
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2013

Economic Perspective on Cloud Computing:
Three Essays
Abhijit Dutt
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Databases and Information Systems Commons, and the Human Resources

Management Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Dutt, Abhijit, "Economic Perspective on Cloud Computing: Three Essays" (2013). Theses and Dissertations. 245.
https://dc.uwm.edu/etd/245

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/633?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/633?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/245?utm_source=dc.uwm.edu%2Fetd%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

ECONOMIC PERSPECTIVE ON
CLOUD COMPUTING: THREE

ESSAYS

by

Abhijit Dutt

A Dissertation Submitted in

Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Management Science

at

The University of Wisconsin-Milwaukee

August, 2013

ii

ABSTRACT

ECONOMIC PERSPECTIVE ON CLOUD COMPUTING: THREE ESSAYS

by

Abhijit Dutt

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor Hemant Jain

Improvements in Information Technology (IT) infrastructure and standardization

of interoperability standards among heterogeneous Information System (IS)

applications have brought a paradigm shift in the way an IS application could be

used and delivered. Not only an IS application can be built using standardized

component but also parts of it can be hosted by different organizations in

different locations provided it can be accessed using the Internet. This

dissertation is an attempt to uncover unique aspects of this phenomenon known

as Software as a Service (SaaS).

The first essay examines design decision making by SaaS providers by analyzing

effects of two non-functional attributes of an IS Application – modularity and

architectural performance. We model the relationship of the two attributes with

factors such as demand, price, and user’s preference. The model includes

marginal cost and maintenance cost to recognize the service aspect of SaaS. Our

iii

results show the optimal values of various decision variables while taking into

account user’s sensitivity to modularity, architectural performance and price.

The service component in cloud computing necessitates that the service

providers plan for requisite delivery capacity. The second essay addresses

optimal infrastructure capacity planning while taking into account the opportunity

cost of having low capacity and cost of unused capacity in the case of high

capacity. We develop a model which provides insight to a SaaS provider on

optimal capacity planning of IT infrastructure when faced with a variable demand

and performance expectations.

The third essay focuses on financial risks faced by SaaS providers in the context

of provider’s risk tolerance. We analyze the financial risk of provider’s decision

making on pricing, capacity and other factors that may lead to financial risk as

they are based on incomplete information. We built a model using Mean Variance

Analysis theory for investigating the effect of provider’s risk tolerance on

infrastructure capacity planning while taking into account modularity in software

architecture and operational performance.

This dissertation extends our understanding of significant issues facing a SaaS

provider. The models presented here can form the basis for an extensive

iv

exploration of the phenomenon of SaaS specifically and Cloud Computing in

general.

v

© Copyright by Abhijit Dutt, 2013
All Rights Reserved

vi

This dissertation is dedicated to the memory of my mother Mrs.

Anima Dutt and my father Mr. Alok Kumar Dutt

vii

ACKNOWLEDGEMENTS

This is probably the most enjoyable part of writing the dissertation. I would like

to acknowledge the support of a number of individuals who made completion of

this dissertation a reality. First, thanks go to my dissertation chair, Dr. Hemant K.

Jain. Dr. Jain, you provided me with unconditional support while I struggled

through my research. You have been a mentor to me, guiding me intellectually

and personally during this wonderful as well as sometimes very frustrating

journey. You gave me complete independence and at the same time you were

there to help me whenever I needed. As I lived far away from Milwaukee, you

made extra effort to guide me. You were always there whenever I needed any

help.

I also would like to thank the other members of my dissertation committee- Dr.

Huimin Zhao, Dr. Amit Bhatnagar, Dr. Sanjeev Kumar, and Dr. Sanjoy Ghose for

providing valuable feedback on my dissertation. I also appreciate all your

encouragement and support. Special thanks go to Dr. Kumar, you gave detailed,

thoughtful and constructive comments that were extremely valuable. I really

appreciate the amount of time you took to help me complete my dissertation.

There are a few individuals who helped in many different ways. First, I would like

to thank Dr. Samar Mukhopadhyay. He introduced me to the area of theoretical

modeling. Second, I would like to thank my fellow UW-Milwaukee doctoral

alumni Dr. Robert Setaputra. Bob, I really appreciate many discussions we had

over coffee and your support and help in this research.

viii

I would like to acknowledge the two most important girls in my life. My daughter

Bela was born while I was working on my dissertation. Her smile and love

enabled to me to forget all the pressure and frustration; I know you are looking

forward to spending more time with me. Finally, I want to acknowledge my wife

Paula; without her love and unwavering belief in me I would not have been able

to finish this dissertation. I really appreciate your sacrifice and I know you are

looking forward to the day when I will not be working on my dissertation any

more. You patiently endured many long hours alone, took care of our daughter

Bela by yourself, moved to new areas twice while I worked on my dissertation.

There are no words that can express my gratitude and appreciation for all you

have done for me.

ix

Table of Contents

Chapter 1: Introduction ... 1

Chapter 2: Essay One - Modularity and Performance in Cloud Computing: An Economic

Perspective ... 11

2.1 Introduction .. 11

2.2 Motivation and Research Questions .. 12

2.3 Background and Previous Research ... 20

2.3.1 Cloud Computing ... 20

2.3.2 Modularity ... 24

2.3.3 Performance .. 27

2.4 Previous Research ... 29

2.5 Model Formulation: ... 35

2.6 Results: .. 45

2.6.1 Case 1: Modularity (m) and Architectural Performance (s) are not related 45

2.6.2 Case 2: Modularity (m) and Performance (s) are related 55

2.7 Discussions of Results and Implications.. 66

2.8 Limitations... 68

2.9 Future Directions ... 68

Chapter 3: Essay Two - Demand Planning for Cloud Computing: Effect of Random Variation in

Demand .. 70

3.1 Introduction .. 70

3.2 Motivation and Research Questions .. 71

3.3 Literature Review .. 75

3.4 Model Formulation .. 78

3.5 Theoretical Results .. 82

3.6 Numerical Results: ... 93

3.7 Discussions .. 96

3.8 Limitations:.. 96

3.9 Conclusions and Contributions: ... 97

3.10 Future Directions ... 98

Chapter 4: Essay Three - A Financial Risk Model for Cloud Computing 99

4.1 Introduction: ... 99

4.2 Introduction to Risk Management ... 102

4.3 Literature Review .. 105

4.4 Capacity Planning Framework: ... 106

x

4.5 Modularity and Model Formulation ... 107

4.5.1 Modularity ... 107

4.5.2 Model Formulation .. 110

4.6 Results ... 124

4.7 Limitations... 128

4.8 Future research ... 129

Chapter 5: Contributions ... 131

5.1 Research Contributions ... 131

5.2 Contributions to Practice ... 133

Bibliography .. 135

xi

List of Figures

Chapter 2:

Figure 2.1: Graph showing how modularity (m), performance (s), price (p), demand and profit
change with respect to customer sensitivity to modularity in the IS application architecture … 50

Figure 2.2: Graph showing how modularity (m), performance (s), price (p), demand and profit
change with respect to change in fixed cost for introducing modularity into the system ……… 53

Figure 2.3: Graph showing how modularity (m), performance (s), price (p), demand and profit
change with respect to change in sensitivity to modularity………………………………………………… 61

Figure 2.4: Graph showing how modularity (m), performance (s), price (p), demand and profit
change with respect to change in maximum architectural performance …………………………….. 65

Chapter 3:

Figure 3.1: Graph showing the relationship between optimal capacity (Q) and ω …………..….. 94

Figure 3.2: Graph showing the relationship between Average profit and Standard deviation of
profit with respect to capacity …………………….…………………………………………………………………… 95

Chapter 4:

Figure 4.1: Graph showing the effect of change in planned capacity on Average profit for risk
neutral (red line) and risk averse (blue line) providers and Standard deviation of profit ……… 125

Figure 4.2: Graph showing the relationship between optimal capacity and risk averseness factor ε for different values of ω ………………………………………………………………….………………………... 127

1

Chapter 1: Introduction

Wide acceptance of computing and computing enabled artifacts in everyday life

is changing the way we live. As an example, we are seeing an explosive growth

in the adoption of Smartphones, tablet computers etc. These devices are

fundamentally different from traditional computers. First, these devices are able

to access the Internet using mobile networks. Second, these devices run on

many different types of operating systems. Third, these devices have less

memory and slower processors. However, the traditional computers are still

available and are used and in most cases they run on different operating

system platform.

Wide use of different end user devices that ranges from traditional computers

to smartphones makes it imperative for providers of cloud applications to

develop IS applications in such a way that a user could access same IS

applications using many different types of hardware from different locations

that are outside the enterprise (Yoo, Henfridsson, & Lyytinen, 2010). We are

also observing wide adoption and use of social networking sites such as

LinkedIn, Facebook, and MySpace for personal as well as for business use. The

advent of services such as Skype, Google Hangout is also changing the way we

make telephone calls and it is opening up different innovative ways to

communicate; it is no longer necessary to have expensive specialized

2

equipment for video conferencing. People are writing and sharing documents

using different services such as Google Doc, dropbox using the Internet. From a

technological point of view we can identify the following two reasons that are

responsible for the above mentioned innovations. First, there have been

significant improvements in Information Technology (IT) and networking

infrastructure such as availability of very high speed Internet connection.

Second, standardization of protocols such as SOAP has made it possible for

different IS applications to interoperate with one another seamlessly. Hence, it

is no longer necessary to have computing restricted within an enterprise. It

does not matter where software and hardware is located, a user or an

Information System (IS) application can access the necessary resources

(another IS application, other software, hardware etc.) as long as those

resources are connected to the Internet (Carr, 2005). This phenomenon is

known by many different names such as cloud computing, service oriented

computing, utility computing (Vaquero, Rodero-Merion, Caceres, & Lindner,

2009). It is a great opportunity for IS researchers to understand and study this

complex evolving phenomenon; however such investigations require a new

perspective (Yoo, 2010). This dissertation is an attempt to accomplish that.

Success of IS applications in organizations have been studied using two main

perspectives – the users’ perspective and the developers’ perspective. Taking

users’ perspective, acceptance of IS application has been studied focusing on

3

different themes; however, there is a commonality among these themes; it was

hypothesized that success or failure of an IS application (or IS innovation)

depended on the organization’s attribute (Fichman, 2004). Taking the

perspectives of developers, researchers in the areas of computer science and

Information Systems studied IS applications focusing mainly on development

methodologies, processes, modeling etc. The established areas of “Software

Engineering” and “System Analysis and Design” are devoted to this area of

research. Uncovering of functional attributes of a proposed IS application has

been considered one of the most important steps during development of an IS

application. These approaches were appropriate, as most IS applications were

built to solve very specific business problems. Hence, it is fair to conclude that

most IS applications were treated as customized products. However, cloud

computing applications need to be more general in nature so that these

applications are useful to diverse group of users. Hence, it is no longer possible

to assume that the IS applications are customized products.

According to National Institute of Standards and Technology (NIST) guideline

published in 2011, “Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction” (Mell & Grance, 2011). In

4

this definition, we note the use of word “service” and the word “configurable”.

The word “configurable” does have a very important implication. It is not

necessary to build a configurable IS application; unless it is envisaged that

many different customers will use it. Hence we conclude, unlike a traditional IS

application which is a customized product, an IS application in a cloud

computing domain is a combination of product (not customized) and service

(Bardhan, Demirkan, Kannan, Kauffman, & Sougstad, 2010). It is very likely, in

future most businesses will purchase Information Technology (IT) services in

the same way they purchase telephone services and there will be little need for

businesses to invest on real IT asset such as purchasing hardware and

software. Not only it is a fundamental change for every user of IS applications

but also it has a major impact on developers of IS applications. We noted

earlier that most traditional IS applications were customized products.

However, cloud enabled IS applications need to be useful to many different

types of users. Hence, it is fair to conclude that cloud computing is changing a

typical IS application from a customized product to mix of (non-customized)

product and service. This phenomenon has been described as industrialization

of IT. In this dissertation we study the effects of industrialization of IT from the

perspectives of developers of IS applications.

The term cloud computing is actually an umbrella term; there are many

different types of cloud computing solutions. Cloud computing could be

5

classified into three different types of services: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)

(Fouquet, Niedermayer, & Carle, 2009; Sridhar, 2011; Vaquero, Rodero-Merion,

Caceres, & Lindner, 2009). A typical IaaS provides low-level computing

resources using hardware virtualization technologies. It gives customers full

control over the operating systems and installed applications. Amazon EC2 is an

example of an IaaS (Amazon.com). A typical PaaS exposes appropriate

Application Programming Interfaces (API) that can be used by application

developers to create applications. Google App Engine is an example of a PaaS

(Google). A typical SaaS provides users direct access to an IS application.

Salesforce.com’s Sales Cloud is an example of a SaaS (Salesforce.com). In this

dissertation, we focus on development of SaaS applications. In the next

chapter, we discuss in detail different types of cloud computing and also why

this dissertation focuses on SaaS applications.

The number of companies who are offering SaaS solutions is growing rapidly

and most established computing companies such as Microsoft, SAP have also

entered this space. The SaaS companies are also increasing their offerings. A

quick look at the customer lists of different SaaS providers such as Amazon,

Google, Salesforce.com, and Microsoft shows a rapid increase in their customer

base. As we discussed above, we recognize that a cloud computing IS

application such as a SaaS application is a mixture of product and service. In

6

order to understand and analyze this new development it is necessary to take a

look at some nontraditional IS areas such as service science (Demirkan,

Kauffman, Vayghan, Fill, Karagiannis, & Maglio, 2008) and new product

development (Nambisan & Wilemon, 2000).

In the marketing literature product is defined as an entity that has complex

bundle of attributes which provide core benefits, tangible benefits and

intangible benefits to the consumers (Krishnan & Ulrich, 2001). We use this

definition of product, and we define an IS application as an entity that has

many attributes. The attributes which are directly related to the functionality of

the application are defined as functional attributes. The attributes that are not

directly related to the functionality of an IS application are defined as non-

functional attributes. In the IS discipline, non-functional attributes such as

modularity, performance, security have not received sufficient attention (Chung

& Sampaio do Prado Leite, 2009). As a typical IS application is morphing into a

product service, it is no longer possible to ignore the important roles the non-

functional attributes could play for determining the efficacy of a SaaS

application. Service could be defined as a relationship between a producer and

a consumer that creates and captures value and where the consumer

participates actively (Gadrey, 2000; IBM). In other words, in the case of

services, the consumers could be considered as co-producers (Fitzsimmons &

Fitzsimmons, 2004).

7

Based on previous discussions we conclude that there are some fundamental

differences between a traditional IS application and a cloud computing enabled

IS application such as a SaaS application. Taking a perspective of SaaS

application developers, we develop an analytical framework that would help

managers make different decisions during development of SaaS applications.

This dissertation is formatted as three essays and we summarize them here.

In the first essay, we investigate the role two important non-functional

attributes of IS applications – modularity and performance in software

architecture play on optimal profit, price and demand. Using unconstrained

optimization, we model the profit function that includes marginal and

maintenance costs. First, we consider that modularity and performance in

software architecture are independent of each other. Second, we assume that

there is a relationship between them; increase in modularity leads to decrease

in performance in software architecture.

In the case of a traditional IS application in an enterprise setting, it is the

customer’s responsibility to arrange for the infrastructure such as hardware and

networking devices and to install and maintain the IS applications. However, in

the context of a SaaS application the relationship between a producer and

consumer is different because of the service aspect of a SaaS application. It is

the developer’s (SaaS provider’s) responsibility to arrange for infrastructure so

8

that SaaS could be consumed by its customers. Developers of SaaS applications

need to make provision for necessary hardware and software components so

that they can offer their services at an acceptable level to their customers. The

second essay focuses on capacity planning. Here, we investigate how SaaS

application providers can determine the necessary optimal capacity for their

applications.

The demand of a SaaS application could be predicted on the basis of price and

other attributes such as operational performance. However, it is likely that

there would be random variation in demand that cannot be predicted. So a

SaaS application provider could face two different scenarios. In the first case,

the demand is higher than the anticipated demand. In that case, a provider

would not be able to satisfy all the potential customers and would lose potential

revenue. This loss might become more costly to a provider as some of its

potential customers might decide to go with competitors for all their future

needs. In the second case, the demand is lower than the anticipated demand.

In that case, the provider will not be able to use all its capacity and will

unnecessarily incur cost for infrastructure that will not be used.

In order to accurately plan for capacity, it is necessary to incorporate random

variations in demand in the model. In this essay, we take a two-step innovative

approach for demand prediction. First, we calculate optimal price and demand

9

using profit maximization model for vendors. Second, we model a stochastic

profit maximization problem where demand follows a Gaussian probability

distribution function with a mean optimal demand as calculated in the previous

step. We assume that there is no change in price because of random variation

in demand, and the producers will charge the optimal price that was obtained

in previous step. We investigate how the optimal capacity varies under various

circumstances. We also investigate the role operational performance plays in

this context.

In the second essay, we introduced importance of capacity planning for the

providers of SaaS applications and we presented a method to calculate optimal

capacity. However, one size fits all methodology may not be appropriate for all.

There will be providers who would prefer to plan for lesser capacity so that the

probability of loss from excess capacity is less. On the other end of the

spectrum there will be providers who would like to have larger capacity so that

they will not lose out in case of higher demand. In addition to this uncertainty,

prior research has observed that IT investments in general are riskier than

other capital investments (Dewan, Shi, & Gurbaxani, 2007). The third essay

investigates how financial risk tolerance of SaaS application providers would

affect capacity planning for SaaS applications. Using Markowitz’s mean variance

analysis model (Markowitz, 1959), we build a financial risk model so that the

SaaS application providers could make appropriate decisions based on their

10

individual risk tolerance. We shall also investigate the relationship of financial

risk tolerance with expected (average) values of different decision parameters.

11

Chapter 2: Essay One - Modularity and Performance

in Cloud Computing: An Economic Perspective

2.1 Introduction

Cloud computing is fundamentally changing the way computing resources are

developed, provided and used. Some of the observed changes are how an IS

application is accessed; how the applications are set up etc. Advent of

networking in the early 70s made it possible to connect many computing

devices together. As a result of that it was possible for businesses to network

smaller powered computers and use them instead of using a bigger and more

powerful mainframe computer. It was no longer necessary to replace a

computer when there was a need for higher computing power; another

computer could be added to the enterprise. It gave rise to client server

computing, that we are still using today. It made computing scalable and

more efficient. Cloud computing has already changed computing significantly

and this trend will continue. In this essay, first we identify some of the

important changes that are occurring because of the advent of cloud

computing. Second, using unconstrained optimization, we find relationships

among price, modularity and architectural performance of a SaaS application

under the condition of profit maximization of its developer. The rest of the

essay is organized in the following way. In the next section, we discuss in

detail the motivation for this research. Next, we define cloud computing,

12

modularity and performance. A review of relevant literature is presented after

this. We then formulate our profit maximization model which is followed by

presentation of results of theoretical analysis. The last section discusses the

results and presents possible future work in the area.

2.2 Motivation and Research Questions

In this section we discuss in detail how cloud computing is bringing a

paradigm shift in computing. First, an IS application hosted in the cloud could

be accessed from anywhere as long as there is a network connection. It is no

longer necessary that users of an IS application are in the same enterprise

where the IS application is hosted. Wide acceptance and use of different

types of mobile computing devices such as smartphones, tablets is one of the

effects of cloud computing.

Second, the concept of ownership of cloud computing applications is different

from traditional computing applications. Instead of making outright purchase,

businesses purchase Information Technology (IT) services in the same way

they purchase different utility services such as telephone service, network

connection service etc. As a result of the service component, delivery and use

of cloud computing applications involves three distinct groups – developers of

IS applications, service providers of IS applications and users of IS

applications. Traditionally, the service providers and users were same as the

13

organizations installed the IS applications themselves and they owned the

underlying IT infrastructure. In a cloud computing model, in many cases it is

possible that same organizations could develop and provide the service;

however the role of users of an IS application is significantly different. It is

also important to note that in the cloud computing model the application

provider and user will have a long term business relationship as the users are

no longer purchasing the software outright.

Third, from a financial perspective as businesses start using cloud computing

it is no longer necessary for them to make huge capital investment in IT

infrastructure, such as hardware, software etc. The IS application providers

either build their own IT infrastructure or they purchase it from another IT

infrastructure service provider; in either case the users need not worry about

the IT infrastructure issues. As an example, the social networking site

Foursquare rents its IT infrastructure from Amazon.com.

Fourth, most traditional IS applications were built for solving a specific

business problem of an organization. However, cloud computing enabled IS

applications are no longer constrained to operate in a specific enterprise or a

business; it becomes necessary that the developers of these IS applications

build them focusing on a diverse group of users from a diverse group of

businesses from many industries. As an example, the customer relationship

14

management (CRM) service provider Salesforce.com provides similar services

to a diverse group of businesses. Hence, these IS applications need to solve

problems in a generalized way; so it can be argued that unlike a traditional IS

application which is a customized product, a cloud computing application is a

combination of generalized (not customized) product and service (Bardhan,

Demirkan, Kannan, Kauffman, & Sougstad, 2010). This phenomenon has also

been described as industrialization of IT.

Traditionally software is considered a developmentally intensive product,

because software has substantial development costs and small marginal cost

for production (Krishnan & Zhu, 2006). However, cloud computing

applications are different in that respect. Not only cloud computing

applications have a substantial development costs but also a producer of

cloud computing applications incurs a significant marginal cost of providing

the service, because the consumer producer relationship could last

throughout the lifetime of the product.

Although Cloud computing has received lot of attention in the industry, there

are very few academic articles on cloud computing. Choudhary compared

how software quality could be different under perpetual licensing scheme

(traditional software product) and Software as a Service (SaaS) (Choudhary,

2007). However, he did not define software quality and he implicitly assumed

that meaning of software quality in the two scenarios were same. Zhang and

15

Seidman investigated the difference between the above two scenarios under

quality uncertainty and network externality effects (Zhang & Seidmann,

2010). They defined software quality as an attribute with many different

dimensions such as features, speed, functionalities etc.; their definition of

software quality used the fact that software quality could be defined in terms

of functional attributes (Agrawal & Chari, 2007) as well as in terms of non-

functional or structural attributes (Capra, Francalanci, & Merlo, 2008) of

software. Although there is a rich literature on software quality, the meaning

of software quality has changed over time (Agrawal & Chari, 2007).

Recently, the Software Engineering Institute (SEI) at Carnegie Mellon

University, and the Object Management Group have jointly formed a

Consortium of Software Quality (CISQ) to investigate issues in software

quality. The group’s main focus is to devise metrics which could be used for

measuring software quality; hence it is fair to conclude it is difficult to

measure software quality accurately. Hence, in this dissertation we focus on

tangible nonfunctional attributes.

In order to understand and analyze this new development it is necessary to

take a look at some nontraditional IS areas such as service science

(Demirkan, Kauffman, Vayghan, Fill, Karagiannis, & Maglio, 2008). Although

literature has recognized the service aspect of cloud computing, to our

16

knowledge there is no analytical model for cloud computing applications

which include any specific service characteristics such as marginal or

maintenance cost of the service. Most researchers have treated cloud

computing applications as developmentally intensive products (Krishnan &

Zhu, 2006). In this essay, we intend to address the specific gaps in research

as indicated above.

In this research, we focus on non-functional attributes of a cloud computing

application. Although, we recognize that functional attributes are the most

important characteristics of any product, the functional attributes are specific

to a particular product. On the other hand, non-functional attributes such as

quality and usability are applicable to all products. Also in a cloud computing

model, it is possible that many providers will offer similar service in terms of

functional attributes. However those providers could compete by offering

different levels of non-functional attributes. Hence, we only include non-

functional attributes in our model, and as a result of that our model is

relevant to any cloud computing applications. It will enable us to uncover

important insights into a typical cloud computing application and it will help

us understand the phenomenon of cloud computing and uncover important

common features among different types of cloud computing applications.

17

We focus our attention on specific and meaningful non-functional attributes

of IS that could be operationalized in future; however operationalization of

attributes is beyond the scope of this essay. Our work is different from the

other works in the cloud computing area in the following ways. First, we

focus on two important and specific non-functional attributes of an IS –

modularity and performance which have been identified as important

dimensions of software quality (Joglekar & Rosenthal, 2003; Agrawal & Chari,

2007). Second, we recognize the service aspect of cloud computing

applications by including both marginal production and recurring cost of

providing the service in the model.

Modularity is considered to be one of the most important non-functional

attributes of an IS application (Parnas, 1972; Parnas, Clements, & Weiss,

1985). We define and discuss modularity in a following section. It has been

observed that there is an optimal level of modularity in an IS application; too

little or too much modularity could be detrimental, because increase in

modularity in some cases may reduce the performance of an IS application

(Banker, Datar, Kemerer, & Zweig, 1993). In a recent commentary, Yoo et al

have opined that recent developments necessitate considering the importance

of modularity in software architecture (Yoo, Henfridsson, & Lyytinen, 2010).

18

Performance is another important non-functional attribute. Performance is

always considered an important part of Service Level Agreements (SLA). In

the cloud computing area, SLAs are important as they formalize the

relationship of service provider and service consumer (Demirkan, Kauffman,

Vayghan, Fill, Karagiannis, & Maglio, 2008).

Cloud computing could be classified into three different types of services:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software

as a Service (SaaS) (Fouquet, Niedermayer, & Carle, 2009; Sridhar, 2011).

We provide a detailed definition of all of them in a following section. In this

essay, we focus on SaaS applications because of the following reasons. First,

a SaaS application is similar to traditional IS application and the consumers of

such applications are very similar to traditional IS application users. Second, a

SaaS application developer faces some of the similar challenges as a

traditional IS application developer. Hence, focusing on SaaS will help us

uncover and study the paradigm shift cloud computing is bringing to the area

of IS application. We investigate specifically the roles of modularity and

performance in a SaaS application architecture. Taking the perspective of a

SaaS application provider we investigate the following three research

questions.

19

1. While developing a SaaS application, what are the optimal levels of price,

performance and modularity that will lead to maximum profit for software

developers? How are the above three attributes related to one another?

2. How does a change in SaaS application users’ sensitivity to different

parameters such as price, modularity and performance affect optimal

values of demand and profit under the condition of profit maximization?

3. What are the effects of different costs incurred by the cloud computing

application providers such as fixed cost, marginal cost and maintenance

cost on different parameters such as price, demand and modularity under

the condition of profit maximization of the producers?

We do the above analysis under two scenarios. In the first scenario, we

assume that there is no relationship between performance and modularity. In

the second scenario, we assume an inverse relationship between

performance and modularity as prior research has shown that increase in

modularity leads to decrease in performance (Clark, 1982).

20

2.3 Background and Previous Research

As cloud computing is a new phenomenon, the definitions of different

concepts related to this area are still evolving. In this section, we review the

available definitions of cloud computing, SaaS, modularity and performance.

2.3.1 Cloud Computing

National Institute of Standards and Technology (NIST) published a guideline

in 2011 that included a definition for cloud computing. The definition states

that “Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service

provider interaction” (Mell & Grance, 2011). There are a few more definitions

of cloud computing in the literature. According to (Vaquero, Rodero-Merion,

Caceres, & Lindner, 2009) cloud computing could be defined as “Clouds are a

large pool of easily usable and accessible virtualized resources (such as

hardware, development platforms and/or services). These resources can be

dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilization. This pool of resources is typically exploited

by a pay-per-use model in which guarantees are offered by the Infrastructure

Provider by means of customized SLAs”. In this essay, we use the NIST

definition of cloud computing.

21

From the above definitions, we observe that cloud computing involves a

service provider and consumers of services. The service provider provides

different types of computing services, such as computing infrastructure,

computing platform or just an IS application. The consumer uses the above

services according to specific Service Level Agreements (SLA). The service

could be offered at different levels of abstraction depending on the type of

specific access and control a consumer has. So far three distinct abstractions

have been identified and they are discussed below.

2.3.1.1 Infrastructure as a Service (IaaS)

These are services where consumers directly use infrastructure resources

such as data storage, networking equipment, computer hardware from

service providers. These services enable consumers to have lower level

access to the IT infrastructure such as deploying software, changing

hardware configuration. However the consumers are not responsible for the

maintenance of the resources. Outsourcing of data center is an example of

this. These types of services are known as IaaS. There are other alternative

names such as utility computing. The first known reference to utility

computing could be found in a lecture delivered by Dr. John McCarthy in 1961

at MIT. According to him “If computers of the kind I have advocated become

the computers of the future, then computing may someday be organized as a

public utility just as the telephone system is a public utility... The computer

utility could become the basis of a new and important industry.”

22

2.3.1.2 Platform as a Service (PaaS)

Platform as a Service (PaaS) enables a user to develop, install and use an IS

application using a cloud application provider’s infrastructure. Although the

developers have access to development environment in a providers’

infrastructure; developers need not worry about any other infrastructure

requirements. Some of the existing platforms which provide this type of

services are Salesforce.com’s Force, Microsoft’s Azure, and Google’s Apps

Engine.

2.3.1.3 Software as a Service (SaaS)

In the literature, SaaS is defined as an IS application which is hosted in a

vendor site and could be accessed by users through the Internet either using

standardized protocols such as SOAP, REST or using proprietary protocols

such as the one offered by Salesforce.com. SaaS enables a provider to offer

IS application as a service to consumers by hosting the IS application in their

own IT infrastructure; consumers need minimal IT infrastructure for

consuming the service (Wikipedia). Salesforce.com’s CRM application,

Amazon’s storage application and Google’s Apps are examples of SaaS

offerings. Here the consumers only need to focus on functionality of the

application and they might be responsible for minimal configuration decisions.

As we can see all the three different types of service have many similarities.

First, in each case the consumers rent the needed functionalities instead of

23

either developing it in house or purchasing it outright. Second, consumers are

not responsible for maintaining the underlying infrastructure necessary for

using the service. The main difference among the three services is in the level

of abstraction. First, SaaS is at the highest level of abstraction as the

consumers are provided with access to an IS application. Second, the PaaS is

at the middle level of abstraction; here the consumers are provided with

access to application development environment. Third, IaaS is at the lowest

level of abstraction; here consumers are provided with access to different

lower level infrastructure necessary for computing. Taking another

perspective, we observe that SaaS, PaaS, IaaS are similar to software

applications, software development environments and basic computing

infrastructure respectively; the main difference is that they are offered as

services. This could lead to following possible scenario; it is possible for SaaS

providers to develop SaaS applications using PaaS platforms from PaaS

providers and then offer those applications as SaaS solutions to their

customers. It is easy to see that use of cloud computing could make a supply

chain of customers and vendors where vendor at one point is a customer at

another. The outsourcing of a business’s logistical functions such as

transportation, warehousing, product returns to another organization is

known as Third-party logistics (3PL or TPL); the organizations which provide

this type of services are known as Third-party logistics providers or Third-

24

party service providers (3PSP) (Vitasek, 2010). The SaaS applications are

somewhat similar to 3PL.

2.3.2 Modularity

Modularity is not a new concept. There is a long history of using modularity

in product design. It is claimed that the Terracotta army figures in the

mausoleum of the first Chinese emperor Qin Shi Huang were constructed

using the principles of modularity in the third century BC. The head, arms,

legs and torsos were created separately and then they were glued together.

Using the concepts of modularity, the Venetian Arsenal was able to produce

about one ship a day during 16th century; they employed about 16,000

people (Wikipedia). The idea that an IS application should consist of many

modules was first proposed by Parnas while introducing the concept of

information hiding (Parnas, 1972). The concept of information hiding or

encapsulation is based on the fundamental economic concept of division of

labor, where tasks are divided into many tasks that could be performed by

different people. However, especially in the area of intellectual division of

labor, the effective coordination becomes an important issue and that takes

away some of the benefit of division of labor. As an example, it has been

observed that dividing a software product into modules required a significant

effort in coordination and communication among the developers of different

modules neutralizing some of the benefits of modularization. Hence it was

25

realized that in order to extract benefit from modularization, it is necessary to

design modules in a way that required least amount of communication among

the modules (Langlois & Garzarelli, 2008).

It has been noted in literature that there is no uniform definition of

modularity (MacCormack, Rusnak, & Baldwin, 2006; Fixson & Clark, 2002;

Fixson S. K., 2003; Bask, Lipponen, Rajahonka, & Tinnila, 2010). According to

Campagnolo and Camuffo, “Modularity is an attribute of a complex system

that advocates designing structures based on minimizing interdependence

between modules and maximizing interdependence within them that can be

mixed and matched in order to obtain new configurations without loss of the

system’s functionality or performance” (Campagnolo & Camuffo, 2010).

Booch defined modularity as, “Modularity is the property of a system that has

been decomposed into a set of cohesive and loosely coupled modules”

(Booch, 1994). Coupling is defined as how inter dependent two modules are

and cohesion is defined as how single minded a module is (Yourdon &

Constantine, 1979).

We recognize that it is difficult to come up with an absolute definition of

modularity; on the other hand it is easy to conceptualize modularity. In this

essay, we define modularity as a relative term. As an IS application is sub

divided into more and more modules its modularity increases. Since, we are

26

only interested to investigate the effects of increase and decrease of our

decision variables, it is not necessary to come up with an absolute definition

of modularity. For a highly integral design (few modules and low modularity)

cohesion of each module is low and coupling among the modules is also low.

On the other hand, for highly modular design (many modules and high

modularity) cohesion of each module is high, however coupling among

modules also tend to be high. So we can infer that as modularity increases,

coupling and cohesion also increases. Although operationalization and

measurement of modularity is beyond the scope of this essay, we note that it

is easy to measure effects of modularity indirectly through coupling and

cohesion. Chidamber and Kemerer introduced specific metrics such as “Lack

of Cohesion of Methods (LOCM)”, “Coupling between Objects (CBO)” that

could be used for measuring cohesion and coupling (Chidamber & Kemerer,

1994). Some application development tools such as Eclipse allows developers

to calculate those metrics (Sourceforge.net). Ideally, it is best to have high

cohesion and low coupling (Booch, 1994). We introduced the concept of

modularity using the figures in the mausoleum of the first Chinese emperor

Qin Shi Huang. Instead of just constructing head, arms, legs and torsos

separately, the artists could have increased the number of modules by

constructing fingers separately. In that case both cohesion of a module and

coupling among the modules would have been higher. Intuitively we can

sense that the product would have been less robust, as it would have been

27

harder to glue all the modules together. Hence neither too little modularity

nor too much modularity is good. Hence, we conclude that there is an

optimum modularity, which is neither too high nor too low. As high

modularity corresponds to high cohesion and high coupling we can also

assume that optimal modularity leads to high cohesion and low coupling.

2.3.3 Performance

Performance has been recognized as another important non-functional

attribute of a software application (Devaraj, Kumar, Kavi, & Kanth, 2011).

Also, performance and quality of service are two related constructs that are

considered important attributes of telecommunication and networking

services. A quick analysis of the Internet Service Providers (ISP) shows that

ISPs charge higher price for products with higher performance as measured

in upload and download speeds. We also observe the CPU manufacturers

such as Intel and AMD advertise about the speeds of their CPUs. In the

traditional IS area, performance is considered a runtime construct; hence

during development of traditional IS applications performance did not receive

much importance; it was assumed that performance issues could be

addressed later (Balsamo, Di Marco, Inverardi, & Simeoni, 2004). However, in

the data networking area during development of protocols, performance was

considered an important attribute (Clark, 1982). In the area of scientific

computing, considerable effort is made to develop software with higher

performance (Diaz & Dutt, 1992). Also in the software development, there

28

are specific programming techniques that are used for improving

performance of software under specific conditions. As an example data

structure tree is used for data that does not change often to improve

performance in searching. Hence performance should not be considered only

a runtime construct and the role performance plays in software architecture

during development should also be recognized. We recognize that by

assuming that performance attribute of any IS application consists of two

parts – architectural performance (s) and operational performance (o) so that

the role of performance in the above contexts could be recognized. We define

architectural performance (s) as the component of performance of an IS

application that is due to design decisions and choices made during design

and development of the IS application. A good example is a decision whether

to use a specific data structure. We define operational performance as the

component of performance of an IS application arising from the decisions

made during run time of an IS application. Operational performance is the

performance as observed by a user of a SaaS application (Transaction

Processing Performance Council (TPC), 2012). So the operational

performance depends on the decisions made during installation of IT

infrastructure, such as type of hardware, amount of memory of the servers,

they networking link that connects the servers etc.

29

For SaaS applications, the end users are not necessarily in the same

enterprise where the application is hosted. Hence, the users of such

applications could experience lower operational performance because of

network delay, network attacks etc. A higher architectural performance could

compensate for that. Also two similar SaaS products could be differentiated

on the basis of performance, and a quick review of popular SaaS products

show the importance SaaS providers give to the performance issue. Hence,

we include architectural performance (s) as a decision variable in our model.

However, we are only interested in relative changes in architectural

performance and hence operationalization of architectural performance is

beyond the scope of this essay. However, metrics such as TPC-W metrics

(Transaction Processing Performance Council) has been used for measuring

performance in the cloud computing area (Kossmann, Kraska, & Loesing,

2010).

2.4 Previous Research

A search on many popular databases such as “Web of Science”, “ABI Inform”

revealed a paucity of peer reviewed research papers on “Cloud Computing”.

As the focus of this paper is on SaaS, we have given more emphasis on SaaS

literature. However, we have reviewed literature in other related areas of

cloud computing also. In order to understand modularity and performance we

have done an extensive review of those constructs in different areas.

30

Cloud computing in general and SaaS in particular have created a need for IS

researchers to understand and use service science (Vaquero, Rodero-Merion,

Caceres, & Lindner, 2009). Demirkan et al discussed importance of service

orientation in IS applications and suggested some guidelines for developing

and adopting IS applications based on service oriented architecture

(Demirkan, Kauffman, Vayghan, Fill, Karagiannis, & Maglio, 2008). Bardhan et

al confirmed that IT services were becoming more and more important in the

IS area. They emphasized the importance of looking into service science for

understanding the phenomenon and the need for joint research among

different disciplines (Bardhan, Demirkan, Kannan, Kauffman, & Sougstad,

2010).

Recently, Susarla et al investigated on the suitability of high powered versus

low powered incentives in the contract between a SaaS provider and a SaaS

consumer. From the point of view of SaaS providers, it is more beneficial to

have high powered incentive contract (as an example fixed price contract,

giving the provider flexibility) instead of a low powered incentive contract

(where the contract describes in detail different terms and conditions)

between a SaaS application provider and a consumer for SaaS applications. It

was observed that lack of flexibility in the contracts was one of the problems

faced by Application Service Providers (ASP) (Susarla, Barua, & Whinston,

31

2009). They observed that modularity in SaaS application lowers the process

specificity between consumers and producers and as a result of that makes it

beneficial for SaaS providers to have high powered incentive contract with

the consumers (Susarla, Barua, & Whinston, 2010).

Zhang and Seidman compared the subscription licensing model (similar to

SaaS model), perpetual licensing model and a hybrid model that includes

both types of licensing models for delivery of software. Although in some

cases subscription licensing model was beneficial to software vendors, when

the network effect is significant it was more profitable for vendors to provide

both subscription licensing model and hybrid model (Zhang & Seidmann,

2010). Choudhary examined the impact of SaaS licensing scheme on software

quality and he observed that SaaS licensing scheme leads to better software

quality (Choudhary, 2007); because this licensing scheme encourages the

producers to make more investment during software development and

maintenance (Choudhary, 2007).

Demirkan et al studied different coordination strategies among different

players in a supply chain of SaaS providers. They noted that two distinct roles

have evolved for SaaS application providers – that of Application Service

Providers (ASP) and of Application Infrastructure Providers (AIP). In order to

provide SaaS, an ASP and an AIP can form a supply chain network. They

32

observed although an ASP and an AIP have different incentives, it is possible

to create a coordination strategy with an incentive that will result in the same

overall surplus as that could be achieved by a central planner (Demirkan,

Cheng, & Bandyopadhyay, 2010). Benlian et al investigated drivers for

adoption of SaaS applications. They found adoption of SaaS application

depends on the type of specific application; however they found no

relationship between SaaS adoption and the size of the adopting

organizations. In other words SaaS vendors should not limit their marketing

efforts based on the size of the consumer organizations (Benlian, Hess, &

Buxman, 2009).

The concept of modularity in the area of management science has a long

history. Modularity has been studied in three different areas – product design,

production systems and organizations (Campagnolo & Camuffo, 2010).

Parnas uncovered the importance of modularity in software architecture while

discussing information hiding (Parnas, 1972). It was confirmed in many other

studies that modular software is better software (Booch, 1991; Boehm &

Sullivan, 2000; Cai, 2006; McConnell, 2000; Wasserman, 1996). For

mainstream products, Joglekar and Rosenthal observed that use of

modularity in software architecture improved outcomes of mainstream

product which has added software components (Joglekar & Rosenthal, 2003),

or in other words products with modular architecture are better products.

Dewan et al investigated mass customization of product; they observed that

33

using mass customization, it was possible for a producer to offer different

variations of a product at different prices leading to increased profit by

making the product attractive to a more diverse group of consumers (Dewan,

Jing, & Seidmann, 2003). Kumar observed that modularity in product design

enables a producer to offer mass customized product (Kumar, 2004). Hence,

it is widely accepted that increase in modularity leads to increase in product

flexibility (Schilling, 2000).

Modularity is also one of the driving forces for refactoring and restructuring of

software (Mens & Tourwe, 2004). MacCormack et al observed modularity in

design led to more flexibility in changing products and that increased agility

(MacCormack, Verganti, & Iansiti, 2001). It was also observed that

maintenance cost was proportional to size of the modules amongst others; it

was more expensive to maintain a non-modular product (Banker, Datar,

Kemerer, & Zweig, 1993) or in other words the cost for maintaining a

modular product is less. However, many researchers in different fields have

observed that modularity in product architecture leads to higher product

complexity (Bardhan, Demirkan, Kannan, Kauffman, & Sougstad, 2010;

Baldwin & Clark, 2000). Pekkarinen and Ulkuniemi studied how modularity

could be introduced during development of business services. They developed

a modular services platform where they identified four distinct areas of a

typical business process - service, process, organisational and customer

34

interface. They showed it was possible to introduce modularity in all the four

areas and improve the overal business process (Pekkarinen & Ulkuniemi,

2008).

The literature on architectural performance of software product is not

extensive. Jain and Kannan showed that in a software service environment,

price is related to performance and producers charge higher price for higher

performing product (Jain & Kannan, 2002). Hosanger et al studied the role of

performance on a specific IS service namely cache service in the context of

consumer vendor relationship. They showed that it was possible for vendors

to charge for a premium service even when a best effort free service was

available to consumers (Hosangar, Krishnan, Chuang, & Choudhary, 2005) .

Hanmer and Letourneau described some of the best practices for developing

a high performing product (Hanmer & Letourneau, 2003).

The importance of service in IS applications is evident from another

perspective. Service Oriented Architecture (SOA) has become a very popular

IS architecture; SOA could be defined as an architectural style where each

component of an IS is perceived as a service. SOA architecture enables

applications built using modular structure to work together. A logical next

step is to extend SOA outside of the enterprise to the cloud (Linthicum,

2009). Hence, it has been suggested that for building cloud computing

35

enabled IS applications, SOA is the most appropriate architecture (Demirkan

H. , 2008).

2.5 Model Formulation:

We use theoretical (analytical) modeling technique for our model formulation.

In this technique researchers build theoretical models which consist of

appropriate variables for the phenomenon which is being modeled as well as

realistic assumptions among the variables. A typical assumption could be an

assumption of profit maximization. They do theoretical experiments using the

model by examining effects of change of some of the variables. From the

results of the experiments, propositions are developed and managerial

implications of the phenomenon are uncovered from the propositions

(Moorthy, 1993). Theoretical modeling has been an effective tool for

uncovering many useful insights into complex business phenomena (Raju,

1995).

We first model our demand function. We assume a monopolist vendor and we

consider a fixed period during which the SaaS application is being offered. We

model the effects of modularity and performance in SaaS architecture on

demand. Consistent with the literature, we assume that modularity and

performance have positive effects on the demand. Bakos and Brynjolfsson

observed that especially in the case of Information System products, bundling

36

leads to higher profit for producers (Bakos & Brynjolfsson, 1999); modularity

in product architecture leads to ease in bundling. In other words, modularity

in product architecture will enable a SaaS provider to create and customize

their services faster for the consumers (Sambamurthy, Bharadwaj, & Grover,

2003). Joglekar and Rosenthal observed that use of modularity in software

architecture improved outcomes of mainstream product which has added

software components (Joglekar & Rosenthal, 2003). Modularity would also

support mass customization strategy which allows a producer to offer their

product to a more diverse group of customers (Dewan, Jing, & Seidmann,

2003). Therefore, an increase in modularity of a product will lead to increase

in demand if everything else remains the same.

One of the most successful cloud computing application providers is

Salesforce.com. Salesforce.com has seen a steady increase in their sales and

customer base that has been attributed to the flexibility of its Application

Programming Interface (API) Force.com that allows users to develop their

own applications. According to Salesforce.com website, “Force.com comes

with 60 predefined components that can be assembled with minimal coding in

building-block fashion. Some of these components implement common

Salesforce interface elements and others make new features available, such

as AJAX-based partial page refreshes” (Salesforce.com). In other words,

37

modularity in their products makes it easy for customers to develop their own

application leading to Salesforce.com’s success.

Another success story in the area of cloud computing is popularity of Amazon

Web Services. According to Adam Selipsky, vice president of Product

Management and Developer Relations, Amazon Web Services, “in making its

capabilities accessible to outside developers, Amazon broke its process into

many modular services. This modularity has allowed Amazon to extend its

business all the way to providing a complete online retailing environment for

Target.com, Marks & Spencer, and others.” Hence, it follows that introduction

of modularity in Amazon’s processes led to increase in number of their

customers.

According to Catalyst Resources a SaaS consulting firm, modular design in

SaaS leads to order of magnitude profit increase for SaaS developers. They

gave an example, where a client of theirs opted for a non-modular design

resulting in loss of profit – “A company we work with had a very compelling

piece of software for transportation asset management. However, all

functionality in the application was bolted together. All configuration was in

one area, all reports were in one area, all routing & logistics were in one

area, etc. This meant the company was limited to selling their SaaS offerings

as a single product at a single subscription price. Ideally with SaaS however,

38

you want is to be able to break your functionality into pieces that can be sold

separately. The modular pieces become separate profit streams that sum to

more than the profit from a single monolithic SaaS.”

On the effect of performance and demand level it has been argued that

higher performance will mean higher demand if everything else remains the

same. Hosangar et al confirmed that indirectly in a recent study (Hosangar,

Krishnan, Chuang, & Choudhary, 2005). Kossman et al compared the

performances of different cloud computing services such as Amazon Web

Services (AWS), Google’s AppEngine, Microsoft’s Azure with respect to the

price of those services. They used TPC-W metrics of the Transaction

Processing Performance Council (Transaction Processing Performance

Council). The performance was measured in WIPS (Web Interactions per

Second). They observed that providers charge higher prices for higher

performing product (Kossmann, Kraska, & Loesing, 2010). From the

fundamental laws of economics we note that, lower prices lead to higher

demands. Hence, we argue if everything else remains same higher

architectural performance will lead to higher overall performance and that will

lead to higher demand if the price remains unchanged as that would be

effectively lowering of prices.

39

Some of the examples from industry as discussed above clearly indicate that

modularity in product leads to increase in demand and lack of modularity in

product leads to decrease in demand.

The literature predicts similar trend for performance. We assume a linear

demand function and we include the sensitivity in demand from modularity

and architectural performance as discussed earlier. Although linear demand

function has some limitations, linear demand function is widely used in the

literature (Barua, Kriebel, & Mukhopadhyay, 1991; Choudhary, 2007). We

also assume both demands and price to be amortized over the lifetime of the

product. If a consumer subscribes to the service throughout its lifetime, the

price is the total amount the consumer will pay and correspondingly demand

will be one unit. Hence both demand and price could be fractions. This is how

a service is different from product. A consumer can only purchase or not

purchase a product. On the other hand, a consumer can subscribe to a

service for a limited period of time and not throughout the lifetime of the

service. In that case, a consumer will pay less than the full price and demand

will be recognized as less than 1.

40

Thus, demand can be modeled as:

� = 	� − �� +
� + �
 (1)

where p is price of the SaaS application amortized over its lifetime,

m is the modularity level of the SaaS application,

and s is the performance level of the SaaS application.

� is primary demand due to functional attributes of the SaaS application and

other non-functional attributes such as quality (except modularity and

performance), brand image, general economic fact that are outside the scope

of this paper.

β represents price sensitivity of the demand,

 represents increase in demand from increase in modularity,

and δ represents increase in demand from increase in performance.

�, β,
, and δ are assumed to be greater than zero.

Our next step is to formulate the cost function. A provider of SaaS application

incurs three different types of costs. First, there is a fixed cost which involves

the cost of developing the product as well as costs for setting up the

necessary IT infrastructure so that the SaaS application could be offered to

the customers. Second, the providers also incur a marginal cost per service

because in order to provide larger number of services to larger number of

customers, it is necessary to have a larger IT infrastructure. The marginal

cost also consists of two parts. There could be a onetime cost of purchasing

the infrastructure and a variable personnel cost of maintaining the

41

infrastructure and providing the service. Alternatively, the infrastructure could

be rented from an IaaS provider and in that case the marginal cost will only

consist of a variable component. Third, there will be a cost for maintaining

the SaaS application. In our model, we include both maintenance cost and

marginal cost per product as amortized over the lifetime of the product.

Prior research has shown that modularity in product architecture leads to

higher product development complexity (Bardhan, Demirkan, Kannan,

Kauffman, & Sougstad, 2010). Hence we can infer production of modular

software will require more production cost for vendors (i.e. higher upfront

(fixed) cost) (Bush, Tiwana, & Rai, 2010). We assumed that fixed cost (C1)

arising from increased modularity and performance to be a quadratic function

of modularity (m) and performance (s) respectively. This is in line with the

standard practice in the IS literature; fixed costs incurred to improve quality

of a product is a convex function of the slope of product improvement curve

(Choudhary, 2007). Therefore C1 can be expressed as:

�� = �� + �	�� + �
� (2)

where �� is the fixed cost arising from factors other than modularity and

performance, C is the parameter related to modularity during design and

development of the application, and D is the parameter related to

performance during design and development of the application.

42

Modularity in design also leads to better flexibility in changing products

leading to agility (MacCormack, Verganti, & Iansiti, 2001). It was more

expensive to maintain a non-modular product compared to a modular product

(Banker, Datar, Kemerer, & Zweig, 1993; Bardhan, Demirkan, Kannan,

Kauffman, & Sougstad, 2010). We treat maintenance cost (C2) as amortized

over the lifetime of the product. Hence, C2 can be expressed as:

�� = �� − 	�		� (3)

where �� is the amortized maintenance cost over the lifetime of the product

and

B, is the parameter related to modularity showing the saving in maintenance

cost arising from modular design also amortized over the lifetime of the

product.

Unlike a traditional software vendor, a SaaS application provider will also

incur marginal cost for providing services. This marginal cost (C3) will include

both the cost for setting up infrastructure such as hardware, software as well

as the amortized cost for providing the service. This cost will be proportional

to demand. Hence, C3 can be expressed as:

C3	=	Z	d																																																																																																																																(4)

where, d is the amortized demand of the service , and Z is the marginal cost

per application amortized over the total lifetime of the service.

43

Adding (2), (3), and (4), our total cost function can be expressed as:

� = �	 − 	�		�	 + �	�� + �
� + 	�	� (5)

where �	 = �� + ��
Profit for a software producer ��� could be represented as:

� = �	� − 		�

Using (1) and (5), the above profit can be rewritten as:

� = ��	– 	�	�	 + 	
	�	 + 	�	
��� − �� 	− �	�	 − 	�		�	 + �	�� + �
��	 (6)

Our objectives are to find optimal values of price (p), modularity (m) and

software performance (s) that will maximize the above profit function.

Boundary Condition:

We assume the boundary condition that Primary demand of a product α is

greater than product of marginal cost Z and price sensitivity β or	� > �	�

In any IS application, it is fair to assume that functional attributes are much

more important than non-functional attributes. Although non- functional

attributes are important in this case, it is unlikely that importance of non-

functional attributes such as modularity and performance will be more than

those of functional attributes and other non-functional attributes (except

modularity and performance). It is unlikely that a producer will produce a

44

product based on only modularity and performance and without any regard to

its functionality. We consider a case where both performance sensitivity (δ)

and modularity sensitivity (γ) are close to zero or in other words, the

customers do not care about the product’s modularity and performance.

Following equation (1), we can rewrite the demand function as

� = 	� − ��
In the above case, it is unlikely that a producer will produce product that

does not have a projected positive demand. Hence, we assume that in this

simplistic situation also demand should be positive. Hence, we obtain

� > �	�
As Z is the unit marginal cost, it is fair to assume that p must always be

greater than Z, since otherwise it does not make sense for a producer to

produce any product. As we are modeling the situation during design and

production phase, we exclude the possibility of a fire sale. Hence it follows

� > �� (7)

We shall assume the above boundary condition in our model.

45

2.6 Results:

In this section, we present our results. We consider two cases. In the first

case we assume no relationship among the decision variables. In the second

case, we assume a relationship between modularity (m) and architectural

performance (s) where increase of one leads to decrease of the other.

2.6.1 Case 1: Modularity (m) and Architectural Performance (s)

are not related

In this case, we assume modularity in software architecture and the

architectural performance are independent of each other. In order to find

optimal values for our decision variables that will maximize the profit

function, we differentiate profit (Equation 6) partially with respect to p, m,

and s, set them equal to zero, and express them as p*, m*, and s*. After

making some simplifications, we obtain the following expressions.

�∗ = "#$	%#	&	'	#	()
�%	 	 (8)

 �∗ = *#	&	�+,$�		
�- 	 (9)

∗ = (�+,$�	
�. 	 (10)

Solving above equations by substituting �∗, �∗	and
∗ for �, �	and	

respectively, we obtain the optimal values of decision variables as expressed

below.

�∗ = �-."#*.&#$	��-.%,.&0,-(0�		
1	-	.	%,	.	&0,	-	(0 						=	 �-.�",$%�	#*.&	1	-	.	%,	.	&0,	-	(0 + 	�																																				(11)	

46

�∗ = 1* . %#� . " &,�.$%&, *(0

� (1 - . %, . &0, - (0) (12)

∗ = (� - "#* &,�-$%)(

� (1 - . % , . &0 , - (0) (13)

Substituting (8), (9), and (10) to (1) and (6), optimal demand and profit can

be expressed as:

�∗ = .%(�-(",$%)#*&,� -)
(1 - . % , . &0 , - (0) (14)

�∗ = 1.(",$%)(*&#-(",$%))#*0(1.%,(0)

1(1 -.%,.&0,-(0) − � (15)

Lemma 1:

All the decision variables as well as the optimal demand and profit have

positive values when 4 � � � > (�
� + � ��).
Proof:

The above condition is derived from the hessian matrix. The hessian matrix is

the second-order partial derivative of the profit function with respect to the

variables p, m and s in the present case.

 4 = 5−2�
 �
 −2� 0� 0 −2�8

47

To ensure that profit has a local maximum the determinants of the Hessian

matrix need to be negative semi definite. A matrix is negative semi definite

when its leading principal minors of different orders alternate in sign, starting

with negative for the first leading principal minor (Winston, 1993). Hence the

principal minor of order 3 has to be negative. The only principal minor of order

three is the determinant of the matrix itself which is		2�−4	�	�	� + 	�	
� +
	�	���, and that leads to the following condition.

4	�	�	�	 > 	 ��	
� + 	�	���		 	 	 																																																			(16)

We note that first principal minor of second order is �4�� −
��. However, it is

positive when Equation (16) is assumed. Using Equation (16) as well as the

boundary condition, the numerators and denominators in Equations (11), (12),

(13), (14), and (15) are all positives. ∎

Next, we study the effect of various sensitivity parameters to our decision

variables as well as to our optimal profit.

48

Proposition 1:

In a market where customer demand is such that it is more sensitive to

modularity (i.e. higher
), the vendors will be able to charge a higher price.

Proof:

Taking the partial derivative of optimal p* with respect to γ, we obtain
 :�∗
:
 = 	 	�	�	�	�4	�	�	� + �
� −	���� + 4	�	���	– �����4	�	�	� − 	�	
� − 	�	����

The denominator of the above equation is always positive as it is a square of an

expression. From Lemma 1 and boundary condition of equation (7), we find

4	�	� − �� > 0 and �� − �	�� > 0 respectively. Hence the numerator is always

positive.

Therefore,
;+∗
;& > 0.

 ∎

Hence, we conclude that if all the other parameters remain the same, increase

in customer preference for modularity will enable vendors to charge a higher

price.

49

Proposition 2:

In a market where customer demand is such that it is more sensitive to

modularity (i.e. higher
), the vendors will offer a product that is more modular.

 Proof:

Taking the partial derivative of optimal m* with respect to γ we obtain

:�∗
:
 = 	 	�	��4	�	� −	�����	�� − �	�� + �
� + �
���	– �����4	�	�	� − 	�	
� − 	�	����

The denominator of the above equation is always positive as it is a square of an

expression. From Lemma 1, since 4	�	� − �� > .	&0
- , the numerator can be

rewritten to

��<.	&0- = ��	�� − �	�� + �
� + �
��� − �	���.
From Lemma 1 we find �� − �	�� is positive; hence the numerator is always

positive.

Therefore,

;'∗
;& > 0 ∎

Hence, we can conclude that if all the other parameters remain same, increase in

customer preference for modularity will lead to vendors making the SaaS

applications more modular. However, we also need to remember that the optimal

modularity level depends on many other factors such as the cost for introducing

modularity; hence the implication of this proposition will be clearer as we

develop other propositions. We show the above results graphically in the next

page.

50

Figure 2.1: Graph showing how modularity (m), performance (s), price (p), demand and

profit change with respect to customer sensitivity to modularity in the IS application

architecture

Our numerical results confirm our analytical results obtained in propositions and

lemma 1.

We also find that propositions (1) and (2) are consistent. Increase in customer

preference for modularity will lead to vendors making the SaaS applications

more modular and as a result of that they will be able to charge a higher price.

51

Proposition 3:

As the cost of introducing modularity in the product increases, a vendor will

be required to lower the optimal price.

Proof:

Taking the partial derivative of optimal p* with respect to C we obtain
 :�∗
:� = 	−		�
�4	�	�	� + 	2	��
	 − 	�	�� − 	2���
��4	�	�	� − 	�	
� − 	�	����

The denominator of the above equation is always positive as it is a square of

an expression. Next, we can rewrite the numerator to:

= 	−�
�4	�	�	� − 	�	�� + 	2	��
	 − 	2���
�
= 	−�
���4�� − ��� + 	2	�
�� − ����
Using Lemma 1 and the boundary condition, it can be shown that the

numerator will be negative. Therefore,
;+∗
;- < 0. ∎

Proposition 4:

As the cost for introducing modularity in the product increases, a vendor will

be required to lower the optimal modularity level as well as the optimal

performance level.

Proof:

By taking the partial derivative of optimal m* with respect to C we obtain
 :�∗
:� = 	−	�4�� − ����2��� − ���
 + ��4�� − ����2�4	�	�	�	 − 	�	
� 	− 	�	����

= 	−	 �4�� − ���	�∗
�4	�	�	�	 − 	�	
� 	− 	�	���

52

Using Lemma 1, we observe both numerator (4�� − ��)	�∗ and denominator

�4	�	�	�	 − 	�	
� 	− 	�	��� are positive. Hence,
;'∗
;- is negative of a positive

quantity.

Therefore,
;'∗
;- < 0.

By taking the partial derivative of optimal s* with respect to C, we obtain
 :
∗:� = 	−	
��2��� − ���
 + ��4�� − �

���2�4	�	�	�	 − 	�	
� 	− 	�	���� =	−	
	�	�∗
�4	�	�	�	 − 	�	
� 	− 	�	���

Using Lemma 1, we observe that numerator
�		�∗ and denominator

�4	�	�	�	 − 	�	
� 	− 	�	��� are positive. Hence,
;)∗
;- is negative of a positive

quantity.

Therefore,

;)∗
;- < 0. ∎

Propositions (3) and (4) are very interesting. As the cost of introducing

modularity increases, the price as well as the optimal modularity and

performance levels decrease. Actually, proposition (4) explains proposition

(3). If the cost of introducing modularity becomes higher then ceteris paribus,

a vendor will not benefit by making the product more modular; instead the

vendor will produce a product with lower modularity and performance levels.

As a result of that a vendor will be required to lower price at the same time.

Following figures show above results graphically.

53

Figure 2.2: Graph showing how modularity (m), performance (s), price (p), demand and

profit change with respect to change in fixed cost for introducing modularity into the system

54

Proposition 5:

As the marginal cost Z increases the producers need to

(a) increase optimal price if � > 	 &0�	- +	 (0�	.

(b) decrease optimal price if � < 	 &0�	- +	 (0�	.

(c) keep optimal price unchanged if � = 	 &0�	- +	 (0�	.

Proof:

By taking the partial derivative of optimal p* with respect to Z, we obtain
 :�∗:� = 2��� − �

� − ���4��� − �
� − ���

From Lemma 1, we conclude that denominator is always positive. Depending

on the numerator,	;+∗;$ becomes positive, negative or zero.

Numerator = 2�	�	�� −	 &0�	- −	 (0�	.�
If >	 &0�	- +	 (0�	. , then numerator is positive.

If 	� < 	 &0�	- +	 (0�	. , then numerator is negative.

If = 	 &0�	- +	 (0�	. , then numerator is zero.

 ∎

Proposition 5 has a very important managerial implication. It can be shown

that with increase in marginal cost, all the decision variables except optimal

price decrease. Depending on different conditions as indicated above between

sensitivities and fixed costs, optimal price may remain unchanged, increase or

decrease.

55

2.6.2 Case 2: Modularity (m) and Performance (s) are related

In the literature it has been observed that increase in modularity leads to

decrease in performance (Ulrich, 1995). Lau Antonio et al found that although

modularity in product design is considered a key enabler of product success,

modularity does not necessarily improve all the attributes of a product (Lau-

Antonio, Yam, & Tang, 2007). While discussing modularity and performance

in protocol implementation Clark observed in Request For Comments (RFC)

817 published by the Internet Engineering Task Force (IETF) that “modularity

is one of the chief villains in attempting to obtain good performance, so that

the designer is faced with a delicate and inevitable tradeoff between

good structure and good performance” (Clark, 1982). We modify our above

model to include an inverse relationship between performance	, and

modularity; an increase in modularity leads to decrease in performance and

vice versa.

Hence we assume,

	 = 	?	 − @	� (17)

where X and Y are parameters. X shows the maximum performance level and

Y shows the ratio of change in s to change in m. It also follows that

maximum value of m is X/Y (when s is zero). We also note that neither X nor

Y is fixed.

56

Using equation (1) and eliminating s using equation (17) we can rewrite our

linear demand function as

� = 	� − �� + �
 − �	@�	� + ?�	 (18)

Using (6) and (17), we can reformulate our profit function as
 � = ��	– 	�	�	 + 	
	�	 + 	�	
��� − �� 	− �	�	 − 	�		�	 + �	�� + ��?	 − @	�	���	
= �� − �� + �
 − �	@�	� + ?��� − �� 	− �	�	– �� + 2�?@�		�	 + �� + �@���� +�?�� (19)

We differentiate profit partially with respect to p and m, set them equal to

zero, and solve for p and m. After making some simplifications, we obtain the

following expressions for optimal price and modularity.

�')∗ = ��"#$%��-#.	A0�,	$	�&,A(�0#�	B�-	(#.	A	&�#	*�&,A(�	
1	%�-#.A0�,	�&,A(�0 	

�')∗ = ��",	$%��-#.	A0�#	�	B�-	(#.	A	&�#	*�&,A(�	
1	%�-#.A0�,	�&,A(�0 + 	� (20)

�')∗ = �*%#1.BA%#�",$%#B(��&,A(�
1	%�-#.A0�,	�&,A(�0 	 (21)

Using equations (17) and (21), we can express optimal performance as

')∗ = ? − A��*%#1.BA%#�",$%#B(��&,A(��
1	%�-#.A0�,	�&,A(�0 	

')∗ = 1	%B-,�%A*,�&,A(��A�",$%�#B&�
1	%�-#.A0�,	�&,A(�0 (22)

57

Substituting (20), (21), and (22) to (18) and (19), our optimal demand and

profit can be expressed as:

�')∗ = 	%	��	�",$%��-#.A0�#	�B�A&.#-�#*�&,A(��	1	%�-#.A0�,	�&,A(�0 (23)

�')∗ =

0%#C�&,A(�0#�",$%#B(��&,A(�#	.	<�A�",	$%�#B&�0,	1	%	A	�CA,B*�=#	-��",$%#B(�0,	1%�C#.	B0��
1	%�-#.A0�,	�&,A(�0

= *0%#*�",$%#B(��&,A(�#	.	��A�",	$%�#B&�0#	1	%	B	A	*	�#	-��",$%#B(�0,	1%.	B0�
1	%�-#.A0�,	�&,A(�0 	– � (24)

Boundary Conditions:

We make the following assumptions regarding this model.

1. As in case 1, we assume equation (7) or α > �β

2. We observe from equation (18), that the demand function has

�
 − �	@� as the effective sensitivity for modularity. It is fair to assume

that sensitivity for modularity is never negative, or

�
 ≥ 	�	@� (25)

58

Lemma 2:

All the decision variables as well as the optimal demand and profit have

positive values when		
4��� + �	@�� > �
 − @���

Proof:

The Hessian matrix is

H	=	F −2�
 − @�
 − @� −2� − 2�@�G	
To ensure that profit has a local maximum the Hessian matrix needs to be

negative semi definite. A matrix is negative semi definite when its leading

principal minors of different orders alternate in sign starting with negative

(Winston, 1993). Hence the leading principal minor of order 2 needs to be

positive. Hence, we obtain

 4��� + �	@�� > �
 − @��� (26)

Using Equation (26) as well as above boundary conditions, the numerators

and denominators in Equations (20), (21), (23), and (24) are all positives.

We also assumed that maximum value of m is X/Y.

Hence,

�')∗ = �*%#1.BA%#�",$%#B(��&,A(�
1	%�-#.A0�,	�&,A(�0 <	 BA

59

From the above inequality, we obtain the following expressions

?	�4	��� + �@�� − 	�
 − @���� 	> 	@�2�� + 4�?@� + �� − �� + ?���
 − @���
4	�	?	� > 2�	@	� + �	@	�� − ��� + ?
��
 − @��
Above inequality shows, that the numerator of equation (22) is positive.

Hence,
')∗ is also positive.

∎

Proposition 6:

In a market where customer demand is such that it is more sensitive to

modularity (i.e. higher
), the vendors will be able to charge a higher price,

by increasing modularity in the IS application architecture. It will also lead to

higher demand and higher profit for the producers.

Proof:

In order to examine the variation in the optimal decision variables with

respect to	
 we differentiate �')∗ , �')∗ , �')∗ and πIJ∗ with respect to
. We

obtain

:�')∗:
 =	
4��2�?@� + �� − �� + ?���
 − @��� + ��4�� + 4�@�� + �
 − @����+2�@�4�?@�� + �
 − @���?
 + @�2� − 2�� + ?�����4��� + �@�� − �
 − @�����

:�')∗:
 =
�4��2�?@� + �� − �� + ?���
 − @���+��4�� + 4�@�� + �
 − @����+2�@�4�?@�� + �
 − @���?
 + @�2� − 2�� + ?������4��� + �@�� − �
 − @�����	

60

:�')∗
:
 =

�(2(
 − @�)(2�@(@� − @�� + ?
) + 2�(� − �� + ?�)+�(
 − @�)) + (� + 2�?@)(4�� + 4�@�� − (
 − @�)�))(4�(� + �@�) − (
 − @�)�)�	

 :�')∗:
 = 	 �2�@�@� − @�� + ?
� + 2��� − �� + ?�� + ��
 − @��� ∗	�')∗4�	�� + �@�� − �
 − @���

The denominator is always positive as it is a square of an expression. By

carefully examining the numerators in all the above four cases, we find that

the only way the numerator could be negative in each case if α < �� or

γ < @� or both. According to our boundary conditions, we have α > ��

and	γ > @�. Hence, we conclude
;+MN∗;& > 0, ;'MN∗;& > 0, ;OMN∗;& > 0,	and

PQRS∗P& > 0.
∎

61

Figure 2.3: Graph showing how modularity (m), performance (s), price (p), demand and profit

change with respect to change in sensitivity to modularity.

62

Proposition 7:

When modularity and architectural performance are related to each other, the

producer’s profit is maximum with respect to both X and Y when

? = 	 2�� − �����@
 + ��� + ��4�@� + ��
 − @���2�4��� − �
� − ����

In the above case, all the decision variables are equal to their values as in the

case where modularity and performance are not related.

Proof:

By taking the partial derivative of optimal πIJ∗ with respect to X, we obtain
 :��')∗ �:?
= 	2�� − ����@�
 + ��� + ��4�@� + ��
 − @��� + 2?���� + �
� − 4����4�� + 4�@�� − �
 − @���

By taking the partial derivative of optimal �')∗ with respect to Y, we obtain
 :��')∗ �:@ 	= 	−

�2�� + 4�?@� + �� − �� + ?���
 − @����2�� − ����@�
 + ��� +
��4�@� + ��
 − @��� + 2?���� + �
� − 4������4�� + 4�@�� − �
 − @�����

We observe,

:��')∗ �:@	 = −	��')∗ �	�:��')∗ �:? �
We note, as �')∗ is always positive, hence both

;�TMN∗ �
;A	 and

;�TMN∗ �
;B always have

opposite signs and if one is zero then the other is zero too.

63

We observe using Lemma 2, denominator of
P(QRS∗)

PU is always positive.

However, the numerator could be positive, negative or zero depending on the

relationship between X and other parameters.

We observe, when
? < �(",$%)(.A&#-()#*(1.A%#((&,A())

�(1-.%,.&0,-(0) ,

;(TMN∗)

;B > 0

That means �')∗ will increase as X increases.

However, when

? > �(",$%)(.A&#-()#*(1.A%#((&,A())
�(1-.%,.&0,-(0) ,

;(TMN∗)
;B < 0

Which means �')∗ will decrease as X increases.

Hence, �')∗ will be maximum with respect to X and Y, when

? = 2(� − ��)(�@
 + ��) + �(4�@� + �(
 − @�))2(4��� − �
� − ���)

We also find from equations 20-24, for the above value of X, the optimal

decision variables become

�')∗ = �-.(",$%) #*.&
1 - . %, . &0, - (0 − � = �∗

�')∗ = 1* . %#� . " &,�.$%&, *(0

� (1 - . %, . &0, - (0) = �∗

')∗ = (� - "#* &,�-$%)(

� (1 - . % , . &0 , - (0) =
∗

64

�')∗ = 	.%��-�",$%�#*&,�	-	��1	-	.	%	,	.	&0	,	-	(0� 	= 	�∗		 	 	 	 	 	 	
	 	 	

�')∗ = 1.�",$%��*&#-�",$%��#*0�1.%,(0�
1�1	-.%,.&0,-(0� − 	� = 	�∗ − 	�																																																																																											

∎

The above proposition has a very important managerial implication. If a

producer set X as above; then optimal values of all the decision variables are

independent of both X and Y and have exactly the same form as in case 1. It

should also be noted that X and Y are related. So a producer can first

determine the independent variable Y (rate of change of s with respect to m)

and can easily determine optimal	XIJ∗ . As we shall discuss later, it is not always

necessary for the producer to consider case 2.

65

Figure 2.4: Graph showing how modularity (m), performance (s), price (p), demand and

profit change with respect to change in maximum architectural performance.

The above graph also shows that unlike some other decision variables, increase

in total possible architectural performance does not necessarily lead to increase

in profit.

66

2.7 Discussions of Results and Implications

We discussed the results while we presented them. However, some of the

results we obtained have significant managerial implications.

In our modeling we assumed two different cases. In case 1, we assumed that

there is no relationship between modularity and performance. In case 2, we

assumed an inverse relationship between modularity and performance. One

of the most significant findings in this essay is that we found a condition

where there is no difference in the values of parameters between the above

two cases. As the case 2 is more realistic, it has an immense managerial

implication. For maximizing profit, if the producer is able to vary both X and Y

freely, then the optimal modularity and performance levels are identical to as

in case 1 (architectural performance and modularity are unconstrained) and

they are independent of X and Y. So it is not necessary for a provider to

include X and Y in the modeling, unless it is not feasible to build an

application with the optimal performance and modularity levels suggested in

case 1; only then case 2 (performance and modularity are related inversely)

becomes relevant. In that case, it is possible to estimate X and Y

corresponding to feasible maximum modularization and performance levels in

the IS application architecture. Although it will be possible to fix X and Y as

suggested in proposition 7, however the producer could try to come as close

to it as possible. Apart from this valuable insight, we also described how

67

optimal values change with respect to change in different values in

parameter.

The importance of cloud computing in the IS area is now well established.

This essay is an attempt towards understanding the phenomena from an

economics perspective without making any simplistic assumption. We built a

robust economic model of cloud computing and this model could be extended

in many different ways.

First, in our model we included two very important non-functional attributes

which could be easily operationalized for future research. Second, we

introduced the concept of two dimensional performance – architectural and

operational. Third, we recognized the service aspect of a SaaS application by

including marginal cost in our model. Fourth, we uncovered the important

roles modularity and architectural performance play in a SaaS application

architecture design and their relationship with the profit of a SaaS provider. It

has been suggested that there is an inverse relationship between modularity

and performance (Clark, 1982). We analyzed two cases; we assumed in the

first case that modularity and architectural performance are independent of

each other and in the second case modularity and architectural performance

are inversely related. We compared the results from both the cases and we

observed that in most cases for determining optimal values of the decision

68

variables it is not necessary to consider the relationship between modularity

and architectural performance.

2.8 Limitations

Although our models are more realistic as we do not ignore the service aspect

of cloud computing, as in every research we have several limitations. First,

we have not accounted completely the pricing structure of a service. Instead,

we amortized the pricing over the lifetime of the product. Second, we only

focused on the architectural performance that is relevant only to the

architecture of our application. We excluded the effect of operational

performance during the delivery or functional phase of the service. Third, we

also did not account for competition in the market place. Fourth, we

considered a linear demand function and it may not be very realistic.

2.9 Future Directions

This research could be extended in many different ways. First, some of the

limitations discussed in previous section could be addressed in the extended

model. Second, it will be interesting to investigate when there is more than

one producer in the marketplace how does it affect profit maximization.

Third, another way to extend this research will be to consider the effect of

69

complimentary services. Fourth, operational performance could be included in

the model.

70

Chapter 3: Essay Two - Demand Planning for Cloud

Computing: Effect of Random Variation in Demand

3.1 Introduction

In the previous chapters we uncovered many differences between a

traditional IS application and a cloud enabled IS applications. We noted that

traditional IS applications were customized products that were developed to

solve a specific business problem for an organization. On the other hand,

cloud computing enabled IS applications are a combination of (not

customized) product and service. One of the main differences between a

traditional IS application and a cloud enabled IS applications is how the users

use it. Traditionally, the responsibilities of IS application developers are to

uncover requirements for the proposed IS application and based on those

requirements to develop the IS application; users are responsible for building

the IT infrastructure and then to install and maintain the IS applications. In

the context of cloud computing, the developers are also responsible for

building the IT infrastructure and for installing and maintaining the IS

application. In most cases it is consumers’ responsibility to arrange for

hardware and other infrastructure. Hence in cloud computing, it is important

to recognize the service aspect of IS applications (Demirkan H. , 2008;

Bardhan, Demirkan, Kannan, Kauffman, & Sougstad, 2010; Demirkan,

Kauffman, Vayghan, Fill, Karagiannis, & Maglio, 2008).

71

However there is a paucity of research in service science in general and we

are not aware of any specific research in the IS area that focuses on the

service perspective of an IS application. Before the advent of cloud

computing it was not necessary to consider demand planning for software

vendors, as installation of infrastructure and day to day maintenance of IS

applications were the responsibilities of consumers. Hence, demand planning

was not important during the development of an IS application and

researchers did not pay much attention to this topic in the context of IS

applications. This work is an attempt to fill the void in this area. Here, we

study how a SaaS application provider will determine the capacity of the IT

infrastructure that needs to be planned for providing services at acceptable

level to the users.

3.2 Motivation and Research Questions

During our previous discussions, we noted that one of the fundamental

differences between a traditional IS application and a Cloud computing

solution such as a SaaS application is that the latter is a combination of

product and service. In the literature, there is some confusion in how

product is defined. The words products and goods are often used

interchangeably; however in the marketing literature product is defined as a

combination of goods and services (Scheuing, 1989). We consider products

72

and goods as same. In order to plan for the capacity of the IT infrastructure

for a SaaS application we look into the literature for both products and

services and we first identify the key differences between a product and a

service that is relevant for our specific problem.

Goods could be defined as “tangible economic products that are capable of

being seen touched and may or may not be tasted, heard or smelled”

(Rathmell, 1966, p. 32). Service is defined as a relationship between a

producer and a consumer that creates and captures value and where the

consumer participates actively (Gadrey, 2000; IBM; Fitzsimmons &

Fitzsimmons, 2004). In other words, in the case of services, the consumers

could be considered as co-producers. Another important characteristic of

service is simultaneity of production and consumption or in other words,

production and consumption of services occur at the same time. For

products, consumers can wait to receive products and products could be

produced and stored in an inventory, however for a service storage is not an

option (Menor, Tatikonda, & Sampson, 2002; Rust & Chung, 2006). Hence, it

is necessary for SaaS application providers to build IT infrastructure of

appropriate capacity so that they are able to provide the service to the

consumers. This brings up an additional challenge for SaaS application

providers; they have to plan and make arrangements for infrastructure during

development of SaaS applications in addition to deciding on optimal pricing.

73

Although capacity planning could involve many issues (Menasce & Ngo,

2009); we posit that demand planning will be one of those. Although demand

could be predicted on the basis of price and other attributes, it is likely that

there could be random variation in demand. So a vendor may face two

different scenarios. In the first case, the actual demand is higher than the

anticipated demand. In that case, a vendor will not be able to provide service

to all the potential customers and will lose potential revenue. It is also

possible in that situation potential customers will be forced to obtain service

from a competitor and hence the service provider will not only lose the

potential additional revenue but also they will lose any chance of future

revenue. So we can conclude that it is possible that a vendor’s loss could be

even more than just the potential revenue. In the second case, if the demand

is lower than the anticipated demand, the service provider will not be able

use all its capacity and will unnecessarily incur cost for over capacity.

Many SaaS providers use cloud infrastructure services for their needs instead

of making capital expenditure and purchasing and managing their own

hardware. As an example, social networking company FourSquare uses

Amazon’s Elastic computing services. Even in that case accurate planning of

capacity is important. Amazon provides significant saving to its customers

74

who could predict their need accurately and purchase reserved instances of

Amazon’s Elastic computing services.

We introduce a term planned capacity. Planned capacity is defined as the

capacity a producer should plan for and in most cases that will be different

from optimal demand. We uncover the reason behind it. As we discussed

earlier, we identified two dimensions of the attribute performance –

architectural and operational; operational performance is the performance as

observed by a user of a SaaS application (Transaction Processing

Performance Council (TPC), 2012). We take an innovative two step approach

for accurate prediction of planned capacity. First, we calculate optimal price

and optimal demand using profit maximization model for producers. Second,

we model a stochastic profit maximization problem where demand follows a

certain probability distribution function; we assume that the mean of such

probability distribution is equal to the optimal demand that we obtained from

the previous step. We assume that there is no change in price because of

random variation in demand, and the producers will charge the optimal price

that was obtained in previous step. We then investigate how the planned

capacity changes under various circumstances. We specifically focus on the

following research questions.

75

1. How planned capacity (to be provisioned by a cloud computing application

provider) would change from random variation in demand, when the

random variation is small with respect to optimal demand?

2. How planned capacity depends on different strategies used by a SaaS

application provider?

3. How planned capacity is related to operational performance of the

service?

The rest of the essay is organized in the following way. In the next section

we present a review of relevant literature. We then formulate our model for

prediction of planned demand, followed by presentation of results of

theoretical analysis. The last section discusses the results and presents

possible future work in the area.

3.3 Literature Review

In the first essay we discussed in detail the importance of service component

in a cloud computing application. The importance of demand planning in a

cloud computing application arises from its service perspective. It is possible

to delay a product shipment if there are too many orders, if it is acceptable to

the consumers. However, for a service, a delay is not feasible and lower

capacity could bring up many negative consequences.

76

Academic research in the general area of service management started a long

time ago (Rathmell, 1966). However, because of numerous technological

innovations service management has gone through a paradigm shift. Service

always used to involve human interaction; however inventions such as self-

service kiosk in the airports have changed that (Bitner & Brown, 2006).

Spohrer et al discussed that the service science area lacks standards; they

also discussed some of the important ideas that could lead to a theory of

service systems (Spohrer, Maglio, Bailey, & Gruhl, 2007). Parasuraman et al

introduced a scale for assessing quality of electronic service (Parasuraman,

Zeithaml, & Malhotra, 2005). Rust and Chung discussed the importance of

development of service models which could help efficient management of

services (Rust & Chung, 2006). Maglio and Spohrer emphasized that service-

dominant logic should be the philosophical basis of service science (Maglio &

Spohrer, 2008).

The research in development of service on the other hand is rare; there are

only a few works that discusses development of service in the context of IS.

Never the less, the issue of service orientation has become very important in

the IS area because of Service Oriented Architecture (MAS Research

Roadmap Project, 2005). Cowell opined that although most of the western

economy is service based, New Service Development (NSD) has been

neglected in the literature (Cowell, 1988). According to Menor et al “Until

77

recently, the generally accepted principle behind NSD was that “new services

happen” rather than occurring through formal development processes”

(Menor, Tatikonda, & Sampson, 2002, p. 136). Magnusson et al observed

that user involvement during service innovation is beneficial (Magnusson,

Matthing, & Kristensson, 2003). Bolton et al investigated maintenance of

business-to-business service relationship (Bolton, Smith, & Wagner, 2003).

Hull investigated whether concurrent product development method is also

applicable to services development. He found that service development could

also benefit from the concurrent product development method model (Hull,

2004). Heim and Sinha presented a taxonomic analysis of Electronic Food

Retailers (Heim & Sinha, 2002; Heim & Sinha, 2005).

Capacity planning has also been investigated in telecommunications area.

Advent of IS based planning system made it possible to achieve productivity

improvement from efficient capacity panning. Smunt investigated efficacy of

learning curve analysis for capacity planning (Smunt, 1996). Laguna

developed an Excel based decision support system for telecommunication

providers to help them plan for expansion (Laguna, 1998). Papazoglou and

den Heuvel introduced a web services management framework that included

capacity planning (Papazoglou & den Heuvel, 2005). Ueno and Tatsubori

emphasized the need for capacity planning for IS applications built using SOA

architecture during early stages of system development lifecycle; they

78

investigated capacity planning of an Enterprise Service Bus in a web services

based IS application (Ueno & Tatsubori, 2009). Zhang et al investigated

capacity issues while modeling price competition between two web services

based application providers (Zhang, Tan, & Dey, 2009). Li and Lee

investigated capacity planning in the context of pricing of peer-produced

services for online communities (Li & Lee, 2010).

3.4 Model Formulation

As mentioned in the previous section, we model the problem in two steps. In

the first step, we need to determine the demand level where the producer

should set their initial demand forecast. In this step, we assume that there is

no uncertainty in the demand. We first model our demand function. We

assume a monopolist vendor and we consider a fixed period during which the

IS application is being offered. Consistent with the literature, we assume that

operational performance has positive effects on demand.

We assume a linear demand function and we include the sensitivity of

demand related to price and operational performance

 d = α – β p + � Y (1)

where p is price of the SaaS application amortized over its lifetime,

o is the operational performance level of the SaaS application.

79

α is primary demand due to functional attributes of the SaaS application and

other non-functional attributes such as quality (except operational

performance), brand image, performance, general economic fact that are

outside the scope of this essay.

β represents price sensitivity of the demand, � represents increase in demand

from increase in operational performance. α, β, and γ are assumed to be

greater than zero.

Our next step is to formulate the cost function. Our cost consists of three

parts i.e. fixed cost, maintenance cost amortized over the lifetime of the

service, and marginal cost per product also amortized over the lifetime of the

product. We assume that fixed cost arising from increased operational

performance to be a quadratic function of operational performance (o). This

is in line with the standard practice in the IS literature; fixed costs incurred to

improve quality of a product is a convex function of the slope of product

improvement curve (Choudhary, 2007). We assume that cost (C1) consists of

fixed as well as the variable maintenance cost amortized over the lifetime of

the service. Therefore C1 can be expressed as:

�� = � + �	Y� (2)

Where, A is the fixed cost arising from factors other than operational

performance and it also includes general amortized maintenance cost over

the lifetime of the product, D is the parameter related to operational

80

performance during initial setup of the service that cannot be changed very

easily. As an example, in order to improve performance it is possible to

increase capacity of the servers and the underlying hardware could be

replaced. However, other infrastructure such as the room where the servers

would be installed cannot be changed easily.

Unlike a traditional software vendor, a cloud computing application provider

will also incur marginal cost for providing services. This marginal cost (C2) will

include both the cost for setting up infrastructure such as hardware, software

as well as the amortized cost for providing the service. We further introduce a

scaling factor ω (ω < 1); and we assume that ω Z represents the amortized

infrastructure cost necessary for setting up the service; (1- ω) Z represents

the variable cost, per unit of service offered. We assume that service is being

set up for a capacity d and we also assume that the actual demand is also d.

However we shall show later that depending on the variation in demand, the

first part will remain unchanged whereas second part will change. Also the

random demand could be less than planned capacity; however if it is larger

than the planned capacity then the providers will not be able to meet the

total demand. We assume that d is not greater than the planned capacity and

we obtain the following equation.

 �� = � Z � + � (1 − Z) � = � � (3)

81

where d is the number of instances that could be serviced by the vendor or in

other words the demand subject to the constraint as discussed above, and Z

is the marginal cost per application amortized over the lifetime of the product.

Adding (2), and (3), our total cost function can be expressed as:

� = �	 + �	Y� + �	� (4)

Profit for a producer ��� could be represented as:

� = �	� − 		�

Using (1) and (5), the above profit can be rewritten as:

� = ��	– 	�	�	 + 	�	Y	��� − �� 	− �	�	 + �	Y�� (5)

Boundary Condition:

We assume the boundary condition that Primary demand of a product � is

greater than product of marginal cost Z and price sensitivity β or	� > �	�

In any IS application, it is fair to assume that functional attributes are much

more important than non-functional attributes. It is unlikely that importance

of non-functional attribute performance will be more than sum of functional

attributes and other non-functional attributes (except performance). It is

unlikely that a producer will produce a product based on only performance

and without any regard to its functionality. We consider a case where

performance sensitivity (δ) is close to zero or in other words, the customers

82

do not care about the product’s performance. Following equation (1), we can

rewrite the demand function as

� = 	� − ��
In the above case, it is unlikely that a producer will produce product which

does not have a projected positive demand. Hence, we assume that in this

simplistic situation also demand should be positive. Hence, we obtain

� > �	�
As Z is the unit marginal cost, it is fair to assume that p must always be

greater than Z, since otherwise it does not make sense for a producer to

produce any product. As we are modeling the situation during design and

production phase, we exclude the possibility of a fire sale. Hence it follows

� > �� (6)

We shall assume the above boundary condition in our model.

3.5 Theoretical Results

In this section, we present our results. Our objective is to find optimal price

(p), and architectural performance (o) that will maximize the profit function

(5), subject to the boundary condition 6.

After making some simplification, we find the optimal values for our decision

variables

83

�∗ = �.("#$%),$(0
1.%,(0 	= �.�",$%�

1.%,(0 + 	� (7)

Y∗ = �",$%�(
1.%,(0 	 (8)

and that leads to optimum demand

�∗ = �.%�",$%�
1.%,(0 	 (9)

and to optimum profit

�∗ = .�",$%�0
1.%,(0 − 	� (10)

We observe a relationship between optimal demand (�∗� , price ��∗� and

performance �
∗�
�∗ = �.%	\∗

(
�∗ = O∗

% + � = �.	\∗
(+ 	�

We also observe a relationship between optimal demand (�∗� and profit ��∗�
�∗ = �∗	�� − ���	2� − 	�

84

Lemma 1:

All the optimal decision variables as well as the optimal demand have positive

values when		4	�	�	 > 				 �	���.
Proof:

The above condition is derived from the hessian matrix. The Hessian matrix is

the second-order partial derivative of the profit function with respect to the

variables p and s in the present case. The Hessian matrix H is shown under.

H	=	<−2� �� −2�=	

A matrix is negative semi definite when its leading principal minors of

different orders alternate in sign, starting with negative for the first leading

principal minor of order 1 (Winston, 1993). Hence, we obtain the two

following conditions:

 	−2	� < 	0	4	�	� −	�� 	> 0

The first condition is trivial, since �	is positive. To ensure that second

condition is met, we assume

 4	�	� > 	�� (11)

Assumption of equations (11) along with the boundary condition equation (6)

ensures that both numerators and denominators of equations (7), (8) and (9)

are positive. ∎

85

In a world where there is no random variation in demand, a provider of a

SaaS application will plan for a capacity that is equal to the optimal demand

as shown in equation (8). Such provider will charge the customers an optimal

price as given in equation (6). However, in actual cases, demand will include

a random component. Next, we examine how the demand uncertainty would

impact producer’s profit. We assume that random demand of the product is x,

and it is distributed with a probability distribution function (pdf) f(x) and

cumulative distribution function (cdf) F(x). We also assume a service provider

has planned for a capacity Q instances of the service. If actual demand turns

out to be less than the planned capacity Q, the service providers will not get

appropriate returns on their investment. On the other hand, if the random

demand x is greater than capacity Q, the service providers will miss out on

additional profit as they will not be able to serve all the potential customers.

We introduce a variable opportunity cost (u) per missed customer into our

model. The opportunity cost measures the cost to the service providers when

they miss out on making profit because they planned for a lower capacity. If

the random demand is x and the planned capacity is Q and where x > Q, we

assume that the total opportunity cost will be (x-Q) u. Different strategies

could be used for modeling u. The opportunity cost (u) could be considered

as the difference between price (p) and total marginal cost (Z).

So, we assume

u = (p-Z) (12)

86

However, there could be several additional factors that could make above

formulation of u inaccurate. Inability to provide service because of lower

planned capacity could be detrimental to the interest of a service provider in

many different ways. First, the service provider will not be able to earn

additional profit and failure to earn additional profit could be formulated as

cost. Second, the provider can incur loss of goodwill. As a prospective

customer could not be served because of less capacity, it is possible that the

customers may decide to go with another producer. In that case, the

potential loss to a producer will be much more than (p-Z). In this essay, we

assume a very simple formulation for u as given in equation (12).

Proposition 1:

In a market where customer demand is such that it is subject to small

random variation, the optimal capacity Q* a producer should plan for,

satisfies the following relationship and in most cases it is different from

average demand.

](^∗) = 	1	 − 		 		$_	�1.%,(0�
�.�"#$%#�	%	`�,(0�$#`� (12)

87

Proof:

As we discussed above, we assume that random demand x is distributed with

a pdf f(x) and cdf F(x). We assume that the average demand (expectation of

demand) is same as optimal demand d* as given in Equation (9).

 a(b) = d*= �.%(",$%)
1.%,(0 (13)

Third, we also assume that random variation in demand is much smaller

compared with the actual demand. This assumption is very important and

necessary so that we can still use the optimal values of the decision variables

we derived, without considering random variation in demand. This

assumption is mathematically represented as

V(x) << a(b) = d* (14)

Assuming random demand x is distributed with a pdf f(x) and cdf F(x), the

expected demand E(x) can be calculated as,

 E(x) = f b g(b) �b hi = f b (Oj(k)
Ok) �b hi

Where a and b are the minimum and maximum values the demand variable x

can take. We assume that theoretically the lowest and highest demand levels

are 0 and infinite; the above expression can be rewritten as

88

a(b) 	= 	f b	g�b�	�b	lm 	= 				 f b	�Oj�k�Ok �	�b	lm (15)

Next, we derive the function for random profit using the random demand x.

We have to recognize some constraints that should be included in the model.

Let us assume that a vendor has planned for a demand Q and that is

different from d*. First, at a maximum, vendors can only sell up to the

capacity they have planned for. Second, if the random demand is less than

the planned capacity, a vendor will still incur the cost of setting up the

infrastructure for the planned demand Q. Hence, a vendor will always incur

the cost ZωQ no matter what the random demand x is; however, the other

part of the marginal cost is only proportional to the random demand x.

We also assume an opportunity cost u. As we discussed earlier, an

opportunity cost arises when the demand is greater than the capacity and a

vendor could not provide the service because of not having enough capacity.

Hence, the random profit of a vendor for a maximum capacity Q could be

formulated as

��^, b� = 	�∗	�no	�^, b� − 	p	�qb	�b − ^, 0�	– 	�	Z	^ − ��1 − Z��no	�^, b� −
��		 + �	�
∗��	�																																																																																																													(16)	
We note that the first term gives the actual revenue and we have ensured

that actual revenue never exceeds p* Q. The second term describes the

opportunity cost for lost revenue when x > Q. The third term describes the

89

marginal cost arising for setting up the infrastructure for a capacity Q. The

fourth term describes the marginal cost that is only dependent on random

demand x and we ensure that we cannot offer service greater than Q. The

last term within bracket is the fixed cost of developing the service.

In order to find optimal value of Q, many different strategies could be taken.

We consider the strategy of profit maximization by the producer. We assume

that the producer will try to maximize average profit. We note that there are

several other strategies that could be used, such as minimization of cost,

minimization of loss of goodwill etc. Keeping Q constant, we can find the

expectation of the profit (average profit) using equation (16) as

E[�(Q, x)] =
 �∗ f b g(b) �b + �∗ ^ um f g(b) �b – p f (b − ^) g(b) �b – �Z ^lu lu −
 �(1 − Z) f b g(b) �b um – �(1 − Z)^ f g(b) �b lu
 −(� + �(Y∗)�) f g(b) �blm (17)

= �∗ f b g(b) �b + �∗ ^ um f g(b) �b – p f (b − ^) g(b) �b – �Z ^lu lu −
�(1 − Z) f b g(b) �b um − �(1 − Z)^ f g(b) �b lu − (� + �(Y∗)�)
= (�∗ − �(1 − Z)) f b g(b) �b + (�∗ + p − �(1 − Z)) ^ um f g(b) �b lu
 − p v b g(b) �b – �Z ^

l

u
− (� + �(Y∗)�)

90

=(�∗ + p − 	��1 − Z��	f b	g�b�	�b	um 	+		��∗ + p − 	��1 − Z��		^		 f g�b�	�b		lu 	
				−	pv b	g�b�	�b	

l

m
− �Z	^ − ��	 + ��Y∗��	�	

	
We recognize f b	g�b�	�b	lm is the expectation of demand or average demand.

According to our assumption from equation 13, we have

d*	=	f b	g�b�	�b	lm 	
Next, we simplify the expression of E[��Q,	x�]
We observe,

��∗ + p − ��1 − Z��		^ f g�b�	�blu = - ��∗ + p − ��1 − Z��		^ �]�^� − 	1�
Using integration by parts, we can make the following simplification and we

note g�b� = <Oj�k�Ok =

��∗ + p − ��1 − Z��	v b	g�b�	�b			
u

m

= 	 ��∗ + p − ��1 − Z��	v b	 �]�b��b 	�b			
u

m

= 		 ��∗ + p − ��1 − Z��		wb]�b� − v]�b�	�b		xm
u

= 	 ��∗ + p − ��1 − Z��		[^]�^� −	v]�b�	�b			
u

m
]

91

Therefore the expected profit can be rewritten as

a[�	�^, b�] = −	��∗ + p − ��1 − Z��	�f]�b�	�b� 	+ ��∗ + p − 		�Z	 −um
��1 − Z��		^	– 	p	�∗	 − ��	 + ��Y∗��	�																																																																											(18)						

In order to find optimal planned demand Q∗ that will maximize the expected

profit, we differentiate E[��Q,	x�] with respect to Q and set it to zero

	 OOu �a[��^, b�]� 	= 	−	��∗ + p − ��1 − Z��]�^� +	��∗ + p − 		�	� = 0

From the above equation we derive a formula for optimal capacity Q* that

will maximize the average profit of a producer,

]�^∗�	=	 �+∗#`,		$	�
�+∗#`,$��,_��																																																																																																			(19)

	
]�^∗� = 1	 −		 		$_	

�+∗#`,$��,_��																																																																																																																																														

Next, we test the consistency of the above equation. A cdf can only be in a

range between 1 and 0. We carefully inspect equation 19. We know all the

items are positive and ω is less than 1 and also positive. Hence the

numerator is always less than the denominator. That ensures]�^∗� also

varies between 0 and 1 as it should.

92

Next, substituting the value of �∗ from equation (4) yields,

](^∗) = 	1	 − 		 		$_	
�0y�z{|}�~|�0�y}~�0 	#`,$��,_��																																																																																																																		

= 	1	 −		 		$_	�1.%,(0�
�.�"#$_%#�	%	`�,(0�$_#`�																																																																																				(20)

From equation we observe that there are only few cases where F(Q*) = .5 or

Q* will be same as average demand. In most cases Q* will be different from

optimal (average) demand.

∎

Although we could not obtain a closed solution for Q*, we can still obtain

some valuable insights from equation (20) by assuming how random demand

will be distributed.

Lemma 2:

As the ratio of marginal infrastructure setup cost to marginal variable cost for

providing service
_

��,_� increases, the optimal capacity (Q*) decreases if all

other parameters remain same.

Proof:

As the value of ω lies between 1 and 0, we see as ω increases, numerator of

_
��,_� increases and denominator of

_
��,_� decreases and

_
��,_� increases. So,

we conclude
_

��,_� increases, only when ω increases. From equation (19) we

93

observe, as ω increases the denominator increases and as a result of that

](^∗) decreases. Decrease of](^∗) implies decrease of planned optimal

capacity Q*.

3.6 Numerical Results:

In order to get further insight into the equation 20 that shows a relationship

between optimal capacity Q* and other parameters we solve the equation

numerically. We assume that the random demand x is normally distributed

with a mean d* and standard deviation v d*, where v is a positive number

much less than 1.

In order to calculate, optimal capacity it is necessary to calculate inverse of

cumulative distribution function. We use the algorithm based on the

algorithm suggested by Marsaglia (Marsaglia, 2004). The source code is in

the appendix.

94

Figure 3.1: Graph showing the relationship between optimal capacity (Q) and ω

The relationship between ω and optimal capacity (Q) is shown above. We

observe as ω increases optimal capacity decreases. However, in this case

optimal capacity is always greater than optimal demand as shown by the red

line. We keep the variance fixed at 1%, 5% and 10%. It shows for lower ω,

optimal capacity changes with variance significantly. However, in all cases

optimal capacity is greater than optimal demand (shown by the straight black

line).

95

Next, we study the relationship between capacity and average profit and

standard deviation of average profit. We set the variance in demand at 10%.

We set ω at .3. As the capacity increases, the average profit first increases

and then decreases. The average profit is maximum, when the capacity is

equal to optimal capacity. However the standard deviation of profit keeps on

increasing with increase of capacity.

Figure 3.2: Graph showing the relationship between Average profit and Standard deviation

of profit with respect to capacity

96

3.7 Discussions

We obtained important some important managerial implications from the

above results. First, we uncovered that a SaaS application provider should

always plan for a capacity which is greater than average demand in all cases.

Second, we observed that as the ratio of cost of setting up infrastructure to

variable cost for providing service increases the providers should plan for

lower capacity. Third, we observed as a provider increases the planned

capacity, the standard deviation of the average profit increases.

3.8 Limitations:

Some the limitations of this model are described here. First, in this model we

have assumed that average demand is equal to the optimal demand.

Although probably our assumption is correct, we have not offered any proof.

Second, we have not fully developed the construct operational performance.

In our model, we have not included any direct relationship between

operational performance, random demand and capacity. However, we know

that is not the case. For a fixed capacity decrease in random demand will

lead to increase in operational performance. Third, we have used a single

optimal value for operational performance. However, for most services the

97

providers offer different levels of performance and charge accordingly. Our

model does not address that. Fourth, our model does not include that there

could be more than one producers. We are sure that will have significant

effect on capacity planning. Fifth, we have only showed numerical results

where the random demand is normally distributed. Although normal

distribution is probably the most appropriate one to use, we have not offered

any support for that. Sixth, we formulated opportunity cost simplistically.

3.9 Conclusions and Contributions:

We recognized the service aspect of cloud computing. Unlike traditional

products a service, cannot be stored in an inventory. Hence, the capacity

planning is especially important in this context. We introduced a very

innovative way of modeling services for the purpose of capacity planning.

However, this is only a start. We discuss in the next section how this could be

expanded. We envisage that using this approach many important managerial

insights could be uncovered. We also showed a few important results. First,

we clearly showed that in most cases optimal capacity is different from

optimal demand. Second, for different parameters we showed the change of

their effects on planned capacity analytically and numerically. Third, using

numerical simulation we showed the consistency of our findings.

98

3.10 Future Directions

As we alluded to earlier this work could be extended in many different ways.

1. We took a very simplistic approach for coming up with random

variation in demand. In order to make the model more realistic, it is

necessary to introduce a concept of customers and each customer will

have random variation in demand. That will give a more realistic and

accurate picture.

2. We looked at operational performance as an abstract attribute.

However, operational performance could be operationalized as

transactions during a time fixed period. That will enable us to clearly

model a relationship between performance and capacity. Hence, it should

be investigated how increased capacity could lead to increase operational

performance and increased profit. We completely neglected that in our

model.

3. We also did not consider any tolerance in our demand. So our

assumption is either a provider can provide a service or not. That is

definitely not realistic.

99

Chapter 4: Essay Three - A Financial Risk Model for

Cloud Computing

4.1 Introduction:

Most business decisions are made based on incomplete information and on

assumptions which may not be accurate; as a result it is uncertain whether

expected outcome will be achieved. In most cases, not achieving expected

outcome could be considered a loss and hence it is fair to say that most

decisions involve risk.

A cloud computing application provider is required to make many different

decisions based on incomplete information during different phases of the

product lifecycle such as price of the application, the infrastructure capacity,

software architecture etc. Unlike other Information Systems (IS) applications,

a cloud computing application is a mix of product and service and as a result

of that vendors need to make more complex decisions and they have more

responsibilities. As an example, it is essential for a vendor to make provisions

for offering applications in such a way that the infrastructure is used

efficiently and at the same time all the demands are met or in other words

the vendors do not incur a stock out cost; in this essay we model the cost

arising from stock out as opportunity cost. Hence, it follows that a cloud

computing application provider has to take financial risk while making

decision on capital investment of IT infrastructure. In addition to that, in the

100

literature it has been observed that IT investments in general are riskier than

other capital investments (Dewan, Shi, & Gurbaxani, 2007). In this essay we

develop a mathematical model that will enable cloud computing application

providers to make decisions on capacity planning based on their risk

tolerance.

Study of security and risk analysis in the IS area has a long history. The IS

risk management takes an asset based approach and mainly focuses on risk

emanating from data asset based on CIA Triangle and McCumber cube

(National Security Telecommunications and Information Systems Security

Committee, 1994) by identifying the vulnerabilities. Data Confidentiality

model such as Bell-LaPadula security model was introduced in the early

1970s. Data Integrity models such as Biba Security models were introduced

in late 1970 and Clark-Wilson Security model was introduced in the 1980s

(Conklin, White, Williams, Davis, & Cothren, 2010). However, the risk in IS

literature has mostly been studied by focusing on risk from security

vulnerability or on risk associated during development of IS applications.

These models only provide technical roadmaps for minimizing risks and these

models cannot be used for estimating financial risks for cloud computing

provider.

For quantifying risks in the IS area, cost benefit analysis is the most popular

methodology (Whitman & Mattord, 2009). The cost benefit analysis gives a

vague guidance whether or not to install a control; it does not offer any

101

customized guidance based on the risk tolerance of an application provider.

Hence, it is fair to conclude that no comprehensive model for IS risk analysis

is available (Alter & Sherer, 2004; Yue, Çakanyıldırım, Ryu, & Liu, 2007). In

the finance area, Modern Portfolio theory offers a clear roadmap for

minimizing financial risk taking into account risk tolerance (Markowitz, 1959).

We posit that in order to solve the capacity planning problem, as a first step it

is necessary to follow the risk management process and uncover the risks

involved in the capacity planning process. We describe the risk management

process in the following section. However, traditional risk management

process needs to be modified in the cost benefit analysis phase by

introducing risk tolerance concepts. We take the perspective of application

developers and service providers. In this essay, we provide a framework that

will help us study the following specific issues.

1. The effect of financial risk tolerance of SaaS application providers on

capacity and price of the service.

2. The mediating effect of financial risk tolerance of cloud computing

application providers on the relationship between different decision

variables such as optimal capacity, optimal price etc.

3. The effect of modularity in software architecture on risk.

The rest of the essay is organized in the following way. In the next section,

first we provide an introduction to the risk management area. Second, we do

102

a comprehensive review of relevant literature. Third, we develop theoretical

financial risk model. Fourth, we numerically solve the financial risk model and

present the results. Fifth, we discuss conclusions and finally we discuss

possible extensions and contributions.

4.2 Introduction to Risk Management

Risk is defined as “potential harm that may arise from a future event, which

may accrue either from incurring a cost ("downside risk") or by failing to

attain some benefit ("upside risk")” (Wikipedia.org; Conklin, White, Williams,

Davis, & Cothren, 2010; Whitman & Mattord, 2009).

Risk could be measured using the probability of occurrence of an undesirable

event and possible loss incurred as a consequence of that (Katsikas, 2009).

However, measuring risk is difficult and inaccurate in general (Bojanc &

Jerman-Blazˇicˇ, 2008). For measurement of risk qualitative, quantitative or a

hybrid of both approaches could be taken. Specifically, quantitative evaluation

of risk is more difficult (Bodin, Gordon, & Loeb, 2008). However quantitative

assessment of risks is easier to interpret (Bashir & Christin, 2008).

Risk management is the complete decision making process which involves

clearly identifying and possibly quantifying risks, identifying possible risk

mitigation techniques and analyzing efficacy of those techniques (Peltier,

2005; Conklin, White, Williams, Davis, & Cothren, 2010). The main theme of

IS risk management area has been security of data and vulnerabilities in an

103

IS application emanating from data insecurity. The most popular methodology

is cost benefit analysis (CBA).

The IS risk management takes an asset based approach and mainly focuses

on risk emanating from data asset based on CIA Triangle and McCumber

cube (National Security Telecommunications and Information Systems

Security Committee, 1994) by identifying the vulnerabilities. Next appropriate

controls are identified that could eliminate or mitigate the risk. Finally, using

cost-benefit analysis decisions are made whether or not to install the controls

identified above and then monitoring is necessary to ensure that the process

is working fine. The above phases are described below in detail

(Bandyopadhyay, Mykytyn, & Mykytyn, 1999; Landoll, 2006; Mead, et al.,

2009):

1. Risk identification: This is the first phase in the risk management.

First, assets and important business processes are identified, classified

and prioritized. Second possible threats to the assets are identified.

Third, vulnerabilities in the assets are uncovered. Finally, possible

impacts to the assets are identified when a threat is able to use the

vulnerabilities in the asset and is able to successfully attack the asset.

2. Risk assessment: This phase involves quantifying risks using some

metrics, prioritizing the risks and identifying the appropriate control

methods. Both quantitative and qualitative approaches could be taken.

104

3. Risk analysis: This phase involves doing cost analysis of the possible

controls using cost benefit analysis (CBA). The CBA involves estimating

and quantifying the risks faced by an organization from business

impacts of attacks, the probability of occurrence of attacks that could

result from the vulnerabilities which were identified in the previous

phase and how the proposed controls could reduce the possible loss

and the cost of proposed control (Whitman & Mattord, 2009). Based

on the results of cost benefit analysis (CBA) a final decision is made

whether or not to implement the control.

4. Risk mitigation: This phase involves installation of appropriate

controls for risk reduction as identified during CBA.

5. Risk monitoring: Finally this is the maintenance phase. Here

appropriate data is collected and analyzed to ensure that the controls

are meeting expectations and the initial assumptions made during CBA

were accurate. If they are not then appropriate changes are made by

identifying and analyzing the vulnerabilities.

It has also been noted that the above phases usually contain many atomic

processes (Stoneburner, Goguen, & Feringa, 2002; Gregory, 2010). CERT has

developed a framework for efficient risk assessment named Operationally

Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) (Alberts &

Dorofee, 2001). This framework was updated in 2007 and that was named

OCTAVE Allegro (Caralli, Stevens, Young, & Wilson, 2007).

105

4.3 Literature Review

Risk management has been studied extensively in finance literature using

different techniques (Focardi & Jonas, 1998) such as option pricing model,

Modern Portfolio Theory (MPT) based on Markowitz’s mean variance analysis

model (Markowitz, 1959). Although in recent years many concerns have been

raised about the validity of the mean variance analysis model (Taleb,

Goldstein, & Spitznagel, 2009), it is still used extensively in finance for risk

management.

In the Decision Science literature, risk is viewed as the probability distribution

of outcomes both positive and negative; it has been suggested that for

building systems which could help managers in risk management the

concepts of Bayesian networks could be used (Miller, 2004). Markowitz’s

mean variance analysis model has also been used in the operation research

area (Wu, Li, Wang, & Cheng, 2009). Yue et al studied the effect of system

interdependence and layered protection strategies for IT security risk

management (Yue, Çakanyıldırım, Ryu, & Liu, 2007).

Researchers in the IS area still use cost benefit analysis extensively during

risk analysis (Arora, Hall, Pinto, Ramsey, & Telang, 2004), it has been

observed that in many cases the traditional cost-benefit analysis based risk

management is not adequate for making risk related decisions. Wang et al

argued that use of traditional methods such as annual loss expectancy during

cost benefit analysis could overlook important trends and they suggested use

106

of value-at-risk approach (Wang, Chaudhury, & Rao, 2008). Alternative

methods such as use of option pricing models (Taudes, Feurstein, & Mild,

2000; Dewan, Shi, & Gurbaxani, 2007) or of Markowitz’s mean variance

analysis model (Wu & Ong, 2008), both adopted from the finance area have

been found to be more effective.

4.4 Capacity Planning Framework:

We summarized the risk management process in section 4.2. As a first step

towards capacity planning we need to follow those steps.

1. Risk identification in capacity planning: For this particular case, it

is necessary to first uncover the risks which are involved in capacity

planning. The two main risks are over capacity where a vendor plans

for too much capacity and the infrastructure remains under-utilized

and too little capacity where a vendor is unable to serve all the

potential customers. In both cases, there could be many other factors

in play such as dependence on another SaaS application, other security

vulnerabilities etc. Those issues currently are out of the scope of this

essay and we only focus on over or under capacity.

2. Risk assessment in capacity planning: This phase involves

quantifying risks using some metrics. For over-capacity the additional

cost incurred for excess capacity could be considered as potential loss.

However, there may be many other factors which need to be

considered. In some cases it may not be possible to plan for a very

107

specific amount. As an example, the servers come in specific sizes. It is

not possible to purchase 1.5 servers. The same issues exist for under

capacity. In this essay, we estimate under capacity as opportunity

cost. How the opportunity cost is defined could depend on other risks

also. It is also possible that some risks could be mitigated by planning

for over capacity.

3. Risk analysis in capacity planning: This phase needs most

modification and this is the main focus of our essay. We propose a

quantitative analysis that includes risk tolerance.

4. Risk mitigation in capacity planning: This phase is pretty straight

forward. This involves implementing the decisions made in previous

phase. In our case, it involves installation of hardware application that

measures actual usage levels etc.

5. Risk monitoring: The monitoring phase in capacity planning involves

monitoring whether the decisions made regarding capacity need any

further modification.

4.5 Modularity and Model Formulation

4.5.1 Modularity

108

Recently, there has been an immense shift in the architecture of data centers.

In order to be competitive, organizations are introducing modularity into data

center architecture. We recognize that, this phenomenon is very relevant to

our case. As an example, IBM has developed a family of portable modular

data center. It offers comprehensive data center assessment, design, build,

and relocation services to meet the unique needs of any organization. It

allows company to easily expand existing data-processing capability in remote

or temporary environments. It also enables improved performance, higher

density computing and greater cost-efficiency. It is vendor neutral and tries

to minimize risk the customers will face because of technology obsolescence.

So it is easy to see, by introducing modularity into data center architecture

IBM is able to reduce risks for its customers.

We also note capacity planning involves risk. One of the most significant

events in the area of cloud computing in recent history was the crash of

Amazon’s cloud. Social networking company FourSquare that depends on

Amazon for providing service was totally unavailable for a period of time. In a

later press release Amazon indicated among others a need to increase its

infrastructure capacity to avoid future crashes.

The business examples above uncover a few relevant issues. First, it clearly

demonstrates that decisions made about capacity planning could be risky.

Second, modularity in architecture could lead to lesser risk. In chapter 3, we

109

investigated the relationship between optimal capacity and other decision

variable under the condition of maximization of average profit. We observed

an interesting trend in figure 3.2. We saw as a producer increases capacity,

initially both average profit and standard deviation of profit increases till the

capacity is equal to optimal capacity. After that as expected average profit

decreases and standard deviation of profit increases. Although optimal

capacity leads to the highest average profit that also leads to higher variance

in profit and for some service provider higher variance in profit may not be

acceptable as they may not like the additional risk.

Prior research has shown that introduction of modularity into product

architecture leads to higher demand in products. Modularity has also enabled

producers to offer mass customized product. Focusing on supply chain

management area, Weng showed that modularity in product architecture

reduced system cost by employing joint buffer stock for a group of products

in a two-echelon distribution system with multiple retailers (Weng, 1999).

Similarly, we posit that introducing modularity in architecture will enable a

producer to use same module in more than one product and that would lead

to reduction invariance in demand. We know if there are two variables X1 and

X2 that are normally distributed with mean and standard deviation X1 (��, ��)
and X2(��, ��) then the sum of them would be normally distributed as X

((�� + ��), ����	+	���	�. It can be shown that

110

���0	#	�00
��#�0 is less than maximum of (

���� , �0�0� so it is fair to assume that if we can

use same module for more than one product then the total variation of

demand will be less than the maximum of original variation of demand in

either cases. This theoretical background supports the conclusion found by

(Weng, 1999).

4.5.2 Model Formulation

If a producer has more than one service offering and if a specific modular

component could be used in more than one service then it might be easier to

plan for capacity. Variation in demand of one product could be compensated

by other product’s variation in demand. A complete discussion of two

products is beyond the scope of this essay. However, we shall recognize this

specific property of modularity by including a parameter in the random

demand function; more modular a service is, the standard deviation of its

random demand decreases. Although, we understand this is a little bit

simplistic assumption however it will give us important insights. Hence, we

posit that modularity in software architecture of an IS application can play a

special role in capacity planning. As a first step towards building risk model

that includes modularity, we modify our demand function that we used in

chapter 3.

111

Consistent with the literature and experiences from industry we assume that

modularity has positive effects on demand. Joglekar and Rosenthal observed

that use of modularity in software architecture improved outcomes of

mainstream product which has added software components (Joglekar &

Rosenthal, 2003). Modularity would also support mass customization strategy

which allows producers to offer their products to a more diverse group of

customers (Dewan, Jing, & Seidmann, 2003).

We assume a linear demand function and we include the sensitivity in

demand from modularity

 d = α – β p + γ m + � Y (8)

where p is price of the SaaS application amortized over its lifetime,

m is the modularity level of the SaaS application

o is the operational performance level of the SaaS application

α is primary demand due to functional attributes of the SaaS application and

other non-functional attributes such as quality (except modularity and

operational performance), brand image, performance and general economic

condition

β represents price sensitivity of the demand,

γ represents increase in demand from increase in modularity

δ represents increase in demand from increase in operational performance

112

α, β, γ and δ are assumed to be greater than zero.

Our cost consists of three parts i.e. fixed cost, maintenance cost amortized

over the lifetime of the product, and marginal cost per product also amortized

over the lifetime of the product. Prior research has shown that modularity in

product architecture leads to higher product complexity (Bardhan, Demirkan,

Kannan, Kauffman, & Sougstad, 2010). Hence we can infer production of

modular software will require more production cost for vendors (i.e. higher

upfront (fixed) cost). We assumed that fixed cost (C1) arising from increased

modularity to be a quadratic function of modularity (m). This is in line with

the standard practice in IS literature; fixed costs incurred to improve quality

of a product is a convex function of the slope of product improvement curve

(Choudhary, 2007). Therefore C1 can be expressed as:

�� = �� + �	��	 + �	Y� (9)

where �� is the fixed cost arising from factors other than modularity and

performance, C is the parameter related to modularity during design and

development of the application, and D is the parameter related to operational

performance.

Modularity in design also leads to better flexibility in changing products

leading to agility (MacCormack, Verganti, & Iansiti, 2001). It was more

113

expensive to maintain a non-modular product compared to a modular product

(Banker, Datar, Kemerer, & Zweig, 1993; Bardhan, Demirkan, Kannan,

Kauffman, & Sougstad, 2010). We treat maintenance cost (C2) as amortized

over the lifetime of the product. Hence, C2 can be expressed as:

�� = �� − 	�		� (10)

where �� is the general amortized maintenance cost over the lifetime of the

cloud computing application and B is the parameter related to modularity

showing the saving in maintenance cost arising from modular design also

amortized over the lifetime of the cloud computing application.

Unlike a traditional software vendor, a cloud computing application provider

will also incur marginal cost for providing services. This marginal cost (C3) will

include both the cost (C31) for setting up infrastructure such as hardware,

software as well as the cost (C32) for providing the service. We recognize that

for setting up infrastructure, a product with higher operational performance is

more expensive. We recognize that by

C31 = d (G o + ω Z)

C32 = d (1- ω) Z

where ω (ω < 1) is a scaling factor; and we assume that ω Z represents the

infrastructure cost necessary for setting up the service amortized as per

114

capacity and it excludes the additional cost that a provider will incur from

higher operational performance; and (1- ω) Z represents the variable cost,

both are expressed per unit of services (demand) offered. G m is the increase

in setup cost from higher operational performance.

We assume that service is being set up for a capacity d and we also assume

that the actual demand is d. However we shall show later that depending on

the variation in demand, the first part will remain unchanged whereas second

part will change. Also the demand could be less than planned demand;

however it can never be more than the planned demand. Hence, C3 can be

expressed as:

C3 = � � Y + � Z � + � (1 − Z) � = � (� + � Y) (11)

where d is the number of applications that is being planned, and Z is the

marginal cost per application amortized over the lifetime of the product.

However, we recognize that d is the projected demand and it will probably be

different from actual demand. In that case, there will be a role played by Z.

Adding (9), (10), and (11), our total cost function can be expressed as:

� = � − � � + � �� + � Y� + (� + � Y) � (12)

where � = �� + ��

Profit for a producer (�) could be represented as:

� = � � − �

115

Using (1) and (5), the above profit can be rewritten as:

� = (�	– 	�	�	 + 	
	� + 	�	Y�	�� − �� + �	Y��	
					−�	�	 − 	�		�	 + �	�� + �	Y�� (13)

Our objective is to find optimal price (�∗), modularity (�∗) , and operational

performance(Y∗) that will maximize the above profit function.

After making some simplification, we find the optimal values for our decision

variables as:

�∗
= 2��2��� + ��� − ��� − ����� − ���� +
�−2��
 + ��2� + ��−�� + ����2�4��� − �	
� − 	�	�� − ����� 	

= .��-�",$%�#*&�
1-.%,.	&0,	-	�(,�%�0 + � + �	Y∗																																																																																			�14�	

�∗ = �.�",$%�&#*�1.%,�(,�%�0			
��1-.%,.	&0,	-	�(,�%�0� 																																																																																							�15�		Y∗ = ��-�",$%�#*&�	�(,�%�		

��1-.%,.	&0,	-	�(,�%�0�			 																																													�16�

and that leads to optimum demand and profit

�∗ = .	%	��-�",$%�#*&�
1-.%,.	&0,	-	�(,�%�0	 (17)

�∗ =	 1-.�",$%�0#*�1.�",$%�&#*�1.%,�(,�%�0��1	�1-.%,.	&0,	-	�(,�%�0� − 	� 																																																			(18)

116

To ensure profit (�)	has a local maximum the Hessian matrix needs to be

negative semi definite.

The Hessian matrix H is shown under.

5 −2�
 �� + �
 −2� −�
�� + � −�
 −2� − 2��8

To ensure that profit has a local maximum the determinants of the Hessian

matrix need to be negative semi definite. A matrix is negative semi definite

when its leading principal minors of different orders alternate in sign, starting

with negative for the first leading principal minor (Winston, 1993). Hence the

principal minor of order 3 has to be negative. The only principal minor of

order three is the determinant of the matrix itself which is		2��
� +
��−4�� + �−�� + �����, and that leads to the following condition.

4��� > 	�	
� + 	�	�� − ����	 																																																																															(19)

We note that producer would plan for demand assuming that they would

charge their customers at price as given in equation (14). However, in many

cases, demand is not constant. Therefore, in our second step, we examine

how the demand uncertainty would impact producer’s profit. Here we assume

that random demand of the product is x and it is distributed with a probability

117

distribution function (pdf) f(x) and cumulative distribution function F(x) (cdf).

Hence the expected demand E(x) can be calculated as,

 E(x) = f b g(b) �b hi = f b (Oj(k)
Ok) �b hi

Where a and b are the minimum and maximum demand values x can take.

We assume that the lowest and highest demand levels are 0 and very large

(infinite in mathematical terms); the above expression can be rewritten as

a(b) = f b g(b) �b lm = f b (Oj(k)
Ok) �b lm (20)

We estimate that expected demand is the optimal demand d* as given in

equation (9).

 a(b) = d* (21)

Next, we derive the function for random profit using the random demand x.

We have to recognize some constraints that should be included in the model.

First, at a maximum, vendors can only sell up to the capacity they have

planned. Let us assume that a vendor has planned for a demand Q. On the

other hand if the random demand is less than the planned demand Q, a

vendor will still incur the cost of setting up the infrastructure for the demand

Q. Hence, a vendor will always incur the cost (� Z + � Y∗) Q, no matter

what the random demand x is; however, the other part of the marginal cost

is only proportional to the random demand x.

118

We also assume an opportunity cost. An opportunity cost arises when the

demand is greater than the capacity and a vendor could not provide the

service because of not having enough capacity. We assume that the

opportunity cost of revenue is u. In terms of exact formulation u could be

considered as missed revenue (p-Z). However, there could be several other

factors that would determine u such as loss of goodwill. We consider

opportunity cost as one of the costs.

Hence, the random profit of a vendor for a maximum capacity Q could be

formulated as

	��^, b� = �∗	�no	�^, b� − 	p	�qb	�b − ^, 0�	–	��	Z + �	Y∗�^ − ��1 −
Z�min	�^, b� − ��	 − 	�		�∗ 	+ �	��∗�� 		+ �	�Y∗���																																												(22)

	
We note that the first term gives the actual revenue and we have ensured

that actual revenue never exceeds p* Q. The second term describes the

opportunity cost for lost revenue when x > Q. The third term describes the

marginal cost arising for setting up the infrastructure for a planned demand

Q. The fourth term describes the marginal cost that is dependent on random

demand x. The last term within bracket is the fixed cost for developing the

service.

119

We recall that in chapter 3, we obtained an equation for optimal value of Q,

by maximizing the average profit. Instead in this case we shall maximize the

following expression suggested by Mean Variance Analysis model

{a[�(^, 	�∗, b�] − ϵ	��[��^, 	�∗, b�]	} (23)

 The variance of the profit can be calculated using the following formula

�[��^, 	�∗, b�] 	= 	 �a[��^, 	�∗, b��]� −	�a[��^, 	�∗, b�]��				 (24)

	
In the above case, we maximize average profit subject to a constraint that

variation of average profit is less. How much importance we give to the

variation in average profit depends on the factor	ϵ.
We can see if	ϵ = 0, then it simplifies to just maximization of average profit.

However, we need a starting value for optimal capacity in order to make the

numerical simulation process more efficient. Hence, we first find the optimal

capacity under the simplified condition when		ϵ = 0. In that case, we need to

first calculate average profit from equation 22 and then differentiate that with

respect to capacity Q and set it to zero or in other words we maximize the

average profit.

Keeping Q constant, we find the expectation of the profit (average profit)

using equation (13) as

120

E[�(Q,d*, x)] =
�∗ f b g(b) �b + �∗ ^ um f g(b) �b – p f (b − ^) g(b) �b – (� Z +lulu
� Y∗) ^ f g(b) �blm − �(1 − Z) f b g(b) �b lm − (� − � �∗ + � (�∗)� +
� (Y∗)�) f g(b) �blm (25)

= �∗ v b g(b) �b + �∗ ^
u

m
v g(b) �b – p v(b − ^) g(b) �b – (� Z + � Y∗) ^

l

u

l

u

− �(1 − Z) v b g(b) �b
u

m
− �(1 − Z) ^ v g(b) �b

l

u
− (� − � �∗ + � (�∗)� + � (Y∗)�)

=�∗ f b g(b) �b + (�∗ + p −um
�(1 − Z)) ^ f g(b) �b – p f b g(b) �b – (� Z + � Y∗) ^lu lu − �(1 −
Z) f b g(b) �b um − (� − � �∗ + � (�∗)� + � (Y∗)�)
= �∗ f b g(b) �b + (�∗ + p −um
�(1 − Z)) ^ f g(b) �b – p f b g(b) �b +lm p f b g(b) �b – (� Z + � Y∗) ^um lu −
�(1 − Z) f b g(b) �b um − (� − � �∗ + � (�∗)� + � (Y∗)�)

=(�∗ + p −
�(1 − Z)) f b g(b) �b + (�∗ + p −um
�(1 − Z)) ^ f g(b) �b – p f b g(b) �b lm lu − (� Z + � Y∗)^ −(� − � �∗ +
� (�∗)� + � (Y∗)�)

121

=(�∗ + p − �(1 − Z))	�f b	g�b�	�b	 + 		^	um f g�b�	�b�	�				– 	p f b	g�b�	�b	lm 	lu −
��	Z + �	Y∗�^	−��	 − 	�		�∗ 	+ �	��∗�� 		+ �	�Y∗���	
We observe,

^ f g�b�	�blu = Q �1 −]�^��
	
E[��Q,d*,		x�]	
=��∗ + p − ��1 − Z��	�f b	g�b�	�b	 + 		^	um �1 −]�^��– 	p f b	g�b�	�b	lm −
��	Z + �	Y∗�^	−��	 − 	�		�∗ 	+ �	��∗�� 		+ �	�Y∗���	

	
We recognize f b	g�b�	�b	lm is the expectation of demand or average demand.

According to our assumption from equation 12, we have

d*	=	f b	g�b�	�b	lm 	
Next, we simplify the expression of E[��Q,	x�]	

Using integration by parts, we can make the following simplification and we

note g�b� = <Oj�k�Ok =

��∗ + p − ��1 − Z��	v b	g�b�	�b			
u

m
= ��∗ + p − ��1 − Z��	v b	 ��]�b��b � 	�b

u

m

		
	= 		 ��∗ + p − ��1 − Z��		wb]�b� − v]�b�	�b		xm

u

122

= 	 ��∗ + p − ��1 − Z��		�^]�^� −	v]�b�		�b	�		
u

m

Therefore the expected (average) profit can be rewritten as

	E[��Q,	d*,		x�]	=	−	��∗ + p − ��1 − Z��	�f]�b�	�b� 	+ ��∗ + p −		��	�1 −um
Z� + �	Z + �	Y∗�	�		^	– 	p	�∗	 − ��	 − 	�		�∗ 	+ �	��∗�� 		+ �	�Y∗��� (26)

In order to find optimal planned demand Q∗ that will maximize the expected

profit, we differentiate E[��Q,	x�] with respect to Q and set it to zero

	 OOu �a[��^, �, b�]	� 	= 	−	��∗ + p − ��1 − Z��]�^� +	��∗ + p −		��	 +
�	Y∗�		� = 0

From the above equation we derive a formula for optimal capacity Q* which

will maximize the average profit of a producer,

]�^∗�	=	�+∗#`,�$	#�	\∗���+∗#`,	$��,_�	� 																																																																																																				(27)

As we discussed earlier our goal is to include risk in our model; we do so by

maximizing the expression given in equation 23. It is difficult to solve the

equation analytically; we use numerical simulation. We assume that the

demand is distributed normally with a mean as given by optimal demand as

in equation 17. We use the optimal capacity calculated using equation 27 as a

starting value and we vary the planned capacity around that and we identify

the planned capacity when the expression given in equation 23 is maximum.

We also note that how much importance we give to the variance is

determined by varying	ϵ.

123

As we indicated in previous section, one of our main contributions is to

introduce risk tolerance in the risk assessment phase. We use Markowitz’s

mean variance analysis model for the purpose. Modern Portfolio theory is

based on Markowitz’s mean variance analysis model; it is used for choosing a

diversified portfolio, and in the model the risk is estimated by standard

deviation of return. A specific concern that has been brought up regarding

the accuracy of the model’s assumption that the financial return is normally

distributed; it has been argued that the assumption is invalid specifically

during black swan events (Taleb, Goldstein, & Spitznagel, 2009). However, in

our case assumption of normal distribution is realistic as there is evidence

that demand does follow normal distribution.

We develop a computer program for performing numerical simulation using

Java programming language in Eclipse IDE. We assume that demand is

normally distributed with a mean optimal demand that we obtained earlier

analytically. We approximate variance of the distribution as a percentage of

the mean. Next, based on all the parameters we obtain the optimal capacity

using equation 27. Equation 27 involves calculation of inverse cumulative

distribution function. We use the algorithm suggested by Marsaglia

(Marsaglia, 2004).

In the simulation, we define a range for the capacity using the optimal

capacity. For each capacity, we perform 100,000 simulations with a random

124

demand that is normally distributed as described above. For each trial we

calculate the profit using equation 22. Next, we calculate both mean and

standard deviation of the profit. Finally for each capacity, we obtain the

expression {a[�(^, 	�∗, b�] − ϵ	��[��^, 	�∗, b�]	} and we have named it Av

Profit2 in the graphs. We find out the capacity when the above expression is

maximum. We also vary ϵ and that represents risk tolerance of the providers.

Greater ϵ implies that the providers are more risk averse.

4.6 Results

																																																																																																																											
In this section, we first present the results of numerical simulation in a

graphical format.

125

Figure 4.1: Graph showing the effect of change in planned capacity on Average profit for

risk neutral (red line) and risk averse (blue line) providers and Standard deviation of profit

126

In both the above graphs we show the planned optimal capacity when

average profit (indicated by red line) or the average profit factor that takes

into account also the risk factor (indicated by blue line). Finally, the green line

depicts the standard deviation of actual profit. The main difference between

the two graphs is the numerical assumptions of the different constants within

the allowed values. We can make the following general conclusions from the

above graph.

1. First we note the relationship between planned capacity, average

profit and standard deviation of profit. As we increase the planned

capacity the average profit first increase and it has a maxima. Then the

average profit decreases. However, the standard deviation of the profit

consistently increases. It implies that our results are consistent with our

expectations. There is an optimal capacity that maximizes the average

profit. It is consistent with what we find out through numerical

simulation. However, as planned capacity increases the variation in

random profit increases consistently.

2. Next, we note that when we introduce a risk aversion factor in the

profit the expression depicting average profit with risk averseness factor

has a maxima corresponding to the planned optimal capacity that is less

than the planned optimal capacity when risk is not considered. So a risk

averse provider with generally plan for lesser planned capacity

corresponding to the providers who are risk takers.

127

Next, we present how optimal planned capacity changes with ε that signifies

risk averseness of a cloud computing provider and ω the ratio of fixed

infrastructure cost variable infrastructure cost. Increase of ε signifies a more

risk averse provider. Increase of ω implies that providers incur more cost

while setting up the infrastructure compared with the variable cost for

maintaining the infrastructure.

Figure 4.2: Graph showing the relationship between optimal capacity and risk averseness

factor ε for different values of ω

We can make the following general conclusions from the above graph.

28

28.5

29

29.5

30

30.5

31

31.5

32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
p

ti
m

a
l

C
a

p
a

ci
ty

ϵ

Omega = .2 Omega = .3 Omega = .4 Omega = .5 Omega = .6

128

1. Increase in ϵ (increase in risk averseness) leads to decrease in

optimal planned capacity. As a providers become more risk averse they

plan for a lower infrastructure capacity.

2. Increase in Z (ratio of fixed infrastructure cost and variable

marginal cost) leads to increase in optimal planned capacity.

4.7 Limitations

We have identified a few of the limitations. First, in this model we have not

included any direct relationship between operational performance, random

demand and capacity. We have also assumed that there is no relationship

between random demand and operational performance. However, we know

that is not the case. For a fixed capacity, decrease in random demand will

lead to increase in operational performance in many cases depending on the

software architecture. Third, we have used a single optimal value for

operational performance. However, for most services the providers offer

different levels of performance and charge accordingly. Our model does not

address that. Fourth, our model does not include that there could be more

than one producers. We are sure that will have significant effect on capacity

planning. Fifth, we have only showed numerical results where the random

demand is normally distributed. Although normal distribution is probably the

most appropriate one to use, we have not offered any support for that. Sixth,

we formulated opportunity cost simplistically.

129

4.8 Future research

Our research is a preliminary effort where we included the concept of

financial risk in the IS area. First, the model needs to be expanded to include

a relationship between operational performance, planned capacity and actual

demand. It is intuitive to figure out that for a fixed planned capacity as actual

demand increases the operational performance decreases. Hence the

parameter operational performance needs to be researched more so that we

get a more realistic understanding of its impact on other parameters. Second,

we assumed that if the actual demand is greater than planned capacity then

the provider will not be able to service additional customers. This assumption

is unrealistic. There cannot be a sharp cutoff; instead a provider may be able

to service the customers however the operational performance will be lower.

Third, our random demand needs to be formulated in a better way. We

assumed no variation in demand from a user; this assumption is simplistic.

The model could be improved by taking into account random variation in

demand from a particular user. This will have a considerable impact on the

model as it will be unlikely that all the users will have a same demand

pattern. This could be modeled pretty easily by representing demands as

number of transactions during a particular amount of time. The planned

capacity could be operationalized as the number of transactions during a

fixed amount of time. This problem could be solved using numerical

simulation where each user could be represented in separate threads. Fourth,

130

this research could be extended to a two product problem where each

product will share a few modules. In that way effect of modularity on a

product could be understood in a better way.

131

Chapter 5: Contributions

This dissertation is an effort to understand the phenomenon of cloud

computing and the challenges and opportunities that it present to the

researchers in the IS area. We believe we obtained many interesting results

that will spur more research in the area. Also, practitioners will be able use

these models after proper calibration for making decisions regarding pricing,

capacity planning etc. Specific contributions have been identified below.

5.1 Research Contributions

We believe that the most important contribution of this dissertation is

uncovering the changes that are happening from the advent of cloud

computing.

We identified that as a result of the industrialization of IT, IS applications are

changing from customized product (traditional IS applications) to a

combination of product and service (cloud computing applications). Hence, it

is necessary to include both marginal cost and maintenance cost in a model

of cloud computing application; traditional IS applications were considered

developmentally intensive products, and marginal costs were not included

132

there (Krishnan & Zhu, 2006). In all three essays, we included both marginal

and maintenance costs.

We identified another important aspect of cloud computing – capacity

planning. As we discussed earlier, this was never an issue in the context of

traditional IS application for the application providers. Because of the service

aspect, cloud computing providers have to estimate the possible demand and

then install the necessary infrastructure for it. Our second and third essays

addressed this problem and we developed an analytical model for calculating

optimal capacity, using a two-step innovative analytical technique.

We observed that a cloud computing application provider needs to make

many different decisions based on incomplete information; making decisions

which involve taking risks. The third essay addresses this. We developed a

model that would help cloud computing application providers make decisions

on planned capacity based on their personal financial risk tolerance. We used

Markowitz’s mean variance analysis model (Markowitz, 1959) for this

purpose. The mean variance analysis model has been used widely in the

finance area for a different purpose. Not only IS risk assessment is not a well-

researched area but also most research in IS risk assessment focus on IS

security. However, our current focus is entirely different and we focus on risk

in profit making of providers. So we make two major contributions here. We

133

use Mean Variance analysis model in IS research. We also introduce a new

perspective of risk in IS literature.

5.2 Contributions to Practice

We obtained some results that we believe will be important for the

practitioners.

We recognized the importance of non-functional attributes in the context of

cloud computing applications. We identified modularity and performance as

two important non-functional attributes. We identified that performance is a

two dimensional attribute; it has two parts architectural and operational.

We uncovered the role of modularity and architectural performance in the

architecture of a cloud computing application. We compared two cases where

modularity and architectural performance are independent of each other and

they are inversely related. We found that optimal values of each are

independent of the fact whether there is a relationship between modularity

and architectural performance.

We also found that practitioners need to plan for capacity that is greater than

the optimal demand. We provided a way for the practitioners to calculate

planned optimal capacity.

134

We provided an intuitive way to include risk tolerance in the model. We found

out that a risk averse provider will have plan for a capacity that will be less

than a risk taking provider.

135

Bibliography

Agrawal, M., & Chari, K. (2007, March). Software Effort, Quality, and Cycle Time:
A Study of CMM Level 5 Projects. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, 33(3), 145-156.

Alberts, C. J., & Dorofee, A. J. (2001). OCTAVE Criteria, Version 2.0. Pittsburgh:
Networked Systems Survivability Program, Software Engineering Institute,
CMU.

Alter, S., & Sherer, S. A. (2004). A General, But Readily Adaptable Model of
Information System Risk. Communications of AIS, 14(2), 1-28.

Amazon.com. (n.d.). Amazon Elastic Compute Cloud (Amazon EC2). Retrieved
December 26, 2011, from Amazon.com : http://aws.amazon.com/ec2/

Arora, A., Hall, D., Pinto, C. A., Ramsey, D., & Telang, R. (2004). Measuring the
Risk-Based Value of IT Security Solutions. IT Pro, 35-42.

Bakos, Y., & Brynjolfsson, E. (1999). Bundling Information Goods: Pricing,
Profits, and Efficiency. Management Science, 1613-1630.

Baldwin, C. Y., & Clark, K. B. (2000). Design Rules (Vol. 1). The MIT Press.

Balsamo, S., Di Marco, A., Inverardi, P., & Simeoni, M. (2004, May). Model-Based
Performance Prediction in Software Development: A Survey. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, 30(5), 295-310.

Bandyopadhyay, K., Mykytyn, P. P., & Mykytyn, K. (1999). A framework for
integrated risk management in information technology. Management
Decision, 37(5), 437-448.

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software
Complexity and Maintenance Costs. Communications of the ACM, 36(11),
81-94.

Bardhan, I. R., Demirkan, H., Kannan, P., Kauffman, R. J., & Sougstad, R.
(2010). An Interdisciplinary Perspective on IT Services Management and
Service Science. Journal of Management Information Systems, 13-64.

Barua, A., Kriebel, C. H., & Mukhopadhyay, T. (1991, September). An Economic
Analysis of Strategic Information Technology Investments. MIS Quarterly,
15(3), 313-331.

Bashir, A., & Christin, N. (2008). Three Case Studies in Quantitative Information
Risk Analysis. Proceedings of the CERT/SEI Business Case Workshop:

136

Making the Business Case for Software Assurance (pp. 77-86). Pittsburgh:
CERT/SEI.

Bask, A., Lipponen, M., Rajahonka, M., & Tinnila, M. (2010). The concept of
modularity: diffusion from manufacturing to service production. Journal of
Manufacturing Technology Management, 21(3), 355-375.

Benlian, A., Hess, T., & Buxman, P. (2009). Drivers of SaaS - Adoption - An
Empirical Study of Different Application Types. Business & Information
Systems Engineering, 5, 357-369.

Bitner, M. J., & Brown, S. W. (2006). The Evolution and Discovery of Services
Science in the Business Schools. COMMUNICATIONS OF THE ACM, 49(7),
73-78.

Boehm, B. W., & Sullivan, K. J. (2000). Software economics: a roadmap.
Proceedings of the conference on The future of Software engineering (pp.
319–343). ACM Press.

Bojanc, R., & Jerman-Blazˇicˇ, B. (2008). An economic modelling approach to
information security risk management. International Journal of
Information Management, 28, 413–422.

Bolton, R. N., Smith, A. K., & Wagner, J. (2003). Striking the Right Balance
Designing Service to Enhance Business-to-Business Relationships. Journal
of Service Research, 271-291.

Booch, G. (1991). Object Oriented Design with Applications. The
Benjamin/Cummings Publishing Company, Inc.

Booch, G. (1994). Object-Oriented Analysis and Design. Redwood City,
California: Benjamin/Cummings.

Bush, A. A., Tiwana, A., & Rai, A. (2010). Complementarities Between Product
Design Modularity and IT Infrastructure Flexibility in IT-Enabled Supply
Chains. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 240-254.

Cai, Y. (2006). Modularity in Design: Formal Modeling and Automated Analysis.
PhD Thesis, University of Virginia, School of Engineering and Applied
Science.

Campagnolo, D., & Camuffo, A. (2010). The Concept of Modularity in
Management Studies: A Literature Review. International Journal of
Management Reviews, 259-283.

137

Capra, E., Francalanci, C., & Merlo, F. (2008). An Empirical Study on the
Relationship among Software Design Quality, Development Effort, and
Governance in Open Source Projects. IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, 34(6), 765-782.

Caralli, R. A., Stevens, J. F., Young, L. R., & Wilson, W. R. (2007). Introducing
OCTAVE Allegro:Improving the Information Security Risk Assessment
Process. Pittsburgh: CERT Program, SOFTWARE ENGINEERING
INSTITUTE, CMU.

Carr, N. (2005). The End of Corporate Computing. MIT SLOAN Management
Review, 48(3), pp. 66-73.

Chidamber, S. R., & Kemerer, C. F. (1994 йил June). A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6), 476-
493.

Choudhary, V. (2007). Comparison of Software Quality Under Perpetual Licensing
and Software as a Service. Journal of Management Information Systems,
141-165.

Choudhary, V. (2007). Software as a Service: Implications for Investment in
Software Development. Proceedings of the 40th Hawaii International
Conference on System Sciences. IEEE Computer Society.

Chung, L., & Sampaio do Prado Leite, J. C. (2009). On Non-Functional
Requirements in Software Engineering. In A. Borgida, V. Chaudhri, P.
Giorgini, & E. Yu (Eds.), Conceptual Modeling: Foundations and
Applications, LNCS 5600 (pp. 363-379). Springer.

Clark, D. D. (1982). MODULARITY AND EFFICIENCY IN PROTOCOL
IMPLEMENTATION. MIT, MIT Laboratory for Computer Science. Internet
Engineering Task Force.

Conklin, W., White, G., Williams, D., Davis, R. L., & Cothren, C. (2010). Principles
of Computer Security: CompTIA Secuirty+ and Beyond. McGraw-Hill.

Council, T. P. (n.d.). Retrieved 2011 йил 19-July from www.tpc.org

Cowell, D. W. (1988). New Service Development. Journal of Marketing
Management, 3(3), 266-312.

Demirkan, H. (2008). The Servitisation of Processes, Architectures and
Technologies. The International Journal of Services Sciences, 1(3/4), 197-
205.

138

Demirkan, H., Cheng, H. K., & Bandyopadhyay, S. (2010). Coordination
Strategies in an SaaS Supply Chain. Journal of Management Information
Systems, 26(4), 119-143.

Demirkan, H., Kauffman, R. J., Vayghan, J. A., Fill, H.-G., Karagiannis, D., &
Maglio, P. (2008). Service-oriented technology and management:
Perspectives on research and practice for the coming decade. Electronic
Commerece Research and Applications, 7, 356-376.

Devaraj, E., Kumar, S., Kavi, T., & Kanth, K. R. (2011). Predicting the software
performance during feasibility study. IET Software, 5(2), 201-215.

Dewan, R., Jing, B., & Seidmann, A. (2003). Product Customization and Price
Competition on the Internet. Management Science, 49(8), 1055-1070.

Dewan, S., Shi, C., & Gurbaxani, V. (2007). Investigating the Risk-Return
Relationship of Information Technology Investment: Firm-Level Empirical
Analysis. Management Science, 53(12), 1829-1842.

Diaz, J. C., & Dutt, A. (1992). Experiences with Line Ordered-Nested Block
Preconditioning for Non symmetric Systems on the CM-2. Proc. of
International Conference on Computer Methods for Partial Differential
Equations (IMACS – PDE 7). .

Fichman, R. G. (2004). Going Beyond the Dominant Paradigm for Information
Technology Innovation Research: Emerging Concepts and Methods.
Journal of the Association of Information Systems, 5(8), 314-355.

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2004). Service Management Operations
Strategy Information Technology. (4, Ed.) McGraw Hill Irwin.

Fixson, S. K. (2003). The Multiple Faces of Modularity - A Literature Analysis of a
Product Concept for Assembled Hardware Products. University of
Michigan, Industrial and Operations Engineering. Ann Arbor: Sebastian
Fixson.

Fixson, S., & Clark, J. (2002). On the link between modularity and cost-a
methodology to assess cost implications of product architecture
differences, 2002. IEMC '02. 2002 , vol.1, no., pp. 131- 136 vol.
Engineering Management Conference. 1, pp. 131-136. IEEE International.

Focardi, S., & Jonas, C. (1998). Risk Management: Framework, Methods, and
Practice. New Hope, Pennsylvania.: Frank J. Fabozzi Associates.

Fouquet, M., Niedermayer, H., & Carle, G. (2009). Cloud computing for the
masses. U-NET '09 Proceedings of the 1st ACM workshop on User-

139

provided networking: challenges and opportunities (pp. 31-36). Rome,
Italy: ACM, New York, NY, USA.

Gadrey, J. (2000). The Characterization of Goods and Services: An Alternative
Approach”, Review of Income and Wealth. Review of Income and Wealth,
46(3), 369-387.

Google. (n.d.). Google App Engine - Google Code. Retrieved December 26, 2011,
from Google App Engine: http://code.google.com/appengine/

Gregory, P. (2010). CISSP Guide to Security Essentials. Boston: Course
Technology.

Hanmer, R. S., & Letourneau, J. P. (2003). A Best Practice for Performance
Engineering. Bell Labs Technical Journal, 8(3), 75–89.

Heim, G. R., & Sinha, K. K. (2002). Service Process Configurations in Electronic
Retailing: A Taxonomic Analysis of Electronic Food Retailers. Production
and Operations Management, 7(4), 54-74.

Heim, G. R., & Sinha, K. K. (2005). Service product Configurations in Electronic
Business-to-Consumer Operations. Journal of Service Research, 7(4), 360-
376.

Hosangar, K., Krishnan, R., Chuang, J., & Choudhary, V. (2005). Pricing and
Resource Allocation in Caching Services With Multiple Levels of Quality of
Service. Management Science, 51(12), 1844-1859.

Hull, F. M. (2004). A Composite Model of Product Development Effectiveness:
Application to Services. IEEE TRANSACTIONS ON ENGINEERING
MANAGEMENT, 51(2), 162-172.

IBM. (n.d.). Retrieved May 9, 2011, from
http://www.research.ibm.com/ssme/services.shtml

Jain, S., & Kannan, P. K. (2002). Pricing of Information Products on Online
Servers: Issues, Models, and Analysis. Management Science, 48(9), 1123–
1142.

Joglekar, N. R., & Rosenthal, S. R. (2003). Coordination of Design Supply Chains
for Bundling Physical and Software Products. The Journal of Product
Innovation Management, 374–390.

Katsikas, S. (2009). Risk Management. In J. R. Vacca (Ed.), Computer and
Information Security Handbook (pp. 606-625). Morgan Kaufmann.

140

Kossmann, D., Kraska, T., & Loesing, S. (2010). An Evaluation of Alternative
Architectures for Transaction Processing in the Cloud. SIGMOD’ 10 (pp.
579-590). Indianapolis,Indiana, USA.: ACM.

Krishnan, V., & Ulrich, K. T. (2001). Product Development Decisions: A Review of
the Literature. Management Science, 47(1), 1-21.

Krishnan, V., & Zhu, W. (2006). Designing a Family of Development-Intensive
Products. Management Science, 52(6), 813–825.

Kumar, A. (2004). Mass Customization: Metrics and Modularity. The International
Journal of Flexible Manufacturing Systems, 16, 287–311.

Laguna, M. (1998, November). Applying Robust Optimization to Capacity
Expansion of one Location in Telecommunications with Demand
Uncertainty. Management Science, 44(11), S101-S110.

Landoll, D. J. (2006). The Security Risk Assessment Handbook. Boca Raton,
Florida: Auerbach Publications.

Langlois, R. N., & Garzarelli, G. (2008). Of Hackers and Hairdressers:Modularity
and the Organizational Economics of Open-source Collaboration. Industry
and Innovation, 15(2), 125-143.

Lau-Antonio, K., Yam, R. C., & Tang, E. (2007). The impacts of product
modularity on competitive capabilities and performance: An empirical
study. Int. J. Production Economics(105), 1-20.

Li, Y., & Lee, Y. (2010). Pricing peer-produced services: Quality, capacity, and
competition issues. European Journal of Operational Research, 1658-1668.

Linthicum, D. S. (2009). Cloud Computing and SOA Convergence in Your
Enterprise. Addison-Wesley.

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the Structure of
Complex Software Designs: An Empirical Study of Open Source and
Proprietary Code. Management Science, 52(7), 1015-1030.

MacCormack, A., Verganti, R., & Iansiti, M. (2001). Developing Products on
"Internet Time": The Anatomy of a Flexible Development Process.
Management Science, 47(1), 133-150.

Maglio, P. P., & Spohrer, J. (2008). Fundamentals of service science. Journal of
the Academy of Marketing Science, 36, 18-20.

141

Magnusson, P. R., Matthing, J., & Kristensson, P. (2003). Managaing User
Involvement in Service Innovation. Journal of Service Research, 111-124.

Markowitz, H. (1959). Portfolio Selection: Efficient Diversificacation of
Investment. New Haven: Yale University Press.

Marsaglia, G. (2004, July). Evaluating the Normal Distribution. Journal of
Statistical Software, 11(4), 1-11.

MAS Research Roadmap Project. (2005). Research Directions for Service-
Oriented Multiagent Systems. IEEE INTERNET COMPUTING, 65-70.

McConnell, S. (2000 йил January / February). The Best Influences on Software
Engineering. IEEE Software, 10-17.

Mead, N. R., Allen, J. H., Conklin, W. A., Drommi, A., Harrison, J., Ingalsbe, J., et
al. (2009). Making the Business Case for Software Assurance. Pittsburgh:
CERT Program, CMU.

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing (Draft).
Information Technology Laboratory, Computer Security Division.
Gaithersburg: National Institute of Standards and Technology.

Menasce, D. A., & Ngo, P. (2009). Understanding Cloud Computing:
Experimentation and Capacity Planning. Computer Measurement Group
Conference, Dallas, TX, Dec. 7-11, 2009. Dallas, TX.

Menor, L. J., Tatikonda, M. V., & Sampson, S. E. (2002). New service
development: areas for exploitation and exploration. Journal of Operations
Management, 20, 135-157.

Mens, T., & Tourwe, T. (2004). A Survey of Software Refactoring. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, 30(2), 126-139.

Miller, M. (2004). Probabilistic Risk Analysis and the concept of Bayesian
Networks. Invited Talk. University of Bielefeld.

Moorthy, K. S. (1993). Theoretical Modeling in Marketing. Journal of Marketing,
92-106.

Nambisan, S., & Wilemon, D. (2000). Software Development and New product
Development: Potentials for Cross-Domain Knowledge Sharing. IEEE
Transactions on Engineering Management, 47(2), 211-221.

National Security Telecommunications and Information Systems Security
Committee. (1994). National Training Standard for Information Systems

142

Security Professionals NSTISSI No. 4011. Fort George G. Meade: National
Security Agency.

NVD Common Vulnerability Scoring System Support v2. (n.d.). Retrieved October
25, 2010, from Nataional Vulnerability Database CVSS Scoring:
http://nvd.nist.gov/cvss.cfm

Papazoglou, M. P., & den Heuvel, W. V. (2005, NOVEMBER DECEMBER). Web
Services Management: A Survey. IEEE INTERNET COMPUTING, 58-64.

Parasuraman, A., Zeithaml, V. A., & Malhotra, A. (2005). E-S-Qual A Multiple-
Item Scale for Assessing Electronic Service Quality. Journal of Service
Research, 213-233.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems.
Communications of the ACM, 15(12), 1053-1058.

Parnas, D. L., Clements, P. C., & Weiss, D. M. (1985). The Modular Structure of
Complex Systems. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
SE-11(3), 259-266.

Pekkarinen, S., & Ulkuniemi, P. (2008). Modularity in developing business
services by platform approach. The International Journal of Logistics
Management, 19(1), 84-103.

Peltier, T. R. (2005). Information Security Risk Analysis. Auerbach Publications.

Raju, J. S. (1995). Theoretical models of sales promotions: Contributions,
limitations, and a future research agenda. European Journal of
Operational Research, 1-17.

Rathmell, J. M. (1966). What is meant by Services. Journal of Marketing, 30, 32-
33.

Rust, R. T., & Chung, T. S. (2006). Marketing Models of Service and
Relationships. Marketing Science, 25(6), 560-580.

Salesforce.com. (n.d.). Force.com Cloud Computing - Programmable User
Interface. Retrieved July 11, 2011, from Salesforce.com:
http://www.salesforce.com/platform/cloud-platform/programmable-ui.jsp

Salesforce.com. (n.d.). Sales Force Automation - Salesforce.com. Retrieved
December 26, 2011, from Sales Cloud:
http://www.salesforce.com/crm/sales-force-automation/

143

Sambamurthy, V., Bharadwaj, A., & Grover, V. (2003). Shaping agility through
digital options: Reconceptualizing the role of information technology in
contemporary firms. MIS Quarterly, 237-264.

Scheuing, E. E. (1989). New Product Management. Merril Publishing.

Schilling, M. A. (2000). Toward a General Modular Systems Theory and Its
Application to Interfirm Product Modularity. The Academy of Management
Review, 25(2), 312-334.

Smunt, T. E. (1996, August). Rough Cut Capacity Planning in a Learning
Environment. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT,
43(3), 334-341.

Sourceforge.net. (n.d.). Metrics 1.3.6. Retrieved December 27, 2011, from
Metrics 1.3.6 - Getting started: http://metrics.sourceforge.net/

Spohrer, J., Maglio, P. P., Bailey, J., & Gruhl, D. (2007, January). Steps Toward a
Science of Service Systems. Computer, 49(7), 71-77.

Sridhar, T. (2011, December 27). Cloud Computing - A Primer - The Internet
Protocol Journal, Volume 12, No.3 - Cisco Systems. Retrieved from Cloud
Computing - A Primer:
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_12-
3/123_cloud1.html

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk Management Guide for
Information Technology Systems. Gaithersburg, MD 20899-8930:
Computer Security Division, Information Technology Laboratory, National
Institute of Standards and Technology.

Susarla, A., Barua, A., & Whinston, A. B. (2009). A Transaction Cost Perspective
of the “Software as a Service” Business Model. Journal of Management
Information Systems, 26(2), 205-240.

Susarla, A., Barua, A., & Whinston, A. B. (2010). Multitask Agency, Modular
Architecture, and Task Disaggregation in SaaS. Journal of Management
Information Systems, 26(4), 87-117.

Taleb, N., Goldstein, D. G., & Spitznagel, M. W. (2009). The Six Mistakes
Executives Make In Risk Management. Harvard Business Review, 78-81.

Taudes, A., Feurstein, M., & Mild, A. (2000). Options Analysis of Software
Platform Decisions: A Case Study. MIS Quarterly, 227-243.

144

Transaction Processing Performance Council (TPC). (2012). TPC Virtual
Measurement Single System TPC-VMS. Transaction Processing
Performance Council.

Transaction Processing Performance Council. (n.d.). TPC-W - HomePage.
Retrieved from TPC: http://www.tpc.org/tpcw/default.asp

Ueno, K., & Tatsubori, M. (2009, October-December). Early Capacity Testing of
an Enterprise Service Bus. International Journal of Web Services
Research, 6(4), 30-47.

Ulrich, K. (1995). The role of product architecture in the manufacturing firm.
Research Policy, 24(3), 419-440.

Vaquero, L. M., Rodero-Merion, L., Caceres, J., & Lindner, M. (2009, January). A
Break in the Clouds: Towards a Cloud Definition. ACM SIGCOMM
Computer Communication Review, 39(1), 50-55.

Vitasek, K. (2010, February). Resources & Research: Glossary of Terms.
Retrieved May 22, 2010, from Council of Supply Change Management
Professionals (CSCMP): http://cscmp.org/digital/glossary/document.pdf

Wang, J., Chaudhury, A., & Rao, H. R. (2008). A Value-at-Risk Approach to
Information Security Investment. Information Systems Research, 106-120.

Wasserman, A. I. (1996, November). Toward a Discipline of Software
Engineering. IEEE Software, 23-31.

Weng, Z. K. (1999). Risk-pooling over demand uncertainty in the presence of
product modularity. Int. J. Production Economics(105), 75-85.

Whitman, M. E., & Mattord, H. J. (2009). Principles of Information Security.
Boston: Course Technology.

Wikipedia. (n.d.). Assembly Line - Wikipedia. Retrieved July 8, 2011, from
Wikipedia Web site: http://en.wikipedia.org/wiki/Assembly_line

Wikipedia. (n.d.). Software as a service. Retrieved November 18, 2007, from
http://en.wikipedia.org/wiki/SaaS

Wikipedia.org. (n.d.). Risk. Retrieved June 1, 2010, from Wikipedia:
http://en.wikipedia.org/wiki/Risk

Winston, W. L. (1993). Operations Research: Applications and Algorithms (3rd
Edition ed.). Duxbury Press.

145

Wu, J., Li, J., Wang, S., & Cheng, T. C. (2009). Mean–variance analysis of the
newsvendor model with stockout cost. Omega, 37, 724-730.

Wu, L.-C., & Ong, C.-S. (2008). Management of information technology
investment: A framework based on a Real Options and Mean–Variance
theory perspective. Technovation, 28, 122–134.

Yoo, Y. (2010, June). Computing in Everyday Life: A Call for Research on
Experiential Computing. MIS Quarterly, 34(2), 213-231.

Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The New Organizing Logic of
Digital Innovation: An Agenda for Information Systems Research.
Information Systems Research, 21(4), 724-735.

Yourdon, Y., & Constantine, L. (1979). Structured Design: Fundamentals of a
discipline of computer program and systems design. Prentice Hall.

Yue, W. T., Çakanyıldırım, M., Ryu, Y. U., & Liu, D. (2007). Network externalities,
layered protection and IT security risk management. Decision Support
Systems, 1-16.

Zhang, J., & Seidmann, A. (2010). Perpetual Versus Subscription Licensing Under
Quality Uncertainty and Network Externality Effects. Journal of
Management Information Systems, 27(1), 39-68.

Zhang, Z., Tan, Y., & Dey, D. (2009). Price competition with service level
guarantee in web services. Decision Support Systems, 47, 93-104.

146

Appendix

package omegaSimulation;

import java.util.Random;

/**

 * This program was originally developed by Sedgewick

 * Modified by Abhijit Dutt
 * The approximation is accurate to absolute error less than 8 *

10^(-16).

 * Reference: Evaluating the Normal Distribution by George

Marsaglia.

 * http://www.jstatsoft.org/v11/a04/paper

 *

********/

public class Gaussian {

 // return phi(x) = standard Gaussian pdf

 public static double phi(double x) {

 return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI);
 }

 // return phi(x, mu, signma) = Gaussian pdf with mean mu and

stddev sigma

 public static double phi(double x, double mu, double sigma) {

 return phi((x - mu) / sigma) / sigma;

 }

 // return Phi(z) = standard Gaussian cdf using Taylor
approximation

 public static double Phi(double z) {

 if (z < -8.0) return 0.0;

 if (z > 8.0) return 1.0;

 double sum = 0.0, term = z;

 for (int i = 3; sum + term != sum; i += 2) {

 sum = sum + term;

 term = term * z * z / i;
 }

147

 return 0.5 + sum * phi(z);
 }

 // return Phi(z, mu, sigma) = Gaussian cdf with mean mu and

stddev sigma

 public static double Phi(double z, double mu, double sigma) {

 return Phi((z - mu) / sigma);

 }

 // Compute z such that Phi(z) = y via bisection search

 public static double PhiInverse(double y) {

 return PhiInverse(y, .00000001, -8, 8);

 }

 // bisection search

 private static double PhiInverse(double y, double delta,

double lo, double hi) {

 double mid = lo + (hi - lo) / 2;

 if (hi - lo < delta) return mid;

 if (Phi(mid) > y) return PhiInverse(y, delta, lo, mid);

 else return PhiInverse(y, delta, mid, hi);

 }

 // test client

}

148

/**

 * This program has been originally developed by Abhijit Dutt

 * This class is used for calculating the optimal parameters

 * when provider’s risk tolerance is not included.

 *

 *

********/

package omegaSimulation;

import java.awt.Color;

import java.io.*;

import java.util.*;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.jfree.chart.plot.ValueMarker;

import org.jfree.chart.plot.XYPlot;

public class mySimulation {

 final double alpha = 100;

 final double beta = 3;

 protected double omega = .05;

 protected double delta = 1;

 protected double Z= 20;

 protected double A = 5;

 protected double D= 10;

 protected double demand = 0;

 protected double capacityPDF = 0;

 protected double price = 0;

149

 protected double opportunity = 0;

 protected double performance = 0;

 protected double dataStore [][];

 protected ChartHandler myChart = new ChartHandler("My

Chart");

 protected double variancePercentage;

 public mySimulation(double var, int numVaribles, int

numRows){

 dataStore = new double [numVaribles][numRows];

 variancePercentage= var;

 updateParameters();

 }

 public void updateParameters(){

 demand = 2*D*beta*(alpha - Z*beta)/(4*D*beta - delta*delta);

 price = 2*D*(alpha - Z*beta)/(4*D*beta - delta*delta) +Z;

 performance = delta*(alpha - Z*beta)/(4*D*beta -

delta*delta) ;

 opportunity = getPrice() -Z*omega;

 //opportunity = 0;

 }

 public double getDemand(){

 return (demand);

 }

 public double getCapacityPDF(){

 //capacityPDF = 1 - (Z*omega/(price+opportunity));

 capacityPDF = (price+opportunity- Z)/(price+opportunity-

Z*(1-omega));

 return capacityPDF;

 }

150

 public double getPrice(){

 return price;

 }

 public double getPerformance(){

 return performance;

 }

 public double getOpportunity(){

 return opportunity;

 }

 public void printIt(){

 //System.out.printf("Demand ", demand);

 //System.out.printf("Demand: %03D", demand +" Price:"+

price+ " Opportunity:"+opportunity);

 System.out.println(String.format("Demand: %5.2f Price:

%5.2f Opportunity: %5.2f Performance: %5.2f", demand,

price, opportunity, performance));

 }

 public double calculateOptimalCapacity(double t_omega){

 omega = t_omega;

 updateParameters();

 double mu = getDemand();

 double sigma = variancePercentage*mu;

 double y = getCapacityPDF();

151

 double phi_inv = Gaussian.PhiInverse(y)*sigma+mu;

 return phi_inv;

 }

 public void omegaSimulation(double var, int num, int

numSteps){

 variancePercentage= var;

 omega = .35;

 updateParameters();

 for (int i=0; i < numSteps; i++){

 double phi_inv = calculateOptimalCapacity(omega);

 dataStore[0][i] = opportunity;

 dataStore [num][i] = phi_inv;

 //System.out.println("Omega:"+simul.omega + " y"+ y+ "

PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 //data.put(i, new Object[] {simul.omega, simul.demand,

phi_inv,(simul.demand-phi_inv)});

 omega += .05;

 }

 }

public void opportunitySimulation(double var, int num, int

numSteps){

 variancePercentage= var;

 omega = .6;

152

 updateParameters();

 opportunity = 0;

 Map<Object, Object[]> data = new TreeMap<Object,

Object[]>();

 double incr = (getPrice() -Z*omega)*1.5/numSteps;

 for (int i=0; i < numSteps; i++){

 double phi_inv = calculateOptimalCapacity(omega);

 dataStore[0][i] = opportunity;

 dataStore [num][i] = phi_inv;

 //System.out.println("Omega:"+simul.omega + " y"+ y+ "

PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 //data.put(i, new Object[] {simul.omega, simul.demand,

phi_inv,(simul.demand-phi_inv)});

 opportunity += incr;

 }

 for (int i=0; i < numSteps; i++){

 //System.out.println("Omega:"+simul.omega + "

y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-

phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 data.put(i, new Object[] {dataStore[0][i],

dataStore[1][i]});

 }

 //excelWriter temp = new excelWriter();

153

 //temp.writeFile(data,
"C:\\Users\\aud18\\Documents\\research\\Dissertation\\Paper2\

\test.xls");

 drawChart(data, "Opportunity", 1, new String[] {"Capacity"});

 myChart.drawHorizontalLine(demand);

 myChart.setVisible(true);

 }

public static void main(String[] args) {

 int numOfSteps = 15;

 mySimulation simul = new mySimulation(.1, 4, numOfSteps);

 /*

 Map<Object, Object[]> data = new TreeMap<Object, Object[]>();

 simul.printIt();

 simul.omegaSimulation(.01, 1, numOfSteps);

 simul.omegaSimulation(.05, 2, numOfSteps);

 simul.omegaSimulation(.1, 3, numOfSteps);

 //data.put(0, new Object[] {"Omega", "y", "Phi-Inv",

"Diff"});

 for (int i=0; i < numOfSteps; i++){

 //System.out.println("Omega:"+simul.omega + "

y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-

phi_inv));

 //System.out.println(String.format("Omega:%5.2f

PHI-INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 data.put(i, new Object[] {simul.dataStore[0][i],

simul.dataStore[1][i], simul.dataStore[2][i],

simul.dataStore[3][i]});

154

 }

 //excelWriter temp = new excelWriter();

 //temp.writeFile(data,

"C:\\Users\\aud18\\Documents\\research\\Dissertation\\Paper2\
\test.xls");

 simul.drawChart(data, "Omega", 3, new String[]

{"Capacity(Var = .01)", "Capacity(Var = .05)", "Capacity (Var

= .1)"});

 simul.myChart.drawHorizontalLine(simul.demand);

 simul.myChart.setVisible(true);

 */

 simul.printIt();

 simul.opportunitySimulation(.01, 1, numOfSteps);

 }

public void drawChart(Map <Object, Object[]> inData, String

cName, int numDepVariab, String [] seriesName){

 Map<Object, Object[]> data;

 data = inData;

 Set<Object> keyset = data.keySet();

 int rowSize = keyset.size();

 //Number of rows

 int colSize = numDepVariab;

 System.out.println("Row:"+ rowSize+" Col Size:"+ colSize);

 double [] xValues= new double[rowSize];

 double [][] yValues= new double[colSize][rowSize];

155

 for (Object key : keyset) {

 Object [] objArr = data.get(key);

 xValues[(Integer)(key)] = (Double)objArr[0];

 for (int j=1; j < (colSize+1); j++){

 yValues[j-1][(Integer)(key)] = (Double)objArr[j];

 }

 }

 //myChart.populateDataSet("Y", xValues, yValues[0]);

 for (int i = 0; i < numDepVariab; i++)

 myChart.populateDataSet(seriesName[i], xValues,

yValues[i]);

 myChart.drawChart(cName);

}

}

156

/**

 * This program has been originally developed by Abhijit Dutt

 * This class is used for performing numerical simulation when

 * risk is ignored.

 *

********/
package ProfitSimulation;

import java.awt.Color;

import java.util.Map;

import java.util.Random;

import java.util.TreeMap;

import omegaSimulation.*;

public class profitAverage extends mySimulation{

 long totalZeroDemand = 0;

 double fixedCost = 0;

 double optimalCapacity = 0;

 double currentCapacity = 0;
 public final int numTrials=100000;

 private double sumOfProfit=0;

 private final Random rand = new Random();

 double averageDemandSum =0;

 public profitAverage(double vPerc){

 super(vPerc,10, 10);

 printIt();

 }

 //Given Random demand calculate profit

 public double calculateProfit (double r_demand){

 double r_profit = price*Math.min(currentCapacity,

r_demand)
 -Z*omega*currentCapacity -

Math.min(currentCapacity, r_demand)*Z*(1-omega)-

(A+D*performance*performance)

157

 - opportunity *Math.max((r_demand-
currentCapacity), 0);

 return r_profit;

 }

 public double calculateProfitWithoutOpportunity (double

r_demand){

 double r_profit = price*Math.min(currentCapacity,

r_demand)
 -Z*omega*currentCapacity -

Math.min(currentCapacity, r_demand)*Z*(1-omega)-

(A+D*performance*performance);

 return r_profit;

 }

 /**

 * @param args

 */

 public void simulationCapacity(){

 /*Check the logic */

 //First calculate the capacity, based on all

information

 //Keep increasing the capacity and check its effect on
average

 //demand

 //Use the average demand and and generate random

demand

 double avProfit2[]= new double[numTrials];

 long k = 10;

 double sd =0;

 Map<Object, Object[]> data = new TreeMap<Object,
Object[]>();

 omega = .3;

 updateParameters();

 optimalCapacity = calculateOptimalCapacity(omega);

 System.out.printf("Optimal Capacity:%5.2f

\n",optimalCapacity);

 double

increment=(2*variancePercentage*demand)*Math.abs(optimalCapacity-
demand)/k;

 //Update Current capacity and it is used for

calculating profit

 currentCapacity = optimalCapacity-(k/2)*increment;

158

 for (int i=0; i < k; i++){
 sumOfProfit=0;

 double sumOfProfit2=0;

 totalZeroDemand = 0;

 currentCapacity += increment;

 averageDemandSum =0;

 long numOfEvents = 0;

 for (int j =0; j< numTrials;j++){

 double randomDemandComp =
rand.nextGaussian()*(variancePercentage*demand);

 double randDemand = demand+

randomDemandComp;

 if (randDemand> 0){

 double randProfit =

calculateProfit(randDemand);

 sumOfProfit += randProfit;

 averageDemandSum +=randDemand;

 randProfit =

calculateProfitWithoutOpportunity(randDemand);

 avProfit2[j] = randProfit;

 numOfEvents++;

 }

 }

 //System.out.println("Omega:"+simul.omega + "

y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-phi_inv));

 //System.out.println(String.format("Omega:%5.2f

PHI-INVERSE:%5.2f Diff:%5.2f", omega, phi_inv,(demand-

phi_inv)));
 for(int n= 0 ; n<numOfEvents; n++)

 sumOfProfit2 += avProfit2[n];

 double averageProfit = sumOfProfit2/numOfEvents;

 double sdSum1= 0;

 for(int n= 0 ; n<numOfEvents; n++){

 double temp2 = avProfit2[n]-averageProfit;

 sdSum1 += temp2*temp2;
 }

 sd = Math.pow((sdSum1/(numOfEvents-1)),

.5);

 averageProfit = sumOfProfit/numOfEvents;

159

 data.put(i, new Object[]
{currentCapacity,averageProfit, sd});

 //System.out.println("Average Profit:"+

(sumOfProfit/numTrials)+" Omega:"+omega+ "current cap:"+

currentCapacity+"Average Demand:"+ (averageDemandSum/numTrials));

 System.out.println(String.format("Average Profit:

%5.2f Current cap: %5.2f Average Demand:%5.2f SD:%5.2f",

(sumOfProfit/numTrials),currentCapacity,(averageDemandSum/numTria
ls), sd));

 }

 drawChart(data, "Capacity", 2, new String []

{"Average Profit", "SD Profit"});

 //drawChart(data, "Capacity", 1, new String []

{"Average Profit"});

 myChart.drawVerticalLine(optimalCapacity);

 //myChart.drawVerticalLine(demand);

 //myChart.drawHorizontalLine(calculateProfit(demand),

Color.green);

 myChart.setVisible(true);

 }

 /*

 public void simulationVariation(){
 //First calculate the capacity, based on all

information

 //Keep increasing the capacity and check its effect on

average

 //demand

 //Use the average demand and and generate random

demand

 long k = 20;
 Map<Object, Object[]> data = new TreeMap<Object,

Object[]>();

 omega = .3;

 variancePercentage =.01;

 updateParameters();

 optimalCapacity = calculateOptimalCapacity(omega);

 System.out.printf("Optimal Capacity:%5.2f

\n",optimalCapacity);
 double

increment=(2*variancePercentage*demand)*Math.abs(optimalCapacity-

demand)/k;

 currentCapacity = optimalCapacity-(k/2)*increment;

160

 for (int i=0; i < k; i++){
 optimalCapacity =

calculateOptimalCapacity(omega);

 data.put(i, new Object[] {variancePercentage,

optimalCapacity});

 variancePercentage +=.01;

 //System.out.println("Average Profit:"+

(sumOfProfit/numTrials)+" Omega:"+omega+ "current cap:"+

currentCapacity+"Average Demand:"+ (averageDemandSum/numTrials));
 //System.out.println(String.format("Average

Profit: %5.2f Current cap: %5.2f Average Demand:%5.2f",

(sumOfProfit/numTrials),currentCapacity,(averageDemandSum/numTria

ls)));

 }

 drawChart(data, "Variance", 1, new String []

{"OptimalCapacity"});

 myChart.drawHorizontalLine(demand);

 myChart.setVisible(true);

 }

 */

 public void simulationCapacityWithVariance(){

 /*Check the logic */

 //First calculate the capacity, based on all

information
 //Keep increasing the capacity and check its effect on

average

 //demand

 //Use the average demand and and generate random

demand

 double avProfit2[]= new double[numTrials];

 long k = 100;

 double sd =0;
 Map<Object, Object[]> data = new TreeMap<Object,

Object[]>();

 omega = .3;

 updateParameters();

 optimalCapacity = calculateOptimalCapacity(omega);

 System.out.printf("Optimal Capacity:%5.2f

\n",optimalCapacity);

 double
increment=(2*variancePercentage*demand)*Math.abs(optimalCapacity-

demand)/k;

 //Update Current capacity and it is used for

calculating profit

161

 currentCapacity = optimalCapacity-(k/2)*increment;
 double highestProfitWithVar = 0;

 double varOptCapacity = 0;

 for (int i=0; i < k; i++){

 sumOfProfit=0;

 double sumOfProfit2=0;

 totalZeroDemand = 0;

 currentCapacity += increment;

 averageDemandSum =0;
 long numOfEvents = 0;

 for (int j =0; j< numTrials;j++){

 double randomDemandComp =

rand.nextGaussian()*(variancePercentage*demand);

 double randDemand = demand+

randomDemandComp;

 if (randDemand> 0){

 double randProfit =

calculateProfit(randDemand);

 sumOfProfit += randProfit;

 averageDemandSum +=randDemand;

 //randProfit =

calculateProfitWithoutOpportunity(randDemand);

 avProfit2[j] = randProfit;

 numOfEvents++;

 }

 }

 //System.out.println("Omega:"+simul.omega + "
y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-phi_inv));

 //System.out.println(String.format("Omega:%5.2f

PHI-INVERSE:%5.2f Diff:%5.2f", omega, phi_inv,(demand-

phi_inv)));

 for(int n= 0 ; n<numOfEvents; n++)

 sumOfProfit2 += avProfit2[n];

 double averageProfit = sumOfProfit2/numOfEvents;
 double sdSum1= 0;

 for(int n= 0 ; n<numOfEvents; n++){

 double temp2 = avProfit2[n]-averageProfit;

 sdSum1 += temp2*temp2;

162

 }
 sd = Math.pow((sdSum1/(numOfEvents-1)),

.5);

 averageProfit = sumOfProfit/numOfEvents;

 if (highestProfitWithVar < (averageProfit-sd)){

 highestProfitWithVar=averageProfit-sd;

 varOptCapacity = currentCapacity;

 }

 data.put(i, new Object[]
{currentCapacity,averageProfit, averageProfit-sd, sd});

 //System.out.println("Average Profit:"+

(sumOfProfit/numTrials)+" Omega:"+omega+ "current cap:"+

currentCapacity+"Average Demand:"+ (averageDemandSum/numTrials));

 System.out.println(String.format("Average Profit:

%5.2f Current cap: %5.2f Average Demand:%5.2f SD:%5.2f",

(sumOfProfit/numTrials),currentCapacity,(averageDemandSum/numTria

ls), sd));

 }

 drawChart(data, "Capacity", 3, new String []

{"Average Profit", "Av Profit2", "SD Profit"});

 //drawChart(data, "Capacity", 1, new String []

{"Average Profit"});

 myChart.drawVerticalLine(optimalCapacity);

 myChart.drawVerticalLine(varOptCapacity);

 //myChart.drawVerticalLine(demand);

 //myChart.drawHorizontalLine(calculateProfit(demand),

Color.green);

 myChart.setVisible(true);

 }

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 //new profitAverage(.1).simulationCapacity();

 new

profitAverage(.15).simulationCapacityWithVariance();

 }

}

163

/**

 * This program has been originally developed by Abhijit Dutt

 * This class is used for calculating the optimal parameters

 * when provider’s risk tolerance is included.

 *

 *

********/

package omegaSimulation;

import java.awt.Color;

import java.io.*;

import java.util.*;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import org.jfree.chart.plot.ValueMarker;

import org.jfree.chart.plot.XYPlot;

public class mySimulation {

 final double alpha = 100;

 final double beta = 1;

 final double gamma = 1;

 protected double omega = .05;

 protected double delta = 5;

 protected double Z= 50;

 protected double A = 5;

 protected double B = 5;

 protected double C = 5;

 protected double D= 10;

 protected double G= 3;

164

 protected double demand = 0;

 protected double capacityPDF = 0;

 protected double price = 0;

 protected double modularity = 0;

 protected double opportunity = 0;

 protected double performance = 0;

 protected double dataStore [][];

 protected ChartHandler myChart = new ChartHandler("My

Chart");

 protected double variancePercentage;

 public mySimulation(double var, int numVaribles, int

numRows){

 dataStore = new double [numVaribles][numRows];

 variancePercentage= var;

 updateParameters();

 }

 public void updateParameters(){

 double denom = (4*C*D*beta - D*gamma*gamma - C *

Math.pow((delta- G * beta), 2)) ;

 demand = (D*beta*(2*C*(alpha - Z*beta)+ B * gamma))/denom ;

 performance = (2*C*(alpha - Z*beta)+ B * gamma)*(delta-G *

beta)/(2*denom) ;

 price = D*(2*C*(alpha - Z*beta)+ B * gamma)/denom +Z +

G*performance;

 modularity = (2*D*(alpha - Z*beta)*gamma + B *(4*D*beta -

Math.pow((delta-G * beta), 2)))/(2*denom);

165

 opportunity = (getPrice() -Z);

 System.out.println("Hessian:" + denom);

 //opportunity = 0;

 }

 public double getDemand(){

 return (demand);

 }

 public double getCapacityPDF(){

 //capacityPDF = 1 - (Z*omega/(price+opportunity));

 capacityPDF = (price+opportunity- Z -

G*performance)/(price+opportunity- Z*(1-omega));

 return capacityPDF;

 }

 public double getPrice(){

 return price;

 }

 public double getPerformance(){

 return performance;

 }

 public double getOpportunity(){

 return opportunity;

 }

 public void printIt(){

166

 //System.out.printf("Demand ", demand);

 //System.out.printf("Demand: %03D", demand +" Price:"+

price+ " Opportunity:"+opportunity);

 System.out.println(String.format("Demand: %5.2f Price:

%5.2f Opportunity: %5.2f Performance: %5.2f Modularity:

%5.2f", demand, price, opportunity, performance,

modularity));

 }

 public double calculateOptimalCapacity(double t_omega){

 omega = t_omega;

 updateParameters();

 double mu = getDemand();

 double sigma = variancePercentage*mu;

 double y = getCapacityPDF();

 double phi_inv = Gaussian.PhiInverse(y)*sigma+mu;

 return phi_inv;

 }

 public void omegaSimulation(double var, int num, int

numSteps){

 variancePercentage= var;

 omega = .35;

 updateParameters();

 for (int i=0; i < numSteps; i++){

 double phi_inv = calculateOptimalCapacity(omega);

167

 dataStore[0][i] = opportunity;

 dataStore [num][i] = phi_inv;

 //System.out.println("Omega:"+simul.omega + " y"+ y+ "

PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 //data.put(i, new Object[] {simul.omega, simul.demand,

phi_inv,(simul.demand-phi_inv)});

 omega += .05;

 }

 }

public void opportunitySimulation(double var, int num, int

numSteps){

 variancePercentage= var;

 omega = .6;

 updateParameters();

 opportunity = 0;

 Map<Object, Object[]> data = new TreeMap<Object,

Object[]>();

 double incr = (getPrice() -Z*omega)*1.5/numSteps;

 for (int i=0; i < numSteps; i++){

 double phi_inv = calculateOptimalCapacity(omega);

 dataStore[0][i] = opportunity;

 dataStore [num][i] = phi_inv;

 //System.out.println("Omega:"+simul.omega + " y"+ y+ "

PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

168

 //data.put(i, new Object[] {simul.omega, simul.demand,
phi_inv,(simul.demand-phi_inv)});

 opportunity += incr;

 }

 for (int i=0; i < numSteps; i++){

 //System.out.println("Omega:"+simul.omega + "

y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-

phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 data.put(i, new Object[] {dataStore[0][i],

dataStore[1][i]});

 }

 //excelWriter temp = new excelWriter();

 //temp.writeFile(data,

"C:\\Users\\aud18\\Documents\\research\\Dissertation\\Paper2\

\test.xls");

 drawChart(data, "Opportunity", 1, new String[] {"Capacity"});

 myChart.drawHorizontalLine(demand);

 myChart.setVisible(true);

 }

public static void main(String[] args) {

 int numOfSteps = 15;

 mySimulation simul = new mySimulation(.1, 4, numOfSteps);

 /*

 Map<Object, Object[]> data = new TreeMap<Object, Object[]>();

 simul.printIt();

 simul.omegaSimulation(.01, 1, numOfSteps);

169

 simul.omegaSimulation(.05, 2, numOfSteps);

 simul.omegaSimulation(.1, 3, numOfSteps);

 //data.put(0, new Object[] {"Omega", "y", "Phi-Inv",

"Diff"});

 for (int i=0; i < numOfSteps; i++){

 //System.out.println("Omega:"+simul.omega + "

y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-
phi_inv));

 //System.out.println(String.format("Omega:%5.2f

PHI-INVERSE:%5.2f Diff:%5.2f", simul.omega,

phi_inv,(simul.demand-phi_inv)));

 data.put(i, new Object[] {simul.dataStore[0][i],

simul.dataStore[1][i], simul.dataStore[2][i],

simul.dataStore[3][i]});

 }

 //excelWriter temp = new excelWriter();

 //temp.writeFile(data,

"C:\\Users\\aud18\\Documents\\research\\Dissertation\\Paper2\

\test.xls");

 simul.drawChart(data, "Omega", 3, new String[]
{"Capacity(Var = .01)", "Capacity(Var = .05)", "Capacity (Var

= .1)"});

 simul.myChart.drawHorizontalLine(simul.demand);

 simul.myChart.setVisible(true);

 */

 simul.printIt();

 //simul.opportunitySimulation(.01, 1, numOfSteps);

 }

170

public void drawChart(Map <Object, Object[]> inData, String
cName, int numDepVariab, String [] seriesName){

 Map<Object, Object[]> data;

 data = inData;

 Set<Object> keyset = data.keySet();

 int rowSize = keyset.size();

 //Number of rows

 int colSize = numDepVariab;

 System.out.println("Row:"+ rowSize+" Col Size:"+ colSize);

 double [] xValues= new double[rowSize];

 double [][] yValues= new double[colSize][rowSize];

 for (Object key : keyset) {

 Object [] objArr = data.get(key);

 xValues[(Integer)(key)] = (Double)objArr[0];

 for (int j=1; j < (colSize+1); j++){

 yValues[j-1][(Integer)(key)] = (Double)objArr[j];

 }

 }

 //myChart.populateDataSet("Y", xValues, yValues[0]);

 for (int i = 0; i < numDepVariab; i++)

 myChart.populateDataSet(seriesName[i], xValues,

yValues[i]);

 myChart.drawChart(cName);

}

}

171

/**

 * This program has been originally developed by Abhijit Dutt

 * This class is used for performing numerical simulation when

 * risk is ignored.

 *

********/

package ProfitSimulation;

import java.awt.Color;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.math.BigDecimal;

import java.math.MathContext;

import java.util.Date;

import java.util.Map;

import java.util.Random;

import java.util.Set;

import java.util.TreeMap;

import org.apache.poi.hssf.usermodel.HSSFSheet;

import org.apache.poi.hssf.usermodel.HSSFWorkbook;

import org.apache.poi.ss.usermodel.Cell;

import org.apache.poi.ss.usermodel.Row;

import omegaSimulation.*;

public class profitAverage extends mySimulation{

 long totalZeroDemand = 0;

172

 double fixedCost = 0;

 double optimalCapacity = 0;

 double currentCapacity = 0;

 //public final int numTrials=100000;

 public final int numTrials=10000;

 private final Random rand = new Random(100000);

 double averageDemandSum =0;

 public profitAverage(double vPerc){

 super(vPerc,10, 10);

 }

 //Given Random demand calculate profit

 public double calculateProfit (double r_demand){

 //Use Equation 13

 double r_profit = price*Math.min(currentCapacity, r_demand)

 -(Z*omega+G*performance)*currentCapacity

 - Math.min(currentCapacity, r_demand)*Z*(1-omega)

 -(A -

B*modularity+C*modularity*modularity+D*performance*performanc
e)

 - opportunity *Math.max((r_demand-

currentCapacity), 0);

 return r_profit;

 }

 public double calculateProfitWithoutOpportunity (double

r_demand){

173

 double r_profit = price*Math.min(currentCapacity, r_demand)

 -(Z*omega+G*performance)*currentCapacity

 - Math.min(currentCapacity, r_demand)*Z*(1-omega)

 -(A -

B*modularity+C*modularity*modularity+D*performance*performanc

e);

 return r_profit;

 }

 /**

 * @param args

 */

 public void simulationCapacityWithVariance(){

 /*Check the logic */

 //First calculate the capacity, based on all information

 //Keep increasing the capacity and check its effect on

average

 //demand

 //Use the average demand and and generate random demand

 //

 //long k = 10000;

 long k = 5000;

 HSSFWorkbook workbook = new HSSFWorkbook();

 omega = .1;

 for (int pp=0; pp <5; pp++){

 omega += .1d;

174

 HSSFSheet sheet = workbook.createSheet("Omega="+

Double.toString(omega).substring(0,3));

 updateParameters();

 printIt();

 optimalCapacity =

calculateOptimalCapacity(omega);

 System.out.printf("Optimal Capacity:%5.2f

demand:%5.2f \n",optimalCapacity, demand);

 double

increment=(variancePercentage*demand)*Math.abs(optimalCapacit

y-demand)/k;

 //Update Current capacity and it is used for

calculating profit

 System.out.printf("Start Capacity:%5.2f End

Capacity::%5.2f incr:%4.3f \n",(optimalCapacity-

(k/2)*increment), (optimalCapacity+(k/2)*increment),
increment);

 double var =0;

 double epsilon = 0;

 Map<Integer, Object[]> data = new

TreeMap<Integer, Object[]>();

 int myKey = 1;

 data.put(myKey++, new Object[] {"Epsilon",

"Optimal Capacity", "H-Prof", "Av-Prof1", "Av-Prof2",
"SD"});

 for (int m=0; m < 10; m++){//Change Epsilon

 double highestProfitWithVar = 0;

175

 double varOptCapacity = 0;

 double myAverageProfit = 0;

 double myAverageProfit2 = 0;

 double mySD = 0;

 currentCapacity = optimalCapacity-

(k/2)*increment;

 epsilon += .1;

 for (int i=0; i < k; i++){

 //This loop is for changing the capacity

 BigDecimal sumOfProfit= new BigDecimal(0.0,

MathContext.DECIMAL128);

 BigDecimal sumOfProfit2= new

BigDecimal(0.0, MathContext.DECIMAL128);

 totalZeroDemand = 0;

 currentCapacity += increment;

 averageDemandSum =0;

 long numOfEvents = 0;

 for (int j =0; j< numTrials;j++){

 double randomDemandComp =

rand.nextGaussian()*(variancePercentage*demand);

 double randDemand = demand+

randomDemandComp;

 if (randDemand> 0){

 double randProfit =

calculateProfit(randDemand);

 averageDemandSum +=randDemand;

 //randProfit =

calculateProfitWithoutOpportunity(randDemand);

 sumOfProfit=sumOfProfit.add(new

BigDecimal(randProfit), MathContext.DECIMAL128);

176

 sumOfProfit2=sumOfProfit2.add(new

BigDecimal(randProfit*randProfit), MathContext.DECIMAL128);

 numOfEvents++;

 }

 } //end for

 //System.out.println("Omega:"+simul.omega

+ " y"+ y+ " PHI-INVERSE:"+ phi_inv +" Diff:"+ (mu-

phi_inv));

 //System.out.println(String.format("Omega:%5.2f PHI-

INVERSE:%5.2f Diff:%5.2f", omega, phi_inv,(demand-

phi_inv)));

 double averageProfit =

sumOfProfit.divide(new

BigDecimal(numOfEvents,MathContext.DECIMAL128),

MathContext.DECIMAL128).doubleValue() ;

 var =

sumOfProfit2.subtract(sumOfProfit.multiply(new

BigDecimal(2*averageProfit))).doubleValue()/numOfEvents

+averageProfit*averageProfit;

 double sd = Math.pow(var, 0.5);

 double optimizationParam = averageProfit-

epsilon*sd;

 if (highestProfitWithVar <

optimizationParam){

177

 highestProfitWithVar=optimizationParam;

 varOptCapacity = currentCapacity;

 myAverageProfit2 = averageProfit;

 }

 if(myAverageProfit < averageProfit){

 myAverageProfit = averageProfit;

 mySD = sd;

 }

 }

 System.out.println(String.format("E:%5.2f

Opt Cap:%6.3f H-Prof:%5.2f Av-Prof1:%5.2f Av-Prof2:%5.2f

SD :%5.2f", epsilon, varOptCapacity,highestProfitWithVar,

myAverageProfit, myAverageProfit2,mySD));

 data.put(myKey++, new Object[] {epsilon,

varOptCapacity,highestProfitWithVar, myAverageProfit,

myAverageProfit2,mySD});

 } // Change Epsilon

 Set<Integer> keyset = data.keySet();

 int rownum = 0;

 for (Integer key : keyset) {

 System.out.println("Key:"+key);

 Row row = sheet.createRow(rownum++);

 Object [] objArr = data.get(key);

 int cellnum = 0;

 for (Object obj : objArr) {

 Cell cell = row.createCell(cellnum++);

 if(obj instanceof Date)

 cell.setCellValue((Date)obj);

 else if(obj instanceof Boolean)

 cell.setCellValue((Boolean)obj);

178

 else if(obj instanceof String)

 cell.setCellValue((String)obj);

 else if(obj instanceof Double)

 cell.setCellValue((Double)obj);

 }

 }

 }

 try {

 FileOutputStream out =

 new FileOutputStream(new

File("C:\\Users\\aud18\\Documents\\research\\Dissertation\\Pa

per3\\Excel\\test.xls"));

 workbook.write(out);

 out.close();

 System.out.println("Excel written successfully..");

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 //new profitAverage(.1).simulationCapacity();

 new profitAverage(.1).simulationCapacityWithVariance();

 }

}

179

ABHIJIT DUTT

Office: (724) 773 3860 e mail:adutt77@yahoo.com

RESEARCH INTEREST:

• I am interested in the phenomenon of cloud computing. I consider cloud computing a significant step

from the point of view of users. Although, from the point of view of technology it may not be very
significant. In order to understand cloud computing, it is necessary to look into some other areas and
use some innovative research methodology.

• Teaching different courses in the Security and Risk Analysis area and working in a NSF grant got me
interested in this area. The third essay of my dissertation introduces innovative mean variance analysis
theory to IS area. I would like to extend that to information assurance area. I also see that data mining
could be a very important tool in the information assurance area. I would like to investigate that
further.

EDUCATION: PhD Management Information Systems (major), Production and Operations Management
(minor),

Univ. of Wisconsin-Milwaukee (August, 2013). Dissertation defended – June 21, 2013.
Dissertation Title: Economic Perspective on Cloud Computing: Three Essays.
MS in Computer Science, University of Tulsa, 1992.
MS in Physics, University of Calcutta, INDIA, 1983.

ACADEMIC PERPARATION:

UNIVERSITY OF WISCONSIN, MILWAUKEE, WI Aug. ’03 – Aug. ‘13
Ph.D. candidate, MIS Area, Lubar School of Business

• My dissertation examines issues faced by providers of Cloud Computing Applications. The first essay

examines issues during development of SaaS. The second essay recognizes the service aspect of cloud
computing and a model is developed to help providers with infrastructure capacity planning. The third
essay examines the financial risks involved associated with capacity planning and a model is
developed that would help providers to minimize their financial risk based on their risk tolerance. The
primary research methodology used – theoretical modeling. Also used numerical solution and
computer simulation. Custom Java programs were developed for the purpose.

• During my doctoral program I took many research methodology courses as well as Information System
courses.

ACADEMIC EXPERIENCE:

PENN STATE UNIVERSITY, MONACA, PA Aug. ’08 – Till Date
Instructor of Information Sciences and Technology

� Responsible for teaching courses in the areas of Information Science and Technology and Security
and Risk Analysis in Beaver campus as well in World campus of Penn State.

� Teach courses using variety of formats – traditional face to face in class, synchronous video
conferencing and online. I have developed many of the Security and Risk Analysis courses.

� Also responsible for internship and advising students. I regularly organize trips for students to
local companies. During my time in Penn State I have built strong relationships with many local
companies. I also participate in student recruitment and serve in different committees.

� Advisor for Security and Risk Analysis minor. Investigator in a NSF grant “Exploration of a
Collaborative Virtual Computer Laboratory (CVCLAB) to Enhance Distance Learning in
Information Security”. Worked with other investigators and designed courses and virtual
laboratories for online course offering.

180

Carnegie Mellon University, Pittsburgh, Pa Jan. ’10 – Till Date
Adjunct Instructor

I have taught three graduate courses in the Heinz College. I am scheduled to teach again in fall ’13.

EDGEWOOD COLLEGE, MADISON, WI Aug. ’07 – May ‘08
Visiting Assistant Professor of Computer Information Systems

Taught Networking Fundamentals and Network Security and Network Management to returning adult
students and System Analysis & Design and Introduction to Information Systems to traditional
students. Was also involved in service activities such as student advising, hiring of adjunct faculty etc.

UNIVERSITY OF WISCONSIN, MILWAUKEE, WI Aug. ’03 – Aug. ‘07
Adjunct instructor, MIS Area, Lubar School of Business

I worked as a laboratory instructor teaching students about MS Excel, MS PowerPoint, and MS Access.
During 2006-2007, I taught System Analysis & Design (BUS ADM 436) and Information Technology
Infrastructure for Business (BUS ADM 533) independently.

MILWAUKEE SCHOOL OF ENGINEERING , MILWAUKEE, WI March, ‘06 – Dec., ‘06
Adjunct Assistant Professor, Electrical Engineering and Computer Science Dept.

Taught advanced undergraduate course on Computer Simulation and Modeling and Software Design II
which introduced students proficient in Java programming language to programming in C++ using object
oriented concepts. I was also involved during the reaccreditation process by ABET.

SHEPHERD UNIVERSITY, Shepherdstown, WV Aug. ’02 – May ‘03
Part Time Lecturer, ,Department of Computer and Information Sciences

Courses taught - System Analysis & Design, and Introduction to Computer and Information Sciences.

INDUSTRY EXPERIENCE:

Various Companies March ’92 – August ‘03
I worked in the IS industry both as an employee for almost ten years and as an independent consultant for a
little more than a year. I worked for various companies such as Motorola, Tellabs, Cabletron, Putnam
Investments etc. I also worked in three different areas in the country – Tulsa, Ok; Greater Boston area and
in Greater Washington area. I mostly worked in two industries – networking and financial. I worked as an
individual developer as well as a team leader. During my tenure I participated in and observed the growth
of the Internet. I have worked with C++ using object oriented technology. Some of the highlights of the
projects I worked on:

• Developed software for implementing RSVP and MPLS protocols in C under VxWorks operating

system for BSR 64000, an edge router with CMTS/POS/Ethernet interfaces and also tested
interoperability with Cisco and Juniper routers, by configuring the routers. Also developed Cisco-like
commands for configuring the router.

• Developed and tested device drivers for PCMCIA disk and Hard disk using C language for Everest, an
ATM switch router. Also implemented a communication mechanism between different cards for the
above router.

• Worked as the team leader for the mid-tier portion of the “Payroll Gateway” application of Putnam
Investments. Payroll Gateway is based on three-tier client server architecture and it receives and
processes transactions on incoming payrolls. Developed software using object oriented design in C++
for accessing the Oracle database through DBTools. Developed portions of data communication
software in C++ between the desktop and the mid-tier using Orbix (A CORBA compliant software).

• Developed the User Interface for the diagnostics monitor and wrote device driver for EEPROM for an
ATM switch, using C++ language and object oriented methodology.

181

• Developed C++ programming interface for use by applications to the ATM based network
management system.

• Developed the GUI using ZINC interface library in C++ for a generic relay testing software
“ULTRATEST” under DOS in Borland C++. Also developed the database and C++ interface to it,
using PARADOX Engine.

TECHNICAL SKILLS:

• Data mining software – Weka.
• Strong Programming and Software Development skills using object oriented method in Java, C++.
• IDE – Eclipse
• ERP software - SAP
• Use of Network and Security tools – Wireshark, Nessus, GPG4Win.
• Mathematical and Statistical Software – Mathematica, SAS, SPSS, LISREL, Minitab.
• Use of virtual computing – VMWare.
• Power user of Course management Systems – Angel, Blackboard, D2L, WebCT.

PUBLICATION:

1. Jain, H and Dutt, Abhijit. 2013. “Economic Perspective of Application Development in Cloud

Computing: Study of Modularity and Performance”. International Symposium of Information
Systems (ISIS), Goa, India.

2. Ngo-Ye, Thomas and Dutt, Abhijit. 2010. “Text Classification with Imperfect Hierarchical Structure
Knowledge”. Proceedings of the 16th Americas Conference on Information Systems (AMCIS), Lima,
Peru. (Presenting Author).

3. Ngo-Ye, Thomas and Dutt, Abhijit, "A Study on Efficacy of Ensemble Methods for Classification
Learning" (2009). ICIS 2009 Proceedings. Paper 69. (Presenting Author).

4. Dutt, Abhijit. 2006. “Organizational adoption of Data Mining”. Proceedings of the 12th Americas
Conference on Information Systems (AMCIS), Acapulco, Mexico. (Presenting Author).

5. Dutt, Abhijit and Nazareth, Derek. 2005. “Support for Wireless LAN Design”. Proceedings of the
11th Americas Conference on Information Systems (AMCIS), Omaha, Nebraska. (Presenting
Author).

6. Dutt, Abhijit and Srite, Mark. 2005. “A Cultural Perspective on Technology Acceptance”. Proceedings
of the 11th Americas Conference on Information Systems (AMCIS), Omaha, Nebraska. (Presenting
Author).

7. Diaz, J. C. and Dutt, A. 1992. “Experiences with Line Ordered-Nested Block Preconditioning for Non
symmetric Systems on the CM-2”, Proc. of International Conference on Computer Methods for Partial
Differential Equations (IMACS – PDE 7).

PROFESSIONAL ACTIVITIES

• Associate Editor, ECIS 2012 and ECIS, 2013
• Member of the Campus Advisory Committee Penn State, 2012- Till Date.
• Member of the IST Advisory Board Penn State, 2008- Till Date.
• Member of the Academic Affairs Committee Penn State, 2010-11.
• Member of the hiring committee for instructor of IST, Penn State, 2010.
• Member of ASUG.
• Reviewer for the 30th International Conference on Information Systems (ICIS).
• Reviewer for the 11th and 12th Americas Conference on Information Systems (AMCIS).
• Reviewer for the Hawaii International Conference on System Sciences, 2004, 2005, 2006, 2007,

2009, 2010
• Member of the Ph.D. committee of the Lubar School of Business, UWM, 2005-2006.

182

AWARDS:

• Outstanding academic adviser award, Penn State Beaver, 2009-10
• UW-Milwaukee Graduate School Travel Award for attending AMCIS, 2006
• University of Wisconsin-Milwaukee Chancellor’s Fellowship during 2003-2004. Was also awarded

research and teaching assistantships along with tuition waiver during 2004-2007.
• Research assistantship along with full tuition waiver from University of Tulsa for pursuing MS in CS.
• National Scholarship from Govt. of India for pursuing both undergraduate and graduate studies.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2013

	Economic Perspective on Cloud Computing: Three Essays
	Abhijit Dutt
	Recommended Citation

	

