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Abstract

Invariant Polynomials on Tensors Under the Action of
a Product of Orthogonal Groups

by

Lauren Kelly Williams

The University of Wisconsin–Milwaukee, 2013
Under the Supervision of Professor Jeb F. Willenbring

Let K be the product On1×On2×· · ·×Onr of orthogonal groups. Let V = ⊗ri=1Cni ,

the r-fold tensor product of defining representations of each orthogonal factor. We

compute a stable formula for the dimension of the K-invariant algebra of degree d

homogeneous polynomial functions on V . To accomplish this, we compute a formula

for the number of matchings which commute with a fixed permutation. Finally, we

provide formulas for the invariants and describe a bijection between a basis for the

space of invariants and the isomorphism classes of certain r-regular graphs on d

vertices, as well as a method of associating each invariant to other combinatorial

settings such as phylogenetic trees.
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Chapter 1

Introduction

This thesis is motivated by the following situation. Let n = (n1, n2, . . . , nr) be a

fixed r-tuple of natural numbers, with r ∈ N, and let K(n) denote the product

group K(n) = K(n1)×K(n2)× · · · ×K(nr) where K(ni) is a compact subgroup of

U(ni). Let V (n) = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr be the representation of K(n) under the

standard action on each tensor factor. Obtaining a description of the K(n)-orbits

in V (n) is an interesting but challenging problem in representation theory.

A possible approach to finding such a description is considered in [26] and [37].

Let PR(V ) denote the algebra of complex valued polynomial functions on a finite

dimensional complex vector space V when viewed as a real vector space. A compact

subgroup, K, of the unitary operators on V acts on PR(V ) in the standard way: for

k ∈ K, v ∈ V , and f ∈ PR(V ), we have k · f(v) = f(k−1v). We then have

Theorem 1. [26, Th. 3.1] If v, w ∈ V then f(v) = f(w), for all f ∈ PR(V )K if

and only if v and w are in the same K-orbit.

An understanding of the K-orbits in V can now be obtained via the invariant

theory of K. The K-invariant subspace of PR(V ), which we denote by PR(V )K ,

is known to be finitely generated [16]. However, a description of these generators

is incomplete except for particular cases, and therefore motivates the subject of

classical invariant theory.

A polynomial f ∈ PR(V ) is said to be homogeneous of degree d if f(cv) = cdv for

all scalars c and v ∈ V . Any polynomial can be written as a sum of its homogeneous

parts, and so we have the standard gradation PR(V ) =
⊕∞

d=0PdR(V ), where PdR(V ) is

the subspace of degree d homogeneous polynomials on V . Moreover, the K-invariant
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subalgebra inherits this gradation. That is, PdR(V )K = PdR(V ) ∩ PR(V )K .

We will complexify this picture. P(V ) will be the complex valued polyno-

mial functions on the complexification of the real vector space V . For example,

if V = Rn, P(V ) ∼= C[z1, . . . , zn], and if V = Cn viewed as a real vector space, then

P(V ) ∼= C[x1, . . . , xn, y1, . . . , yn]. The real vector space Rn is the defining represen-

tation of the group1 O(n) = On(R). The complex group On = On(C) acts on the

complexification Cn. The unitary group, U(n), acts on the real vector space Cn (the

defining representation). The complexification of U(n) is GLn(C), which acts on

the complexification of Cn.

The group K(n) acts on V (n) by

(g1, g2, . . . , gr) · (v1, v2, . . . , vr) = (g1v1)⊗ (g2v2)⊗ · · · ⊗ (grvr)

for gi ∈ Oni , vi ∈ Cni . Part of the purpose of this thesis is to describe the

space Pd(V (n))K(n) when K(n) =
∏r

i=1 Oni , a product of orthogonal groups, where

P(V (n)) denotes the complex valued polynomials on V (n) viewed as a complex

space.

In general, describing the invariants of this action remains an open and difficult

problem. However, if we require ni ≥ d for 1 ≤ i ≤ r, we are able to determine

a formula for the dimension of the space of K(n)-invariant degree d homogeneous

polynomials on V (n). We will refer to these inequalities as the stable range. We

derive a formula for this dimension in Chapter 3. Explicit formulas for the invariants

in this stable range are then provided in Chapter 4, along with a graph theoretic

interpretation. We also examine correspondences between the invariants and various

combinatorial settings. Specifically, we consider r-tuples of matchings (i.e., order

two permutations without fixed points) counted up to simultaneous conjugation.

1The orthogonal group, O(n), is the group of real n × n matrices M such that MTM = I,
where MT denotes the transpose of M .
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Our main result, derived in Chapter 3, is

Theorem 2. Let d be a positive integer and let K(n) = On1 ×On2 × · · · ×Onr and

V (n) = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr , where n1, n2, . . . , nr ≥ d. Then the dimension of

the space of K(n)-invariant degree d homogeneous polynomial functions on V (n) is

zero when d is odd. When d is even, we have

dimPd(V (n))K(n) =
∑
λ`d

N(λ)r

zλ

where N(λ) is the number of matchings that commute with a permutation with shape

λ, and zλ is the order of the centralizer of a permutation with shape λ.

We determine the number of matchings which commute with a given permutation

in Section 3.4. In particular, we have

Theorem 3. Given a permutation σ with shape λ = (1b12b2 · · · tbt), the number of

matchings that commute with σ is given by

N(λ) = N((1b1)) ·N((2b2)) · · · · ·N((tbt))

where

N((ab)) =



0 if a is odd and b is odd

b!ab/2

2b/2( b
2

)!
if a is odd and b is even∑b

i=1,i odd

b!a(b−i)/2

i!( b−i
2

)!2(b−i)/2
if a is even and b is odd∑b

i=0,i even

b!a(b−i)/2

i!( b−i
2

)!2(b−i)/2
if a is even and b is even

In Chapter 4, we show that given an r-tuple of matchings, (τ1, τ2, . . . , τr), each

on d = 2m letters2, we can describe an invariant in Pd(V (n))K(n). The symmetric

group Sd acts on such a tuple by simultaneous conjugation; that is, for g ∈ Sd, we

2Note that a matching is a permutation in Sd, where d is even.
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define

g · (τ1, τ2, . . . , τr) = (gτ1g
−1, gτ2g

−1, . . . , gτrg
−1).

We provide an explicit basis for Pd(V (n))K(n). The orbits of the above action are

in bijective correspondence with this basis, as well as isomorphism classes of certain

graphs.

In [14], an analogous problem is considered when K(n) =
∏r

i=1 U(ni), a prod-

uct of unitary groups3. A formula for the dimension of these invariant functions

is provided within a stable range. That is, when the rank of each group in the

product is sufficiently large. This result is recalled in Chapter 3. Formulas for the

K(n)-invariants in Pd(V (n)), as well as a new graphical interpretation of these in-

variants, is provided in [15] and recalled in Chapter 4. This situation has a physical

interpretation, as it is related to the quantum mechanical state space of a multi-

particle system in which each particle has finitely many outcomes upon observation.

Moreover, these invariant functions separate the entangled and unentangled states,

and are therefore viewed as measurements of quantum entanglement [26].

The First Fundamental Theorem of Invariant Theory

Our problem, when K(n) = On1 × On2 × · · · × Onr , is in sharp contrast to the

situation covered by the First Fundamental Theorem of Invariant Theory (FFT),

which we now recall following the notation of [17]. Let V be a vector space, and let

G ⊂ GL(V ) be a group of linear transformations on V . Then the FFT describes

the algebra of G-invariants P(V ` ⊕ (V ∗)m)G, where V ∗ denotes the dual of V and

G acts on V ∗ by the contragrediant of its action on V .

We now review the FFT for G = On. The orthogonal group On acts on
⊕mCn

(which we may view as the space of n×m matrices) by left multiplication. On also

3The unitary group, U(n), is the group of complex n × n matrices M such that M∗M = I,
where M∗ denotes the conjugate transpose of M .
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preserves the inner product

(u,w) =
n∑
i=1

uiwi

where u = (u1, . . . , un) and w = (w1, . . . , wn) are n-tuples of complex numbers.

Let v = (v1, . . . , vm) be an element of
⊕mCn, where each vi is itself an n-tuple

vi = (vi1 , vi2 , . . . , vin).

Theorem 4. (First fundamental theorem of invariant theory for On) The invariant

algebra P(
⊕mCn)On is generated by second order polynomials of the form

(vi, vj) =
n∑
k=1

vikvjk

for 1 ≤ i ≤ j ≤ n.

Example 1. Consider the case n = 2. Following Theorem 4, the degree 2 homoge-

neous polynomial function f(x, y) invariant under O2 is

f(x, y) = x2 + y2

for (x, y) ∈ C2. To verify that this polynomial is invariant, let

A =

 a b

c d


be a 2× 2 orthogonal matrix. By definition, we have

ATA =

 a c

b d


 a b

c d

 =

 a2 + c2 ab+ cd

ab+ cd b2 + d2

 =

 1 0

0 1


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Thus a2 + c2 = b2 + d2 = 1, and ab+ cd = 0. Observe that

f(A(x, y)) = f(ax+ by, cx+ dy) = (ax+ by)2 + (cx+ dy)2

= ((a2 + c2)x2 + 2(ab+ cd)xy + (b2 + d2)y2 = x2 + y2 = f(x, y)

and so f is indeed invariant under O2.

The situation considered in this thesis is distinct from the First Fundamental

Theorem. In particular, we replace the direct sums of the FFT by tensor products,

and look for invariants of the product group On1 × · · · ×Onr in place of On.

Schur Weyl Duality

Classical Schur-Weyl duality (see Section 3.1) describes a relationship between irre-

ducible finite dimensional representations of the general linear group and the sym-

metric group. The natural actions of each of these groups on the space
⊗k Cn

centralize each other, resulting in the multiplicity free decomposition

k⊗
Cn ∼=

⊕
λ`k

`(λ)≤n

F λ ⊗W λ

where F λ and W λ are the irreducible representations of GLn and Sk, respectively,

associated to the partition λ.

There is an analogous version of Schur Weyl duality when GLn is replaced by the

complex orthogonal group. This theory was developed by Richard Brauer. Both of

these pictures give rise to an understanding of invariant tensors, but not, directly,

an understanding of the invariant polynomial functions on tensors, which lie deeper.
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Classical Kostant-Rallis Theory

When r = 2 and K(n) is a product of orthogonal or unitary groups, the situation

is well known, and is an instance of Kostant-Rallis theory (see also [12, Ch. 12]).

We now recall the situation for the orthogonal group in detail. That is, we consider

Pd(Cn1 ⊗ Cn2)On1×On2 . Here, we may think of V (n) = Cn1 ⊗ Cn2 as the space

of n1 × n2 matrices with entries in C. Denote these matrices by X = (xij). We

now recall formulas for these invariants, as related to this thesis. As we show in

Chapter 3, there are no invariants when d is odd, so we review the situation when

d = 2, 4, and 6.

An invariant polynomial in the r = 2 case will be shown to correspond to an

2-regular graph on d vertices in Section 4.2.2. We represent the two colors of these

graphs with solid and dotted edge. For any such graph, we can label a set of exactly

half of these vertices {a1, a2, . . . , ad/2} so that no solid or dotted edge connects any

two elements of the set. As d increases, we may have multiple choices for this set.

Let {b1, b2, . . . , bd/2} denote the remaining vertices. We create a general term of

the associated invariant polynomial by taking products of the indeterminants xaibj

whenever there is an edge (of any color) between vertices ai and bj. Taking sums of

these terms as each ai ranges from 1 to n1 and each bi ranges from 1 to n2 yields

the invariant. Note that other choices for labeling the vertices may be possible, but

will result in equivalent polynomials.

We begin with the simplest case, d = 2. By Theorem 2, the space P2(Cn1 ⊗

Cn2)On1×On2 is generated by only one polynomial. Additionally, we have only one

2-regular graph on two vertices a and b, up to isomorphism:

a b
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The associated invariant is written

f(x11, . . . , xn1n2) =

n1∑
a=1

n2∑
b=1

x2
ab

with the above notation. We may recognize this polynomial as Tr(XTX), the trace

of the matrix XTX.

If we next consider d = 4, we find two 2-regular graphs on 4 vertices, up to

isomorphism. In the presentations below, we have already made a choice of labels

for the vertices:

a1 b1

a2 b2

a1 b1

b2 a2

The space P4(Cn1 ⊗ Cn2)On1×On2 has two basis elements. Using the method

described above, we can write these invariants, respectively, as

f1(x11, . . . , xn1n2) =

n1∑
a1,a2=1

n2∑
b1,b2=1

x2
a1b1

x2
a2b2

f2(x11, . . . , xn1n2) =

n1∑
a1,a2=1

n2∑
b1,b2=1

xa1b1xa1b2xa2b1xa2b2

In this case, we recognize f1 to be [Tr(XTX)]2, and f2 to be Tr[(XTX)2].

Finally, we consider d = 6. Here we have a total of 3 graphs, up to isomorphism.

Again, we have already chosen the sets {a1, a2, a3} and {b1, b2, b3} in each case:

a1

b1

a2

b2

a3

b3

a1

b1

a2

b2

a3

b3

a1

b1

a2

b2

a3

b3
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The space P6(Cn1⊗Cn2)On1×On2 has three generators, each associated to a graph

shown above:

f1(x11, . . . , xn1n2) =

n1∑
a1,a2,a3=1

n2∑
b1,b2,b3=1

x2
a1b1

x2
a2b2

m2
a3b3

f2(x11, . . . , xn1n2) =

n1∑
a1,a2,a3=1

n2∑
b1,b2,b3=1

x2
a1b1

xa2b2xa2b3xa3b2xa3b3

f3(x11, . . . , xn1n2) =

n1∑
a1,a2,a3=1

n2∑
b1,b2,b3=1

xa1b1xa1b3xa2b1xa2b2xa3b2xa3b3

Again, we note that f1, f2, and f3 are [Tr(XTX)]3, Tr(XTX) · Tr[(XTX)2], and

Tr[(XTX)3], respectively.

Combinatorics of matchings

The idea of a matching will arise throughout this thesis. Matchings have surprisingly

deep connections to a variety of areas of research. Recall that Schur-Weyl duality

relates the irreducible finite dimensional representations of the general linear and

symmetric groups. In 1937, Richard Brauer defined an algebra which plays the role

of the group algebra of Sn in a similar statement on the representation theory of the

orthogonal group [3] [38] [20]. For a partition λ = (λ1, λ2, . . .), let λ′ = (λ′1, λ
′
2, . . .)

denote the conjugate partition, where λ′j is the number of boxes in the jth column

of the Young diagram of λ. We have

⊗kCn ∼=
bk/2c⊕
i=0

⊕
λ`(k−2i)

λ′1+λ′2≤n

Uλ ⊗ V λ

where Uλ and V λ denote, respectively, the irreducible representations of the or-

thogonal group and the Brauer algebra. Let Bk(n) be the centralizer algebra of

the diagonal action of On on ⊗kCn. The dimension of the algebra Bk(n) is (2k −
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1)(2k− 3) · · · 3 · · · 1, the number of matchings on 2k elements. These basis elements

of the algebra are frequently depicted as graphs; the diagram below represents a

basis element of the algebra B6(n):

A full rooted binary tree, together with a labeling of its leaves, is called a phy-

logenetic tree. Diaconis and Holmes, in [6], have described a bijection between

matchings on 2n elements and phylogenetic trees with n + 1 leaves, which we re-

count in Section 4.2.3. Note that there is more than one possible rule to create such

a correspondence. The notion of a phylogenetic tree is motivated by concepts in

biology, where the trees are used to illustrate inferred evolutionary relationships.

An orbit of Pd(V (n))K(n) will consist of polynomials which correspond to the

conjugacy classes of ordered r-tuples of matchings on d letters, under simultaneous

conjugation by the symmetric group. We’ll show in Chapter 4 that each invariant

therefore corresponds to what we introduce as a phylogenetic forest.

1.1 Organization of this thesis

After preliminary notation and definitions are reviewed in Chapter 2, we prove the

stable dimension formula in Chapter 3, and provide explicit invariants along with

a graph theoretic interpretation in Chapter 4. Finally, in Appendix A, we provide

some data related to the nonstable cases. In Appendix B, we provide several Sage

programs used to verify our results and calculate the values in Appendix A.
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Chapter 2

Preliminaries

2.1 Partitions and Permutations

We now review some definitions and notation used throughout this thesis. We say

λ is a partition of a positive integer n, denoted λ ` n, if λ = (λ1, λ2, . . . , λ`) is a

weakly decreasing sequence of positive integers such that
∑`

i=1 λi = n. In this case,

we say λ has size n and length `. If λ has b1 ones, b2 twos, b3 threes, etc, we say

that λ has shape (1b1 , 2b23b3 , . . .). For example, λ = (3, 2, 2, 1) is a partition of 8

with shape (112231). Finally, we say λ = (λ1, λ2, . . . , λ`) is an even partition if every

part, λi, is an even integer.

Let Sn denote the symmetric group whose elements are permutations of {1, 2, . . . , n}.

Recall that there are n! such permutations, each of which may be denoted in a variety

of ways. A particularly useful convention for our purposes is disjoint cycle notation.

We write a permutation σ as a product of cycles of the form (x1 x2 x3 · · · xl) if

σ(x1) = x2, σ(x2) = x3, ... , σ(xl−1) = xl, and σ(xl) = x1. Every element in Sn can

be written in this way, with the contents of each cycle forming disjoint sets. Since

disjoint cycles commute, it is possible to represent a permutation in multiple ways;

additionally, the notation for an individual cycle is not unique, and depends on the

starting point x1 chosen. For example,

(1 2 7)(3)(4 5)(6) = (1 2 7)(4 5)(3)(6) = (7 1 2)(3)(4 5)(6)

all denote the same element of S7 written in cycle notation. It is our convention to

write the cycles in decreasing order of length with the leading entry of each cycle
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chosen to be the smallest number within that cycle, as in the center example above.

Cycle notation allows us to quickly identify some importation characteristics of

each permutation. A permutation σ is said to have a fixed point x if σ(x) = x. A

fixed point appears as a cycle containing the single entry x. The permutation in

the above example has two fixed points, 3 and 6. A permutation σ that exchanges

two elements x and y (that is, σ(x) = y and σ(y) = x) will contain a cycle of length

two, (x y), called a transposition.

We can form a partition of n by listing the lengths of each cycle of an element

of Sn. This partition is called the cycle type of the permutation. Note that two

permutations may have the same cycle type. For instance, the permutations σ1 =

(1 3 6)(4 7)(2 5) and σ2 = (1 5 6)(2 7)(3 4) both have cycle type λ = (3, 2, 2).

We may also refer to the cycle type as the shape of the permutation. Thus the

permutations σ1 and σ2 may be said to have cycle type (2231). Two permutations

have the same cycle type if and only if they are conjugate in Sn, and so the conjugacy

classes of Sn can be indexed by the partitions of n.

Given a permutation σ ∈ Sn with cycle type λ = (1b12b23b3 , . . .), the number of

permutations commuting with σ (that is, the order of the centralizer Zσ) is denoted

by zλ. The cardinality of the conjugacy class is [30]

|Zσ| =
n!

zλ
=

n!

1b12b23b3 · · · b1!b2!b3! · · ·
(2.1)

A permutation σ is called an involution if σ−1 = σ. Note that a permutation is an

involution if and only if its cycles have length at most two; that is, it is composed only

of fixed points and transpositions. An involution without fixed points is therefore

composed only of transpositions, and is called a matching.

Aside from simply writing a partition λ as a sequence, we can denote it in a

variety of other ways. Ferrers and Young diagrams are two visual means of por-

traying integer partitions that are commonly used. In a Ferrers diagram, dots are
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arranged into rows according to the size of each part of the partition. In a Young

diagram, these dots are replaced by boxes. As partitions are conventionally written

as weakly decreasing sequences, the rows of these diagrams will weakly decrease

from top to bottom. The beginning of each row is left justified, resulting in columns

that weakly decrease from left to right, as in Figure 2.1. The size and shape of

such a diagram is the same as the size and shape of the corresponding partition.

Each Young diagram corresponds to an irreducible representation (over C) of the

symmetric group. [30] [24] [7]

(a) Ferrers Diagram (b) Young Diagram

Figure 2.1: Diagrams representing the partition (8, 5, 5, 3, 1)

A Young tableau is formed by filling the boxes of a Young diagram with symbols.

The filling is called the content of the tableau. A standard Young tableau (sometimes

referred to simply as a tableau) of size n is filled with the integers {1, 2, . . . , n} so

that the numbers are strictly increasing across the rows from left to right, and along

each column from top to bottom. A semistandard Young tableau (also called column

strict) contains numbers that weakly increase across rows, but strictly increase down

columns. The weight of a tableau is a sequence recording the number of times each

entry appears in the tableau. Hence, a standard tableau with n boxes has weight

(1, 1, . . . , 1) and content (1, 2, . . . , n). The Kostka numbers, denoted Kλ,µ, is defined

to be the number of semistandard tableaux with shape λ and weight µ.
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Example 2. For λ = (4, 3, 2) and µ = (3, 3, 2, 1), we have Kλ,µ = 4. The four

semistandard tableaux with shape λ and content (1, 1, 1, 2, 2, 2, 3, 3, 4) are

1 1 1 2
2 2 3
3 4

1 1 1 2
2 2 4
3 3

1 1 1 3
2 2 2
3 4

1 1 1 4
2 2 2
3 3

2.1.1 Schur Polynomials

Given a partition λ = (λ1, . . . , λ`), we can define a symmetric polynomial sλ in n

variables called the Schur polynomial. Various formulas for the Schur polynomials

exist. One of the earliest definitions is attributed to Cauchy [18], and is described

by a ratio of determinants. For indeterminants x1, . . . , xn, define

A =



xλ1+n−1
1 xλ1+n−1

2 · · · xλ2+n−1
n

xλ2+n−2
1 xλ2+n−2

2 · · · xλ2+n−2
n

...
...

. . .
...

xλn1 xλn2 · · · xλnn


and

B =



xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

...
...

. . .
...

1 1 · · · 1


The Schur polynomial sλ can be written as

sλ(x1, . . . , xn) =
det(A)

det(B)

Note that the numerator is an alternating polynomial and the denominator is the

Vandermonde determinant, which guarantees that sλ will be a symmetric polyno-

mial.
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An equivalent definition can be written in terms of semistandard Young tableaux.

Let T be a semistandard tableau with weight (ti, . . . , tn). Then

sλ(x1, . . . , xn) =
∑
T

xt11 x
t2
2 · · ·xtnn

where the sum is over all semistandard tableaux with shape λ. An immediate corol-

lary of this description is that sλ(1, 1, . . . , 1) gives us the number of semistandard

tableaux with shape λ.

2.1.2 The Robinson-Schensted-Knuth Correspondence

A particularly useful fact, originally described by Gilbert Robinson [28], is the corre-

spondence between permutations in Sn and ordered pairs (P,Q) of standard tableaux

of size n with the same shape [35]. The algorithm to determine the pair of tableaux

associated to a particular permutation was later improved by Craige Schensted [32];

their combined effort is referred to as the Robinson-Schensted correspondence. The

study of this correspondence has given rise to some remarkable combinatorics. For

instance, the lengths of the longest increasing and decreasing subsequences of a per-

mutation can be identified by the lengths of the first row and column, respectively,

of the associated tableaux [32] [35]. The process was later generalized by Donald

Knuth1 to a correspondence between matrices with nonnegative integer entries and

pairs of semistandard tableaux with the same shape.

Much of the work throughout this thesis focuses on matchings, the permutations

formed by a product of transpositions. The Robinson-Schensted correspondence

gives rise to an interesting way of encoding a matching. It can be shown that the

number of fixed points of an involution is equal to the number of columns of odd

length in the associated tableaux. Additionally, inverting the permutation corre-

sponds to interchanging P and Q. Therefore, involutions are in bijective correspon-

1A Milwaukee native.
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dence to standard tableaux. Given an involution, the number of odd columns is

equal to the number of fixed points. As a consequence, each matching corresponds

to a standard tableau whose columns have even length.

2.2 The Orthogonal Group

Let O(n, F ) denote the set of all n×n invertible matrices g with entries in a field F

such that gTg is the identity matrix. Then O(n, F ) is a group, called the orthogonal

group, whose elements are the orthogonal matrices. The orthogonal matrices have

determinant ±1. The subgroup of orthogonal matrices with determinant 1 is called

the special orthogonal group, denoted SO(n, F ).

Throughout this thesis, we let On = O(n,C) denote the complex orthogonal

matrices. The real orthogonal matrices will be denoted by On(R). Note that neither

On nor On(R) form connected groups. They instead are the union of two connected

components, one of which is the special orthogonal group, and the other being the

set of orthogonal matrices with determinant −1.

The group On(R) forms a compact Lie group, with dimension n(n−1)
2

. Similarly,

the group On forms a linear algebraic group over C with Krull dimension n(n−1)
2

.

However, in the Euclidean topology, the complex group On is not compact for n > 1.

The definition of the complex orthogonal group is similar to the definition of the

unitary group, U(n), which consists of n× n matrices g with entries in C such that

g∗g is the identity matrix, where g∗ is the conjugate transpose of g. Note there is a

distinction between the groups On and U(n). For instance, matrices of the form

 cos z − sin z

sin z cos z


for z ∈ C are complex orthogonal matrices, but are not necessarily unitary. The
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unitary group U(n) forms a Lie group of dimension n2, and is both compact and

connected.

2.3 Representations

2.3.1 Definitions

Recall that the general linear group, GLn(C), is the group of n×n invertible matrices

with complex entries. For g ∈ GLn(C), let aij denote the entry in the ith row and

jth column of g. The determinant of g is a polynomial in these matrix entries. The

regular functions on GLn(C) are elements of the commutative algebra

O[GLn(C)] = C[a11, a12, . . . , a21, a22, . . . , ann, det−1].

Let G be a group, and let V be a complex vector space. We denote by GL(V )

the group of automorphisms of V . A representation of a G is a pair (π, V ) such that

π : G→ GL(V ) is a group homomorphism. We will often refer to this representation

simply by V . The dimension of the representation is the dimension of the space V .

Given an n-dimensional complex vector space V , we can define the group iso-

morphism ψ : GL(V ) → GLn(C) by choosing a basis for V . We then define the

algebra of regular functions on GL(V ), denoted O[GL(V )], to be

O[GL(V )] = {f ◦ ψ : f ∈ O[GLn(C)]}.

The group GL(V ) has the structure of an affine variety. The group operations are

compatible with the variety structure. A Zariski closed subgroup of GL(V ) will be

called a linear algebraic group. Set

O[G] = {f |G : f ∈ O[GL(V )]},
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the algebra of regular functions on G.

Let G be a linear algebraic group. Denote by V ∗ the complex dual of the vector

space V , defined as the space consisting of all C-linear functionals on V . For the

representation (π, V ) as above, we define the matrix coefficients of π to be the maps

g 7→ v∗(π(g)v)

for g ∈ G, v ∈ V , v∗ ∈ V ∗. If V is finite dimensional and the matrix coefficients of

π are regular functions, then we say that the representation is regular.

Suppose V has a subspace W that is preserved under the action of G; that

is, for g ∈ G and w ∈ W , we have g.w ∈ W . In this case, we say that W is a

subrepresentation of V . If V has no nontrivial proper subrepresentations (that is,

the only subrepresentations are {0} and V itself), it is called irreducible.

A representation V of G is called decomposable if it can be written as a direct sum

of two nontrivial subrepresentations. We say V is completely reducible if it can be

written as a direct sum of irreducible components. If each irreducible representation

appears in the decomposition only once, we say the representation is multiplicity free.

If G is a linear algebraic group, all of whose regular representations are completely

reducible, then we say G is reductive.

Suppose a representation V can be written

V =
k⊕
i=1

miW
(i)

where the W (i) are inequivalent2 irreducible representations and mi is the multiplic-

ity of W (i) in the sum. Let di denote the dimension of W (i). Then

dimV =
k∑
i=1

midi

2Two representations are equivalent if there is a G-equivariant map between them.
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That is, we can determine the dimension of the space if we are able to find the

dimensions and multiplicities of its components.

2.3.2 Representations of the Symmetric Group

The conjugacy classes of the symmetric group Sn can be described by partitions of

n [30] [7] [19]. As a result of the representation theory of finite groups, the irreducible

representations of Sn over C are indexed by these partitions. Equivalently, these

representations correspond to Young diagrams with n boxes, since there are the

same number of each. Our indexing follows [12].

A basis for an irreducible Sn representation indexed by a partition λ, which we

denote by πλ, can be described by standard Young tableaux. Thus, the number of

standard tableaux with a given shape tells us the dimension of the representation.

There is a convenient formula for finding this dimension. Given a Young diagram

Dλ with shape λ, we define the hook length of a box x in the Young diagram, denoted

hook(x), to be the total number of boxes to the right of and below x, plus one for

x itself. The hook length formula gives us the dimension of the representation πλ:

dim πλ =
n!

Πx∈Dλhook(x)
.

For any n, the symmetric group Sn has a one-dimensional representation, called

the trivial representation. It assigns every permutation σ ∈ Sn to the identity map,

π(σ)x = x for x ∈ C. The trivial representation of Sn corresponds to the Young

diagram with one row and n columns.

If n ≥ 2, the group Sn has another one-dimensional representation, called the

sign representation or alternating representation. Every permutation σ ∈ Sn can

be written as a product of transpositions. We define the sign of σ, denoted sgn(σ),

to be +1 if σ can be written as a product of an even number of transpositions,

and to be −1 if σ is a product of an odd number of transpositions. The sign of
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a permutation is well defined, and given two permutations σ1, σ2 ∈ Sn, we have

sgn(σ1σ2) = sgn(σ1)sgn(σ2). Hence, we can define the sign representation to be

π(σ)x = sgn(σ)x for x ∈ C. The sign representation of Sn corresponds to the Young

diagram with one column and n rows.

For n ≥ 2, the trivial and sign representations are the only one-dimensional

irreducible representations of Sn. We now define another important representation

of Sn of dimension n−1 that occurs when n > 2. Choose a basis {e1, . . . , en} of Cn,

and define an action of Sn on Cn by

σ(a1e1 + · · · anen) = a1eσ(1) + · · · ane(σ(n))

for σ ∈ Sn. This action defines an n-dimensional representation of Sn called the

permutation representation, which is not irreducible. It has a one-dimensional sub-

space spanned by the sum of basis vectors e1 + · · ·+en. The orthogonal complement

of this subspace spanned by vectors (v1, . . . , vn) ∈ Cn such that v1 + · · ·+ vn = 0 is

an n − 1 dimensional irreducible representation, called the standard representation

of Sn. The standard representation corresponds to a Young diagram with two rows,

the first containing n− 1 boxes, and the second containing a single box.

Example 3. Consider the standard representation of S5, associated to the Young

diagram of shape (4, 1). There are four standard tableaux with this shape:

1 2 3 4
5

1 2 3 5
4

1 2 4 5
3

1 3 4 5
2

and so the dimension of this representation is 4. The hook lengths of the boxes along

the first row, from left to right, of the Young diagram are 5, 3, 2, and 1, respectively.

The hook length of the single box in the second row is 1. We find the same result
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using the hook length formula:

dimπ(4,1) =
5!

5 · 3 · 2 · 1 · 1
= 4

In addition to providing information about the irreducible representations of Sn,

Young diagrams can be used to describe the decomposition of restricted represen-

tations from Sn to Sn−1. Each irreducible representation πλ of Sn also gives us a

representation of Sn−1, but this representation will not necessarily be irreducible.

Upon restriction to Sn−1, πλ is multiplicity free. The irreducible factors of the re-

stricted representation can be obtained by removing a single box from the diagram

of shape λ. By Frobenius reciprocity [12], the induced representation of πλ can

be found by taking a direct sum of irreducible representations of Sn+1 obtained by

adding an additional box to the diagram with shape λ. Each of these irreducibles

appears with multiplicity one. For example,

ResS5
S4

( )
= ⊕

and

IndS5
S4

( )
= ⊕ ⊕

2.3.3 Highest Weight Theory

Let g be a complex reductive Lie algebra with Lie bracket [·, ·] : g × g → g. An

example is g = gln, the set of n × n matrices. Choose a Cartan subalgebra h of

g, and a Borel subalgebra b such that h ⊂ b ⊂ g. In the case of g = gln, we take

h to be the diagonal matrices and b to be the upper triangular matrices. A linear

functional λ : h→ C is called a weight of g.
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A representation of g is a linear map π : g→ gl(V ) so that

π([X, Y ]) = π(X)π(Y )− π(Y )π(X)

for all X, Y ∈ g, where gl(V ) is the Lie algebra of endomorphisms of V under the

usual commutator bracket. If V is a representation of g, we define the weight space

of V with weight λ to be

V λ = {v ∈ V | X.v = λ(X).v for all X ∈ h}

Note that V λ is a subspace of V which generalizes the notion of an eigenspace. A

weight of the representation V is a weight λ of g such that V λ 6= {0}.

The adjoint representation of a Lie algebra g, denoted ad, is the linear represen-

tation defined by

ad(X)(Y ) = [X, Y ]

for X, Y ∈ g. The zero weight space of g is the Cartan. The nonzero weights of the

adjoint representation of g are called roots, and the corresponding weight space is

called the root space, denoted gα. We denote the set of roots by Φ. We may now

choose a set of positive roots, denoted by Φ+, such that for each α ∈ Φ, exactly one

of α or −α are in Φ+, and so that if α, β ∈ Φ and α+ β is a root, then α+ β ∈ Φ+.

We choose Φ+ so that b = h⊕
⊕

α∈Φ+ gα. If a positive root α cannot be written as

a sum of other positive roots, we say α is a simple root. We denote the set of simple

roots by Π.

Once we have fixed Φ+, we may define a partial ordering on the weights of a

representation V of g. Let λ, µ be two such weights. We say µ 4 λ if λ − µ is a

nonnegative linear combination of simple roots. Under this ordering, if λ is larger

than or equal to all other weights of V , we call λ a highest weight of V . If V is

irreducible, there will be a unique highest weight.
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The finite dimensional irreducible representations of g are uniquely determined

by their highest weights [12]. This yields a convenient method for indexing the

irreducible representations of g, and hence, irreducible representations of G with

G = g.

For this thesis, we will only need to understand G = GLn. If λ is a partition of

k with at most n parts, each of which is a positive integer, there is an associated

irreducible polynomial representation of GLn with highest weight λ, which we denote

by V λ [12] [8]. The dimension of this representation is equal to the number of

semistandard Young tableaux with shape λ.

Of particular interest are the irreducible polynomial representations of GLn asso-

ciated to the partitions whose Young diagrams have a single row or a single column.

If λ = (k) (that is, λ is the partition whose Young diagram consists of a single row of

k boxes), then V λ is the kth symmetric power, Symk(Cn). If λ = (1, 1, . . . , 1) is the

partition whose Young diagram consists of a single column, then the representation

of GLn with λ as its highest weight is the kth exterior power, ∧k(Cn), when k ≤ n.

2.4 Gelfand Pairs and Symmetric Pairs

2.4.1 Gelfand Pairs

Suppose G is a finite group, and let H be a subgroup of G. Let 1H denote the trivial

representation of H, the one-dimensional representation such that 1H(h) = 1 for all

h ∈ H. If the induced representation 1GH is multiplicity free, then we say (G,H) is

a Gelfand pair [10]. Equivalently, (G,H) is a Gelfand pair if HgH = Hg−1H for all

g ∈ G [24, Ch. VII, 1.2].

The notion of a Gelfand pair (G,H) extends to a variety of settings. Here, we

focus on the case where G is a finite group, though similar ideas exist in other

contexts.
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The Gelfand pairs (Sn, ), where Sn denotes the symmetric group on n letters,

were classified in [31]. An example of particular interest to this thesis, define

τ0 = (1 2)(3 4)(5 6) · · · (2n− 1 2n)

and let Hn = {ρ ∈ S2n | ρτ = τρ}, the centralizer of τ0. We now show (S2n, Hn) is

a Gelfand pair, following [24].

For each permutation σ ∈ S2n, we create an undirected edge colored graph G(σ)

with 2n vertices, numbered 1 through 2n, as follows. Begin by drawing a solid edge

εi between vertices 2i−1 and 2i, resulting in n solid edges. Next, draw a dotted edge,

denoted σεi, from σ(2i− 1) to σ(2i). The resulting graph G(σ) will have connected

components. The number of edges in each connected component will be called the

length of the component. Each of these components will have even length. Let 2pi

denote the length of the ith connected component. We can then form a partition

Pσ = (p1 ≥ p2 ≥ · · · ) associated to σ, called the coset type of the permutation.

Example 4. Let σ = (1 5)(2 3 6)(4). We construct the graph G(σ) and find the

partition Pσ. We have four solid edges, ε1 = {1, 2}, ε2 = {3, 4}, and ε3 = {5, 6}.

We also have four dotted edges, σε1 = {σ(1), σ(2)} = {5, 3}, σε2 = {σ(3), σ(4)} =

{6, 4}, and σε3 = {σ(5), σ(6)} = {1, 2}. The resulting graph is

1

2

3

4

5

6

Thus we have two connected components:

1↔ 2⇔ 1 and 3↔ 4⇔ 6↔ 5⇔ 3
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where ↔ denotes a solid edge and ⇔ denotes a dotted edge. The lengths of these

components are 4 and 2, and so the coset type of σ is Pσ = (2, 1).

It is possible for two permutations σ1, σ2 to result in graphs G(σ1),G(σ2) which

are isomorphic as edge colored graphs; this occurs if and only if the permutations

have the same coset type. In other words, σ1, σ2 have the same coset type if and

only if there is some permutation τ ∈ S2n that preserves edge colored graphs and

maps G(σ1) onto G(σ2). Suppose G(σ1) and G(σ2) are isomorphic, with τ(G(σ1)) =

G(σ2). Since this permutation τ preserves the edges εi, it must be an element of

Hn. Additionally, the edges σ2εi are a permutation of the edges τσ1εi of τ(G(σ1)).

Then the edges εi are permutations of the σ−1
2 τσ1εi. Thus, σ−1

2 τσ1 ∈ Hn. We have

now shown that

Proposition 5. [24, Th. 2.1] Two permutations σ1, σ2 ∈ S2n have the same coset

type if and only if σ2 ∈ Hnσ1Hn.

Next, note that we have σG(σ−1) = G(σ). Thus the graphs of G(σ−1) and G(σ)

are isomorphic, and so

Proposition 6. [24, Th. 2.1] σ and σ−1 have the same coset type.

Combined with the definition of Gelfand pairs for finite groups, these two propo-

sitions yield

Theorem 7. [24, Th. 2.2] (S2n, Hn) is a Gelfand pair.

2.4.2 Symmetric Pairs

Let G be a connected reductive group over C, with reductive subgroup K. If there

exists a regular involution φ on G such that K is the group of φ-invariant elements,

Gφ. In this case, we say (G,K) is a symmetric pair. The pair (GLn, On) is an

example of a symmetric pair, where φ : GLn → GLn is the inverse transpose:

φ(g) = (g−1)T .
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The Cartan-Helgason theorem gives us a useful result regarding symmetric pairs

[11] [17]. The theorem states in part that the G decomposition of regular functions

on G/K is multiplicity free whenever (G,K) is a symmetric pair. In particular, we

have

Theorem 8. [17, Ch. 5] For the irreducible representation F λ of GLn(C) with

highest weight λ, we have

dim(F λ)On =


1 if λ is an even partition

0 otherwise

A direct proof of this theorem uses the complexified Iwasawa decomposition for

GLn(R) [12], a generalization of Gram-Schmidt orthogonalization.

2.5 Decomposition of Tensor Products of Irre-

ducible Representations

2.5.1 Littlewood-Richardson coefficients

Let ν = (ν1, ν2, . . . , νr) and λ = (λ1, λ2, . . . , λs) be integer partitions such that r ≥ s

and νi ≥ λi for 1 ≤ i ≤ r. We form a skew diagram of shape ν/λ by deleting the

first λi boxes (starting from the left) of the ith row of the Young diagram of ν. For

example, if ν = (5, 3, 2, 1) and λ = (3, 1, 1), we obtain the skew diagram
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As with Young diagrams, we can fill the boxes of a skew diagram. We obtain a

semistandard skew tableau by filling the boxes of a skew diagram with integers that

are weakly increasing across its rows and strictly increasing down its columns. The

integers used to fill these diagrams form a sequence (u1, u2, . . . , ut) where ui is the

number of times the number i appears in the diagram. This sequence is called the

weight of the tableau, and will typically form a partition. The diagrams in Figure 2.2

show examples of semistandard skew tableaux.

(a) ν = (5, 4, 2, 1), λ = (4, 1),
µ = (3, 2, 1, 1)

4

1 2

1 1 3

2

(b) ν = (5, 3, 2, 1), λ = (2, 2, 1),
µ = (4, 1, 1)

3

1

2

1 1 1

Figure 2.2: Semistandard skew tableaux with shape ν/λ and weight µ

Given such a semistandard skew tableau, we may form a sequence T by con-

catenating the entries of the rows in reverse order (from right to left), beginning

with the topmost row and working down. The sequences formed in this manner for

the tableaux shown in Figure 2.2 would then be (2, 3, 1, 1, 2, 1, 4) and (1, 1, 1, 2, 1, 3).

We call this sequence a lattice word if each number i appears at least as often as

the number i + 1 at any point in the sequence when read from left to right. The

sequence T for the diagram in Figure 2.2 (a) does not form a lattice word, while the

sequence formed in this way for the diagram in Figure 2.2 (b) does. A tableau with

this property is called a Littlewood-Richardson tableau.

Let F λ and F µ denote the irreducible representations of general linear groups in-

dexed by partitions λ and µ, respectively (note, we do not require these partitions to

be of the same size). We can decompose the tensor product of these representations,
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F λ ⊗ F µ, according to the well known Littlewood-Richardson rule [23] [24] [28]:

F λ ⊗ F µ =
⊕
ν

cνλ,µF
ν

where the multiplicities cνλ,µ, called Littlewood-Richardson coefficients, are the num-

ber of Littlewood-Richardson tableaux with shape ν/λ and weight µ.

Example 5. To determine the multiplicity of F (5,3,2,1) in the decomposition of the

tensor product F (3,2)⊗F (3,2,1), we enumerate the Littlewood-Richardson tableaux with

shape (5, 3, 2, 1)/(3, 2) and weight (3, 2, 1). In this case, we have three such tableaux:

3

2 2

1

1 1

3

1 2

2

1 1

2

1 3

2

1 1

and so c
(5,3,2,1)
(3,2),(3,2,1) = 3.

The Littlewood-Richardson coefficients may also be described by Schur functions

(see Section 2.1.1). They appear as the multiplicity of the Schur functions (as defined

in [24]) sν in the product of sλ and sµ:

sλsµ =
∑
ν

cνλ,µsν

For smaller partitions λ, µ, and ν, it may be possible to determine cνλ,µ by brute

force, simply listing all possible skew tableaux and counting those that satisfy the

required properties. Fortunately, several algorithms may be employed to find these

numbers in more complicated cases. There also exist a number of necessary condi-

tions that must be satisfied for cνλ,µ > 0. Several methods for finding the value of

cνλ,µ for specific partitions λ, µ, and ν are detailed in [7].
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2.5.2 Kronecker coefficients

We now consider a similar decomposition when dealing with tensor products of

irreducible representations of symmetric groups3. For a partition π, let W π denote

the irreducible representation of Sn indexed by π ` n, as in Section 2.3.2. Given

W λ ⊗W µ, we denote the multiplicity of the irreducible representation W ν in the

product by gνλ,µ. That is,

W λ ⊗W µ =
⊕
ν

gνλ,µW
ν

where gνλ,µW
ν denotes the direct sum of gνλ,µ copies of W ν .

The multiplicities gνλ,µ are called the Kronecker coefficients [9]. A “simple” com-

binatorial rule for determining these coefficients for general choices of (λ, µ, ν) is

unknown, although algorithms for finding them do exist. Formulas for certain cases

have been studied, such as when µ, ν are rectangular [25], or µ, ν are two row shapes

or hook shapes [29].

As with the Littlewood-Richardson coefficients, the Kronecker coefficients can be

defined via Schur functions. While the Littlewood-Richardson coefficients describe

the multiplicities in a product of Schur functions, the Kronecker coefficients count

the multiplicities in the Kronecker product of Schur functions:

sλ ∗ sµ =
∑
ν

gνλ,µsν

We may also consider a tensor product of more than two representations. Sup-

pose we have an r-tuple of partitions (λ(1), λ(2), . . . , λ(r)) of n. We have the decom-

position

W λ(1) ⊗W λ(2) ⊗ · · · ⊗W λ(r) =
⊕
µ`m

gλ(1)λ(2)...,λ(r)µ W
µ

3Here, Sn acts on tensors by the diagonal action.
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We also refer to the numbers gλ(1)λ(2)...λ(r)µ as Kronecker coefficients.

Let n = (n1, n2, . . . , nr) be an r-tuple of positive integers. In [14], it is shown

that when K(n) = U(n1)× U(n2)× · · · × U(nr) is a product of unitary groups and

V (n) = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr , we have

dimP2m
R (V (n))K(n) =

∑
(µ(1),µ(2),...,µ(r))

g2
µ(1)µ(2)···µ(r)(m)

where the sum is taken over all r-tuples of partitions of m such that the length of

µ(i) is at most ni. That is, the dimensions of the space of invariant polynomials on

V (n) under the action of K(n) is a sum of squares of Kronecker coefficients.

The goal of this thesis is to consider the analogous problem when K(n) is a

product of orthogonal groups, K(n) = On1 × On2 × · · · × Onr . We will show in

Section 3.3 that the Kronecker coefficients arise in this setting as well. In particular,

we obtain the sum

dimP2m(V (n))K(n) =
∑

(µ(1),µ(2),...,µ(r))

gµ(1)µ(2)···µ(r)

where each µ(i) is an even partition of 2m.
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Chapter 3

The Dimension of the Invariant Space

In this chapter, we seek a formula for the dimension of the space of degree d ho-

mogeneous polynomials on the complex vector space V (n) = Cn1 ⊗Cn2 ⊗ · · · ⊗Cnr

under the action of the product group K(n) = On1 × On2 × · · · × Onr , for positive

integers d and r where each ni ≥ d. In Section 3.3, we prove the following result:

Theorem. Let d be a positive, even integer and let K(n) = On1 × On2 × · · · × Onr

and V (n) = Cn1 ⊗Cn2 ⊗ · · ·⊗Cnr , where n1, n2, . . . , nr ≥ d. Then dimension of the

space of K(n)-invariant degree d homogeneous polynomial functions on V (n) is

dimPd(V (n))K(n) =
∑
λ`d

N(λ)r

zλ

where N(λ) is the number of matchings that commute with a permutation of shape

λ.

As it turns out, the number of matchings that commute with a permutation

depends on the shape of the permutation. In particular, if the permutation has an

odd number of cycles of odd length, there are no matchings which will commute

with it. Otherwise, we have the following result, which we show in Section 3.4:

Theorem. Given a permutation σ with shape λ = (1b12b2 · · · tbt), the number of

matchings that commute with σ is given by

N(λ) = N((1b1)) ·N((2b2)) · · · · ·N((tbt))



32

where

N((ab)) =



0 if a odd and b odd

b!ab/2

2b/2( b
2

)!
if a odd and b even∑b

i=1,i odd

b!a(b−i)/2

i!( b−i
2

)!2(b−i)/2
if a even and b odd∑b

i=0,i even

b!a(b−i)/2

i!( b−i
2

)!2(b−i)/2
if a even and b even

Finally, in Section 3.5, we display some related data generated by these results.

3.1 General Setup

For the remainder of this section, let K denote a compact Lie group, which acts

C-linearly on a complex vector space V . We can then define an action of K on the

algebra P(V ) of complex valued polynomial functions on V by k · f(v) = f(k−1v)

for k ∈ K, v ∈ V , and f ∈ P(V ). As a graded representation, we have PR(V ) ∼=

P(V ⊕V ) where V is the complex vector space with the opposite complex structure

(see [26]). We denote the dual representation of V by V ∗, and observe that V ∗ is

equivalent, as a representation of K, to V .

Let Pd(V ) denote the degree d homogeneous polynomials on V ; that is, Pd(V ) is

the subalgebra of P(V ) such that f(cv) = cdf(v) for c ∈ C, v ∈ V , and f ∈ Pd(V ).

We have the standard gradation

P(V ) =
∞⊕
d=0

Pd(V )

Moreover, if P(V )K denotes the polynomials in P(V ) invariant under the action of

K, we have

P(V )K =
∞⊕
d=0

Pd(V )K

Let G denote the complexification of K, and note that a complex representation

of K extends to G. Define Ĝ to be the equivalence classes of irreducible rational
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representations of G. We have

Proposition 9. [14, Prop. 2] Let G be a complex reductive group, and let V

be a finite dimensional complex rational representation. Assume that an irreducible

representation of G occurs in P(V ) at most in one degree. Then P2m+1(V⊕V ∗)G = 0

and

dimP2m(V ⊕ V ∗)G =
∑
ρ∈Ĝ

mult(m, ρ)2

where mult(m, ρ) denotes the multiplicity of the representation ρ in Pm(V ).

Peter-Weyl Decomposition

We now review a useful theorem of Hermann Weyl and Fritz Peter [27]. We focus

on an algebraic version of only part of this theorem, following [12].

Let G be a compact group, and let O[G] denote the regular functions on G. The

product group G×G acts on O[G] by left and right translation. Let Ĝ denote the

equivalence classes of irreducible representations of G. Fix a representation (πλ, F λ)

for each λ ∈ Ĝ. Finally, for g ∈ G, λ ∈ Ĝ, v ∈ F λ, and v∗ ∈ F λ∗ where λ∗ is the

contragradient representation to λ, define

φλ(v
∗ ⊗ v)(g) = 〈v∗, πλ(g)v〉

and extend φλ by linearity to a map from F λ∗ ⊗ F λ to O[G]. We have

Theorem 10. [12, Th. 4.2.7] Under the action of G×G, we have the decomposition

O[G] =
⊕
λ∈Ĝ

φλ(F
λ∗ ⊗ F λ)

Schur-Weyl Duality

Recall that the symmetric group Sm is the group of permutations σ on m letters.

Let V =
⊗mCn, and note that the group Sm acts on V by permuting tensor factors.
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That is, given σ ∈ Sm and v1, v2, . . . , vm ∈ Cn, we have

σ(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m)

By linearity, this action extends to all of ⊗mCn. The general linear group GLn also

acts on the space V , by the diagonal action

g(v1 ⊗ v2 ⊗ · · · ⊗ vm) = (g · v1)⊗ (g · v2)⊗ · · · ⊗ (g · vm)

for g ∈ GLn. These two actions can be easily seen to commute with each other.

Let End(V ) denote the algebra of endomorphisms of V =
⊗mCn; that is, the

linear maps f : V → V . We have

Theorem 11. [17, Th. 2.4.2] The algebras spanned by the images of GLn and Sm

acting on V as described above are mutual commutants in End(V ).

Consequently, we have

Theorem 12. [17, Th. 2.4.2] Let F λ
n denote the irreducible rational representation

of GLn with highest weight indexed by λ. Let W λ
m denote the irreducible complex

representation of Sm indexed by λ. Under the joint action of GLn× Sm on
⊗mCn,

we have the multiplicity free decomposition

m⊗
Cn ∼=

⊕
λ

F λ
n ⊗W λ

m

where the sum is over all partitions λ of m with at most n parts. Note that all

irreducible representations of Sm appear in the decomposition when n ≥ m.

So far, we have only considered the groups Sm and GLn acting on the vector space

V =
⊗mCn. Note that if V is a representation of a group G, then the tensor V ⊗V

is also a representation of G, under the diagonal action. Hence, we may consider
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the multiplicity of each irreducible representation of G in the decomposition of a

tensor product of representations of G under the diagonal action.

Let µ(1), µ(2), . . . , µ(r), and λ be partitions of m, and let W µ(i)

m denote the irre-

ducible Sm-representation indexed by µ(i). Then the tensor product W µ(1)

m ⊗W µ(2)

m ⊗

· · · ⊗W µ(r)

m is also a representation of Sm. We define gµ(1)µ(2)···µ(r)λ to be the mul-

tiplicity of the irreducible representation W λ
m in the decomposition of this tensor

product; that is,

W µ(1)

m ⊗W µ(2)

m ⊗ · · · ⊗W µ(r)

m
∼=
⊕
λ`m

gµ(1)µ(2)···µ(r)λW
λ
m

Again, let µ(1), µ(2), . . . , µ(r) denote partitions, this time with the length of each

partition µ(i) at most ni for some positive integer ni. Let n = n1n2 · · ·nr, and let

λ be a partitions with length at most n. Let F µ(i)

(ni)
denote the irreducible GLni-

representation with highest weight indexed by µ(i), and F λ
n denote the irreducible

GLn-representation with highest weight indexed by λ. Finally, denote

G(n) = GLn1 ×GLn2 × · · · ×GLnr

This group G(n) acts on the space V =
⊗r

i=1 Cni by

(g1, g2, . . . , gr) · v1 ⊗ v2 ⊗ · · · ⊗ vr = (g1v1)⊗ (g2v1)⊗ · · · ⊗ (grvr) (3.1)

Under this action, we define kµ(1)µ(2)···µ(r)λ to be the multiplicity of F µ(1)

n1
⊗ F µ(2)

n2
⊗

· · · ⊗ F µ(r)

nr in the decomposition of F λ
n ; that is,

F λ
n
∼=

⊕
µ(1),µ(2),...,µ(r)

kµ(1)µ(2)···µ(r)λF
µ(1)

n1
⊗ F µ(2)

n2
⊗ · · · ⊗ F µ(r)

nr

Theorem 13. [14, Prop. 3] Let µ(1), µ(2), . . . , µ(r) and λ be partitions of m with
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the length of µ(i) at most ni for all i and the length of λ to be at most n1n2 · · ·nr.

Then

gµ(1)µ(2)···µ(r)λ = kµ(1)µ(2)···µ(r)λ

In the case where λ = (m) for a positive integer m, we have

F λ
n = F (m)

n
∼= Pm((Cn)∗)

and so the decomposition of Pm(V (n)∗) under the action of G(n) is obtained by

computing kµ(1)µ(2)···µ(r)λ. Note that the partition λ = (m) corresponds to the trivial

representation, W λ
m, of Sm.

Counting Orbits

A central result related to counting orbits, known to Augustin Cauchy in 1845 and

later attributed to Ferdinand Frobenius by Burnside [4]. This result is popularly

known as Burnside’s Lemma, which we recall below.

Theorem 14. [4] Let G be a finite group which acts on a set X. Denote by Xg

the set of elements in X fixed by the element g of G. The number of orbits of this

action is

|X/G| = 1

|G|
∑
g∈G

|Xg|

3.2 The Unitary Case

A goal of this thesis is to determine a formula for the dimension of the subspace of

degree d homogeneous polynomials on V (n) =
⊗r

i=1 Cni invariant under the action

of the product K(n) = On1 × On2 × · · · × Onr , for an r-tuple n = (n1, n2, . . . , nr)

with ni ∈ Z+. A similar problem was considered in [14], where a formula is given for

these dimensions when the group K(n) is replaced by a product of unitary groups,
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K(n) = U(n1)×U(n2)×· · ·×U(nr). We now review these results using the notation

of Section 3.1 and [14], before proceeding to the proof of our main theorem.

Let K(n) = U(n1)×U(n2)×· · ·×U(nr). The complexification of K(n) is G(n).

Recall that Ĝ(n) is the set of equivalence classes of irreducible representations of

G(n). Let mult(m, ρ) denote the multiplicity of ρ in Pm(V (n)). By Proposition 9,

we have

dimP2m
R (V (n))K(n) =

∑
ρ∈Ĝ(n)

mult(m, ρ)2

The problem of finding these multiplicities is now equivalent to decomposing

P(V (n)) and P(V (n)∗) under the action of G(n). Each irreducible representation

of G(n) occurs in P(V (n)) if and only if its dual occurs in P(V (n)∗). Moreover,

these representations will occur with the same multiplicity. Hence, we only need to

consider the decomposition of Pm(V (n)∗).

Let λ = (m). We have

Pm(V (n)∗) ∼=
⊕
µ(i)`m

`(µ(i))≤ni

gµ(1)µ(2)···µ(r)(m)F
µ(1)

(n1) ⊗ F
µ(2)

(n2) ⊗ · · · ⊗ F
µ(r)

(nr)

with the action defined in 3.1. Thus mult(m, ρ) = gµ(1)µ(2)···µ(r)(m). Additionally,

since (m) corresponds to the trivial representation of Sm, we have gµ(1)µ(2)···µ(r)(m) =

gµ(1)µ(2)···µ(r) ; hence

dimP2m
R (V (n))K(n) =

∑
(µ(1),µ(2),...,µ(r))

g2
µ(1)µ(2)···µ(r)(m)

where each µ(i) ` m and the length of µ(i) is at most ni. In general, the left hand

side of the above equation may not be easily computed. However, if we add the

requirement that m ≤ min(n1, n2, . . . , nr), the values stabilize to a non-negative

integer depending on m and r. In particular, we have
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Theorem 15. [14, Th. 1] For V (n) =
⊗r

i=1 Cni and K(n) = U(n1)× · · · ×U(n2)

dimP2m(V (n))K(n) =
∑
λ`m

zr−2
λ

where ni ≥ m for 1 ≤ i ≤ r.

3.3 The Orthogonal Case

We now return to the central theme of this thesis, and let K(n) denote a product

of orthogonal groups. For n = (n1, n2, . . . , nr) define

K(n) = On1 ×On2 × · · · ×Onr

where Oni is the complex orthogonal group of rank ni.

For each partition λ of d with at most n parts, we again let F λ
n denote the

irreducible representation of GLn(C) with highest weight indexed by λ. If λ(i) ` d

for 1 ≤ i ≤ r, then

F λ(1)

n1
⊗ F λ(2)

n2
⊗ · · · ⊗ F λ(r)

nr

is an irreducible representation of G(n) which embeds in Pd(V (n)) with multiplicity

denoted by gλ(1)λ(2)···λ(r) , where again G(n) denotes the product of general linear

groups GLn1(C)×GLn2(C)× · · · ×GLnr(C). That is,

Pd(V (n)) ∼=
⊕
λ(i)`d

`(λ(i))≤ni

gλ(1)λ(2)···λ(r)F
λ(1)

n1
⊗ F λ(2)

n2
⊗ · · · ⊗ F λ(r)

nr
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We can now write the K(n)-invariants as

[
Pd(V (n))

]K(n) ∼=
⊕
λ(i)`d

`(λ(i))≤ni

gλ(1)λ(2)···λ(r)
(
F λ(1)

n1
⊗ F λ(2)

n2
⊗ · · · ⊗ F λ(r)

nr

)K(n)

∼=
⊕
λ(i)`d

`(λ(i))≤ni

gλ(1)λ(2)···λ(r)
(
F λ(1)

n1

)On1 ⊗ (F λ(2)

n2

)On2 ⊗ · · · ⊗ (F λ(r)

nr

)Onr

The Cartan-Helgason theorem (Theorem 8) tells us that if F λ
n is an irreducible

representation of GLn(C), then dim
(
F λ
n

)On
is at most one. In particular, we have

dim
(
F λ
n

)On
=


1 if λ is an even partition

0 otherwise

and so

dim
[
Pd(V (n))

]K(n)
=

∑
λ(1),...,λ(r)

λ(i)`d
λ(i) even

gλ(1)λ(2)···λ(r) (3.2)

An immediate consequence of Equation 3.2 is that dim
[
Pd(V (n))

]K(n)
= 0

whenever d is odd (this fact is also evident in Proposition 9). Hence, for the re-

mainder of this chapter, we write d = 2m for a positive integer m. In addition, we

observe that these dimensions stabilize when the sum on the right is over all even

partitions of d = 2m. This occurs when each of the ni’s are sufficiently large; that

is, we require ni ≥ 2m for all 1 ≤ i ≤ r. We will assume this stability condition is

met for n = (n1, . . . , nr) in what is to follow.

The summands appearing in Equation 3.2 are in fact the same multiplicities that

appeared in Section 3.2. An immediate difference is that the summands here are

not squared, as the exponent in the unitary case was a result of doubling the space.

However, the same challenge is faced as in the previous section: a closed formula

for these multiplicities is unknown, and so a sum of these terms is not particularly
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useful.

Schur-Weyl duality allows us to find another interpretation of Equation 3.2. As

noted in Section 3.1, while GLn acts on the space ⊗mCn by simultaneous matrix

multiplication, the symmetric group acts on the same space by permuting tensor

factors. That is, given x ∈ GLn and a permutation σ ∈ Sm, we have

x(v1 ⊗ v2 ⊗ · · · ⊗ vm) = xv1 ⊗ xv2 ⊗ · · · ⊗ xvm

and

σ(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m)

for v1, v2, . . . , vm ∈ Cn. By Theorem 11, we obtain the multiplicity free decomposi-

tion

⊗mCn ∼= F λ
n ⊗W λ

m

where W λ
m is an irreducible representation of Sm indexed by the partition λ.

LetW λ denote the irreducible representation of the symmetric group S2m indexed

by the partition λ. We have

dim(W λ(1) ⊗W λ(2) ⊗ · · · ⊗W λ(r))S2m = gλ(1)λ(2)···λ(r) (3.3)

where each λ(i) ` 2m. The numbers gλ(1)λ(2)···λ(r) are the Kronecker coefficients,

detailed in Section 2.5.

Fix τ0 = (1 2)(3 4) · · · (2m − 1 2m) in S2m. Denote by Hm the centralizer of

τ0 in S2m. The group Hm is isomorphic to the hyperoctohedral group of degree m,

and is also the wreath product of S2 and Sm. Furthermore, (S2m, Hm) is a Gelfand

pair [24] (see Section 2.4). Of particular interest is the following theorem:

Theorem 16. [24, Th. 2.5] Let W λ be the irreducible representation of S2m cor-
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responding to a partition λ of 2m. We have

dim(W λ)Hm =


1 if λ is even

0 otherwise

We now have

dim[W λ(1) ⊗ · · · ⊗W λ(r) ]Hm×···×Hm = dim(W λ(1))Hm · dim(W λ(2))Hm · · · · · dim(W λ(r))Hm

=


1 if λ(i) is even for all i ∈ {1, 2, . . . , r}

0 otherwise

(3.4)

As an immediate consequence of the Peter-Weyl decomposition presented in

Theorem 10, we have

C[S2m] ∼=
⊕
λ

W λ ⊗W λ

We can now describe the group algebra of a product of r copies of S2m as follows:

C[S2m × S2m × · · · × S2m] ∼= C[S2m]⊗ C[S2m]⊗ · · · ⊗ C[S2m]

∼=

(⊕
λ

W λ ⊗W λ

)
⊗

(⊕
λ

W λ ⊗W λ

)
⊗ · · · ⊗

(⊕
λ

W λ ⊗W λ

)
∼=

⊕
λ(1),...,λ(r)

(
W λ(1) ⊗W λ(1)

)
⊗ · · · ⊗

(
W λ(r) ⊗W λ(r)

) (3.5)

S2m acts on the product S2m/Hm × · · · × S2m/Hm by left multiplication:

σ(g1Hm, . . . , grHm) = (σg1Hm, . . . , σgrHm)
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for σ, g1, . . . , gr ∈ S2m. Additionally, S2m acts on C[(S2m/Hm)r] on the left. Thus,

C[S2m × · · · × S2m]S2m×Hm×···×Hm = C[S2m/Hm × · · · × S2m/Hm]S2m

= {f : Sr2m → C | f(g−1xh) = f(x)}

for g ∈ S2m, x = (x1, . . . , xr) ∈ Sr2m, and h = (h1, . . . , hr) ∈ Hr
m. Now by Equations

3.3, 3.4, and 3.5, we obtain

dimC[S2m × S2m × · · · × S2m]S2m×Hm×···×Hm

=
∑

λ(1),...,λ(r)

λ(i)`2m

dim

[(
W λ(1) ⊗ · · · ⊗W λ(r)

)S2m

⊗
(
W λ(1) ⊗ · · · ⊗W λ(r)

)Hm×···×Hm]

=
∑

λ(1),...,λ(r)

λ(i)`2m

λ(i) even

gλ(1)λ(2)···λ(r)

So far, we have shown that

dim
[
Pd(V (n))

]K(n)
= dimC[S2m × S2m × · · · × S2m]S2m×Hm×···×Hm

For another interpretation, we define the set

Ĩ2m = {τ ∈ S2m : τ 2 = id, τ(i) 6= i for all i ≤ n}

That is, Ĩ2m is the set of matchings on 2m letters. As an S2m-set, we have Ĩ2m
∼=

S2m/Hm. We will denote the product of r copies of Ĩ2m by Ĩr2m.

Recall that given a group G and H ⊂ G, we have dimC[G]H = dimC[G/H].
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Thus, by the previous results

∑
λ(1),...,λ(r)

λ(i)`2m

λ(i)even

gλ(1)λ(2)···λ(r) = dimC[S2m × S2m × · · · × S2m]S2m×Hm×···×Hm

= dimC[S2m/Hm × · · · × S2m/Hm]S2m

= dimC[Ĩr2m]S2m

where S2m acts on r-tuples of matchings by simultaneous conjugation. That is, given

(τ1, τ2, . . . , τr) ∈ Ĩr2m, σ ∈ S2m, we define the action

σ · (τ1, τ2, . . . , τr) = (στ1σ
−1, στ2σ

−1, . . . , στrσ
−1)

Given a group G and a set X, it is well known that the dimension of the space

of invariants C[X]G is equal to the number of orbits of the action of G on X. By

Theorem 14, the number of such orbits is the average number of x ∈ X fixed by

g ∈ G; that is,

dimC[X]G =
1

|G|
∑
g∈G

|Xg|

where |Xg| denotes the cardinality of the set of points in X fixed by g. In our

setting, where G = S2m and X = Ĩr2m, we have

dimC[Ĩr2m]S2m =
1

|S2m|
∑
σ∈S2m

|(Ĩr2m)σ|

We easily see that

|(Ĩr2m)σ| =
(
|(Ĩ2m)σ|

)r
and so, given σ ∈ S2m, it remains only to find a formula for the number of matchings

τ ∈ Ĩ2m such that στσ−1 = τ . Clearly this number is the same for two permutations

with the same cycle type, as we can simply relabel the entries of each cycle. Thus,
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if σ, ρ ∈ S2m have the same cycle type, we have |(Ĩ2m)σ| = |(Ĩ2m)ρ|.

Recall that two elements in S2m are conjugate if they have the same cycle type.

Denote by Ŝ2m the set of conjugacy classes in S2m, indexed by integer partitions µ

of 2m. Hence we can define a class function N : Ŝ2m → N by setting N(λ) equal

to the number of matchings τ ∈ Ĩ2m that commute with a permutation g ∈ S2m

with cycle type µ. Finally, we have shown that for V (n) = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr ,

K(n) = On1 ×On2 × · · · ×Onr and ni ≥ 2m for 1 ≤ i ≤ r, we have

dim
[
P2m(V (n))

]K(n)
= dimC[Ĩr2m]S2m =

1

|S2m|
∑
σ∈S2m

|(Ĩr2m)σ| = 1

(2m)!

∑
λ`2m

N(λ)r

The formula for N(λ) is presented in Theorem 3, which we prove in the next section.

3.4 The Number of Matchings Which Commute

With A Fixed Permutation

We now determine the formula for N(λ), the number of matchings which commute

with a permutation with cycle type λ. Our strategy will be to focus initially on

permutations with shape (m2). We then consider “brick” permutations with shape

(ab), where ab = 2m, and finally we generalize to all permutations.

The formula N(λ) has appeared in [13]. In particular, it is shown that if χρ(ν)

denotes the value of the irreducible character of Sn indexed by ρ at λ, where λ ` n,

we have [24, Th. VII.2.4] [13]:

N(λ) =
∑
ρ ` n

ρ is even

χρ(λ)

3.4.1 Case I: λ = (m2)

We begin with:
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Lemma 17. Let g = (α1 α2 · · · αm)(β1 β2 · · · βm) be a product of two cycles of

equal length m. If σ is a matching that commutes with g, then either σ = gm/2 or σ

has form

σ = (α1 βj)(α2 βj+1)(α3 βj+2) · · · (αm βj−1)

where 0 ≤ i < m. Hence, if m is even there are exactly m + 1 matchings that

commute with g, and m such matchings if m is odd.

Proof. Suppose first that σ permutes the elements within each cycle of g. Let

σ(αk) = αm for some k with 1 ≤ k ≤ m; that is, assume the transposition (αk αm)

appears in σ. Then

αk+1 = g(αk) = σgσ(αk) = σg(αm) = σ(α1)

and so (α1 αk+1) is a transposition in σ. Similarly,

αk+2 = g(αk+1) = σgσ(αk+1) = σg(α1) = σ(α2)

and so (α2 αk+2) is a transposition in σ. Continuing in this way, we find σ contains

the transpositions (α1 αk+1), (α2 αk+2), (α3 αk+3), . . . , (αk αm). Now

σ(αm)αk = g(αk−1) = σgσ(αk−1) = σg(α2k−1) = σ(α2k)

and hence m = 2k. Then we have only one possible choice for k, k = m/2. Thus

σ = (α1 αm
2

+1)(α2 αm
2

+2)(α3 αm
2

+3) · · · (αm
2
αm) = (α1 α2 · · · αm)m/2

Thus if σ permutes the elements within the cycles of g, we must have σ = gm/2.

Note such a σ only exists if m is even.

Now suppose σ interchanges elements between the two cycles of g. Assume
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σ(α1) = βj for some j with 1 ≤ j ≤ m. Then (α1 βj) is a transposition appearing

in σ. Since σgσ = g, we have

α2 = g(α1) = σgσ(α1) = σg(βj) = σ(βj+1)

and so (α2 βj+1) appears in σ. Similarly,

α3 = g(α2) = σgσ(α2) = σg(βj+1) = σ(βj+2)

and so (α3 βj+2) appears in σ. Continuing in this way, we have

σ = (α1 βj)(α2 βj+1)(α3 βj+2) · · · (αm βj−1)

The matchings that will commute with a fixed permutation with two cycles of

equal length can easily be interpreted as diagrams. With g as in the above proof, we

draw two rows of m nodes. We label the nodes along the top row with α1, α2, . . . , αm,

and along the bottom row with β1, β2, . . . , βm. Drawing edges so that each node is

connected to exactly one other node defines a matching. When we consider only the

diagrams corresponding to matchings which commute with g, an immediate pattern

emerges. If m is even, the first such diagram is obtained by drawing an edge from

α1 to αm
2

+1, an edge from α2 to αm
2

+2, and so on. The nodes labeled βi are matched

in an identical way, resulting in a diagram which represents the matching gm/2. The

remaining m diagrams (for odd or even values of m) are obtained by drawing edges

from αi to βi for each i, and then cyclically permuting the second row of unlabeled

nodes.
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The five matchings that commute with g = (α1 α2 α3 α4)(β1 β2 β3 β4), for

instance, are:

α1 α2 α3 α4

β1 β2 β3 β4

α1 α2 α3 α4

β1 β2 β3 β4

α1 α2 α3 α4

β1 β2 β3 β4

α1 α2 α3 α4

β1 β2 β3 β4

α1 α2 α3 α4

β1 β2 β3 β4

3.4.2 Case II: λ = (ab)

Suppose now that our permutation g has b cycles of length a, where ab = 2m. These

“brick” permutations have rectangular Young diagrams with b rows and a columns.

Recall that we can conjugate g by a permutation σ by applying σ to each symbol

of each cycle of g. That is, if g = (α1 α2 · · · αa)(β1 β2 · · · βa) · · · , we have

σgσ−1 = (σ(α1) σ(α2) · · · σ(αa))(σ(β1) σ(β2) · · · σ(βa)) · · ·

It follows that if σ commutes with g, conjugation by σ sends one cycle of g to

another cycle of g. Thus we can take pairs of cycles of g and look for the matchings

on 2a numbers that commute with the product of these pairs following Lemma 17.

If we have an odd number of cycles, the unpaired cycle will commute with a power

of itself, that power being a/2. The product of these will be a matching which

commutes with g itself.

To illustrate, we’ll quickly compute a matching which commutes with the per-

mutation g = (1 2 3 4)(5 6 7 8)(9 10 11 12). Suppose we first pair the first and

third cycle, and look for matchings which commute with (1 2 3 4)(9 10 11 12). By

Lemma 17, we have five to choose from, such as (1 10)(2 11)(3 12)(4 9). We still have
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one cycle of g left, and there is only one matching to commute with it: (5 7)(6 8).

Hence, a matching that commutes with g is (1 10)(2 11)(3 12)(4 9)(5 7)(6 8).

Once again, we turn to diagrams to simplify. After fixing a cycle expression for

g, we draw a diagram with b rows of a nodes, and label the nodes of the ith row

with the entries of the ith cycle of g, as before. Again, we can define a matching

by drawing an edge between pairs of nodes. The following diagrams illustrate the

case where g has cycle type λ = (45). The diagram on the left displays a matching,

but not a matching that will commute with the permutation g, as it fails to map

one cycle of g to another. The center diagram meets this requirement, but does not

satisfy Lemma 17. Finally, the diagram on the right corresponds to a matching that

will commute with g. For simplicity, we have suppressed labeling of the nodes.

We have now established a convenient way of establishing which matchings com-

mute with a permutation of shape (ab), it is simply a matter of counting them. To

do this, we will compress the diagrams which correspond to an eligible matching as

follows: for each cycle of the permutation, draw a single node. By Proposition 17,

there are a matchings that will commute with two distinct cycles. Assign a color to

each of these choices, and color the edge between the corresponding nodes accord-

ingly. If matching contains the a/2-th power of a cycle, the corresponding node is

left isolated. Thus N((ab)) is obtained by counting graphs of the form
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where each edge type (solid, dashed, and dotted) represents a different color.

We consider three sub cases, depending on the parity of a and b (recall we cannot

allow both a and b to be odd, as we require ab to be even):

a odd, b even

If a is odd, any matching that commutes with g cannot contain a power of a cycle

of g, so we have no isolated nodes. The number of uncolored diagrams in this case

is equal to the number of matchings on b letters, and each of the b/2 edges of the

diagram can be colored in one of a ways. Hence we have

N((ab)) =
b!ab/2

2b/2
(
b
2

)
!

a even, b even

If a and b are even, we can allow an even number of isolated nodes. If our diagram

contains i isolated nodes, the number of uncolored diagrams is equal to the number

of permutations on b with shape (1i2b−i), and each of the (b − i)/2 edges of the

diagram can be colored in one of a ways. Hence we have

N((ab)) =
b∑

i=0,i even

b!a(b−i)/2

i!( b−i
2

)!2(b−i)/2

a even, b odd

Similarly, if b is odd we can allow an odd number of isolated nodes, and so

N((ab)) =
b∑

i=1,i odd

b!a(b−i)/2

i!( b−i
2

)!2(b−i)/2
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3.4.3 Case III: The General Case

Lemma 18. Let g be a permutation and and let σ be a matching such that σgσ = g.

If (α β) appears in σ, then α, β ∈ {1, 2, . . . , n} appear in cycles of the same length

in g.

Proof. Suppose α appears in the cycle (α α1 α2 · · · αk) and β appears in the cycle

(β β1 β2 · · · βl). Assume without loss of generality that k ≤ l. We have

α1 = g(α) = σgσ(α) = σg(β) = σ(β1)

and so (α1 β1) is a transposition appearing in σ. Similarly,

α2 = g(α1) = σgσ(α1) = σg(β1) = σ(β2)

and so (α2 β2) is also a transposition appearing in σ. Continuing in this way, we

find that σ must contain the transpositions

(α β), (α1 β1), (α2 β2), . . . , (αk βk)

Suppose for contradiction that k < l. Then there must exist some γ ∈ {1, 2, . . . , n}

such that γ /∈ {α, α1, . . . , αk} and (γ βl) is a transposition appearing in σ. Then

β = g(βl) = σgσ(βl) = σg(γ)

By hypothesis β = σ(α), so α = g(γ). But α = g(αk), a contradiction, since γ 6= αk.

Hence k = l.

Thus, if g has bi cycles of length i, we need only count the number of matchings

which commute with the product of these bi cycles, which we can calculate using the

formulas already determined. To find the total number of matchings which commute



51

with g, we simply take the product. That is,

N(λ) = N((1b1))N((2b2)) · · ·N((tbt))

Example 6. Consider the permutation

g = (1 14 7 11)(5 16 12)(6 20 9)(8 17 13)(10 2 15 4)(18 3 19)

We note that g has two cycles of length four, and by Lemma 17, we have

N((42)) = 4 + 1 = 5

In addition, g has four cycles of length three, and

N((34)) =
4!34/2

24/2(4/2)!
= 27

So the number of matchings that will commute with g is 5 · 27 = 135.

3.5 Data

Table 3.1 displays the dimension of P2m(V (n))K(n) for several values of r and m

generated by the formulas of Theorems 2 and 3, using Sage. The values in this table

reflect the stable dimensions, which give us an upper bound on the dimension of the

invariant space in the general case. For some data related to the non-stable range

(that is, where we do not require that ni ≥ 2m for all i), see Appendix A.

For comparison, Table 3.2 displays the dimension of the stable values of P2m(V (n))K(n)

when K(n) = U(n1)× U(n2)× · · · × U(nr) [14].
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m
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m
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m
=

3
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4

m
=

5
m
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6
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=

1
1

1
1

1
1

1
r
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1
2

3
5

7
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=

3
1

5
16

86
44

8
35
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r
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4

1
14

13
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41
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04
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r

=
5
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01
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m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
r = 1 1 1 1 1 1 1
r = 2 1 2 3 5 7 11
r = 3 1 4 11 43 161 901
r = 4 1 8 49 681 14721 524137
r = 5 1 16 251 14491 1730861 373486525
r = 6 1 32 1393 336465 207388305 268749463729
r = 7 1 64 8051 7997683 24883501301 193492277719861
r = 8 1 128 47449 191374041 2985987361161 139314094050615817

Table 3.2: dimP2m(V (n))K(n) where K(n) =
∏r

i=1 U(ni), V (n) =
∏r

i=1 Cni , and
ni ≥ 2m for 1 ≤ i ≤ r
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Chapter 4

The Invariants

In this chapter, we provide formulas for the invariants in the space Pd(V (n))K(n) in

the stable range, where ni ≥ d for n = (n1, n2, . . . , nr). In Section 4.1, we recall the

results for the case K(n) = U(n1)× U(n2)× · · · × U(nr) from [15]. In Section 4.2,

we consider the case K(n) = On1 ×On2 × · · · ×Onr .

4.1 The Unitary Setting

Let Sm denote the symmetric group on the set {1, . . . ,m}. The r-fold cartesian

product, denoted

Srm = {s = (σ1, σ2, . . . , σr) | σi ∈ Sm for all i}

is acted upon by Sm × Sm under the action (α, β) · s = αsβ−1 where αsβ−1 =

(ασ1β
−1, . . . , ασrβ

−1). The orbits of this group action are the double cosets, ∆\Srm/∆

where ∆ = {(σ, . . . , σ) | σ ∈ Sm}. As shown in [14] and reviewed in Chapter 3, the

number of these double cosets is

h̃m,r =
∑
λ`m

zr−2
λ (4.1)

The number of orbits under the Sm-action of simultaneous conjugation

γsγ−1 =
(
γσ1γ

−1, · · · , γσr−1γ
−1
)
,
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on Sr−1
m is given by

h̃m,r =
∑
λ`m

zr−2
λ

Denote these orbits by O = Sr−1
m /Sm. There exists a map θ : ∆\Srm/∆→ O defined

for s = (σ1, . . . , σr) by

θ(∆s∆) = {γ(σ1σ
−1
r , σ2σ

−1
r , . . . , σr−1σ

−1
r )γ−1 | γ ∈ Sm}.

It is easy to see that θ is independent of the representative s, and defines a bijective

function from ∆\Srm/∆ to O.

The right hand side of Equation 4.1 may be interpreted by certain graph enu-

meration problems, which we recall following [22]. Let G = G(V , E) be a simple

connected graph, with vertex set V and edge set E (that is, G is an undirected

graph with no loops such that there exists a path between any two vertices of G).

Let β(G) = |E| − |V| + 1 denote the first Betti number, which is the number of

independent cycles in G. Let N(v) denote the neighborhood1 of a vertex v ∈ V . A

graph G̃ is said to be a covering of G with projection p : G̃ → G if there exists a

surjection p : Ṽ → V such that p|N(ṽ) : N(ṽ)→ N(v) is a bijection for any v ∈ V and

ṽ ∈ p−1(v). If p is n-to-one, we say p : G̃ → G is an n-fold covering. In Figure 4.1, G̃

is a 2-fold covering of G. We see that the neighborhood of a black vertex of G̃ maps

bijectively onto the neighborhood of the black vertex of G.

G̃: G:

Figure 4.1: Example of a graph covering

1The neighborhood N(v) of v ∈ V is the set of all vertices in V adjacent to v.
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Two coverings pi : G̃i → G, i = 1, 2 are said to be isomorphic if there exists a

graph isomorphism Φ : G̃1 → G̃2 such that the following diagram commutes:

G̃1 G̃2

G

Φ

p1 p2

We now explain a method of constructing a general branched covering S of the

plane P , following [1]. Begin by stacking n copies of the plane, called sheets, over

P . We label these sheets P1, . . . , Pn, and choose a finite number of branch points αi

of P . Then, choose a curve Ci for each of these branch points, beginning at αi, so

that these curves do not intersect. The sheets are then cut along these curves, and

glued to each along opposite edges of the cuts. Each of these gluings can e described

by a permutation σi, where σi(a) = b if sheet Pa is glued to Pb as we cross Ci. We

then have

Proposition 19. [1, Th. 7.18] Let S and T be two branched coverings, constructed

as above, with the same branch points and the same curves, but using different sets

of permutations. Then S and T are isomorphic coverings if and only if the two sets

of permutations are conjugate.

The author would like to thank Professor Ian Musson for pointing out the above

proposition.

The right hand side of Equation 4.1 is equal to the number of isomorphism classes

of m-fold coverings of G with β(G) = r − 1 (see [21]). In light of this graphical

interpretation of Equation 4.1, one anticipates a bijective correspondence between

finite graph coverings and measurements of quantum entanglement. Indeed, such a

correspondence exists, which we illustrate next.
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4.1.1 The correspondence

Recall that if V is a complex vector space, we denote2 the complex valued polynomial

functions on V by P(V ). Suppose that a compact Lie group K acts C-linearly on

V . The K-action on V gives rise to an action on P(V ) by k · f(v) = f(k−1v) for

k ∈ K, f ∈ P(V ) and v ∈ V . Both P(V ) and PR(V ) are complex vector spaces with

a natural gradation by degree. As a graded representation, PR(V ) ∼= P
(
V ⊕ V

)
,

where V denotes the complex vector space with the opposite complex structure

(see [26]). Let V ∗ refer to the representation on the complex valued linear functionals

on V defined by (k · λ)(v) = λ(k−1v) for v ∈ V , λ ∈ V ∗, and k ∈ K. As a

representation of K, V is equivalent to V ∗.

In what is to follow, we will complexify the compact group, K, to a complex

reductive linear algebraic group. All representations of G will be assumed to be

regular. That is, the matrix coefficients are regular functions on the underlying

affine variety G. An irreducible regular representation restricts to an irreducible

complex representation of K. Furthermore, since K is Zariski dense in G, regular

representations of G (and hence G-invariants) are determined on K. Note that,

G = GL(n) when K = U(n).

We now specialize to V = V (n) = Cn1 ⊗ · · · ⊗ Cnr , and set up notation for

the coordinates in V and V ∗. For positive integers k and n, let Matn,k denote the

vector space of n × k complex matrices. Let Ei
j ∈ Matn,k denote the matrix with

entry in row i and column j equal to 1 and all other entries 0. The group of n× n

invertible matrices with complex number entries will be denoted by GL(n). This

group acts on Matn,k by multiplication on the left. We identify Cn = Matn,1, which

has a distinguished ordered basis consisting of ei = Ei
1 ∈ Matn,1 for i = 1, · · · , n.

In the case of G = GL(n) we will identify (Cn)∗ with the representation on

Mat1,n defined by the action g · v = vg−1 for v ∈ Mat1,n and g ∈ GL(n). Set

2Here we are viewing V as a complex space rather than a real space, as we do in defining PR(V ).
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ei = E1
i ∈ Mat1,n for i = 1, . . . , n. Then, (e1, . . . , en) is an ordered basis for (Cn)∗,

dual to (e1, . . . , en).

Arbitrary tensors in V (n) and V (n)∗ are of the form

∑
xi1···irei1 ⊗ · · · ⊗ eir ∈ V (n),

and ∑
yi1···ire

i1 ⊗ · · · ⊗ eir ∈ V (n)∗,

where xi1···ir and yi1···ir are complex scalars. We may view the variables xi1···ir and

yi1···ir as degree 1 polynomial functions in PR(V (n)), where yi1···ir are the complex

conjugates of xi1···ir .

Let G be a connected simple graph with β(G) = r − 1. In [22], the isomorphism

classes of m-fold covers of G are parameterized by the orbits in Sr−1
m = Sm×· · ·×Sm

(r − 1 factors) under the conjugation action of Sm. Thus, one expects to form a

basis3 element of the space of degree 2m invariants from a choice, up to conjugation,

of r − 1 permutations. Let

[σ1, . . . , σr−1] =
{
τ(σ1, . . . , σr−1)τ−1 : τ ∈ Sm

}
be such a choice. We present now an invariant associated with [σ1, . . . , σr−1].

We define f[σ1,··· ,σr−1] as the sum over the indices

I1 = (i
(1)
1 i

(1)
2 · · · i(1)

r ), . . . , Im = (i
(m)
1 i

(m)
2 · · · i(m)

r )

where 1 ≤ i
(j)
k ≤ nk (with j = 1, · · · ,m) of

xI1 · · ·xImy
i
(σ1(1))
1 ···i(σr−1(1))

r−1 i
(1)
r
· · · y

i
(σ1(m))
1 ···i(σr−1(m))

r−1 i
(m)
r .

3In general, one obtains a spanning set for the invariants. However, if ni ≥ m for all i then we
have a basis for the degree 2m invariants.
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We parameterize the degree 2m polynomial invariants (and m-fold coverings

of simple connected graphs) in the following way. Given a double coset in ∆s∆,

applying θ, one obtains an orbit represented by an (r-1)-tuple of permutations

(σ1, . . . , σr−1). This action “forgets” the labels of the domain and range of each

permutation. The resulting combinatorial data takes the form of an unlabeled di-

rected graph with edges colored by r− 1 colors. For each color, both the out degree

and in degree is one.

Example 7. We will now exhibit this process in the case r = m = 3. Consider

∆(σ̃1, σ̃2, σ̃3)∆ where σ̃1 = (1 3 2), σ̃2 = (2 3), σ̃3 = (1 3). Then θ(σ̃1, σ̃2, σ̃3) =

(σ̃1σ̃3
−1, σ̃2σ̃3

−1) = (σ1, σ2) = ((1 2), (1 2 3)).

1

2

3

1

2

3

1

2

3

((1 2), (1 2 3)) τ((1 2), (1 2 3))τ−1 Graph Cover

Using the invariant defined above, we have f[σ1,σ2] is the sum of terms of the form

xi
(1)
1 i

(1)
2 i

(1)
3 xi

(2)
1 i

(2)
2 i

(2)
3 xi

(3)
1 i

(3)
2 i

(3)
3 y

i
(σ1(1))
1 i

(σ2(1))
2 i

(1)
3
y
i
(σ1(2))
1 i

(σ2(2))
2 i

(2)
3
y
i
(σ1(3))
1 i

(σ2(3))
2 i

(3)
3

= xi
(1)
1 i

(1)
2 i

(1)
3 xi

(2)
1 i

(2)
2 i

(2)
3 xi

(3)
1 i

(3)
2 i

(3)
3 y

i
(2)
1 i

(2)
2 i

(1)
3
y
i
(1)
1 i

(3)
2 i

(2)
3
y
i
(3)
1 i

(1)
2 i

(3)
3

Each coloring of the directed graphs corresponds to an isomorphism class of

m-fold covering of a connected simple graph G with β(G) = r − 1 (see [22]). We

illustrate this correspondence for m = 2, and r = 2, 3, 4. In Table 4.1, the simple

graph is homeomorphic to a bouquet of loops (on the left) and the possible graph

coverings are on the right. The colors and orientations determine the covering map.

The corresponding K(n)-invariants are written out explicitly following the Einstein

summation convention.
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β(G) = 1, m = 2 r = 2, m = 2

(1) (2)

(1) xi
(1)
1 i

(1)
2 y

i
(1)
1 i

(1)
2
xi

(2)
1 i

(2)
2 y

i
(2)
1 i

(2)
2

(2) xi
(1)
1 i

(1)
2 y

i
(2)
1 i

(1)
2
xi

(2)
1 i

(2)
2 y

i
(1)
1 i

(2)
2

β(G) = 2, m = 2 r = 3, m = 2

(1) (2) (3) (4)

(1) xi
(1)
1 i

(1)
2 i

(1)
3 y

i
(1)
1 i

(1)
2 i

(1)
3
xi

(2)
1 i

(2)
2 i

(2)
3 y

i
(2)
1 i

(2)
2 i

(2)
3

(2) xi
(1)
1 i

(1)
2 i

(1)
3 y

i
(2)
1 i

(1)
2 i

(1)
3
xi

(2)
1 i

(2)
2 i

(2)
3 y

i
(1)
1 i

(2)
2 i

(2)
3

(3) xi
(1)
1 i

(1)
2 i

(1)
3 y

i
(1)
1 i

(2)
2 i

(1)
3
xi

(2)
1 i

(2)
2 i

(2)
3 y

i
(2)
1 i

(1)
2 i

(2)
3

(4) xi
(1)
1 i

(1)
2 i

(1)
3 y

i
(2)
1 i

(2)
2 i

(1)
3
xi

(2)
1 i

(2)
2 i

(2)
3 y

i
(1)
1 i

(1)
2 i

(2)
3

β(G) = 3, m = 2 r = 4, m = 2

(1) (2) (3) (4)

(5) (6) (7) (8)

(1) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(2)
1 i

(2)
2 i

(2)
3 i

(2)
4

(2) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(2)
1 i

(1)
2 i

(1)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(1)
1 i

(2)
2 i

(2)
3 i

(2)
4

(3) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(1)
1 i

(2)
2 i

(1)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(2)
1 i

(1)
2 i

(2)
3 i

(2)
4

(4) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(1)
1 i

(1)
2 i

(2)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(2)
1 i

(2)
2 i

(1)
3 i

(2)
4

(5) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(2)
1 i

(2)
2 i

(1)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(1)
1 i

(1)
2 i

(2)
3 i

(2)
4

(6) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(1)
1 i

(2)
2 i

(2)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(2)
1 i

(1)
2 i

(1)
3 i

(2)
4

(7) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(2)
1 i

(1)
2 i

(2)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(1)
1 i

(2)
2 i

(1)
3 i

(2)
4

(8) xi
(1)
1 i

(1)
2 i

(1)
3 i

(1)
4 y

i
(2)
1 i

(2)
2 i

(2)
3 i

(1)
4
xi

(2)
1 i

(2)
2 i

(2)
3 i

(2)
4 y

i
(1)
1 i

(1)
2 i

(1)
3 i

(2)
4

Table 4.1: Invariants and corresponding graph coverings for m = 2 and K(n) =
U(n1)× · · · × U(nr)



61

All possible diagrams for the r = m = 3 case are shown below:

4.2 The Orthogonal Setting

In this section, we provide an algebraic description of the degree d homogeneous

polynomials on V (n) = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr invariant under the action of the

product group K(n) = On1 ×On2 ×· · ·×Onr in the stable range where each ni ≥ d.

We then display a bijection between the basis of these invariant spaces and certain

edge colored graphs. Finally, we explore the relationship between the invariant

spaces and phylogenetic trees.

4.2.1 An Algebraic Description

We begin by setting up notation for an arbitrary tensor in V (n). Let ei ∈ Cn denote

the vector with a 1 in row i and 0 elsewhere; note that (e1, e2, . . . , en) is an ordered

basis for Cn. An arbitrary tensor in V (n) is of the form

∑
xi1i2···irei1 ⊗ ei2 ⊗ · · · ⊗ eir

where ij ranges from 1 to nj and xi1i2···ir is a complex scalar.
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The degree d homogeneous polynomial functions on V (n) can be identified4 with

the symmetric tensors Sd(V (n)). The canonical projection ⊗dV (n) → Sd(V (n)) is

K(n)-equivariant, and surjective. Since K(n) is a reductive algebraic group, we have

a surjection p : [⊗dV (n)]K(n) → [Sd(V (n))]K(n). The K(n)-invariant tensors in the

domain of p have a well understood combinatorial description in classical invariant

theory [12, Ch. 10]. This description of a basis involves matchings. Applying p

to this basis creates a spanning set of invariant polynomials, which has cardinality

dimSd(V (n)). We thus obtain a basis for the polynomial invariants on V (n) which

we describe in detail next.

Recall that Ĩr2m denotes the set of r-tuples of matchings on 2m letters. The

group S2m acts on this set by simultaneous conjugation. We choose a representative

(τ1, τ2, . . . , τr) from each orbit under this action, which we denote by

[τ1, τ2, . . . , τr] = {σ(τ1, τ2, . . . , τr)σ
−1 | σ ∈ S2m}

Fix an ordering on the cycles of each τi, and let jki denote the cycle containing k

in τi. For instance, if τ2 = (1 3)(2 4), then j4
2 = 2, since 4 appears in the second

cycle of τ2. The invariant associated to [τ1, τ2, . . . , τr] can now written as the sum

of terms of the form

x
a
(1)

j11

a
(2)

j12

···a(r)
j1r

x
a
(1)

j21

a
(2)

j22

···a(r)
j2r

· · ·x
a
(1)

j2m1

a
(2)

j2m2

···a(r)
j2mr

where each a
(t)
i ranges from 1 to nk.

Example 8. Let r = 2 and m = 2 (note d = 2m = 4). We are now equipped

to write down basis elements of the degree 4 homogeneous polynomials on the space

V (n) = Cn1 ⊗Cn2 invariant under the action of the group K(n) = On1 ×On2 where

4Note that V (n)∗ is isomorphic to V (n) as a representation of K(n).
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n1, n2 ≥ 4. We have three matchings on d = 4 letters:

(1 2)(3 4) (1 3)(2 4) (1 4)(2 3)

We first determine the equivalence classes of ordered 2-tuples of these matchings

under simultaneous conjugation by S4. Observe that we have nine such tuples, with

only two classes:

{{(1 2)(3 4), (1 2)(3 4)}, {(1 3)(2 4), (1 3)(2 4)}, {(1 4)(2 3), (1 4)(2 3)}}

{{(1 2)(3 4), (1 3)(2 4)}, {(1 2)(3 4), (1 4)(2 3)}, {(1 3)(2 4), (1 2)(3 4)},

{(1 3)(2 4), (1 4)(2 3)}, {(1 4)(2 3), (1 2)(3 4)}, {(1 4)(2 3), (1 3)(2 4)}

Choosing a representative (τ1, τ2) of each class, we write the associated polynomial.

For simplicity, we choose the first tuple listed in each class above. First, we have

τ1 = τ2 = (1 2)(3 4). The related invariant polynomial is then a sum of terms of the

form

x
a
(1)
1 a

(2)
1
x
a
(1)
1 a

(2)
1
x
a
(1)
2 a

(2)
2
x
a
(1)
2 a

(2)
2

where a
(1)
1 , a

(1)
2 range from 1 to n1 and a

(2)
1 , a

(2)
2 range from 1 to n2. Next, we have

τ1 = (1 2)(3 4) and τ2 = (1 3)(2 4). The related invariant polynomial in this case is

a sum of terms of the form

x
a
(1)
1 a

(2)
1
x
a
(1)
1 a

(2)
2
x
a
(1)
2 a

(2)
1
x
a
(1)
2 a

(2)
2

where, again, a
(1)
1 , a

(1)
2 range from 1 to n1 and a

(2)
1 , a

(2)
2 range from 1 to n2.

4.2.2 Correspondence to r-regular graphs with 2m vertices

A k-regular graph on n vertices is a graph in which each of the n vertices has degree

k; that is, each vertex is met by exactly k edges. Figure 4.2 shows a few examples
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of regular graphs on 4 vertices. Note that 1-regular graphs are already familiar,

having appeared in the Introduction as a possible way of representing matchings

and basis elements of the Brauer algebra [3]. A 1-regular graph is always composed

of disconnected edges.

(a) 1-regular graphs (b) 2-regular graphs

Figure 4.2: Examples of regular graphs

An edge coloring of a graph is a coloring of its edges so that no two adjacent

edges are the same color (this is also referred to as a 1-factorization of the graph).

In this case of a k-regular graph, an edge coloring implies that each vertex is met

by k edges, which are each a distinct color. Figure 4.3 displays a few examples of

3-regular edge colored graphs on 4 vertices (note, we represent different colors via

solid, dashed, and dotted lines).

Figure 4.3: Examples of 3-regular edge colored graphs

Observe that two k-regular edge colored graphs can be isomorphic, meaning

there may exist an edge-preserving bijection between the two graphs. The two

graphs shown in Figure 4.4 are isomorphic, as a rearrangement of vertices of the

graph on the left yields the graph on the right.

Figure 4.4: Isomorphic 3-regular edge colored graphs
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We now present a bijection between the orbits of the action of S2m on Ĩr2m

and the isomorphism classes of edge colored r-regular graphs with 2m vertices.

Recall that Ĩr2m denotes the set of r-tuples of matchings on 2m letters. S2m acts

on this set by simultaneous conjugation. For each equivalence class of this action,

we choose a representative tuple (τ1, τ2, . . . , τr). We denote the class containing this

representative as [τ1, τ2, . . . , τr].

To construct the graph associated to [τ1, τ2, . . . , τr], we begin by numbering the

vertices of the graph from 1 to 2m. An edge of color i is drawn between vertices j

and k if τi contains the cycle (j k). Repeating this process for all r matchings, we

obtain an undirected graph with 2m vertices and r colors.

To illustrate, we consider the case r = 3, m = 2 where we have chosen the 3-tuple

of matchings

(τ1, τ2, τ3) = ((1 2)(3 4), (1 3)(2 4), (1 4)(2 3))

The invariant associated to [τ1, τ2, τ3] is then

n1∑
a
(1)
1 ,a

(1)
2

n2∑
a
(2)
1 ,a

(2)
2

n3∑
a
(3)
1 ,a

(3)
2

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
1 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
1

To construct the graph associated to [τ1, τ2, τ3], we encode τ1, τ2, τ3 with three colors

portrayed by solid, dashed, and dotted edges, respectively. Forgetting the labels of

the vertices leaves us with a representative of the isomorphism class containing the

graph. The result is shown in Figure 4.5.

The graph produced in this process depends on the representative chosen; how-

ever, a graph associated to any tuple will be isomorphic to a graph associated to

any other tuple in the same equivalence class. Suppose T = (τ1, τ2, . . . , τr) and

R = (ρ1, ρ2, . . . , ρr) are r-tuples of matchings such that

T = (τ1, τ2, . . . , τr) = (σρ1σ
−1, σρ2σ

−1, . . . , σρ2σ
−1) = σRσ−1
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(a) 3-tuple of matchings, T

1 2 3 4

1 2 3 4

1 2 3 4

τ1 :

τ2 :

τ3 :

(b) 3-regular graph G associated to T

1 2

34

(c) Representative of isomorphism class of G

Figure 4.5: Constructing a 3-regular graph from a triple of matchings

for some σ ∈ S2m. Let G,H be the graphs associated to T,R, respectively. Labeling

the vertices of G and applying the permutation σ to these vertices will result in the

graph H.

Example 9. Let T = ((1 2)(3 7)(4 5)(6 8), (1 8)(2 7)(3 4)(5 6)) and let R =

((1 7)(2 6)(3 4)(5 8), (1 6)(2 5)(3 7)(4 8)). Note that T and R belong to the same

equivalence class under conjugation by S8; for example, R = σTσ−1 when σ =

(1 3 5 6)(2 4)(7 8). The graph on the left is the graph obtained from T in the

described manner, while the graph obtained from R is on the right.

Labeling the vertices of the graph associated to T (shown below, left), then apply-

ing the permutation σ to these vertices (shown below, right) results in the graph

associated to R:
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1 2

3

4

56

7

8

6 4

1

2

35

8

7

A list of representatives of all isomorphism classes of 3-regular graphs on four

vertices is shown in Table 4.2, along with the corresponding invariant. We have

chosen a representative (τ1, τ2, τ3) of each orbit so that τ1 = (1 2)(3 4).

∑n1

a
(1)
1 ,a

(1)
2

∑n2

a
(2)
1 ,a

(2)
2

∑n3

a
(3)
1 ,a

(3)
2

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
2 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
2

∑n1

a
(1)
1 ,a

(1)
2

∑n2

a
(2)
1 ,a

(2)
2

∑n3

a
(3)
1 ,a

(3)
2

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
1 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
1

∑n1

a
(1)
1 ,a

(1)
2

∑n2

a
(2)
1 ,a

(2)
2

∑n3

a
(3)
1 ,a

(3)
2

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
2 a

(3)
1
x
a
(1)
2 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
1 a

(3)
2

∑n1

a
(1)
1 ,a

(1)
2

∑n2

a
(2)
1 ,a

(2)
2

∑n3

a
(3)
1 ,a

(3)
2

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
1 a

(3)
1

∑n1

a
(1)
1 ,a

(1)
2

∑n2

a
(2)
1 ,a

(2)
2

∑n3

a
(3)
1 ,a

(3)
2

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
1 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
1

Table 4.2: Representative of graph isomorphism class and corresponding invariant
in the case r = 3,m = 2



68

4.2.3 Correspondence to Forests of Phylogenetic Trees

Finally, we show a way of encoding these invariants with forests of phylogenetic

trees.

We begin by reviewing some terminology related to trees. A tree is an undirected,

connected graph with no cycles; that is, a graph in which there exists exactly one

simple path from any vertex to any other vertex. The degree of a vertex is the

number of edges incident to that vertex. If a vertex in a tree has degree one, we say

it is a leaf. Otherwise, we say the vertex is an interior node, or simply a node.

If a tree T has a distinguised node r, called a root, we say the pair (T, r) is a

rooted tree following [2]. We can define a partial ordering ≤ on (T, r), where s ≤ s′

if and only if the vertex s′ lies on the path from the root r to the vertex s. With

this ordering, the root r is the largest element, and the leaves will be the minimal

elements. If an edge of the tree lies between vertices a and b originates from the

vertex a if b ≤ a. In this case, we say a is a parent of b, and that b is a child of a.

If two vertices have the same parent, they are called siblings. The parents in a tree

are collectively referred to as ancestors.

A rooted binary tree is a rooted tree such that the root itself has degree two

and all remaining internal nodes have degree three. A phylogenetic tree is a rooted

binary tree in which each leaf has been given a distinct label. We will identify two

phylogenetic trees if there exists a graph isomorphism between them which preserves

such a labeling, as in [5] and [6]. That is, the trees

1 4 2 3

5

and

2 3 4 1

5

are considered the same. It was shown in [33] that the number of phylogenetic trees
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with m+ 1 leaves is equal to the number of matchings on 2m letters, (2m)!/2mm!.

As explained in the Introduction and [5], Diaconis and Holmes [6] provide a bijection

between matchings on 2m letters and phylogenetic trees with m+ 1 labeled leaves.

We now explain this bijection in detail.

Correspondence between matchings and phylogenetic trees

We first describe the procedure for building a tree with n + 1 labeled leaves from

a matching on the set {1, 2, . . . , 2n}, which we illustrate with the example τ =

(1 4)(2 3)(5 8)(6 7). The resulting tree will have leaves labeled with the set

{1, 2, . . . , n + 1}; the ancestors of the tree will be labeled {n + 2, n + 3, . . . , 2n}.

First, look for any pairs in the matching that contain only numbers at most n+ 1.

In our specific example, we have two such cycles, (1 4) and (2 3). Each such cycle

defines a sibling pair of leaves. Choose the pair with the smallest child, in this case,

(1 4). Label the parent of this pair with the smallest ancestor label, 6. The other

sibling pair will be labeled with the next available ancestor label, 7. Since 6 and

7 appear in the same cycle of the matching, they must also be siblings in the tree.

Their parent will be the last available ancestor, 8. Finally, 8 must be paired with 5,

which will form its own leaf. The resulting tree is shown on the left in Figure 4.6,

while the corresponding tree with labeled leaves is on the right.

1 4 2 3

6 7

85

(a) Tree with all nodes la-
beled

1 4 2 3

5

(b) Tree with labeled
leaves

Figure 4.6: labeling non-leaf nodes of a phylogenetic tree

Next, we set out a method of finding a matching when given a tree. We start
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with a binary rooted tree with n+ 1 labeled leaves. We look for the pair of siblings

with the smallest child, and label the parent of these children with n+2. Repeat this

process until all nodes (except the root) have been labeled. The matching defined

by this tree is formed by pairing siblings into cycles. A particular example is shown

in Figure 4.7. The tree on the left is a binary tree with 7 leaves. The diagram

on the right is obtained by labeling the nodes of the tree as described, and the

corresponding permutation is shown below.

(a) Tree with labeled leaves

5 6

27

1

3

4

(b) Tree with all nodes labeled

5 6

10
27

8
1

9

3

11
4

12

(c) The associated matching

(1 8)(2 7)(3 10)(4 11)(5 6)(9 12)

Figure 4.7: Constructing a matching from a phylogenetic tree

Correspondence between invariants and forests of phylogenetic trees

When given an r-tuple of matchings, we can define a forest of r trees with roots

labeled 1, 2, . . . , r. We consider two forests to be equivalent if the individual trees

within the forest are equivalent in the traditional way. Additionally, note that the

order of the trees is significant, as the ith tree must correspond to the ith matching

in the tuple. As an example, we again consider the 3-tuple

(τ1, τ2, τ3) = ((1 2)(3 4), (1 3)(2 4), (1 4)(2 3))
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which can be interpreted as the forest

1

1

3

2

4

2

1 3

2
4

3

2

4

3

1

after we have labeled all vertices following the method described in [6].

The invariant associated to a forest with r trees can again be written as a sum

of terms of the form

x
a
(1)

j11

a
(2)

j12

···a(r)
j1r

x
a
(1)

j21

a
(2)

j22

···a(r)
j2r

· · ·x
a
(1)

j2m1

a
(2)

j2m2

···a(r)
j2mr

where the index (i) of the subscript refers to the root of an individual tree in the

forest, and jsi = jti if s and t are siblings in the ith tree. To build the invariant

associated with our particular forest, we begin by examining the tree labeled (1).

This tree has two pairs of siblings, (1, 2) and (3, 4), and so our invariant begins as

x
a
(1)
1

x
a
(1)
1

x
a
(1)
2

x
a
(1)
2

Next, we see that the second tree has sibling pairs (1, 3) and (2, 4), so we continue

building the invariant:

x
a
(1)
1 a

(2)
1

x
a
(1)
1 a

(2)
2

x
a
(1)
2 a

(2)
1

x
a
(1)
2 a

(2)
2

Finally, the last placeholders of the invariant are filled by observing that the third

tree has sibling pairs (2, 3) and (1, 4). The result is identical to the invariant asso-

ciated to the same tuple of matchings determined earlier:

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
1 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
1
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Just as S2m acts on r-tuples of matchings on 2m letters by simultaneous con-

jugation, we can consider an action of S2m on r-tuples of phylogenetic trees with

m + 1 leaves. Using the method described in the introduction, we write an r-tuple

of trees as an r-tuple of matchings, apply the action of simultaneous conjugation by

an element of S2m, and then draw the list of trees associated to the resulting r-tuple

of matchings. Hence, we define an action of S2m on a forest of r phylogenetic trees,

each with m+ 1 leaves.

To illustrate, suppose we choose a tuple of three trees, each with four leaves,

shown in shown in Figure 4.8.

1

1 3

2

4

2

1 3 2 4

3

2 4

3

1

Figure 4.8: The forest corresponding to (τ1, τ2, τ3)

Labeling the roots of the trees 1 through 3 and adjoining these roots to a common

vertex creates a forest. By following the process outlined earlier, we associate this

forest to the 3-tuple of matchings:

(τ1, τ2, τ3) = ((1 3)(2 5)(4 6), (1 3)(2 4)(5 6), (1 6)(2 4)(3 5))

We choose a permutation g = (1 3 5)(2 4)(6) to act on this tuple:

(gτ1g
−1, gτ2g

−1, gτ3g
−1) = ((1 4)(2 6)(3 5), (1 6)(2 4)(3 5), (1 5)(2 4)(3 6))

and draw the forest associated to the result in Figure 4.9.
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1

1 4

3

2

2

2 4

1

3

3

2 4

1

3

Figure 4.9: The forest corresponding to g(τ1, τ2, τ3)g−1

In Figure 4.10, we display the trees of Figures 4.8 and 4.9, with additional labels

on vertices following the procedure described earlier5. The 3-regular edge colored

graph on six vertices associated to each tree is shown on the right. Trees 1, 2, and

3 are shown by solid, dashed, and dotted lines, respectively.

1

1 4

3

2
6

5

2

2 4

1

3

6

5

3

2 4

1

3
6

5

1

1 3

2

4
6

5

2

1 3 2 4

5 6

3

2 4

3

1
6

5

Figure 4.10: 3-regular edge colored graphs corresponding to equivalent trees

5Note that various methods for labeling nodes can be chosen, we refer to the algorithm specified
in [6]
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Note that the two graphs shown in Figure 4.10 are isomorphic, and we obtain

the second graph from the first by applying the permutation g to its vertices. We

may find additional isomorphic graphs by applying any element of S6. In Fig-

ure 4.11, we display such a graph so that the solid edges correspond to the matching

(1 2)(3 4)(5 6). The related invariant is a sum of terms of the form shown, as a
(j)
i

ranges from 1 to nj.

x
a
(1)
1 a

(2)
1 a

(3)
1
x
a
(1)
1 a

(2)
1 a

(3)
2
x
a
(1)
2 a

(2)
2 a

(3)
2
x
a
(1)
2 a

(2)
3 a

(3)
3
x
a
(1)
3 a

(2)
3 a

(3)
3
x
a
(1)
3 a

(2)
2 a

(3)
1

Figure 4.11: Graph and terms of invariant corresponding to trees in Figure 4.10
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Appendix A: Data Related to Nonstable Cases

In Chapter 3, we determined a formula for the dimension of the vector space of

degree d = 2m homogeneous polynomials on the tensor product

V (n) = Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr

under the action of the product group

K(n) = O(n1)×O(n2)× · · · ×O(nr)

in the stable range, where each ni ≥ d. The values generated by the formula (see

Table 3.1 provide upper bounds for the nonstable case, where no restriction is placed

on the values ni.

In this Appendix, we display some data for specific cases. As in the stable

range, we still assume d = 2m is a positive, even integer; otherwise, the space is

immediately zero dimensional. Hence, we continue using 2m in place of d.

A.1 K(n) = O(2)r

With the notation above, suppose that ni = 2 for all 1 ≤ i ≤ r. For m > 1, we no

longer satisfy the stability condition for any r. In order to generate the dimension

of the spaces

dimP2m(⊗rC2)O(2)×O(2)×···×O(2)
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for various values of r, we rely on Equation 3.2:

dim
[
Pd(V (n))

]K(n)
=

∑
λ(1),...,λ(r)

λ(i)`d
λ(i) even

gλ(1)λ(2)···λ(r)

Using Sage (see Appendix B for programs), we were able to compute the required

sums of Kronecker coefficients, to construct Table A1.

m=1 m=2 m=3 m=4 m=5 m=6 m=7
r=1 1 1 1 1 1 1 1
r=2 1 2 2 3 3 4 4
r=3 1 5 6 16 20 40 50
r=4 1 14 28 152 385 1335 3329
r=5 1 41 188 2464 18903 150593 978505
r=6 1 122 1573 59318 1555740 35860078 680715715
r=7 1 365 14596 1772231 162013392 12184049699 748529603427

Table A1: dimP2m(⊗rC2)×
rO(2)

Aside from simply calculating the dimensions, we are interested in finding a

Hilbert series h(q) to generate these values. For each fixed r, we seek a series that

will produce infinite sums of terms amq
2m, where am = dimP2m(⊗rC2)O(2)×···×O(2).

We have found such series for three particular values of r. These series were obtained

and verified experimentally using Sage.

r = 1 : h(q) =
1

1− q2

r = 2 : h(q) =
1

(1− q2)(1− q4)

r = 3 : h(q) =
1 + q2 + q4 + q6 + q8 + q10

(1− q4)4(1− q6)

For some values of r, the sequence am = dimP2m(⊗rC2)×
rO(2) appears in the

Online Encyclopedia of Integer Sequences. In particular, the r = 3 row of the table

is sequence A081283, describing an interleaved sequence of pyramidal and polygonal

numbers [34].
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A.2 K(n) = O(3)r

Table A2 provides the dimensions of the space P2m(C3⊗C3⊗· · ·⊗C3)O(3)×O(3)×···×O(3).

These values were also computed using the Sage program described in Appendix B.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
r = 1 1 1 1 1 1 1
r = 2 1 2 3 4 5 7
r = 3 1 5 16 52 168 564
r = 4 1 14 132 2191 43615 854968
r = 5 1 41 1439 163306 22724613 2948333693
r = 6 1 122 18373 14241595 13342442956 *
r = 7 1 365 254766 1284613267 * *

Table A2: dimP2m(⊗rC3)×
rO(3)
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Appendix B: Sage Programs

In this Appendix, we display some programs used to support the main results. The

code is written for the Python based open-source mathematical program Sage [36].

B.3 Calculating Stable Dimensions Using Formula

of Theorem 2

The code presented in Figure B1 calculates, for given r and m, a list of repre-

sentatives of the conjugacy classes of r-tuples of matchings, under simultaneous

conjugation by the symmetric group. In this case, the values of This is a brute force

approach, which begins by searching the symmetric group S2m for matchings, then

creating a list K of all r-tuples. The program then selects a matching (the first in

the list), finds all tuples in K equivalent to it, and adds these tuples to a list H. A

representative of H is chosen before all of its elements are removed from K, at which

point the program chooses the next remaining tuple (if any) and finds its class. The

representatives chosen from each class are returned, and the dimension of the space

P2m(V (n))K(n) is the number of these representatives.

This is a fairly slow approach to finding the data in Table 3.1. The code, as

shown, calculates only a single value of the table (in this case, the entry r = 3,

m = 3), yet takes approximately 15 seconds to compile. For larger values of m, the

output takes considerably longer. Changing m to a value greater than 6 may take

hours to produce a result.
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m = 3
t = [ ]
for i in range (m) :

t . append (2 )
L = [ ]
G = SymmetricGroup (2∗m)
G[ 0 ]
for g in G:

i f Permutation ( g ) . c y c l e t y p e ( ) == t :
L . append ( g )

l = len (L)
K = [ ]
for i in range ( l ) :

for j in range ( l ) :
for k in range ( l ) :

K. append ( (L [ i ] , L [ j ] , L [ k ] ) )
I = [ ]
while K != [ ] :

k = K[ 0 ]
print k
I . append ( k )
H = [ ]
for g in G:

h = ( g∗k [ 0 ] ∗ gˆ(−1) , g∗k [ 1 ] ∗ gˆ(−1) , g∗k [ 2 ] ∗ gˆ(−1) )
H. append (h)

H. s o r t ( )
M = Set ( tup l e (h) for h in H)
N = Set ( tup l e ( k ) for k in K)
O = N. d i f f e r e n c e (M)
K = O. l i s t ( )

Figure B1: Program to find representatives of equivalence classes of r-tuples of
matchings, under simultaneous conjugation by S2m

( ( 1 , 2 ) ( 3 , 4 ) (5 , 6 ) , ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) , ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) )
( ( 1 , 6 ) ( 2 , 3 ) (4 , 5 ) , ( 1 , 6 ) ( 2 , 4 ) ( 3 , 5 ) , ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) )
( ( 1 , 4 ) ( 2 , 3 ) (5 , 6 ) , ( 1 , 6 ) ( 2 , 5 ) ( 3 , 4 ) , ( 1 , 2 ) ( 3 , 6 ) ( 4 , 5 ) )
( ( 1 , 3 ) ( 2 , 4 ) (5 , 6 ) , ( 1 , 2 ) ( 3 , 6 ) ( 4 , 5 ) , ( 1 , 6 ) ( 2 , 5 ) ( 3 , 4 ) )
( ( 1 , 6 ) ( 2 , 5 ) (3 , 4 ) , ( 1 , 2 ) ( 3 , 5 ) ( 4 , 6 ) , ( 1 , 2 ) ( 3 , 6 ) ( 4 , 5 ) )
( ( 1 , 4 ) ( 2 , 3 ) (5 , 6 ) , ( 1 , 2 ) ( 3 , 6 ) ( 4 , 5 ) , ( 1 , 3 ) ( 2 , 4 ) ( 5 , 6 ) )
( ( 1 , 5 ) ( 2 , 4 ) (3 , 6 ) , ( 1 , 4 ) ( 2 , 6 ) ( 3 , 5 ) , ( 1 , 5 ) ( 2 , 6 ) ( 3 , 4 ) )
( ( 1 , 2 ) ( 3 , 5 ) (4 , 6 ) , ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) , ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) )
( ( 1 , 4 ) ( 2 , 6 ) (3 , 5 ) , ( 1 , 4 ) ( 2 , 5 ) ( 3 , 6 ) , ( 1 , 5 ) ( 2 , 4 ) ( 3 , 6 ) )
( ( 1 , 3 ) ( 2 , 4 ) (5 , 6 ) , ( 1 , 3 ) ( 2 , 5 ) ( 4 , 6 ) , ( 1 , 6 ) ( 2 , 4 ) ( 3 , 5 ) )
( ( 1 , 2 ) ( 3 , 5 ) (4 , 6 ) , ( 1 , 5 ) ( 2 , 3 ) ( 4 , 6 ) , ( 1 , 2 ) ( 3 , 5 ) ( 4 , 6 ) )
( ( 1 , 4 ) ( 2 , 6 ) (3 , 5 ) , ( 1 , 3 ) ( 2 , 4 ) ( 5 , 6 ) , ( 1 , 3 ) ( 2 , 4 ) ( 5 , 6 ) )
( ( 1 , 2 ) ( 3 , 4 ) (5 , 6 ) , ( 1 , 3 ) ( 2 , 4 ) ( 5 , 6 ) , ( 1 , 4 ) ( 2 , 3 ) ( 5 , 6 ) )
( ( 1 , 2 ) ( 3 , 4 ) (5 , 6 ) , ( 1 , 2 ) ( 3 , 4 ) ( 5 , 6 ) , ( 1 , 6 ) ( 2 , 3 ) ( 4 , 5 ) )
( ( 1 , 4 ) ( 2 , 6 ) (3 , 5 ) , ( 1 , 4 ) ( 2 , 6 ) ( 3 , 5 ) , ( 1 , 6 ) ( 2 , 4 ) ( 3 , 5 ) )
( ( 1 , 6 ) ( 2 , 3 ) (4 , 5 ) , ( 1 , 2 ) ( 3 , 5 ) ( 4 , 6 ) , ( 1 , 6 ) ( 2 , 3 ) ( 4 , 5 ) )

Figure B2: Result of program in Figure B1
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B.4 Calculating Stable Dimensions Using Formu-

lae of Theorems 2 and 3

The code in Figure B3 uses the formulae proven in Chapter 3 to calculate the data

shown in Table 3.1. The result, displayed in Figure B4, is calculated approximately

12 seconds.

B.5 Computing Stable and Nonstable Dimensions

Using Kronecker Coefficients

The program shown in Figure B5 does not rely on results from Chapter 3 to calculate

the dimension of the space P2m(V (n))K(n), instead using Equation 3.2 and Schur

polynomials. The advantage here is flexibility over speed. While only a single

column of the dimension tables is computed, and can take considerable time to do

so, we are able to use this program to calculate dimensions outside the stable range

by restricting the maximum length of the partitions. The code, as shown, finds the

dimensions of the space

P12(⊗rC2)O2×O2×···×O2

for values of r up to 8; this is the m = 6 column of Table A1. This instance takes

only a few seconds to compile, but takes much longer for larger values of m and r.
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H = [ ] ; T = [ ]
for r in range (1 , 10 ) :

h = [ ]
for m in range (1 , 10 ) :

P = P a r t i t i o n s (2∗m) . l i s t ( )
F = 0
for q in P:

e = P a r t i t i o n ( q ) . to exp ( )
N = 1 ; z = 1
for i in range ( l en ( e ) ) :

a = i+1
b = e [ i ]
i f i s odd ( a ) and i s odd (b) :

n = 0
i f i s e v e n ( a ) and i s odd (b) :

n = sum ( ( f a c t o r i a l (b) ∗( a ˆ ( ( b−k ) /2) ) ) /( f a c t o r i a l ( k ) ∗
f a c t o r i a l ( ( b−k ) /2) ∗2ˆ((b−k ) /2) ) for k in range
(1 , b+1) i f ( i s odd ( k ) ) )

i f i s odd ( a ) and i s e v e n (b) :
i f b == 0 :

n = 1
else :

n = ( f a c t o r i a l (b) ∗a ˆ(b/2) ) /(2ˆ( b/2) ∗ f a c t o r i a l (b
/2) )

i f i s e v e n ( a ) and i s e v e n (b) :
i f b == 0 :

n = 1
else :

n = sum ( ( f a c t o r i a l (b) ∗( a ˆ ( ( b−k ) /2) ) ) /( f a c t o r i a l
( k ) ∗ f a c t o r i a l ( ( b−k ) /2) ∗2ˆ((b−k ) /2) ) for k
in range (b+1) i f ( i s e v e n ( k ) ) )

N = n∗N
z = z ∗( aˆb) ∗ f a c t o r i a l (b )

f = (Nˆ r ) /z
F = f+F

T. append (F)
h . append (F)

H. append (h)
print H

Figure B3: Program to calculate stable dimensions of P2m(V (n))K(n) using results
of thesis
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[ [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] , [ 1 , 2 , 3 , 5 , 7 , 11 , 15 , 22 , 3 0 ] ,
[ 1 , 5 , 16 , 86 , 448 , 3580 , 34981 , 448628 , 6854130 ] ,
[ 1 , 14 , 132 , 4154 , 234004 , 24791668 , 3844630928 , 809199787472 ,

220685007519070] ,
[ 1 , 41 , 1439 , 343101 , 208796298 , 253588562985 , 517068048408385 ,

1635862619286705997 , 7590088213330525666347] ,
[ 1 , 122 , 18373 , 33884745 , 196350215004 , 2634094790963313 ,

69856539937093983210 , 3315428327367822097464999 ,
261523007306622221875905931924] ,

[ 1 , 365 , 254766 , 3505881766 , 185471778824111 , 27380169200102651288 ,
9439895841362297019735454 , 6720389536120974873107885015406 ,
9011878475307752483094496672461123697] ,

[ 1 , 1094 , 3680582 , 366831842914 , 175264150734326927 ,
284615877731708760168866 ,
1275658608781546907449500324484 ,13622388654836126983984130203003345717 ,

310544041361897756266513647669616309280179305] ,
[ 1 , 3281 , 54236989 , 38485365487361 , 165624048771051595711 ,

2958581186394008254445689753 , 172386108325455210471892241576613445 ,
27612921155900093656875283309901695744425749 ,

10701168881568205559839354147831334255977752462157874] ]

Figure B4: Result of program in Figure B3

s = SFASchur (QQ)
m = 6 ; r = 10
L = P a r t i t i o n s ( (2∗m) , max length=2) . l i s t ( )
for l in L :

i f i s odd ( l [ 0 ] ) : L . remove ( l )
A = sum( s ( l ) for l in L)
print A
T = A
for i in range ( r−1) :

T = A. i t e n s o r (T)
C = T. c o e f f i c i e n t s ( ) ; C. r e v e r s e ( )
print ” r =” , i +2, ” : ” , C [ 0 ]

Figure B5: Program to calculate dimensions of P2m(V (n))K(n) using Schur polyno-
mials

s [ 6 , 6 ] + s [ 8 , 4 ] + s [ 1 0 , 2 ] + s [ 1 2 ]
r = 2 : 4
r = 3 : 40
r = 4 : 1335
r = 5 : 150593
r = 6 : 35860078
r = 7 : 12184049699
r = 8 : 4884050603107
r = 9 : 2114159728092536
r = 10 : 948128664527518983

Figure B6: Result of program in Figure B5
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