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CHAPTER 1 Introduction 

1.1 Statement of the Problem 

 Fairness is an important issue in educational testing in that different groups of 

examinees should have equal probabilities of answering an item correctly, provided they 

have the same capabilities. Therefore, differential item functioning (DIF) analyses were 

developed due to the possibility of bias in cognitive or achievement tests. When DIF is 

present, different groups of individuals have different probabilities of getting a correct 

answer to an item even if they are of the same ability. The presence of DIF can be a 

serious problem in educational testing because it can threaten the validity of the test 

(Thissen, Steinberg, & Wainer, 1988, 1993).  Strictly speaking, when biased items appear 

in a test, DIF should be observed. However, if DIF is observed, it is not necessarily due 

to item bias; judgmental or statistical follow-up analyses must be conducted to determine 

the presence of item bias (Zumbo, 1999). Therefore, ability estimation bias can lend some 

additional evidence when making decisions on whether an item or a test is biased. 

Additionally, educational testing data is naturally multilevel because students are 

nested within classes which are nested within schools which are further nested within 

districts and states. As a result, multilevel models have received more attention in recent 

years due to the development of computing power and the availability of new software to 

fit these complicated models. The main drawback of using single level models when 

fitting multilevel data is that it leads to inflated Type I error rates and biased parameter 

estimates (Raudenbush & Bryk, 2001).Under the item response theory (IRT) framework, 

the unidimensional item response model can simultaneously be viewed as a two-level 

model such that items are nested within individuals. The person trait, or ability, is 
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characterized as a random parameter which is intended to facilitate marginal maximum 

likelihood estimation (MMLE) of item parameters (Harwell, Baker, & Zwarts, 1988). 

Thus, the person trait can be decomposed at higher levels, incorporating covariates that 

may affect the person trait. The item trait, on the other hand, is usually treated as fixed 

effect in the IRT model. When a manifest group covariate is added, the IRT model can be 

used to detect DIF (Luppescu, 2002). When the data are multilevel, DIF could occur at a 

higher level, such as the teacher level. For example, teacher effectiveness has been 

studied for decades because it is believed to impact student performance or achievement 

and thus would affect the estimate of the person trait (ETS, 2004; Medley, 1977). 

Therefore, it is reasonable to hypothesize that students with the same abilities would have 

different probabilities of correctly answering an item due to differences in teaching 

effectiveness. This hypothesis can be tested by conducting DIF analyses using the 

multilevel IRT model to locate the source of DIF. 

DIF has been studied for decades. In most DIF analyses research, one underlying 

assumption is that the existence of DIF causes test bias; however, this assumption 

contains two major flaws. Firstly, DIF is necessary, but not sufficient, condition for 

differential test functioning (DTF), because of the known impact of cancellation (Shealy 

& Stout, 1993). The second flaw is that DIF is a necessary, but not sufficient condition, 

for item bias. This is because, as mentioned previously, if DIF is observed other 

substantive evidence is needed to determine if DIF is actually item bias. Similarly, the 

decision that test bias exists should be based on the presence of DTF in conjunction with 

other statistical or judgmental evidence. For example, a negative impact on ability 

estimation could provide additional evidence that test bias exists, due to DTF. However, 
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previous studies have shown that the presence of DIF has little effect on ability estimates 

or on the use of tests in prediction or selection (Neisser, Boodoo, Bourchard, Boykin, 

Brody, Ceci, Halpern, loehlin, Perloff, Sternberg, & Urbina, 1996; Roznowski, & Reith, 

1999; Sackett, Borneman, & Connelly, 2008; Wells, Subkoviak, & Serlin, 2002) 

1.2 The Purpose of the Study 

DIF analyses in multilevel data are much more complicated than “just adding one 

level”. Due to the fact that DIF can occur at the student level and/or the teacher level, 

DIF analyses can be conducted at the student level, the teacher level, or both levels. 

Previous studies in measurement invariance have indicated that when DIF is present at 

the teacher level, DIF analyses only need to be conducted at this level since the teacher-

level DIF does not vary within clusters (Jak, Oort and Dolan, 2014; Ryu, 2013). When 

DIF is present at the student level, the situation becomes complicated as student-level 

intercepts and slopes can be random, and the student-level manifest groups may interact 

with clusters. The research exploring DIF analyses in multilevel data within an IRT 

framework is scattered and this study was designed to shed some light upon this issue. 

This study focuses on DIF detection and ability estimation in multilevel data in 

terms of uniform DIF. A simulation study was conducted to investigate whether the 

proposed multilevel IRT model could locate the source of DIF correctly, whether ability 

estimates are affected by the presence of DIF and, if so, to what degree. The multilevel 

Rasch model was adopted to detect DIF. MULTILOG 7.0 was implemented to obtain 

ability estimates. Sources of DIF were simulated at either the student or teacher levels, or 

at both teacher and student levels. Based on previous studies (Roznowski & Reith, 1999; 
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Wellset al., 2002), it is known that the magnitude of DIF and the proportion of DIF items 

affect ability estimation the most.  

1.3 The Significance of the Study 

This study explores DIF identification with multilevel data in three different 

situations. In the first situation, DIF is present only at the student level and it is consistent 

across teacher level clusters. This situation is what traditional DIF analyses assume to be 

true. In the second situation, DIF is present at the teacher level and the overall impact of 

DIF at the student level is negligible. In the third situation, DIF is present at both the 

student and teacher levels. In this situation student-level manifest groups interact with 

teacher-level manifest groups. The last two types of DIF scenarios would not be detected 

by traditional DIF analyses. 

This study has practical implications. Although it is important to identify DIF 

items, it is even more important to determine the impact of DIF on ability estimation. 

Current research primarily concentrates on DIF detection methods, overlooking the 

practical impact of the presence of DIF. The presence of DIF itself is not sufficient to 

draw conclusions about test bias or the validity of a test. Therefore, studying the effect of 

DIF on ability estimation is crucial, in that it provides additional information about the 

test and facilitates practitioners’ decision making, in terms of the final form of the test.   

Few studies have explored ability estimation when DIF items are present in 

multilevel data. Therefore, this study will also shed light on the impact of DIF for 

practitioners. If ability estimation is not affected by the presence of DIF then the test can 

be employed directly. In contrast, if ability estimation is impacted by the presence of DIF 

then the test will need to be modified.  
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1.4 Overview of Chapters 

Chapter 2 introduces key concepts in this study and describes the related literature. 

Chapter 3 describes the simulation study, including the research design, the simulated 

conditions, and the evaluation criterions. Chapter 4 presents the results section in which 

the simulation results are depicted and discussed. The final chapter summarizes the 

methods and the results, and discusses limitations and possible future development.  
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CHAPTER 2 Literature Review 

2.1 Differential Item Functioning 

Differential item functioning (DIF) refers to an item that displays different 

statistical properties for different manifest groups after the groups have been matched on 

a proficiency measure (Angoff, 1993). For example, a problem solving item displays DIF 

if the probability of male examinees correctly answering the item is higher than the 

probability of female examinees, after controlling for ability. The manifest groups in DIF 

analyses are known as the focal group, which has the lower probability of obtaining the 

correct answer to an item, and the reference group, which has a higher probability of 

obtaining the correct answer to an item. 

DIF analyses emerged due to the belief that cognitive and ability tests were biased 

against minority examinees. However, item or test bias can be due to multiple facets and 

DIF analyses only provide statistical evidence that is reliant on item scores and group 

indicators. Practitioners should be cautious when using the results of DIF analyses to 

generalize to item or test bias. DIF is evidence of such bias if, and only if, the factor 

causing DIF is irrelevant to the construct being measured by the test. 

One common belief in the literature is that DIF is caused due to the 

multidimensionality of items (Nandakunmar, 1993; Roussos & Stout, 1996; Shealy & 

Stout, 1993; Walker, 2011; Zumbo, 1999). Unidimensionality is one of the assumptions 

for unidimensional item response models which states that only one dimension underlies 

items in a test. DIF occurs when an item measures more than one dimension and two 

manifest groups differ on their underlying ability distribution for the non-primary 

dimension(s) that is measured by the item. In such situations, the non-primary dimension 
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increases the probability of a correct response to an item for examinees in the manifest 

group that has a higher underlying ability distribution on the non-primary dimension, 

even though the item may be primarily measuring the primary dimension. The lack of 

proficiency for examinees in the manifest group that have a lower underlying ability 

distribution on the non-primary dimension gives them a disadvantage in terms of solving 

the item correctly. If manifest groups do not differ in their underlying ability distribution 

on the non-primary dimension then DIF cannot be observed, even if the item is 

multidimensional (Ackerman, 1992). 

Usually, there are two forms of DIF: uniform DIF and non-uniform DIF (or 

crossing DIF). Uniform DIF occurs when one group performs better than the other group 

throughout the ability continuum. This implies that an item is more difficult for one 

group than another across all levels of ability. Technically, uniform DIF exists when the 

discrimination is equal across manifest groups, but the difficulty is different across 

manifest groups. Typically the difficulty of the items is greater for the focal group than 

the reference group. In contrast, non-uniform DIF occurs when there is a difference 

between the reference and focal group item characteristic curves discrimination 

parameter. This type of DIF can also exist when both discrimination and difficulty are 

different for two groups.  

2.2 DIF Detection Procedures 

2.2.1 Non-IRT model based Approaches 

Traditionally, there are numerous procedures to detect DIF. The Mantel-Haenszel 

(MH) statistic was applied by Holland and Thayer (1988) in determining DIF. The MH 

statistic is based on the sum of a series of 2 × 2 contingency tables in which each table 
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contains the observed correct/incorrect scores from examines in the reference and focal 

groups. The MH statistic is the most widely used procedure to detect DIF in practice, 

because it is easy to understand and compute, provides both a significance test and 

estimate of the magnitude of DIF, and can be employed when the sample size is small 

(Millsap, 2011). The major criticism of the MH procedure is the adequacy of using the 

total score as a substitute for the latent trait (Millsap, 2011).  

Another popular DIF detection procedure is to compare a set of nested logistic 

regression models to test for both uniform and non-uniform DIF (Swaminathan & Rogers, 

1990). The full model consists of the person trait (the total score or the ability estimate) 

and group membership as main effects as well as the interaction between them. The first 

reduced model omits the interaction term. Through the likelihood ratio test, a significant 

result indicates that the interaction term provides a significant amount of information 

above and beyond a model that does not include this term.  Therefore non-uniform DIF 

exists. On the other hand, an insignificant result indicates that the interaction term is not 

necessary. Therefore, non-uniform DIF is not present. Further, the model can be reduced 

by excluding the group membership term. By comparing this model and the first reduced 

model, one can determine whether uniform DIF exists. The main issue with the logistic 

regression procedure is it does not provide the information about the magnitude of DIF.  

DIFPACK is a statistical software package designed for detecting uniform DIF in 

dichotomous items (SIBTEST), polytomous items (Poly-SIBTEST), and crossing DIF 

(Cross-SIBTEST; Li & Stout, 1996; Shealey & Stout, 1993). This package is 

recommended because it is based on the theoretical reason for the occurrence of DIF, 

which is multidimensionality (Walker, 2011). This method adjusts the means of an item, 
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in terms of differences in the ability distributions for the reference and focal group or 

impact, using a two-segment piecewise linear regression correction (Jiang & Stout, 1998). 

As a result, this approach is more accurate in matching the reference and focal groups 

than MH and logistic regression methods. The estimates of DIF from SIBTEST can 

measure the magnitude of DIF of which decisions can be made in terms of small, 

moderate, and large DIF (Nandakumar, 1993).  

2.2.2 IRT Model-Based Approaches 

In addition to non-parametric DIF detection approaches, there are quite few 

parametric DIF detection approaches based on item response theory (IRT). IRT models 

connect the latent traits, or abilities, to item characteristics, such that the latent trait can 

be predicted by item traits via a monotonically increasing function called an item 

response function (IRF) or an item characteristic curve (ICC) (Hambleton, Swaminathan, 

& Rogers, 1991; Lord, 1980).  IRT provides a theoretically useful way to detect DIF such 

that DIF can be modeled through the use of estimated item parameters and ability. The 

assumptions of IRT are helpful in understanding DIF detection procedures. First, the 

unidimensionality assumption corresponds to the multidimensionality perspective on why 

DIF occurs. Second, the local independence assumption implies that any pair of items is 

independent, conditional on ability and is a necessary, but not sufficient, condition for the 

unidimensionality assumption to be met. Third, the item and sample invariance 

assumption states the item should not vary across samples, up to a linear transformation, 

which supports the reason for detecting DIF.  
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IRT models describe the relationship between item characteristics and person 

latent traits via a probability function. The probability of obtaining a correct answer to an 

item can be modeled as 

                
    

   
             

                              (2.1), 

where    is the person trait, or ability;    is the item parameter indicating discrimination; 

   is the item parameter indicating difficulty of the item; and    is the item parameter 

referred to as the pseudo-guessing parameter. The difficulty parameter is defined as the 

location on the ability continuum where the probability of correct response is 
    

 
. It is 

also the inflexion point of the ICC (Lord, 1980). The more difficult the item, the further 

the curve is to the right. The parameter    is the slope of the ICC at the inflexion point 

where    . The pseudo-guessing parameter    is the lowest asymptote on the ICC 

(Hambleton & Swaminathan, 1991). 

If an item cannot be answered correctly by guessing, then     . In this case, the 

3-PL model is reduced to the 2-PL model:  

             
 

   
             

                                       (2.2). 

Moreover, if all items can be assumed to have the same discrimination parameter, then 

the 2-PL model is reduced further to the 1-PL model: 

                 
 

   
            

                                   (2.3). 

When    , this 1-PL model is reduced to the Rasch model: 

                 
 

   
        

                                       (2.4). 

Many consider the 1-PL model and the Rasch model to be unrealistic because of the 

assumption that items are all equally discriminating. These models, however, have very 
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nice mathematical properties. Therefore, tests modeled using the Rasch model have items 

of the highest caliber. 

Based on the item and sample invariance assumption, one parametric IRT-based 

DIF detection approach is to compare the differences in item parameter (   and   ) 

estimates using models fit separately to reference and focal group examinees (Camilli & 

Shepard, 1994; Lord, 1980). However this approach does not take into consideration true 

differences in ability, or impact, which may exist between the reference and focal group. 

A better approach is to conduct likelihood ratio tests to compare a set of IRT models in 

which the reduced model constrains the item parameter to be invariant across groups 

(Thissen et al., 1988). This method can be implemented using several software packages 

such as MULTILOG, BILOG-MG, LISCOMP, SPSS LOGLINEAR, LOGIMO, and 

BIMAIN (Thissen et al., 1993). In this method, DIF free items are required to match 

people of equal levels of ability, to control for impact. If the item parameters, for a 

particular item being tested, are not invariant across groups, then an item is flagged as a 

DIF item and the next item is tested. Another parametric IRT-based method evaluates 

how different the area measures of ICCs are, between the reference and focal groups 

(Raju, 1988; Rudner & Gagne, 2001).  An important concern in using this method is how 

to determine the significance of the difference. Although signed area (SA) and unsigned 

area (UA) can be calculated to evaluate the effect size of DIF (Penfield & Camilli, 2007), 

they are not efficient to examine the hypothesis of no DIF. This method also fails to take 

into account the distribution of ability, thus producing misleading interpretations of the 

size of the observed DIF for specific groups.  
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In structure equation modeling framework, the multiple indicator multiple cause 

(MIMIC) model and the multiple group confirmatory factor analysis procedure (CFA) are 

two common approaches to detect DIF (Hancock & Mueller, 2013). When using the 

MIMIC model, the latent trait is predicted by a group membership variable, in addition to 

the measurement model. The significance of the path between the individual indicator 

and the group membership variable implies the presence of DIF of that indicator (item). 

Studies have shown the accuracy of using MIMIC model to detect uniform DIF (Finch, 

2005; Wang & Shih, 2010; Woods, 2009). Adding a latent variable interaction, the 

MIMIC model can also be used to test for non-uniform DIF (Woods & Grimm, 2011). 

The main issue of using the MIMIC model for DIF detection is that the Type I error rates 

are high (e. g., Finch 2005; Woods & Grimm, 2011). Alternatively, multiple group CFA 

has been proposed to test for measurement invariance (Meredith, 1993). Four hierarchical 

levels of invariance are investigated via four nested models in an order of configural, 

weak, strong, and strict invariance. Weak invariance corresponds to non-uniform DIF and 

strong invariance corresponds to uniform DIF. Studies have shown that multiple group 

CFA performs similar to other DIF detection procedures, in terms of power and Type I 

error rates. However, some DIF detection procedures perform better when items are 

dichotomous and multiple group CFA tends to perform better when items are polytomous 

(Kim & Yoon, 2011; Meade & Lautenschlager, 2004; Raju, Laffitte, & Byrne, 2002; 

Stark, Chernyshenko, & Drasgow, 2006). 

2.2.3 Two Level Multilevel Models for DIF Detection 

All multilevel models, even though they may have different formulations, 

rely on the basic hierarchical modeling technique which assumes at least one 
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random effect that varies across higher levels of the model. One such formulation, 

models a standard unidimensional IRT function as a multilevel model, with items 

nested within persons. Kamata (2001) proposed a hierarchical generalized linear 

model (HGLM) that is algebraically equivalent to the two-level Rasch model. 

Following the GLM framework, a logit link function and a linear predictor model 

(level-1 structural model) is formulated in the two-level formulation of the Rasch 

model.  

The level-1 structural model is the item-level model. For an individual  , the 

response on the item   can be formulized as 

        
   

     
                               , 

                
   
                                                 (2.5), 

where     is the intercept of the model and     is the slope of the model.     can be 

viewed as the expected item effect of item   for person  .      is the  th variable for 

person  . It takes on a value of -1 if    , and 0 otherwise.     can be understood as the 

deviation from    . For item  , since    ,        . Equation 2.5 can be reduced as 

                                                             (2.6), 

where     is the effect of  th variable on log of the odds of getting item   correctly for 

person  . It can be interpreted as the effect of item   when    . 

Level 2 is the person level and     is allowed to vary randomly across persons. 

However, item effects are not allowed to vary across persons. The person level model is 

           , 

                                                               (2.7) 
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where     and     are the fixed effects for     and     separately;     is the random 

effect associated with person   and is assumed to be a normal distribution of         . 

    can be viewed as the ability of person  . 

Combining Equation 2.6 and 2.7, we get 

                                                            (2.8). 

This can be rewritten so that the probability of getting item   correctly for person   is 

    
 

   
                

                                            (2.9). 

Equation 2.9 is equivalent to the Rasch model (Kamata, 2001). Comparing this equation 

to Equation 2.5,        and           .     is viewed as the ability of person   and 

        is viewed as the item difficulty parameter for item  .  

For DIF detection, Luppescu (2002) extended Kamata’s two-level Rasch model 

and conducted a simulation study to see if the extended model could be used to detect 

DIF. The sample size, magnitude of DIF, and the proportion of examinees in the focal 

group were considered as design factors in the study. The interpretation of parameters in 

the two-level model was revised in order to detect and interpret DIF. 

Level-1 model in the extended model was the same as Kamata’s level 1 model 

and consisted of a logit link function and a linear predictor model. In the level 2 of the 

model, the intercept term was allowed to vary randomly across persons, but no attempt 

was made to predict this variation. Item effects were not allowed to vary across persons. 

Rather, a group membership dummy variable was added to the model for each item that 

was to be tested for DIF. With one DIF item, the level-2 model was formulated as 

           , 
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                                       (2.10), 

where     is the dichotomous group membership, coded as 1 for the focal group and 0 for 

the reference group.     can be interpreted as the item difficulty for each item.     is the 

coefficient associated with each of the dummy variables and can be interpreted as the 

magnitude of DIF for each item.     is the average ability across all examinees and     is 

the deviance of ability from an individual examinee to the average ability. 

Luppescu (2002) calculated the root mean squared error (RMSE) to compare the 

precision of using the Rasch model for DIF detection (Luppescu, 1993) and the extended 

multilevel Rasch model for DIF detection. Both models performed similarly. The RMSE 

for the extended multilevel Rasch model was small when the sample size was large, when 

the magnitude of DIF was small, and when the proportion of people in the focal group 

was small.  However, the Rasch model provided better estimates when the sample size 

was large. Beretvas and Walker (2011) distinguished DBF from a testlet effect using the 

multilevel IRT model. They decomposed the DIF into an item-level component and a 

testlet-specific component. Their simulation study showed that the multilevel IRT model 

out performed SIBTEST in terms of the identification of DIF, impact, and differential 

testlet functioning. 

Since Kamata’s model is restricted to the Rasch model, Swanson, Clauser, Case, 

Nungester, and Featherman (2002) generalized the logistic model procedure to a 

hierarchical logistic regression model so that uniform DIF and non-uniform DIF could be 

detected simultaneously. The level-1 (item level) model in this generalized model was the 

same as the first reduced model in the logistical regression model procedure, except the 
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intercept and the slopes were modeled as random across level-2 (person level) clusters. 

At the person level, the coefficient associated with the level-1 group membership can be 

predicted by characteristics that may explain DIF. Swanson et al. (2002) demonstrated 

that the hierarchical logistic regression model could be used as an alternate 

parameterization method for the 2PL IRT model: The level-1 intercept equals       and 

the first level-1 slope equals    when ability is normally distributed with a mean of zero 

and standard deviation of one. Although Swanson et al. concluded, via simulation studies, 

that the hierarchical logistic regression model can be used to successfully investigate the 

possible causes of DIF; the particular DIF items and the magnitude of DIF are difficult to 

be determined. 

Using the logistic mixed model is yet another way in which one can evaluate test 

items for DIF (Van den Noortgate & De Boeck, 2005). In contrast to Kamata’s multilevel 

Rasch model, items are treated as random samples from a certain population which 

implies that the logistic mixed model is based on a model with random item effects (Van 

den Noortgate, De Boeck, & Meulders, 2003). Using corresponding group membership 

as covariates, this procedure can identify DIF at the person level or at even higher levels 

(Van den Noortgate & De Boeck, 2005). If the variance of the random item effects is 

larger than zero, then DIF exists for at least one item. In this case, empirical Bayes 

estimates of random item effects for each item can be obtained, to determine which item 

is functioning differentially. Although the logistic mixed model is flexible, since group 

membership can also be a random effect, it is well-known that the empirical Bayes 

estimates are biased. Therefore, detecting DIF for specific items using this framework is 

particularly challenging. 
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2.2.4 Three Level Multilevel Models for DIF Detection 

In educational testing, nested data, with students nested within classrooms, 

are frequently encountered. If the researcher is interested in the relationship between 

student and teacher variables, then the use of traditional models, such as regression 

models, is problematic and can lead to biased parameter estimates (i.e., Kamata, 

2001; Raudenbush & Bryk, 2001). The assumption of independent observations is 

violated due to the nested data structure. Therefore, multilevel models have been 

developed to take into account the hierarchical structure. In these models, the 

variance components are decomposed into each sampling level so that the 

homogeneity of students in the same class or school can be modeled. Most 

multilevel models discussed in the last section can be generalized to three-level 

models, incorporating teacher or school level characteristics that may cause DIF.  

Kamata (2001) generalized the two-level Rasch model to the three-level Rasch 

model. Level 1 is the item level, as it is in the two-level model (Equation 2.5). It is 

written as 

         
    

      
                                    , 

                    
   
                                      (2.11), 

where   and   are identical to the level-1 model in the two-level model in Equation 2.5, 

except for the subscript   that is added to indicate classrooms or teachers.       is the 

dummy variable that indicates the  th item for person   in classroom  .      is the effect 

of the reference item and      is the difference between the  th item and the reference 

item. 
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Similar to the two-level model,      is constant at the person level. So the person 

level model for person   in class   is 

              , 

                                                                    (2.12), 

where                . This model is identical to the person level model in Equation 

2.7, except for the extra subscript  . Here,      indicates the variation of person   within 

classroom  . The variance of      within class is    is assumed to be identical for all 

classrooms. Additionally,      is the effect of the reference item in classroom  ; and      

is the effect of the  th item in classroom  . 

The overall item effect      can be further modeled at the additional classroom-

level. For classroom  , we have 

              , 

                                                                    (2.13) 

where             . At the classroom level,      and      are both fixed item effects; 

     is a random effect with variance   . As in the two-level model, letting    , a 

combined model is  

     
 

   
                          

                                       (2.14). 

where           is the item difficulty for item   when    , and      is the item 

difficulty for item  . On the other hand,           can be considered as the ability 

parameter of person   in classroom  . Unlike the ability term in the two-level model, the 

ability term in the three-level model contains two random effects. First,      is a 

classroom-level random effect that indicates the average ability of students in classroom  . 
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Second,      is a person-level random effect of person   in classroom  , implying the size 

of variation of person   from the average ability of students in classroom  . In a three-

level model, ability is decomposed into a person-level ability term and a classroom-level 

ability term. 

Kamata (2001) discussed the impact of person characteristic variables on the 

estimation of ability using three level Rasch models. From a data demonstration, Kamata 

concluded that the three-level Rasch model is flexible and can be used to identify a 

group-characteristic variable that explains variation across higher-level clusters. 

Furthermore, Kamata, Chaimongkol, Genc, and Bilir (2005) generalized the three-level 

Rasch model by allowing the coefficient corresponding to the person-level DIF to be 

random across higher level clusters (schools in their study). That is, the item-level model 

(Equation 2.11) remains the same, the student-level model becomes 

              , 

 
                                            

                              
 ,                             (2.15) 

where      is the group membership at the student level and      is the effect of DIF. 

Then the level-3 model becomes 

              , 

 
                     

              
                                                (2.16) 

where      is the random effect of DIF across schools. If the variance of      is larger 

than 0, the DIF effect varies across schools. In other words, the effect of the student-level 

group membership is different from school to school. Jak, Oort, and Dolan (2013) 
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Figure 4.4 Power of Detecting Both-level DIF using ML-Inter When Conducting Exploratory 

Analyses 

 

Recall that when DIF occurred at both levels, the final DIF effect was a 

combination of student-level DIF and teacher-level DIF. Therefore, when student-level 

DIF and teacher-level are equivalent, final DIF is canceled out for females (focal group 

examinees) with effective teachers (e.g.,                      ). When 

student-level DIF and teacher-level are not equal, final DIF is not cancelled out, but 

remains very small (e.g.,                         ). As a result, the detection 

of such small DIF at both levels was not very good with power ranging from only 0.06 to 

0.14 (the bottom line in Figure 4.4). In Figure 4.4 (a), one can see that the power of 

detecting DIF at the both levels for each student-teacher manifest group increased as the 

magnitude of student-level DIF increased for female students with non-effective teachers 

and average teachers; while the power remained the same for male students with effective 

(a) (b) 

(c) 
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and non-effective teachers. This may be because the magnitude of student-level DIF only 

has an effect on detecting student-level DIF. The power for females with non-effective 

teachers was relatively large (from 0.648 to 0.824) because the simulated DIF is the sum 

of student- and teacher-level DIF (         ), which resulted in a large magnitude of 

DIF which ranged from 1.00 to 1.60. For females with average teachers, the power 

increased from 0.413 to 0.789. This may be due to having a large proportion of teachers 

in the average group in the extremely unbalanced design.  

In Figure 4.4 (b), one can see that the power of detecting DIF at both levels, 

increased as the magnitude of teacher-level DIF increased for females with effective and 

non-effective teachers, as well as for males with effective and non-effective teachers. 

This may be because the magnitude of teacher-level DIF only impacts the detection of 

teacher-level DIF. Once again, power was relatively large for females with non-effective 

teachers (from 0.643 to 0.815). However the power of detecting DIF at both levels for 

males with effective or non-effective teachers was not large even when the magnitude of 

DIF = 0.8 (power = 0.538).  

In Figure 4.4 (c), one can see that the power of detecting DIF at both levels 

decreased as the teacher-level manifest group design changed from a balanced design to 

an extremely unbalanced design, except for females with average teachers. This is 

because the proportion of teachers in the average group became larger when the teacher-

level manifest group moved from a balanced design to an extremely unbalanced design. 

The largest power was obtained for females with non-effective teachers in a balanced 

design (0.853). 
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To summarize, conducting exploratory DIF analyses with the proposed models 

and multilevel data largely depends on the magnitude of DIF, the location of DIF and the 

proportion of teachers in each manifest group. Overall, the power was not promising 

when conducting exploratory analyses. On the contrary, conducting confirmatory DIF 

analyses, without any model misspecification, yielded almost perfect results (Table 4.2). 

Results from the ANOVA found that there were influential design factors when DIF was 

generated at both student and teacher levels using the ML-Inter model. These results are 

presented next. 

As depicted in Table A.8, when a confirmatory approach was taken and the ML-

Inter model was used four within-subject interactions were found to impact power rates: a 

three-way interaction was found between the student-teacher manifest group, the 

magnitude of student-level DIF and the magnitude of teacher-level DIF 

(                  
      ); a two-way interaction between the student-teacher manifest 

group and the proportion of teacher-level manifest group (               
      ); a 

two-way interaction between the student-teacher manifest group and the proportion of 

student-level manifest group (               
      ); and a two-way interaction 

between the student-teacher manifest group and the magnitude of teacher level DIF 

(             
      ). In addition, two between-subject interactions and two between-

subject main effects were found to impact power rates: the interaction between the 

magnitude of student-level DIF and the teacher-level DIF (          
      ); the 

interaction between the magnitude of teacher-DIF and the proportion of teacher-level 

manifest groups (            
      ); the main effect of the magnitude of teacher-level 



51 
 

 
 

DIF (     
      ); and the main effect of the proportion of teacher-level manifest 

groups (       
      ). Interactions are interpreted below. 

The three-way within-subject interaction is shown in Figure 4.5. For female 

students with effective teachers, no DIF was simulated when the magnitude of student-

level DIF was equal to the magnitude of teacher-level DIF. Therefore, the power of 

detecting both-level DIF (or Type I error) was around 0.05. When the magnitude of 

student-level DIF did not equal the magnitude of teacher-level DIF, the power of 

detecting both-level DIF was about 0.323. For other manifest groups, the power of 

detecting both-level DIF increased as the magnitude of DIF increased. When teacher-

level DIF = 0.5, the power of detecting both-level DIF was lower for male students with 

effective or non-effective teachers than for female students with effective or non-

effective teachers (0.793 vs. 0.977).  However, when the magnitude of teacher-level DIF 

= 0.8, the power of detecting both-level DIF was high for all manifest groups. 

 

Figure 4.5 Power of Detecting Both-level DIF When Conducting Confirmatory Analyses: 3-way 

interaction 

 

The interaction between the student-teacher manifest group and the proportion of 

student-level manifest groups is presented in Figure 4.6. In the balanced design where 

50% of the students were in the focal group (female) and 50% of students were in the 

reference group (male), the power of detecting both-level DIF was as high as 0.834. In 
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the unbalanced design where only 20% of the students were in the focal group and 80% 

of the students were in the reference group, the power of detecting both-level DIF was 

low for female students with effective and non-effective teachers; but high for male 

students with effective and non-effective teachers. The results indicate that the proportion 

of student-level manifest groups also has an effect on the power to detect DIF at the 

teacher-level, when average teachers are used as the reference category. This is why 

power is so low (0.483) for female students with average teachers. 

 
Figure 4.6 Power of Detecting Both-level DIF When Conducting Confirmatory Analyses: 

S_group 

 

The interaction between the student-teacher manifest groups and the proportion of 

teacher-level manifest group is presented in Figure 4.7. As stated previously, the power 

of detecting both-level DIF obtained was low for female students with effective teachers 

due to the small magnitude of DIF (0 or 0.3) that was simulated. For other conditions, 

when the proportion of teachers in each group changed from a balanced design to an 

extremely unbalanced design, the power decreased, except for female students with 

average teachers. However, even with this decrease in power, the power of detecting 

both-level DIF was as high as 0.758 in the worst condition, which was for male students 

with effective or non-effective teachers. Female students with non-effective teachers 

yielded largest power (from 0.901 to 1.000) due to the large magnitude of simulated DIF. 
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Figure 4.7 Power of Detecting Both-level DIF When Conducting Confirmatory Analyses: 

T_group 

 

The interaction between the magnitude of teacher-level DIF and the proportion of 

teacher-level manifest groups is presented in Figure 4.8. When the magnitude of teacher-

level DIF was small (0.5), the power of detecting both-level DIF was relatively small 

only in the extremely unbalanced design (0.754). When the magnitude of teacher-level 

DIF was large (0.8), the power of detecting both-level DIF was large in all conditions 

(from 0.946 to 0.985).  

 

Figure 4.8 Power of Detecting Both-level DIF When Conducting Confirmatory Analyses: 

T_group × T_DIF 

 

In summary, confirmatory analyses were found to be better than exploratory 

analyses in terms of smaller Type I error rates and larger power, while the magnitude of 

DIF and the proportion of either students or teachers in each manifest group had the 

greatest influence on the detection of DIF when conducting confirmatory analyses. 
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4.2 Parameter Recovery 

The difficulty parameter is a fixed effect in the multilevel Rasch model. In both 

exploratory and confirmatory DIF analyses, the difficulty parameter estimates were very 

close to the true parameter. The correlation coefficients were nearly one, bias was small 

and RMSE’s were also small (Table 4.3). No factors were found to have effect sizes 

larger than 0.05. 

Table 4.3 

Bias, correlation and RMSE of difficulty parameter 

 

Exploratory Confirmatory 

 

Correlation bias RMSE Correlation bias RMSE 

ML-Teacher 1.00 -0.02 0.20 1.00 0.01 0.11 

ML-Both 1.00 -0.00 0.20 1.00 -0.00 0.10 

ML-Inter 1.00 -0.00 0.20 1.00 -0.00 0.11 

 

4.3 Ability Estimates 

Ability estimates were obtained using MULTILOG 7.0 using a 1-PL model to fit 

the multilevel data. A baseline condition was added such that data were generated from a 

Rasch model and ability was estimated using the same Rasch model so that the results 

obtained from the multilevel data could be compared to a best case scenario. Comparing 

results from the simulated data to this baseline condition allows for a better 

understanding of the factors that have an impact on ability estimation. 

Table 4.4 depicts the correlation, bias and RMSE for all conditions, including the 

Rasch No DIF condition. As the table illustrates, regardless of the magnitude of DIF, the 

number of DIF items at the teacher level, or the level at which DIF occurred, the bias was 

always near zero and the correlation was always high (0.96). The only difference 

observed in the table is that the RMSE’s were noticeably smaller for the Rasch NO DIF 
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condition (0.59 vs. 0.35) than for the other conditions. However, no significant factors 

were found to influence ability estimates. Therefore, when using the Rasch model to 

estimate ability when DIF is present in multilevel data, the standard errors of ability 

estimates will be biased, but not to a great extent. These findings were not entirely 

consistent with previous studies. 

Table 4.4  

Bias, correlation and RMSE for ability estimates 

DIF 

Location 

Teacher-

level DIF 

Student-

level DIF 

Number of 

DIF items 
Correlation bias RMSE 

Rasch 

No DIF 

0 

0 

5_item 0.94 0.00 0.35 

10_item 0.94 0.00 0.35 

15_item 0.94 0.00 0.35 

20_item 0.94 0.00 0.35 

0 

5_item 0.94 0.00 0.35 

10_item 0.94 0.00 0.35 

15_item 0.94 0.00 0.35 

20_item 0.94 0.00 0.35 

0 

0 

5_item 0.94 0.00 0.35 

10_item 0.94 0.00 0.35 

15_item 0.94 0.00 0.35 

20_item 0.94 0.00 0.35 

0 

5_item 0.94 0.00 0.35 

10_item 0.94 0.00 0.35 

15_item 0.94 0.00 0.35 

20_item 0.94 0.00 0.35 

Teacher 

level 

0.5 

0 

5_item 0.96 0.00 0.59 

10_item 0.96 0.01 0.59 

15_item 0.96 0.00 0.59 

20_item 0.95 0.00 0.60 

0 

5_item 0.96 -0.01 0.58 

10_item 0.96 0.00 0.59 

15_item 0.96 0.00 0.59 

20_item 0.95 0.00 0.60 

0.8 
0 

5_item 0.96 0.00 0.59 

10_item 0.96 -0.01 0.59 

15_item 0.95 0.00 0.60 

20_item 0.95 0.00 0.61 

0 5_item 0.96 0.00 0.58 



56 
 

 
 

DIF 

Location 

Teacher-

level DIF 

Student-

level DIF 

Number of 

DIF items 
Correlation bias RMSE 

10_item 0.96 0.00 0.59 

15_item 0.95 0.00 0.60 

20_item 0.95 0.00 0.61 

Both 

level 

0.5 

0.5 

5_item 0.96 0.00 0.59 

10_item 0.96 0.00 0.59 

15_item 0.96 -0.01 0.59 

20_item 0.95 0.00 0.60 

0.8 

5_item 0.96 -0.01 0.59 

10_item 0.96 0.00 0.59 

15_item 0.96 0.00 0.59 

20_item 0.95 0.01 0.60 

0.8 

0.5 

5_item 0.96 0.00 0.59 

10_item 0.96 0.00 0.59 

15_item 0.95 0.00 0.60 

20_item 0.95 0.00 0.61 

0.8 

5_item 0.96 0.00 0.59 

10_item 0.96 0.00 0.59 

15_item 0.95 0.00 0.60 

20_item 0.95 -0.01 0.61 
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CHAPTER 5 Discussion 

This study investigated the use of multilevel Rasch models for the detection of 

DIF with multilevel data under a variety of research conditions. Overall, DIF in 

multilevel data is a complicated issue, due to the existence of different types of random 

effects. This study explored DIF in multilevel data with the invariant item assumption in 

IRT, as well as fixing the student-level group membership across clusters. This 

assumption helps to simplify the detection of DIF. 

5.1 DIF Detection 

In this study, using a multilevel Rasch models proved to be successful in 

identifying DIF in multilevel data, when using a confirmatory approach, at both the 

student and teacher level. In traditional DIF analyses, it is typically assumed that DIF is 

due to characteristics that are only manifest at the student level. This presumes, in a 

multilevel modeling framework, that the impact of DIF is the same across all clusters. By 

definition, DIF can also occur at the teacher level. Using the example in this study, 

effective teachers employ better instructional methods, or tools, to help students with 

problem solving. After a period of time, students with effective teachers may show better 

performance even though the students may have the same ability level as students in 

classrooms with less effective teachers. In a multilevel situation such as this, a researcher 

may be interested in investigating DIF at the teacher level in order to understand the 

differential performance among students. The existence of teacher-level DIF should not 

influence DIF detection at the student level, if teacher-level characteristics do not vary 

within clusters (Ryu, 2013). This has been verified through this simulation study.  
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In this study, the ML-Teacher model was showed to detect teacher-level DIF 

successfully. As expected, the magnitude of teacher-level DIF and the proportion of 

teacher-level manifest group had effects on the detection of teacher-level DIF when 

conducting an exploratory analysis. With large magnitude of teacher-level DIF and equal 

proportion of teacher-level manifest group, the ML-Teacher model showed high power 

even in the exploratory analyses (Figure 4.2). 

The ML-Both model can be used to detect both-level DIF separately as student-

level DIF and teacher-level DIF. When teacher-level DIF only occurs, using the ML-Both 

level model yielded comparable power with the ML-Teacher model and acceptable Type 

I error rates (Table 4.2). As expected, the magnitude of student-level DIF, the magnitude 

of teacher-level DIF, and the proportion of teacher-level manifest group had effects on 

the detection of both-level DIF in the exploratory analyses (Figure 4.1 and Figure 4.2). 

However, the proportion of student-level manifest group did not impact the detection of 

student-level DIF. 

The ML-Inter model, on the other hand, can be used to detect DIF integratedly 

when DIF occurs at both student and teacher levels, indicating DIF for each student-

teacher manifest group. Moreover, as stated in Chapter 4, if the student-level reference 

group (e.g., male students) is treated as the reference category, the results indicate the 

student-level DIF; if the teacher-level reference group (e.g., average teachers) is treated 

as the reference category, the results indicate the teacher-level DIF; and if the student-

teacher reference group (e.g., male students with average teachers), the results indicate 

the integrated both-level DIF. Again, as expected, in this study, the magnitude of student-

level DIF, the magnitude of teacher-level DIF, the proportion of student-level manifest 
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group, and the proportion of teacher-level manifest group did have effects on the 

detection of both-level DIF.  

If a researcher is interested in testing for DIF at both levels, but is interested in the 

effects of DIF at each of those levels, the detection of DIF can be achieved in two ways: 

(1) Using one model with group membership covariates at each level (the ML-Both 

model); or, (2) Using two models, one with student-level group membership as a 

covariate and a second one with teacher-level group membership as a covariate (the ML-

Teacher model). In this study, similar results were found for the three-level Rasch model 

with teacher-level covariates (the ML-Teacher model) and the three-level Rasch model 

with independent covariates at both levels (the ML-Both model) in detecting teacher-

level DIF. 

When DIF occurs at both student and teacher levels, teacher-level DIF may 

influence student-level DIF, as an interaction may exist between teacher-level and 

student-level DIF. For example, if effective teachers introduced a method related to 

spatial memory to solve a math problem, boys may benefit more than girls. As long as the 

test does not test spatial memory, but tests how to solve a math problem, the differences 

in responses between boys and girls are due to DIF. In this situation, the three-level 

Rasch model with a cross-level interaction (the ML-Inter model) could be used. The 

differentiation of the ML-Both model and the ML-Inter model was a major focus of the 

current study. If one asks the question “Is there student or teacher level DIF?”, the ML-

Both model is sufficient to answer that question. If one asks the question “Does teacher 

effectiveness influence student performance in terms of their gender or race?”, the ML-

Inter model is more appropriate.  
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Consistent with previous studies (e.g., Finch, 2005; Walker et al, 2012; Zumbo, 

1999), the magnitude of DIF and the proportion of the manifest group was found to affect 

DIF detection most. More specifically, as Linacre (2013) illustrated, when DIF = 0.5, the 

smallest sample size for each manifest group must be 300 in order to detect DIF with 

appropriate power and Type I error rate control. When DIF = 1.0, the sample size 

requirement greatly decreases, to only 100 persons in each manifest group. In this study, 

extremely unbalanced design at the teacher level resulted in only 6 to 9 teachers in 

efficient or non-effective teacher groups, and as few as 180 to 270 students in such 

groups, the power of detecting teacher-level DIF was far too low. However, the student-

level proportion of manifest group was not found to have a profound effect on DIF 

detection in this study. The reason for this may have been the large sample size of at the 

student level. Even when only 20% of the students were focal group examinees, this was 

equivalent to 600 students, which is large enough for DIF detection at the student-level. 

5.2 Ability Estimates 

Previous studies have indicated that ability estimates are influenced by the 

percentage of items and the magnitude of DIF (e.g., Walker et al, 2012; Zumbo, 2003). In 

this study, however, no factors were found to have a significant effect on ability 

estimation. Regardless of the percentage of DIF items and the magnitude of DIF, the 

standard errors of ability estimates were large. Moreover, if rank ordering examinees is of 

interest, the presence of DIF in a hierarchical data structure will not affect this rank 

ordering of ability estimates at all. In this study, only five, out of forty, items were set up 

as DIF items at the student level, which is a percentage of only 12.5% of items. Walker et 

al. (2012) found that having 15% of items that function differentially may lead to 
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statistically significant ability differences between reference- and focal-group examines. 

In this study, the percentage of DIF items at the teacher level was not found to influence 

ability estimation as expected. Since no factors were found to be influential on ability 

estimation in this study, other evaluation methods may be carried out.  One method to test 

ability estimation is to employ t-tests to compare ability estimates between reference- and 

focal-group students. The other method is that person fit statistics can be used to 

investigate the misfit in each response pattern. It is hasty to conclude ability estimation 

will not be affected by DIF in multilevel data based only on the current study. More 

studies needs to be done, in terms of the impact of the hierarchical structure, the cluster 

bias, and DIF at each level on ability estimation.  

5.3 Practical Implications  

In practice, empirical researchers conducting DIF analyses using multi-level 

models are often concerned about the appropriate model to use, the order in which one 

should detect student- and teacher-level DIF, and the correct interpretation of the results. 

As described in Chapter 2, there are numerous procedures to detect DIF in multilevel data. 

However, most of the previous studies did not consider the order in which one should 

detect student and teacher level DIF. The multilevel Rasch model is flexible, easy and 

efficient to apply in SAS. One can add fixed or random effects to test different 

assumptions. If no hypotheses are made, cluster bias should be detected first, using a 

random effect for the item of interest across clusters. If the random effect is significant, 

this implies that the item difficulty varies across clusters. In other words, the item 

functions differentially from one class to another, if classroom is the third level of the 

model. The significant random effect violates the invariance assumption of IRT models. 
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In this case the corresponding analyses should focus on why this happened. This situation 

is different from what Van den Noortgate and De Boeck (2005) proposed, which was 

using logistic mixed models and assuming that items are randomly sampled from a 

population (e.g., item bank). With an insignificant random effect of items, student-level 

DIF can first be tested, followed by the detection of teacher-level DIF. One can 

investigate DIF in a stepwise fashion, adding one parameter at a time while checking the 

significance of estimates as well as model fit if not using quasi-likelihood. 

One criticism of the multilevel Rasch model is that it requires a relatively large 

sample size (Hox, 2002; Raudenbush& Anthony, 2001). Alternatively, it is possible to 

estimate the multilevel Rasch model using a Markov Chain Monte Carlo (MCMC) 

simulation. One of the biggest advantages of MCMC is that it works well with small 

sample sizes (Christensen, Johnson, Branscum, & Hanson, 2010). The weakness of this 

method is that it is too time consuming.  

The multilevel mixture model with known classes (Muthén, 2002) may be another 

alternative DIF detection procedure. Comparing the multilevel mixture model to the 

multilevel MIMIC model, the multilevel mixture model detects DIF with high power and 

acceptable Type I error rates (Kim et al, accepted). The Mixture Rasch model was 

introduced by Rost (1990, 1991) to identify two latent classes that reflected knowledge 

states on physical achievement. After that, studies have been employed using the mixture 

Rasch model to detect “latent DIF,” or differential performance due to differential levels 

of the latent trait. Conceptually, this model is more suitable to detect impact, but it can 

also be used to detect DIF by using the observed group membership. More studies are 
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needed to investigate the behavior of the multilevel mixture model under the IRT 

framework. 

5.4 Limitations 

The main limitation of this study was the assumption of fixed item effects. 

Although this assumption is consistent with the item invariance assumption in item 

response theory, it is not necessarily true in real testing scenarios. As mentioned 

previously, cluster bias should be tested prior to conducting any DIF analyses. If cluster 

bias exists, one can still conduct DIF analyses using a multilevel Rasch model with a 

fixed group membership and random item effects. After controlling for the effect of 

clusters, one can interpret the results obtained from fitting this model as whether a given 

characteristic leads to DIF.  However, the issue with such a model is that the size of the 

random effects is hard to determine. Usually, the presence of a random effect is 

determined when the variance of the random effect is larger than zero. However, with the 

presence of both random item effects and DIF, the decision about which more affects test 

performance is unclear.  

Another limitation of this study is that only generalized Rasch models were 

discussed. The Rasch model is famous for its mathematical simplicity; but criticized for 

its lack of flexibility (restricting the discrimination parameter to one). However, due to 

the fact that multilevel models are so complicated, generalizing the 2-PL model to 

multilevel data will be computationally challenging. The current popular methods which 

account for both discrimination and difficulty include the multilevel MIMIC model and 

the multilevel mixture factor model with known classes (Kim et al., accepted). In fact, 

when using these models the discrimination and difficulty parameters in the 2-PL model 
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can be obtained by transforming the factor loadings and residual variances from these 

models (Lord & Novick, 1968). Moreover, it is well known that the use of the MIMIC 

model for DIF detection yields high Type I error rates (Finch, 2005; Kim& Yoon, 2011). 

In addition, the multilevel mixture factor modeling method with known classes has been 

shown to perform well in a recent study designed to determine if this procedure could be 

used to detect student-level DIF in multilevel data (Kim et al., accepted). It is important 

to note that the multilevel mixture factor model allows student-level factor loadings to 

vary across clusters. With empirical data, researchers would need to test the random 

student-level factor loadings first before determining the most appropriate model to use. 

5.5 Conclusion 

DIF analyses have been conducted for decades, but DIF analyses in multilevel 

data have not been considered until recently, with the development of the ability to 

estimate these models which require complex computational techniques. The multilevel 

Rasch model discussed in this study performed well in detecting DIF at the student or/and 

teacher level with certain hypotheses about which item would show DIF. The estimates 

of fixed parameters were close to the true values even with the quasi-likelihood 

estimation, indicating the multilevel Rasch model is reliable in terms of DIF detection. If 

more random effects are added into the model, the Laplace estimation or the adaptive 

quadrature estimation may be used, though they are both time consuming and have 

restrictions with particular statements in SAS (SAS Institute Inc., 2013). Ability estimates 

were found to suffer overall, in terms of large standard deviation; but no factors were 

found to have a significant impact on ability estimation. For future research one might 
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Appendix A 

Table A.1 

The ANOVA of Type I Error Rates When Conducting Exploratory Analyses 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 77.476 1 77.476 1572.954 .000 .052 

S_DIF .106 1 .106 2.160 .142 .000 

T_DIF .002 1 .002 .037 .848 .000 

S_group .001 1 .001 .020 .887 .000 

T_group .020 2 .010 .202 .817 .000 

Tlvl_NDIF .322 3 .107 2.176 .089 .000 

DIF_lvl .078 2 .039 .797 .451 .000 

S_DIF×T_DIF .002 1 .002 .032 .859 .000 

S_DIF×S_group .000 1 .000 .000 .995 .000 

S_DIF×T_group .027 2 .014 .278 .757 .000 

S_DIF×Tlvl_NDIF .000 3 .000 .003 1.000 .000 

S_DIF×DIF_lvl .039 2 .020 .398 .672 .000 

T_DIF×S_group .047 1 .047 .950 .330 .000 

T_DIF×T_group .051 2 .026 .521 .594 .000 

T_DIF×Tlvl_NDIF .192 3 .064 1.301 .272 .000 

T_DIF×DIF_lvl .034 2 .017 .350 .705 .000 

S_group×T_group .060 2 .030 .608 .544 .000 

S_group×Tlvl_NDIF .170 3 .057 1.150 .327 .000 

S_group×DIF_lvl .037 2 .018 .371 .690 .000 

T_group×Tlvl_NDIF .159 6 .026 .537 .780 .000 

T_group×DIF_lvl .139 4 .035 .705 .589 .000 

Tlvl_NDIF×DIF_lvl .234 6 .039 .792 .576 .000 

S_DIF×T_DIF×S_group .000 1 .000 .005 .944 .000 

S_DIF×T_DIF×T_group .793 2 .397 8.052 .000 .001 

S_DIF×T_DIF×Tlvl_NDIF .039 3 .013 .265 .851 .000 

S_DIF×T_DIF×DIF_lvl .116 2 .058 1.182 .307 .000 

S_DIF×S_group×T_group .018 2 .009 .182 .834 .000 

S_DIF×S_group×Tlvl_NDIF .083 3 .028 .565 .638 .000 

S_DIF×S_group×DIF_lvl .073 2 .036 .741 .477 .000 

S_DIF×T_group×Tlvl_NDIF .429 6 .072 1.452 .190 .000 

S_DIF×T_group×DIF_lvl .345 4 .086 1.752 .136 .000 

S_DIF×Tlvl_NDIF×DIF_lvl .219 6 .037 .741 .616 .000 

T_DIF×S_group×T_group .002 2 .001 .022 .978 .000 

T_DIF×S_group×Tlvl_NDIF .070 3 .023 .471 .702 .000 

T_DIF×S_group×DIF_lvl .033 2 .017 .339 .713 .000 

T_DIF×T_group×Tlvl_NDIF .248 6 .041 .838 .540 .000 

T_DIF×T_group×DIF_lvl .094 4 .023 .476 .754 .000 
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T_DIF×Tlvl_NDIF×DIF_lvl .336 6 .056 1.137 .338 .000 

S_group×T_group×Tlvl_NDIF .340 6 .057 1.150 .330 .000 

S_group×T_group×DIF_lvl .062 4 .015 .312 .870 .000 

S_group×Tlvl_NDIF×DIF_lvl .049 6 .008 .166 .986 .000 

T_group×Tlvl_NDIF×DIF_lvl .503 12 .042 .851 .597 .000 

S_DIF×T_DIF×S_group×T_group .024 2 .012 .240 .787 .000 

S_DIF×T_DIF×S_group×Tlvl_NDIF .173 3 .058 1.173 .318 .000 

S_DIF×T_DIF×S_group×DIF_lvl .047 2 .024 .479 .619 .000 

S_DIF×T_DIF×T_group×Tlvl_NDIF .383 6 .064 1.297 .254 .000 

S_DIF×T_DIF×T_group×DIF_lvl .123 4 .031 .624 .645 .000 

S_DIF×T_DIF×Tlvl_NDIF×DIF_lvl .263 6 .044 .892 .500 .000 

S_DIF×S_group×T_group×Tlvl_NDIF .493 6 .082 1.670 .124 .000 

S_DIF×S_group×T_group×DIF_lvl .059 4 .015 .299 .878 .000 

S_DIF×S_group×Tlvl_NDIF×DIF_lvl .166 6 .028 .563 .760 .000 

S_DIF×T_group×Tlvl_NDIF×DIF_lvl .480 12 .040 .811 .639 .000 

T_DIF×S_group×T_group×Tlvl_NDIF .052 6 .009 .178 .983 .000 

T_DIF×S_group×T_group×DIF_lvl .223 4 .056 1.134 .338 .000 

T_DIF×S_group×Tlvl_NDIF×DIF_lvl .238 6 .040 .805 .566 .000 

T_DIF×T_group×Tlvl_NDIF×DIF_lvl .489 12 .041 .827 .622 .000 

S_group×T_group×Tlvl_NDIF×DIF_lvl .638 12 .053 1.080 .372 .000 

S_DIF×T_DIF×S_group×T_group×Tlvl_N

DIF 
.454 6 .076 1.537 .161 .000 

S_DIF×T_DIF×S_group×T_group×DIF_lvl .179 4 .045 .909 .457 .000 

S_DIF×T_DIF×S_group×Tlvl_NDIF×DIF_

lvl 
.168 6 .028 .569 .756 .000 

S_DIF×T_DIF×T_group×Tlvl_NDIF×DIF_

lvl 
.884 12 .074 1.496 .117 .001 

S_DIF×S_group×T_group×Tlvl_NDIF×DI

F_lvl 
.600 12 .050 1.016 .431 .000 

T_DIF×S_group×T_group×Tlvl_NDIF×DI

F_lvl 
.554 12 .046 .937 .508 .000 

S_DIF×T_DIF×S_group×T_group×Tlvl_N

DIF×DIF_lvl 
.382 12 .032 .646 .805 .000 

Error 1402.876 28482 .049 
   

Total 1493.000 28770 
    

Note: S_DIF refers the magnitude of student-level DIF; T_DIF refers the magnitude of teacher-level DIF; 

S_group refers the proportion of students in each student-level manifest group; T_group refers the 

proportion of teachers in each teacher-level manifest group; Tlvl_NDIF refers the number of teacher-level 

DIF items; DIF_lvl refers the location of DIF. 
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Table A.2 

The ANOVA of Type I Error Rates When Conducting Confirmatory Analyses 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 23.892 1 23.892 553.696 .000 .044 

S_DIF .093 1 .093 2.156 .142 .000 

T_DIF .008 1 .008 .178 .673 .000 

S_group .048 1 .048 1.103 .294 .000 

T_group .003 2 .002 .036 .965 .000 

Tlvl_NDIF .317 3 .106 2.450 .062 .001 

S_DIF×T_DIF .047 1 .047 1.099 .295 .000 

S_DIF×S_group .122 1 .122 2.824 .093 .000 

S_DIF×T_group .161 2 .081 1.871 .154 .000 

S_DIF×Tlvl_NDIF .015 3 .005 .120 .949 .000 

T_DIF×S_group .000 1 .000 .000 1.000 .000 

T_DIF×T_group .012 2 .006 .134 .874 .000 

T_DIF×Tlvl_NDIF .204 3 .068 1.573 .194 .000 

S_group×T_group .000 2 .000 .003 .997 .000 

S_group×Tlvl_NDIF .086 3 .029 .665 .573 .000 

T_group×Tlvl_NDIF .406 6 .068 1.569 .152 .001 

S_DIF×T_DIF×S_group .002 1 .002 .044 .834 .000 

S_DIF×T_DIF×T_group .081 2 .041 .944 .389 .000 

S_DIF×T_DIF×Tlvl_NDIF .029 3 .010 .222 .881 .000 

S_DIF×S_group×T_group .042 2 .021 .485 .616 .000 

S_DIF×S_group×Tlvl_NDIF .089 3 .030 .689 .559 .000 

S_DIF×T_group×Tlvl_NDIF .462 6 .077 1.784 .098 .001 

T_DIF×S_group×T_group .031 2 .015 .357 .700 .000 

T_DIF×S_group×Tlvl_NDIF .169 3 .056 1.309 .269 .000 

T_DIF×T_group×Tlvl_NDIF .130 6 .022 .501 .808 .000 

S_group×T_group×Tlvl_NDIF .477 6 .080 1.843 .087 .001 

S_DIF×T_DIF×S_group×T_group .022 2 .011 .253 .777 .000 

S_DIF×T_DIF×S_group×Tlvl_NDIF .064 3 .021 .498 .683 .000 

S_DIF×T_DIF×T_group×Tlvl_NDIF .113 6 .019 .435 .856 .000 

S_DIF×S_group×T_group×Tlvl_NDIF .700 6 .117 2.703 .013 .001 

T_DIF×S_group×T_group×Tlvl_NDIF .389 6 .065 1.503 .173 .001 

S_DIF×T_DIF×S_group×T_group×Tlvl_

NDIF 
.171 6 .028 .659 .683 .000 

Error 513.569 11902 .043 
   

Total 543.000 11998 
    

Note: 1. S_DIF refers the magnitude of student-level DIF; T_DIF refers the magnitude of teacher-level 

DIF; S_group refers the proportion of students in each student-level manifest group; T_group refers the 

proportion of teachers in each teacher-level manifest group; Tlvl_NDIF refers the number of teacher-level 

DIF items. 2. The location of DIF is fixed at the teacher level. 
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Table A.3 

Full Factorial ANOVA of Detecting Student-level DIF When Conducting Exploratory Analyses 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 6332.301 1 6332.301 79903.701 .000 .894 

S_DIF 207.446 1 207.446 2617.648 .000 .216 

T_DIF .011 1 .011 .142 .706 .000 

S_group 10.166 1 10.166 128.279 .000 .013 

T_group .072 2 .036 .454 .635 .000 

S_DIF × T_DIF .107 1 .107 1.346 .246 .000 

S_DIF × S_group 1.804 1 1.804 22.764 .000 .002 

S_DIF × T_group .001 2 .001 .008 .992 .000 

T_DIF × S_group .020 1 .020 .258 .612 .000 

T_DIF × T_group .589 2 .294 3.714 .024 .001 

S_group × T_group .075 2 .038 .473 .623 .000 

S_DIF×T_DIF×S_group .003 1 .003 .036 .850 .000 

S_DIF×T_DIF×T_group .140 2 .070 .884 .413 .000 

S_DIF×S_group×T_group .332 2 .166 2.092 .123 .000 

T_DIF×S_group×T_group .683 2 .342 4.309 .013 .001 

S_DIF×T_DIF×S_group×T_group .223 2 .112 1.410 .244 .000 

Error 753.184 9504 .079 
   

Total 7307.156 9528 
    

Note: S_DIF refers the magnitude of student-level DIF; T_DIF refers the magnitude of teacher-level DIF; 

S_group refers the proportion of students in each student-level manifest group; T_group refers the 

proportion of teachers in each teacher-level manifest group.  
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Table A.4 

Full Factorial ANOVA of Detecting Teacher-level DIF When Conducting Exploratory Analyses 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 4946.603 1 4946.603 83117.183 .000 .813 

S_DIF .043 1 .043 .721 .396 .000 

S_group .117 1 .117 1.958 .162 .000 

T_DIF 532.434 1 532.434 8946.421 .000 .318 

T_group 286.385 2 143.192 2406.043 .000 .201 

DIF_lvl .254 1 .254 4.276 .039 .000 

S_DIF×S_group .061 1 .061 1.018 .313 .000 

S_DIF×T_DIF .002 1 .002 .030 .861 .000 

S_DIF×T_group .014 2 .007 .117 .890 .000 

S_DIF×DIF_lvl .105 1 .105 1.764 .184 .000 

S_group×T_DIF .000 1 .000 .001 .969 .000 

S_group×T_group .024 2 .012 .204 .816 .000 

S_group×DIF_lvl .223 1 .223 3.755 .053 .000 

T_DIF×T_group 15.399 2 7.700 129.377 .000 .013 

T_DIF×DIF_lvl .001 1 .001 .015 .903 .000 

T_group×DIF_lvl .413 2 .207 3.472 .031 .000 

S_DIF×S_group×T_DIF .008 1 .008 .141 .707 .000 

S_DIF×S_group×T_group .207 2 .104 1.742 .175 .000 

S_DIF×S_group×DIF_lvl .225 1 .225 3.778 .052 .000 

S_DIF×T_DIF×T_group .366 2 .183 3.079 .046 .000 

S_DIF×T_DIF×DIF_lvl .000 1 .000 .000 .988 .000 

S_DIF×T_group×DIF_lvl .130 2 .065 1.096 .334 .000 

S_group×T_DIF×T_group .096 2 .048 .806 .447 .000 

S_group×T_DIF×DIF_lvl .091 1 .091 1.536 .215 .000 

S_group×T_group×DIF_lvl .209 2 .104 1.754 .173 .000 

T_DIF×T_group×DIF_lvl .072 2 .036 .601 .548 .000 

S_DIF×S_group×T_DIF×T_group .351 2 .176 2.949 .052 .000 

S_DIF×S_group×T_DIF×DIF_lvl .166 1 .166 2.794 .095 .000 

S_DIF×S_group×T_group×DIF_lvl .049 2 .024 .410 .663 .000 

S_DIF×T_DIF×T_group×DIF_lvl .111 2 .056 .935 .393 .000 

S_group×T_DIF×T_group×DIF_lvl .354 2 .177 2.976 .051 .000 

S_DIF×S_group×T_DIF×T_group×DIF_lvl .072 2 .036 .601 .548 .000 

Error 1139.804 19152 .060 
   

Total 6924.390 19200 
    

Note: S_DIF refers the magnitude of student-level DIF; T_DIF refers the magnitude of teacher-level DIF; 

S_group refers the proportion of students in each student-level manifest group; T_group refers the 

proportion of teachers in each teacher-level manifest group; DIF_lvl refers the location of DIF. 
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Table A.5  

Power of ML-Inter Model when Conducting Exploratory Analyses 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F Sig.    

Intercept 2938.899 1 2938.899 117753.153 .000 .864 

S_DIF 13.120 1 13.120 525.680 .000 .028 

T_DIF 167.167 1 167.167 6697.909 .000 .266 

S_group .170 1 .170 6.794 .009 .000 

T_group 93.611 2 46.805 1875.353 .000 .169 

DIF_lvl 26.449 1 26.449 1059.733 .000 .054 

S_DIF×T_DIF .233 1 .233 9.318 .002 .001 

S_DIF×S_group .003 1 .003 .138 .710 .000 

S_DIF×T_group .056 2 .028 1.115 .328 .000 

S_DIF×DIF_lvl 11.305 1 11.305 452.947 .000 .024 

T_DIF×S_group .098 1 .098 3.931 .047 .000 

T_DIF×T_group 6.628 2 3.314 132.782 .000 .014 

T_DIF×DIF_lvl 11.297 1 11.297 452.649 .000 .024 

S_group×T_group 1.104 2 .552 22.124 .000 .002 

S_group×DIF_lvl .479 1 .479 19.180 .000 .001 

T_group×DIF_lvl 12.189 2 6.095 244.197 .000 .026 

S_DIF×T_DIF×S_group .030 1 .030 1.192 .275 .000 

S_DIF×T_DIF×T_group .404 2 .202 8.099 .000 .001 

S_DIF×T_DIF×DIF_lvl .213 1 .213 8.546 .003 .000 

S_DIF×S_group×T_group .033 2 .016 .660 .517 .000 

S_DIF×S_group×DIF_lvl .031 1 .031 1.251 .263 .000 

S_DIF×T_group×DIF_lvl .277 2 .139 5.554 .004 .001 

T_DIF×S_group×T_group .025 2 .013 .509 .601 .000 

T_DIF×S_group×DIF_lvl .224 1 .224 8.976 .003 .000 

T_DIF×T_group×DIF_lvl .501 2 .251 10.042 .000 .001 

S_group×T_group×DIF_lvl .176 2 .088 3.516 .030 .000 

S_DIF×T_DIF×S_group×T_group .119 2 .059 2.378 .093 .000 

S_DIF×T_DIF×S_group×DIF_lvl .000 1 .000 .001 .982 .000 

S_DIF×T_DIF×T_group×DIF_lvl .053 2 .026 1.053 .349 .000 

S_DIF×S_group×T_group×DIF_lvl .033 2 .017 .669 .512 .000 

T_DIF×S_group×T_group×DIF_lvl .190 2 .095 3.804 .022 .000 

S_DIF×T_DIF×S_group×T_group× 

DIF_lvl 
.022 2 .011 .435 .647 .000 

Error 461.626 18496 .025 
   

Total 3802.907 18544 
    

Note: S_DIF refers the magnitude of student-level DIF; T_DIF refers the magnitude of teacher-level DIF; 

S_group refers the proportion of students in each student-level manifest group; T_group refers the 

proportion of teachers in each teacher-level manifest group; DIF_lvl refers the location of DIF. 
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Table A.6 

Power of ML-Inter Model when DIF at the teacher level when Conducting Exploratory Analyses 

Tests of Within-Subjects Contrasts 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

DIF_LOC_T 24.010 1 24.010 319.354 .000 .033 

DIF_LOC_T×S_DIF .003 1 .003 .034 .853 .000 

DIF_LOC_T×T_DIF 2.626 1 2.626 34.921 .000 .004 

DIF_LOC_T×S_group 28.726 1 28.726 382.073 .000 .039 

DIF_LOC_T×T_group .849 2 .424 5.644 .004 .001 

DIF_LOC_T×S_DIF×T_DIF .008 1 .008 .111 .739 .000 

DIF_LOC_T×S_DIF×S_group .001 1 .001 .008 .927 .000 

DIF_LOC_T×S_DIF×T_group .476 2 .238 3.165 .042 .001 

DIF_LOC_T×T_DIF×S_group 2.037 1 2.037 27.096 .000 .003 

DIF_LOC_T×T_DIF×T_group .788 2 .394 5.238 .005 .001 

DIF_LOC_T×S_group×T_group .346 2 .173 2.298 .101 .000 

DIF_LOC_T×S_DIF×T_DIF×S_group .084 1 .084 1.122 .290 .000 

DIF_LOC_T×S_DIF×T_DIF×T_group .059 2 .029 .391 .677 .000 

DIF_LOC_T×S_DIF×S_group×T_group .097 2 .048 .645 .525 .000 

DIF_LOC_T×T_DIF×S_group×T_group .196 2 .098 1.303 .272 .000 

DIF_LOC_T×S_DIF×T_DIF×S_group×T_group .148 2 .074 .982 .375 .000 

Error(DIF_LOC_T) 708.606 9425 .075 
   

       
Tests of Between-Subjects Effects 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 7329.009 1 7329.009 44117.910 .000 .824 

S_DIF .154 1 .154 .926 .336 .000 

T_DIF 848.481 1 848.481 5107.541 .000 .351 

S_group 3.988 1 3.988 24.006 .000 .003 

T_group 551.758 2 275.879 1660.689 .000 .261 

S_DIF×T_DIF .004 1 .004 .023 .879 .000 

S_DIF×S_group .212 1 .212 1.277 .259 .000 

S_DIF×T_group .369 2 .185 1.111 .329 .000 

T_DIF×S_group .148 1 .148 .890 .346 .000 

T_DIF×T_group 70.007 2 35.504 213.879 .000 .062 

S_group×T_group 1.698 2 .849 5.111 .006 .001 

S_DIF×T_DIF×S_group .062 1 .062 .371 .543 .000 

S_DIF×T_DIF×T_group .587 2 .293 1.767 .171 .000 

S_DIF×S_group×T_group .448 2 .224 1.348 .260 .000 

T_DIF×S_group×T_group .589 2 .295 1.773 .170 .000 

S_DIF×T_DIF×S_group×T_Sgroup .373 2 .187 1.124 .325 .000 
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Error 1565.711 9425 .166 
   

Note: DIF_LOC_T refers the student-teacher manifest groups; S_DIF refers the magnitude of student-level 

DIF; T_DIF refers the magnitude of teacher-level DIF; S_group refers the proportion of students in each 

student-level manifest group; T_group refers the proportion of teachers in each teacher-level manifest 

group. 
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Table A.7 

Power of ML-Inter Model when DIF at both levels when Conducting Exploratory Analyses 

Tests of Within-Subjects Effects 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

DIF_LOC_B 1931.360 4 482.840 4555.832 .000 .344 

DIF_LOC_B×S_DIF 190.557 4 47.639 449.499 .000 .054 

DIF_LOC_B×T_DIF 163.339 4 40.835 385.296 .000 .053 

DIF_LOC_B×S_group 124.716 4 31.179 294.188 .000 .033 

DIF_LOC_B×T_group 267.405 8 33.426 315.387 .000 .068 

DIF_LOC_B×S_DIF×T_DIF 4.197 4 1.049 9.900 .000 .001 

DIF_LOC_B×S_DIF×S_group 1.164 4 .291 2.745 .027 .000 

DIF_LOC_B×S_DIF×T_group 2.561 8 .320 3.021 .002 .001 

DIF_LOC_B×T_DIF×S_group 2.051 4 .513 4.837 .001 .001 

DIF_LOC_B×T_DIF×T_group 9.213 8 1.152 10.866 .000 .002 

DIF_LOC_B×S_group×T_group 3.003 8 .375 3.541 .000 .001 

DIF_LOC_B×S_DIF×T_DIF×S_group .190 4 .047 .448 .774 .000 

DIF_LOC_B×S_DIF×T_DIF×T_group 1.509 8 .189 1.779 .076 .000 

DIF_LOC_B×S_DIF×S_group×T_group 1.479 8 .185 1.745 .083 .000 

DIF_LOC_B×T_DIF×S_group×T_group 1.342 8 .168 1.583 .124 .000 

DIF_LOC_B×S_DIF×T_DIF×S_group× 

T_group 
.185 4 .046 .436 .783 .000 

Error(DIF_LOC_B) 3676.334 34688 .106 
   

       
Tests of Between-Subjects Effects 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 7851.806 1 7851.806 68812.089 .000 .888 

Stu_DIF 105.802 1 105.802 927.232 .000 .097 

Tea_DIF 196.227 1 196.227 1719.707 .000 .165 

Ref_group .319 1 .319 2.798 .094 .000 

Tgroup 93.211 2 46.605 408.442 .000 .086 

Stu_DIF×Tea_DIF 2.168 1 2.168 18.999 .000 .002 

Stu_DIF×Ref_group .004 1 .004 .033 .856 .000 

Stu_DIF×Tgroup .619 2 .310 2.714 .066 .001 

Tea_DIF×Ref_group .662 1 .662 5.798 .016 .001 

Tea_DIF×Tgroup 8.119 2 4.060 35.578 .000 .008 

Ref_group×Tgroup 4.939 2 2.469 21.641 .000 .005 

Stu_DIF×Tea_DIF×Ref_group .301 1 .301 2.641 .104 .000 

Stu_DIF×Tea_DIF×Tgroup 2.023 2 1.012 8.866 .000 .002 

Stu_DIF×Ref_group×Tgroup .246 2 .123 1.079 .340 .000 

Tea_DIF×Ref_group×Tgroup .452 2 .226 1.981 .138 .000 

Stu_DIF×Tea_DIF×Ref_group×Tgroup .013 1 .013 .118 .731 .000 
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Error 989.519 8672 .114 
   

Note: DIF_LOC_B refers the student-teacher manifest groups; S_DIF refers the magnitude 

of student-level DIF; T_DIF refers the magnitude of teacher-level DIF; S_group refers the 

proportion of students in each student-level manifest group; T_group refers the proportion of 

teachers in each teacher-level manifest group. 
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Table A.8 

Power of ML-Inter Model when DIF at both levels when Conducting Confirmatory Analyses 

Tests of Within-Subjects Effects 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

DIF_LOC_B 1064.634 4 266.159 14133.604 .000 .856 

DIF_LOC_B×S_DIF 3.081 4 .770 40.908 .000 .017 

DIF_LOC_B×T_DIF 20.566 4 5.142 273.030 .000 .103 

DIF_LOC_B×S_group 15.540 4 3.885 206.298 .000 .080 

DIF_LOC_B×T_group 27.041 8 3.380 179.493 .000 .131 

DIF_LOC_B×S_DIF×T_DIF 22.427 4 5.607 297.734 .000 .111 

DIF_LOC_B×S_DIF×S_group .634 4 .159 8.419 .000 .004 

DIF_LOC_B×S_DIF×T_group 4.054 8 .507 26.910 .000 .022 

DIF_LOC_B×T_DIF×S_group 3.106 4 .776 41.230 .000 .017 

DIF_LOC_B×T_DIF×T_group 5.509 8 .689 36.570 .000 .030 

DIF_LOC_B×S_group×T_group 5.209 8 .651 34.577 .000 .028 

DIF_LOC_B×S_DIF×T_DIF×S_group 2.515 4 .629 33.384 .000 .014 

DIF_LOC_B×S_DIF×T_DIF×T_group 5.439 8 .680 36.100 .000 .029 

DIF_LOC_B×S_DIF×S_group×T_group .892 8 .111 5.920 .000 .005 

DIF_LOC_B×T_DIF×S_group×T_group .341 8 .043 2.262 .021 .002 

DIF_LOC_B×S_DIF×T_DIF×S_group× 

T_group 
.052 8 .006 .342 .950 .000 

Error(DIF_LOC_B) 178.976 9504 .019 
   

       
Tests of Between-Subjects Effects 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F p    

Intercept 7134.526 1 7134.526 317811.019 .000 .993 

S_DIF 1.643 1 1.643 73.174 .000 .030 

T_DIF 18.502 1 18.502 824.201 .000 .258 

S_group .560 1 .560 24.960 .000 .010 

T_group 18.344 2 9.172 408.564 .000 .256 

S_DIF×T_DIF 7.282 1 7.282 324.363 .000 .120 

S_DIF×S_group .972 1 .972 43.298 .000 .018 

S_DIF×T_group .224 2 .112 4.998 .007 .004 

T_DIF×S_group 1.855 1 1.855 82.634 .000 .034 

T_DIF×T_group 6.527 2 3.264 145.378 .000 .109 

S_group×T_group 2.149 2 1.074 47.860 .000 .039 

S_DIF×T_DIF×S_group .359 1 .359 15.975 .000 .007 

S_DIF×T_DIF×T_group .596 2 .298 13.266 .000 .011 

S_DIF×S_group×T_group .054 2 .027 1.212 .298 .001 

T_DIF×S_group×T_group .009 2 .004 .197 .821 .000 
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S_DIF×T_DIF×S_group×T_group .164 2 .082 3.651 .026 .003 

Error 53.339 2376 .022 
   

Note: DIF_LOC_B refers the student-teacher manifest groups; S_DIF refers the magnitude of student-level 

DIF; T_DIF refers the magnitude of teacher-level DIF; S_group refers the proportion of students in each 

student-level manifest group; T_group refers the proportion of teachers in each teacher-level manifest 

group. 
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Appendix B 

Data generation sample syntax 

%LET SDIF=0.5;    *STUDENT-LEVEL DIF; 

%LET TDIF=0.5;    *TEACHER-LEVEL DIF; 

%LET RF=0.5;      *PERCENTAGE OF REFERENCE GROUP; 

%LET FF=0.5;      *PERCENTAGE OF FOCAL GROUP; 

%LET NDIF=0.125;  *NUMBER OF DIF ITEMS AT TEACHER LEVEL; 

%LET TSD=1.44;    *TEACHER EFEFCTIVENESS CUT OFF POINT; 

 

proc iml; 

call randseed(0); 

*******************TEACHER LEVEL************************; 

/*generate teacher ID*/ 

h=1:100; 

h=shape(h,100,1); 

/*generate teaching effectiveness from a standard normal distribution*/ 

TE=randnormal(100,0,1); 

TE=shape(TE,100,1); 

/*generate teacher level ability*/ 

theta_mu=randnormal(100,0,1); 

theta_mu=shape(theta_mu,100,1); 

/*merge teacher ID, teaching effectiveness, and teacher level ability into one 

matrix*/ 

teacher=h||TE||theta_mu; 

/*order the matrix by teaching effectiveness*/ 

call sort(teacher,2); 

/*grouping teachers based on teaching effectiveness: -1.44SD below the mean, 

+1.44SD above the mean*/ 

m_te=mean(teacher[,2]);  *mean of TE; 

v_te=var(teacher[,2]);   *variance of TE; 

sd_te=sqrt(v_te);       *standard devaiation of TE; 

/*generate teacher level group indicator based on the standard above*/ 

t_group=j(100,1); 

 do i=1 to 100; 

   if teacher[i,2] >= &TSD*sd_te+m_te then t_group[i]= 1;    

   else if teacher[i,2] <= -&TSD*sd_te+m_te then t_group[i]= 2; 

   else t_group[i]=3; 

 end; 

teacher_new=teacher||t_group;  

names={'TID' 'Teff' 'Theta_mu' 'T_group' }; 

create teacher from teacher_new [colname=names]; 

append from teacher_new; 

 

*******************************STUDENT LEVEL**************************; 

theta=randnormal(30,t(teacher_new[,3]),I(100)); 

theta_stu=shape(t(theta),100*30,1);  

TE=repeat(t_group,1,30);   

TE1=shape(TE,100*30,1); 

 

u=unique(t_group); 

theta_eff=theta_stu[loc(TE1=u[1])];  

theta_noneff=theta_stu[loc(TE1=u[2])]; 

theta_avg=theta_stu[loc(TE1=u[3])]; 

 

s1=nrow(theta_eff); 

s2=nrow(theta_noneff); 

s3=nrow(theta_avg); 

 

/*generate response data of average teachers*/ 

theta_stu_ref_avg=theta_avg[1:s3*&RF,]; 
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theta_stu_foc_avg=theta_avg[s3*&RF+1:s3,]; 

b=j(40,1); 

call randgen(b,"Normal"); 

/*generate b-dif at the studnet level*/ 

b_stu_dif_avg=j(40,1); 

do i=1 to 35; 

 b_stu_dif_avg[i]=b[i]; 

end; 

do i=36 to 40; 

 b_stu_dif_avg[i]=b[i]+&SDIF; 

end; 

/*generate response data for reference group*/ 

z_ref_avg=j(s3*&RF,40); 

do i=1 to s3*&RF; 

 do j=1 to 40; 

  p =exp(theta_stu_ref_avg[i]-b[j])/(1+exp(theta_stu_ref_avg[i]-

b[j])); 

  u=rand('Uniform'); 

  if p<u then z_ref_avg[i,j]=0; 

  if p>u then z_ref_avg[i,j]=1; 

 end; 

end; 

 

/*generate response data for focal group*/ 

z_foc_avg=j(s3*&FF,40); 

do i=1 to s3*&FF; 

 do j=1 to 40; 

  p =exp(theta_stu_foc_avg[i]-

b_stu_dif_avg[j])/(1+exp(theta_stu_foc_avg[i]-b_stu_dif_avg[j])); 

  u=rand('Uniform'); 

  if p<u then z_foc_avg[i,j]=0; 

  if p>u then z_foc_avg[i,j]=1; 

 end; 

end; 

 

z_avg=z_ref_avg//z_foc_avg; 

gender_ref_avg=j(s3*&RF,1,1); 

gender_foc_avg=j(s3*&FF,1,0); 

gender_avg=gender_ref_avg//gender_foc_avg; 

 

 

/*generate response data of effective teachers*/ 

theta_stu_ref_eff=theta_eff[1:s1*&RF,]; 

theta_stu_foc_eff=theta_eff[s1*&RF+1:s1,]; 

 

 b_eff=j(40,1); 

do i=1 to (1-&NDIF)*40; 

 b_eff[i]=b[i]; 

end; 

do i=(1-&NDIF)*40+1 to 40; 

 b_eff[i]=b[i]-&TDIF; 

end; 

/*generate b-dif at the studnet level*/ 

b_stu_dif_eff=j(40,1); 

do i=1 to 35; 

 b_stu_dif_eff[i]=b_eff[i]; 

end; 

do i=36 to 40; 

 b_stu_dif_eff[i]=b_eff[i]+&SDIF; 

end; 

 

/*generate response data of reference group*/ 

z_ref_eff=j(s1*&RF,40); 
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do i=1 to s1*&RF; 

 do j=1 to 40; 

  p =exp(theta_stu_ref_eff[i]-b_eff[j])/(1+exp(theta_stu_ref_eff[i]-

b_eff[j])); 

  u=rand('Uniform'); 

  if p<u then z_ref_eff[i,j]=0; 

  if p>u then z_ref_eff[i,j]=1; 

 end; 

end; 

 

/*generate response data for focal group*/ 

z_foc_eff=j(s1*&FF,40); 

do i=1 to s1*&FF; 

 do j=1 to 40; 

  p =exp(theta_stu_foc_eff[i]-

b_stu_dif_eff[j])/(1+exp(theta_stu_foc_eff[i]-b_stu_dif_eff[j])); 

  u=rand('Uniform'); 

  if p<u then z_foc_eff[i,j]=0; 

  if p>u then z_foc_eff[i,j]=1; 

 end; 

end; 

 

z_eff=z_ref_eff//z_foc_eff; 

gender_ref_eff=j(s1*&RF,1,1); 

gender_foc_eff=j(s1*&FF,1,0); 

gender_eff=gender_ref_eff//gender_foc_eff; 

 

/*generate response data of noneffective teachers*/ 

theta_stu_ref_noneff=theta_noneff[1:s2*&RF,]; 

theta_stu_foc_noneff=theta_noneff[s2*&RF+1:s2,]; 

 

b_noneff=j(40,1); 

do i=1 to (1-&NDIF)*40; 

 b_noneff[i]=b[i]; 

end; 

do i=(1-&NDIF)*40+1 to 40; 

 b_noneff[i]=b[i]+&TDIF; 

end; 

/*generate b-dif at the studnet level*/ 

b_stu_dif_noneff=j(40,1); 

do i=1 to 35; 

 b_stu_dif_noneff[i]=b_noneff[i]; 

end; 

do i=36 to 40; 

 b_stu_dif_noneff[i]=b_noneff[i]+&SDIF; 

end; 

 

/*generate response data for reference group*/ 

z_ref_noneff=j(s2*&RF,40); 

do i=1 to s2*&RF; 

 do j=1 to 40; 

  p =exp(theta_stu_ref_noneff[i]-

b_noneff[j])/(1+exp(theta_stu_ref_noneff[i]-b_noneff[j])); 

  u=rand('Uniform'); 

  if p<u then z_ref_noneff[i,j]=0; 

  if p>u then z_ref_noneff[i,j]=1; 

 end; 

end; 

 

/*generate response data for focal group*/ 

z_foc_noneff=j(s2*&FF,40); 

do i=1 to s2*&FF; 

 do j=1 to 40; 
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  p =exp(theta_stu_foc_noneff[i]-

b_stu_dif_noneff[j])/(1+exp(theta_stu_foc_noneff[i]-

b_stu_dif_noneff[j])); 

  u=rand('Uniform'); 

  if p<u then z_foc_noneff[i,j]=0; 

  if p>u then z_foc_noneff[i,j]=1; 

 end; 

end; 

 

z_noneff=z_ref_noneff//z_foc_noneff; 

gender_ref_noneff=j(s2*&RF,1,1); 

gender_foc_noneff=j(s2*&FF,1,0); 

gender_noneff=gender_ref_noneff//gender_foc_noneff; 

 

 

z=z_noneff//z_avg//z_eff;           *complete response data; 

response=shape(z,100*30*40,1); 

 

/*generate a sequence indicating the item number*/ 

m=(-1)*I(40); 

item=repeat(m,100*30,1); 

/*generate student ID*/ 

n=1:30; 

n1=repeat(t(n),100,1); 

n2=repeat(n1,1,40); 

sID=shape(n2,100*30*40,1); 

 

/*generate teacher ID*/ 

h1=repeat(teacher_new[,1],1,30); 

h2=shape(h1,100*30,1); 

h3=repeat(h2,1,40); 

tID=shape(h3,100*30*40,1); 

 

/*generate student level membership indicator*/ 

gender=gender_noneff//gender_avg//gender_eff; 

s_gender1=repeat(gender,1,40); 

s_gender2=shape(s_gender1,100*30*40,1); 

 

/*non-effective variable*/ 

TE2=repeat(TE1,1,40); 

TE3=shape(TE2,100*30*40,1); 

 

/*combine all columns to generate final data for analyses*/ 

 

y_data=tID||sID||s_gender2||TE3||item||response; 

names={'tID' 'sID' 's_gender' 'TE' 'i1' 'i2' 'i3' 'i4' 'i5' 'i6' 'i7' 'i8' 'i9' 

'i10' 'i11' 'i12' 'i13' 'i14' 'i15' 'i16' 'i17' 'i18' 'i19' 'i20'  

       'i21' 'i22' 'i23' 'i24' 'i25' 'i26' 'i27' 'i28' 'i29' 'i30' 'i31' 'i32' 

'i33' 'i34' 'i35' 'i36' 'i37' 'i38' 'i39' 'i40' 'response'}; 

 

true_b=b||b_eff||b_noneff||b_stu_dif_avg||b_stu_dif_eff||b_stu_dif_noneff; 

name1={'b' 'b_eff' 'b_noneff' 'b_stu_dif_avg' 'b_stu_dif_eff' 

'b_stu_dif_noneff'}; 

 

create twolvldata from y_data [colname=names]; 

append from y_data; 

create true_b from true_b [colname=name1]; 

append from true_b; 

quit; 
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Appendix C 

Sample syntax of PROC GLIMMIX model 

*************************RASCH DIF MODEL*********************************; 

proc glimmix data=twolvldata; 

 class sID s_gender; 

 model response (Event='1')= i1-i40 s_gender*i36 s_gender*i37 s_gender*i38 

s_gender*i39 s_gender*i40/ Dist=Binary link=logit solution noint; 

 random intercept / subject=sID TYPE=VC; 

 ODS OUTPUT ParameterEstimates=Fix_rasch; 

 ODS OUTPUT ConvergenceStatus=Con_rasch; 

run; 

 

************************HLM: STUDENT LEVEL COVARIATE*********************; 

proc glimmix data=twolvldata; 

 class tID sID s_gender; 

 model response (Event='1')= i1-i40 s_gender*i36 s_gender*i37 s_gender*i38 

s_gender*i39 s_gender*i40/ Dist=Binary link=logit solution noint; 

 random intercept  / subject=tID type=vc; 

 random intercept  / subject=sID(tID) type=vc; 

 ODS OUTPUT ParameterEstimates=Fix_slvl;  

 ODS OUTPUT ConvergenceStatus=Con_slvl; 

run; 

 

************************HLM: TEACHER LEVEL COVARIATE*********************; 

proc glimmix data=twolvldata; 

 class tID sID TE; 

 model response (Event='1')= i1-i40 TE*i36 TE*i37 TE*i38 TE*i39 TE*i40 / 

Dist=Binary link=logit solution noint; 

 random intercept  / subject=tID type=vc; 

 random intercept  / subject=sID(tID) type=vc; 

 ODS OUTPUT ParameterEstimates=Fix_tlvl;  

 ODS OUTPUT ConvergenceStatus=Con_tlvl; 

run; 

 

************************HLM: BOTH LEVEL COVARIATE***********************; 

proc glimmix data=twolvldata; 

 class tID sID s_gender TE; 

 model response (Event='1')= i1-i40 s_gender*i36 s_gender*i37 s_gender*i38 

s_gender*i39 s_gender*i40 TE*i36 TE*i37 TE*i38 TE*i39 TE*i40 / Dist=Binary 

link=logit solution noint; 

 random intercept  / subject=tID type=vc; 

 random intercept  / subject=sID(tID) type=vc; 

 ODS OUTPUT ParameterEstimates=Fix_twolvl;  

 ODS OUTPUT ConvergenceStatus=Con_twolvl; 

run; 

*********************MIXED MODEL: THREE WAY INTERACTION*****************; 

proc glimmix data=twolvldata; 

 class tID sID s_gender TE; 

 model response (Event='1')= i1-i40 s_gender*i36 s_gender*i37 s_gender*i38 

s_gender*i39 s_gender*i40 TE*i36 TE*i37 TE*i38 TE*i39 TE*i40 s_gender*TE*i36 

s_gender*TE*i37 s_gender*TE*i38 s_gender*TE*i39 s_gender*TE*i40 / Dist=Binary 

link=logit solution noint; 

 random intercept  / subject=tID type=vc; 

 random intercept  / subject=sID(tID) type=vc; 

 ODS OUTPUT ParameterEstimates=Fix_mixed;  

 ODS OUTPUT ConvergenceStatus=Con_mixed; 

run; 
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Graduate Student Travel Award Scholarship University of Wisconsin Milwaukee 2010 – 2014 
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Organization fit. The Chinese Journal of Applied Psychology, 14(2), 118-128.  

 

Hui, C., Gan, Y. Q. & Wen, Y. (2008). An Empirical Research on the Theoretical Construct of Chinese 

Core Self-evaluation. Acta Scientiarum Naturalium Universitatis Pekinesis, 46(1), 141-146.  

 

RESEARCH IN PROGRESS 
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SOFTWARE SKILLS 

SAS (proficient), SPSS, R, MULTILOG, BILOG, FACT, WINBUGS 
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