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Figure 4.2 Performance analysis of £-NNG with batch index sorting. Benchmarks for varying
d. In this test our input data has the number of closest neighbors £ = 512 and the number of
input objects/vectors n = 16384. (a) shows the performance vs. [16]. (b) shows the
performance vs. [2]

Next we benchmarked the performance for different values of n. Specifically, we kept
d = 1024 and k£ = 512 and varied n. Figure 4.3 shows the comparison with [16]. For a
small n, the speedup with respect to selection is ~ 200x. As n increases, the performance
gains taper off to ~ 12x. Overall speedup starts off at ~ 100x and falls to ~ 11x. Figure
4.3(b) shows the comparison with [2]. Once again, for a small n, the speedup with respect to
selection is ~ 37x. As n increases, the speedup tapers off to ~ 5.6x. Overall speedup starts
off at &~ 20x and tapers off to ~ 4.7x. Finally, for the tests with varying d and n, while our
implementation was able to handle a model size up to n = 32,767, the implementations by

[16] could only handle a model size up to n = 16, 384. Note that our £-NN method grows
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proportional to n?log(n) as opposed to n? log(k). However, for data with the ranges of n that

fit into GPU memory, our £-NN method is still much faster.
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Figure 4.3 Benchmarks for varying n. In this test our input data have the dimension £ = 1024
and the number of input objects/vectors d = 4192. (a) shows the performance vs. [16]. (b)
shows the performance vs. [2].

4.1.2 Performance analysis of Multi GPU £-NNG construction with batch
index sorting

In order to show our algorithm’s ability to exploit the symmetry of a £-NNG structure due to
a proper task distribution, we tested our implementation vs. [2] for multi-GPU configuration.
While the implementation in [2] requires all GPUs to be on a single computer (connected
through a PCI Express bus with OpenMP multi-threading), our implementation is designed

for execution on GPU clusters, i.e., the scalability is much larger. In the tests, we ran the
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implementation by [2] on two GPUs on a single desktop, while our implementation was run
on two nodes of a cluster, with each node containing a single GPU. We used a combination of
MPI and OpenMP for multi-GPU execution. Figure 4.4 shows the result. Here d = 16384 and
k = 512. We achieve up to 15x overall speedup. However, for data with a small dimension
(d < 500) and a small &, (k < 64), the implementation in [2] can be faster. In fact, for
n = 1507328, d = 294 and k£ = 20, our implementation is roughly 2.2x slower. This is mainly

because our batch index sorting £-NN algorithm is not as efficient for small ks.
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Figure 4.4 Performance analysis of Multi GPU k-NNG construction with batch index sorting.
Benchmarks in comparison with [2]. In this test we used 2 GPUs. For the implementation of
[2] algorithm, the 2 GPUs (Tesla 2050) were mounted on a single desktop machine. For our

implementation, we use 2 nodes in our GPU cluster and opted to use only one GPU per node.

The input data had dimension d = 16384, and the number of closest neighbors k£ = 512.

4.2 Benchmarks of £-NN selection with Quick-Select

In this section, we analyze the performance of the £-NNG construction with Quick-Select.
Different tests were designed in order to showcase the performance of our algorithm with

varying parameters, against k-NN algorithms presented in [33] and [16]. The work in [33]
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uses a truncated bitonic sort for a £-NN search on GPUs. Finally, we benchmarked our code
kt" element selection algorithm [7]. The £*" element algorithm selects the k" largest/smallest

values in a vector, and therefore is slightly different from the £-NN problem.

4.2.1 Performance analysis of single GPU Quick-Select against truncated
bitonic sort and insertion sort

In this section we present performance benchmarks of our k-NNG construction with the
quick select against those of [33] and [16]. In Figure 4.5 the comparison of quick select £-NN
search algorithm is shown with that of [16]. A three-dimensional graph is chosen to represent
the performance analysis of £-NN search algorithms with varying £ and n. The data dimension
is set to a constant value of d = 128 for all tests. The number of objects varies from n = 1024

ton = 131072, and the number of extracted nearest neighbors is varied from k = 8to k = 512.

As the figure shows, the speedup grows exponentially with increasing n. For small £ and n,
the speedup is ~ 3x. For small n values, increasing k leads to ~ 250 x speedup. This speedup
grows to up to = 450 x for large values of n with increasing k.

Figure 4.6 shows the performance advantage of our algorithm when benchmarked against
truncated bitonic sort by Sismanis. Our speedup ranges from 1.5x for k = 23, n = 2!7 t0 5.3x
for k = 2% n = 2!7. We could not go above k = 2 since the Sismanis implementation would
crash. It is obvious that the speedup saturates for large n. This saturation point is further away
as the size of k grows. This clearly shows that for k > 2°, the speedup would grow even more.

In Figure 4.7, we show the performance advantage when both the distance calculation and the



47

400 °
A -
\
2 \ —e—n=1024
- \ \
o 300 \ —e-n=2048
= . \
&s \ —e—n = 4096
N\
p” 200 s n=8192
E ~e-n=16384
=100 n = 32768
—e—n = 65536
0-l "|--n=131072
10 =

18

Log2(k)

Log2(n)

Figure 4.5 Quick-Select benchmarks against insertion sort [16]. In this set of tests the data
dimension is set to be constant at d = 128 and k is doubled from k£ = 8 to k = 512. For each
k, the performance graph is representing the timings for different n starting from n = 1024 to

n = 131072.
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Figure 4.6 Performance analysis of a single GPU selection with Quick-Select. Benchmark
results in comparison with that of TBiS is presented. In this set of tests the data dimension is
set to be constant at d= 128 and k is doubled from k = 8 to k = 512. For each k, the
performance graph is representing the timings for different n starting from n = 1024 ton =

131072.
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k-NN search are included. The same general trend is observed. Since both algorithms use a
similar method for distance calculation, the only advantage is due to our superior £-NN search

method.
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Figure 4.7 Performance analysis of quick select. Benchmark results in comparison with TBiS
is presented. In this set of tests k is doubled from k = 8 to k = 512. For each k, the
performance graph is representing the timings for different n starting from n = 1024 ton =

131072.

Our benchmarks against the MGPU Select was for the selection algorithm alone. Note that
the MGPU Select works for one query at time. Moreover, the MGPU Select algorithm only
selects the k" largest/smallest element. We conducted multiple queries by first loading the
distance matrix in global memory on the GPU and then running the MGPU Select in succes-
sive rows, one row at a time. Furthermore, while our algorithm finds the k£ smallest elements
with indices, the MGPU Select algorithm only finds the £t smallest element. For finding the

k smallest elements with indices, the MGPU Select algorithm is no better than a plain sort and
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selection [7]. Figure 4.8 shows the results. For small n, our algorithm has dramatic perfor-
mance advantages (= 100x). This is because the GPU is not saturated by the MGPU Select.
With increasing n, we see a significant drop off and possible saturation of the performance gain

at around 8x. We are not able to explore a larger n because the distance matrix does not fit into

GPU memory.
80~
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Figure 4.8 Performance analysis of quick select. Benchmark results in comparison with
MGPU select is presented. In this set of tests & is doubled from k£ = 8 to k = 512. For each k,
the performance graph is representing the timings for different n starting from n = 1024 ton
=131072.

4.3 k-NNG and manifold embedding

Our application of interest for the £-NN graph construction is manifold embedding. The
basic idea behind manifold embedding is that a cloud of correlated high-dimensional data can
be characterized with a low-dimensional hyper-surface that is embedded in the original high

dimensional space. The manifold contains information about the individual objects and the
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Figure 4.9 Timing benchmarks of quick select and MGPU select algorithms. In this set of

tests k is doubled from k = 8 to k = 512. For each k, the performance graph is representing the
timings for different n starting from n = 1024 to n = 131072.

system that generated the data. The main execution part of the manifold embedding is the gen-
eration of a neighborhood graph for an input data set. The k-NN graph can then be normalized

and embedded in order to give the governing eigenfunctions of the low-dimensional manifold.

To evaluate and apply our algorithms in manifold embedding, we executed £-NNG with
batch index sorting for two data sets. The first data set contained two million images of sim-
ulated diffraction patterns of a randomly oriented adenylate kinase (ADK) molecule. Each
image has 126 x 126 = 15876 pixels; i.e., high dimensionality. The second dataset consisted
of twenty million images of simulated diffraction patterns of denaturing ADK in ten different
molecular conformations. (For more information about the structure of data sets, please refer to

[32]). We evaluated the £-NNG algorithm with a previous implementation of a neighborhood
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graph construction by using MATLAB technical computing language. The MATLAB imple-
mentation took 56 hours on an exclusive CPU cluster with 32 nodes for two million diffraction
patterns with the use of a highly optimized ATLAS-BLAS library for multi-threaded Matrix-
Matrix Multiplication in double precision. The cluster had one Xeon E5420 quad-core CPU
per node with 16kB of L1 cache, 6144kB or L2 cache and 40GFLOPS of double precision
computing power. Since the parallel MATLAB implementation did not take advantage of the
symmetry of the distance matrix, one can assume that such an implementation would take
about 28 hours. Our GPU cluster had 16 nodes with each node equipped with two NVIDIA
Tesla C2050 GPUs. Each Tesla C2050 GPU has a RAM of 3GB with 506GFLOPS of double
precision computing power. There are 14 multi-processors sharing 720kB of L2 cache and
each multi-processor having 48kB of user-configurable L1 cache/shared memory. In addition,
each of the GPU nodes had two quad-core Xeon E5620s. Note that in our GPU cluster, the
CPUs are used mostly for managing the GPUs and moving data between nodes and not for
computation. Our GPU cluster implementation took 4.23 hours, giving a roughly 6.6 x gain in

performance.

To investigate the efficiency of our implementation we also benchmarked the most expen-
sive part of the computation, i.e., matrix matrix multiplication. We tested both double and
single precision matrix-matrix multiplication on a single GPU (Tesla C2050) vs. a single core
of an Xeon E5420 and concluded that if all four cores of the CPU were active, we could achieve

aroughly 7.7x speedup using GPUs just for matrix multiplication alone. As shown earlier, our
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complete implementation is slightly worse at a 6.6 x gain in performance.

Based on the complexity of the manifold embedding, the estimated execution time for a
second dataset with twenty million snapshots on the CPU cluster was more than eight months.
With the use of RME implementation on our GPU cluster, the execution time for twenty million

snapshots was achieved in less than two weeks. Figure 4.10 shows the computational resources

configuration and execution time of manifold embedding for each data ensemble.

RME RME
GPU Total Time Total time
CPU # GPU # CPU CPU RAM GPU Global | Firstdataset Second
Memory (Double dataset
precision)
10 Days
GPU Intel(R) Xeon(R) NVIDIA i~ .
Cluster 16 32 E5620 2.4 GHz 48GB | Teslacaoso | 29CB | 423Hrs (Single
Precision)
Approx. 233
CPU Intel(R) Xeon(R) < days
Cluster 2 0 E5620 2.4 GHz 48GB - - 36 Hrs (Dm):ble
Precision)

Figure 4.10 Clusters configuration and total timings for construction of neighborhood graph.
number of GPU in each node m =2 and p3 = 8
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Chapter 5

Conclusions

In this thesis, we presented a distributed GPU-accelerated implementation of the brute force
k nearest neighbor graph construction method. Our implementation runs on an exclusive ac-
cess GPU cluster. It forms a central core of a software pipeline for data and compute inten-
sive Manifold Embedding being used for structure and conformation recovery of biomolecules
from a large data set of high noise images. The pipeline and individual algorithms have been
benchmarked against a similar state-of-the-art system. Significant gains in overall performance
demonstrated. As a result of this work, it is now possible to process an image data set with
over 2 x 107 image vectors with dimensions exceeding 1.5% in a time span of 14 days compared

with an estimated 180 days on a comparable CPU cluster.

5.1 Contributions

The contributions of this work are the following:

e A scheme for data partitioning and task assignment for efficient load-balanced execu-

tion of the brute force £-NNG method on a homogeneous cluster with GPU accelerated
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nodes. This implementation uses multiple levels of parallelism (between nodes, between

multiple cores in nodes, and on GPUs) along with parallel I/O.

e Two new GPU algorithms for finding £-NNG from a given distance matrix

— The first called batch index sorting uses three sort operations to directly find the

k-NNG without further manipulation of the distance matrix.

— The second is an efficient GPU implementation of the quick select algorithm and
requires the computation of the transpose of the distance matrix for £-NNG con-
struction. This implementation is the fastest method in its class with a nearly 4x

gain over the state-of-the art.

Overall, the implementation developed as part of this thesis has achieved a 6x performance

gain over a comparable implementation running on a cluster of CPUs.

5.2 Discussions

There is room for further enhancements in our implementation, as evidenced from com-
paring the raw float point processing power of the processors. The most expensive part of the
brute force k-NNG is matrix multiplication. With the best tuned GPU libraries, we see that
there is only 50 percent use of GPU resources as opposed to 90 percent use by finely tuned
CPU libraries. A better GPU matrix multiplication library would further enhance the perfor-

mance of our approach.
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The brute force implementation requires O(n?) distance calculations. This dominates the
computational expense for a large n. One way of reducing this complexity will be to use a
hybrid algorithm that approximately subdivides the data sets into overlapping sets to reduce
the computations (distance computation and selection) for each input vector based on the set
membership. While such methods exist, to our knowledge there are no parallel cluster imple-

mentations with GPU acceleration.

Finally, performance of the algorithms is significantly impacted by the nature of the data
(data dimension as well as size) and the execution configuration parameters. For example, cur-
rently we manually select the number of data partitions P of the input matrix A and the size
of sub-partitions of A; within the nodes. The GPU quick select algorithm in particular is very
sensitive to the number of simultaneous queries and the arrangement of execution resources
(the number of warps per thread block). Currently, these execution parameters are manually

set and adjusted through trial and error. This can be automated is the future.

5.3 Future work

Our future work will continues in three different areas. The first is the development of a
stand-alone k-NN search library on GPU that outperforms all state of the art algorithms and
that can be easily accessible and applicable to huge applications of k-NN search and k- NN

graph construction. In order to achieve this goal, we are planning to create a user friendly
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environment and a parameter space for different range of applications. The second possible
target of future work in this area is to release a user friendly version of a k-NNG construction
library for GPU distributed systems. The proposed library would use the expandability and
flexibility of proposed algorithm with regards to computational system configurations and data
characteristics respectively. The third area lies on the application side, especially manifold
embedding. In this work, we achieved the computational capability to deal with data ensembles
at least one order of magnitude larger than current datasets. However, with the growing pace
of expansion in input data sizes (both in number of dimensions and reference data points)
alongside technological advances in GPU hardware and software configurations, new strategies
for data management, partitioning and algorithm development will be needed in the foreseeable

future.
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