of syntactic foam and, according to the patent claims the syntactic foam can be 

made of aluminum, titanium, nickel, magnesium, or steel alloys. Powdermet Inc. has 

proposed aluminum and titanium syntactic foams as a replacement for energy 

absorbing casements for the interior of the fan case in turbine engines as a light weight 

alternative to hard wall fan casings and a more compact alternative to soft walled fan 

casings [60].  

2.4.3 Defense 

The current needs of the armed forces include quicker deployment of vehicles, 

personnel, and armaments as well as better protection of personnel in combat. A 

common approach for achieving ballistic impact resistance and energy absorption 
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performance is the design of functionally graded armor composites (FGACs) [61]. These 

are generally laminated materials consisting of a front-facing layer whose purpose is to 

blunt and abrade the incoming projectile; meanwhile a second layer supports the facing 

material during this initial impact and then deforms and absorbs energy. Typically, the 

front-facing material is a ceramic, usually Al2O3, while the backing layers are typically 

light metals such as aluminum, but recent developments include fiber composites that 

provide a better combination of energy absorption and reduced weight [62]. While 

metal foams have been shown to offer little in the way of ballistic protection [63], when 

implemented as intermediate layers between the MMC or ceramic face-plates they may 

act to reduce stress-wave transfer and to allow the projectile to be slowed by crushing 

the foam before the backing material is deformed [64]. 

The US Navy has extensively researched and developed lightweight and high 

performance composite materials as alternatives to monolithic metals to address their 

need to enhance the operational performance of naval vessels, i.e. increased range, 

stealth, stability and payload. Rawal and Lanning report the development of a ceramic 

microballoon reinforced Ti/((Al203)mb/Al)//Ti composite panel for advanced submarine 

applications [65].  The physical structure of the composite was a laminate made of two 

Titanium sheets as the outer faces and the syntactic metal foam (Al2O3 microballons in 

an aluminum matrix) sandwiched between them. This combination offered low-density, 

good compressive strength, high damping, and impact resistance compared to the 

conventional HY-80 steel used for submarine hull and joint ring, and platform structures. 

Despite the promise of these new materials, most of the completely developed 
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applications of lightweight composites are found only on relatively small naval ships or 

in non-structural components on large ships and submarines [66]. 

2.4.4 Biomedical 

Titanium alloys have been widely used in orthopedic implants due to their good 

biocompatibility, high strength to weight ratio relative low elastic modulus, high fatigue 

strength, and excellent corrosion resistance. However, a disadvantage with the use of 

these materials is that the implant often will become loose (disruption of the 

implant/bone or cement interface) due to a stress-shielding effect between the higher 

stiffness Titanium alloy (aprox. 120 GPa) and the bone (aprox. 18.6 GPa) [67-68]. This 

phenomenon leads to bone loss and weakening of the bone. One strategy to reduce this 

effect is to use implant materials that mimic the structure and properties of human 

bone, where the distribution of load in the bone/implant is not altered by the presence 

of the implant. Since bone is an anisotropic material and varies in its mechanical 

properties throughout the body, composite materials are an ideal choice where tailored 

and functionally gradient properties may be achieved. Preliminary studies on the 

mechanical and biological properties of a Ti-ceramic microsphere (diameter: 150 µm, 

composition: ~60%SiO2, ~40%Al2O3, 0.4-0.5% Fe2O3) syntactic foam, manufactured by 

powder metallurgy have been reported [69]. The data reported in this study suggests 

that titanium alloy matrix syntactic foams have potential for orthopedic implant 

materials and warrant further investigation. 
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2.4.5 Building applications 

Metal matrix syntactic foams offer many significant advantages for structural 

applications due to their high specific stiffness, impact energy and sound and energy 

absorption capabilities. Civil engineering and structural applications that have been 

proposed include lightweight framing and structures, thermal insulation, and protective 

structures, however as processing costs remain high such applications will likely be 

limited to very specific niches where the performance outweighs the cost.  An 

interesting study by Salimon et al. [70] shows, based on a materials selection 

methodology, potential applications of steel and titanium foams, which may be a close 

analog for the properties of typical aluminum alloy MMSFs. Potential applications 

predicted for metallic foams in building applications are [70, 71]: flooring, decoration, 

roof and ceiling, lightweight fire doors and hatches, and elevators. 

2.4.6 Electronic Packaging 

Dou et al. [72] found that Al-2024-fly ash syntactic foam was superior to Al-2024 for 

electromagnetic shielding applications. In the frequency range of 1–600 MHz the EM 

shielding property of 2024Al alloy was in the range −36 to −46 dB while that of the 

composites was in the range of −40 to −102 dB. With careful selection of the matrix and 

hollow microspheres material new classes of lightweight high performance electronic 

packaging materials may be developed. 
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2.5 Summary of Literature on MMSF  

Summarizing, it can be said that several methods are available for the synthesis of metal 

matrix syntactic foams. Pressure infiltration the most widely used method for 

synthesizing foams with metallic matrices of low melting point, while powder metallurgy 

seems to be the preferred method for syntactic foams with high melting point matrices. 

The processing of MMSFs present some technological problems that should be 

addressed to avoid undesirable mechanical properties derived from chemical reactions 

between the matrix and the reinforcement, unintended porosity and the quality of the 

hollow spheres. 

The compressive mechanical properties of metal matrix syntactic foams depend on 

several parameters like particle shell material, shell wall thickness to diameter ratio, 

matrix alloy, processing parameters, entrapped voids, and heat treatment conditions. 

MMSFs present a clear advantage over metallic foams due to their light-weight, high 

specific strength and specific stiffness and high energy absorption properties. These 

advantages make them excellent candidates for applications in ground transportation, 

aerospace and defense. However, the lack of design data, lack of high quality hollow 

reinforcements, high cost of their manufacture and lack of multiple suppliers affect 

adversely the development and manufacturing of MMSF components. 
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3. Experimental Procedure 

Syntactic foams composed of aluminum alloy Al-A206 and magnesium alloy Mg-AZ91 

reinforced with approximately 50 v% hollow SiC spheres (1 mm nominal diameter, 70 

µm wall thickness, and 0.7 g/cm3 bulk density from Deep Springs Technology) were 

synthesized via a sub-atmospheric pressure infiltration technique. The nominal 

compositions of the alloys are presented in Table I.  

The infiltration method used to synthesize the MMSFs for this study is described in 

detail elsewhere [38] and is summarized below.  A 12.7 mm x 12.7 mm steel tube with 

one end welded shut was tap-packed with hollow spheres to a height of 35–50 mm. A 2 

mm thick layer of zirconia felt was placed on top of the tap packed spheres, and finally 

an ingot of either Al-A206 or Mg-AZ91 alloys was placed inside the tube on top of the 

zirconia felt to complete the assembly. The zirconia felt is used as a reaction barrier 

between the aluminum or magnesium alloy melt and the spheres prior to infiltration 

and served as a filter to remove the oxide layer from the liquid melt, as shown in Figure 

6. The assembly was then heated in a quartz chamber under vacuum to 750oC in the 

case of Al-A206 and 650oC for Mg-AZ91, and held for 60 minutes at which time the alloy 

had fully melted and created a uniform seal on the inner perimeter of the steel tube. 

Argon gas was then rapidly introduced into the heated quartz chamber until a sub-

atmospheric pressure of 0.5 bar was reached, thereby forcing the molten alloy into the 

evacuated spaces between the hollow spheres. 
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TABLE I. Nominal composition of matrix and reinforcements. 

Material Component Nominal Content (wt %) 

Al-A206 

Al 93.3-95.3 

Cu 4.25-5.0 

Fe 0.1 

Mg 0.15-0.35 

Mn 0.2-0.5 

Ni 0.05 

Si 0.05 

Sn 0.05 

Mg-AZ91 

Mg 88-91 

Al 8.3-9.7 

Mn 0.13 min 

Zn 0.35-1.0 

Si 0.50 max 

Cu 0.1 max 

Ni 0.03 max 

The quartz chamber containing the sample was kept in the tube furnace at a sub-

atmospheric pressure of 0.5 bar for 10 minutes. The sample was then removed and 

quenched in room temperature water. 

 

FIG. 6 Syntactic Foam Assembly 

Alloy 

ZrO2 felt spacer SiC hollow spheres 

Zirc Wash coated 
steel tube 
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FIG. 7 Schematic of Low Pressure Infiltrator 

The infiltration pressure was determined after some trials, in order to get a pressure 

where most of the spheres were surrounded by the matrix (well infiltrated) with the 

least amount of spheres filled by metal. The assembly used in the study is shown in 

Figure 7. Specimens of the unreinforced alloys were cast using the same procedure 

described above for comparison with the syntactic foams. Following casting, the 

specimens were de-molded to give final dimensions of 10.4 mm x 10.4 mm x 35-50 mm.  

Portions of the Al-A206 alloy specimens were heat treated to the T4 and T7 conditions 

respectively. 

Those samples that were heat treated were first solutionized at 490-500 oC for 2 hours 

followed by 525-530 oC for 14-20 hours. Then they were aged at 21 oC for 120 hours for 
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the T4 condition, and 4 hours at 200 oC for the T7 condition [39]. The Mg-AZ91 alloy 

specimens were tested in the as-cast condition.   

Optical microstructures were obtained using a Nikon Eclipse TS100 microscope. A 

Topcon SM300 scanning electron microscope equipped with EDS was used to identify 

the composition of phases. The density of the composites was measured using a Metler 

Toledo AT261 Delta Range Microbalance equipped with a density measurement 

apparatus (Archimedes method).  The specimens were first lightly coated with vacuum 

grease to prevent infiltration of surface pores during the density measurement.  

Quasi-static compression testing was performed in accordance with ASTM C365-11 on 

specimens sectioned into cubes having dimensions of 10.4 mm x 10.4 mm x 10.4 mm. 

Testing was carried out using a SATEC Model 50Ud Universal Testing Machine at 

constant crosshead speed with an initial strain rate of 10-3 s-1 and a self-leveling platen.  

Strains were calculated from the crosshead displacement, and were corrected for 

deflection of the load frame.  The quasi-static compression curves typically exhibited an 

initial peak followed by a lower plateau stress and later densification.  Compression was 

stopped when the densification stress slightly exceeded the magnitude of the initial 

peak stress. .  The toughness of the MMSFs was determined by calculating the area 

under the quasi-static compressive stress strain curve up to the densification strain and 

has units corresponding to the energy per unit volume of the material (J/cm3). A variety 

of methods have been used to report the plateau strength [13, 34, 36, 55]. The plateau 

strength reported in this work is the average of all the measured  stress data points  
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between the strain corresponding to the initial peak stress and the densification strain 

(the strain following the initial peak strength at which the stress reaches the magnitude 

of the initial peak stress) [34]. 

The high strain rate compressive properties of MMSFs are of technological interest due 

to their high energy absorption properties and possible application to blast mitigating 

structures.  Aluminum alloys and aluminum alloy composites do not typically exhibit 

strain rate dependence [73], however magnesium alloys are known in some cases to 

show a higher peak strength under high strain rate conditions [74, 75]. Therefore, the 

Mg-AZ91/SiC syntactic foams synthesized in this work were tested under high strain rate 

conditions using a Split-Hopkinson pressure bar test apparatus.  Details of the test 

apparatus and methods are discussed at length elsewhere [76] and are summarized as 

follows. The cube compression specimens described previously were nested between 

Inconel incident and transmitter bars having Young’s modulus, density and sound wave 

velocity of 195 GPa, 8190 kg/m3 and 4802 m/s respectively. Once a test is performed by 

launching a striker bar into the incident bar which crushes the specimen, data from 

strain gages mounted at the centers of the incident and transmitter bar is obtained and 

used to calculate the stress, strain, and strain rate. In this work strain rates between 537 

and 726 s-1 were achieved. 
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4. Results and Discussion 

4.1 Microstructure 

The properties of metal matrix syntactic foams have been shown to depend greatly on 

both the t/D ratio of the spheres and the properties of the matrix.  Features of the 

matrix that will have an effect on the foam’s properties include: 

 the presence of defects such as unintended porosity or inclusions,  

 the final matrix composition (especially in cases where the matrix reacts with the 

reinforcement),  

 fineness of the microstructure  

 the distribution of phases that form as a result of the solidification sequence in 

the case of as-cast composites or as a result of the heat treatments.  

Figures 8 and 10 show microstructures of metal matrices Al-A206 and AZ91D, side by 

side with their respective syntactic foams, for the different conditions used in the 

study. Regarding Al-A206 base alloy and Al-A206/SiC syntactic foams, Figures 8a and 

8b show microstructures for the as-cast condition, Figures 8c and 8c microstructures 

for T4 tempering condition, and Figures 10a and 10b correspond for T7 tempering 

condition. Figures 10c and 10d show microstructures of AZ91D base alloy and 

AZ91D/SiC syntactic foam for the as-cast condition. 

The as cast microstructure of Al-A206 consists of a dendritic structure of α-phase, 

whose interdendritic regions are generally  made up of Al, Al2Cu, Al2Mn3Cu2 and 

Al7FeCu2 phases as a result of the eutectic reaction [40, 41]. Figure 9 show SEM 
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micrographs of the base alloys Al-A2036 and Mg-AZ91, and was used to confirm the 

presence of phases found; the composition of these phases was determined by EDS 

and the results are presented in Table II.  As shown in Figures 8c, 8d, 10a and 10b, 

the interdendritic phases present in the as-cast alloy were only partially dissolved by 

the solutionizing heat treatment employed which may be due to dissolution of Fe 

from the mold during processing. 

 
 
FIG. 8. Representative microstructures of Al-A206 without reinforcement in: a) as-cast 
and c) T4 conditions; and their respective Al-A206/SiC syntactic foams synthesized in: 
b) as cast and d) T4 conditions. Unique phases and microstructural features visible in 
these micrographs are labeled as follows: i. α-Al, ii. bright intermetallic (typical of 
A206), iii. dark intermetallic (likely present due to Fe dissolution), iv. porosity, v. SiC 
hollow sphere wall, vi. hollow pore within SiC sphere. 
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The microstructure of the Mg-AZ91 magnesium alloy cast under the same conditions as 

corresponding syntactic foam is shown in Figure 10c. Under these casting conditions, 

the microstructure is clearly dendritic and is composed of α-Mg dendrites surrounded 

by both course and lamellar intermetallics (typically Mg17Al12, the measured 

compositions are shown in Table II) [42, 43]. Interdendritic porosity was also observed. 

Figure 11 show SEM micrographs of syntactic synthesized in this study, was used to 

confirm the presence of phases found. Table III presents the results of EDS analysis of 

the various phases labeled in Figure 11. The hollow spheres appear to be uniformly 

distributed, and fully encapsulated by the metal matrix with little to no visible porosity 

in the matrix between the hollow spheres. The Al-A206 as-cast samples show a network 

of intermetallics throughout the matrix similar to that found in the base alloy without 

reinforcement.  

Following the T4 and T7 heat treatments, the intermetallic network present in the as-

cast specimens was partially dissolved and precipitated during the aging treatments. 

Coarse phases containing Fe and Si were also observed to be dispersed in the Aluminum 

alloy specimens. The formation of these intermetallics may be as a result of the 

presence of excess Si in the matrix due to the partial reaction of the SiC spheres to form 

aluminum carbides [44], as well as partial dissolution of the steel tube that was used as 

a crucible. Some cracking of the spheres is also observed in these micrographs, which 

likely occurred during or after solidification due to CTE mismatch as there is little to no 

infiltration of the spheres.  The microstructure of the Mg-AZ91/SiC syntactic foam shows 

refinement in comparison to the matrix alloy cast under similar conditions, which is 
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likely due to the restricted solidification of the liquid in spaces between spheres.  EDS of 

the Mg-AZ91/SiC syntactic foams showed the presence of intermetallics containing 

small amounts of Si that may be present due to the reaction of the SiC hollow spheres 

with the alloy matrix [45]. The presence of silicon in the alloy may result in the 

formation of a coarse “Chinese script” Mg2Si intermetallic phase that is detrimental to 

the mechanical properties of Mg alloys [42], however this intermetallic phase was not 

observed in the syntactic foams synthesized in this study. 

 

FIG.9. SEM micrographs of Al-A206 without reinforcement in a) as cast, b) T4, c) T7 
conditions and Mg-AZ91 in the d) as-cast condition. EDS was used to identify 
composition of the labeled phases (I-XII) and the results are tabulated in Table II. 
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FIG. 10. Representative microstructures of Al-A206 in a) T7 condition and Mg-AZ91 in c) 
as cast condition, both without reinforcement. Their respective Al-A206/SiC and Mg-
AZ91/SiC syntactic foams are shown in b) T7 condition and d) as cast condition. 
Unique phases and microstructural features visible in these micrographs are labeled as 
follows: {in parts a - b}     i. α-Al, ii. bright intermetallic (typical of A206), iii. dark 
intermetallic (likely present due to Fe dissolution), iv. porosity, v. SiC hollow sphere 
wall, vi. hollow cavity within SiC sphere ; {in part c} v. α-Mg, vi. coarse intermetallic, vii. 
lamellar intermetallic, viii. porosity; {in part d} vii. α-Mg, viii. intermetallic, ix. SiC 
hollow sphere wall, x. cracked and filled SiC sphere, xi. hollow pore within SiC sphere, 
xii. porosity. 
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TABLE II. Compositions of the various phases formed in Al-A206 and Mg-AZ91 base 

alloys (processed under the same conditions as the syntactic foams produced in this 

study) evaluated by SEM/EDS. Roman numerals in the first column refer to the 

annotations shown in Figure 10. 

Area Matrix Al 

(at%) 

Fe 

(at%) 

Mg 

(at%) 

Cu 

(at%) 

Zn 

(at%) 

Mn 

(at%) 

O 

(at%) 

I A206/ As-cast 98.01 0 1.81 0.17 0 0 0 

II A206/ As-cast 72.23 0 2.08 25.69 0 0 0 

III A206/ As-cast 88.33 4.96 2.15 4.07 0 0.49 0 

IV A206/ T4 77.40 5.41 1.67 13.75 0 0 1.78 

V A206/ T4 74.21 7.43 0.77 15.97 0 0.76 0.86 

VI A206/ T4 97.34 0 1.35 1.31 0 0 0 

VII A206/ T7 98.00 0 1.90 0.10 0 0 0 

VIII A206/ T7 80.46 6.64 0.10 12.80 0 0 0 

IX A206/ T7 81.80 5.38 1.94 10.88 0 0 0 

X AZ91/ As-cast 1.90 0 98.09 0 0.01 0 0 

XI AZ91/ As-cast 29.11 0 69.36 0 0.37 0 1.15 

XII AZ91/ As-cast 22.49 0 74.63 0 1.02 0 1.86 
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FIG. 11.  SEM micrographs of the Al-A206/SiC (a-c) and Mg-AZ91/SiC (d) syntactic 
foams synthesized in this study. The micrographs for the Al-A206/SiC foams are shown 
in the a) as-cast, b) T4, and c) T7 conditions respectively.  EDS was used to identify 
composition of the labeled phases (XIII-XXVIII) and the results are tabulated in Table 
III. 

4.2 Quasi-static Compression Properties 

Table IV reports the values of peak strength, plateau strength, densification strain and 

energy absorption for the syntactic foams synthesized in this study. Representative 

quasi-static engineering stress-strain curves are shown in Fig. 12.  From this data, Fig. 13 

suggests that the peak stress in this work is influenced by yield strength, as peak stress 

increases from as cast to T4 to T7, which is similar to the trend in yield stress in the case 

of the unreinforced alloy. 
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TABLE III. Compositions of the various phases formed in Al-A206/SiC and Mg-AZ91/SiC 

syntactic foams evaluated by SEM/EDS. Roman numerals in the first column refer to the 

annotations shown in Figure 11. 

Area Matrix/ 

Condition 

Al 

(at%) 

Si 

(at%) 

Fe 

(at%) 

Mg 

(at%) 

Cu 

(at%) 

Zn 

(at%) 

Mn 

(at%) 

C 

(at%) 

O 

(at%) 

XIII A206/ As-cast 78.52 0.89 16.75 2.52 0.59 0 0.73 0 0 

XIV A206/ As-cast 74.60 1.04 20.62 2.19 0 0 0.94 0 0 

XV A206/ As-cast 72.66 2.77 3.80 1.76 13.58 0 0 0 5.43 

XVI A206/ As-cast 97.61 0 0 1.80 0.59 0 0 0 0 

XVII A206/ As-cast 1.95 94.37 0 0 0 0 0 3.67 0 

XVIII A206/ As-cast 97.27 0 0 1.99 0.74 0 0 0 0 

XIX A206/ T4 76.14 0.53 20.59 1.27 0.60 0 0.87 0 0 

XX A206/ T4 1.76 96.65 0 0 0 0 0 1.59 0 

XXI A206/ T4 97.25 0 0 1.95 0.81 0 0 0 0 

XXII A206/ T7 76.83 0.20 19.03 1.32 0.97 0 1.66 0 0 

XXIII A206/ T7 97.84 0 0 1.82 0.34 0 0 0 0 

XXIV A206/ T7 0.71 96.91 0 0 0 0 0 2.38 0 

XXV AZ91/ As-cast 18.98 0.18 0 76.75 0 0.89 0 0 3.19 

XXVI AZ91/ As-cast 21.87 0.47 0 74.82 0 1.06 0 0 1.77 

XXVII AZ91/ As-cast 2.01 0.25 0 95.86 0 0.15 0 0 1.72 

XXVIII AZ91/ As-cast 1.58 92.48 0 0 0 0 0 5.94 0 
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FIG. 12. a) Typical compressive stress-strain curves for Al-A206/SiC and Mg-AZ91/SiC 
syntactic foams. b) Fractured specimens tested in compression under quasistatic strain 
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rates shown in the pre-test (Left side) and post-test (Right side) conditions. The top 
two specimens are Al-A206/SiC syntactic foams and the bottom two are Mg-AZ91/SiC 
syntactic foams. 
  

 

FIG. 13. Average peak strength, plateau strength and toughness vs. yield strength of 
the base alloy.   
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 TABLE IV. Summary of quasi-static compression data for Al-A206/SiC and Mg-AZ91/SiC 

syntactic foams 

 

Matrix Condition 

Matrix 
Yield 
Stress 
(MPa) 

Peak 
Stress 
(MPa) 

Plateau 
Stress 
(MPa) 

Toughness 
(J/cm3) 

Densification 
Strain (%) 

Density 
(g/cm3) 

Aluminum  

Al-A206 

As Cast 60* 
126.8 67.5 46.1 68% 1.87 

123.6 73.3 41.6 56% 1.89 

T4 26250 

155.6 111.7 60.1 55% 1.91 

151.7 110.1 60.2 55% 1.93 

153.8 103.4 54.6 53% 1.93 

T7 34550 
166.1 109.1 63.2 58% 1.93 

168.5 121.5 61.1 51% 1.95 

Magnesium 
Mg-AZ91 

As Cast 15051 

126.9 78.6 50.7 64% 1.20 

116.9 71.4 45.9 63% 1.22 

111.6 64.6 41.5 63% 1.21 

118.2 63.7 39.4 60% 1.21 

(*): Estimated 

 

4.3 High Strain Rate Compression Properties 

Figure 14a shows the stress strain curves for the Mg-AZ91/SiC under the various strain 

rates tested. It should be noted that in Split Hopkinson Pressure Bar testing, only the 

time equal to the stress pulse width is available for deforming the specimen, and thus if 

the specimen does not reach its densification strain within this time frame the test 



40 
 

 
 

remains incomplete [76]. As the results in Figure 14a indicate that a maximum strain of 

only approximately 10% was obtained, only the peak strength is examined in detail in 

this work. Large variation is observed in the measured peak strength under high strain 

rates, however despite this large variation, the peak strength remains essentially 

constant when compared in the strain rate range from 10-3 /s to 726 /s. An example of 

the fractured specimens tested at strain rates of 547/s and 648/s are shown in Figure 

14b along with an SEM image of a crack bisecting a SiC sphere. Little difference was 

observed in the macroscopic appearance of specimens tested at higher strain rates, 

however increased crushing of spheres was observed.  

A strain rate sensitivity parameter  has been employed by others [73] to identify 

strengthening phenomena in the case of high strain rate deformation as defined by the 

following equation: 

 qd

qd





ln

1
*


      (1) 

where σ is the stress at a given strain, σ* is the stress at a given strain at a reference 

strain rate of 10-3 s-1,  is the strain rate, and the subscripts d and q refer to dynamic and 

quasi-static testing respectively. 
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FIG. 14. a) High strain rate compression response of Mg-AZ91/SiC syntactic foams. b) 
Fractured specimens compressed at high strain rates. The top images show fractured 
specimen tested at strain rates of (from left to right) 537/s and 648/s respectively.  
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Load was applied on the face that is visible in the image, causing compression through 
the thickness of the specimen imaged. The lower image shows a typical fracture event 
in the 537/s specimen where a crack is shown to shear a SiC hollow sphere. Higher 
strain rates led to increased crushing of the spheres. 
 

The peak stress was used for the dynamic, quasi-static and reference stresses after the 

analysis of Balch et al. [4] due to the unique deformation behavior of metal foams in 

comparison to alloys or composites. The calculated sensitivity parameter for these 

composites was approximately 0.01 or less, which is expected for cellular AZ91 [75] at 

similar strain rates, leading to the conclusion that the strain rate sensitivity in the case 

of the Mg-AZ91-SiC syntactic foams is primarily dependent on the matrix properties and 

not greatly affected by the presence of the SiC hollow spheres within the range of strain 

rates investigated in this study. 
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5. Comparison with other Syntactic Foams 

Figure 15 shows the Ashby plot of the specific plateau strength vs. the specific energy 

absorption for aluminum open-celled and syntactic foams available in literature 

including the data in this study. The performance of the Al-A206 and the Mg-AZ91 

syntactic foams, showed improved performance when compared to other similar foams 

on a specific property basis.  A further increase in the performance might be achieved 

through careful control of the SiC t/D ratio. 

 

FIG. 15. Log-log plot of specific plateau strength vs. specific energy absorption for 
different types of aluminum foams [4, 13, 17, 26, 35-37, 46-49, 55]. 
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6. Conclusions 

The conclusions of this study can be summarized as: 

 The microstructure and quasi-static properties of Al-A206/SiC and Mg-AZ91/SiC 

hollow sphere syntactic foams have been studied to determine the effect of 

matrix strength. 

 Microstructure of Al-A206 syntactic foams revealed the presence of 

interdentritic phases containing iron, presumably from the dissolution of iron 

from the mold during processing. The heat treatments applied, partially 

dissolved and precipitated the intermetallic network formed. 

 Microstructure of Mg-AZ91/SiC syntactic foam showed some refinement in 

comparison to the matrix alloy, likely due to the restricted solidification of the 

liquid in spaces between spheres. No evidence of iron inside the matrix was 

found. 

 The peak strength, plateau strength and toughness of the foams increase with 

increasing yield stress of the matrix material. The increments for the peak stress 

were 13% for T4 and 24% for T7 treatments, referred to the as cast condition. 

For the same heat treatments, the increments for the plateau stress were 27% 

and 37%, while for the Toughness the values were 17% and 26% respectively. 

 The Al-A206/SiC and Mg-AZ91/SiC syntactic foams synthesized in this study 

exhibited a higher specific plateau strength and specific energy absorption than 

many of the syntactic foams reported in literature, leading to insights regarding 
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how the properties of metal matrix syntactic foams may be optimized. 

Strengthening of the matrix proved to be an effective way to enhance the 

specific properties of the syntactic foams studied. 

 The high strain rate properties of the Mg-AZ91/SiC foams were studied in the 

range of 530 /s to 726 /s, and in this range the sensitivity parameter was less 

than 0.01 [73]. Therefore, it is concluded that under the conditions studied, 

there is no strain rate dependence in the peak stress. 
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7. Future Work 

Considering that the syntactic foams synthesized in this study exhibited a higher specific 

plateau strength and specific energy absorption than many of the syntactic foams 

reported in literature, future work in the study of SiC metal matrix syntactic foams 

should include the effect of the t/D ratio on these parameters. Previous studies have 

shown a close relationship between this ratio and the mechanical performance of 

MMSF during quasi-static compression tests. The effect of a stronger matrix via heat 

treatment or other strengthening mechanism should be also studied as well as the 

synthesis of foams made with smaller microspheres having tighter size ranges. Results 

reported in the literature, have shown the incorporation of microspheres with these 

characteristics into a syntactic foam system will increase the peak stress, plateau stress, 

and toughness. 

Development of preforms made from hollow spheres to be infiltrated by the metallic 

melt is another important area of future work in this field. Although this technique has 

been widely used for the processing of composites with solid particles and fibers; hollow 

spheres present a particular restriction, as pressure applied during compacting should 

be low enough to avoid crushing of the spheres before the foam is synthesized. The use 

of preforms will maximize the volume percentage of hollow spheres in the foam and will 

allow the introduction of bimodal distributions of hollow spheres in the foams.   

Future work should also be done on the standardization of compression tests, specific 

for metal matrix syntactic foams, in this way a consistent comparison among results of 
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different studies will be possible. Currently, there is one international standard (ISO 

13314:2011) and several national standards (German, Japanese, British, etc.) for quasi-

static compression tests of porous and cellular metals. 

Metal matrix syntactic foams are designed to work under compression, especially during 

impact and blasting. Although this property has been widely studied, there is still 

controversy upon which type of compression test should better represent the 

compressive properties of these materials (low, high or intermediate strain rate). It is 

recommended to complement quasi-static compression tests with high strain rate tests, 

which seem to represent more closely the behavior of metal matrix syntactic foams in 

service. Currently, there is one international draft standard (ISO DIS 17340:2013) for 

high speed compression tests of porous and cellular metals. 
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