
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2013

Constructing Orthogonal Arrays on Non-abelian
Groups
Margaret Ann McComack
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
McComack, Margaret Ann, "Constructing Orthogonal Arrays on Non-abelian Groups" (2013). Theses and Dissertations. 257.
https://dc.uwm.edu/etd/257

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/257?utm_source=dc.uwm.edu%2Fetd%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Constructing Orthogonal Arrays

on Non-abelian Groups

by

Margaret Ann McComack

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Mathematics

at

The University of Wisconsin-Milwaukee

August 2013

ABSTRACT

Constructing Orthogonal Arrays

on Non-abelian Groups

by

Margaret Ann McComack

The University of Wisconsin-Milwaukee, 2013
Under the Supervision of Professor Jay H. Beder

For an orthogonal array (or fractional factorial design) on k factors, Xu and Wu

(2001) define the array’s generalized wordlength pattern, (A1, . . . , Ak), by relating a

cyclic group to each factor. They prove the property that the array has strength

t if and only if A1 = · · · = At = 0. In their 2012 paper, Beder and Beder show

that this result is independent of the group structure used. Non-abelian groups

can be used if the assumption is made that the groups Gi are chosen so that the

counting function O of the array is a class function on G. The aim of this thesis

is to construct examples of orthogonal arrays on G = G1 × · · · × Gk, where G is

non-abelian, having two properties: given strength, and counting function O that is

constant on the conjugacy classes of G.

ii

Table of Contents

1 Introduction 1

2 Orthogonal Arrays 3

2.1 Definitions . 3

2.2 Trivial Cases . 5

3 Groups Used in Construction 8

3.1 Conjugacy . 8

3.2 Abelian Groups . 9

3.3 S3: Symmetric Group of Order Six 9

3.4 Dih4: Dihedral Group of Order Eight 10

3.5 Dih5: Dihedral Group of Order Ten 11

4 Arrays of Minimum Size 13

4.1 Construction Techniques . 13

4.2 Construction of a 1
2
Conjugacy Array 14

4.3 Construction of a 1
4
Conjugacy Array 17

4.4 Increasing Strength . 17

5 Arrays Not of Minimum Size 20

5.1 Construction Techniques . 20

5.2 Construction of a 1
2
Conjugacy Array 21

5.3 Construction of a 2
3
Conjugacy Array 21

iii

5.4 Smallest Array is the Complete Design 22

5.5 Example with Two Non-Abelian Factors 23

6 Conclusion 25

Bibliography 27

Appendix A: Minitab Procedure for Verifying Strength 28

Appendix B: Maple Code to Verify the Conjugacy Condition 29

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Jay H. Beder, for his guidance on this thesis.

Dr. Beder has been extremely accommodating in all aspects of the thesis. He has

been flexible with meetings, understanding of personal conflicts, helpful in teaching

new concepts and programs, and patient throughout all of it. It has been a joy to

work with Dr. Beder. I could not have dreamed of a better advisor.

In addition I would like to thank Dr. Jeb Willenbring for his instruction and

programming of Maple. Without his help, confirming the condition of constancy on

conjugacy classes would have been incredibly difficult. I would like to thank Dr. Yi

Ming Zou and Dr. Richard Stockbridge for being part of the committee and for

giving their time towards this thesis.

Thank you to all my past professors who helped me in my education, particularly

Dr. Thomas Weber. Without his help, guidance, and kindness I would not be where

I am today.

Lastly, I would like to thank my family and friends for their constant support.

Thank you to my parents David and Catherine, and my sister Joanna, for always

believing in me and encouraging me through this whole process. Thank you to my

wonderful husband Joshua for his love, support, and patience as I completed my

degree. He gave me the motivation and the drive to finish so I can start a new

chapter in my life.

v

1

Chapter 1

Introduction

An orthogonal array, or design, is a subset D of a Cartesian product G =

G1×· · ·×Gk with possible repetitions – a multisubset. It has a particular parameter,

its strength, which we define in Chapter 2. We will often refer to an orthogonal

array as simply an array.

Xu andWu [2] define the generalized wordlength pattern, (A1, . . . , Ak), of an array

by indexing the levels of each factor by a cyclic group, so that G is itself a group.

They prove that the array has strength t if and only if A1 = · · · = At = 0. Beder and

Beder [1] determine that this result does not depend on the group structure. Non-

abelian groups can be used if an assumption is made about the counting function O

of the array, namely that the counting function is constant on the conjugacy classes

of G. We will refer to these arrays as conjugacy arrays. Two examples are given

in [1], which use the non-abelian group S3. The purpose of this thesis is to construct

more examples using at least one Gi that is non-abelian.

For the purpose of this thesis, factors of the groups considered for the construc-

tion of an array are of order less than or equal to 10. The groups have 3 to 6 factors,

the majority having 3 or 4, and all arrays are constructed to have strength k − 1.

Minitab as well as a program created in Maple were used to assist in checking the

two properties of the array, its strength and the constancy of O on conjugacy classes.

The procedure for the Minitab program and the Maple code are found in Appendix

A and B respectively.

2

Chapter 2 defines an orthogonal array, along with associated terms. The groups

used in constructing the arrays and the conjugacy classes of the groups used are the

focus of Chapter 3. Chapter 4 and Chapter 5 describe the process of constructing

arrays in the general case, as well as giving actual examples.

Notation to be used in this thesis:

• Zn for the integers mod n. We write Zn = {0, . . . , n− 1}.

• Sn for the symmetric group of degree n. This is the group of permutations on

n symbols, which we will take to be 1, . . . , n.

• Dihn for the dihedral group of order 2n

• Q8 for the quaternion group of order 8

• |E| for the cardinality of the set E

• k for the number of factors of a cartesian product

• t for the strength of an array

• lcm for the least common multiple

• gcd for the greatest common divisor

• As usual, a|b (“a divides b”) means that a is a factor of b

3

Chapter 2

Orthogonal Arrays

2.1 Definitions

A factorial experiment (or full factorial design) is an experiment with k factors

such that each factor has a finite set of levels. For the set G = G1 × · · · ×Gk where

the set Gi is finite and indexes the order of the ith factor, let

si = |Gi|. (2.1)

Thus there are s1 × · · · × sk treatment combinations given by the k-tuples in the

set. We will call si the order of the ith factor.

An orthogonal array (or fractional factorial design) is a multisubset, a

subset in which elements can be repeated, of the set G. Let the multisubset be

called D, and let O(x) be the number of times the k-tuple x appears in D. O is

then the counting function of D. The size of the array is then

N = |D| =
∑
x∈G

O(x), (2.2)

Using this, an orthogonal array can be presented as a k × N matrix, where the

columns represent the elements in the array. The goal of this thesis is to find

examples of orthogonal arrays indexed by non-abelian groups, where the array has

two properties: given strength, and a counting function that is constant on conjugacy

classes. From this point forward we will refer to this type of array as a conjugacy

array.

4

Let the array D have factors 1, . . . , k, represented by rows. Choosing m rows,

i1, . . . , im, results in another orthogonal array, say D′. The array D′ is a multisubset

of G′ = Gi1 × · · · × Gim , and has its own counting function O′. We call D′ the

projection of D on factors i1, . . . , im.

The array D has strength t if the projection D′ of D on any t factors, i1, . . . , it,

consists of λI copies of Gi1 × · · · × Git for some integer λI where I = {i1, . . . , it}.
If an array has strength t then it has strength p for all p ≤ t. In particular, in an

array of strength 1 the ith row has λi copies of Gi for some integer λi.

Consider an array with strength t. For each I ⊂ {1, . . . , k} with |I| = t, the

projection D′
I has a constant counting function, O′

I . That is O′
I(y) ≡ λI for all

y ∈
∏

i∈I Gi. The size of the array can now be represented as

N = λI

∏
i∈I

si. (2.3)

Therefore N needs to be a multiple of all possible products of t orders and therefore

a multiple of

Lt = lcm

{∏
i∈I

si : |I| = t

}
. (2.4)

This makes Lt the minimum size of the array.

An orthogonal array is symmetric if s1 = · · · = sk. The common order is

denoted as s. If a symmetric array D has strength t, then there is a common

λ which is called the index of the array. In this paper we will mainly consider

asymmetric arrays.

The set G = G1 × · · · × Gk itself is an orthogonal array with strength k. This

is a trivial example. The purpose of this thesis is to construct orthogonal arrays

that are proper fractions of G, ones that are not one or more copies of G itself.

From this point forward, when an array is a copy of G itself, we will refer to it as

the complete design or sometimes as an s1 × · · · × sk design. A fraction that

is, say, half of the complete design will be called a 1
2
fraction. If the fraction is a

conjugacy array we will call it a 1
2
conjugacy array.

5

2.2 Trivial Cases

When constructing the examples for this thesis, there is a condition on the order of

the factors that leads to the smallest possible array being the size of the complete

design. We will call this a trivial case. Such an array has size Lk since Lk is the

product s1 · · · sk. Proposition 2.2.1 below shows a condition on the levels si that

will result in the trivial case. Since we only consider arrays of strength k − 1, we

also give a sufficient condition for Lk−1 < Lk.

Lemma 1.

For any array, L1 ≤ . . . ≤ Lk, and in fact Li|Lj for i < j.

Proof. Suppose p is a prime and pk|Lt then pk|
∏

i∈I si for some I such that |I| = t.

Then pk|
∏

i∈J si for some J ⊃ I, where |J | = t+ 1. Therefore pk|Lt+1.

Since pk|Lt implies pk|Lt+1 for all primes p, it follows that Lt|Lt+1.

Lemma 1 lead to a condition on the levels si that determines for what values of

t, Lt is the size of the complete design.

Proposition 2.2.1.

For levels s1, . . . , sk, let eI = gcd{si, i ∈ I} for I ⊆ {1, . . . , k}. Let d = max{|I| :
eI > 1}. Then Lt = Lk if t ≥ d. If d = k then Lk−1 < Lk.

Proof. Let s1, . . . , sd be levels with common factor eI . According to Lemma 1 it

suffices to show that Lt = Lt+1 for t ≥ d.

To prove this we fix a set J with |J | = t+ 1 and consider all I ⊂ J with |I| = t.

Using the fact that for integers a1, . . . , an,

lcm

(∏
i∈I

ai, |I| = n− 1

)
=

n∏
i=1

ai/ gcd(a1, . . . , an),

we can write

lcm

(∏
i∈I

si, |I| = t, I ⊂ J

)
=
∏
i∈J

si/ gcd{si, i ∈ J}. (2.5)

6

Since |J | > d it follows that gcd{si, i ∈ J} = 1. Therefore we can write

lcm

(∏
i∈I

si, |I| = t, I ⊂ J

)
=
∏
i∈J

si.

For each J with |J | = t+ 1, consider

AJ =

{∏
i∈I

si, |I| = t, I ⊂ J

}
.

Then

A =
∪
J

AJ =

{∏
i∈I

si, |I| = t

}
.

We know that

Lt = lcm

(∏
i∈I

si, |I| = t

)
= lcm(A),

and using the fact that, if A is a set of integers and A = A1 ∪ · · · ∪ Ar, then

lcm(A) = lcm(lcm(A1), . . . , lcm(Ar)),

we have

Lt = lcm (lcm(AJ), all |J | = t+ 1)

= lcm

(∏
i∈J

si, |J | = t+ 1

)
= Lt+1.

We have shown that Lt = Lt+1 for t ≥ d.

Now assume d = k. We consider all I ⊂ J with J = {1, . . . , k} and |I| = k − 1.

Using (2.5) we can write

Lk−1 = lcm

(∏
i∈I

si, |I| = k − 1, I ⊂ J

)
=
∏
i∈J

si/ gcd{si, i = 1, . . . , k}.

We know

Lk =
∏
i∈J

si

7

Since d = k it follows that gcd(s1, . . . , sk) > 1. Then we see that∏
i∈J

si/ gcd{si, i ∈ J} <
∏
i∈J

si.

We have shown Lk−1 < Lk when d = k.

When d = k the levels s1, . . . , sk have a common factor. This is true for all

examples constructed for this thesis. Proposition 2.2.1 determines the largest value

of t that can result in an array that is not the size of the complete design.

When constructing an array of strength t, the smallest constructible array is not

always of minimum size Lt. Steps for constructing the arrays of minimum size will

be discussed in detail in Chapter 4.

8

Chapter 3

Groups Used in Construction

If G1, . . . , Gk are groups, the direct product G = G1 × · · · × Gk is non-abelian if

and only if at least one Gi is non-abelian. In this thesis, unless otherwise stated,

all examples are constructed using only one non-abelian group. Without loss of

generality, the non-abelian group will be G1. The numbers si will be arranged in

descending order. Therefore the factor with the highest order will be the non-abelian

factor.

3.1 Conjugacy

Let g and h be elements of a group G. The elements g and h are conjugate if

h = xgx−1 for some x ∈ G. Conjugacy is an equivalence relation on G, and thus

the equivalence classes are a partition of G. These classes are called conjugacy

classes.

Lemma 2.

If G = G1 × · · · ×Gk then the conjugacy classes of G are of the form C1 × · · · ×Ck

where Ci is a conjugacy class of Gi.

Proof. Denoting conjugacy in G by ∼ and conjugacy in Gi by ∼i it is enough to

show:

(x1, . . . , xk) ∼ (y1, . . . , yk) iff xi ∼i yi, i = 1, . . . , k.

9

But

xi ∼i yi ∀i ⇔ ∀i ∃zi ∈ Gi such that xi = ziyizi
−1

⇔ (x1, . . . , xk) = (z1y1z1
−1, . . . , zkykzk

−1)

= (z1 . . . zk)(y1 . . . yk)(z1
−1 . . . zk

−1)

= (z1 . . . zk)(y1 . . . yk)(z1 . . . zk)
−1

⇔ (x1, . . . , xk) ∼ (y1, . . . , yk)

To list the conjugacy classes of G, we find a representative gi of Ci for each i.

Then (g1, . . . , gk) represents C1 × · · · × Ck.

In an abelian group each element is its own conjugacy class. Therefore all the

elements are singleton conjugacy classes. This is convenient for constructing orthog-

onal arrays with the given properties.

3.2 Abelian Groups

In the construction of orthogonal arrays, abelian and non-abelian groups will be

used. The abelian groups range from order two to order six, and are the additive

cyclic groups Zn.

The group Z5 is used in just one example, where the method of construction

leads to a trivial case. This example is shown in Chapter 5.

3.3 S3: Symmetric Group of Order Six

The first non-abelian group used in constructing orthogonal arrays is S3, because it

is the smallest.

We let S3 = {e, x, y, a, b, c} with permutations shown below:

• e = the identity

• x = (1 2 3)

10

• y = (1 3 2)

• a = (2 3)

• b = (1 3)

• c = (1 2)

The permutations are represented by letters for easier representation in the array.

S3 is the group of symmetries of an equilateral triangle, where e is the identity

element, x and y are the rotations, and a, b, and c are the reflections. It has three

conjugacy classes:

{e}, {x, y}, and{a, b, c}. (3.1)

3.4 Dih4: Dihedral Group of Order Eight

There are two non-abelian groups of order eight, Dih4, the dihedral group of order

eight, and Q8, the quaternion group.

We let Dih4 = {e, q, r, s, a, b, x, y} with permutations shown below:

• e = the identity

• q = (1 3)(2 4)

• r = (1 2 3 4)

• s = (1 4 3 2)

• a = (1 3)

• b = (2 4)

• x = (1 4)(2 3)

• y = (1 2)(3 4)

11

Dih4 is the group of symmetries of a square and has eight elements. In relation to

the square, e is the identity element, q is the half turn rotation, r and s are the

quarter and three quarter turn rotations respectively, a and b are reflections about

the diagonals, and x and y are the reflections about the lines joining the midpoints

of opposite sides. The non-abelian group Dih4 has five conjugacy classes:

{e}, {q}, {r, s}, {a, b}, and{x, y}. (3.2)

The non-abelian group Q8 has five conjugacy classes. There are three classes

with two elements and two classes with one element. Since Q8 and Dih4 have the

same number of conjugacy classes and the class sizes are the same, using Q8 to

construct examples of orthogonal arrays is unnecessary: replacing the elements of

Dih4 with the elements of Q8 will result in identically structured arrays.

3.5 Dih5: Dihedral Group of Order Ten

The last non-abelian group considered is Dih5, being the third smallest non-abelian

group. The dihedral group of order ten is the group of symmetries of a pentagon,

and is a subgroup of S5.

We let Dih5 = {e, a, b, c, d, q, w, x, y, z} with permutations show below:

• e = the identity

• a = (1 2 3 4 5)

• b = (1 3 5 2 4)

• c = (1 4 2 5 3)

• d = (1 5 4 3 2)

• q = (2 5)(3 4)

• w = (1 3)(4 5)

• x = (1 5)(2 4)

12

• y = (1 2)(3 5)

• z = (1 4)(2 3)

In relation to the symmetries of the pentagon, e is the identity element, a, b, c, and

d are the rotations, and q, w, x, y, and z are the reflections about a line from a

vertex to the midpoint of the opposite side.

The group Dih5 has four conjugacy classes

{e}, {a, d}, {b, c}, and{q, w, x, y, z}, (3.3)

where {a, d} are the rotations of ±72 ◦, and {b, c} are the rotations of ±144 ◦.

13

Chapter 4

Arrays of Minimum Size

4.1 Construction Techniques

In this chapter we will describe the process of constructing a conjugacy array of

strength k − 1 and minimum size Lk−1 on G = G1 × · · · × Gk. Each step will be

described in the general sense, and then a specific example will be provided. As

before, si = |Gi|. In all cases in this chapter the orders si have a common factor of

2 or 4.

We construct the array as a k × N matrix. Row i will contain the elements of

Gi, repeated in certain patterns. We will adopt a fixed order for the elements of the

groups used in construction. The fixed order for each group is shown below.

• S3 − e, x, y, a, b, c

• Dih4 − e, q, r, s, a, b, x, y

• Dih5 − e, a, d, b, c, q, w, x, y, z

• Zn − 0, 1, 2, . . . , n− 1

Note that conjugate elements are adjacent in these orderings, as can be seen in (3.1),

(3.2) and (3.3).

Since Lk−1 is a multiple of all products of si of size k− 1, each si must divide it.

14

It is natural for us to begin by seeking arrays of size Lk−1. We define

v1 =
Lk−1

s1

v2 =
Lk−1

s2

vj =
Lk−1

s2 · · · sj
for j > 2.

We note also that in the constructions using S3 and the dihedral groups, the

first vk elements of G1 will form a union of conjugacy classes, and that the array

constructed is a vk/s1 fraction.

4.2 Construction of a 1
2 Conjugacy Array

In this section we assume that the orders si have common factor 2. The conjugacy

array is 1
2
the size of the complete design.

To construct the first row of the matrix we write the elements of G1 in the fixed

order. We repeat that arrangement v1 times to create the first row of the array.

To construct the second row, write the first element of G2 v2 times. This is

repeated with the remaining elements of G2, keeping the elements in the fixed order.

For rows 3 through (k − 1), row j has each element of Gj repeated vj times,

keeping the elements in the fixed order. This pattern of elements is repeated as

much as necessary to fill the row.

To construct the kth row, each element of Gk is repeated vk times, the whole

pattern repeated as often as necessary to fill the row. This is subject to a special

condition: the elements are listed in the fixed order in the first segment, and in

reverse fixed order in the second segment. The segments alternate thereafter to fill

the row.

Example 1. To illustrate a 1
2
fraction with 3 factors we use the group G = S3 ×

Z4 × Z2:

We have L2 = 24. Then v1 =
24
6
= 4

15

(
e x y a b c e x y a b c e x y a b c e x y a b c

)
v2 =

24
4
= 6(

e x y a b c e x y a b c e x y a b c e x y a b c
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

)
We have vk = v3 =

L2

s2s3
= 24

8
= 3. The array has 4 segments of length 6. For the

first segment, rows 2 and 3 are: (
0 0 0 0 0 0
0 0 0 1 1 1

)
For the second segment they are:(

1 1 1 1 1 1
1 1 1 0 0 0

)
For this example we have the 1

2
fraction: e x y a b c e x y a b c e x y a b c e x y a b c

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0


Example 2. To illustrate a 1

2
fraction with 4 factors we use the group G = S3 ×

Z2 × Z2 × Z2 and show the construction below. This example uses the same group

and is the same size as an example constructed in [1], but is constructed in the

method described in Section 4.2, and results in a different fraction of the complete

design.

We have L3 = 24. Then v1 =
24
6
= 4

(
e x y a b c e x y a b c e x y a b c e x y a b c

)
v2 =

24
2
= 12(

e x y a b c e x y a b c e x y a b c e x y a b c
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

)
v3 =

24
4
= 6

16

 e x y a b c e x y a b c e x y a b c e x y a b c
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1


We have vk = v4 = L3

s2s3s4
= 24

8
= 3. The array has 4 segments of length 6. For

the first segment, rows 3 and 4 are:(
0 0 0 0 0 0
0 0 0 1 1 1

)
For the second segment they are:(

1 1 1 1 1 1
1 1 1 0 0 0

)
For this example we have the 1

2
fraction:

e x y a b c e x y a b c e x y a b c e x y a b c
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0


Below are a few other 1

2
fractions constructed for this thesis. The first example

uses the same group and is the same size as an example constructed in [1], but is

constructed in the method described in Section 4.2. This also results in a different

fraction of the complete design than the one constructed in [1].

G = S3 × Z2 × Z2  e x y a b c e x y a b c
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0

 (4.1)

G = Dih4 × Z2 × Z2 e q r s a b x y e q r s a b x y
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0


G = Dih5 × Z2 × Z2 e a b c d q w x y z e a b c d q w x y z

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0



17

4.3 Construction of a 1
4 Conjugacy Array

In this section we assume that factors si have common factor 4. The conjugacy

array is 1
4
the size of the complete design. The construction method is identical to

that shown in Section 4.2.

There are two examples constructed for this thesis that yield 1
4
fractions: G =

Dih4 × Z4 × Z4 and G = Dih4 × Z4 × Z4 × Z4.

To illustrate a 1
4
fraction with 3 factors we use the group G = Dih4 × Z4 × Z4:

• We have L2 = 32. Then v1 =
32
8
= 4.

• v2 =
32
4
= 8

• We have vk = v3 =
L2

s2s3
= 32

16
= 2. The array has 4 segments of length 8. For

the first segment, rows 2 and 3 are:

(
0 0 0 0 0 0 0 0
0 0 1 1 2 2 3 3

)
For the second segment they are:(

1 1 1 1 1 1 1 1
3 3 2 2 1 1 0 0

)
• The array is the juxtaposition of four segments.

 e q r s a b x y e q r s a b x y e q r s a b x y e q r s a b x y
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 0 1 1 2 2 3 3 3 3 2 2 1 1 0 0 0 0 1 1 2 2 3 3 3 3 2 2 1 1 0 0


4.4 Increasing Strength

It is possible to take any 1
2
or 1

4
fraction constructed in this thesis and create a new

array, with higher strength, in a few steps. The new array has another factor, has

18

strength one higher than the original array, and has size Nsk+1, where N is the size

of the original array and sk+1 is the order of the new factor.

First we take the original array, and add the first element of the new factor as

a last row. The element must be repeated N times, once for each column of the

array. This process is then repeated for each element of the new factor, repeating

each element N times. When all elements of the new factor have been used, all the

copies of the original array, each with a new last row, are put side by side to form

the new array.

We illustrate this using array (4.1), shown in Section 4.2, as our original array

and using Z2 as the new factor. The original array has strength 2 and size N = 12.

For the first element of the new factor we have:
e x y a b c e x y a b c
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


For the second element we have:

e x y a b c e x y a b c
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1


We now have an array of strength 3 and size N = 24:

e x y a b c e x y a b c e x y a b c e x y a b c
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1


We note that the array above is essentially identical to the 1

2
fraction of G =

S3 × Z2 × Z2 × Z2 constructed in Section 4.2. Let us call the latter array D. The

last row of the array above is the second row of D, the second row of the array is

the third row of D, and the third row of the array is the last row of D. In fact, this

turns out to be true for all arrays constructed in this chapter.

19

This method of increasing strength also works for the arrays in Section 5.2. It

is unknown if a method exists in other cases.

20

Chapter 5

Arrays Not of Minimum Size

In this section we consider five more non-abelian groupsG. The construction method

of Section 4.2 may be applied to create arrays of minimum size on G, but the

counting function of the resulting arrays is not constant on conjugacy classes. By

making small changes in the method, we create a suite of conjugacy arrays that are

not of minimum size Lk−1, though in four cases they are still proper fractions. As

noted in Section 2.1, the size N must be a multiple of Lk−1.

In Section 5.5 we also consider an example in which we use two non-abelian

factors.

5.1 Construction Techniques

We again construct the array as a k×N matrix. Row i will contain the elements of

Gi, repeated in certain patterns. We will adopt a fixed order for the elements of the

groups used in construction. The fixed order for each group is shown below with

the group S3 having two orderings.

• S3 − e, x, y, a, b, c (1)

• S3 − e, a, b, c, x, y (2)

• Dih5 − e, a, d, b, c, q, w, x, y, z

• Zn − 0, 1, 2, . . . , n− 1

21

Note that conjugate elements are adjacent in these orderings, as can be seen in (3.1).

5.2 Construction of a 1
2 Conjugacy Array

In constructing this type of array we use the first ordering of S3. The two examples

constructed are 1
2
fractions of G = S3 × Z6 × Z6 and G = S3 × Z6 × Z6 × Z6.

We note that the orders have a common factor of 6, yet the conjugacy array is

constructed using the method in Section 4.2. The minimum size of these arrays

would be Lk−1 = 36 and Lk−1 = 216, respectively, which would result in a 1
6
fraction.

It is natural to consider defining

v1 =
3Lk−1

s1

v2 =
3Lk−1

s2

vj =
3Lk−1

s2 · · · sj
for j > 2.

We note that the first vk elements of G1 form a union of conjugacy classes, and that

the array constructed is a vk/s1 = 1/2 fraction.

5.3 Construction of a 2
3 Conjugacy Array

We use the second ordering of S3 with the groups G = S3 × Z3 × Z3 and G =

S3 ×Z3 ×Z3 ×Z3. For these examples the si have a common factor of 3. We define

v1 =
2Lk−1

s1

v2 =
2Lk−1

s2

vj =
2Lk−1

s2 · · · sj
for j > 2.

22

We note also that the first vk elements of G1 will form a union of conjugacy

classes, and that the array constructed is a vk/s1 = 2/3 fraction. The minimum size

of these arrays would be Lk−1 = 18 and Lk−1 = 54, respectively, which would result

in a 1
3
fraction.

The construction does not follow the same steps as the 1
2
and 1

4
fractions. To

construct the first row of the matrix we write the elements of G1 in the second fixed

order. Next we write the elements of G1 again, this time in the order reversed.

We alternate between the fixed order and the order reversed until there are 2Lk−1

elements.

The steps to assemble rows 2, . . . , (k − 1) are identical to those in Section 4.2.

A new pattern is necessary to assemble the kth row. Repeat each element of

Gk vk times. These elements are arranged in the fixed order. Then we repeat each

element of Gk vk times with the order cyclically permuted. This pattern is repeated

as needed to fill the row.

We show this for S3 × Z3 × Z3. The array is the juxtaposition of three blocks.

 e a b c x y y x c b a e e a b c x y y x c b a e e a b c x y y x c b a e
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 0 0 0 0


It would be of interest to use this method in Section 5.2, where the orders have

common factor 6, to see if a conjugacy array can be formed.

5.4 Smallest Array is the Complete Design

For the example G = Dih5 × Z5 × Z5 the common factor of the orders is 5. We

might expect the conjugacy array to be 1
5
the size of the complete design. When

attempting to construct this example using the method described in Section 4.2 we

find that the array is not constant on conjugacy classes. It is natural to attempt

other multiples of L2 for the size of the array. We obtain a conjugacy array when

23

we apply that method with:

v1 =
5L2

s1

v2 =
5L2

s2

v3 =
5L2

s2s3
.

This conjugacy array is the size of the complete design, 5L2. For this example

L2 = 50, so 5L2 = 250, which is the size of the complete design and therefore a

trivial result.

5.5 Example with Two Non-Abelian Factors

In the process of constructing arrays for this thesis the question was raised, what

would happen in an array constructed with more than one non-abelian factor? To

investigate we try one 6× 6× 6 example with two non-abelian factors.

The group we use is G = S3 × S3 × Z6, rather than G = S3 × Z6 × Z6 used

in Section 5.2. We see that S3 × S3 has more complicated conjugacy classes than

S3 × Z6, which left us unsure where to start.

We started by making the following substitutions in the second row of the array

in Section 5.2 from Z6 to S3:

0 → e

1 → x

2 → y

3 → a

4 → b

5 → c

24

The resulting array is essentially identical to the array constructed using the group

G = S3 × Z6 × Z6.

The array on G = S3 × S3 × Z6 has strength 2 and, perhaps surprisingly, its

counting function is still constant on conjugacy classes. It is unknown if other

examples would result in a conjugacy array using this substitution method.

25

Chapter 6

Conclusion

Table 6.1 shows constructions created for this thesis using one non-abelian factor,

where k − 1 is the strength, Lk−1 is defined by (2.4), and the size of the array is

Lk−1 unless otherwise noted, and the fraction is the size of the array compared to

that of the complete array.

In this thesis every array has strength k−1 and its counting function is constant

on conjugacy classes, but the size and the groups vary. We have seen that a common

factor of the orders si plays a role in determining the size of the array and the

fraction of the complete design. We would like to clarify what exactly that role is.

The algorithm we have is essentially identical in all cases, but some steps do change

depending on the common factor of the orders si. Would other algorithms result in

minimum sized solutions?

As we have seen in one example, a substitution can be made such that the group

G would have two non-abelian factors and we still have a conjugacy array. One would

assume this substitution will not result in a conjugacy array for many examples, or

for a group with many non-abelian factors. This is because the condition that the

array be constant on conjugacy classes makes constructions more difficult. It is left

for further investigation to see if the method of substituting a non-abelian factor

in for an abelian one will result in a conjugacy array and if this process can be

generalized.

26

Table 6.1: Arrays Constructed In This Thesis

Complete Size of Strength Size of
Design Complete Design k − 1 Lk−1 Array Fraction

6× 2× 2∗ 24 2 12 12 1/2
6× 2× 2× 2∗ 48 3 24 24 1/2

6× 3× 3 54 2 18 36 = 2Lk−1 2/3
6× 3× 3× 3 162 3 54 108 = 2Lk−1 2/3
6× 4× 4 96 2 48 48 1/2

6× 4× 4× 4 384 3 192 192 1/2
6× 6× 6 216 2 36 108 = 3Lk−1 1/2

6× 6× 6× 6 1,296 3 216 648 = 3Lk−1 1/2
6× 4× 2 48 2 24 24 1/2
6× 6× 2 72 2 36 36 1/2
6× 6× 4 144 2 72 72 1/2
8× 2× 2 32 2 16 16 1/2

8× 2× 2× 2 64 3 32 32 1/2
8× 2× 2× 2× 2 128 4 64 64 1/2

8× 2× 2× 2× 2× 2 256 5 128 128 1/2
8× 4× 4 128 2 32 32 1/4

8× 4× 4× 4 512 3 128 128 1/4
8× 6× 6 288 2 144 144 1/2

8× 6× 6× 6 1,728 3 864 864 1/2
8× 4× 2 64 2 32 32 1/2
8× 6× 2 96 2 48 48 1/2
8× 6× 4 192 2 96 96 1/2
10× 2× 2 40 2 20 20 1/2

10× 2× 2× 2 80 3 40 40 1/2
10× 4× 4 160 2 80 80 1/2

10× 4× 4× 4 640 3 320 320 1/2
10× 6× 6 360 2 180 180 1/2

10× 6× 6× 6 2,160 3 1,080 1,080 1/2
10× 4× 2 80 2 40 40 1/2
10× 6× 2 120 2 60 60 1/2
10× 6× 4 240 2 120 120 1/2

* Another example is constructed in [1].

27

Bibliography

[1] Jay H Beder and Jesse S Beder. Generalized wordlength patterns and group

structure. Journal of Statistical Planning and Inference, 2012. To appear.

[2] Hongquan Xu and C. F. J. Wu. Generalized minimum aberration for asymmet-

rical fractional factorial designs. The Annals of Statistics, 29:1066–1077, 2001.

28

APPENDIX A: Minitab Procedure for Verifying Strength

1. Enter the rows of the array as columns in a Minitab worksheet. The columns

may be copied from Excel. (Note that the Maple procedure in Appendix B

will read this information from Excel.)

2. Change the numeric values in the columns to text. (Go to Data >Change

Data Type)

3. Label each column as A, B, C, . . . to distinguish between each factor of the

array. Call these factor columns.

4. Create k combination columns by concatenating each set of k − 1 factor

columns. (Data >Concatenate). Label these columns. For example, for factor

columns A, B, C, and k = 2, we have AB, AC, and BC.

5. Tally the entries in each of the combination columns (Stat >Tables >Tally

Individual Variables). Check that each entry in a given column occurs the

same number of times. This verifies that the strength is k − 1.

29

APPENDIX B: Maple Code to Verify the Conjugacy Condition

>restart;

Load the necessary Maple packages.

>with(combinat):

with(Spread):

with(linalg)

The array should be stored in Excel, the rows of the array stored as columns in

Excel. Save the Excel file as a text file. Load the text file by typing in the name of

the saved text file. Indicate the number of columns.

>Mdata := readdata(“S3 x S3 x 6.txt”, string, 3):

Convert the array in the text file to a matrix in Maple.

>M := Matrix(nops(Mdata),3, (i,j) -> convert(M[i][j], symbol));

Enter code to create a list whose elements are the elements of the cartesian

product of a list, L, of sets.

>CPL := proc(L)

local cpf, ans: ans:=NULL:

cpf := cartprod(L):

while not cpf[finished] do

ans := ans, cpf[nextvalue]()

od; [ans];

end

Enter code to create a sequence of elements using CPS, which is similar to CPL.

When the output is surrounded by {} repeats are omitted.

CPS:= proc(L)

30

local cpf, ans: ans:=NULL:

cpf:= cartprod(L):

while not cpf[finished] do

ans:= ans, cpf[nextvalue]()

od; ans;

end

Enter code to find the index i such that C[i] = elmt.

lookup := proc(elmt)

local i, ans:

for i from 1 to 24 do

if C[i]=elmt then ans := i fi

od: ans; end

Enter code to take a list LST and apply CPS to each element of CPL(LST).

fast PART:= LST -> map(CPS, CPL(LST)):

Enter code to create a function from ARY that has value at x the number of y in

ARY equal to x.

f := y -> x -> if x=y then true else false fi:

mult :=ARY -> y -> nops(select(f(y), ARY)):

Enter code that determines if the array is constant on conjugacy classes.

GOOD := ARY ->

if nops({seq(nops(map(mult(ARY), PART[j])),j=1..nops (PART))})=1

then true else false

fi:

>?file

This is where you start to enter the group. The group is called C. Enter the

elements of each factor. Then all elements are generated as a Cartesian product.

>C := CPL([[e,x,y,a,b,c], [0,1,2,3,4,5], [0,1]]);

PART is a *global* variable that must be entered by a list of partitions of factors

(def. by conj. class). Enter the conjugacy classes of each factor. Generate a list of

all partitions.

31

>PART := fast PART(

[

{{a,b,c}, {x,y}, {e}},
{{0}, {1}, {2}, {3}, {4}, {5}},
{{0}, {1}}
]);

Find the number of partitions.

>nops(PART);

Create a spreadsheet from the text file.

>ssid:= CreateSpreadsheet();

Specify the size of the spreadsheet. Find the upper left cell and enter the row and

column separated by commas. (Upper left cell will be 1, 1) Next find the lower right

cell and enter the row and column separated by commas.

>SetSelection(ssid, 1, 1, 36, 3);

Create a matrix, A, out of the columns in the spreadsheet.

>A:= GetValuesMatrix(ssid);

List the rows of the array from the matrix. Indicate the number of rows in the

array.

>A list:= [seq(convert(row(A,i), list), i=1..36)];

Determine if the array is constant on conjugacy classes.

>GOOD(A list);

Upper case commands are used for more complex combinatorial data.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2013

	Constructing Orthogonal Arrays on Non-abelian Groups
	Margaret Ann McComack
	Recommended Citation

	tmp.1385152208.pdf.ygsRl

