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The training corpus provided in the challenge contains 142 Medline abstracts on the 

subject of drug-drug interactions, and 572 documents describing drug-drug interactions 

from the DrugBank database. The corpus includes 6976 sentences annotated with four 

types of pharmacological entities and five types of DDIs, as described above. Figure 1-2 

illustrates annotations of drug entities and drug interactions for three sentences in a 

document. All possible drug-pairs in a sentence are annotated as either “true”, for an 

interacting drug-pair, or “false”, for a non-interacting drug pair. Each annotated drug pair 

is treated as an instance for training, and from the perspective of training, drug-pairs 

annotated as “true” belong to the positive class (or the set of positive instances), while 

those annotated as “false” belong to the negative class (or the set of negative instances). 

Positive instances are further annotated as one of the four interacting types described 

above, namely, advise, effect, mechanism, int.  

  

Figure 1-2: Annotations of three sentences from a document in the DDIExtraction-2013 corpus.  

 
Table 1-1 shows the number of instances for each of the five DDI types in the training 

set, grouped further into positive and negative classes. We note again that each instance is 

associated with a single pair of drugs. For example, a sentence with 4 drugs contains 6 
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instances, corresponding to 6 distinct drug pairs with a potential for interaction. Thus, 

while the entire training corpus contains 6976 sentences, the number of training instances 

as shown in the Table is much higher, i.e., 24891 instances. 

The test set for the task, used only during the evaluation period in the challenge, includes 

33 Medline abstracts and 158 DrugBank documents, containing 1299 sentences and 5519 

drug pairs (instances). As the test set had not been made available until the time of 

writing of this thesis, the experiments we conducted after the challenge, and report on 

here, are done using only the training data, in particular by splitting the training data into 

a training set (90%) and a test set (10%). 

Table 1-1: Distribution of drug-pair instances for each class in the DDIExtraction-2013 corpus. Classes are 
categorized in two super classes: positive and negative, to indicate presence and absence of interaction, 
respectively.  

Type DrugBank Medline Total 

Positive 

Advise 819 8 827 

Effect 1548 152 1700 

Mechanism 1260 62 1322 

Int 178 10 188 

Negative None 

(non-interacting drug-pairs) 
19479 1375 20854 

Total 23,284 1607 24891 

 

In this thesis, we describe our system for extracting and classifying drug-drug 

interactions from biomedical text, utilizing the training corpus provided for the 

DDIExtraction-2013 shared task challenge. Our approach combines machine-learning 

methods with rules for post-processing. A key feature of our machine-learning approach 

is that it is specifically designed to handle the highly unbalanced class distribution 
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observed in the data, via the use of a two-stage classifier. In addition to a variety of 

features exploited for the classifier, we also developed a set of post-processing rules, with 

a different set of rules applied after each stage of classification. Although we applied 

weighted SVM as the classifier for the DDI-2013 competition, here we report additional 

experiments with several other classifiers to assess if a classifier other than SVM may be 

better suited to the task. Our experiments indicate that SVM is the best fit for both stages. 

We also describe our experiments with exploring additional features for the classifier, 

specifically those exploiting syntactic information obtained from sentence parse trees. 

Finding effective features and utilizing them in the system resulted in improving the F-

measure by 12%, when compared to the results obtained in the competition.   

The thesis is organized as follows. In Chapter 2, we describe the related work on drug 

named entity recognition as well as DDI extraction and classification, particularly 

discussing all systems that participated in the DDIExtraction 2011 and 2013 challenges. 

In Chapter 3, we describe our method, the classifiers used in each stage, their features, 

and post processing. In Chapter 4, we present the evaluation and results. Error analysis, 

discussion, and future work are presented in Chapter 4.  
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2-1 Introduction 

In this chapter, we review the studies that have been conducted to extract and classify 

drug interactions from text. Most studies on this problem have been carried out as part of 

the DDIExtraction-2011 and DDIExtraction-2013 challenges, so we focus on these here. 

First, however, we review recent Drug Named Entity Recognition methods, since their 

outputs are vital for DDIExtraction systems, although our own work uses gold standard 

annotations of drug names in the corpus, provided as part of the challenge. 

2-2 Drug Named Entity Recognition 

The first step for extracting Drug-Drug interactions from text involves detecting drug 

names. Needless to say, performance of Drug Named Entity Recognition (NER) system 

has an impact on the performance of DDI extraction systems. Three common approaches 

for Drug NER are dictionary-based, rule-based and machine learning methods.6 For 

creating a dictionary that contains a list of drug names and their property, DrugBank [15] 

is a useful source. It is an open access, web-enabled database that contains structural, 

physicochemical, pharmacological and target information of approximately 4300 

substances, of which 1177 are approved drugs. Another useful resource for drugs is Daily 

Med, which presents all drug labels (Package Inserts). It is created by the U.S. National 

Library of Medicine. In fact, the main goal of package inserts is to provide useful 

information about drugs to physicians and help them to prescribe drugs appropriately. 

                                                
6 When comparing the performance these methods it is worth keeping in mind that some of these methods 
were designed for detecting general chemical names, which is a harder task rather than drug NER and 
therefore a possible reason for the poorer performance. 
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Several tools, based on machine learning techniques, have been developed to identify 

drug names in text. One of them is cTAKES [26], an open source system to extract 

medical information from clinical text. It has several components, including named entity 

recognition, which covers NER for drugs, in addition to other entity types. 

One of the recent studies for identifying and classifying drug names is done by Segura et 

al [27]. Their rule-based system combines information from several resources such as 

UMLS MetaMap Transfer, World Health Organization, and International Nonproprietary 

Names Program. Besides identifying pharmaceutical substances, the system is able to 

detect drug names. 

Hettne et al. [28] have developed a dictionary that detects small molecules and drugs. 

They combined information from UMLS, MeSH, ChEBI, DrugBank, KEGG, HDMB and 

ChemlDplus.  They also used rule-based term filtering. They report a precision of 0.67 

and recall of 0.40. 

ChemSpot [29] is a Named Entity Recognition tool for identifying mentions of chemicals 

in text. It detects trivial names, drugs, abbreviations, molecular formulas and IUPAC 

entities. It uses CRF (Conditional Random Fields) and a dictionary-based approach. It 

obtained 68.1% F-measure on the SCAI corpus. There were five systems [25] 

participating in the Drug NER task in DDIExtraction-2013, variously using dictionary 

based and machine learning techniques.  

2-3 Drug-Drug Interactions 

As we noted earlier, most DDI-Extraction studies were conducted as part of the DDI-

Extraction 2011 and 2013 challenges. In this section, we review these studies. 
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2-3-1 DDIExtraction 2011  

Segura et al [30] report one of the first attempts to extract drug-drug interactions from the 

biomedical literature. They used a hybrid method that combines shallow parsing and 

syntactic simplification with pattern matching. The UMLS MetaMap tool (MMTx) is 

used to provide shallow syntactic parsing and a set of domain-specific lexical patterns 

were developed to extract DDIs. Separately, in later work, they utilized a supervised 

machine learning approach to identify DDIs [31],  while also creating a DrugDDI corpus 

for evaluating their approach. Their SVM classifier achieved 0.51 precision, 0.72 recall 

and F-measure of 0.60. 

Mata et al [32] developed a Machine Learning system for DDI extraction that achieved 

an F-measure of 0.4702. For developing the system, they used around 600 features, such 

as keyword before first drug, keyword after second drug, keyword between drugs, and 

number of words and phrases between drugs. They explored four classification 

algorithms: RandomForest, NaïveBayes, SMO, and multiBoosting. Their best result 

comes from RandomForest. 

Garcia et al [33] built a Machine Learning system based on bag of words and pattern 

extraction. 1,010 words with a high gain ratio were collected and used as a “bag of 

words” feature, in addition to word categories to reflect the structure of the sentence, 

including subordinators, independent markers, appositions, coordinators, absolute, 

quantifiers, negations, etc. They also used Maximal Frequent Sequences (MFS) as a 

feature. A sequence is defined as an ordered list of elements, in this case, words. A 

sequence is maximal if it is not a subsequence of any other; that is, if it does not appear in 

any other sequence in the same order. All MFS from the training corpus were extracted, 
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with length between 2 and 7, and appearing in at least 10 sentences. Several classifiers 

were explored in this work, including Support Vector Machines, Decision Trees and 

multiple ensemble classifiers such as Bagging, MetaCost and Random Forests. Their best 

choice was Random Forest with 100 iterations and 100 attributes per iteration, with an F-

Measure of 0.5829.  

Thomas et al [34] have used Ensemble learning for DDI extraction. Their single best 

single classifier achieved an F-Measure of 0.63 and the best ensemble achieved 0.65. 

They used three kernel based approaches (APG, kBSPS, and SL) and case-based 

reasoning (Moara).   

Bjorne et al [35] presented a DDI system that explored both SVM and regularized least-

squares classifiers. They obtained 0.62 F-measure on DrugDDI. Minard et al [36] also 

presented a system based on SVM by using LIBSVM and SVMPerf tools. They reported 

a 0.5965 f-measure on DrugDDI.  

Chowdhury et al [33] participated in the DDIExtraction 2011 challenge and evaluated a 

range of new composite kernels for DDI. These kernels combine different combinations 

of mildly extended dependency tree (MEDT) kernel, phrase structure tree (PST) kernel, 

local context (LC) kernel, global context (GC) kernel and shallow linguistic (SL) kernel. 

The best result is an F-Measure of 0.6370 by combining MEDT, PST and GC kernels. 

They used the UMLS SPECIALIST lexicon tool to normalize tokens to avoid spelling 

variations and to provide lemmas. They also used dependency parse trees for 

corresponding sentences.  
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Karnik et al [37] presented a DDI extraction system that used all paths graph kernel. The 

system didn’t work well on DrugDDI corpus and it obtained a 0.16 F-measure. But F-

measure for a clinical pharmacokinetic DDI corpus was 0.658. 

2-3-2 DDIExtraction 2013 

In the 2013 challenge, the system with the highest F-Measure is proposed by the FBK-irst 

team [38]. Their system is a multi-phase relation extraction system. They used two 

separate phases for DDI extraction and classification. For DDI extraction, they removed 

less informative sentences and instances, and then trained a system on the remaining 

instances. A hybrid kernel classifier that contains a feature based kernel, a shallow 

linguistic kernel, and a Path-Enclosed Tree kernel is used in the first step. For 

classification of DDI, they trained 4 separate models for each class (one vs. all the other 

classes). 

The innovative part of this system is detecting “less informative sentences”, where a 

sentence is considered less informative if all drugs in a sentence fall under the scope of a 

negation cue (such as not). A negation detector system (focused on a limited set of 

negation cues, such as no, n’t and not) is used to identify and filter the less informative 

sentences. The remaining sentences are classified with the SVM Light-TK toolkit 

(Moschitti, 2006)[39], utilizing the Charniak-Johnson reranking parser [40], a self-trained 

biomedical parsing model [41], and the Stanford parser [42]. On the DDI-DrugBank test 

dataset, they obtained 0.68 F-Measure and on the DDI-Medline test dataset, 0.40 F-

Measure. 

The WBI-DDI team [43] presented a two-step system, like the first system in this 

competition, that splits the step for extracting DDIs step from that of classifying DDIs. 
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For extracting DDIs, an ensemble approach is applied, which combines the output of five 

different classifiers via majority voting. The framework for this ensemble approach is 

provided in [44].  All-Paths Graph [45], shallow linguistic [46], subtree [47], subset tree 

[48], and spectrum tree [49] method are the classifiers used in the ensemble method. Each 

classifier uses different sets of features, but most of them used part-of-speech tags, 

constituent parse tree, and dependency parse tree information. In the second step, the 

subtype prediction of Turku Event Extraction System [35] is applied. 

For pre-processing, this system uses the Charniak-Johnson PCFG parser [40] with a self-

trained re-ranking model augmented for biomedical texts [41]. Like most teams in the 

competition, the drug entity names are replaced with a generic string to ensure the 

generality of the approach [50]. 

This approach achieved the second rank in the competition, with 0.61 F-Measure on the 

DDI-DrugBank test dataset and 0.35 F-Measure on the DDI-Medline test dataset. 

The UTurku team [51] developed a machine learning system based on the Turku Event 

Extraction System (TEES) [35]. TEES is an NLP tool for event and relation extraction 

based on SVM. It considers part-of-speech tags, dependency chains, dependency path N-

grams, entities, and external resources such as hypernyms in WordNet. For this task, 

Bjorne et al. used deep syntactic parsing to generate large graph-based feature sets. They 

parsed the corpus with TEES and extracted most of their syntactic features from the 

shortest path of dependencies between two main drugs, such as N-grams and governor–

dependent information for dependencies.  
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The significant difference between this system and the others is in using external 

resources. This system derived some features from external resources such as DrugBank 

and MetaMap. They trained three systems with different sets of features:  

1. Features extracted from the text as baseline  

2. Adding extracted features from DrugBank to the baseline  

3. Adding extracted features from MetaMap to the baseline.  

Their results showed that the external features, especially from DrugBank, increased the 

performance, because they extracted DDIs from DrugBank and used them as a feature in 

the system. However, MetaMap didn’t improve the performance, although their results 

show that MetaMap is useful for the Drug NER task. 

They obtained 0.61 F-Measure on the DDI-DrugBank test dataset and 0.23 F-Measure on 

the DDI-Medline test dataset. 

The NIL-UCM team [52] presented a SVM classifier with a linear kernel and a rich set of 

lexical, morphosyntactic and semantic features. They experimented with two approaches. 

In the first approach, they extracted and classified all DDIs in one step, as a 5-class 

classification problem. But in the second approach, they extracted DDIs in one step, and 

then classified them into 4 DDI classes in the next step. Most of the teams in the 

competition applied the second approach, separating the extraction step from the 

classification step.  

Features in this system included word features (such as words between drugs, three words 

before first drug, and so on), morphosyntactic features (such as POS), constituency parse 

tree features (such as shortest path between drugs, shortest path between first token in the 
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sentence and first drug, etc.), conjunction features, verb features, and negation features. 

They applied feature selection approaches and information gain ranker for selecting the 

best features.  

Only this team separated the DrugBank data from the Medline data and trained two 

separate SVM systems for each. However, this approach didn’t obtain a good overall 

result compared to the other approaches. 

A better result was obtained with the second approach, which separated the extraction 

phase from the classification phase. Like the other teams, they obtained a better result on 

the DrugBank data rather than the Medline data. The authors attribute the reason for the 

poorer performance to the fact that the Medline corpus has fewer words as compared to 

the DrugBank corpus. This is also suggested by Chowdhury et al. [38]. 

In this system, Paice/Husk Stemmer [53], Stanford parser [42], NegEx7 and Weka [54] 

are used. Their F-Measure on the DDI-DrugBank test dataset is 0.56 and on the DDI-

Medline test dataset is 0.12. 

The system presented by the UC3M team [25] is based on shallow linguistic (SL) kernel 

methods. The system contains three steps: pre-processing, DDI extraction, and DDI 

classification. They submitted two runs to the competition. The first run was based on 

linguistic information and the second one on semantic information. For the pre-

processing step, GATE analyzer8 and Stanford parser [42] are applied to obtain POS and 

lemmatization. Also, multiword entities are pre-processed to keep words related to same 

                                                
7 http://code.google.com/p/negex/ 
8 http://gate.ac.uk. 
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concept together. For example, they unified “beta-adrenergic receptor blocker” into a 

singleton word “beta-adrengic_receptor_blocker” as type NNP, whereas the Stanford 

parser would have processed the phrase with three different tags and phrase labels. For 

the third step, they trained four systems for each class. The only semantic information 

used is the ATC code value. They obtained a higher result with the system that used 

linguistic information. However, because they just explored one semantic feature, we 

can’t conclude anything about the (non-)importance of using semantic information for 

this task. They obtained 0.56 F-Measure on the DDI-DrugBank test dataset and 0.26 F-

Measure on the DDI-Medline test dataset. 

Our team, UWM-TRIADS [55], presented a system based on SVM and rule-based post-

processing. We explored two approaches, one separating DDI extraction from DDI 

classification, and the other doing both in one step. We obtained a better result from the 

first approach, with a two-stage classifier. We used SVM as the classifier in both stages. 

Because of the unbalanced distribution of the classes, we assigned different weights to 

each class. Our SVM features exploited stemmed words, lemmas, bigrams, part of speech 

tags, verb lists, and similarity measures, among others.  

Also, we developed a set of post-processing rules after each stage. The post-processing 

rules improved our results. 

In this system, we used LibSVM [56], Weka [54], Stanford NLP tool [42], [57], Dragon 

toolkit [58] and WordNet [59].   

We obtained 0.48 F-Measure on the DDI-DrugBank test dataset and 0.34 F-Measure on 

the DDI-Medline test dataset. 
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The SCAI team [60] presented a machine learning system which utilizes lexical, syntactic 

and semantic feature sets. Like the other teams, this system contained two steps, 

extracting DDIs and classifying DDIs. This system used an ensemble classifier in the first 

step, but for the second step, it just applied some post-processing rules. 

The set of features for the classifier contained lexical, syntactic dependency, and 

semantic features. Their feature set contained most of the features that are used by the 

other teams, also considering negation words in sentences. LibLINEAR, Naïve Bayes and 

Voting Perceptron classifiers are used in the ensemble method. After extracting DDIs, 

they applied a post-processing step to classify DDIs into 4 classes. For this step, they 

generated 4 lists of relation trigger words, manually. Different priorities are assigned to 

each class, for cases when a sentence contained trigger phrases from different classes. 

They achieved 0.46 F-Measure on the DDI-DrugBank test dataset and 0.26 F-Measure on 

the DDI-Medline test dataset. They used a rich set of features in the first step; this poor 

result shows that using only post-processing rules for classifying DDIs is not a good 

approach. 

The UColorado-SOM team [61] presented a machine learning system based on SVMs. 

Morphosyntactic, lexical and semantic features were used to train the system. They 

approached the task as a binary classification task by applying one-vs-all multi-class 

classification techniques. In essence, the system extracted and classified DDIs at the same 

time, which appears to be the reason for the poor result. 

LIBSVM [56], GENIA, TEES [35] and OpenDMAP [62] are used in this system. They 

obtained 0.42 F-measure on the DDI-DrugBank test dataset and 0.27 F-measure on the 

DDI-Medline test dataset. 
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2-3-3 Other Approaches 

In contrast to the classification of DDIs in the shared task competitions, there are several 

studies that classify DDIs in terms of their “mechanism of interaction”, distinguishing 

between Pharmacodynamic (PD) interactions and Pharmacokinetic (PK) interactions. 

Pharmacodynamic interactions include the concurrent administration of drugs having the 

same (or opposing) pharmacologic actions, and alteration of the sensitivity or the 

responsiveness of the tissues to one drug by another. Many of these interactions can be 

predicted from knowledge of the pharmacology of each drug. The change in an 

organism's response on administration of a drug is an important factor in 

pharmacodynamics interactions. Pharmacokinetics refers to the study of the absorption, 

distribution, metabolism and excretion (ADME) of bioactive compounds in a higher 

organism. In a Pharmacokinetics interaction, modifications in the effect of a drug are 

caused by differences in the absorption, transport, distribution, metabolization or 

excretion of one or both of the drugs compared with the expected behavior of each drug 

when taken individually.  

Tari et al. [63] evaluated a rule-based algorithm for extracting pharmacokinetic DDIs 

from papers and abstracts in the scientific literature. In this study, the authors 

distinguished between explicit DDIs (statements indicating a direct observation of a PK 

effect from a given drug combination) and implicit DDIs (DDIs that can be inferred 

based on claims about drug metabolic properties extracted from scientific texts). The 

algorithm was run over more than 17 million Medline abstracts and the output DDIs were 

compared with DrugBank drug interactions. The recall of the algorithm was very low, but 
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their study showed that 78% of the DDIs extracted were valid. These results illustrated 

that DDIs in DrugBank aren’t complete. 

Boyce et al. [64] presented a tool to extract PK DDI. They manually created a corpus of 

Federal Drug Administration approved drug package insert statements, containing 592 

PK DDI. Then they implemented and evaluated three different classifiers using machine-

learning algorithms. Besides classifying PK DDI in the corpus, their system classified 

statements by their modality. They evaluated SVM, Jrip, and J48, and their best result 

was 0.859 F-measure with SVM. 
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3-1 Introduction 

In this chapter, we describe our approach to extract and classify drug interactions from 

biomedical text. Our system classifies each drug pair into 5 classes – advise, effect, 

mechanism, int and none. A major challenge in this task is posed by the unbalanced 

distribution of the classes. First, considering just the positive vs. negative classes, just 

19.3% (4037/20854) of drug pairs are in the positive class. Furthermore, the four types 

within the positive class are also unbalanced, with the int type constituting only 4.6% 

(188/4037) of the instances. A classifier trained on this data will, therefore, be biased 

towards the majority class(es). To handle this problem, we propose a two-stage 

classification approach. 

In the following sections, we provide details about our approach and discuss its 

advantages, including pre-processing steps, the set of features explored in our machine 

learning method, and the post-processing rules developed for further manipulation of the 

result of machine learning.  

3-2 Pre-processing Steps 

Before classification, all sentence instances in the corpus were pre-processed in order to 

clean and normalize the corpus as well as to extract features for machine learning. We 

utilized existing NLP tools for several steps in the pre-processing. The following steps 

describe the pre-processing: 

• All letters were changed to lower case. 
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• All drug names were normalized by replacing them with one of two strings; one used 

for drug mentions that were candidates for classification in the instance (main drugs), 

and the other used for all other drug mentions (additional drugs).  

• All numbers were normalized by replacing them with the same string. 

• Sentences with less than two drug names were removed, since the system is tasked 

with detecting and classifying drug interactions between two drugs. 

• Stop words and punctuation were removed. We used different stop word lists to 

compare how the number of stop words affect the system. However, as stop words 

between two main drugs can contain useful information as an indicator for 

interaction, stop words in this context were retained. 

• Part of speech (POS) tags were obtained with the Stanford NLP tool [57].  

• Words were stemmed with the Porter Stemmer [65].  

• Words were lemmatized with Dragon tool [58]. 

• Synsets for words were obtained using WordNet [59]. 

• We developed and implemented a tool to detect negations in sentences. The tool 

highlights negated sentences and also identifies negation indicators such as not. The 

negation tool will be described later below. 

• Phrase structure parse tree of sentences were obtained with the Stanford NLP tool 

[42]. We explored multiple types of information from parse trees as features in the 

classifier, including syntactic path between the main drugs and whether or not both 

main drugs appear in the same clause.  
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3-2-1 Negation detector 

The Negation Detector tool mentioned above was developed by us. It utilizes the 

machine-learning approach of Hidden Markov models (HMMs). Hidden Markov Model 

is the stochastic analog of finite state automata. An HMM is defined by a set of states and 

a set of transitions between them. Each state has an associated emission distribution, 

which defines the likelihood of a state to emit various tokens. The transitions from a 

given state have an associated transition distribution, which defines the likelihood of the 

next state, given the current state.  

We generated a HMM and trained the negation detection model with the BioScope9 

corpus [66]. We used a java implementation of HMM, called Jahmm10. The BioScope 

corpus consists of medical and biological texts annotated for negation and speculation, 

with the annotation encoding negation and speculation keywords and their scopes. It 

contains more than 20,000 manually annotated sentences from clinical notes and 

published biological articles. For our negation detector tool, we only considered the 

negation annotations of the corpus. 

A HMM model is trained via sequences of observations. In our model, we considered 

POS tags as observations. In particular, we replaced all non-negated words with POS tags 

and generated the sequences of observations. Figure 3-1 shows our HMM model. It has 

two states, positive and negative and includes 72 observation, 35 POS tags and 37 

negated words. The accuracy of the system is 96.44% and F-measure is 92.03% in 

negation sentence detection. 

                                                
9 http://www.inf.u-szeged.hu/rgai/bioscope 
10 https://code.google.com/p/jahmm/ 
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Figure 3-1: This Hidden Markov Model is used in the negation detector system. This HMM consists two 
states, positive and negative. Each rectangle shows one of observations that can be a POS tag or a word that 
appeared in the negated parts of the sentences. 

3-3 Two-stage classification 

The architecture of our system is illustrated in Figure 3-2. The system comprises two 

classifiers in separate stages. In the first stage, we train a binary classifier to classify drug 

pairs into positive and negative classes. Then, in the second stage, we consider only those 

instances that are classified as positive by the first classifier, and classify them into one of 

four types within the positive class – advise, effect, mechanism, and int – using a multi-

class classifier.   

A two-stage classifier offers a distinct advantage over a one-stage classifier for the DDI 

data set, not just because it is highly skewed towards one class – the negative class – but 

also because this majority class is clearly semantically distinct from the other positive 

classes. Therefore, by reframing part of this problem as a binary classification task, we 

can exploit binary classification techniques and allow the classifier to be particularly attentive to 
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features distinguishing positive and negative drug pairs, while at the same time avoiding the bias 

against each of the non-majority classes. Our experiments with the training set confirm this idea. 

Using a two-stage classification approach also allows us to explore different classifiers 

for each stage and find the best fit for each of them separately, by pursuing advantageous 

approaches for binary classification on the one hand and multi-class classification on the 

other hand.  

After pre-processing, the remaining sentences contain two or more drugs. In the first 

stage, we need a binary classifier to classify each drug pair as positive or negative. The 

following is an example of a sentence with drug names highlighted. 

• “Catecholamine-depleting drugs, such as reserpine, may have an additive effect 

when given with beta-blocking agents.” 

As the sentence has three drug names, the system needs to consider DDI between the 

following three drug pairs: 

1- Catecholamine-depleting drugs and reserpine 

2- Catecholamine-depleting drugs and beta-blocking agents 

3- reserpine and beta-blocking agents 

At this point, the DDI extraction task is carried out via a binary classifier. If the classifier 

predicts a DDI between a pair, then it classifies the pair as positive, and otherwise as 

negative. As we want to pass only the positively classified instances from the first stage 

to the second stage classifier, we favor the positive class in the first stage. For this 

purpose, if the classifier allows us to assign weights to each class (e.g., SVM) we assign a 

high weight to the positive class. This results in a relatively high number of false 
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positives for the positive instances, which we attempt to reduce with a set of post-

processing rules before sending them to the second stage classifier. 

 One/More instances 

Pre-Processing 

POS tagger 

Stop Words list 
Lemmatizer 

Stemmer 

Sentence with more than two 
drugs 

Final Classification 

Post-Processing  

Post-Processing 

Instances classified as 
positive 

First Stage Classifier 

(Binary Classifier) 

Second Stage Classifier 

(Multi-Class) 

Classified as positive Classified as negative 

Figure 3-2: DDI Extraction and Classification System architecture.  
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We should add that for training the first classifier we used all the instances in the corpus 

but for training the second classifier, we just used the positive instances that classified 

into Advice, Effect, Mechanism, and Int. 

 3-3-1 Features 

To train the classifiers, we utilized a variety of features to investigate their effectiveness 

and choose the best combination of features for classification. In this section, we explain 

these features by separating them into two categories: features per sentence and features 

per drug-pair instances. Recall that since one sentence can have more than two drug 

names, an instance of the sentence is generated for each drug pair.  

Features per sentence 

These are sentence-level features that have the same values across all instances of a 

sentence. 

• Words: This is a binary feature for all words that appeared more than once in the 

corpus, indicating the presence or absence of each such word in the sentence. We 

considered stemmed words as well as lemmatized words.  

• Mutual Information [67]: Instead of using all words that appeared in the corpus, 

we apply mutual information as a feature selection approach to choose 

informative words. Mutual information for term t and class c is calculated with 

the following formula:  

 

P t, c =
N!,!
N ∗ log!

!!,!∗!
!!∗!!    +

N!,!
N ∗    log!

!!,!  ∗!  
!!∗!!  
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+
N!,!
N ∗ log!

!!,!∗!
!!∗!!    +

N!,!
N ∗    log!

!!,!  ∗!  
!!∗!!    

 

Where, N: Number of all instances, N!,!: Number of instances in c that contain t, 

N!,!: Number of instances that contain t but not in the class c, N! : Number of 

instances that contain t, … We rank the words based on the Mutual Information 

score and use 100/200/500/1000 top words. 

• Word bigrams: This is a binary feature for all word bigrams that appeared more 

than once in the corpus, indicating the presence or absence of each such bigram in 

the sentence 

• Number of words: This feature represents the total number of words in the 

sentence 

• Number of drug mentions: This feature represents the total number of drug 

mentions in the sentence.  

• Cosine similarity between centroid vector of each class and the instance: 

Inspired by the vector space [67] Information Retrieval approach, we add new 

features to represent the cosine similarity between a sentence and the centroid of 

normalized vectors for sentences assigned the class C. Cosine similarity is 

calculated based on modified tf*idf. We compute modified tf*idf for a word w, 

based on the following formula: 

Tf ∗ idf = Count w  in  instance ∗    log!
!"#$%&  !"  !""  !"#$%"&'#

!"#$%&  !"  !"#$%"&'#  !"#$%&#   ! !!  

 



 

 

34 

TF is the number of times the word occurs in the instance. IDF is the logarithm of 

number of all instances divided by the number of instances that contain the word. 

To calculate the centroid vector for class C, a vector is created for each instance in 

class C by giving each word in the instance a modified TF*IDF weight. The 

centroid vector for class C is the mean of all vectors of sentences in class C. The 

cosine similarity between a given instance and the centroid vector of each class is 

then used as a feature. 

Features per instance (each pair) 

In contrast to sentence-level features, these features may have different values across the 

different drug-pair instances. In each instance, we distinguished the two main drugs of 

interest for the instance from all other additional drugs mentioned in the instance. 

• Number of words between two main drugs: This represents the total number of 

words between the two main drugs.  

• Number of drugs between two main drugs: This represents the total number of 

additional drugs appearing between the two main drugs. 

• Number of verbs: We use the number of verbs in the instance as a feature, but 

relative to their sentential position. In particular, we split each instance into three 

sections: (i) before the first main drug, (ii) between the two main drugs, and (iii) 

after the second main drug. Then, we count the number of verbs in each section, 

and use them as three different features. 

• Number of verbs using class-specific verb lists: For each class, we extract two 

lists of verbs. The first list contains verbs that appeared in just that class but not in 

the others. Thus, the set of verbs extract for each class are unique and different 
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from the verbs associated with other classes. The second list includes all verbs 

that appeared in that class and their synonyms, extracted from WordNet. Then, for 

each of the three sentence sections, as described above, we create two features to 

represent the number of verbs from each of these lists that appeared in the section.  

• POS of words between two main drugs: This is a binary feature for word POS 

tags obtained from POS tagging, and indicates the presence or absence of each 

POS between the two main drugs. 

• Path between two main drugs: Path between two main drugs in the parse tree is 

another feature in our system. Because syntactic paths are in general a sparse 

feature, we reduced the sparsity by collapsing identical adjacent non-terminal 

labels. E.g., NP-S-VP-VP-NP is converted to NP-S-VP-NP. This technique 

decreased the number of paths by 24.8%. 

• Negation: To consider negation in the instance, three features are defined that 

respectively indicate negation before the first main drug, between two main drugs, 

and after the two main drugs. 

• Clause Boundary: This feature shows that both main drugs are in the same 

clause or not. The system utilizes the parse tree to set the binary value for this 

feature.  

3-3-3 Post processing 

As described before, we have two sets of post-processing rules for each stage of the 

system. Here, we describe these rules, developed on the basis of observations in the 90% 

of the competition training data (that was used as the training set in our experiments). In 

the next chapter, we evaluate the effectiveness of these rules.  
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3-3-3-1 Post-processing after the first stage 

Post-processing rules for the first stage were designed to reduce the number of false 

positives for the positive class, since the weight assignment in this stage favors this class. 

The following describes the rules, with examples:  

1. An instance is classified as negative if both drug mentions have the same name, 

since a drug cannot interact with itself. In the following instance, one drug is 

appeared twice. So, the system considers them as a drug pair. If the classifier in 

the first stage classifies them as positive, the post-processing step updates its label 

to negative. 

• “In controlled clinical trials of AUGMENTIN XR, 22 patients received 

concomitant allopurinol and AUGMENTIN XR. 

2. An instance is classified as negative if one of the drugs is a plural form of the 

other one, since, as above, they refer to the same drug.   

• “Oral Anticoagulants: Interaction studies with warfarin failed to identify 

any clinically important effect on the serum concentrations of the 

anticoagulant or on its anticoagulant effect.” 

3. An instance is classified as negative if one of the drug mentions refers to a drug 

class name of the other, since we don’t expect a drug to interact with its own class 

as a whole. Drug class names were obtained from a table provided by the FDA.11 

In the example below, “MAOI” is the drug class name for “isocarboxazid”.  

                                                
11http://www.fda.gov/ForIndustry/DataStandards/StructuredProductLabeling/ucm162549.htm 
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• “You cannot take mazindol if you have taken a monoamine oxidase 

inhibitor (MAOI) such as isocarboxazid (Marplan), tranylcypromine 

(Parnate), or phenelzine (Nardil) in the last 14 days.” 

4. An instance is classified as negative if “,” or “, and” appears between the two 

main drug mentions, and is accompanied by an additional drug mention. The rule 

identifies contexts where drugs are mentioned as a set, in interaction with a 

different drug. The following sentences show “glyburide”, “tolbutamide” and 

“glipzide” as part of a set of drugs in interaction with the additional drug 

“DIFLUCAN”.  

• “DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and 

glipizide and increases the plasma concentration of these agents.”  

• “DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and 

glipizide and increases the plasma concentration of these agents.” 

5. An instance is classified as negative if “,” and additional drugs appear between 

the main drug mentions. Like the previous rule, this again recognizes drugs 

mentioned as a set, but in particular, identifies non-adjacent mentions. For 

example, the following sentence doesn’t express any interaction between 

“tolbutamide” and “glipizide”, and the rule recognizes them as part of a set 

mention even though they are non-adjacent. 

• “DIFLUCAN reduces the metabolism of tolbutamide, glyburide, and 

glipizide and increases the plasma concentration of these agents.” 

6. An instance is classified as negative if “or” appears between the two main drug 

mentions and the sentence contains additional drug mentions. The presence of 
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additional drug mentions in the sentence is required here since such conjoined 

pairs can interact with each other when they occur alone.  

• “Concurrent ingestion of antacid (20 mL of antacid containing aluminum 

hydroxide, magnesium hydroxide, and simethicone) did not significantly 

affect the exposure of oxybutynin or desethyloxybutynin.” 

3-3-3-2 Post processing after the second stage 

Post-processing after the second classifier identifies sentences like the following: 

• “Coadministration of alosetron and strong CYP3A4 inhibitors, such as 

clarithromycin, teli thromycin, protease inhibitors, voriconazole, and 

itraconazole has not been evaluated but should be undertaken with 

caution because of similar potential drug interactions.” 

Examples like these illustrate that if drugs are mentioned as a set, then all drugs in the set 

must have the same interaction type with a drug mentioned outside the set. Thus, in the 

example, the interaction of each of “clarithromycin”, “telithromycin”, “protease 

inhibitors”, “voriconazole”, and “itraconazole” with “alosetron” should be classified in 

the same way. We use several syntactic and lexical cues to identify set mentions of drugs. 

Then, since the classifiers can make different decisions for each such pair (e.g., it may 

assign one label to the interaction of “clarithromycin” with  “alosetron” and another label 

to the interaction of “telithromycin” with “alosetron”), we apply uniform labeling for the 

interaction of all such pairs. The majority label was used as the common label. Ties were 

not encountered in this data, although a solution would have to be devised otherwise. 
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An important consideration for this rule is that it uses both positively and negatively 

labeled instances. The former are taken from the result of the second stage classifier, and 

the latter from the negative instances of the first stage classifier and the negative 

instances of the first post-processor. These varied inputs to the rule are illustrated by the 

three ingoing arrows into the second post-processor in Figure 3-2.  
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4-1 Introduction 

In this chapter, we first present our implementation of the system, including the libraries 

and tools that we utilized. Metrics used to evaluate system performance are then 

presented, followed by the results, where we also discuss the impact of various features 

on the system using SVM. Then, the performance of different classifiers in each of the 

two system stages is evaluated and the best system introduced. We also present results of 

applying the post-processing rules to the output of each stage. We finish with the error 

analysis, conclusions, and discussion of future work.  

4-2 Implementation 

As there are many Natural Language Processing and Machine Learning tools and 

libraries in Java, we used this programming language to implement our method. Some of 

these tools such as Weka [54] are applied in classification tasks, but Weka is not designed 

to directly handle the steps in our system architecture, which consists of two classifiers 

with the output of the first classifier serving as input to the second one, and a set of post-

processing rules applied after each stage. Therefore, we implemented a tool that, besides 

using available NLP libraries, handles our two-stage approach for classification.  

The following lists and describes the existing libraries and tools utilized in our system. 

(These were also mentioned briefly in Chapter 3.) We have used these tools for various 

tasks in our system, including machine learning, pre-processing, and feature extraction. 

• Weka: Weka [54] is a collection of machine learning algorithms available as a 

java-based software package, with graphical user interfaces providing easy access 

to its functionalities. We used Weka to apply some of its classifiers in our method. 



 

 

42 

The input to Weka has to be in a specific format, called the Attribute-Relation 

File Format (Arff). An Arff file is a text file created by declaring all attributes 

(i.e., the feature names) in the file, followed by a list of the data instances. Each 

instance is represented as a vector of values for the attributes, with one value 

provided for each attribute. The last value of the instance vector indicates the 

class label of the instance. To utilize Weka for training our classifiers, we created 

an Arff file using the instances in the data and the features described in Chapter 3.   

• LibSVM [56]: LibSVM is software library for Support Vector Machines, 

implemented in Java, that allows users to apply SVM for their applications. We 

used this library to train the SVM classifier. 

• Stanford NLP tool: This library is used to obtain POS tags [57] and parse trees 

[42] for sentences. The tool contains several NLP algorithms such as part-of-

speech (POS) tagger, named entity recognizer (NER), parser, and the coreference 

resolution system. It is provided in different languages such as Java, Perl, Python, 

Ruby, Sacala, and Clojure. 

• Porter Stemmer [65]: This is a library used for stemming words in the sentences. 

Stemmed words were used as a feature in our classifier. 

• Dragon tool [58]: We used this tool to obtain word lemmas, which were used as a 

feature in our classifier.  

• WordNet [59]: As described in Chapter 3, we created a list of synonyms for verbs 

in each class.  We used WordNet to obtain synonyms. 
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4-3 Metrics 

We used the standard metrics of Precision, Recall, and F-measure to evaluate the 

performance of our system. To compute these metrics, the organizers of the 

DDIExtraction 2013 Challenge provided a code in Java that takes as input a text file of 

predictions and calculates the precision, recall and F-measure. In these metrics, a DDI is 

correctly detected if the system assigned the correct class label to it. A prediction is 

correct if both extraction label (Yes, None) and classification label (Advise, Mechanism, 

Effect, Int) are correct. To clarify the meaning of these metrics, let’s look at the meaning 

of precision for type Advise: 

Precision =   
TP

TP+ FP 

TP indicates the true positives, i.e., the number of truly detected pairs of the advise class 

class and FP indicates the false positives, i.e., the number of pairs that are predicted as 

advise incorrectly.  

For each run in the results discussed below, we present these three metrics. F-measure is 

calculated with the macro-averaged method12, i.e., by taking precision to be the average 

of the precision calculated for each type, and similarly for recall.  

4-4 Results 

In our experiments, we first explored different combinations of features (described in 

Chapter 3) with SVM in order to identify the best performing feature set. We then used 

this feature set to further explore the performance of additional classifiers, thus 

                                                
12  http://www.cs.york.ac.uk/semeval-2013/task9/data/uploads/semeval-2013-task-9_2-
evaluationmetrics.pdf 
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identifying the best machine learning classifier for the task. Post-processing rules were 

applied to the output of the best performing classifier. As the test set had not been made 

available until the time of writing of this thesis, the experiments we conducted after the 

challenge are done by using only the training data, by splitting the training data into a 

training set (90%) and a test set (10%). In this section, we present and discuss the results 

of all our experiments. For each experiment, precision, recall and F scores are given. 

4-4-1 Feature Selection 

To determine which features are most useful in the system, we added them incrementally 

to our classifiers and examined their effect on system performance. We used SVM for 

identifying the best performing features, in both stages of the system.  

In the first experiment, we explored the role of words as features. We compared the effect 

of using all words as features with using only informative words, where informative 

words are chosen by calculating the Mutual Information (MI) score for words in each 

class (described in 3-3-1). We further explored different cut-offs for choosing informative 

words in each class with high MI score: 100, 200, 500 and 1000, which yielded 296, 476, 

940, and 1417 unique words, respectively, as features. Table 4-1 presents the results for 

this experiment. The first row shows the result with all words used as features, whereas 

the remaining rows show the result of using informative words as features.  

Table 4-1: Results of using words with high mutual information score compared to all words.  

Features # Of 
features Precision Recall F-Measure 

All Words 1599 0.22 0.74 0.34 

100 words of 
each class with 

high MI 
296 0.33 0.68 0.34 
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200 words of 
each class with 

high MI 
476 0.32 0.68 0.34 

500 words of 
each class with 

high MI 
940 0.28 0.70 0.34 

1000 words of 
each class with 

high MI 
1417 0.30 0.74 0.37 

 

As Table 4-1 illustrates, using informative words to train the classifiers performs better 

than using all words. Furthermore, with informative words, the best result was obtained 

with 1000 words. Therefore, in all remaining experiments, we used 1000 words of each 

class with high MI score, with a total of 1417 unique words. 

In the next experiment, we evaluated the impact of POS as a feature in combination with 

the 1000 high MI words. POS is a binary feature for word POS tags and indicates the 

presence or absence of each POS between the two main drugs. The second row of Table 

4-2 illustrates the results of adding the POS feature. The first row repeats the scores for 

the best result from Table 4-1, The second row shows that adding POS markedly 

increases the F-Measure from 0.37 to 0.59, suggesting that POS is a highly useful feature. 

In the next set of experiments, we evaluated the impact of adding additional features 

individually to the combination of the high MI words and POS features. 

 
Table 4-2: System performance for different sets of features 

Features Precision Recall F-Measure 

1000 words with high MI 0.30 0.74 0.37 

1000 words with high MI 
+POS 

0.48 0.83 0.59 
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1000 words with high MI 
+POS 

+Verb features 
0.45 0.80 0.56 

1000 words with high MI 
+POS 

+Numbers features 
0.38 0.75 0.50 

1000 words with high MI 
+POS 

+Path Between drugs 
0.42 0.71 0.51 

1000 words with high MI 
+POS 

+BiGrams 
0.34 0.78 0.46 

1000 words with high MI 
+POS 

+Negation 
0.45 0.83 0.58 

1000 words with high MI 
+POS 

+Cosine Similarity 
0.48 0.83 0.59 

1000 words with high MI 
+POS 

+Clause Boundary 
0.45 0.80 0.56 

 

Verb features, shown in the third row, represents the number of verbs in the sentence, and 

the number of verbs from each class-specific verb list (discussed in Chapter 3). As can be 

seen in the table, the F-Measure dropped by 0.03% after adding these features to the 

system. 

The fourth row of Table 4-2 shows the impact of number features on the system. The 

number features contain three features, the number of words in the sentence, the number 

of words between main drugs, and the number of drug names in the sentence. The result 

indicates that number features decreased the system performance.  

One of the features we explored was path between main drugs in the parse tree, shown in 

the sixth row of the table. We traversed the parse tree to extract the path between the 

main drugs, while reducing the length of the path by collapsing identical adjacent non-

terminal labels. Using this feature decreased the performance by 0.08.  
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The next experiment explored the effect of using Bi-grams as feature in the classifiers. 

For each word Bi-grams that appeared more than once in the corpus, we assigned a 

feature to show the presence or absence of the bi-gram in the sentence. The sixth row of 

Table 4-2 presents the results, highlighting that adding Bi-grams to the system decreased 

the F-Measure. 

One of our explored features was negation. We added three features to the classifiers that 

indicated presence of negation in different parts of sentence: before the first drug, 

between two main drugs, and after the second drug. The results are presented in the 

seventh row of Table 4-2. This feature decreased the F-Measure from 0.59 to 0.58. 

We also explored the Cosine similarity feature that presented the cosine similarity 

between a sentence and the centroid vector of each class. The eighth row of Table 4-2 

shows the performance of the system after adding this feature. Unlike the other features, 

this feature didn’t decrease the performance of the system. But it did not increase the F-

Measure either, so we decided not to use this feature in the final system. 

The last explored feature is Clause Boundary, which indicates whether main drugs are in 

the same clause or not. The performance of the system after adding this feature is 

presented in the last row of table 4-2. It didn’t increase the F-Measure. 

After exploring different sets of features, we found that the best result is obtained with 

using 1000 words with high Mutual Information together with part of speech tags. In the 

following experiments, therefore, we used this set of features to explore additional 

classifiers. 
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4-4-2 Classifier Selection 

Given the best set of features, we explored 6 different classifiers for each stage: Naïve 

Bayes, Multinomial Naïve bayes, J48, Jrip, Random forest, and SVM. To find the best fit 

for the first stage classifier, we used SVM as the classifier in the second stage, and 

evaluated all the classifiers in the first stage. The results in Table 4-3 illustrates that SVM 

is the best fit for the first stage based on its F-Measure. It is worth noting, however, that 

with Random Forest, the precision was 30% more than with SVM. Therefore, for a 

system aiming at high precision, Random Forest would be the best choice for this stage. 

We note that to handle the unbalanced class problem, we explored different approaches 

and algorithms, including SMOTE [68] and other resampling algorithms, but they were 

not  effective. Instead, we found that assigning weights to the classes in SVM was more 

effective. Therefore, we learned the best weights for each class, based on cross-validation 

over the training set. In the first classifier, we assigned weight 1 to the None class and 6.5 

to the positive class. In the second classifier, the best weights were 800, 600, 3200, and 

500, respectively, for advise, effect, int, and mechanism. 

Table 4-3: System performance for different classifiers in the first stage 

Classifier in the 
first stage Precision Recall F-Measure 

Naïve Bayes 0.20 0.72 0.31 

Multinomial Naïve 
bayes 0.32 0.60 0.41 

J48 0.69 0.50 0.57 

Jrip 0.75 0.36 0.48 

Random forest 0.78 0.45 0.56 

SVM 0.48 0.83 0.59 
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We ran the same experiment for finding the best classifier for the second stage. In these 

experiments, SVM is used as the classifier in the first stage and the best features are 

utilized to train the classifiers. Table 4-4 illustrates the results of these experiments. As 

the results show, we obtained the best F-measure by using SVM in the second stage. 

Table 4-4: System performance for different classifiers in the second stage 

Classifier in the 
second stage Precision Recall F-Measure 

Naïve Bayes 0.30 0.59 0.39 

Multinomial Naïve 
bayes 0.41 0.68 0.48 

J48 0.36 0.75 0.48 

Jrip 0.36 0.72 0.48 

Random forest 0.47 0.69 0.51 

SVM 0.48 0.83 0.59 

 

4-4-3 Impact of Post-Processing 

After finding the best set of features and classifiers, we explored the impact of the post-

processing rules. We developed two sets of rules -- one applied after the first stage and 

the second on the final results. Table 4-5 presents the results, showing that using post-

processing rules increased the F-measure. A larger increase is observed with the first 

stage rules, which may be attributed to the larger number of rules that are likely to have 

covered more examples.  

Table 4-5: Impact of post-processing rules. 

Post-processing Precision Recall F-Measure 

None 0.48 0.83 0.59 

After the first stage 0.53 0.82 0.63 

On the final results 0.53 0.80 0.62 
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After the first stage 

+On the final results 
0.55 0.80 0.64 

 

4-4-4 Class-wise Performance 

Apart from the overall results given above, it is also useful to examine the class-wise 

performance of the system. This is given in Table 4-6. What is interesting to observe is 

that the “Int” class shows the highest F-measure, even though this class had the fewest 

instances in the training data. The hardest class to identify was the Mechanism class, 

which is probably due to its confusability with the Effect class, which also shows a lower 

F-measure compared to Int and Advise.  

Table 4-6: Class-wise Precision, Recall, and F-Measure 

Type Precision Recall F-Measure 

Advise 0.53 0.80 0.64 

Effect 0.46 0.77 0.57 

Mechanism 0.32 0.74 0.45 

Int 0.88 0.88 0.88 

 

4-4-5 Stage 1 Performance 

 All results above present the performance of the system after the second stage 

classification. But it is also useful to assess the performance of the first stage 

classification alone, as it provides insight into the task of DDI identification, i.e., 

classification as positive vs. negative. For this task taken alone, the precision, recall, and 

F-Measure after applying SVM and post-processing were 0.48, 0.86, and 0.61 

respectively. The low precision relative to recall seen here is not surprising since the 

positive class was assigned a higher weight. However, what is interesting is that although 
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the impact of the first stage post-processing on the overall result was significant (Table 4-

5), it’s absolute impact on the precision in the first stage is obviously not strong enough. 

As we discuss in the error analysis later in this chapter, there is much room for improving 

the precision in the first stage with better post-processing.  

4-4-6 Comparison with the competition system 

Since our submitted system to the DDIExtraction-2013 challenge used a different 

combination of features, we compared its performance with our current system. As 

shown in Table 4-7, the F-measure in our new system is 12% higher than the competition 

system. This comparison shows the effect of careful feature selection carried out for our 

current experiments, which we were not able to carry out for the competition system due 

to time constraints. In the competition system, we used a large number of features, given 

lack of knowledge about which particular features might be most effective. 

We note that comparison of our augmented system with the other systems from the 

competition is not possible because of the unavailability of the challenge’s evaluation test 

set until the time of writing of this thesis.   

Table 4-7: Comparison of best system with DDIExtraction-2013 competition system 

Features Precision Recall F-Measure 

The best system 

(1000 words with high MI 

+POS) 

0.55 0.80 0.64 

The competition system (All words + 
BiGrams 

+ POS + Verb 

+Number features +Cosine Similarity) 

0.52 0.73 0.52 
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4-5 Error Analysis 

As the results above show, the F-Measure of our system is not very high, but this was 

true of all the systems in the competition. To some extent, the poor performance in 

general can be attributed to the corpus itself, specifically to the unbalanced distribution of 

the types. This is further compounded by the unbalanced proportion of sentences from the 

two sources from where the corpus was drawn: only 6% of the sentences in the corpus 

come from Medline.  

However, for our system alone, one of the major reasons for the low F-measure was the 

assignment of a higher weight to the positive class, which resulted in a high false positive 

rate. Our error analysis shows that 87% of the errors were stage 1 errors, and that more 

sophisticated features for learning, or rules for post-processing, should be developed for 

further improvement, as discussed next. 

Some errors occurred because the post-processing rules identify grouped mentions of 

drugs based only on lexical and punctuation identifiers. Most of these errors could have 

been averted if the identification of grouped mentions also utilized syntactic information. 

For example, in the following sentence, 

• “Drugs that Lower Seizure Threshold: Concurrent administration of 

WELLBUTRIN and agents (e.g., antipsychotics, other antidepressants, 

theophylline, systemic steroids, etc.) that lower seizure threshold should 

be undertaken only with extreme caution.” 

Our current rules couldn’t detect that “theophylline” and “steroids” were mentioned in 

the same group because group identification in the current rules requires adjacency of the 
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drug names. Using syntactic constituency instead and recognizing intervening words as 

modifiers could have identified grouped mentions more systematically.  

Our analysis also revealed other features that are important to exploit, such as lexical 

semantics, scope of negation and hypothetical markers, scope of salient keywords, and 

noun phrase referential status. 

The following example shows that it may be possible to exploit the syntactic and 

semantic scope of the interaction keyword, concurrent, to the two drug names following 

it, but not the one preceding it. This example, as an instance for the two drugs, 

“etretinate” and “acitretin”, was annotated as None (no interaction), whereas our system 

labeled it as Effect.   

• “Ethanol:Clinical evidence has shown that etretinate can be formed with 

concurrent ingestion of acitretin and ethanol.” 

The next example illustrates the role of hypothetical marking and its scope. The 

interaction in question is the two drugs, “Argatroban” and “heparin”, highlighted in the 

hypothetical if-clause, which the system ought to accordingly treat as a hypothetical 

interaction and label as None. Instead, our system labeled this instance as Effect.  

• “However, if Argatroban is to be initiated after cessation of heparin 

therapy, allow sufficient time for heparins effect on the aPTT to decrease 

prior to initiation of Argatroban therapy.” 

Of course, some errors were related to the annotation. For example, PAH in the following 

sentence does not refer to a drug at all. Note, though, that even if PAH were considered to 

be a drug, the class label assigned to it seems to be incorrect, both by the annotation 
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(labeled as Effect) and the system (labeled as Advise). Unfortunately, information about 

the level of noise to be expected of the corpus isn’t available, so it is difficult to quantify 

the contribution of such errors and use it to set an upper bound on performance. 

• “Renal clearance measurements of PAH cannot be made with any 

significant accuracy in patients receiving sulfonamides, procaine, or 

thiazolesulfone.” 

4-6 Conclusions and Future Work 

In this thesis, we have presented a system to extract and classify DDI mentions from 

biomedical text. As our corpus contains a highly unbalanced class distribution, we 

applied a two-stage classifier to handle this problem. In the first stage, a binary classifier 

classified drug pairs into non-interaction and interaction classes. Then, drug pairs that 

were detected as interacting in the first stage are classified via a multi-class classifier into 

Advise, Effect, Mechanism, and Int classes. We explored various features in a selective 

way to find the best set of features for the classifier. We also experimented with six 

different classifiers in each stage to choose the best classifier for each. We further applied 

post-processing rules after each stage to improve the results. We have argued that 

handling the unbalanced class distribution is one of the advantages of our approach. In 

addition, our approach allows for using different sets of features and classifiers in the 

different stages. We learned that for this specific application, using SVM in both stages 

obtains the best F-Measure, although Random Forest in the first stage obtained 30% more 

precision than SVM. In this application, we used the same features to train both 

classifiers. The best feature set included 1000 top informative words and part of speech 

tags between two main drugs. The F-Measure of our system is 0.64, which is 0.12 higher 
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than our submitted system to the DDIExtraction 2013. This result shows the effectiveness 

of feature selection, because in the submitted system, we used a longer list of features 

without applying any feature selection approach. Unfortunately, we couldn’t compare our 

results with the other systems in the competition because the competition test set wasn’t 

available at the time of writing of this thesis.  

As future work for this thesis, we plan to: 

• Train our system on the competition training set and test on its test set 

• Use two different lists of features for each classifier: As the classifiers are 

different, binary and multi-class classifier, we will investigate different sets of 

features for each of them. We plan to exploit linguistic features in a more 

sophisticated way, including scope of negation, hypothetical marking, and salient 

keywords. 

• Add a 5th class (“None”) to the second classifier to detect some false positive 

instances generated by the first classifier. As the second classifier classifies 

instances into Advice, Effect, Mechanism, and Int, it is not able to detect false 

positive instances generated by the first classifier. So, we will add “None” class to 

this classifier and convert it into a five-class classifier. 

• Use syntactic information in addition to lexical/punctuation signals for post-

processing. 

• Explore kernel based SVM: We only used linear SVM in this thesis but we will 

explore the effect of kernel based SVM. 

• Explore ensemble classification in both stages.  
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• Train two separate systems for Medline and DrugBank sentences: Since 

DrugBank and Medline exhibit different structures in their sentences and 

documents, we expect that having separate classifiers for each will lead to better 

performance. 
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