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ABSTRACT 

HIGH POWER GAIN GUIDED INDEX ANTIGUIDED FIBER 

LASERS AND AMPLIFIERS 

by 

Parisa Gandomkar Yarandi 

 

The University of Wisconsin Milwaukee, 2013 

Under the Supervision of Dr. Arash Mafi 

 

 

 

 

Increasing the core size of high-power fiber lasers and amplifiers is highly desired in 

order to mitigate the unwanted nonlinear optical effects and raise the optical damage 

threshold. If the core size of conventional index-guided (IG) optical fibers increases, the 

fiber will become multimode, because it is very difficult to control and fine-tune the 

index step between the core and cladding to satisfy the single mode condition. Siegman 

proposed Gain-guided index-antiguided (GG-IAG) fibers as a possible platform for ultra-

large-core single-mode operation for lasers and amplifiers. 

In this thesis, the beam-quality factor    for the fundamental      mode of a step-index 

fiber with finite and infinite cladding diameter is calculated in the presence of gain as a 

function of the complex generalized V number. The numerical results agree with 

analytical work that obtained in our group. It is shown that the    value of a single-mode 
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gain-guided fiber laser can be arbitrarily large. The results are important for the 

interpretation of the beam-quality measurements in recent experiments on single-mode 

gain-guided fiber lasers. It is also shown that the conventional infinite cladding diameter 

approximation cannot be used for index-antiguided gain-guided fibers, and the rigorous 

analysis is required for accurate prediction of the beam quality factor, as reported in 

recent experimental measurements. 

We also highlight the key reasons behind the poor power efficiency observed in multiple 

experiments in gain guided index-antiguided (GG-IAG) fiber amplifiers and lasers. We 

show that by properly designing the fiber geometrical characteristics, it is possible to 

considerably improve the power efficiency of GG-IAG fiber amplifiers in end-pumping 

schemes. 
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1.1  Introduction 

A regular fiber consists of two parts; core and cladding, Fig. (1-1). In a regular fiber, the 

refractive index of the core is higher than the refractive index of cladding, thus, light 

propagates through the fiber based on the total internal reflection phenomenon. Fig. (1-2) 

shows the distribution of refractive index in the core and cladding in a step index fiber. 

 

Fig. (1-1). A regular fiber [1].  

 

Fig. (1-2). Distribution of refractive index in the core and cladding of a step index fiber [2]. 
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In an optical fiber, the normalized frequency,   (also called the   number), is given by 

  
   

 
√  

    
              (1-1) 

where   is the core radius,   is the wavelength in vacuum,    is the refractive index of 

the core, and    is the refractive index of the cladding. The V number determines the 

number of supported modes in a regular fiber. In a conventional step index fiber the   

parameter is equal or less than       , and the fiber supports only one mode per 

polarization direction. Multimode fibers have higher   numbers. 

Optical fibers are classified in different ways. When categorizing optical fiber based on 

the distribution of the refractive index inside the core, they fall into two groups: 1) 

Graded Index Fiber (GIF) and 2) Step Index Fiber (SIF). In the SIF category, the 

refractive index of the core is constant while it decreases gradually in the GIF category, 

i.e., from its maximum value    at the core center to    at the core cladding interface. 

Fig. (1-3) (left and middle) shows the schematics of the distribution of refractive index in 

GIF and SIF, respectively. 

 

Fig. (1-3). Distribution of refractive index in Multimode Graded-Index Fiber (left), Multimode Step-Index 

Fiber (middle), and Single Mode Fiber (right) [3].  
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Optical fibers can be also categorized based on the value of the   parameter to: 1) Single 

Mode Fiber (SMF) and 2) Multimode Fiber (MMF). Single Mode Fibers only support the 

fundamental mode and have a small glass core. SMFs are used for high speed data 

transmission over long distances, and are less susceptible to attenuation and have much 

higher bandwidth than MMFs. The V parameter in these fibers is less than 2.405. MMFs 

usually have larger cores than SMFs. Fig. (1-3) (middle and right) shows the different 

core size of MMFs and SMFs. In Fig. (1-4), the electric field profiles of SMF and MMF 

are depicted. It is shown that the profile of the output field in SMF has a Gaussian shape 

while the combinations of the different modes make a non-gaussian shape field in MMF. 

Note that Fig. (1-4b) shows the combination of the first five modes as the output profile 

of MMF. 

Single mode fibers and Multimode fibers can both be used as fiber lasers. Single mode 

fiber lasers are typically made with fibers with a core diameters around 9  . They can 

produce a narrow, high quality beam. 

(a)

  
(b) 

Fig. (1-4). Output electric field profile of, a) SMF and b) MMF.  

The high intensity, produced by the small spot in SMF-lasers is ideally suited for laser 

cutting applications. Multimode fiber lasers, in contrast, utilize fibers with core diameters 
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between 50–300   . Hence, larger core diameter results in lower intensity, more 

uniform, and flat top beams than small core diameter. In laser science, it is usually 

desired to use single mode fibers because light can be focused down to a small spot size.  

Beam quality factor,   , is a parameter that shows whether the output profile has a 

Gaussian shape (the output of a SMF) or not.    is defined as the ratio of the beam 

parameter product (BPP) of an actual beam to that of an ideal Gaussian beam at the same 

wavelength. The beam parameter product of a laser beam is defined as the product of the 

beam radius that is measured at the beam waist and the beam divergence half-angle. Note 

that the divergence half-angle is measured in the far field. Thus, if the value of    is near 

unity, it means that the output profile looks like a Gaussian or single mode and if the 

value is much greater than unity it implies that the output profile is highly non-Gaussian 

or multimode. In the next chapters, we will study the beam quality factor and the method 

for its calculation in detail. 

High power fiber lasers and amplifiers have many applications in commercial and 

military. The two principle limitations to improve the amount of power at the output of 

high power fiber lasers in conventional SMFs are: 1) the nonlinear optical effects 

(stimulated Brillouin and Raman scattering) and 2) destructive optical damage in the core 

and at the fiber end facets. These limitations can be avoided with developing single mode 

fiber lasers with large mode areas (LMA) fibers. LMA fiber is a fiber in which its core 

size is increased without compromising the near diffraction limited beam quality of the 

fiber. A large core diameter, i.e., up to 40 μm, has already been demonstrated with 

conventional step-index LMA fibers [4]. Single mode laser operation has also been 

achieved with photonic crystal fibers with core diameter up to 100 μm [5-6]. However, 
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beyond this core diameter, near diffraction limited beam quality is difficult to maintain. 

There are other approaches being pursued to investigate the possibility of further increase 

in the size of core and yet maintaining the single-mode characteristic. An approach 

pioneered at OFS Laboratories proposes to design a fiber that supports many modes but 

operates in single mode, specifically chosen Higher Order Mode (HOM) [7]. Such HOM 

fibers allow expressive increase in effective area up to 4000   . If we compare HOM 

with conventional Large Mode Area (LMA) fiber with 900    , HOM fibers enable 

more amplification with low levels of nonlinearity. HOM fibers with ultra large area can 

be fabricated that are amenable to simple fusion splicing to standard single mode fiber.  

Another approach in designing LMA is chirally coupled core (CCC). The CCC is a 

technology in which the primary core of the fiber is surrounded by a smaller, lossy core. 

The smaller core wraps around the primary gain core in a helical pattern along the length 

of the fiber. The purpose of the secondary chiral core is to provide a loss mechanism for 

higher order modes that extends into the surrounding cladding from the central core [8-9]. 

These fibers have the advantage of not requiring a low numerical aperture main core for 

creating very high quality single mode operation. However, the creation of the required 

perform and fabrication are very difficult. Fig. (1-5) shows the diagram of the chiarally 

coupled core fiber. 

 

Fig. (1-5). Chirally coupled core structure [10]. 



7 

 

Bend-loss management or tapered fiber sections can also be used to filter out higher-

order modes. Koplow et al. [11] showed that the bend-loss technique becomes less 

effective for larger-core fibers. Higher order mode suppression in a 100-μm core fiber is 

at least a factor of 10 lower than that observed in more commonly used 25 – 50 μm core 

fibers. The use of tapers for getting high power at the output is also possible, but these 

not only filter out HOMs, but also limit the output power [12].  

The approaches we discussed in previous paragraphs do not involve core sizes larger than 

100   . Siegman in 2003 proposed a new type of fiber, Gain Guided, Index AntiGuided 

(GG-IAG) fiber that can have an ultra large core size and also simultaneously operate as 

single mode [13]. He suggested that if a material with lower refractive index is used for 

the core, in comparison with cladding, the core size can be increased up to 400    in 

diameter and the fiber can still operate as single mode. However, the total internal 

reflection mechanism which is responsible for light guiding in conventional optical fiber 

does not hold if the core refractive index is lower than the cladding; thus the wave cannot 

propagate through the fiber in normal circumstances. In order to solve this problem and 

obtain a guiding mode, an amount of gain must be added to the core to constantly amplify 

the part of the wave that remains in the core as the wave propagates along the fiber. Fig. 

(1-6) shows the distribution of refractive index in GG-IAG fiber. 

 

Fig. (1-6). Refractive index distribution in a GG-IAG fiber. 
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Gain which is added to the core can be considered as an imaginary part of refractive 

index; therefore, the   parameter becomes a complex number. 

   (
   

 
)
 
(  

    
 )        ,          (1-2) 

We can substitute    (core refractive index) and    (cladding refractive index) with 

   (     )   
  

  
 and      , respectively, where    is the refractive index of the 

cladding,    is the index step of the fiber core relative to cladding,   is the power-gain 

coefficient, and   is the vacuum wavelength.  

   (
   

 
)
 
((       

  

  
)    

 )          (1-3) 

         (
   

 
)
 
(          (

  

  
))         (1-4) 

   (
   

 
)
 
(     )            (1-5) 

  (
   

 
)
 
(
   

  
)               (1-6) 

In Eq. (1-4) we assume that    and   are very small numbers. If    is a positive number, 

the fiber is Index Guided (IG), and if    is a negative number, the fiber is Index 

AntiGuided (IAG). Siegman studied the modal behavior of a GG fiber over the 2D 

complex    plane [14]. The horizontal axis is   , real part of   , and the vertical axis is 

 , the imaginary part of   , Fig. (1-7). Specifically, Siegman solved the dispersion 

equation for the first two modes and derived an analytical formula for the threshold line 

of      and      in a plane of (    ). His proposed formulae for the thresholds of      

and      for      less than 50 is given by [14].  

    √    
 

   
 √

     

   
 , [         ]         (1-7) 
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    √    
 

   
 √

     

   
 , [         ]         (1-8) 

 

Fig. (1-7). Complex    plane. The horizontal axis ,   , is the real part of   , and the vertical axis,  , is the 

imaginary part of   , [14]. 

Based on Fig. (1-7), Siegman mentioned that different combinations of (   and  ) can 

be chosen. The combination of    and   can be any points under the      boundary, 

between two boundaries of      and     , and above the      line. Based on the position 

in the graph, they are defined as the leaky mode region, single mode region, and multi-

mode region, respectively. The electric field under the      boundary, between two 

boundaries of      and     , and above the      line looks like a leaky mode, single 

mode and multimode, consequently. We can find the distribution of electric field through 

the core and cladding by solving the Helmholtz equation for      and     with boundary 

condition at the core cladding interface as Eq. (1-9) and (1-10) [14]:  

 ̃  ( )  {
  (

 ̃ 

 
)            

[
  ( ̃)

  ( ̃)
]   (

 ̃ 

 
)           

            (1-9) 

 ̃  ( )  {
  (

 ̃ 

 
)            

[
  ( ̃)

  ( ̃)
]   (

 ̃ 

 
)           

         (1-10) 
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Electric field and its slope should be continuous at the core cladding interface. By 

applying this condition we can find dispersion equation for the first two modes as 

follows: 

 ̃  ( ̃)

  ( ̃)
 

 ̃  ( ̃)

  ( ̃)
         (        )          (1-11) 

 ̃  ( ̃)

  ( ̃)
  

 ̃  ( ̃)

  ( ̃)
         (        )          (1-12) 

In Fig. (1-8) the profile of the electric field for a fixed    and three different values of   

(below, on, and above      line) are shown. It is depicted that when the value of   is 

below the threshold, the electric field looks like a leaky mode.  

In the next section, we will review all of the theoretical and experimental state-of-the-art 

researches on this type of fiber. 

  

 
 

Fig. (1-8). Field amplitude and phase profiles (vertical axis) for the propagating modes in GG-IAG optical 

fibers for different     -2, -5, -10, and -100versus the normalized radial distance (
 

 
). Each plot shows the 

mode profiles for three values of the dimensionless gain parameter, namely  =0 (dashed curves),       

(light curves), and        (dark curves), [14]. 
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1.2  Previous published research  

Three years after proposing the idea of GG-IAG fiber by Siegman [13], the first 

experiment was conducted by a group in the Center for Research and Education in Optics 

and Lasers (CREOL) in Florida [15]. Siegman et al. used a        doped GG-IAG fiber 

laser with the refractive index of core and cladding equal to        and       , 

respectively [15]. The core diameter of the fiber was        and it was          

long. Fig. (1-9) shows the cross section of this fiber. They used a flash lamp for pumping 

the fiber. A diffuse flash lamp pump cavity was modified to hold 12–15 cm length of this 

fiber inside a capillary tube with a contacted 100% mirror at one end of the fiber and a 

polished but uncoated face at the output. The setup is shown in Fig. (1-10).   

 

Fig. (1-9). Nd: phosphate GG-IAG fiber [15]. 

 

Fig. (1-10). Flash lamp pump cavity used for experimental test [15]. 
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This arrangement means that a centimeter or two of the fiber was left unpumped or only 

partially pumped in the last segment where the capillary and fiber are extended through 

the end walls of the pump cavity. Siegman et al. increased the pump energy gradually and 

measured the output signal energy. The reported value is shown in Fig. (1-11). As 

depicted in Fig. (1-11), the pump lasing threshold is 50J and it can be improved to 33J 

with improved fibers. Observation of the output spectrum from the fiber showed that 

above the threshold, the spectrum is located at the center of the 1052    gain line of Nd 

ions and is a single peak to within the resolution limit of the spectrometer. In Fig. (1-12) 

the far field intensity profile shows a stable single mode profile. Although the profile of 

the field is single mode, the value of beam quality factor is not unity (    ). 

 

Fig. (1-11). Laser output energy vs. input energy for one of the fiber samples [15].  
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Fig. (1-12). Far field intensity profile for the output beam [15]. 

As another experiment on the performance of GG-IAG fiber, Chen et al. pumped 

different GG-IAG fibers with flash lamps [16]. They used a Xe-filled flash lamp having 

an 8.5 cm long discharge. It produced pulses of         duration at      to pump a GG-

IAG fiber of        long fibers.  

Similar to the aforementioned experiment performed by [15], the output power was low, 

but results were single mode output profile as depicted in Fig. (1-13). All of the images in 

Fig. (1-13) were obtained with the CCD camera located at 113 mm from the output 

coupler. When fitted to a gaussian distribution, the full width at      of the intensity 

patterns (   ) in Figs. (1-13b)-(1-13d) are, respectively, 1.26, 0.81, and 0.55 mm, each 

with an experimental error of    . When the core diameter becomes large the spot sizes 

becomes small. 
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Fig. (1-13). (a) Output pattern due to parasitic modes when no GG-IAG lasing takes place. (b) Single 

lowest-order mode pattern from the 200    core diameter fiber at    threshold. (c) Single lowest-order 

mode pattern from the 300    core diameter fiber at    threshold. (d) Single lowest-order mode pattern 

from the 400    core diameter fiber at     threshold [16]. 

All measurements results of different GG-IAG fibers are summarized in Table (1-1). 

Table (1-1). Measurements results of 100-400    core diameter GG-IAG fiber lasers [16] 

 

Fiber core 

Diameter(  ) 

 

   
   

 

   
   

Range of 

Reflectivities for 

lowest order single 

mode lasing  

Output coupler 

used to achieve 

single mode 

   
    

Calculated for the 

Mirror used ( ) 

Assumed to be    

 

 

   

100 0.1406 0.3506 4%-10% 4% 0.1988 1.5  10% 

200 0.0176 0.0446 65%-75% 75% 0.0178 1.2  10% 

300 0.0052 0.0132 88%-91% 90% 0.0065      

400 0.0022 0.0056 95%-96% 95% 0.0025      

 

In the two experiments we have reviewed so far [15-16], a flash lamp is used for 

pumping the fiber. As mentioned by the authors in the conclusions of [15] and [16], the 

low power of the output was due to the low efficiency of the flash lamp. In another 
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experiment, in [17], a laser diode with higher efficiency, in comparison with a flash lamp, 

was used for pumping the fiber. In that experiment, Sudesh et al. used a doped fiber with 

        doped      phosphate glass in the core. The refractive index of the 100   -

core radius and 170   -cladding radius, measured at       , was        and       , 

respectively. The setup of the end pump laser action is demonstrated in Fig. (1-14). The 

power of the laser diode was 30W, emitted at       . The power was delivered by the 

fiber that had        core diameter and a numerical aperture of 0.22. Free space 

coupling of the pump light with aspheric lenses produced a        illumination spot on 

the end of the fiber. Therefore, less than       of the pump light was coupled to the core 

of the     fiber.  

 

Fig. (1-14). Schematic of the laser diode end pumped a large diameter core GG-IAG fiber laser setup [17]. 

To reduce the thermal loading on the fiber, the pump light was modulated with a 

mechanical shutter providing a       pump pulse at       The output spectrum was 

measured by an Ocean Optics HR 4000 spectrometer.  
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Fig. (1-15). Output Spectral [17]. 

As depicted in Fig. (1-15), the spectrum is centered at 1055 nm and it narrows down to 

     width (    ) when the GG-IAG fiber lases. The measured output power versus 

input pump power is shown in Fig. (1-16). As depicted, the threshold pump power is 

around 6W. Furthermore, Fig. (1-17) shows a stable single mode output profile of the 

field. In this experiment the reported value of    is greater than 1 although the pattern 

shows a single mode profile. 

  

Fig. (1-16). Output power versus total input power [17]. 
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Fig. (1-17). Mode pattern of the laser at the distance of 250 mm from the output coupler [17]. 

Although in this experiment Sudesh et al. used a higher efficiency pumping method, the 

results were not improved in comparison with [15] and [16]. The authors mentioned two 

reasons for that: 1) The nature of IAG in this type of fiber. Because the core has a lower 

refractive index in comparison with the cladding; therefore, the entire pump wave 

escapes to the cladding after the first few centimeter of propagation. Thus, the rest of the 

fiber will not receive any pump power to generate sufficient gain. 2) Thermal problems 

which are associated with a large diameter fiber laser. When the fiber is pumped, atoms 

absorbed light energy and will be exited to a higher level. Then they decay rapidly to a 

lower level. Some of the decay are clearly nonradiative and produce thermal energy. 

When the core size increases the population of dopant molecules per cross section 

increases and more thermal load will be produced. The suggested remedies for the 

thermal problem are: 1) using side pumping methods and 2) using other doping material 

like   ,    or    that have a low quantum defect rate.  

Siegman, in another paper [14], found an analytical formula for the modal power gain. A 

modal power gain coefficient    can be defined for the guided mode that propagates 



18 

 

along the fiber. It corresponds to the exponential power growth rate for G values above 

threshold. We can relate    to a dimensionless modal gain parameter    by  

   (
   

 
)  (

   

  
)                  (1-13) 

Eq. (1-13) can be used to say that the modal gain or loss parameter    for the guided 

eigen-mode is given to a good approximation, both below and above threshold, by  

         (   )              (1-14) 

where   
 

   
 is a normalized pumping power relative to the threshold value for gain 

guided propagation. Eq. (1-14) indicates that the threshold gain for each mode is 

approximately equal to the radiation loss or leakage loss for the same mode in the 

absence of gain.  

An effective filling factor     for the      mode for values above threshold in   greater 

than     can be defined as     
     

 
 (   )  . This filling factor starts at       

for          and tends to       (
      

      
)      as the gain in the core approaches 

the threshold value for the      mode.  

Another interesting result from these formulas is that we can substitute Eqs. (1-5), (1-6) 

in Eqs. (1-11), (1-12) and find the power gain coefficient     for the first two modes as 

follows: 

   
   √

     

   
 (   )

 
  

(  )             (1-15) 

   
   √

     

   
 (   )

 
  

(  )             (1-16) 

Based on Eqs. (1-15), (1-16), the modal gain thresholds are proportional to    . As the 

core radius increases, the gain thresholds will decrease. However, if we attempt to keep 
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the fiber single mode by ensuring a modal gain between    
   and    

  , then the modal 

gain will also be affected by the inverse relationship between the gain and core radius. 

Thus, using large core GG-IAG fiber does not help to obtain more power at the output.   

Another interesting work on GG-IAG fiber is research conducted by a group at the 

University of North Carolina at Charlotte [18]. In this research, Her suggested using a 

Bragg fiber for GG-IAG fiber. To keep pump power in the core, Her theoretically 

designed a photonic band gap to trap the pump light in the core although it was a band 

pass at signal wavelength [18]. Fig. (1-18) shows the schematic of brag fiber and also the 

radial index profile. 

 

Fig. (1-18). Schematic of a one-dimensional gain-guided transverse grating waveguide. The pump (blue) is 

confined via Bragg resonance and the signal (red) is confined by gain guiding (GG). Dashed and solid lines 

indicate leaky and bound rays, respectively [18].  

Another research group made a       doped GG-IAG fiber with core radius of      , 

inner cladding radius of      , and outer cladding radius of       [19]. The refractive 

index of the core and undoped cladding materials measured at 589.3    were 1.57224 

and 1.57318, respectively. The set up presented in Fig. (1-19) was used for investigating 

the laser amplifier characteristics of this GG-IAG fiber.  
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Fig. (1-19). Experimantal setup for laser amplifier and beam quality tests [19]. 

A        long GG-IAG fiber acting as a laser amplifier was end pumped by a fiber 

coupled      laser diode which emitted at       . The delivery fiber had a core 

diameter of 125    and a numerical aperture of 0.22. The signal light at 1040 nm was 

focused by two identical microscope objective lenses, (Lens3 and Lens 4). Then, it was 

injected with a spot diameter of 160    through Lens3 and Lens 4 on the other side of 

the fiber. The two identical microscope objective lenses worked as couplers. The 

amplified signal light was collimated by Lens 2 and was reflected to the power detector 

by a dichroic mirror HR at 1   , and HT at 980 nm [19]. 

The corresponding plot for the output power, as a function of total pump power, is shown 

in Fig. (1-21). Surprisingly, the output light did not improve, and efficiency of the fiber 

laser was very low. Lu et al. mentioned that the end face of GG-IAG fiber was not 

polished well and       of the pump light was lost due to the light scattering. This 

means that       of the light energy was coupled into the core of the fiber.  
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Fig. (1-20). Signal light output versus total pump power [19]. 

Fig. (1-21) shows the output mode pattern of signal light with maximum pump power 

(    ) from experiment in [19]. The beam quality factor of the output of the GG-IAG 

fiber was also measured in [19]. Although the output profile was like a single mode fiber, 

the value of    was a large number, i.e.,         . As the conclusion, the authors 

suggested using a  -shaped and rectangular cladding cross section to improve the pump 

absorption and substantially increase the optical efficiency of the GG-IAG    doped 

[19]. 

 

Fig. (1-21). Mode Pattern of signal light [19]. 



22 

 

The results of fabrication of a D-shaped fiber in the aforementioned experiment are 

recently published [20]. The fiber used in that work is depicted in Fig. (1-22). The fiber 

core  radius is 100   , the diameter of the D-shaped inner cladding is 315/240    for 

the longer/shorter axis, respectively. The outer cladding is a 380    in radius. The 

refractive indexes of the core and undoped cladding materials measured at 589.3 

   were 1.54221, and 1.52752, respectively. 

 

Fig. (1-22). Photograph of the hand-polished end face of     
 GGIAG fiber with D-shaped inner cladding 

[20]. 

The setup for the investigation of amplifier characteristics in this experiment was like 

[19], Fig. (1-19). and the result is depicted in Fig. (1-23). Although the symmetry of the 

previous fiber was broken in the new experiment, the slope efficiency did not improve 

more than previous experiment reported in [19]. Li et al. concluded that although there 

was not much improvements in output power, if the symmetry of the cladding changes 

more, for example by using a Double D (DD) cladding shape or rectangular cladding 

shape, the pump absorption will be improved [20].  
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Fig. (1-23). Signal light output verses total pump power [20]. 

Kim et al. conducted numerical simulation for investigating the thermal issue [21]. They 

solved the heat equation for fiber by using two boundary conditions for the core-cladding 

and cladding-environment interfaces. The distribution of heat in core and cladding 

regions is as follows, 

 ( )  
 

   
(  

    )  
 

   
  

   (
  

  
)  

  
  

    
    ,            (1-17) 

 ( )   
 

   
  

   (
 

  
)  

  
  

    
   ,        ,        (1-18) 

where   is the constant heat source density in the core induced by uniform pumping,    

is the coolant temperature,    and    are the thermal conductivities of the core, and the 

cladding materials, respectively, and   is the heat transfer function of a coolant [21]. 

The four graphs in Fig. (1-24), show different situations for temperature distribution in 

the core center for different parameters.  
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Fig. (1-24). Temperature at the core center of the GG-IAG fiber with a 10-cm length when the total 

dissipated power increases for the following fiber parameter. (a)        (    ),          ; (b) 

       (    ),          ; (c)          (    ),          ; (d)          (    ), 

          [21]. 

The graphs show that with a fixed value for  , the temperature in the core center 

decreases when the cladding radius increases. The results obtained by the numerical 

simulations are just opposite to the speculation of the failed attempts by [15-17] as they 

mentioned that the thermal issue, associated with the large core size, is the main problem 

in getting high power at the output of GG-IAG fibers. Also, when   parameter increases, 

the temperature of the core center also increases.  

Yan et al. in [22] also made a      double clad GG-IAG fiber with 100    core radius. 

The difference between the core and cladding refractive index,   , was        . They 
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performed a numerical simulation based on ray-tracing and studied the absorption 

characteristics of GG-IAG fiber. They also verified their numerical results with real 

experiments. Fig. (1-25) shows the setup for the absorption measurement of GG-IAG 

fiber. 

 

Fig. (1-25). Experimental arrangement for the absorption measurement of the        fiber [22]. 

 

Fig. (1-26). The curves of experiment and simulation for absorption characteristics of the GG-IAG fiber 

[22]. 

Fig. (1-26) shows the experiment and simulation results. The interesting point in this 

graph is that most of the pump power is absorbed in the first few centimeters, thus, there 

will not be enough pump power for the rest of the fiber. In order to investigate pump 

absorption, the refractive index difference,   , was also changed in that studies. It was 

observed that as    increases, the absorption length increases too [22].  
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Finally, Hageman et al. in CREOL [23] used side pumping methods for pumping GG-

IAG fibers. The fiber was pumped with a Dilas linear array. The beam profile of GG-IAG 

laser beam is depicted in Fig. (1-27). The measured output versus input energy for a 4 cm 

long GG-IAG laser is shown in Fig. (1-28). 

 

Fig. (1-27). Profile pattern of GG-IAG fiber [23]. 

 

Fig. (1-28). Output energy versus input energy of GG-IAG fiber [23]. 

Similar to the previous experiments, the results show a stable single mode profile, 

although the beam quality factor is larger than unity (      ) and the slope efficiency 

of output power is very low (4.3%). In [23], it is suggested that, one can increase the 

pump efficiency by increasing the core diameter [23]; however, based on the Eqs. (1-15) 
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and (1-16),      , increasing the core radius not only improves the efficiency but also 

decreases the gain per centimeter. 

In this chapter we reviewed recent theoretical and experimental results on GG-IAG fiber. 

The common results between all the experiments were the large value of Beam quality 

factor and the low output power. The large beam quality factor was a big, unanswered 

question because the profile of the field shows a single mode pattern in all the 

experiments but the measured values of    were in the range of 1.05–2.0. The low 

output power is another ambiguous issue in GG-IAG fibers that, to the best of our 

knowledge, has not been satisfactorily addressed. Using a high efficiency method of 

pumping such as diode laser, changing the doping materials, breaking the symmetry of 

the fiber and using the brag fiber were not efficient solutions for getting high power at the 

output. In this thesis we solved the two main problems regarding GG-IAG fibers. In 

chapter 2 as we will discuss, we calculate the beam quality factor of GG-IAG by 

considering an infinite cladding. In chapter 3, we modified all of the formulas for the 

electric field of GG-IAG fibers when the size of the cladding is infinite. Then, we 

calculated beam quality factor of GG-IAG fibers. Finally in chapter 4, we addressed the 

second problem related to the low power efficiency of GG-IAG fibers. 
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2.1 Introduction 

There has been a growing interest in optical fiber lasers that operate based on the gain 

guiding-index antiguiding (      ) principle. Unlike a conventional index-guiding 

(  ) fiber, the core of an index-antiguiding (   ) fiber has a lower refractive index than 

the surrounding cladding and cannot support    modes. Siegman [1] has shown that in 

the presence of sufficient gain, an     fiber can support confined propagating    modes, 

which are normalizable in the transverse direction. More interestingly, even for arbitrarily 

large core diameters,        fibers can operate in a robust single transverse mode. It 

is therefore desirable to take advantage of the        principle and scale up the core 

size while maintaining the single mode characteristic. The large core size is attractive 

because it can help mitigate unwanted nonlinear optical effects, raise the optical damage 

threshold, and increase the amplification per unit length of the fiber.  

Several experiments have demonstrated        in various fiber laser configurations 

[2–5]. The reported values of the beam-quality factor,   , in these experiments are 

notably larger than unity, even in fibers that are designed to operate as single mode. This 

should not be surprising considering the substantial departure of the      profile of a 

       fiber from a Gaussian-like beam [6], as similarly reported in other 

unconventional optical fibers [7]. However, we show that the values of    for the single-

mode        fibers are substantially larger than those measured in the experiments. 

Therefore, the not-so-puzzling larger than unity    measurements in these fibers turn out 

to be quite a bit lower than those expected from a pure        structure.  

A closed-form expression for the    parameter of the      mode in the presence of gain 

as a function of the complex generalized fiber   number is presented in this chapter. The 
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   parameter has been calculated analytically for the      modes in passive fibers [8]. 

However, we are not aware of a derivation in the presence of gain, which requires 

integrals of complex variables and is mathematically more involved.  

To study step-index optical fibers in the presence of gain (      or       ), it is 

convenient to use a generalized complex  ̃ parameter squared [1]; defined as 

 ̃        ,              (2-1) 

The index and gain parameters    and   are given by 

   (
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(     ),            (2-2) 

  (
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)  ,             (2-3) 

where    is the refractive index of the cladding,       is the refractive index of the 

core,   is the core radius,   is the core power-gain coefficient, and λ is the vacuum 

wavelength. For a proper choice of    and  , the core can support an      guided mode 

in the form of 

 (      )  {
 ̃  (    )   ( ) 

 ̃  (    )   ( ) 
           (2-4) 

The parameters   and   are complex and satisfy the following two equations, which can 

be used to determine these parameters, given  ̃: 

   ( )

  ( )
 

   ( )

  ( )
,             (2-5) 

       ̃  .             (2-6) 

 ̃ is an overall constant to be determined from the normalization condition (2-7) assumed 

throughout this chapter.  

∬    (     )    ,            (2-7) 
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where ∬   ∬    . In general, the value of  ̃ determines the total number of 

confined guided modes in a fiber in the presence of gain, which can be zero or higher. 

The single-mode operating regions of the       and        structures in the 

     Cartesian space are presented in detail by Siegman [1, 6] and we explained it in 

chapter one. 

2.2 Beam Quality Factor 

The beam-quality factor    is commonly used in experiments to determine whether a 

fiber laser is single mode or not. For single-mode fiber lasers, the value of    is near 

unity, while      is indicative of beam contamination with higher-order modes. To 

calculate   , we adopt the variance method, which is mathematically rigorous and 

closely resembles the common experimental procedures for the    measurement [9].  

Consider an optical beam with the electric field profile  (     ) propagating in the   

direction. The beam center 〈 〉 and the standard deviation of the intensity distribution   
  

across the   coordinate are 

〈 〉( )  ∬     (     )  ,            (2-8) 

  
  ( )  ∬  (  〈 〉( ))   (     )  .          (2-9) 

Since we consider only cylindrically symmetric optical fibers, the results are identical for 

the   coordinate, and we take the liberty of dropping the   subscript (e.g.,  ) when 

convenient. It can be shown that the standard deviation in Eq. (2-9), in the paraxial 

approximation, obeys a universal free-space propagation rule of the form  

  
  ( )    

  (  )   
 

  
(    )   

  

   
(    )

      (2-10) 

   is the coordinate of the output facet of the fiber, which does not necessarily coincide 

with the position of the beam waist. Reference [8] has shown that  
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where    (      ) is implied in Eqs. (2-11) and (2-12) and     is complex conjugate 

of 
   

  
. The position of the beam waist  ̃   and the beam-quality factor   

  are given by 

 ̃         (  ),           (2-13) 

  
  √    

 (  )    .          (2-14) 

We note that we slightly differ with [8] in the sign of the frequency term and also the 

definition of the A term. While the integrals for the    parameter can be evaluated 

numerically, one is faced with the challenge of reliably truncating the infinite integrals. It 

is difficult to choose a reliable truncation radius,         , for a desired error. Therefore, 

a closed-form analytical expression is preferable. Using the parameters defined in Eqs. 

(2-15) and (2-16),  

    
  (      )  (      ) ,         (2-15) 

     ( )   ( ) ,           (2-16) 

 ̃,  ,   can be expressed as 
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2.3 Results and Discussion 

The contour plots of    as a function of    and   are shown in Figs. (2-1)-(2-3).  
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Fig. (2-1). Contour plot of    as a function of    and   in the       region.  

 

Fig. (2-2). Contour plot of    as a function of    and   in the       region but zoomed in near the 

origin. 
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Fig. (2-3). Contour plot of    as a function of    and   in        region. The dashed lines represent 

the      guiding threshold. 

The dashed lines in these figures identify the threshold values of the dimensionless gain 

parameter   required to produce a confined and amplifying      mode as described in 

[1]. The results in Fig. (2-1), related to the       region, show that    remains very 

close to unity over most of the parameter space. A typical single-mode fiber laser 

operates at       , for which        , regardless of the value of the   

parameter. This is consistent with the common intuition that the beam quality of a single-

mode fiber laser is very good and does not degrade by pumping unless higher-order 

modes are excited. However, the beam quality factor rapidly increases as the  ̃ parameter 

of the fiber gets closer to the (dashed line)      threshold. This can be seen in Fig. (2-2), 

which is similar to Fig. (2-1) but zoomed in near the origin and the close proximity of the 

     threshold line.  
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The situation is quite different in the        region, as shown in Fig. (2-3).    is 

quite large over the entire parameter space and becomes exceptionally large near the 

(dashed line)      threshold. The large value of   , especially near the threshold, is the 

result of the long tail of the beam intensity extending all the way into the cladding region 

over a large portion of the        parameter space [6]. The situation closely 

resembles the case of a conventional    fiber (   ), where the tails of the beam extend 

to the cladding in the weakly guiding limit of      , resulting in large values of    as 

shown in Fig. (2-2). We note that the numerical evaluation of    becomes increasingly 

difficult in the regions of large   , and proper care must be taken in the sampling and 

truncation of the beam to get an accurate result. 

To explore the impact of the long intensity tail in the cladding on the value of   , we 

introduce a Gaussian apodization function of the form     (         ) to softly 

truncate the long intensity tail of beam. We multiply the beam profile of Eq. (2-4) by the 

apodization function and calculate the    numerically. The results are presented in Fig. 

(2-4), where    is plotted as a function of   for         (solid line) and    

     (dotted line). For each value of ΔN, two lines are plotted for    , 8 from the 

apodization function, and one line for      which is in the absence of the apodization 

function. Fig. (2-4) clearly shows that the truncation of the intensity tail of the        

beam results in a substantial reduction in the calculated value of   .                            
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 Fig. (2-4). Contour plot of    as a function of    and   in the    as a function of   for           

(solid lines) and           (dotted lines). The lines relate to the apodized beam and are marked by 

different values of   from the apodization function.  

These observations are quite important in relating the    values reported in this chapter, 

especially for the        region of Fig. (2-3) to the experimental measurements. In 

practice, the extended tail of the        beam is truncated at the cladding-jacket (or 

cladding-air) interface. For example, for         and   equal to twice the      

threshold value, the field amplitude drops by only     from     to       ; for 

         , this drop in amplitude is only    . Therefore, the impact of the 

cladding-jacket interface on the tail of beam warrants close attention.  

We expect that very large values of    will be observed in        single-mode fibers 

with sufficiently large cladding to core diameter ratios. Measurement of    can be 

challenging for these fibers, since the presence of noise can impact an accurate 

assessment of the tail intensity. The existing experiments [2–5] deviate from the pure 
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       formalism of Siegman [1] in the sense that the cladding-core diameter ratios 

are not sufficiently large. Therefore, an accurate    comparison with these experiments 

is possible only if the presence of the cladding-jacket interface is explicitly taken into 

account. Since the cladding-to-core ratio is likely to remain small in practical        

designs, a detailed analysis of the impact of the cladding truncation on    is warranted. 

Besides the impact on the value of     one must examine whether the truncated mode 

remains faithful to its        nature or is modified into a mode that is primarily index 

guided by the cladding-jacket index step. In chapter 3, we will study the impact of 

truncation of the beam profile on    at the cladding-jacket interface. 

 

  



41 

 

2.4 References 

[1] A. E. Siegman, “Propagating modes in gain-guided optical fibers,” J. Opt. Soc. Am. A 

20, 1617-1628 (2003). 

[2] A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, 

and J. Ballato, “Confined propagation and near single mode laser oscillation in a gain 

guided, index antiguided optical fiber,” Appl. Phys. Lett. 89, 251101 (2006). 

[3] T. McComb, V. Sudesh, Y. Chen, M. Bass, M. C. Richardson, J. Ballato, and A. E. 

Siegman, “Single Mode Lasing in a 200m Diameter Core Gain-guided Index Anti-guided 

Diode End Pumped Fiber,” in Lasers and Electro-Optics Society, 242-243 (2007). 

[4] Y. Chen, V. Sudesh, T. McComb, M. C. Richardson, M. Bass, and J. Ballato, “Lasing 

in a gain-guided index antiguided fiber,” J. Opt. Soc. Am. B 24, 1683 (2007). 

[5] Y. Chen, T. McComb, V. Sudesh, M. C. Richardson, and M. Bass, “Very large-core, 

single-mode, gainguided, index-antiguided fiber lasers,” Opt. Lett. 32, 2505 (2007). 

[6] A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24, 

1677 (2007). 

[7] A. Mafi and J. V. Moloney, “Beam Quality of Photonic-Crystal Fibers,” J. Lightwave 

Technol. 23, 2267 (2005). 

[8] H. Yoda, P. Polynkin, and M. Mansuripur, “Beam Quality Factor of Higher Order 

Modes in a Step-Index Fiber,” J. Lightwave Technol. 24, 1350 (2006). 

[9] T. F. Johnston, “Beam Propagation (  ) Measurement Made as Easy as It Gets: The 

Four-Cuts Method,” Appl. Opt. 37, 4840 (1998). 

  



42 

 

Chapter 3 

 

 

 

Beam Quality Factor of Single Mode  

Gain Guided Index Anti guided Fiber Lasers 

With Finite Cladding Boundary 

  



43 

 

3.1 Introduction 

It is highly desirable to increase the core size of single-mode fiber lasers and amplifiers. 

A large core diameter can help mitigate unwanted nonlinear optical effects, raise the 

optical damage threshold, and increase the amplification per unit length of the fiber [1]. 

Siegman [2, 3] has recently shown that gain-guided, index-antiguided (GG-IAG) fibers 

can operate in a robust single transverse mode, even for arbitrarily large core diameters. 

Since then, several experiments have demonstrated GG-IAG in various fiber laser 

configurations [4–8]. Single mode operation in optical fibers with unprecedented core 

diameters of larger than 200    has been observed.  

In his landmark papers, Siegman carried out a comprehensive analysis of GG-IAG fibers, 

assuming an infinite diameter for the cladding [2, 3]. While the infinite cladding is an 

acceptable approximation in conventional single-mode index guiding (  ) fibers, we 

suggest that the finiteness of the cladding diameter can have a considerable impact of the 

physical characteristics of the propagating beam in GG-IAG fibers and related 

experimental measurements. There are two main reasons for the inadequacy of the 

infinite-cladding approximation. One is that, due to practical limitations on the total 

diameter of the fiber and because of the extremely large core sizes, all existing 

experiments [4–8] report an unusually small ratio of the cladding to core diameter. 

Another is that the GG-IAG mode, characteristically, can have a very long and slowly 

decaying intensity profile in the cladding, extending all the way to the outer boundary of 

the cladding. For example, we recently showed the inadequacy of the infinite cladding 

approximation in predicting the beam quality measurements in various experiments on 

GG-IAG fibers [9].  
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Since the cladding-to-core-diameter ratio is likely to remain small in practical GG-IAG 

designs, a detailed analysis of the impact of the cladding truncation on these fibers is 

warranted. In this paper, we build upon the results of Siegman in [2,3] and extend his 

work to the case where the cladding of the GG-IAG fiber has a finite diameter and is 

truncated by a jacket. The jacket is assumed to be infinite and can be a polymer or glass 

protective layer on the cladding, or simply air. We explore the implications of the finite 

cladding diameter in detail in this chapter and illustrate its main similarities and 

differences with the case of infinite cladding (  ) diameter. In particular, we show that a 

reliable comparison with the beam quality    measurements in recent experiments is 

only possible if the presence of the cladding–jacket interface is explicitly taken into 

account.  

In subsection      , we will present a brief overview of the GG-IAG fibers, for the ideal 

case where the cladding extends to infinity. In subsection      , we extend the formalism 

to the case of finite cladding. The results will be used in sections 3.3 and 3.4 to study the 

impact of finite cladding on the beam profile and beam quality of GG-IAG optical fibers, 

respectively. We will conclude in section 3.5. Finally, in appendix  , we will report on an 

analytical derivation of the    in GG-IAG fibers that was derived by Dr. Krishna Mohan 

Gundu in our group, and we compared and confirmed his analytical results with our 

numerical calculation. Proper care has been taken in choosing a notation that conforms 

with that of Siegman [3] in order to clearly illuminate the transition from the finite-

cladding formulation to the limiting case of the infinite cladding.  

3.2 General Characteristics 

     3.2.1 GG-IAG Fiber with Infinite Cladding . 
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In the presence of gain, an ideal (GG-IG or GG-IAG) step-index optical fiber with 

infinite cladding can be characterized by a generalized complex V parameter squared [2] 

defined as   

 ̃  
                      (3-1) 

The index and gain parameters    and   are given by  

   (
   

 
)
 
(     )             (3-2) 

  (
   

 
)
 
(
   

  
) ,             (3-3) 

where    is the refractive index of the cladding.          is the refractive index of 

the core,   is the core radius,   is core power-gain coefficient, and   is the vacuum 

wavelength.    is negative for an     fiber. For a proper choice of    and  , Siegman 

[2] has shown that the core can support an      guided mode in the form of  

 (      )  {
 

  (     )

  (  )
    

 
  (     )

  (  )
    

           (3-4) 

 ̃ is an overall constant to be determined from the normalization condition Eq. (3-5) 

assumed throughout this paper, 

∬    (     )                 (3-5) 

Where ∬    ∬    . The complex modal parameters    and    are defined as  

  
  (  

   
    )               (3-6) 

  
  (     

   
 )               (3-7) 

where   is the propagation constant of the propagating mode and        . The modal 

parameters are related to the V number as 

  
    

   ̃  
                    (3-8) 
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The dispersion Eq. (3-9) is obtained from matching the electric field and its slope at the 

core–cladding interface:  

    (  )

  (  )
 

    (  )

  (  )
             (3-9) 

Eqs (3-8) and (3-9) can be used to determine    and   , given  ̃  . In general, the value 

of  ̃  determines the total number of confined guided modes in the fiber in the presence 

of gain, which can be zero or higher. We note that a confined propagation mode must 

decay exponentially in the radial direction in the cladding. This condition requires the 

complex modal parameter    to have a positive real value   (  )    . Those solutions 

of Eqs. (3-8) and (3-9) that satisfy  (  )    are the leaky modes that grow 

exponentially to infinity in the transverse direction in the cladding. In the complex plane 

of (    ) shown in Fig. (3-1),  (  )    serves as the threshold line between confined 

and leaky modes and is portrayed as a solid line.  

 

Fig. (3-1). The lines represent,  (  )    for the case of IG-GG fibers (    ) and FC-GG fibers 

(        ). For       the solid line serves as the mode boundary threshold separating the      guiding 

modes from the leaky modes in the complex (    ) plane. 

The confined guiding modes are related to the points above the solid threshold line, while 

the leaky modes relate to the points below the threshold line. Here and throughout this 
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chapter we restrict our studies to the more interesting     region where         since 

the properties of the    region where        are not much different from a 

conventional optical fiber in the absence of gain. 

     3.2.2 GG-IAG Fiber with Finite Cladding  

In this subsection, we generalize the formulation of    optical fibers presented in 

Subsection       to the case where the cladding has a finite radius  . The refractive index 

profile of the finite-cladding    (FC-GG) fiber is given by  

 ( )  {

                      
                
                      

          (3-10) 

   is the refractive index of the medium surrounding the cladding, referred to as the 

jacket. The electric field profile of the      core guided mode can be generally expressed 

as  

 (      )  

{
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  (     )

  (  )
                    

 ̃
  (     )

  (  )
              

 ̃
  (   )

  (  )

  (     )

  (  )
                 

       (3-11) 

 ̃ is an overall constant to be determined from the normalization condition Eq. (3-5). We 

have also defined  

  ( )    ( )  (
  

  
)   ( )           (3-12) 

       is the ratio of the radius of the cladding to the radius of the core, and    and    

are defined in Eqs. (3-13) and (3-14):  

       (  )  (  )      (  )  (  )         (3-13) 

       (  )  (  )      (  )  (  )         (3-14) 
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  ,   , and    are the modal parameters in the core, cladding, and the outer layer, 

respectively.    and    are defined in Eqs. (3-6) and (3-7), while    is defined in Eq. (3-

15): 

  
  (     

   
 )             (3-15) 

The continuity of the field and its first derivative across the boundaries,      and   

  , results in the following dispersion relation: 

( 
  

  
)

    (   )     (   )

    (   )     (   )
=

  (  )

  (  )
         (3-16) 

We can also define a new   parameter ( ̃  ) to characterize the index step at the 

cladding–jacket interface: 

 ̃  
  (
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(  

    
 )  (

  

 
)    

         (3-17) 

For IG-GG fibers in subsection      , all the information required to determine    and 

  , and therefore the mode field profile, was encoded in a single dimensionless complex 

parameter  ̃  . In the case of FC-GG fibers, in addition to  ̃  , we also need the values of 

the dimensionless parameters  ̃   and   in order to determine   ,   , and   , required for 

the mode profile. Equations (3-8), (3-16), and (3-17) will be used to solve for the modal 

parameters, given the values of  ̃  ,  ̃  , and  . 

3.3 Mode Profile in an FC-GG Fiber 

The formulation we presented in section     is applicable in general to any selection of 

complex values for the refractive indexes of the core, cladding, and jacket. However, we 

focus our analysis on the case where the cladding and jacket are not active, so    and    

are assumed to be real throughout this chapter. This practical choice conforms to the 

assumptions of [3] and also the subsequent experimental studies of GG-IAG optical 
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fibers. We also note that, for simplicity, we choose the jacket to be made of air (     ) 

to carry out our analysis. However, we will comment on other choices for the jacket 

material.  

The electric field profile of the      mode for the case of an IG-GG fiber was analyzed in 

detail by Siegman [3]. In Fig. 3.2, we present the amplitude of the electric field profiles 

for a generic example where       , for the case of infinite cladding (    ), as 

well as for three cases of    diameters, characterized by            . In each case, the 

amplitude of the     mode is plotted for three values of gain         (solid),        

(dashed), and      (dotted–dashed). Point  , marked on Fig. (3-1), represents    

     and       , for the IC case. We note that we use an identical value of      at 

       as evaluated for IC-GG fibers for all four plots, since the concept of a 

guidance threshold might be meaningless in FC-GG fibers, as will be argued later in this 

section. 

 

Fig. (3-2). Electric field profiles for the case of       fibers (    ) in the top-left graph and FC-GG 

 fibers (          ) in the other three graphs. 
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We first recall the behavior of the field profile for infinite cladding (η = ∞). The point 

characterized by        belongs to the parameter region       , generally 

associated with an intensity tail in the cladding, which drops exponentially in the radial 

direction. As the gain parameter ( ) approaches the threshold value (   ), the tail 

extends farther into the cladding and the rate of exponential decay slows down. At 

      , the tail reaches a finite nonzero asymptotic value at infinity. For       , 

including     , the cladding tail grows exponentially into the cladding region and the 

field turns into a leaky mode. This behavior is clearly observed in the top-left of Fig. (3-

2).  

We now investigate the      field profiles for the cases of finite cladding:     ,     , 

and       , presented in the top-right, bottom-left, and bottom-right of Fig. (3-2), 

respectively. We expect that the electric field profile of an      mode in an FC-GG fiber 

to somewhat resemble that of an IC-GG fiber in the core and the cladding. The profiles in 

Fig. (3-2) show that this expectation holds true and is most accurate for large values of  , 

such as     . The most notable departure of the field profiles of the FC-GG fibers from 

that of IC-GG is the strong truncation of the intensity tail at the cladding–jacket interface, 

due to the large index step. For        , the truncation has a greater impact on the 

profile of the mode in the core and in the cladding, compared with        . The impact 

is also greater for smaller values of  , as expected. We note that, except for the case of 

    , all the mode profiles plotted in Fig. (3-2) satisfy the normalization condition of 

Eq. (3-5), if the vertical axes in Fig. 2 are to be regarded in units of (   ). However, 

since the two cases of      and        are not normalizable for     in the top-left 
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of Fig. (3-2), we scaled all the profiles belonging to      to match that of η = 3 at the 

origin (r = 0) for easier comparison.  

Another important point for FC-GG profiles is that the truncation at the cladding–jacket 

interface turns leaky modes into proper normalizable guided modes. In other words, 

unlike the IC-GG fiber,  (  )    no longer serves as a    threshold for FC-GG fibers. 

We note that the normalizability requirement that imposed a condition of  (  )    on 

the guided modes of IC-GG fibers is now replaced by  (  )    for       fibers. 

Those solutions of Eqs. (3-8), (3-17), and (3-16) that satisfy  (  )    are the leaky 

modes that grow exponentially to infinity in the transverse direction in the jacket. In the 

next paragraph, we will argue that, for a sufficiently large refractive index contrast 

between the cladding layer and the jacket, it is possible for all FC-GG modes defined on 

the complex plane of (    ) to be guiding. In other words, the condition  (  )    

may no longer translate into a guiding threshold on this complex plane, and there will be 

no leaky     -like modes. However, for finite values of  , it might be interesting to find 

the quasi-threshold line of  (  )   . This quasithreshold lines are plotted in Fig. (3-1) 

for      and        as dashed and dotted–dashed, respectively. A quasi-threshold line 

for       becomes virtually indistinguishable from the solid threshold line (    ) 

belonging to IC-GG fibers in Fig. (3-1). We emphasize again that the quasi-threshold 

lines are for illustration purposes and do not present any physical threshold for guiding 

versus leaky properties in FC-GG fibers.  

We now argue that  (  )    may no longer translate into a guiding threshold. In 

practice, there is an often large refractive index contrast between the cladding layer and 
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the jacket, especially if the jacket is assumed to be air (our choice in this paper). 

Therefore,  ̃   can be quite large. Using Eq. (3-17) and assuming  ̃       , we get  

 (  )    ̃  (1-
 (  )   (  ) 

  ̃  
   ( ̃  

  ))         (3-18) 

It is clear that, unless,  (  ) remains positive and the mode is confined. Therefore, 

unlike the IC-GG fibers, guided modes exist even below the solid-line threshold of Fig. 

(3-1). We note that, for all three choices of   studied in this paper, the values of the 

modal parameters    and    are almost the same in IC-GG and FC-GG fibers. Therefore, 

   and    as the numerical solutions of the much simpler IC-GG dispersion Eq. (3-9) can 

be used as a starting point in the search algorithm to find   ,   , and    in the case of 

FC-GG fibers. For our choice of parameters,      is practically identical to      

when it comes to solving for    and    for the root-finding algorithm we employed in 

Mathematica. We note that, solving for the modal parameters, using the dispersion 

equation of the FC-GG fibers becomes increasingly harder as   gets larger.  

Last, we would like to comment on our choice of      . Our observations reported in 

this chapter should hold true as long as    and    are not too close. On the other hand, in 

the limit of       , the FC-GG fiber becomes identical to the IC-GG case. In terms of 

using a root-finding algorithm with    and    from IC-GG fibers as the seed for the FC-

GG case, our choice of       is the most stringent choice and larger values of    will 

result in even greater resemblance between the      profiles and modal parameters in IC-

GG and FC-GG fibers  

3.4 Beam Quality Factor in an FC-GG Fiber  

The reported values of the beam quality factor    in several experiments [4–8] are 

notably larger than unity, in the range of     –    , even in fibers that are designed to 
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operate as single mode. This should not be surprising considering the substantial 

departure of the      profile of a GG-IAG fiber from a Gaussian-like beam, as similarly 

reported in other unconventional optical fibers [10]. We conducted an extensive 

theoretical study of the beam quality factor    of single-mode fibers in the presence of 

gain [9]. We showed that the theoretical predictions of the    in the GG-IAG region can 

be substantially larger than the experimental measurements (     ) and attributed this 

difference to the truncation of the long tail of the beam extending all the way into the 

cladding region in the experiments, which can lower    substantially. For example, [4] 

reports      for a GG-IAG optical fiber with a 100    core diameter and a 250    

cladding diameter. Similarly, [5] reports           , where the core and cladding 

diameters are 200 and 340   , respectively. Reference [8] reports        for a 

       optical fiber with a 100    core diameter and a 250    cladding diameter. 

The cladding diameter is not much larger than the core diameter in either experiment. 

Therefore, it is not surprising that these experiments measure such low values of   .  

In order to explore the impact of the long intensity tail in the cladding on the value of    

in [9], we introduced a Gaussian apodization to softly truncate the long intensity tail of 

the beam calculated from an IC-GG fiber. Although this served as a reasonable and 

convenient approximation, the mode profiles plotted in Fig. (3-2) show that a more 

rigorous study is warranted. For example, a simple Gaussian field truncation at the 

cladding–jacket boundary for        does not seem to be an adequate approximation. 

Our method for calculating the    is similar to that reported in [9]. Consider an optical 

beam with the electric field profile  (     ) propagating in the   direction. The beam 
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center 〈 〉 and the standard deviation of the intensity distribution   
  across the   

coordinate are  

〈 〉( )  ∬     (     )            (3-19) 

  
  ( )  ∬  (  〈 〉( ))   (     )          (3-20) 

Since we only consider cylindrically symmetric optical fibers, the results are identical for 

the   coordinate, and we take the liberty in dropping the   subscript (e.g.,   ) when 

convenient. It can be shown that the standard deviation in Eq. (3-20), in the paraxial 

approximation, obeys a universal free-space propagation rule of the form 

  
  ( )    

  (  )   
 

  
(    )   

  

   
(    )

        (3-21) 

   is the coordinate of the output facet of the fiber, which does not necessarily coincide 

with the position of the beam waist. Reference [11] has shown that  
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where      (     ) is implied in Eqs. (3-22) and (3-23). The position of the beam 

waist  ̃   and the beam quality factor   
  x are given by  

 ̃         (  )            (3-24) 

  
  √    

 (  )    .          (3-25) 

We note that we slightly differ with [11] in the sign of the frequency term and also the 

definition of the   term. Our definitions remain consistent with [9], except for a missing 

minus sign in the definition of  , which has been corrected here in Eq. (3-22). For the 

case of finite cladding, we consider the generic electric field profile of Eq. (3-11). While 
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the value of    in Eq. (3-25) can be evaluated numerically, we also derive a closed-form 

analytical expression for the    parameter in Appendix A. 

The contour plots of    as a function of    and   are shown in Figs. (3-3). Fig. (3-3a) 

relates to      representing the IG-GG-IAG fibers. The dashed line in Fig. (3-3a) 

identifies the threshold values of the dimensionless gain parameter   required to produce 

a confined and amplifying      mode as also shown in the form of a solid line in Fig. (3-

1). Figs. (3-3b – 3-3d) relate to     ,     , and       , respectively, representing 

different FC-GG-IAG fibers.  

The results in Fig. (3-3a), related to the GG-IAG region of FC-GG fibers, show that    

is quite large over the entire parameter space and becomes exceptionally large near the 

(dashed)      threshold. The large value of    especially near the threshold is the result 

of the long tail of the beam intensity extending all the way into the cladding region [9]. 

The situation is quite different for FC-GG fibers as shown in Figs. 4-6. The truncation of 

the beam tail at the cladding–jacket interface results in a substantial reduction in the 

calculated value of   . The above observations are quite important in relating the    

values reported in this paper to the experimental measurements. 

We note that, in the        region (      ), the beam quality factor    increases 

as      becomes progressively larger. This trend can be observed in Figs. (3-3b – 3-3d). 

Also, in each of these figures, the contour lines eventually become vertical for large 

enough values of     . This is almost starting to happen for        in Fig. (3-3d) at 

         . For larger values of  , this effect happens at larger values of     . In other 

words, for very negative values of   , the    parameter becomes independent of the   

parameter. This can be seen in Fig. (3-4), where we plot    as a function of   for 
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        (left) and          (right). It can also be seen that, for each of the three 

choices of       (solid),       (dashed), and       (dotted–dashed), a larger value 

of ΔN results in a larger beam quality factor. This is also consistent with our remarks 

regarding the extrapolation of Figs. (3-3b - 3-3d) to more negative values of   .  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. (3-3) Contour plot of    as a function of    and   in the        region for (a) IC-GG fibers with 

    , (b), (c), and (d) for       fibers with    ,    , and      , respectively. 

It can also be seen [as also shown in Figs. (3-3b - 3-3d)] that    increases with the value 

of  . As we stated before, solving for the modal parameters   ,   , and    becomes 

exceedingly difficult for large values of  , even if we start with the modal parameters    

and    from the much simpler IC-GG dispersion Eq. (3-9). For       and        , 
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finding a solution to Eq. (3-16) becomes a complicated numerical problem and requires 

accuracy beyond the machine precision. Addressing such numerical issues is beyond the 

scope of this research, and we have chosen to extract the expected values of    for 

      and           by observing the trends in our figures. 

 

Fig. (3-4).    as a function of   for (left)         and (right)         . The lines in each graph 

relate to the different values of        (solid),       (dashed), and        (dotted–dashed). 
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Chapter 4 

 

 

 

Improving the Power Efficiency in End-Pumped  

Gain-Guided Index-Antiguided Fiber Amplifier  
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4.1 Introduction  

It is highly desirable to increase the core size of high-power fiber lasers and amplifiers in 

order to mitigate unwanted nonlinear optical effects and raise the optical damage 

threshold. Conventional index-guided (  ) optical fibers become multimode for large 

core diameter, because it is very difficult to control and fine-tune the index step between 

the core and cladding to satisfy the single mode condition. Gain-guided index-antiguided 

(GG-IAG) fibers have been suggested by Siegman as a possible platform for ultralarge-

core single-mode operation for lasers and amplifiers [1].  

GG-IAG fiber has a lower refractive index in the core than in the cladding, so a sufficient 

amount of gain must be added to the core to help the fiber to support the guiding mode. 

Eqs. (4-1) and (4-2), first derived by Siegman [2], provide reliable approximations of the 

threshold gain required for the lossless propagation of     and     modes, respectively:  

   
   √

     

   
 (   )

  

                  (4-1) 

   
   √

     

   
 (   )

  

                  (4-2) 

Here,    
   (   

  ) is the minimum gain required for the      (    ) mode to propagate 

without loss. The refractive index of the cladding and the core is    and      , 

respectively.   is the signal wavelength, and   is the core radius.  

Several experiments have provided the proof of concept for the single-mode operation of 

GG-IAG ultralarge-core fiber amplifiers and lasers [3]–[7]. All the relevant experiments 

have observed a stable single-mode profile at the output; however, the value of beam 

quality factor    has been considerably larger than unity. Another common feature 
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among all experiments has been the rather low value for the measured output power and 

efficiency.   

We recently studied the behavior of    in GG-IAG fibers [8], [9]. We found that the 

value of    is affected by the truncation of the slow-decaying tail of the fundamental 

mode at the cladding-jacket interface in GG-IAG fibers. This behavior is quite unlike that 

of the conventional    single-mode fibers, where the cladding-jacket interface has 

virtually no impact on the profile and the beam quality factor of the guided mode. The 

theoretical results we obtained in [9] were consistent with the corresponding 

experimental observations.  

The issue of low power and low efficiency of GG-IAG fiber lasers and amplifiers has 

also been addressed in several publications and is the main subject of these papers [3]–

[7]. It has been suggested that the     behavior of the core at the pump wavelength 

prevents the pump to be efficiently absorbed in the core area. One solution to address this 

issue is to make the fiber    at the pump wavelength, while keeping it     at the signal 

wavelength [6]; however, it has been challenging to find the appropriate core and 

cladding glass compositions with the desired dispersive behavior.  

Another suggested solution has been to use Bragg confinement to increase the pump 

overlap with the core [10]; however, we believe that the     behavior at the pump 

wavelength has negligible impact on the pump absorption in the core of the GG-IAG 

fibers and a solution to the issue of low power and low slope efficiency must be looked 

for elsewhere. This is evidenced by the recent work of Yan et al. [11] where they 

numerically explore the impact of the     nature of the core at the pump wavelength on 

the absorption efficiency of the pump in the core. Although the     behavior affects the 
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pump absorption, the impact is too small to be mainly responsible for the major lack of 

power efficiency in reported experiments on GG-IAG fiber amplifiers and lasers. 

However, it must be noted that the work presented in [11], which focuses on this 

particular issue, is numerical and therefore depends on the assumption made in their ray-

tracing-based simulations. While we suspect that the impact of the     structure on 

pump absorption is minimal for a highly multimode pumping scheme with low transverse 

coherence, we think that further detailed theoretical and experimental assessments of this 

problem are warranted in future research on GG-IAG fiber amplifiers and lasers. In the 

following sections, we will argue that it is the high absorption efficiency in the first few 

centimeters of improperly designed fiber amplifiers, which does not allow for proper 

pump delivery to the rest of the fiber and much of the length of the fiber attenuates the 

signal due to the lack of proper pumping above the required GG-IAG threshold.  

Only a couple of experiments on end-pumping scheme for GG-IAG fibers have been 

reported so far in     -doped and     -doped fibers. In a pioneering study on diode-

pumped GG-IAG fiber lasers, Sudesh et al. [5] observed single-mode lasing in a       

GG-IAG phosphate glass         fiber laser with         doping in the core. The 

measured lasing threshold was reported at    , and the maximum output was 

measured to be around      for larger than      of pump power. Sudesh et al. 

attributed the low slope efficiency of the laser to the     effect at the pump wavelength. 

While we think it is unlikely that     is having such a large impact in a multimode 

pumping scheme as we discussed before, considering that the fiber is also so short, we 

suggest that this issue can be explored by tracking the output pump power, using the cut-

back method. In an ideal case where the pump is uniformly distributed across the fiber 
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cross section all the way along the fiber, the pump absorption in    unit is given by 

                
( )

  (approximately     for        ), where    
( )

          , 

     is the total density of the doped      ions,    is core area divided by the cladding 

area, and we have assumed low signal power as is also observed in [5]. Therefore, an 

absorption of much less than half (    ) the pump power through the entire length of the 

fiber can be regarded as a clear signature of the lack of proper pump overlap with the 

core; otherwise, one must look elsewhere for the reason behind the low slope efficiency.  

It may also be possible to inspect the substantial transverse signal leakage power from 

GG-IAG structures, depending on the experimental configuration. The gain threshold 

presented in Eq. (4-1) signifies a constant loss mechanism along the length of the GG-

IAG fiber (due to the     behavior at the signal wavelength), which must be 

compensated by the gain provided by the amplifying medium. As such, signal power 

leaks sideways into the cladding or free space depending on the experimental 

configuration. In the experiment reported by Sudesh et al. [5],      of the laser output 

power translates into          of total signal power inside the cavity (forward and 

backward propagating beams) near the output mirror with     reflectivity. Since 

   
   

    

 
, we can estimate the total signal power leakage to the cladding of    

     

    . Here, we have assumed constant signal power inside the cavity along the fiber, 

which is a fair approximation, given the high reflectivity of both mirrors, and is only 

valid as an order of magnitude estimation of the expected signal power leakage. 

Depending on the experimental configuration, this power leakage might be easily 

observable and can perhaps be significant in high power operations in more efficient GG-

IAG fiber lasers and amplifiers to require proper safety precautions.  
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Side pumping has been suggested as a method to increase the efficiency of the GG-IAG 

fiber lasers and amplifiers. The authors of [6] and [7] suggest side-pumping to address 

the issue of     at the pump wavelength, which is claimed to negatively impact the 

absorption of the pump. However, side pumping has not considerably changed the low-

efficiency problems associated with        structures. Moreover, side pumping is 

likely not suitable for scaling up the GG-IAG fiber lasers and amplifiers to longer lengths 

(beyond the short segments used in the proof-of-the-concept experiments) and higher 

powers; therefore, we focus our studies on the end-pumping scheme in this paper.  

4.2 Optimum Design Criteria 

In a series of experiments, Peng’s group have explored     -doped GG-IAG fiber 

amplifiers and have carried out careful experiments on the absorption of the pump [11]–

[13]. While they do not directly report the      doping percentages in their papers, they 

suggest that pump absorption is rather high in the first few centimeters of the GG-IAG 

fiber, leading to a large thermal load [11]. They also analyze the “negative” impact of the 

circular symmetry (due to nonabsorbing helical rays), and also that of the     structure at 

the pump wavelength, using a ray-tracing model [11]. However, their experiment on a D-

shaped GG-IAG fiber has not improved the amplifier gain slope efficiency [13], leading 

one to believe that the circular symmetry may not be blamed to the poor performance of 

the amplifier. The authors have correctly identified the proper pump power distribution as 

the main performance barrier in GG-IAG fiber lasers and amplifiers. However, unlike the 

experiment reported on     -doped GG-IAG fiber [5], the lack of pump absorption 

efficiency does not seem to be an issue in the reported     -doped        fiber 

experiments [11]–[13]. Rather, it is the high absorption efficiency in the first few 
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centimeters of the fiber, which does not allow proper pump delivery to the rest of the 

fiber, and much of the length of the fiber attenuates the signal due to the lack of proper 

pumping above the required GG-IAG threshold. In order to see the impact of the rapid 

pump absorption in a      -doped        fiber such as those reported by Peng’s 

group [11], we plot the pump power and the local signal gain as a function of the length 

of the GG-IAG fiber (          ) in Fig. (4-1). We assume         doping in 

silica fiber with core and cladding diameters of     and       , respectively. The input 

pump power is 9  , where we have assumed uniform pump distribution across the fiber 

(core and cladding). Essentially, the entire pump is absorbed in the first few centimeters 

of the fiber; the signal is only amplified in the first      of propagation and is 

attenuated afterward. The result in Fig. (4-1) clearly demonstrates the need for proper 

distribution of the pump power in GG-IAG fiber amplifiers.  

 

Fig. (4-1). Pump power and local signal gain are plotted as a function of the length of the GG-IAG fiber 

with         doping, where the core and cladding diameters are 200 and 340   , respectively. The signal 

is attenuated beyond the 27    length. 
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Another important consequence of the threshold gain in GG-IAG fibers is that Eqs. (4-1) 

and (4-2), indirectly, put a limit on the minimum value of the core radius of the fiber to 

support     and     , respectively. Below the threshold radius, the GG-IAG operation of 

the corresponding mode is not possible. In order to see this, consider an     -doped 

fiber amplifier, where        
     must be satisfied for proper amplification of the 

     mode, where     is the gain provided by the     -doped core. However,     

    , where       ( )     is the maximum available signal gain in the limit of 

infinite pump power and zero signal power, and  ( ) is the emission cross section at the 

signal wavelength. This results in an absolute minimum in the desired radius of the core, 

as presented in Eqs. (4-3). Similarly, in (4-4), we present a minimum threshold radius for 

the excitation of the     mode:  

    ( )   (√
     

   
 (   )

  

       
)              (4-3) 

    ( )   (√
     

   
 (   )

  

       
)               (4-4) 

 

Fig. (4.2). Range of the core radius for operating in a single-mode regime in a       dopant concentration 

versus different values of refractive index difference between the core and cladding,   , in the limit of 

infinite pump power and zero signal power. 
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In Fig. (4-2), we plot the minimum core radius for the case of         doping in the 

core, similar to the case studied by Sudesh et al. [5]. The values reported in Fig. (4-2) are 

merely lower bounds for the required value of radii and in practice, where the actual 

pump power is finite,      must be replaced with the actual calculated gain, thus 

resulting in larger required minimum radii. For example, for 10   of pump power, which 

is far below that needed to obtain the saturated gain value of  ( )    , we used the actual 

calculated value of the signal gain and found that the threshold radii for the excitation of 

the and modes are 37 and 51   , respectively. It must be noted that the core radius in [5] 

is 100    and the authors do not observe an      excitation. Since we previously 

calculated the pump absorption at most at 3    level in this case and the pump power 

must be larger or equal to 10   at any location along the fiber for an input power of 20 

 , the only feasible explanations for the absence of      mode can be either due to the 

lack of proper pump coupling, or excessive signal loss along the fiber. We note that in the 

presence of additional loss in the fiber, the threshold value for the radius is further raised, 

since the effective      is reduced. Typically,      mode experiences more waveguide 

loss compared with      mode; therefore, the threshold radius for the      mode is raised 

substantially more due to the loss compared with the      mode.  

4.3 Improved Design Using a Tapered Cladding  

Looking back at our arguments so far, one can correctly get a feeling that proper pump 

distribution is the key ingredient in designing GG-IAG fiber lasers and amplifiers, just as 

is the case in the conventional    fibers. It must be noted that in conventional    fibers, it 

is merely sufficient to create a population inversion to sustain a propagating mode 

without attenuation. However, in GG-IAG fibers, extra pump power is required to 
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establish a higher value of gain beyond the threshold value    
   to overcome the 

attenuation. In Fig. (4-1), we observed that the rapid pump absorption in the first few 

centimeters of the fiber deprived the rest of the fiber from the necessary pump power to 

maintain sufficient gain for the signal. In such situations, it is wise to design structures 

where the pump absorption efficiency is reduced in the beginning of the fiber, so that the 

pump power and consequently local signal gain can be distributed more evenly along the 

fiber. One method to achieve this for the end-pumped amplifier geometries is to taper the 

cladding cross section, while keeping the core size uniform, along the fiber. The optimal 

design of the fiber amplifier cladding area depends on whether the pump power is fully 

reflected at the end of the fiber or not. One expects higher values of signal gain, if the 

pump power is recycled by reflecting it back into the fiber.  

In order to derive the appropriate equations, we make a few simplifying assumptions. 

Here, we assume that the pump power remains uniformly distributed across the fiber 

cross section; therefore, the pump power absorption efficiency scales with the pump 

overlap with the core as    
   

   
, where     is the area of the doped core and     is the 

total area of the fiber cross section (core and cladding). Here, we note that     is fixed, 

while     can vary along the fiber. In the following, we derive the appropriate equations 

to simulate the propagation of the pump and also the optimum form of the cladding 

radius as a function of the fiber length, in order to keep the pump intensity constant along 

the fiber. We note that in our derivation, the total amplifier gain is calculated in the small-

signal limit [14]:  

   
 

  
   (   

 
      

 
  )      

            (4-5) 
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  )      

            (4-6) 

where the total pump intensity at each point along the fiber is given by 

  ( )  
  

 ( )   
 ( )

   ( )
             (4-7) 

   and    are the normalized ground-state and excited-state atomic-level populations, 

respectively, which participate in the lasing action, where            
 

 and    
 

 are 

the absorption and emission cross sections at the pump wavelength. If we assume that the 

pump intensity is invariant along the fiber, i.e., 
   ( )

  
   (  ( )    ( )), we can 

eliminate   
 ( ) from the aforementioned equations and derive  

    

  
 ( 

  
 

     ( )
  )   (   

 
      

 
  )             (4-8) 

Eqs (4-5), (4-6), and (4-8) can be solved simultaneously to obtain the pump power, as 

well as the cladding area variation along the length of the fiber amplifier. The equations 

must be solved iteratively, since one does not know a priori the contribution of   
 (  

 ) to   ( ). The boundary condition at     should be set at   
 (   )     

 , where 

   
  is the total input power into the fiber. The boundary condition at     is set to 

  
 ( )      

 ( ), where    is the reflectivity of the end tip of the fiber amplifier at the 

pump wavelength.  

4.4 Results and Discussion 

In order to compare the performance of different amplifier designs, we calculate the total 

gain at the signal wavelength. In particular, for different designs of the fibers, we will 

compare the performance of nontapered-cladding designs with those of the tapered-
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cladding designs. For tapered cladding, we are interested in two special cases of and 

     and        .  

In Table (4-1), we present the relevant design parameters belonging to seven different 

cases of GG-IAG fiber amplifiers. Cases 1–4, which are presented in Figs. (4-3a) to (4-

3d), relate to GG-IAG fiber amplifiers with 1%     -doped cores. The total gain for the 

amplifiers designed based on the parameters of case 1 is plotted in Fig. (4-3a). The 

contour plot in Fig. (4-3a) (left) shows the total signal gain as a function of the length of 

the GG-IAG fiber amplifier (horizontal axis) and the total input pump power (vertical 

axis); the cladding diameter is fixed (nontapered) in Fig. (4-3a) (left). Fig. (4-3a) (middle) 

presents a similar setup for case 1; however, the cladding is tapered in this case with 

    . Fig. (4-3a) (right) presents again a similar set up for case 1; however, the 

cladding is tapered in this case with        . Figs. (4-3a) to (4-3d) (Cases 1, 2, 3, 

and 4 in Table (4-1), respectively) are implemented for identical parameters, except that 

their core and cladding radii are different, as given in Table (4-1). We note that the values 

of the cladding radii in Table (4-1) represent the initial values at the beginning of the 

tapered fibers(   ).  
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Table (4-1): Parameter for different Figures 

Case   (  )   (  ) Core doping L (cm) 

1 50 150 1%      20 

2 50 200 1%      20 

3 100 200 1%      20 

4 100 150 1%      10 

5 100 200 1%      10 

6 100 200 2%      7 

7 100 200 10%      2.5 

 

The maximum fiber length explored in Fig. (4-3d) is only      ; the reason is that the 

radius of the tapered cladding gets too close to the radius of the core for the design to be 

practical. From Table (4-1) and Figs. (4-3a)-(4-3d), it is clear that in all these cases, a 

tapered cladding provides better gain than a nontapered cladding fiber. The designs 

where the pump power at the output end is recycled by using         show better 

performance over the designs where the exit pump power is wasted     . If we 

compare Figs. (4-3a) and (4-3b), where the cladding radius is          and   

      , respectively, we can conclude that a smaller cladding to core ratio in a 

nontapered GG-IAG is beneficial. This is because of the larger pump intensity in the core 

of the GG-IAG fiber with a smaller cladding radius, given a specific input pump power, 

which leads to a higher gain when the intensity is well below saturation. This difference 

is slightly less pronounced in the tapered GG-IAG fibers with     ; however, for 

       ;, the performances of the two GG-IAG fibers are virtually identical. If we 

compare Fig. (4-3a) and (4-3d) or Figs. (4-3b) and (4-3c), we observe that a larger ratio 
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of the core radius to the cladding radius (at fixed cladding radius) helps in obtaining a 

larger value of the gain, where this improvement is also more pronounced for    

     in tapered GG-IAG fiber amplifiers. Note that     is reduced for the larger values 

of the core radius, which contributes to the higher efficiency of the design.  
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Fig. (4-3). Total gain of the amplifiers designed based on the parameters of Table (4-1) (      doped) are 

plotted in contour plots, as a function of the amplifier length and the input pump power. In each row, the 

left panel corresponds to the case of a nontapered cladding. The middle (right) panel corresponds to the 

case of a tapered cladding when      (       ) . The first, second, third, and fourth rows relate to 

Cases 1, 2, 3, and 4 in Table (4-1), respectively. 
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Next, we fix the core radius at       , and the initial value of the cladding radius 

(   ) at       . We vary the doping material and doping concentration in the core 

and explore its impact on the performance of the GG-IAG fiber amplifier. In Fig. (4-4) 

(left), (middle), and (right), we compare the three cases of         doping,          

doping, and          doping, respectively. These correspond to Cases 5, 6, and 7 in 

Table (4-1), and are all implemented for a tapered cladding with        . Fig. (4-4) 

(right) with          doping (Case 7) should be compared with Fig. (4-3c) (right) with 

       doping (Case 3).While the maximum achievable gain is comparable between 

the two designs, the maximum gain for GG-IAG fiber amplifier with         doping 

(Case 7) is obtained over only       . From a practical point of view, the GG-IAG fiber 

amplifier with         doping and       length (Case 3) might be a much better 

design due to heat management issues.  

 

Fig. (4-4). Total gain of the amplifiers designed based on the parameters of Table (4-1) are plotted in 

contour plots, as a function of the amplifier length and the input pump power. In the left, middle, and right 

panels, we compare the three cases of       , 2%Yb , and        doping, respectively. They all 

correspond to the case of a tapered cladding when        , core radius of       , and the initial value 

of the cladding radius (z=0) of       . The left, middle, and right panels relate to Cases 5, 6, and 7 in 

Table (4-1), respectively. 
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As we already pointed out, one of the key issues in designing GG-IAG fiber amplifiers is 

to ensure that the pump power is not too quickly depleted along the fiber. Therefore, 

    –doped amplifiers seem to generally perform better than     –doped amplifiers, 

because      atoms have a substantially larger pump absorption cross section and 

deplete the pump power too quickly, leading to the issues already elaborated in the 

discussions leading to Fig. (4-1). The lack of good performance in     -doped GG-IAG 

fiber amplifiers is apparent when comparing Fig. (4-4) (left) and (middle) with (right) 

(Cases 5 and 6 with 7).  

4.5 Practical Viability and Limitations  

Cladding tapers (without tapering the core) can be achieved by etching the cladding using 

controlled hydrofluoric acid exposure with varying duration along the fiber [15]. For 

most practical applications, a moderate amount of tapering is sufficient to result in an 

improvement in the amplifier gain. In Fig. (4-5), we show the desired cladding radius for 

several different designs, all belonging to Case 3 in Table (4-1), related to Fig. (4-5), 

where the doping is         , the core radius is        , and the initial value of the 

cladding radius at     is         .  
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Fig. (4-5). Plots show the required tapered cladding radius as a function of the length for various designs 

corresponding to Case 3 in Table (4-1). Considerable tapering is required when no end mirror is used to 

recycle the pump power, i.e.,    %. The core radius for all cases is 100   . 

In Fig. (4-5), the solid (black) line shows the desired tapered cladding radius for an 

        amplifier pumped with         , with        ; we did not plot the 

line for the case of         , because it was almost identical to the line for     

    . The long-dashed (blue) line shows the required tapered cladding radius for an 

        amplifier pumped with         , with        ; it can be compared 

with the required tapering radius in dot-dashed (red) line for twice the initial pump 

power, i.e.,         , where the two tapering designs are almost identical. We note 

that the exact value of the pump power does not have a significant impact on the ideal 

design of the taper, which is quite important in making the tapered design practical. We 

observe that in the aforementioned cases, the desired change in the cladding radius due to 

tapering is less than     of the cladding radius; however, the desired change is 

substantially larger when no end mirror is used to recycle the pump power, i.e.,    

  .  



78 

 

The dotted (green) line shows the desired tapered cladding radius for an         

amplifier pumped with         , with      ; the cladding radius must be tapered 

down to approximately          in this case, which is substantial and perhaps 

challenging in fabrication. Similarly, the required tapered cladding radius for an   

      amplifier pumped with         , with       is almost identical to that of 

an identical case with          and its graph falls on the dotted (green) line. We note 

that in either case (         or      ), we would expect a less gentle tapering 

profile, if the pump power depletes too rapidly either due to a high dopant concentration 

or low pump power. 

A limitation of the optimum designs presented in Figs. (4-3) and (4-4) may be that each 

optimum taper is tied to a particular choice of the fiber length and pump power, and is 

solved for by using (4-5), (4-6), and (4-8). In Fig. (4-6), we capture the impact of the 

deviations from the optimum design, both in the pump power and the taper profile, on the 

performance of the amplifier.  
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Fig. (4-6). Results presented in these subfigures are all related to Case 3 in Table (4-1) and should be 

compared with Fig. (4-3c)(right). (a) Left, middle, and right subfigures show the total value of amplifier 

gain, when the in-coupled pump power is reduced by 30%, 20%, and 10%, respectively, compared with the 

ideal case where all the pump power is coupled into the fiber amplifier. (b) Left, middle, and right 

subfigures show the total value of amplifier gain, when the tapering profile is modified from its optimum 

value by      %,      %, and      %, respectively. 

In Fig. (4-6a), we have chosen again Case 3 in Table (4-1), corresponding to Fig. (4-3c) 

(right) with         for our analysis. In each of the subfigures in Fig. (4-6a), used as 

the vertical axis indicates the total available pump power. Fig. (4-6a) (left), (middle), and 

(right) shows the total value of amplifier gain when the in-coupled pump power is 

reduced by    ,    , and    , respectively, compared with the ideal case where all 

the pump power is coupled into the fiber amplifier, i.e., Fig. (4-3c)(right). The total 

amplifier gain deteriorates when the in-coupled pump power is reduced compared with 

the total available pump power for which the amplifier taper is optimized. We recall from 

Fig. (4-5) that variations around the exact value of the pump power do not have a 
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considerable impact on the desired tapering profile; therefore, the decrease in the total 

amplifier gain must be mainly attributed to the drop in the total available pump power, 

and not the incorrect tapering geometry.  

In Fig. (4-6b), we explore the impact of the geometrical deviations from an ideal taper on 

the total amplifier gain. In each case, for each value of the input pump power    and 

amplifier length  , we optimize the geometry as prescribed by (4-5), (4-6) and (4-8). We 

then multiply the cladding area profile by the factor  ( )  (      ) to account for 

the imperfection in the tapering rate of the fiber; therefore, the actual taper area is in the 

form of    
   ( )   ( )   ( ), instead of the originally optimized    ( ). We then 

calculate the total amplifier gain using the same     and L, yet using the updated 

   
   

( ). Fig. (4-6b)(left), (middle), and (right) are for      %,      %, and 

     %, respectively. We note that we assume no deviations at the input port of the 

fiber, i.e.,  ( )   . We remind the reader that the aforementioned results are all for 

Case 3 in Table (4-1) and should be compared with Fig. (4-3) (right). In order to properly 

interpret the results in Fig. (4-6b), we need to remind the reader that the observed 

increase in the amplifier gain in Fig. (4-3c)(middle) compared with Fig. (4-3c)(left) is 

due to the higher pump intensity at each point along the fiber (except at z=0) in the 

tapered design, compared with the untapered. We referred to the tapered geometry 

obtained from solving (4-5), (4-6), and (4-8) as “optimum,” because it would allow a 

uniform distribution of the pump power along the length of the fiber amplifier; however, 

this does not mean that we cannot obtain a higher amplifier gain if we deviate from the 

tapered geometry. This is especially true if the fiber amplifier works far below the 

saturation regime, where any decrease in the cladding radius can increase the total value 



81 

 

of the gain. This effect is no different from a “trivial” increase in the amplifier gain (per 

unit length) if the cladding radius is decreased even at z=0, as can be easily observed, 

e.g., by comparing Figs. (4-3a) and (4-3b). Unless additional constraints such as the 

minimum acceptable cladding radius are imposed on the design, neither our “optimum” 

tapered geometry, nor any other similar method can be used to maximize the amplifier 

gain; the “optimum” tapered geometry merely guarantees that the length of the amplifier 

is uniformly utilized and the heat is evenly generated along the fiber.  

We are now ready to interpret the results in Fig. (4-6b) based on the above discussion. In 

Fig. (4-6b)(left) where       , the tapered cladding radius is larger at each point 

along the fiber compared to Fig. (4-3c)(right); therefore, the total amplifier gain is lower. 

In Fig. (4-6b)(middle) and (right) where       ,       , and       ,, 

respectively, the amplifier gain is comparable, though slightly higher, because the tapered 

cladding radius is smaller at each point along the fiber compared to Fig. (4-3c)(right). 

The fact that the gain obtained from the “optimum” tapered geometry is generally 

comparable to the gain obtained from the designs with     (observed in other 

simulations not shown here, as well) indicates that the optimum tapered geometry is both 

a viable and robust design for such amplifiers.  

Another important issue in the validity of (4-5), (4-6), and (4-8) is the assumption that the 

pump power is uniformly distributed across the fiber cross section. While common 

techniques such as the D-shaped cladding, or the proposed tapered cladding profile, can 

assist in uniformly distributing the pump power over the cladding area, the pump 

absorption rate in the core, as well as the transverse spatial coherence of the pump can 

play an important role in the distribution of the pump power. In general, lower values in 



82 

 

the transverse spatial coherence of the pump in overfilled pumping schemes can assist in 

redistributing the pump power, as the pump propagates and is absorbed in the core. We 

note the opposite case of a spatially coherent excitation, where it is even “theoretically” 

possible to excite only cladding modes with negligible overlap with the doped core, 

which can propagate unchanged along a uniform fiber. In practice, laser pumps are 

generally highly multimode, and the relative phases of these modes are random, resulting 

in a pump power profile with low spatial coherence. While detailed investigation of these 

issues is beyond the scope of this paper, we present two examples in a one-dimensional 

(1-D) slab waveguide and two-dimensional (2-D) fiber geometry that can quantify the 

validity of some of our assumption.  

In Fig. (4-7) and (4-8), we explore two representative scenarios on pump absorption in 

    and     waveguides. The     geometry is chosen to reduce the computational 

effort and simplify the modeling of the transverse spatial coherence of the input pump 

source. In Fig. (4-7), we plot the pump absorption in a     slab waveguide. The total 

width of the slab waveguide (core and cladding) is       with air jacket, and the width 

of the doped core is      . The refractive index of the cladding is 1.5, and the refractive 

index of the core is assumed to be       . The pump is assumed to be highly 

multimode (         ) with a super-Gaussian profile overfilling the core and 

cladding area, with a transverse spatial coherence length of     .  

We modeled the propagation of the pump and its absorption along the fiber using an in-

house developed finite-difference beam-propagation-method (FD-BPM) code. The FD-

BPM code is depicted in Appendix B. We considered two scenarios: one with labeled as 

undepressed index core in Fig. (4-7), and another with                   labeled 
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as depressed-index core. For each scenario, we launched 100 statistically independent 

pump profiles, all with the same spatial coherence length of     , and plotted the relative 

pump power as a function of propagation distance in Fig. (4-7). The error bars in each 

case signify one standard deviation around the mean value of the relative pump power 

averaged over the 100 independent simulations. For the simplified case of a uniformly 

distributed pump labeled as the “analytical model” in Fig. (4-7), we plot the relative 

pump power as 
 ( )

   
     (          ), where    

  

 
   is the propagation distance, 

            is the imaginary part of the refractive of the core, and         

      is the ratio of the core width to the cladding width; the analytical result is plotted 

as a solid (green) line in Fig. (4-7).  

 

Fig. (4-7). Pump power relative to the initial value is plotted as a function of the propagation distance in a 

1-D slab waveguide. The depressed-index core (GG-IAG), undepressed-index core (  ), and the analytical 

model based on the assumption of a uniform distribution of the pump power result in similar pump 

absorption profile.  

Fig. (4-7) shows that the analytical model provides a reasonable estimate of the pump 

power along the fiber, which validates the assumptions used in this paper. Moreover, it is 
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clear that the pump absorption in a depressed-index core waveguide provides a greater 

sample-to-sample variability, but provides a very similar pump absorption profile to those 

of the undepressed-index core, and the analytical model. Therefore, the depressed-index 

core (the     nature of the waveguide) cannot be blamed for the lack of performance 

observed in GG-IAG fiber amplifiers and laser, as we discussed before.  

Fig. (4-8) shows the pump absorption in a GG-IAG fiber. In order to make the 

computation less intensive, we set the core radius at         and the cladding radius 

at        . The wavelength is          and the step index is         . The 

pump profile is chosen as a combination of the five lowest order Laguerre–Gauss 

functions with the fundamental radius at       . The power is equally distributed among 

modes but the relative modal phase is chosen randomly, with different sets for each of the 

25 independent simulations used in this case. For each step in the  -direction for the 

       simulation, the laser-level population equations are solved point by point 

across the fiber, from which the local value of the gain and the local value of the 

imaginary part of the dielectric permittivity are calculated for the next  -step. The initial 

pump power is         , which is physically equivalent to         in fiber 

geometries with        . The core is assumed to be doped with         . The 

average pump power and its standard deviation are shown in Fig. (4-8) as discrete (red) 

dots with error bars and are compared with the semianalytical model in solid (green) line. 

The semi-analytical model assumes a uniform distribution of the pump power across the 

fiber at each step along the  -direction. The        model and the semi-analytical 

model show reasonable agreement; however, better agreement may be obtained when less 

spatially coherent pump is used.  
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Fig. (4-8). Pump power relative to the initial value is plotted as a function of the propagation distance in a 

GG-IAG fiber, where the        propagation model is marked as the     depressed-index core (GG-

IAG), and compares reasonably well with the semi analytical model based on the uniform distribution of 

the pump across the fiber. The core is assumed to be doped with         . 

In the above discussions and the results presented in Figs. (4-7) and (4-8), we have shown 

sample models to justify our approximations in this paper. However, proper modeling of 

the pump propagation and making definitive arguments in justifying approximations will 

require accurate measurement of the pump coherence properties, and may be employed in 

optimizing the amplifier designs on a case-by-case basis. The difficulties in obtaining a 

desirable performance in such GG-IAG amplifiers will likely limit them to highly 

specialized applications where the large effective beam area and low nonlinearity are the 

primary design factors.  
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Conclusion and Future Work 
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5.1 Conclusion 

In this dissertation, we explore two issues that are of great importance to GG-IAG optical 

fiber lasers and amplifiers. The first problem is the large measured value of beam quality 

factor. This issue is raised because experimental works shows a single-mode profile but 

results in a large measured value of   . The second problem is the measured value of 

output power. It is too low. This question is important because GG-IAG fibers have the 

necessary ingredient, i.e., the large core size to lower nonlinearity for high power 

operation as fiber lasers and amplifiers. Therefore, investigation of these topics is 

necessary. It this thesis we find the answer for these two problems and the results are 

depicted in Chapters 2, 3 and 4. 

In Chapter 2, we study the beam quality factor of GG-IAG fibers with infinite cladding 

size. We show that    can be substantially larger than unity even for single-mode fibers 

in the        region. The large value of    in the        region is the result of the 

long tail of the beam extending all the way into the cladding region, the truncation of 

which can lower    substantially. The reported values of    in several experiments on 

       fiber lasers are in the range of     –     [1–4]. For example, [1] reports 

     for a        optical fiber with a        core diameter and a        

cladding diameter. Similarly, [2] reports           , where the core and cladding 

diameters are        and       , respectively. The cladding diameter is not much 

larger than the core diameter in either experiment. Consequently, the long cladding tail of 

the      beam is truncated at the cladding-jacket interface over a large portion of the 

     parameter space in the        region. Therefore, it is not surprising that these 

experiments measure such low values of   .  
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In Chapter 2, we show that    can be substantially larger than unity even for single-

mode fibers in the GG-IAG region. We argue that the truncation of the beam profile due 

to an                 diameter is responsible for the lower    values observed in several 

experimental measurements. Therefore, in chapter 2, we introduce a Gaussian 

apodization to softly truncate the long intensity tail of the beam and explore its impact on 

   values. In Chapter 3, for the first time to our knowledge, we present a rigorous 

analysis of the beam profile and    for        fibers with finite cladding diameters. 

Our analytical derivations presented in Appendix A are generally applicable to any step 

index optical fiber with an finite cladding diameter and gain in the core, such as the 

conventional double-cladding fiber lasers.  

The reported values of    in several experiments on GG-IAG fiber lasers are in the 

range of     –     [1-6]. For example, [1] reports      for a GG-IAG optical fiber 

with a 100    core diameter and a 250    cladding diameter (      ). Similarly, [5] 

reports           , where the core and cladding diameters are 200 and 340   , 

respectively, where       . These measurements are quantitatively consistent with our 

results presented in Fig. (3-4) for           . Reference [6] reports        for a 

GG-IAG optical fiber with a 100    core diameter and a 250 μm cladding diameter 

(      ). This value of    is slightly lower than what we expect from our simulations. 

However, there are uncertainties associated with    measurements as is clear from the 

difference between the reported results of [1,6]. Therefore, it is reasonable to expect some 

slight differences between theory and experiment.  

GG-IAG fibers provide a rich parameter space to explore and design unconventional 

optical-fiber-based devices. We think that GG-IAG fiber lasers and amplifiers have great 
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potential in systems where the reduction of nonlinearity is critical, at the expense of 

efficiency. While low efficiency is somewhat inherent in their nature because of the 

presence of a gain threshold which can lead to considerable signal leakage, much can be 

gained with proper design and optimization of such systems. Conventional wisdom 

blames the poor efficiency of GG-IAG fiber amplifiers and lasers on the     nature of 

the core at the pump wavelength, which repels the pump into the cladding. However, we 

think that the lack of efficiency is chiefly due to the nature of such waveguides and must 

be addressed by proper design and perhaps unconventional techniques. In Chapter 4, we 

suggest that the tapering of the cladding in GG-IAG fibers significantly improves the 

total signal gain, since it can potentially remedy the improper pump distribution along the 

fiber. We also point out the substantial inherent signal power leakage into cladding, 

especially in lasers with high reflectivity mirrors, which can be either a safety concern or 

serve as a characterization and measurement opportunity. Finally, we would like to 

emphasize that much of our findings are related to the case of end pumping which we 

think is a more viable path to designing future        amplifiers in practical 

applications. 

5.2 Future work 

The present dissertation emphasized on solving the two important issues on GG-IAG 

fibers which were beam quality factor and low output power. The first and important 

future work is setting up an experiment to test the result of theoretical work we carry out 

on GG-IAG fiber in Chapter 4. We designed a tapered GG-IAG fiber. Our analysis shows 

that tapering improves the output power significantly. 
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The effect of thermal loading on output power of GG-IAG fibers, calculating the bending 

loss and studying the different cladding design for optimizing the pump absorption can 

also be investigated for future works. 
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Appendix A: Analytical formula for    Calculation 

 

In this appendix we present closed-form analytical expression for the parameters defined 

in Eqs. (3-22) and (3-23), which can be used to evaluate the    parameter. First the 

following functions and functionals were introduced. 
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In the above expression   and   each can values of   , which are shortened to   in Eq. 

(A9).    and    each represent one of the Bessel functions    and   , respectively. We 

also have  
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Equipped with these functions and functionals, we can obtain the following explicit 

expressions for the parameters of interest: 

 

 ̃      ( )             (B11) 

  
 (  )    ̃   ( ),            (B12) 

 (  )     ̃   (   ),           (B13) 

 (  )    ̃   ( ),            (B14) 

We note that the analytical derivations involve the evaluation of complex valued 

moments of products of Bessel functions, which are beyond the scope of the present 

research. The works demonstrate in Appendix A, had been done mainly by Dr. Krishna 

Mohan Gundu in our group, and we compared and confirmed his analytical results with 

our numerical calculation. 
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Appendix B: FD-BPM Code 

 

close all; 

clear all; 

clc; 

format long 

%++++++++++++++++++++++++++++++++++++++++++++++++% 

%                    BPM-Code Laser Simulation   -10 w                            % 

%++++++++++++++++++++++++++++++++++++++++++++++++% 

% tic 

%================================================% 

%                                         coefficient                                                 % 

%================================================% 

%-------------  Constant   -------------% 

mu0=4*pi*10^-7; 

eps0=8.85*10^-12; 

%-------------  Refractive Index   -------------% 

n_b=1.0; 

n_core_real=1.459; 

n_cladd=1.46; 

n0=1.459; 

%-------------  Structure   -------------% 

x1 = -25;                                          
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x2 =25;  

y1 = -25;                                          

y2 =25;  

num_samples = 90; 

dx = (x2-x1)/num_samples;  

dy = (y2-y1)/num_samples;   

y_struc=y1; 

radius_core=10; 

radius_cladding=20; 

%-------------  Distance   -------------% 

lambda=0.976;                                    

k0 = 2*pi/lambda;  

dz =dx^2*k0*real(n0)/10; 

z_step=600001; % 0.144957303710435 

Distance=z_step*dz 

%-------------  Runge kutta Method   -------------% 

z0=0; 

%                              Source                                    % 

So=zeros(num_samples,num_samples); 

 for ii=1:num_samples 

    xx(ii)=x1+(ii).*dx; 

    for jj=1:num_samples 

       yy(jj)=y1+(jj).*dy; 



98 

 

              if  xx(ii)^2+yy(jj)^2<=radius_cladding^2 

                      phi=rand(1,1)  ;   

           So(ii,jj)=1*10^4*exp(i*phi*2*pi); 

       end 

    end 

    jj=jj+1; 

 end 

 source=So; 

surf(xx,yy,abs(So) ) 

shading interp 

%  view(0,90) 

%  axis off 

%  axis equal 

title('Source') 

%=======================================% 

%                            Power of the Source                          % 

%=======================================% 

new_matrix=abs(So).^2;%./sqrt(mu0./eps0./epsilon); 

jame1=sum(new_matrix(:,:)*dx*10^-6); 

jame11=sum(jame1*dx*10^-6); 

Power_source=jame11 

%====================================% 

%                            new way                                      % 
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%====================================% 

for ii=1:num_samples 

        xx(ii)=x1+(ii).*dx; 

    for jj=1:num_samples 

                yy(jj)=y1+(jj).*dy; 

                if ( xx(ii)^2+yy(jj)^2 <= radius_cladding^2) 

            So_new(ii,jj)=So(ii,jj); 

        else 

            So_new(ii,jj)=0; 

        end 

               end 

        jj=1;  

    end 

new_matrix1=abs(So_new).^2;%./sqrt(mu0./eps0./epsilon); 

jame1_new=sum(new_matrix1(:,:)*dx*10^-6); 

jame11_new=sum(jame1_new*dx*10^-6); 

Power_source_new=jame11_new 

for l=1:z_step 

 % waitbar(l/z_step)  

%============================== ======% 

%                          Definig structure                             % 

%=====================================% 

%-------------  Epsilon   -------------% 
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epsilon=zeros(num_samples,num_samples); 

for ii=1:num_samples 

    x(ii)=x1+(ii).*dx; 

        for jj=1:num_samples 

        y(jj)=y1+(jj).*dy; 

            epsilon(ii,jj)=n_b^2; 

              if ((x(ii))^2+ (y(jj))^2)<=radius_cladding^2 && ((x(ii))^2+ 

(y(jj))^2)>=radius_core^2   

   epsilon(ii,jj)=(n_cladd).^2; 

        end 

        if ((x(ii))^2+ (y(jj))^2)<=radius_core^2 

        Intensity=abs(source(ii,jj))^2; 

    epsilon(ii,jj)=(n_core_real-1i*ImaginaryR(Intensity,dz,lambda)).^2; 

        end 

        end 

      jj=1;  

end 

%==================================% 

%                               Field                                    % 

%==================================% 

y=source; 

k1=func2D(y,n0,k0,num_samples,dx,dy,dz,epsilon); 

%-------------------------------------------------------------------------% 
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z1=z0+dz/2; 

y11=source+k1*dz/2; 

y=y11; 

k2=func2D(y,n0,k0,num_samples,dx,dy,dz,epsilon); 

z1=z0+dz/2;   

y11=source+k2*dz/2; 

y=y11; 

k3=func2D(y,n0,k0,num_samples,dx,dy,dz,epsilon); 

z1=z0+dz;   

y11=source+k3.*dz; 

y=y11; 

k4=func2D(y,n0,k0,num_samples,dx,dy,dz,epsilon); 

Yout=source+dz/6*(k1+2*k2+2*k3+k4); 

%======================================% 

%                           boundry condition                             % 

%=======================================% 

 for pp=1:num_samples  

          if (Yout(pp,num_samples-2) ~= 0 )  

         coef3=1i/dx*log(Yout(pp,num_samples-1)./Yout(pp,num_samples-2)); 

         if real(coef3)<0  

             coef3=0; 

         end 

             Yout(pp,num_samples)=Yout(pp,num_samples-1)*  exp(-1i*dx* coef3); 
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     end 

     if (Yout(num_samples-2,pp) ~= 0 )  

         coef33=1i/dx*log(Yout(num_samples-1,pp)./Yout(num_samples-2,pp)); 

         if real(coef33)<0  

             coef33=0; 

         end 

             Yout(num_samples,pp)=Yout(num_samples-1,pp)*  exp(-1i*dx*coef33); 

     end 

    if (Yout(pp,3) ~= 0)  

        coef4=1i/dx*log(Yout(pp,2)  ./   Yout(pp,3)); 

        if real(coef4)<0 

            coef4=0; 

        end 

            Yout(pp,1)=Yout(pp,2)*   exp(-1i*dx*coef4); 

    end 

    if (Yout(3,pp) ~= 0)  

        coef44=1i/dx*log(Yout(2,pp)  ./   Yout(3,pp)); 

        if real(coef44)<0  

            coef44=0; 

        end 

            Yout(1,pp)=Yout(2,pp) *  exp(-1i*dx* coef44); 

    end 

end 
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%====================================% 

%                                 Save Field                              % 

%====================================% 

if rem (l,1000) ==1 

%   output_name = [ 'Output_field' , num2str(l) ]; 

%   yo=abs(Yout); 

%   save(output_name,'yo','-ASCII'); 

%======================================% 

%                            Power of the output                          % 

%=======================================% 

for ii=1:num_samples 

    xx(ii)=x1+(ii).*dx; 

    for jj=1:num_samples 

        yy(jj)=y1+(jj).*dy; 

        if ( xx(ii)^2+yy(jj)^2 <= radius_cladding^2) 

            So_new_out(ii,jj)=Yout(ii,jj); 

        else 

            So_new_out(ii,jj)=0; 

        end 

    end 

    jj=1;  

end 
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new_matrix1_out=abs(So_new_out).^2;%./sqrt(mu0./eps0./epsilon); 

jame1_new_out=sum(new_matrix1_out(:,:)*dx*10^-6); 

jame11_new_out=sum(jame1_new_out*dx*10^-6); 

Power_out_new(l)=jame11_new_out; 

%=====================================% 

%                              Ratio Power                                 % 

%=====================================% 

ratio(l)=Power_out_new(l)/Power_source_new; 

z(l)=l*dz; 

end 

%=====================================% 

%                                 end of Code                               % 

%=====================================% 

source=Yout; 

z0=z1; 

end 

% toc 

% figure; 

% contourf(epsilon) 

% axis equal 

% axis off 

figure; 

surf(xx,yy,abs(Yout)) 
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shading interp 

title('Output') 

xlabel('X') 

ylabel('Y') 

zlabel('Amplitude') 

figure; 

plot(z,ratio) 

grid on 

xlabel('Z') 

ylabel('Ratio of Power') 

save ratio ratio -ascii ; 

save Power_Output Power_out_new -ascii ; 

save Power_source Power_source_new -ascii ; 
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function f = func2D(y,n0,k0,num_samples,dx,dy,dz ,epsilon) 

 source1=y; 

f_3=(-i*k0)/(2*n0)*(epsilon - n0^2).*source1; 

% -------------------------------------------------------% 

source_m=[source1 0.5*source1(:,num_samples)]; 

source_m(:,1)=[]; 

source_p=[0.5*source1(:,1) source1]; 

source_p(:,num_samples+1)=[]; 

f1=(source_m-2.0.*source1+source_p); 

f_x=-i/(2*n0*k0).*f1./(dx.^2); 

% -------------------------------------------------------% 

source_m=[source1; 0.5*source1(num_samples,:)]; 

source_m(1,:)=[]; 

source_p=[0.5*source1(1,:); source1]; 

source_p(num_samples+1,:)=[]; 

f1=(source_m-2.0.*source1+source_p); 

f_y=-i/(2*n0*k0).*f1./(dy.^2); 

 f=f_x+f_y+f_3; 
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function f =ImaginaryR(Intensity,dz,lambda) 

%======================================% 

%                             Calculating n1 -- n2                       % 

%======================================% 

%-------------  Constant   -------------% 

mu0=4*pi*10^-7; 

eps0=8.85*10^-12; 

%-------------  coefficient   -------------% 

dz=dz*10^-6; 

sigma12p = 1.5*10^-24; 

simga21p = 3.5*10^-24; 

sigma12s = 0.0005*10^-24; 

simga21s = 0.6*10^-24; 

wavelengthpump = lambda*10^-6; 

wavelengthsignal = 1.036*10^-6; 

h = 6.62*10^-34; 

c=1/sqrt(mu0*eps0); 

signalintensity0 = 0; 

A21 = 1/(770*10^-6); 

freqpump=c/wavelengthpump; 

freqsignal=c/wavelengthsignal; 

R120 = sigma12p*Intensity/h/freqpump; 

w120 = sigma12s*signalintensity0/h/freqsignal; 
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R210 = simga21p*Intensity/h/freqpump; 

w210 = simga21s*signalintensity0/h/freqsignal; 

etap=1;%(radius_core/radius_cladding)^2; 

ppm=10101.010101; 

Ntot= ppm*6.022e+20/173.04*2648; 

%=========================================% 

%                     calculating alpha - imaginary part                 % 

%==========================================% 

n2 =(R120+w120)/(R120+w120+R210+w210+A21) ; 

n1=1-n2; 

alpha=-etap*(simga21p*n2 - sigma12p*n1)*Ntot; 

alpha_dB= 4.343*alpha; 

f=alpha*wavelengthpump/4/pi; 
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