

9

The training corpus provided in the challenge contains 142 Medline abstracts on the

subject of drug-drug interactions, and 572 documents describing drug-drug interactions

from the DrugBank database. The corpus includes 6976 sentences annotated with four

types of pharmacological entities and five types of DDIs, as described above. Figure 1-2

illustrates annotations of drug entities and drug interactions for three sentences in a

document. All possible drug-pairs in a sentence are annotated as either “true”, for an

interacting drug-pair, or “false”, for a non-interacting drug pair. Each annotated drug pair

is treated as an instance for training, and from the perspective of training, drug-pairs

annotated as “true” belong to the positive class (or the set of positive instances), while

those annotated as “false” belong to the negative class (or the set of negative instances).

Positive instances are further annotated as one of the four interacting types described

above, namely, advise, effect, mechanism, int.

Figure 1-2: Annotations of three sentences from a document in the DDIExtraction-2013 corpus.

Table 1-1 shows the number of instances for each of the five DDI types in the training

set, grouped further into positive and negative classes. We note again that each instance is

associated with a single pair of drugs. For example, a sentence with 4 drugs contains 6

10

instances, corresponding to 6 distinct drug pairs with a potential for interaction. Thus,

while the entire training corpus contains 6976 sentences, the number of training instances

as shown in the Table is much higher, i.e., 24891 instances.

The test set for the task, used only during the evaluation period in the challenge, includes

33 Medline abstracts and 158 DrugBank documents, containing 1299 sentences and 5519

drug pairs (instances). As the test set had not been made available until the time of

writing of this thesis, the experiments we conducted after the challenge, and report on

here, are done using only the training data, in particular by splitting the training data into

a training set (90%) and a test set (10%).

Table 1-1: Distribution of drug-pair instances for each class in the DDIExtraction-2013 corpus. Classes are
categorized in two super classes: positive and negative, to indicate presence and absence of interaction,
respectively.

Type DrugBank Medline Total

Positive

Advise 819 8 827

Effect 1548 152 1700

Mechanism 1260 62 1322

Int 178 10 188

Negative None

(non-interacting drug-pairs)
19479 1375 20854

Total 23,284 1607 24891

In this thesis, we describe our system for extracting and classifying drug-drug

interactions from biomedical text, utilizing the training corpus provided for the

DDIExtraction-2013 shared task challenge. Our approach combines machine-learning

methods with rules for post-processing. A key feature of our machine-learning approach

is that it is specifically designed to handle the highly unbalanced class distribution

11

observed in the data, via the use of a two-stage classifier. In addition to a variety of

features exploited for the classifier, we also developed a set of post-processing rules, with

a different set of rules applied after each stage of classification. Although we applied

weighted SVM as the classifier for the DDI-2013 competition, here we report additional

experiments with several other classifiers to assess if a classifier other than SVM may be

better suited to the task. Our experiments indicate that SVM is the best fit for both stages.

We also describe our experiments with exploring additional features for the classifier,

specifically those exploiting syntactic information obtained from sentence parse trees.

Finding effective features and utilizing them in the system resulted in improving the F-

measure by 12%, when compared to the results obtained in the competition.

The thesis is organized as follows. In Chapter 2, we describe the related work on drug

named entity recognition as well as DDI extraction and classification, particularly

discussing all systems that participated in the DDIExtraction 2011 and 2013 challenges.

In Chapter 3, we describe our method, the classifiers used in each stage, their features,

and post processing. In Chapter 4, we present the evaluation and results. Error analysis,

discussion, and future work are presented in Chapter 4.

12

Chapter Two:

Related Work

13

2-1 Introduction

In this chapter, we review the studies that have been conducted to extract and classify

drug interactions from text. Most studies on this problem have been carried out as part of

the DDIExtraction-2011 and DDIExtraction-2013 challenges, so we focus on these here.

First, however, we review recent Drug Named Entity Recognition methods, since their

outputs are vital for DDIExtraction systems, although our own work uses gold standard

annotations of drug names in the corpus, provided as part of the challenge.

2-2 Drug Named Entity Recognition

The first step for extracting Drug-Drug interactions from text involves detecting drug

names. Needless to say, performance of Drug Named Entity Recognition (NER) system

has an impact on the performance of DDI extraction systems. Three common approaches

for Drug NER are dictionary-based, rule-based and machine learning methods.6 For

creating a dictionary that contains a list of drug names and their property, DrugBank [15]

is a useful source. It is an open access, web-enabled database that contains structural,

physicochemical, pharmacological and target information of approximately 4300

substances, of which 1177 are approved drugs. Another useful resource for drugs is Daily

Med, which presents all drug labels (Package Inserts). It is created by the U.S. National

Library of Medicine. In fact, the main goal of package inserts is to provide useful

information about drugs to physicians and help them to prescribe drugs appropriately.

6 When comparing the performance these methods it is worth keeping in mind that some of these methods
were designed for detecting general chemical names, which is a harder task rather than drug NER and
therefore a possible reason for the poorer performance.

14

Several tools, based on machine learning techniques, have been developed to identify

drug names in text. One of them is cTAKES [26], an open source system to extract

medical information from clinical text. It has several components, including named entity

recognition, which covers NER for drugs, in addition to other entity types.

One of the recent studies for identifying and classifying drug names is done by Segura et

al [27]. Their rule-based system combines information from several resources such as

UMLS MetaMap Transfer, World Health Organization, and International Nonproprietary

Names Program. Besides identifying pharmaceutical substances, the system is able to

detect drug names.

Hettne et al. [28] have developed a dictionary that detects small molecules and drugs.

They combined information from UMLS, MeSH, ChEBI, DrugBank, KEGG, HDMB and

ChemlDplus. They also used rule-based term filtering. They report a precision of 0.67

and recall of 0.40.

ChemSpot [29] is a Named Entity Recognition tool for identifying mentions of chemicals

in text. It detects trivial names, drugs, abbreviations, molecular formulas and IUPAC

entities. It uses CRF (Conditional Random Fields) and a dictionary-based approach. It

obtained 68.1% F-measure on the SCAI corpus. There were five systems [25]

participating in the Drug NER task in DDIExtraction-2013, variously using dictionary

based and machine learning techniques.

2-3 Drug-Drug Interactions

As we noted earlier, most DDI-Extraction studies were conducted as part of the DDI-

Extraction 2011 and 2013 challenges. In this section, we review these studies.

15

2-3-1 DDIExtraction 2011

Segura et al [30] report one of the first attempts to extract drug-drug interactions from the

biomedical literature. They used a hybrid method that combines shallow parsing and

syntactic simplification with pattern matching. The UMLS MetaMap tool (MMTx) is

used to provide shallow syntactic parsing and a set of domain-specific lexical patterns

were developed to extract DDIs. Separately, in later work, they utilized a supervised

machine learning approach to identify DDIs [31], while also creating a DrugDDI corpus

for evaluating their approach. Their SVM classifier achieved 0.51 precision, 0.72 recall

and F-measure of 0.60.

Mata et al [32] developed a Machine Learning system for DDI extraction that achieved

an F-measure of 0.4702. For developing the system, they used around 600 features, such

as keyword before first drug, keyword after second drug, keyword between drugs, and

number of words and phrases between drugs. They explored four classification

algorithms: RandomForest, NaïveBayes, SMO, and multiBoosting. Their best result

comes from RandomForest.

Garcia et al [33] built a Machine Learning system based on bag of words and pattern

extraction. 1,010 words with a high gain ratio were collected and used as a “bag of

words” feature, in addition to word categories to reflect the structure of the sentence,

including subordinators, independent markers, appositions, coordinators, absolute,

quantifiers, negations, etc. They also used Maximal Frequent Sequences (MFS) as a

feature. A sequence is defined as an ordered list of elements, in this case, words. A

sequence is maximal if it is not a subsequence of any other; that is, if it does not appear in

any other sequence in the same order. All MFS from the training corpus were extracted,

16

with length between 2 and 7, and appearing in at least 10 sentences. Several classifiers

were explored in this work, including Support Vector Machines, Decision Trees and

multiple ensemble classifiers such as Bagging, MetaCost and Random Forests. Their best

choice was Random Forest with 100 iterations and 100 attributes per iteration, with an F-

Measure of 0.5829.

Thomas et al [34] have used Ensemble learning for DDI extraction. Their single best

single classifier achieved an F-Measure of 0.63 and the best ensemble achieved 0.65.

They used three kernel based approaches (APG, kBSPS, and SL) and case-based

reasoning (Moara).

Bjorne et al [35] presented a DDI system that explored both SVM and regularized least-

squares classifiers. They obtained 0.62 F-measure on DrugDDI. Minard et al [36] also

presented a system based on SVM by using LIBSVM and SVMPerf tools. They reported

a 0.5965 f-measure on DrugDDI.

Chowdhury et al [33] participated in the DDIExtraction 2011 challenge and evaluated a

range of new composite kernels for DDI. These kernels combine different combinations

of mildly extended dependency tree (MEDT) kernel, phrase structure tree (PST) kernel,

local context (LC) kernel, global context (GC) kernel and shallow linguistic (SL) kernel.

The best result is an F-Measure of 0.6370 by combining MEDT, PST and GC kernels.

They used the UMLS SPECIALIST lexicon tool to normalize tokens to avoid spelling

variations and to provide lemmas. They also used dependency parse trees for

corresponding sentences.

17

Karnik et al [37] presented a DDI extraction system that used all paths graph kernel. The

system didn’t work well on DrugDDI corpus and it obtained a 0.16 F-measure. But F-

measure for a clinical pharmacokinetic DDI corpus was 0.658.

2-3-2 DDIExtraction 2013

In the 2013 challenge, the system with the highest F-Measure is proposed by the FBK-irst

team [38]. Their system is a multi-phase relation extraction system. They used two

separate phases for DDI extraction and classification. For DDI extraction, they removed

less informative sentences and instances, and then trained a system on the remaining

instances. A hybrid kernel classifier that contains a feature based kernel, a shallow

linguistic kernel, and a Path-Enclosed Tree kernel is used in the first step. For

classification of DDI, they trained 4 separate models for each class (one vs. all the other

classes).

The innovative part of this system is detecting “less informative sentences”, where a

sentence is considered less informative if all drugs in a sentence fall under the scope of a

negation cue (such as not). A negation detector system (focused on a limited set of

negation cues, such as no, n’t and not) is used to identify and filter the less informative

sentences. The remaining sentences are classified with the SVM Light-TK toolkit

(Moschitti, 2006)[39], utilizing the Charniak-Johnson reranking parser [40], a self-trained

biomedical parsing model [41], and the Stanford parser [42]. On the DDI-DrugBank test

dataset, they obtained 0.68 F-Measure and on the DDI-Medline test dataset, 0.40 F-

Measure.

The WBI-DDI team [43] presented a two-step system, like the first system in this

competition, that splits the step for extracting DDIs step from that of classifying DDIs.

18

For extracting DDIs, an ensemble approach is applied, which combines the output of five

different classifiers via majority voting. The framework for this ensemble approach is

provided in [44]. All-Paths Graph [45], shallow linguistic [46], subtree [47], subset tree

[48], and spectrum tree [49] method are the classifiers used in the ensemble method. Each

classifier uses different sets of features, but most of them used part-of-speech tags,

constituent parse tree, and dependency parse tree information. In the second step, the

subtype prediction of Turku Event Extraction System [35] is applied.

For pre-processing, this system uses the Charniak-Johnson PCFG parser [40] with a self-

trained re-ranking model augmented for biomedical texts [41]. Like most teams in the

competition, the drug entity names are replaced with a generic string to ensure the

generality of the approach [50].

This approach achieved the second rank in the competition, with 0.61 F-Measure on the

DDI-DrugBank test dataset and 0.35 F-Measure on the DDI-Medline test dataset.

The UTurku team [51] developed a machine learning system based on the Turku Event

Extraction System (TEES) [35]. TEES is an NLP tool for event and relation extraction

based on SVM. It considers part-of-speech tags, dependency chains, dependency path N-

grams, entities, and external resources such as hypernyms in WordNet. For this task,

Bjorne et al. used deep syntactic parsing to generate large graph-based feature sets. They

parsed the corpus with TEES and extracted most of their syntactic features from the

shortest path of dependencies between two main drugs, such as N-grams and governor–

dependent information for dependencies.

19

The significant difference between this system and the others is in using external

resources. This system derived some features from external resources such as DrugBank

and MetaMap. They trained three systems with different sets of features:

1. Features extracted from the text as baseline

2. Adding extracted features from DrugBank to the baseline

3. Adding extracted features from MetaMap to the baseline.

Their results showed that the external features, especially from DrugBank, increased the

performance, because they extracted DDIs from DrugBank and used them as a feature in

the system. However, MetaMap didn’t improve the performance, although their results

show that MetaMap is useful for the Drug NER task.

They obtained 0.61 F-Measure on the DDI-DrugBank test dataset and 0.23 F-Measure on

the DDI-Medline test dataset.

The NIL-UCM team [52] presented a SVM classifier with a linear kernel and a rich set of

lexical, morphosyntactic and semantic features. They experimented with two approaches.

In the first approach, they extracted and classified all DDIs in one step, as a 5-class

classification problem. But in the second approach, they extracted DDIs in one step, and

then classified them into 4 DDI classes in the next step. Most of the teams in the

competition applied the second approach, separating the extraction step from the

classification step.

Features in this system included word features (such as words between drugs, three words

before first drug, and so on), morphosyntactic features (such as POS), constituency parse

tree features (such as shortest path between drugs, shortest path between first token in the

20

sentence and first drug, etc.), conjunction features, verb features, and negation features.

They applied feature selection approaches and information gain ranker for selecting the

best features.

Only this team separated the DrugBank data from the Medline data and trained two

separate SVM systems for each. However, this approach didn’t obtain a good overall

result compared to the other approaches.

A better result was obtained with the second approach, which separated the extraction

phase from the classification phase. Like the other teams, they obtained a better result on

the DrugBank data rather than the Medline data. The authors attribute the reason for the

poorer performance to the fact that the Medline corpus has fewer words as compared to

the DrugBank corpus. This is also suggested by Chowdhury et al. [38].

In this system, Paice/Husk Stemmer [53], Stanford parser [42], NegEx7 and Weka [54]

are used. Their F-Measure on the DDI-DrugBank test dataset is 0.56 and on the DDI-

Medline test dataset is 0.12.

The system presented by the UC3M team [25] is based on shallow linguistic (SL) kernel

methods. The system contains three steps: pre-processing, DDI extraction, and DDI

classification. They submitted two runs to the competition. The first run was based on

linguistic information and the second one on semantic information. For the pre-

processing step, GATE analyzer8 and Stanford parser [42] are applied to obtain POS and

lemmatization. Also, multiword entities are pre-processed to keep words related to same

7 http://code.google.com/p/negex/
8 http://gate.ac.uk.

21

concept together. For example, they unified “beta-adrenergic receptor blocker” into a

singleton word “beta-adrengic_receptor_blocker” as type NNP, whereas the Stanford

parser would have processed the phrase with three different tags and phrase labels. For

the third step, they trained four systems for each class. The only semantic information

used is the ATC code value. They obtained a higher result with the system that used

linguistic information. However, because they just explored one semantic feature, we

can’t conclude anything about the (non-)importance of using semantic information for

this task. They obtained 0.56 F-Measure on the DDI-DrugBank test dataset and 0.26 F-

Measure on the DDI-Medline test dataset.

Our team, UWM-TRIADS [55], presented a system based on SVM and rule-based post-

processing. We explored two approaches, one separating DDI extraction from DDI

classification, and the other doing both in one step. We obtained a better result from the

first approach, with a two-stage classifier. We used SVM as the classifier in both stages.

Because of the unbalanced distribution of the classes, we assigned different weights to

each class. Our SVM features exploited stemmed words, lemmas, bigrams, part of speech

tags, verb lists, and similarity measures, among others.

Also, we developed a set of post-processing rules after each stage. The post-processing

rules improved our results.

In this system, we used LibSVM [56], Weka [54], Stanford NLP tool [42], [57], Dragon

toolkit [58] and WordNet [59].

We obtained 0.48 F-Measure on the DDI-DrugBank test dataset and 0.34 F-Measure on

the DDI-Medline test dataset.

22

The SCAI team [60] presented a machine learning system which utilizes lexical, syntactic

and semantic feature sets. Like the other teams, this system contained two steps,

extracting DDIs and classifying DDIs. This system used an ensemble classifier in the first

step, but for the second step, it just applied some post-processing rules.

The set of features for the classifier contained lexical, syntactic dependency, and

semantic features. Their feature set contained most of the features that are used by the

other teams, also considering negation words in sentences. LibLINEAR, Naïve Bayes and

Voting Perceptron classifiers are used in the ensemble method. After extracting DDIs,

they applied a post-processing step to classify DDIs into 4 classes. For this step, they

generated 4 lists of relation trigger words, manually. Different priorities are assigned to

each class, for cases when a sentence contained trigger phrases from different classes.

They achieved 0.46 F-Measure on the DDI-DrugBank test dataset and 0.26 F-Measure on

the DDI-Medline test dataset. They used a rich set of features in the first step; this poor

result shows that using only post-processing rules for classifying DDIs is not a good

approach.

The UColorado-SOM team [61] presented a machine learning system based on SVMs.

Morphosyntactic, lexical and semantic features were used to train the system. They

approached the task as a binary classification task by applying one-vs-all multi-class

classification techniques. In essence, the system extracted and classified DDIs at the same

time, which appears to be the reason for the poor result.

LIBSVM [56], GENIA, TEES [35] and OpenDMAP [62] are used in this system. They

obtained 0.42 F-measure on the DDI-DrugBank test dataset and 0.27 F-measure on the

DDI-Medline test dataset.

23

2-3-3 Other Approaches

In contrast to the classification of DDIs in the shared task competitions, there are several

studies that classify DDIs in terms of their “mechanism of interaction”, distinguishing

between Pharmacodynamic (PD) interactions and Pharmacokinetic (PK) interactions.

Pharmacodynamic interactions include the concurrent administration of drugs having the

same (or opposing) pharmacologic actions, and alteration of the sensitivity or the

responsiveness of the tissues to one drug by another. Many of these interactions can be

predicted from knowledge of the pharmacology of each drug. The change in an

organism's response on administration of a drug is an important factor in

pharmacodynamics interactions. Pharmacokinetics refers to the study of the absorption,

distribution, metabolism and excretion (ADME) of bioactive compounds in a higher

organism. In a Pharmacokinetics interaction, modifications in the effect of a drug are

caused by differences in the absorption, transport, distribution, metabolization or

excretion of one or both of the drugs compared with the expected behavior of each drug

when taken individually.

Tari et al. [63] evaluated a rule-based algorithm for extracting pharmacokinetic DDIs

from papers and abstracts in the scientific literature. In this study, the authors

distinguished between explicit DDIs (statements indicating a direct observation of a PK

effect from a given drug combination) and implicit DDIs (DDIs that can be inferred

based on claims about drug metabolic properties extracted from scientific texts). The

algorithm was run over more than 17 million Medline abstracts and the output DDIs were

compared with DrugBank drug interactions. The recall of the algorithm was very low, but

24

their study showed that 78% of the DDIs extracted were valid. These results illustrated

that DDIs in DrugBank aren’t complete.

Boyce et al. [64] presented a tool to extract PK DDI. They manually created a corpus of

Federal Drug Administration approved drug package insert statements, containing 592

PK DDI. Then they implemented and evaluated three different classifiers using machine-

learning algorithms. Besides classifying PK DDI in the corpus, their system classified

statements by their modality. They evaluated SVM, Jrip, and J48, and their best result

was 0.859 F-measure with SVM.

25

Chapter Three:

Methods

26

3-1 Introduction

In this chapter, we describe our approach to extract and classify drug interactions from

biomedical text. Our system classifies each drug pair into 5 classes – advise, effect,

mechanism, int and none. A major challenge in this task is posed by the unbalanced

distribution of the classes. First, considering just the positive vs. negative classes, just

19.3% (4037/20854) of drug pairs are in the positive class. Furthermore, the four types

within the positive class are also unbalanced, with the int type constituting only 4.6%

(188/4037) of the instances. A classifier trained on this data will, therefore, be biased

towards the majority class(es). To handle this problem, we propose a two-stage

classification approach.

In the following sections, we provide details about our approach and discuss its

advantages, including pre-processing steps, the set of features explored in our machine

learning method, and the post-processing rules developed for further manipulation of the

result of machine learning.

3-2 Pre-processing Steps

Before classification, all sentence instances in the corpus were pre-processed in order to

clean and normalize the corpus as well as to extract features for machine learning. We

utilized existing NLP tools for several steps in the pre-processing. The following steps

describe the pre-processing:

• All letters were changed to lower case.

27

• All drug names were normalized by replacing them with one of two strings; one used

for drug mentions that were candidates for classification in the instance (main drugs),

and the other used for all other drug mentions (additional drugs).

• All numbers were normalized by replacing them with the same string.

• Sentences with less than two drug names were removed, since the system is tasked

with detecting and classifying drug interactions between two drugs.

• Stop words and punctuation were removed. We used different stop word lists to

compare how the number of stop words affect the system. However, as stop words

between two main drugs can contain useful information as an indicator for

interaction, stop words in this context were retained.

• Part of speech (POS) tags were obtained with the Stanford NLP tool [57].

• Words were stemmed with the Porter Stemmer [65].

• Words were lemmatized with Dragon tool [58].

• Synsets for words were obtained using WordNet [59].

• We developed and implemented a tool to detect negations in sentences. The tool

highlights negated sentences and also identifies negation indicators such as not. The

negation tool will be described later below.

• Phrase structure parse tree of sentences were obtained with the Stanford NLP tool

[42]. We explored multiple types of information from parse trees as features in the

classifier, including syntactic path between the main drugs and whether or not both

main drugs appear in the same clause.

28

3-2-1 Negation detector

The Negation Detector tool mentioned above was developed by us. It utilizes the

machine-learning approach of Hidden Markov models (HMMs). Hidden Markov Model

is the stochastic analog of finite state automata. An HMM is defined by a set of states and

a set of transitions between them. Each state has an associated emission distribution,

which defines the likelihood of a state to emit various tokens. The transitions from a

given state have an associated transition distribution, which defines the likelihood of the

next state, given the current state.

We generated a HMM and trained the negation detection model with the BioScope9

corpus [66]. We used a java implementation of HMM, called Jahmm10. The BioScope

corpus consists of medical and biological texts annotated for negation and speculation,

with the annotation encoding negation and speculation keywords and their scopes. It

contains more than 20,000 manually annotated sentences from clinical notes and

published biological articles. For our negation detector tool, we only considered the

negation annotations of the corpus.

A HMM model is trained via sequences of observations. In our model, we considered

POS tags as observations. In particular, we replaced all non-negated words with POS tags

and generated the sequences of observations. Figure 3-1 shows our HMM model. It has

two states, positive and negative and includes 72 observation, 35 POS tags and 37

negated words. The accuracy of the system is 96.44% and F-measure is 92.03% in

negation sentence detection.

9 http://www.inf.u-szeged.hu/rgai/bioscope
10 https://code.google.com/p/jahmm/

29

Figure 3-1: This Hidden Markov Model is used in the negation detector system. This HMM consists two
states, positive and negative. Each rectangle shows one of observations that can be a POS tag or a word that
appeared in the negated parts of the sentences.

3-3 Two-stage classification

The architecture of our system is illustrated in Figure 3-2. The system comprises two

classifiers in separate stages. In the first stage, we train a binary classifier to classify drug

pairs into positive and negative classes. Then, in the second stage, we consider only those

instances that are classified as positive by the first classifier, and classify them into one of

four types within the positive class – advise, effect, mechanism, and int – using a multi-

class classifier.

A two-stage classifier offers a distinct advantage over a one-stage classifier for the DDI

data set, not just because it is highly skewed towards one class – the negative class – but

also because this majority class is clearly semantically distinct from the other positive

classes. Therefore, by reframing part of this problem as a binary classification task, we

can exploit binary classification techniques and allow the classifier to be particularly attentive to

30

features distinguishing positive and negative drug pairs, while at the same time avoiding the bias

against each of the non-majority classes. Our experiments with the training set confirm this idea.

Using a two-stage classification approach also allows us to explore different classifiers

for each stage and find the best fit for each of them separately, by pursuing advantageous

approaches for binary classification on the one hand and multi-class classification on the

other hand.

After pre-processing, the remaining sentences contain two or more drugs. In the first

stage, we need a binary classifier to classify each drug pair as positive or negative. The

following is an example of a sentence with drug names highlighted.

• “Catecholamine-depleting drugs, such as reserpine, may have an additive effect

when given with beta-blocking agents.”

As the sentence has three drug names, the system needs to consider DDI between the

following three drug pairs:

1- Catecholamine-depleting drugs and reserpine

2- Catecholamine-depleting drugs and beta-blocking agents

3- reserpine and beta-blocking agents

At this point, the DDI extraction task is carried out via a binary classifier. If the classifier

predicts a DDI between a pair, then it classifies the pair as positive, and otherwise as

negative. As we want to pass only the positively classified instances from the first stage

to the second stage classifier, we favor the positive class in the first stage. For this

purpose, if the classifier allows us to assign weights to each class (e.g., SVM) we assign a

high weight to the positive class. This results in a relatively high number of false

31

positives for the positive instances, which we attempt to reduce with a set of post-

processing rules before sending them to the second stage classifier.

 One/More instances

Pre-Processing

POS tagger

Stop Words list
Lemmatizer

Stemmer

Sentence with more than two
drugs

Final Classification

Post-Processing

Post-Processing

Instances classified as
positive

First Stage Classifier

(Binary Classifier)

Second Stage Classifier

(Multi-Class)

Classified as positive Classified as negative

Figure 3-2: DDI Extraction and Classification System architecture.

32

We should add that for training the first classifier we used all the instances in the corpus

but for training the second classifier, we just used the positive instances that classified

into Advice, Effect, Mechanism, and Int.

 3-3-1 Features

To train the classifiers, we utilized a variety of features to investigate their effectiveness

and choose the best combination of features for classification. In this section, we explain

these features by separating them into two categories: features per sentence and features

per drug-pair instances. Recall that since one sentence can have more than two drug

names, an instance of the sentence is generated for each drug pair.

Features per sentence

These are sentence-level features that have the same values across all instances of a

sentence.

• Words: This is a binary feature for all words that appeared more than once in the

corpus, indicating the presence or absence of each such word in the sentence. We

considered stemmed words as well as lemmatized words.

• Mutual Information [67]: Instead of using all words that appeared in the corpus,

we apply mutual information as a feature selection approach to choose

informative words. Mutual information for term t and class c is calculated with

the following formula:

P t, c =
N!,!
N ∗ log!

!!,!∗!
!!∗!! +

N!,!
N ∗ log!

!!,! ∗!
!!∗!!

33

+
N!,!
N ∗ log!

!!,!∗!
!!∗!! +

N!,!
N ∗ log!

!!,! ∗!
!!∗!!

Where, N: Number of all instances, N!,!: Number of instances in c that contain t,

N!,!: Number of instances that contain t but not in the class c, N! : Number of

instances that contain t, … We rank the words based on the Mutual Information

score and use 100/200/500/1000 top words.

• Word bigrams: This is a binary feature for all word bigrams that appeared more

than once in the corpus, indicating the presence or absence of each such bigram in

the sentence

• Number of words: This feature represents the total number of words in the

sentence

• Number of drug mentions: This feature represents the total number of drug

mentions in the sentence.

• Cosine similarity between centroid vector of each class and the instance:

Inspired by the vector space [67] Information Retrieval approach, we add new

features to represent the cosine similarity between a sentence and the centroid of

normalized vectors for sentences assigned the class C. Cosine similarity is

calculated based on modified tf*idf. We compute modified tf*idf for a word w,

based on the following formula:

Tf ∗ idf = Count w in instance ∗ log!
!"#$%& !" !"" !"#$%"&'#

!"#$%& !" !"#$%"&'# !"#$%&# ! !!

34

TF is the number of times the word occurs in the instance. IDF is the logarithm of

number of all instances divided by the number of instances that contain the word.

To calculate the centroid vector for class C, a vector is created for each instance in

class C by giving each word in the instance a modified TF*IDF weight. The

centroid vector for class C is the mean of all vectors of sentences in class C. The

cosine similarity between a given instance and the centroid vector of each class is

then used as a feature.

Features per instance (each pair)

In contrast to sentence-level features, these features may have different values across the

different drug-pair instances. In each instance, we distinguished the two main drugs of

interest for the instance from all other additional drugs mentioned in the instance.

• Number of words between two main drugs: This represents the total number of

words between the two main drugs.

• Number of drugs between two main drugs: This represents the total number of

additional drugs appearing between the two main drugs.

• Number of verbs: We use the number of verbs in the instance as a feature, but

relative to their sentential position. In particular, we split each instance into three

sections: (i) before the first main drug, (ii) between the two main drugs, and (iii)

after the second main drug. Then, we count the number of verbs in each section,

and use them as three different features.

• Number of verbs using class-specific verb lists: For each class, we extract two

lists of verbs. The first list contains verbs that appeared in just that class but not in

the others. Thus, the set of verbs extract for each class are unique and different

35

from the verbs associated with other classes. The second list includes all verbs

that appeared in that class and their synonyms, extracted from WordNet. Then, for

each of the three sentence sections, as described above, we create two features to

represent the number of verbs from each of these lists that appeared in the section.

• POS of words between two main drugs: This is a binary feature for word POS

tags obtained from POS tagging, and indicates the presence or absence of each

POS between the two main drugs.

• Path between two main drugs: Path between two main drugs in the parse tree is

another feature in our system. Because syntactic paths are in general a sparse

feature, we reduced the sparsity by collapsing identical adjacent non-terminal

labels. E.g., NP-S-VP-VP-NP is converted to NP-S-VP-NP. This technique

decreased the number of paths by 24.8%.

• Negation: To consider negation in the instance, three features are defined that

respectively indicate negation before the first main drug, between two main drugs,

and after the two main drugs.

• Clause Boundary: This feature shows that both main drugs are in the same

clause or not. The system utilizes the parse tree to set the binary value for this

feature.

3-3-3 Post processing

As described before, we have two sets of post-processing rules for each stage of the

system. Here, we describe these rules, developed on the basis of observations in the 90%

of the competition training data (that was used as the training set in our experiments). In

the next chapter, we evaluate the effectiveness of these rules.

36

3-3-3-1 Post-processing after the first stage

Post-processing rules for the first stage were designed to reduce the number of false

positives for the positive class, since the weight assignment in this stage favors this class.

The following describes the rules, with examples:

1. An instance is classified as negative if both drug mentions have the same name,

since a drug cannot interact with itself. In the following instance, one drug is

appeared twice. So, the system considers them as a drug pair. If the classifier in

the first stage classifies them as positive, the post-processing step updates its label

to negative.

• “In controlled clinical trials of AUGMENTIN XR, 22 patients received

concomitant allopurinol and AUGMENTIN XR.

2. An instance is classified as negative if one of the drugs is a plural form of the

other one, since, as above, they refer to the same drug.

• “Oral Anticoagulants: Interaction studies with warfarin failed to identify

any clinically important effect on the serum concentrations of the

anticoagulant or on its anticoagulant effect.”

3. An instance is classified as negative if one of the drug mentions refers to a drug

class name of the other, since we don’t expect a drug to interact with its own class

as a whole. Drug class names were obtained from a table provided by the FDA.11

In the example below, “MAOI” is the drug class name for “isocarboxazid”.

11http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162549.htm

37

• “You cannot take mazindol if you have taken a monoamine oxidase

inhibitor (MAOI) such as isocarboxazid (Marplan), tranylcypromine

(Parnate), or phenelzine (Nardil) in the last 14 days.”

4. An instance is classified as negative if “,” or “, and” appears between the two

main drug mentions, and is accompanied by an additional drug mention. The rule

identifies contexts where drugs are mentioned as a set, in interaction with a

different drug. The following sentences show “glyburide”, “tolbutamide” and

“glipzide” as part of a set of drugs in interaction with the additional drug

“DIFLUCAN”.

• “DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and

glipizide and increases the plasma concentration of these agents.”

• “DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and

glipizide and increases the plasma concentration of these agents.”

5. An instance is classified as negative if “,” and additional drugs appear between

the main drug mentions. Like the previous rule, this again recognizes drugs

mentioned as a set, but in particular, identifies non-adjacent mentions. For

example, the following sentence doesn’t express any interaction between

“tolbutamide” and “glipizide”, and the rule recognizes them as part of a set

mention even though they are non-adjacent.

• “DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and

glipizide and increases the plasma concentration of these agents.”

6. An instance is classified as negative if “or” appears between the two main drug

mentions and the sentence contains additional drug mentions. The presence of

38

additional drug mentions in the sentence is required here since such conjoined

pairs can interact with each other when they occur alone.

• “Concurrent ingestion of antacid (20 mL of antacid containing aluminum

hydroxide, magnesium hydroxide, and simethicone) did not significantly

affect the exposure of oxybutynin or desethyloxybutynin.”

3-3-3-2 Post processing after the second stage

Post-processing after the second classifier identifies sentences like the following:

• “Coadministration of alosetron and strong CYP3A4 inhibitors, such as

clarithromycin, teli thromycin, protease inhibitors, voriconazole, and

itraconazole has not been evaluated but should be undertaken with

caution because of similar potential drug interactions.”

Examples like these illustrate that if drugs are mentioned as a set, then all drugs in the set

must have the same interaction type with a drug mentioned outside the set. Thus, in the

example, the interaction of each of “clarithromycin”, “telithromycin”, “protease

inhibitors”, “voriconazole”, and “itraconazole” with “alosetron” should be classified in

the same way. We use several syntactic and lexical cues to identify set mentions of drugs.

Then, since the classifiers can make different decisions for each such pair (e.g., it may

assign one label to the interaction of “clarithromycin” with “alosetron” and another label

to the interaction of “telithromycin” with “alosetron”), we apply uniform labeling for the

interaction of all such pairs. The majority label was used as the common label. Ties were

not encountered in this data, although a solution would have to be devised otherwise.

39

An important consideration for this rule is that it uses both positively and negatively

labeled instances. The former are taken from the result of the second stage classifier, and

the latter from the negative instances of the first stage classifier and the negative

instances of the first post-processor. These varied inputs to the rule are illustrated by the

three ingoing arrows into the second post-processor in Figure 3-2.

40

Chapter Four:

Results and Conclusion

41

4-1 Introduction

In this chapter, we first present our implementation of the system, including the libraries

and tools that we utilized. Metrics used to evaluate system performance are then

presented, followed by the results, where we also discuss the impact of various features

on the system using SVM. Then, the performance of different classifiers in each of the

two system stages is evaluated and the best system introduced. We also present results of

applying the post-processing rules to the output of each stage. We finish with the error

analysis, conclusions, and discussion of future work.

4-2 Implementation

As there are many Natural Language Processing and Machine Learning tools and

libraries in Java, we used this programming language to implement our method. Some of

these tools such as Weka [54] are applied in classification tasks, but Weka is not designed

to directly handle the steps in our system architecture, which consists of two classifiers

with the output of the first classifier serving as input to the second one, and a set of post-

processing rules applied after each stage. Therefore, we implemented a tool that, besides

using available NLP libraries, handles our two-stage approach for classification.

The following lists and describes the existing libraries and tools utilized in our system.

(These were also mentioned briefly in Chapter 3.) We have used these tools for various

tasks in our system, including machine learning, pre-processing, and feature extraction.

• Weka: Weka [54] is a collection of machine learning algorithms available as a

java-based software package, with graphical user interfaces providing easy access

to its functionalities. We used Weka to apply some of its classifiers in our method.

42

The input to Weka has to be in a specific format, called the Attribute-Relation

File Format (Arff). An Arff file is a text file created by declaring all attributes

(i.e., the feature names) in the file, followed by a list of the data instances. Each

instance is represented as a vector of values for the attributes, with one value

provided for each attribute. The last value of the instance vector indicates the

class label of the instance. To utilize Weka for training our classifiers, we created

an Arff file using the instances in the data and the features described in Chapter 3.

• LibSVM [56]: LibSVM is software library for Support Vector Machines,

implemented in Java, that allows users to apply SVM for their applications. We

used this library to train the SVM classifier.

• Stanford NLP tool: This library is used to obtain POS tags [57] and parse trees

[42] for sentences. The tool contains several NLP algorithms such as part-of-

speech (POS) tagger, named entity recognizer (NER), parser, and the coreference

resolution system. It is provided in different languages such as Java, Perl, Python,

Ruby, Sacala, and Clojure.

• Porter Stemmer [65]: This is a library used for stemming words in the sentences.

Stemmed words were used as a feature in our classifier.

• Dragon tool [58]: We used this tool to obtain word lemmas, which were used as a

feature in our classifier.

• WordNet [59]: As described in Chapter 3, we created a list of synonyms for verbs

in each class. We used WordNet to obtain synonyms.

43

4-3 Metrics

We used the standard metrics of Precision, Recall, and F-measure to evaluate the

performance of our system. To compute these metrics, the organizers of the

DDIExtraction 2013 Challenge provided a code in Java that takes as input a text file of

predictions and calculates the precision, recall and F-measure. In these metrics, a DDI is

correctly detected if the system assigned the correct class label to it. A prediction is

correct if both extraction label (Yes, None) and classification label (Advise, Mechanism,

Effect, Int) are correct. To clarify the meaning of these metrics, let’s look at the meaning

of precision for type Advise:

Precision =
TP

TP+ FP

TP indicates the true positives, i.e., the number of truly detected pairs of the advise class

class and FP indicates the false positives, i.e., the number of pairs that are predicted as

advise incorrectly.

For each run in the results discussed below, we present these three metrics. F-measure is

calculated with the macro-averaged method12, i.e., by taking precision to be the average

of the precision calculated for each type, and similarly for recall.

4-4 Results

In our experiments, we first explored different combinations of features (described in

Chapter 3) with SVM in order to identify the best performing feature set. We then used

this feature set to further explore the performance of additional classifiers, thus

12 http://www.cs.york.ac.uk/semeval-2013/task9/data/uploads/semeval-2013-task-9_2-
evaluationmetrics.pdf

44

identifying the best machine learning classifier for the task. Post-processing rules were

applied to the output of the best performing classifier. As the test set had not been made

available until the time of writing of this thesis, the experiments we conducted after the

challenge are done by using only the training data, by splitting the training data into a

training set (90%) and a test set (10%). In this section, we present and discuss the results

of all our experiments. For each experiment, precision, recall and F scores are given.

4-4-1 Feature Selection

To determine which features are most useful in the system, we added them incrementally

to our classifiers and examined their effect on system performance. We used SVM for

identifying the best performing features, in both stages of the system.

In the first experiment, we explored the role of words as features. We compared the effect

of using all words as features with using only informative words, where informative

words are chosen by calculating the Mutual Information (MI) score for words in each

class (described in 3-3-1). We further explored different cut-offs for choosing informative

words in each class with high MI score: 100, 200, 500 and 1000, which yielded 296, 476,

940, and 1417 unique words, respectively, as features. Table 4-1 presents the results for

this experiment. The first row shows the result with all words used as features, whereas

the remaining rows show the result of using informative words as features.

Table 4-1: Results of using words with high mutual information score compared to all words.

Features # Of
features Precision Recall F-Measure

All Words 1599 0.22 0.74 0.34

100 words of
each class with

high MI
296 0.33 0.68 0.34

45

200 words of
each class with

high MI
476 0.32 0.68 0.34

500 words of
each class with

high MI
940 0.28 0.70 0.34

1000 words of
each class with

high MI
1417 0.30 0.74 0.37

As Table 4-1 illustrates, using informative words to train the classifiers performs better

than using all words. Furthermore, with informative words, the best result was obtained

with 1000 words. Therefore, in all remaining experiments, we used 1000 words of each

class with high MI score, with a total of 1417 unique words.

In the next experiment, we evaluated the impact of POS as a feature in combination with

the 1000 high MI words. POS is a binary feature for word POS tags and indicates the

presence or absence of each POS between the two main drugs. The second row of Table

4-2 illustrates the results of adding the POS feature. The first row repeats the scores for

the best result from Table 4-1, The second row shows that adding POS markedly

increases the F-Measure from 0.37 to 0.59, suggesting that POS is a highly useful feature.

In the next set of experiments, we evaluated the impact of adding additional features

individually to the combination of the high MI words and POS features.

Table 4-2: System performance for different sets of features

Features Precision Recall F-Measure

1000 words with high MI 0.30 0.74 0.37

1000 words with high MI
+POS

0.48 0.83 0.59

46

1000 words with high MI
+POS

+Verb features
0.45 0.80 0.56

1000 words with high MI
+POS

+Numbers features
0.38 0.75 0.50

1000 words with high MI
+POS

+Path Between drugs
0.42 0.71 0.51

1000 words with high MI
+POS

+BiGrams
0.34 0.78 0.46

1000 words with high MI
+POS

+Negation
0.45 0.83 0.58

1000 words with high MI
+POS

+Cosine Similarity
0.48 0.83 0.59

1000 words with high MI
+POS

+Clause Boundary
0.45 0.80 0.56

Verb features, shown in the third row, represents the number of verbs in the sentence, and

the number of verbs from each class-specific verb list (discussed in Chapter 3). As can be

seen in the table, the F-Measure dropped by 0.03% after adding these features to the

system.

The fourth row of Table 4-2 shows the impact of number features on the system. The

number features contain three features, the number of words in the sentence, the number

of words between main drugs, and the number of drug names in the sentence. The result

indicates that number features decreased the system performance.

One of the features we explored was path between main drugs in the parse tree, shown in

the sixth row of the table. We traversed the parse tree to extract the path between the

main drugs, while reducing the length of the path by collapsing identical adjacent non-

terminal labels. Using this feature decreased the performance by 0.08.

47

The next experiment explored the effect of using Bi-grams as feature in the classifiers.

For each word Bi-grams that appeared more than once in the corpus, we assigned a

feature to show the presence or absence of the bi-gram in the sentence. The sixth row of

Table 4-2 presents the results, highlighting that adding Bi-grams to the system decreased

the F-Measure.

One of our explored features was negation. We added three features to the classifiers that

indicated presence of negation in different parts of sentence: before the first drug,

between two main drugs, and after the second drug. The results are presented in the

seventh row of Table 4-2. This feature decreased the F-Measure from 0.59 to 0.58.

We also explored the Cosine similarity feature that presented the cosine similarity

between a sentence and the centroid vector of each class. The eighth row of Table 4-2

shows the performance of the system after adding this feature. Unlike the other features,

this feature didn’t decrease the performance of the system. But it did not increase the F-

Measure either, so we decided not to use this feature in the final system.

The last explored feature is Clause Boundary, which indicates whether main drugs are in

the same clause or not. The performance of the system after adding this feature is

presented in the last row of table 4-2. It didn’t increase the F-Measure.

After exploring different sets of features, we found that the best result is obtained with

using 1000 words with high Mutual Information together with part of speech tags. In the

following experiments, therefore, we used this set of features to explore additional

classifiers.

48

4-4-2 Classifier Selection

Given the best set of features, we explored 6 different classifiers for each stage: Naïve

Bayes, Multinomial Naïve bayes, J48, Jrip, Random forest, and SVM. To find the best fit

for the first stage classifier, we used SVM as the classifier in the second stage, and

evaluated all the classifiers in the first stage. The results in Table 4-3 illustrates that SVM

is the best fit for the first stage based on its F-Measure. It is worth noting, however, that

with Random Forest, the precision was 30% more than with SVM. Therefore, for a

system aiming at high precision, Random Forest would be the best choice for this stage.

We note that to handle the unbalanced class problem, we explored different approaches

and algorithms, including SMOTE [68] and other resampling algorithms, but they were

not effective. Instead, we found that assigning weights to the classes in SVM was more

effective. Therefore, we learned the best weights for each class, based on cross-validation

over the training set. In the first classifier, we assigned weight 1 to the None class and 6.5

to the positive class. In the second classifier, the best weights were 800, 600, 3200, and

500, respectively, for advise, effect, int, and mechanism.

Table 4-3: System performance for different classifiers in the first stage

Classifier in the
first stage Precision Recall F-Measure

Naïve Bayes 0.20 0.72 0.31

Multinomial Naïve
bayes 0.32 0.60 0.41

J48 0.69 0.50 0.57

Jrip 0.75 0.36 0.48

Random forest 0.78 0.45 0.56

SVM 0.48 0.83 0.59

49

We ran the same experiment for finding the best classifier for the second stage. In these

experiments, SVM is used as the classifier in the first stage and the best features are

utilized to train the classifiers. Table 4-4 illustrates the results of these experiments. As

the results show, we obtained the best F-measure by using SVM in the second stage.

Table 4-4: System performance for different classifiers in the second stage

Classifier in the
second stage Precision Recall F-Measure

Naïve Bayes 0.30 0.59 0.39

Multinomial Naïve
bayes 0.41 0.68 0.48

J48 0.36 0.75 0.48

Jrip 0.36 0.72 0.48

Random forest 0.47 0.69 0.51

SVM 0.48 0.83 0.59

4-4-3 Impact of Post-Processing

After finding the best set of features and classifiers, we explored the impact of the post-

processing rules. We developed two sets of rules -- one applied after the first stage and

the second on the final results. Table 4-5 presents the results, showing that using post-

processing rules increased the F-measure. A larger increase is observed with the first

stage rules, which may be attributed to the larger number of rules that are likely to have

covered more examples.

Table 4-5: Impact of post-processing rules.

Post-processing Precision Recall F-Measure

None 0.48 0.83 0.59

After the first stage 0.53 0.82 0.63

On the final results 0.53 0.80 0.62

50

After the first stage

+On the final results
0.55 0.80 0.64

4-4-4 Class-wise Performance

Apart from the overall results given above, it is also useful to examine the class-wise

performance of the system. This is given in Table 4-6. What is interesting to observe is

that the “Int” class shows the highest F-measure, even though this class had the fewest

instances in the training data. The hardest class to identify was the Mechanism class,

which is probably due to its confusability with the Effect class, which also shows a lower

F-measure compared to Int and Advise.

Table 4-6: Class-wise Precision, Recall, and F-Measure

Type Precision Recall F-Measure

Advise 0.53 0.80 0.64

Effect 0.46 0.77 0.57

Mechanism 0.32 0.74 0.45

Int 0.88 0.88 0.88

4-4-5 Stage 1 Performance

 All results above present the performance of the system after the second stage

classification. But it is also useful to assess the performance of the first stage

classification alone, as it provides insight into the task of DDI identification, i.e.,

classification as positive vs. negative. For this task taken alone, the precision, recall, and

F-Measure after applying SVM and post-processing were 0.48, 0.86, and 0.61

respectively. The low precision relative to recall seen here is not surprising since the

positive class was assigned a higher weight. However, what is interesting is that although

51

the impact of the first stage post-processing on the overall result was significant (Table 4-

5), it’s absolute impact on the precision in the first stage is obviously not strong enough.

As we discuss in the error analysis later in this chapter, there is much room for improving

the precision in the first stage with better post-processing.

4-4-6 Comparison with the competition system

Since our submitted system to the DDIExtraction-2013 challenge used a different

combination of features, we compared its performance with our current system. As

shown in Table 4-7, the F-measure in our new system is 12% higher than the competition

system. This comparison shows the effect of careful feature selection carried out for our

current experiments, which we were not able to carry out for the competition system due

to time constraints. In the competition system, we used a large number of features, given

lack of knowledge about which particular features might be most effective.

We note that comparison of our augmented system with the other systems from the

competition is not possible because of the unavailability of the challenge’s evaluation test

set until the time of writing of this thesis.

Table 4-7: Comparison of best system with DDIExtraction-2013 competition system

Features Precision Recall F-Measure

The best system

(1000 words with high MI

+POS)

0.55 0.80 0.64

The competition system (All words +
BiGrams

+ POS + Verb

+Number features +Cosine Similarity)

0.52 0.73 0.52

52

4-5 Error Analysis

As the results above show, the F-Measure of our system is not very high, but this was

true of all the systems in the competition. To some extent, the poor performance in

general can be attributed to the corpus itself, specifically to the unbalanced distribution of

the types. This is further compounded by the unbalanced proportion of sentences from the

two sources from where the corpus was drawn: only 6% of the sentences in the corpus

come from Medline.

However, for our system alone, one of the major reasons for the low F-measure was the

assignment of a higher weight to the positive class, which resulted in a high false positive

rate. Our error analysis shows that 87% of the errors were stage 1 errors, and that more

sophisticated features for learning, or rules for post-processing, should be developed for

further improvement, as discussed next.

Some errors occurred because the post-processing rules identify grouped mentions of

drugs based only on lexical and punctuation identifiers. Most of these errors could have

been averted if the identification of grouped mentions also utilized syntactic information.

For example, in the following sentence,

• “Drugs that Lower Seizure Threshold: Concurrent administration of

WELLBUTRIN and agents (e.g., antipsychotics, other antidepressants,

theophylline, systemic steroids, etc.) that lower seizure threshold should

be undertaken only with extreme caution.”

Our current rules couldn’t detect that “theophylline” and “steroids” were mentioned in

the same group because group identification in the current rules requires adjacency of the

53

drug names. Using syntactic constituency instead and recognizing intervening words as

modifiers could have identified grouped mentions more systematically.

Our analysis also revealed other features that are important to exploit, such as lexical

semantics, scope of negation and hypothetical markers, scope of salient keywords, and

noun phrase referential status.

The following example shows that it may be possible to exploit the syntactic and

semantic scope of the interaction keyword, concurrent, to the two drug names following

it, but not the one preceding it. This example, as an instance for the two drugs,

“etretinate” and “acitretin”, was annotated as None (no interaction), whereas our system

labeled it as Effect.

• “Ethanol:Clinical evidence has shown that etretinate can be formed with

concurrent ingestion of acitretin and ethanol.”

The next example illustrates the role of hypothetical marking and its scope. The

interaction in question is the two drugs, “Argatroban” and “heparin”, highlighted in the

hypothetical if-clause, which the system ought to accordingly treat as a hypothetical

interaction and label as None. Instead, our system labeled this instance as Effect.

• “However, if Argatroban is to be initiated after cessation of heparin

therapy, allow sufficient time for heparins effect on the aPTT to decrease

prior to initiation of Argatroban therapy.”

Of course, some errors were related to the annotation. For example, PAH in the following

sentence does not refer to a drug at all. Note, though, that even if PAH were considered to

be a drug, the class label assigned to it seems to be incorrect, both by the annotation

54

(labeled as Effect) and the system (labeled as Advise). Unfortunately, information about

the level of noise to be expected of the corpus isn’t available, so it is difficult to quantify

the contribution of such errors and use it to set an upper bound on performance.

• “Renal clearance measurements of PAH cannot be made with any

significant accuracy in patients receiving sulfonamides, procaine, or

thiazolesulfone.”

4-6 Conclusions and Future Work

In this thesis, we have presented a system to extract and classify DDI mentions from

biomedical text. As our corpus contains a highly unbalanced class distribution, we

applied a two-stage classifier to handle this problem. In the first stage, a binary classifier

classified drug pairs into non-interaction and interaction classes. Then, drug pairs that

were detected as interacting in the first stage are classified via a multi-class classifier into

Advise, Effect, Mechanism, and Int classes. We explored various features in a selective

way to find the best set of features for the classifier. We also experimented with six

different classifiers in each stage to choose the best classifier for each. We further applied

post-processing rules after each stage to improve the results. We have argued that

handling the unbalanced class distribution is one of the advantages of our approach. In

addition, our approach allows for using different sets of features and classifiers in the

different stages. We learned that for this specific application, using SVM in both stages

obtains the best F-Measure, although Random Forest in the first stage obtained 30% more

precision than SVM. In this application, we used the same features to train both

classifiers. The best feature set included 1000 top informative words and part of speech

tags between two main drugs. The F-Measure of our system is 0.64, which is 0.12 higher

55

than our submitted system to the DDIExtraction 2013. This result shows the effectiveness

of feature selection, because in the submitted system, we used a longer list of features

without applying any feature selection approach. Unfortunately, we couldn’t compare our

results with the other systems in the competition because the competition test set wasn’t

available at the time of writing of this thesis.

As future work for this thesis, we plan to:

• Train our system on the competition training set and test on its test set

• Use two different lists of features for each classifier: As the classifiers are

different, binary and multi-class classifier, we will investigate different sets of

features for each of them. We plan to exploit linguistic features in a more

sophisticated way, including scope of negation, hypothetical marking, and salient

keywords.

• Add a 5th class (“None”) to the second classifier to detect some false positive

instances generated by the first classifier. As the second classifier classifies

instances into Advice, Effect, Mechanism, and Int, it is not able to detect false

positive instances generated by the first classifier. So, we will add “None” class to

this classifier and convert it into a five-class classifier.

• Use syntactic information in addition to lexical/punctuation signals for post-

processing.

• Explore kernel based SVM: We only used linear SVM in this thesis but we will

explore the effect of kernel based SVM.

• Explore ensemble classification in both stages.

56

• Train two separate systems for Medline and DrugBank sentences: Since

DrugBank and Medline exhibit different structures in their sentences and

documents, we expect that having separate classifiers for each will lead to better

performance.

57

References

58

[1] “To Err is Human: Building A Safer Health System - Institute of Medicine.”
[Online]. Available: http://www.iom.edu/Reports/1999/to-err-is-human-building-a-
safer-health-system.aspx. [Accessed: 15-Aug-2013].

[2] D. P. Phillips, N. Christenfeld, and L. M. Glynn, “Increase in US medication-error
deaths between 1983 and 1993,” Lancet, vol. 351, no. 9103, pp. 643–644, Feb.
1998.

[3] Second National Report on Patient Safety: Improving Medication Safety. Australian
Council for Safety and Quality in Health Care, 2002.

[4] J. U. Rosholm, L. Bjerrum, J. Hallas, J. Worm, and L. F. Gram, “Polypharmacy and
the risk of drug-drug interactions among Danish elderly. A prescription database
study,” Dan. Med. Bull., vol. 45, no. 2, pp. 210–213, Apr. 1998.

[5] M. Pirmohamed, S. James, S. Meakin, C. Green, A. K. Scott, T. J. Walley, K.
Farrar, B. K. Park, and A. M. Breckenridge, “Adverse drug reactions as cause of
admission to hospital: prospective analysis of 18 820 patients,” BMJ, vol. 329, no.
7456, pp. 15–19, Jul. 2004.

[6] W. B. Runciman, E. E. Roughead, S. J. Semple, and R. J. Adams, “Adverse drug
events and medication errors in Australia,” Int. J. Qual. Health Care, vol. 15, no.
suppl 1, pp. i49–i59, Dec. 2003.

[7] J. R. Nebeker, P. Barach, and M. H. Samore, “Clarifying adverse drug events: a
clinician’s guide to terminology, documentation, and reporting,” Ann. Intern. Med.,
vol. 140, no. 10, pp. 795–801, May 2004.

[8] L. Magro, U. Moretti, and R. Leone, “Epidemiology and characteristics of adverse
drug reactions caused by drug-drug interactions,” Expert Opin. Drug Saf., vol. 11,
no. 1, pp. 83–94, Jan. 2012.

[9] J. H. Gurwitz, T. S. Field, L. R. Harrold, J. Rothschild, K. Debellis, A. C. Seger, C.
Cadoret, L. S. Fish, L. Garber, M. Kelleher, and D. W. Bates, “Incidence and
preventability of adverse drug events among older persons in the ambulatory
setting,” JAMA J. Am. Med. Assoc., vol. 289, no. 9, pp. 1107–1116, Mar. 2003.

[10] J. H. Gurwitz, T. S. Field, J. Judge, P. Rochon, L. R. Harrold, C. Cadoret, M. Lee,
K. White, J. LaPrino, J. Erramuspe-Mainard, M. DeFlorio, L. Gavendo, J. Auger,
and D. W. Bates, “The incidence of adverse drug events in two large academic long-
term care facilities,” Am. J. Med., vol. 118, no. 3, pp. 251–258, Mar. 2005.

[11] L. E. Hines and J. E. Murphy, “Potentially harmful drug-drug interactions in the
elderly: a review,” Am. J. Geriatr. Pharmacother., vol. 9, no. 6, pp. 364–377, Dec.
2011.

[12] P. Aspden, J. Wolcott, J. L. Bootman, L. R. Cronenwett, "Preventing Medication
Errorr: Quality Chasm Series, 2007.

59

[13] Y.-F. Chen, A. J. Avery, K. E. Neil, C. Johnson, M. E. Dewey, and I. H. Stockley,
“Incidence and possible causes of prescribing potentially hazardous/contraindicated
drug combinations in general practice,” Drug Saf. Int. J. Med. Toxicol. Drug Exp.,
vol. 28, no. 1, pp. 67–80, 2005.

[14] L. E. Hines, D. C. Malone, and J. E. Murphy, “Recommendations for generating,
evaluating, and implementing drug-drug interaction evidence,” Pharmacotherapy,
vol. 32, no. 4, pp. 304–313, Apr. 2012.

[15] C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak,
V. Neveu, Y. Djoumbou, R. Eisner, A. C. Guo, and D. S. Wishart, “DrugBank 3.0: a
comprehensive resource for ‘omics’ research on drugs,” Nucleic Acids Res., vol. 39,
no. Database issue, pp. D1035–1041, Jan. 2011.

[16] J. S. Carter, S. H. Brown, B. A. Bauer, P. L. Elkin, M. S. Erlbaum, D. A. Froehling,
M. J. Lincoln, S. T. Rosenbloom, D. L. Wahner-Roedler, and M. S. Tuttle,
“Categorical Information in Pharmaceutical Terminologies,” AMIA. Annu. Symp.
Proc., vol. 2006, pp. 116–120, 2006.

[17] C. Chute, J. Carter, M. Tuttle, M. Haber, and S. Brown, “Integrating
Pharmacokinetics Knowledge into a Drug Ontology As an Extension to Support
Pharmacogenomics,” AMIA. Annu. Symp. Proc., vol. 2003, pp. 170–174, 2003.

[18] M. Rastegar-Mojarad, B. Harrington, and S. M. Belknap, “Automatic detection of
drug interaction mismatches in package inserts,” in 2013 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), 2013, pp.
373–377.

[19] A. I. Vitry, “Comparative assessment of four drug interaction compendia,” Br. J.
Clin. Pharmacol., vol. 63, no. 6, pp. 709–714, Jun. 2007.

[20] V. S. Shah, R. J. Weber, and M. C. Nahata, “Contradictions in contraindications for
drug-drug interactions,” Ann. Pharmacother., vol. 45, no. 3, pp. 409–411, Mar.
2011.

[21] A. Li, S. Zhao, and T. Z. Jodlowski, “How Up-to-Date Is Your Drug-Drug
Interaction Database?,” Ann. Pharmacother., vol. 45, no. 12, pp. 1591–1592, Dec.
2011.

[22] P. M. I Segura-Bedmar, “The 1st DDIExtraction-2011 challenge task: Extraction of
Drug-Drug Interactions from biomedical texts,” pp. 1–9, 2011.

[23] A. R. Aronson, “Effective mapping of biomedical text to the UMLS Metathesaurus:
the MetaMap program,” Proc. AMIA Annu. Symp. AMIA Symp., pp. 17–21, 2001.

[24] S. Pyysalo, A. Airola, J. Heimonen, J. Björne, F. Ginter, and T. Salakoski,
“Comparative analysis of five protein-protein interaction corpora,” BMC
Bioinformatics, vol. 9, no. Suppl 3, p. S6, Apr. 2008.

60

[25] I. Segura-Bedmar, P. Martínez, and M. Herrero-Zazo, “SemEval-2013 Task 9:
Extraction of Drug-Drug Interactions from Biomedical Texts,” in 7th International
Workshop on Semantic Evaluation, Atlanta, 2013.

[26] G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. C. Kipper-Schuler,
and C. G. Chute, “Mayo clinical Text Analysis and Knowledge Extraction System
(cTAKES): architecture, component evaluation and applications,” J. Am. Med.
Inform. Assoc. JAMIA, vol. 17, no. 5, pp. 507–513, Oct. 2010.

[27] I. Segura-Bedmar, P. Martínez, and M. Segura-Bedmar, “Drug name recognition
and classification in biomedical texts. A case study outlining approaches
underpinning automated systems,” Drug Discov. Today, vol. 13, no. 17–18, pp.
816–823, Sep. 2008.

[28] K. M. Hettne, R. H. Stierum, M. J. Schuemie, P. J. M. Hendriksen, B. J. A.
Schijvenaars, E. M. van Mulligen, J. Kleinjans, and J. A. Kors, “A dictionary to
identify small molecules and drugs in free text,” Bioinformatics, vol. 25, no. 22, pp.
2983–2991, Nov. 2009.

[29] T. Rocktäschel, M. Weidlich, and U. Leser, “ChemSpot: a hybrid system for
chemical named entity recognition,” Bioinforma. Oxf. Engl., vol. 28, no. 12, pp.
1633–1640, Jun. 2012.

[30] I. Segura-Bedmar, P. Martínez, and C. de Pablo-Sánchez, “A linguistic rule-based
approach to extract drug-drug interactions from pharmacological documents,” BMC
Bioinformatics, vol. 12, 2011.

[31] I. Segura-Bedmar, P. Martínez, and C. de Pablo-Sánchez, “Using a shallow
linguistic kernel for drug-drug interaction extraction,” J Biomed Inform, pp. 789–
804, Oct. 2011.

[32] J. Mata, R. Santano, D. Blanco, M. Lucero, and M. J. Maña, “A Machine Learning
Approach to Extract Drug-Drug Interactions in an Unbalanced Dataset,” in The 1st
Challenge Task on Drug-Drug Interaction Extraction, Huelva, Spain, 2011, vol.
761, pp. 59–65.

[33] M. F. M. Chowdhury and A. Lavelli, “Drug-drug interaction extraction using
composite kernels,” in The 1st Challenge Task on Drug-Drug Interaction
Extraction, Huelva, Spain, 2011, vol. 761, pp. 27–33.

[34] P. Thomas, M. Neves, I. Solt, D. Tikk, and U. Leser, “Relation Extraction for Drug-
Drug Interactions using Ensemble Learning,” in The 1st Challenge Task on Drug-
Drug Interaction Extraction, Huelva, Spain, 2011, vol. 761, pp. 11–18.

[35] J. Bjorne, F. Ginter, J. Heimonen, A. Airola, T. Pahikkala, and T. Salakoski, TEES:
Event Extraction Software. 2011.

61

[36] A.-L. Minard, L. Makour, A.-L. Ligozat, and B. Grau, “Feature Selection for Drug-
Drug Interaction Detection Using Machine-Learning Based Approaches,” in The 1st
Challenge Task on Drug-Drug Interaction Extraction, Huelva, Spain, 2011, vol.
761, pp. 43–50.

[37] S. Karnik, A. Subhadarshini, Z. Wang, L. M. Rocha, and L. Li, “Extraction Of
Drug-Drug Interactions Using All Paths Graph Kernel,” in The 1st Challenge Task
on Drug-Drug Interaction Extraction, Huelva, Spain, 2011, vol. 761.

[38] M. F. M. Chowdhury and A. Lavelli, “FBK-irst  : A Multi-Phase Kernel Based
Approach for Drug-Drug Interaction Detection and Classification that Exploits
Linguistic Information,” in 7th International Workshop on Semantic Evaluation,
Atlanta, 2013.

[39] T. Joachims, “Making large-scale support vector machine learning practical,” in
Advances in Kernel Methods: Support Vector Machines, C. Sch"olkopf, Ed. MIT
Press, Cambridge, MA, 1998.

[40] E. Charniak and M. Johnson, “Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking,” in Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, Stroudsburg, PA, USA, 2005, pp. 173–
180.

[41] D. McClosky, “Any Domain Parsing: Automatic Domain Adaptation for Natural
Language Parsing,” Department of Computer Science, Brown University, 2010.

[42] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics - Volume 1,
Stroudsburg, PA, USA, 2003, pp. 423–430.

[43] P. Thomas, M. Neves, T. Rocktaschel, and U. Leser, “WBI-DDI: Drug-Drug
Interaction Extraction using Majority Voting,” in 7th International Workshop on
Semantic Evaluation, Atlanta, 2013.

[44] D. Tikk, P. Thomas, P. Palaga, J. Hakenberg, and U. Leser, “A Comprehensive
Benchmark of Kernel Methods to Extract Protein–Protein Interactions from
Literature,” PLoS Comput Biol, vol. 6, no. 7, p. e1000837, Jul. 2010.

[45] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, and T. Salakoski, “All-
paths graph kernel for protein-protein interaction extraction with evaluation of
cross-corpus learning,” BMC Bioinformatics, vol. 9, no. Suppl 11, p. S2, Nov. 2008.

[46] C. Giuliano, A. Lavelli, and L. Romano, “Exploiting Shallow Linguistic
Information for Relation Extraction from Biomedical Literature,” in In Proc. EACL
2006, 2006.

[47] S. V. N. Vishwanathan and A. Smola, Fast Kernels for String and Tree Matching.
2004.

62

[48] M. Collins and N. Duffy, “Convolution Kernels for Natural Language,” in Advances
in Neural Information Processing Systems 14, 2001, pp. 625–632.

[49] T. Kuboyama, K. Hirata, H. Kashima, K. F.Aoki-Kinoshita, and H. Yasuda, “A
Spectrum Tree Kernel,” Trans. Jpn. Soc. Artif. Intell., vol. 22, pp. 140–147, 2007.

[50] R. S. Sampo Pyysalo, “Why Biomedical Relation Extraction Results are
Incomparable and What to do about it,” in SMBM’08, 2008, pp. 149–152.

[51] J. Bjorne, S. Kaewphan, and T. Salakoski, “UTurku: Drug Named Entity
Recognition and Drug-Drug Interaction Extraction Using SVM Classification and
Domain Knowledge,” in 7th International Workshop on Semantic Evaluation,
Atlanta, 2013.

[52] B. Bokharaeian and A. Diaz, “NIL-UCM: Extracting Drug-Drug interactions from
text through combination of sequence and tree kernels,” in 7th International
Workshop on Semantic Evaluation, Atlanta, 2013.

[53] C. D. Paice, “Another stemmer,” SIGIR Forum, vol. 24, no. 3, pp. 56–61, Nov.
1990.

[54] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
WEKA data mining software: an update,” SIGKDD Explor Newsl, vol. 11, no. 1, pp.
10–18, Nov. 2009.

[55] M. Rastegar-Mojarad, R. D. Boyce, and R. Prasad, “UWM-TRIADS  : Classifying
Drug-Drug Interactions with Two-Stage SVM and Post-Processing,” in 7th
International Workshop on Semantic Evaluation, Atlanta, 2013.

[56] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM
Trans. Intell. Syst. Technol., 2011.

[57] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich part-of-speech
tagging with a cyclic dependency network,” in Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology - Volume 1, Stroudsburg, PA, USA, 2003, pp. 173–
180.

[58] X. Zhou, X. Zhang, and X. Hu, “Dragon Toolkit: Incorporating Auto-learned
Semantic Knowledge into Large-Scale Text Retrieval and Mining,” in Proceedings
of the 19 th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 2007.

[59] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press, 1998.

[60] T. Bobic, J. Fluck, and M. Hofmann-Apitius, “SCAI: Extracting drug-drug
interactions using a rich feature vector,” in 7th International Workshop on Semantic
Evaluation, Atlanta, 2013.

63

[61] N. D. Hailu, L. E. Hunter, and B. Cohen, “UColorado-SOM: Extraction of Drug-
Drug Interactions from BioMedical Text using Knowledge-rich and Knowledge-
poor Features,” in 7th International Workshop on Semantic Evaluation, Atlanta,
2013.

[62] L. Hunter, Z. Lu, J. Firby, W. A. Baumgartner, H. L. Johnson, P. V. Ogren, and K.
B. Cohen, “OpenDMAP: An open source, ontology-driven concept analysis engine,
with applications to capturing knowledge regarding protein transport, protein
interactions and cell-type-specific gene expression,” BMC Bioinformatics, vol. 9,
no. 1, p. 78, Jan. 2008.

[63] L. Tari, S. Anwar, S. Liang, J. Cai, and C. Baral, “Discovering drug-drug
interactions: a text-mining and reasoning approach based on properties of drug
metabolism,” Bioinformatics (Oxford, England), pp. i547–53, 2010.

[64] R. Boyce, G. Gardner, and H. Harkema, “Using Natural Language Processing to
Extract Drug-Drug Interaction Information from Package Inserts,” in The 2012
Workshop on Biomedical Natural Language Processing, Montreal, Canada, 2012,
pp. 206–213.

[65] M. F. Porter, “An algorithm for suffix stripping,” Program Electron. Libr. Inf. Syst.,
vol. 14, no. 3, pp. 130–137, Dec. 1980.

[66] V. Vincze, G. Szarvas, R. Farkas, G. Móra, and J. Csirik, “The BioScope corpus:
biomedical texts annotated for uncertainty, negation and their scopes,” BMC
Bioinformatics, vol. 9, no. Suppl 11, p. S9, Nov. 2008.

[67] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval.
New York, NY, USA: Cambridge University Press, 2008.

[68] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp.
321–357, 2002.

