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RESEARCH ARTICLE Open Access

The lichen symbiosis re-viewed through the
genomes of Cladonia grayi and its algal
partner Asterochloris glomerata
Daniele Armaleo1* , Olaf Müller1,2, François Lutzoni1, Ólafur S. Andrésson3, Guillaume Blanc4, Helge B. Bode5,
Frank R. Collart6, Francesco Dal Grande7, Fred Dietrich2, Igor V. Grigoriev8,9, Suzanne Joneson1,10, Alan Kuo8,
Peter E. Larsen6, John M. Logsdon Jr11, David Lopez12, Francis Martin13, Susan P. May1,14, Tami R. McDonald1,15,
Sabeeha S. Merchant9,16, Vivian Miao17, Emmanuelle Morin13, Ryoko Oono18, Matteo Pellegrini19,
Nimrod Rubinstein20,21, Maria Virginia Sanchez-Puerta22, Elizabeth Savelkoul11, Imke Schmitt7,23, Jason C. Slot24,
Darren Soanes25, Péter Szövényi26, Nicholas J. Talbot27, Claire Veneault-Fourrey13,28 and Basil B. Xavier3,29

Abstract

Background: Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts),
mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel
genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We
focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially
activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted
protein families, and proteins with differential rates of evolution.

Results: A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal
transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter,
and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded
fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-
protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific
subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer
from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal
transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and
stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont,
slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting.
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Conclusions: The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and
structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no
evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the
notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications
for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting
the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes
rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in
different phyla, which is consistent with the emerging consensus that ascolichens could have had a few
independent origins.

Keywords: Algal virus, Coculture, Fungi, Gene expression, Gene family evolution, Horizontal gene transfer, Plant-
fungal interactions, Symbiont autonomy, Symbiosis genes

Background
Simon Schwendener in 1869 [1] correctly recognized
lichens as intimate symbioses between specialized
fungi and phototrophic unicellular green algae as the
main symbionts. Cyanobacteria were later recognized
also as primary phototrophs in many lichens. In
addition to the main symbiotic partners, lichens har-
bor diverse communities of prokaryotes and fungi as
cohabitants [2–6]. Recently, highly coevolved basidio-
mycete yeasts were discovered in the cortex of many
lichens [7], sometimes causing disease [8]. The de-
tailed interactions of the various cohabitants with the
main symbionts are being investigated [9]. Typically,
lichens thrive in above-ground niches with limited
water in diverse environments, often withstanding ex-
treme heat, desiccation, or cold [3, 10]. Widespread
across terrestrial ecosystems, often dominant carbon
and nitrogen fixers in alpine, subalpine, and high lati-
tude habitats, the estimated 18,000 to 20,000 lichen
species [11], mostly ascomycetes, represent about 20%
of all known fungi [12]. There are only about 120 li-
chen phototroph species (photobionts) [10, 13], far
fewer than the 20,000 known lichen fungal species
(mycobionts). Lichens are named based on their
mycobiont since the fungus is the most conspicuous
partner and since the same photobiont species (alga
or cyanobacterium) can be found in several different
lichens.
Lichens can reproduce somatically through propagules

comprising both symbionts, or sexually through meiotic
fungal spores that must combine with the appropriate
photobiont to re-form a lichen. Sexual reproduction is not
commonly seen in trebouxoid lichen algae, although evi-
dence supporting it has been found (Heterothallism prob-
ably evolved from homothallism in Cladonia; genetic
evidence for sex in Asterochloris section). Lichens are well
known for their unique and abundantly produced second-
ary metabolites [14, 15]. The genetic, physiological, and
structural integration of mycobionts and photobionts has

produced a vast array of beautifully differentiated partner-
ships [16], with only occasional instability [17–19]. The fun-
gal and lichen fossil record [20, 21] has placed fossils
resembling extant lichen taxa in the Devonian-early Car-
boniferous, 415–350 million years ago, and perhaps simpler
mycobiont-photobiont associations even earlier [22, 23].
Despite their intimate coexistence for hundreds of millions
of years and the construction of complex interfaces be-
tween them [10, 24], lichen symbionts have not lost their
genetic and cellular independence. Cell membranes are not
breached in their interactions and genomes are not merged,
although some have extended to lichens the concept of
genome acquisition [25]. There is no evidence of horizontal
gene transfer (HGT) between the symbionts, yet both have
acquired genes from other sources (A low-GC region in
Asterochloris is a remnant of a large virus insertion, an
HGT-mediator, Inferences from differential transcription
about nutritional fluxes at the symbiotic interface, and
Photobiont expanded families sections). The partners of
many lichens have been isolated and grown separately in
axenic culture, but free-living stages of lichen fungi and
their algae remain mostly cryptic in nature [18, 26–29].
However, these stages are not insignificant for the lichen life
cycle [29]. The laboratory reconstitution of cultured lichen
symbionts into fully developed lichens has a checkered his-
tory [30], where the reproducibility needed for molecular
investigations is still elusive. Molecular studies addressing
functional aspects of this mutualistic symbiosis are
few [9, 31–35], but the recent publication of several
lichen -omics papers and datasets [9, 36–46] heralds
expansion of this field.
Here we present the first parallel genomic analysis of

both primary symbionts in a lichen, the fungus (myco-
biont) Cladonia grayi and the alga (photobiont) Astero-
chloris glomerata, and use several approaches to identify
genes/proteins of potential symbiotic relevance. Our
analysis is based exclusively on the symbionts’ nucleic
acid sequences, and the proteins involved are predicted.
Cladonia grayi (Fig. 1) belongs to a genus with
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worldwide distribution, part of the class of Lecanoro-
mycetes that includes 70% of the known lichens [47]
(phylum Ascomycota, subphylum Pezizomycotina).
The unicellular photobiont, A. glomerata, belongs to
the most common order of lichen algae, the Treboux-
iales [13, 48]. There are few sequenced genomes from
unicellular chlorophyte algae [49–55]: some are natur-
ally free-living and some, like Coccomyxa subellipsoi-
dea [54] and Chlorella variabilis, are facultative
symbionts [50, 54, 56]. Genomic analysis of lichens
will not only increase the molecular and ecological
understanding of a large and understudied portion of
the fungal and algal phyla but also complement the
emerging genomics of other symbioses involving
mycorrhizal [57–60], endophytic [61, 62], or plant
pathogenic fungi [63].

Results and discussion
General characteristics of the C. grayi and A. glomerata
genomes
Genome sizes and gene organization
The mycobiont is a single-spore isolate from C. grayi
and the photobiont is Asterochloris glomerata isolated
from C. grayi soredia [64]. Table 1 includes basic fea-
tures of the two nuclear and the three organelle ge-
nomes. Organelle genomes are briefly discussed in
Additional file 1, and details are in Xavier et al. [65] and
Xavier’s thesis [66]. Whole genome assemblies and an-
notations are at [67] for the mycobiont and at [68] for
the photobiont. Relationships of C. grayi and A.glomer-
ata within broad phylogenetic contexts, genome sizes,
and proportions of repeated and unique sequences are
shown in Fig. 2. The nuclear genomes of lichen symbi-
onts are not reduced in size nor gene content compared
to free-living relatives, in contrast to the reductions ob-
served in many host-dependent bacteria [69]. With its
35Mb genome and 11,400 gene models, the C. grayi
mycobiont falls in the average size range for most Asco-
mycota [70]. Other lichen fungi fall in the same range,
between 26 and 59Mb [46]. Large increases in the num-
ber of transposable elements significantly affect genome
size in many biotrophic fungi [71], including the ecto-
mycorrhizal ascomycetes T. melanosporum [58], E. gran-
ulatus [72], and C. geophilum [73] but this was not
observed in C. grayi (Fig. 2). Like other Chlorophyta, A.
glomerata has more and larger introns than fungi. Its
genome (56Mb and 10,000 gene models) is significantly

Fig. 1 The lichen Cladonia grayi. The most conspicuous parts of the
Cladonia thallus are the goblet-shaped podetia that support the
sexual and vegetative reproductive structures: the goblets’ upper
margins are covered with brown fungal apothecia, sites of meiotic
spore production and ejection into the air; the podetial surfaces are
covered with green vegetative propagules called soredia, which are
tiny alga-fungus packets detached by rain and wind and able to
grow and differentiate into full thalli. Soredia are continuously
produced and extruded onto the podetial surface from the
underlying fungal tissue, which has algae embedded in it. The
ground is covered with the less conspicuous, leaf-shaped parts of
Cladonia called squamules (yellow arrowhead), which are tiny but
fully differentiated lichen thalli with typical medullar, algal, and
cortical layers. The grass-like bodies are bryophyte initials. The focus-
stacked photograph was taken in D.A.’s lab by Thomas Barlow, who
holds the copyright and consents to its use in this study

Table 1 Genome Basics

Nuclear Genome Cladonia grayi Asterochloris
glomerata

Coverage 15x 24.8 x

Number of scaffolds 414 151

Genome size (Mb) 35 56

Number of predicted
genes

11,388 10,025

Number expressed in
thallus

9800 (86%) 7700 (77%)

Genes per million bases 288 173

Average # of introns per
gene

3 9

Average gene (mRNA)
length

1800 (1650) 4240 (1400)

Intergenic DNA ~ 45% ~ 26%

Repetitive DNA ~ 10% ~ 5%

Organelle Genomes Basepairs Proteins Unknown
ORFs

tRNAs

Fungal mitochondrion 50,836 15 1 26

Algal mitochondrion 11,0932 32 18 25

Chloroplast 217,546 73 1 30
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Fig. 2 Phylogenies, genome sizes and sequence distribution. Left side: Fungal (top) and algal (bottom) PhyML trees (LG + G + F + I) for C. grayi and
A. glomerata involving, respectively, a random sample of 6000 and 4000 ungapped sites extracted from a concatenated alignment of 2137 and
683 orthologous protein families containing 794,828 and 159,356 ungapped sites. Bootstrap support values label internodes. Scales indicate
nucleotide substitutions per site. Right side: Bars are proportional to genome size, and different shadings indicate the proportions of recent and
older sequence replicas or of unique sequences. Duplicated sequences in genomes were revealed by BLAST alignment of the genomic sequence
against itself at the nucleotide (BLASTN) or amino acid (TBLASTX) levels. The duplicated regions include regular genes as well as repeated
elements (not yet fully characterized), but microsatellites and low complexity sequences were filtered out. Sequences that matched in both
BLASTN and TBLASTX searches were only counted in the BLASTN category. Only alignments with e-values <1e− 15 in both the BLASTN and
TBLASTX analyses were considered
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smaller than that of C. reinhardtii (120Mb) [49] but is
larger than that of other Trebouxiophyceae like C. subel-
lipsoideae C-169 (49Mb) [54] and C. variabilis NC64A
(46.2 Mb) [50] (Fig. 2). C. subellipsoideae C-169 is free-
living, but the genus includes lichenized species [56,
74]. Chlorella NC64A is a facultative symbiont of cili-
ates and is host to large dsDNA viruses. Our analyses
suggest that A. glomerata has also been host to large
DNA viruses (A low-GC region in Asterochloris is a
remnant of a large virus insertion, an HGT-mediator
section), although a live virus has not yet been iso-
lated from it. Over evolutionary time, chromosomal
rearrangements left little synteny among the genomes
of A. glomerata, Coccomyxa C-169 and Chlorella
NC64A (Additional file 2).
Additional file 3 shows a KEGG-based categorization

of the mycobiont and photobiont gene models. In this
broad overview only the environmental information pro-
cessing category (signal transduction) appears overrepre-
sented in both symbiotic partners. Among the free-living
Aspergillus species, from the closely related class Euro-
tiomycetes (Fig. 2), the signal transduction genes consti-
tute between 1.4 and 1.84% of the annotated genes [75,
76], while in C. grayi the proportion is 6.2%. In A. glo-
merata the proportion of signal transduction genes is
7.8%, while among other Chlorophyta they represent 5–
6% of the total [77]. These broad comparisons are only
suggestive of an expansion of signal transduction com-
ponents in the C. grayi partners because methodologies
and annotations differ. A specific analysis of signal trans-
duction functions (Specific survey of mycobiont and
photobiont signal transduction components section) also
reveals diversification in some of the C. grayi and A. glomer-
ata components. This bilateral restructuring may underpin
the multifaceted interactions between partners [10].

A low-GC region in Asterochloris is a remnant of a large
virus insertion, an HGT-mediator
In 98% of the Asterochloris nuclear genome the GC con-
tent is between 56 and 62%. However, it is significantly
lower (49%) in two large genomic regions, each located
at one end of two scaffolds (~ 441 Kb on scaffold 80 and
~ 102 Kb on scaffold 120). Each low-GC region reaches
the scaffold’s extremity with an array of duplicated
141-bp sequence units (totaling 1300 bp on scaffold 80
and 2053 bp on scaffold 120). These repeated sequences
are found nowhere else in the Asterochloris genome.
Figure 3a has the two scaffolds joined at the repeats,
forming a single low-GC contiguous chromosomal re-
gion. Genomic contiguity has been confirmed by PCR
and sequencing across the junction (Armaleo, not shown).
The joined low-GC regions contain 462 predicted protein
coding genes (Additional file 4), 236 of which exhibit sig-
nificant matches in GenBank (BLASTP e-value <1e− 5). Of

these, 45% have their best match in double-stranded DNA
viruses [78]. While most genes in the algal genome have
many introns, only 36 of the 462 protein coding genes in
this region are predicted to have them, and only 24 of 462
(5.2%) match chlorophyte genes. This differs markedly
from the rest of the genome (Fig. 3b), where most genes
have best matches in chlorophytes (69%). The sharp
switch in nucleotide composition and phylogenetic affinity
strongly suggest that the low-GC region is a remnant of a
large integrated viral genome, about 540 kb long.
Nucleo-cytoplasmic large DNA viruses (NCLDV) form a
monophyletic class of viruses that infect a variety of
eukaryotes [78, 79], including other algae and protists
[80–82]. A phylogenetic analysis places the Asterochloris
virus within the Phycodnaviridae family, sister to viruses
that infect other green algae (Additional file 4). The gen-
ome of the A. glomerata virus may be the largest among
alga-infecting NCLDVs sequenced to date (ranging from
154 Kb for a Feldmannia sp. virus [83] to 473 Kb for a
Chrysochromulina ericina virus [84]). Viral DNA thus is a
major vehicle of HGT in A. glomerata and other algae
[85]. The significance of this group of virally transferred
genes for the symbiosis is unclear at this time. However,
some of the genes in the viral region are actively tran-
scribed, which suggests that they may eventually become
functional in the photobiont. Other genes with potential
symbiotic significance have been introduced into treboux-
ioid algae probably by HGT from bacteria [44] and archaea
(Photobiont expanded families section). Trebouxioid algae
ancestors may have even acquired genes from fungi before
the origins of lichens [86].

Heterothallism probably evolved from homothallism in
Cladonia; genetic evidence for sex in Asterochloris
Typically in ascomycetes, two kinds of mating genes,
MAT1–1 and MAT1–2, cooperate in mating [87]. They
are referred to as idiomorphs because, while they share
the same locus, MAT1, their encoded proteins are differ-
ent transcription factors: MAT1–1 is characterized by an
α1-domain [88] and MAT1–2 by a MAT A_ HMG do-
main [88]. These may be linked also to other
idiomorph-specific genes. When both MAT1–1 and
MAT1–2 are in the same genome, the fungus is
self-fertile (homothallic), but when a genome contains
only MAT1–1 or only MAT1–2, the fungus is self-sterile
(heterothallic) and mating occurs only between different
mating types; both heterothallic and homothallic species
of lichen fungi have been found [89–93]. C. grayi pro-
duces typical ascomycetous fruiting bodies with apothe-
cia (Fig. 1); the MAT locus in the single-spore isolate
Cgr/DA2myc/ss, like in many Pezizomycota [87, 94], is
located between Apn2 and Sla2, genes for a nuclease
and a cytoskeleton assembly protein, respectively
(Fig. 4a). The locus in Cgr/DA2myc/ss contains the core
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gene MAT1–1 and an associated gene [87], MAT1–1-7,
but no MAT1–2 (Additional file 5 and Fig. 4a), as do the
sequenced mating-type loci of single-spore isolates from
two other Cladonia species (Additional file 5). This ex-
pands earlier RAPD-PCR and RFLP data on three other
Cladonia species, also heterothallic [91]. PCR amplifica-
tion and sequencing of the region between Sla2 and
Apn2 from DNA of a natural C. grayi thallus revealed a
single MAT1–2 gene (Additional file 5 and Fig. 4a;
sequence accession MH795990), further supporting
heterothallism. The sequences of the two loci revealed
the presence of vestigial sequences suggesting that, in
Cladonia, heterothallism might have evolved from ho-
mothallism (Additional file 5 and Fig. 4b). This appears
to diverge from the trends in other ascomycete genera

where homothallism is thought to have evolved from
heterothallism [94–96], although not in all cases [97].
Sexual reproduction is generally assumed not to occur in

trebouxoid algae like Asterochloris [98]. They reproduce
vegetatively, both in the lichen thallus or in culture, through
non-motile autospores and aplanospores or through flagel-
lated zoospores [99]. Law and Lewis proposed that sexual
reproduction in the photobiont, the inhabitant in the mu-
tualism, should be selected against [100]. However, the oc-
currence of sex in these algae is indicated by isolated
microscopic observation of presumptive gametes in the
1920s [99], 1960s (figure 28 [101]; page 135 and figure 28
[102]) and in 2015 [99], and molecular evidence of genetic
recombination was also uncovered through phylogenetic
analysis of a Trebouxia population in Letharia lichens

A

B

Fig. 3 A viral insertion in the Asterochloris genome. a GC content and gene distribution. The diagram represents a 1 Mb genomic region
produced by joining scaffolds 120 and 80 at their inverted repeat-containing edges (purple triangles). The % GC content is proportional to the
height and color intensity of the orange-yellow band. Genes are indicated by rectangles whose color represents the category of their best match
in Genbank (BLASTP e-value <1e− 5). The blue or red segments perpendicular to the Kb line are repeated sequences or gaps, respectively. The
low GC region in yellow represents the remnant of a viral insertion (Additional file 4). b Origins of best matches. Most genes in the low GC
region of A. glomerata are viral or prokaryotic in origin, in contrast to those in the genome as a whole

Armaleo et al. BMC Genomics          (2019) 20:605 Page 6 of 33



[103]. The identification of many meiotic genes in the A.
glomerata genome and their expression in coculture
(Additional file 5) add further evidence for the occurrence
of meiosis in trebouxoid algae, probably in their
free-living stages [29]. The gametes observed in Astero-
chloris [99] are flagellated, as are its vegetative zoo-
spores (9 + 2 type [104]). Not surprisingly, the motility
proteins present in Asterochloris match those of other
flagellated chlorophytes but are mostly absent from
non-motile chlorophytes (Fig. 5 and Additional file 5).
The critical implications of fungal and algal sexual
reproduction for the lichen symbiosis and for symbiont
autonomy are discussed in Conclusions.

Search for symbiosis-specific genes I: differential
expression in coculture vs. monoculture
Table 2 lists the genes discussed in the next three sec-
tions. The system to survey the gene sets differentially
transcribed when fungus and alga first contact each
other is based on three parallel cultures on filters placed
on low nutrient agar medium [33]: the aposymbiotic
fungus, the aposymbiotic alga, and a coculture of the
two (Fig. 6 and Additional file 6). RNA was extracted
from the individual cultures after 21 days of growth on
the filters. Differential expression data (Methods) were
analyzed in two ways. In the first, we identified GO an-
notations and metabolic pathways significantly enriched

A

B

Fig. 4 Cladonia MAT loci and their evolution. a Configurations of the MAT loci in three Cladonia species. The top diagrammed alignment is based
on the alignment between the annotated C. grayi MAT1–1 region (scaffold_00075:76000–90,000 at [67]) and a provisional sequence of the C. grayi
MAT1–2 region (accession MH795990). The C. grayi MAT1–1 and MAT1–2 regions are drawn above the basepair indicator line. Under the line are
the MAT1–1 regions derived from the genomes of two other Cladonia species (Additional file 5). In C. grayi, the conserved flanking regions are
gray, while the unrelated central regions are stippled differently for each mating type. Dark or gray arrows represent genes and gene-segments.
CLAGR_008123-RA is considered a putative MAT1–1-7 ortholog because of its location and its BLAST hits to MAT1–1-7 orthologs from
Trichophyton and other fungi. b Evolutionary model. Horizontal colored arrows represent MAT idiomorphs. The central line represents the MAT
locus configuration of a possible homothallic Cladonia ancestor, and the vertical arrows represent the putative transitions towards the present
heterothallic MAT1–1 (orange) or MAT1–2 (blue) configurations (Additional file 5). The graded shading in the deletion triangle leading to MAT1–2
symbolizes the deletion’s undefined left boundary beyond MAT1–1-7
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among genes induced or repressed more than 1.5x
(0.6 > log2 > − 0.6) in coculture relative to monoculture.
In the second, a more extensive approach, we focused
only on induced genes and added information from
PFAM domains and literature searches to define each
gene’s putative function in more detail than was possible
through GO terms alone.

GO term-centered analysis of transcription in coculture
The limited results are listed in Additional file 6. In co-
culture, the alga shows only differential activation of

ubiquitin-dependent catabolic processes. The fungus in-
duces redox-active enzymes and proteases, a finding also
reflected in the data from the more extensive approach.
Surprisingly, however, in presence of the alga the fungus
also down-regulates several genes involved in respiratory
ATP generation; the biological significance of this remains
to be determined, pending experimental confirmation.

Extended analysis of transcription induced in coculture
In this analysis we used day-21 ratios of coculture (Co)
vs. monoculture (Mo) RPKM directly rather than the

A

B

C

Fig. 5 Flagellar proteins. a Number of candidate flagella proteins in chlorophytes. Reference C. reinhardtii proteins of the CiliaCut protein set (blue
bars) and flagella proteome (green bars) were searched for putative orthologs in sequenced motile and non-motile chlorophytes using the
reciprocal best BLASTP hit criterion. b The 314 candidate A. glomerata flagella proteins identified from multiple sources of evidence (see
Methods). c Distribution of flagella proteins across Chlorophytes. The left cladogram shows the likely evolutionary relationships of sequenced
Chlorophytes. The ƒ mark indicates organisms known to build motile flagella. Crei: Chlamydomonas reinhardtii; Volvox: Volvox carteri; C169:
Coccomyxa subellipsoidea C-169; NC64A: Chlorella variabilis NC64A; Otau: Ostreococcus tauri; Oluc: Ostreococcus lucimarinus; M. CCMP: Micromonas
pusilla CCMP1545; M. RCC: Micromonas sp. RC299. Presence (dot) or absence (circle) of putative orthologs identified by reciprocal best BLASTP hit
of C. reinhardtii outer dynein proteins, inner dynein proteins, radial spoke proteins, central pair proteins and intraflagellar transport proteins
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log2 values. Ratios are abbreviated here as Co/Mo. In
each symbiont, a few hundred genes changed expression
in coculture relative to monoculture, while most genes
remained unaffected (Co/Mo ≅ 1) (Fig. 7). The extended
transcription analysis was limited to the genes induced
in coculture. Due to differences in Co/Mo ranges for the
symbionts (Additional file 6), we defined two different
Co/Mo induction thresholds: ≥ 2 for the fungus, ≥1.3 for
the alga (Fig. 7). This yielded 795 up-regulated genes out
of 11,388 in C. grayi (7%) and 471 out of 10,024 in A.
glomerata (4.7%) (Additional file 6). Induced gene

products were inferred by BLAST [105] and, based on
GO terms, PFAM domains and literature searches, were
grouped into three categories summarized in Fig. 8: un-
known and unique to each symbiont, insufficiently de-
fined, and better defined (Additional file 6).
Relative to their overall genomic frequency of 7.2%

(821/11388), mycobiont secreted proteins are dispropor-
tionately enriched to 18.5% (147/795) in coculture (p =
2.8E-28). The genomic average protein length is 477 AA,
while the induced and secreted proteins are smaller,
averaging 341 AA (Fig. 9 and Additional file 6), with

Table 2 Compilation of genes/proteins of potential symbiotic significance discussed in Search for symbiosis-specific genes I, II, and
III sections

Fungus: Cladonia grayi

Gene groups induced in
coculture

Small secreted proteins / Transcription / Cell wall turnover / Protein turnover / Metabolism / Membrane transport /
Defense / Extracellular hydrolases

Selected examples Polyol transporter / Ammonium transporter / Calcium channel inhibitor / lectins / DNA methyltransferase /
Gα, RGS protein, dual specificity phosphatase

Expanded protein families HET domain / Ank domain / Met permeases / Unknown transmembrane proteins / Fructosamine kinases / Polyketide
synthases / Signal transduction components / Stress-related TFs

Contracted protein families Transportome: Carbohydrate transporters / Major Facilitator Superfamily (MFS) / ATP Binding Cassette (ABC)
superfamily / Aminoacid-Polyamine organo Cation (APC) family / Oligopeptide Transporter (OPT) family / Proton-
dependent Oligopeptide Transporter (POT) family

Slow evolvers Proteostasis maintenance / Aldehyde dehydrogenases / Major Facilitator Superfamily (MFS)

Selected examples Mechanosensitive calcium channel / Sugar transporters

Fast evolvers Signal transduction / Membrane trafficking / Stress protection

Selected examples Superoxide dismutase / Trehalose synthase

Alga: Asterochloris glomerata

Gene groups induced in
co-culture

Secreted proteins / Transcription / Cell wall turnover / Protein turnover - ubiquitin / DNA processes / Signal
transduction / Protein trafficking / Flagellum synthesis

Selected examples Thioredoxin / Kinesin / Fasciclin domain proteins / Mechanosensitive calcium channel

Expanded/new protein
families

Fam_16: DNA binding-recombination proteins / Kinases / Carbohydrate active enzymes (CAZ) / Ank domain proteins
/ Archaeal ATPases / Desiccation-Related-Proteins / Magnesium transporters / Signal transduction components /
Stress-related TFs

Contracted protein families Nitrate assimilation

Slow evolvers Two kinases and one clathrin vesicle adaptor

Fast evolvers Seven diverse proteins

Fig. 6 Cultures of C. grayi and A. glomerata reconstituted on filters in Petri dishes
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Fig. 7 Differential fungal (C. grayi) and algal (A. glomerata) gene expression in coculture vs. monoculture. RPKM expression ratios are sorted from
high to low. Genes considered unaffected in coculture are labeled gray (Co/Mo ~ 1). Those labeled black above or below the gray range are
considered induced or repressed, respectively. Induction and repression thresholds correspond respectively to 2 and 0.5 for the fungus and 1.3
and 0.77 for the alga. Notice the smaller range of differential expression induction displayed by the alga under our experimental conditions
(Additional file 6)

Fig. 8 Classes of genes differentially induced during early fungus-alga interactions in coculture. The pie charts divide the induced genes for each
symbiont into three broad classes (numbers of genes in parentheses). The “better defined” genes are subdivided in groups roughly comparable
between the symbionts (gray and white boxes). The area of each box is proportional to the percent of genes it contains relative to all better
defined genes (265 for the fungus and 243 for the alga). The number behind each group’s name indicates its enrichment factor relative to the
whole genome (see Methods). The hatched areas represent groups with less than 10 genes each. The p values for the enrichment of the
indicated groups within the induced genes are all < 0.05, and most are << 10− 3
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most unknown and unique to C. grayi. The smallest pro-
teins tend to be also among the most strongly induced.
Cladonia shares biotrophic overexpression of small se-
creted proteins with the mycorrhizal basidiomycete Lac-
caria bicolor [57], the mycorrhizal ascomycete Tuber
melanosporum [58], and with pathogenic fungi [106].
The Cladonia secretome (821 proteins) is comparable in
size to the secretomes of ectomycorrhizal and many
other fungi [107]. Also in the alga, relative to their over-
all genomic frequency of 3.6% (365/10025), secreted pro-
teins appear significantly enriched (p = 0.00003) among
the 471 induced proteins (32/471 = 6.8%), but they are
not significantly smaller than average (Fig. 9 and
Additional file 6). It remains to be seen whether the algal
secretome in early symbiosis shares any features with
the secretion responses of higher plants to fungal infec-
tion [108].
The better-defined gene products induced in coculture,

265 in C. grayi and 243 in A. glomerata, were subdivided
for enrichment analysis in broad functional subgroups of
at least 10 genes each (Fig. 8, Additional file 6). Ex-
cept for the limited enrichment (1.4-fold) of signal
transduction and defense genes in the fungus, most
subgroups in both symbionts were enriched between
2- and 9-fold and with high significance in the set of
induced genes relative to the whole genome (Fig. 8).
At these early stages, both partners respond to the
other’s presence by activating transcription, cell wall
metabolism and protein turnover. The mycobiont’s

specific responses center on upregulating membrane
transporters, secreted hydrolases, and small proteins,
broadly resembling the symbiotic responses of the EM fun-
gus L. bicolor [112]. The photobiont’s specific responses
center on growth and motility through the predominant
activation of DNA and signal transduction processes, as
well as protein trafficking and zoospore formation
(flagella). This correlates with the alga’s rapid initial
growth visible in coculture compared to monoculture
(Additional file 6), possibly reflecting the growth ob-
served in nature in free-living trebouxoid algae near suit-
able fungal hyphae [29] and increasing the chances of
successful formation of new lichen initials. This issue is
taken up again in Conclusions, where the importance for li-
chen evolution of re-lichenization of free-living algae re-
leased from natural thalli is discussed. It needs underlining
that this coculture system and similar ones [113] do not
proceed beyond formation of poorly differentiated liche-
noids (Additional file 6), and thus they do not capture the
complete interaction network extended in space and time
needed for proper lichenization in nature. Individual genes
of potential symbiotic significance are discussed in Infer-
ences from differential transcription about nutritional fluxes
at the symbiotic interface section and in Additional file 6.

Inferences from differential transcription about nutritional
fluxes at the symbiotic interface
Whereas hexose sugars are the carbohydrates transferred
from plant to fungus in mycorrhyzae [114], polyols are the

Fig. 9 Secreted proteins among the proteins induced in coculture. The small black symbols coalescing into a curve represent the Co/Mo ratios of
the genes induced in coculture; the circles represent the corresponding protein sizes, gray for non-secreted, black for secreted proteins. The
average sizes (# of amino acids) of a) all genome proteins, b) all induced proteins, c) all induced and secreted proteins are a) 477, b) 381, c) 341
for the fungus and a) 447, b) 420, c) 436 for the alga. Proteins were considered secreted only if they scored as such in all three programs SignalP
[109], TargetP [110], and TMHMM [111]. In TMHMM, a transmembrane domain prediction program, a protein was considered compatible with
secretion only if it had either no predicted TM domains or only one at the N terminus. The data used in this figure are in Additional file 6
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means by which trebouxoid algae transfer carbon to the
fungus in lichens [115], and the first putative polyol trans-
porter gene in a lichen fungus was identified recently [116].
We identified a family of five putative ribitol transporters in
C. grayi (Additional file 6 and Fig. 10); in coculture, only
one of the five was induced (Table 3 and Fig. 10), suggesting
its involvement in importing ribitol to the fungus. The alga
has dozens of putative sugar/MFS transporters whose ex-
pression remains mostly unchanged in coculture, except for
seven that are weakly induced (Co/Mo 1.13–1.27). Their in-
volvement, if any, in ribitol export to the fungus remains to
be determined.
It has been known since the 1970s that nitrogen is

transferred from lichen mycobionts to eukaryotic photo-
bionts [121, 122], and more recently it was suggested
that the fungus acts as a nitrogen gateway for the alga
[123]. This hypothesis is consistent with the results of a
study of the lichen Cladonia portentosa, which found
that the response of the algal proteome to nitrogen ex-
cess was more muted than that of the fungal proteome
[43]. As is thought to be the case with mycorrhizal fungi
[114], a primary form of nitrogen released by the lichen
mycobiont to the alga is likely to be ammonium, al-
though in lichens amino acids might be involved as well

[124]. Ammonium transporters generally import NH4
+

into the cell, but they can also export it [125–128]. Of
particular interest are two ancient likely horizontal gene
transfers of ammonium transporters from prokaryotes to
fungi [129]. Transporters from the earliest transfer are
found in all fungi, whereas transporters from the later
transfer were derived from hyperthermoacidophilic Ar-
chaea and were retained primarily by lichenizing fungi
[46, 129], suggesting a specific role in the symbiosis.
Their selective retention might have been driven by the li-
chens’ frequent exposure to high temperatures and by the
very low pH of their apoplast due to the high content of
acidic secondary metabolites. Of the four MEthylammo-
nium Permease-type (MEP) ammonium transporters in
the C. grayi mycobiont, two belong to the general fungal
class (CLAGR_000407-RA and CLAGR_009781-RA) and
two to the class primarily retained by lichens
(CLAGR_005848-RA and CLAGR_003366-RA). The Cla-
donia mycobiont also has four transporters belonging to
the Gpr1/FUN34/YaaH family, whose functions are de-
bated [130] but include the postulated ability to export
NH4

+ in yeast [128], where they are named ATO (Ammo-
nia Transport Outward). The differential transcription of
these eight transporter genes is interesting: relative to

A C

B

Fig. 10 A predicted ribitol transporter in C. grayi. a Differential transcription in coculture vs. monoculture of five putative sugar transporters in C.
grayi. They were the top five BLAST hits obtained by querying the genome with the sequences of two functionally validated fungal D-sorbitol/D-
mannitol/ribitol transporters [117]. Only CLAGR_004844-RA is induced in coculture (Co/Mo on Y axis; 1 means no induction.). b CLAGR_004844-RA
amino acid sequence. The 12 transmembrane domains [118] are indicated in bold purple. Consensus amino acids for sugar transporters [119, 120]
are highlighted in cyan. c Protein phylogeny (PhyML, 100 bootstraps) of the five C. grayi transporters. The green branches correspond to nodes
with bootstrap support ≥70%. The C. grayi proteins are labeled brown. The other transporters are identified by GI number and by fungal species.
Taxa are also labeled as ascomycetes (Asco) or basidiomycetes (Basidio), the latter used as outgroup. The CLAGR_004844-RA clade is highlighted
yellow. Bar indicates amino acid substitutions/site
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fungal monoculture, in coculture with the alga five are re-
pressed, two are induced (one strongly), and one is un-
changed (Table 3). The repression of a majority of these
fungal transporters in coculture echoes the selective re-
pression by the ectomycorrhizal fungus A. muscaria [131]
of a fungal NH4

+ importer at the symbiotic interface,
thought to prevent re-absorption by the fungus of
exported NH4

+. Awaiting experimental verification, we
speculate that the ATO transporter CLAGR_005116-RA
(Co/Mo 5.6) and perhaps the Mep1b-like ammonium
transporter CLAGR_003366-RA (Co/Mo 1.5) are candi-
dates for mediating ammonium export to the alga,
while the others, probably importers, are repressed to
reduce re-absorption by the fungus. In the cocultured
alga relative to monoculture, expression of four of its
five ammonium transporters does not change and that
of the fifth is undetectably low (Table 3). Overall,
however, the transcriptional shifts in coculture of the
fungal ammonium transporters are consistent with
NH4

+ being a major mediator of nitrogen transfer
from mycobiont to photobiont. They are also consist-
ent with the inability of freshly isolated A. glomerata
to grow on nitrate (Specific survey of photobiont proteins
involved in nitrate and CO2 assimilation section).
Phosphate is an important nutrient known to be

transferred from mycorrhizal fungi to their plants
[114], but there is no suggestive transport polarity or
coculture induction pattern among the many

putative phosphate transporters in A. glomerata and
C. grayi that could shed light on this system. (For
other individual genes induced in coculture, see
Table 3, Additional file 6).

Search for symbiosis-specific genes II: evolution of gene
family size
Lineage-specific expansion or contraction of multigene
families is often associated with lineage-specific func-
tional shifts in eukaryotes [57, 58, 132–134]. We under-
took one broad and one circumscribed analysis of
multigene families. For the broad survey, multigene fam-
ilies in C. grayi and A. glomerata were identified using
MCL [135] and analyzed for changes in family size using
CAFE [136], with the taxa listed in Methods. In C. grayi,
390 families were expanded, 3369 showed no change,
and 769 families had undergone contraction by compari-
son to a putative common ancestor. In Asterochloris,
648 families were expanded, 2729 showed no change,
and no families were contracted. The circumscribed ana-
lysis was limited to the C. grayi transportome and pre-
dicted 458 C. grayi membrane transporters using the
TransportTP online tool [137] with the Transporter
Classification Database [138]. We discuss only families
for which we can suggest symbiotic roles and highlight
whenever a significant fraction of a gene family is also
induced in coculture. We assume that the overlap of in-
duction with expansion/contraction (Additional file 1)

Table 3 Selected fungal (CLAGR) and algal (Aster) genes of potential symbiotic significance differentially expressed in coculture

Gene name Hypothetical function Co/Mo ratio Gene name Hypothetical function Co/Mo ratio

A. Genes potentially involved in C and N exchange

CLAGR_004844-RA Ribitol transporter 2.6 Aster-02360 Ammonium transporter 1.0

CLAGR_005116-RA ATO (Amm. exporter) 5.6 Aster-02123 Ammonium transporter 0.9

CLAGR_006601-RA ATO (Amm. exporter) 0.9 Aster-04935 Ammonium transporter 1.0

CLAGR_003233-RA ATO (Amm. exporter) 0.3 Aster-08051 Ammonium transporter 1.0

CLAGR_006538-RA ATO (Amm. exporter) 0.4 Aster-08052 Ammonium transporter n.d.

CLAGR_000407-RA Mep2-type Amm. transp. 0.9

CLAGR_009781-RA Mep3-type Amm. transp. 0.6

CLAGR_005848-RA Mep1a-type Amm. transp. 0.6

CLAGR_003366-RA Mep1b-type Amm. transp. 1.5

B. Other genes discussed in Additional file 6

CLAGR_010764-RA KP4 killer toxin-like 150 Aster-04252 Thioredoxin 73

CLAGR_008646-RA Lectin 10 Aster-01625 Kinesin motor 2.3

CLAGR_010932-RA Lectin 4 Aster-01936 Fasciclin domain protein 1.7

CLAGR_011186-RA Gα signaling subunit 2 Aster-06761 Fasciclin domain protein 1.5

CLAGR_002910-RA Regulator of Gα signaling 4 Aster-03695 Calcium channel 1.3

CLAGR_002710-RA Dual specificity phosphatase 2

CLAGR_007359-RA DNA methyltransferase 3

CLAGR_000113-RA Calcium transporter 2
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increases the likelihood that the genes involved play
symbiotic roles. We did not find significantly contracted
families in A. glomerata, although a separate search fo-
cused on nitrogen assimilation revealed a reduced set of
nitrate assimilation genes in the alga (Specific survey
of photobiont proteins involved in nitrate and CO2
assimilation section).

Mycobiont expanded families
In the C. grayi fungus, the most notable expansions
involve 204 HET incompatibility proteins, 13 of which
are also induced in coculture; 156 Ankyrin domain
proteins; an 80-member family (Fam_5) of multi-
transmembrane-domain proteins of unknown function
with 10 coculture-induced members; Fam_668, a fructosa-
mine kinase family with 7 members of which 3 are cocul-
ture induced; the family of polyketide synthases (PKSs)
and Non-Ribosomal Peptide Synthases with at least 29
members. HET proteins might prevent incompatible C.
grayi hyphae from fusing with a C. grayi mycobiont
already lichenized with its photobiont. Ankyrin domains
could be involved in inter-protein contacts at the symbi-
otic interface. Fructosamine kinases are known to reverse
aging-associated protein damage produced by glycation
[139, 140]. A few of the PKSs [34, 141] have been shown
to be involved in the synthesis of the primary and most
abundant secondary metabolites well known in lichens,
but the large number of PKSs in C. grayi (Fig. 11 and Add-
itional file 7) points to a vast and still uncharacterized
metabolic potential. Further description of these expanded
families and elaboration of the hypotheses on their pos-
sible symbiotic significance are found in Additional file 7.
A separate analysis identified expanded families of signal
transduction components (Specific survey of mycobiont
and photobiont signal transduction components sec-
tion and Additional file 8), some also differentially
expressed in coculture (Additional files 6 and 8).

Mycobiont contracted families
Carbohydrate transporter Fam_1, MFS (Major Facilitator
Superfamily) Fam_2 and Fam_7, and amino acid perme-
ase Fam_22 are dramatically reduced, and some mem-
bers of these families are also induced in coculture
(Additional file 7) or score as slow-evolvers as discussed
in Slow-evolving proteins and anti-stress strategies in
the mycobiont section. The contraction of these families
is part of the overall contraction observed in the specific
analysis of the mycobiont’s transportome (Additional file 7).
A reduced transportome has been observed also in the
ectomycorrhizal ascomycete T. melanosporum [58]. This is
consistent with the loss of generalist nutrient uptake and
the reliance of the fungus on a few specialized carbon
sources from the photobiont, which are polyols in

green algal lichens like C. grayi [115] (see Inferences
from differential transcription about nutritional fluxes
at the symbiotic interface section).

Photobiont expanded families
Additional file 7: The most notable expansions in A. glo-
merata involve the 100-member Fam_16 of unknown
proteins unique to this alga, with 20% of the members
induced in coculture; Kinase families totaling 52 mem-
bers; Carbohydrate Active Enzymes (CAZ) with a total
of 40 members; a 29-member Ankyrin domain protein
family; a probably HGT-derived family of 26 archaeal
ATPase-like proteins (Additional file 7 and Fig. 12). A
survey using Phyre2, a protein structure prediction pro-
gram [142, 143], suggests DNA-related functions for
some Fam_16 members. The expansion of kinases
matches the expanded signal transduction capability
mentioned in Genome sizes and gene organization sec-
tion. The expanded CAZ families might enhance the
structural and biochemical versatility of the photobiont’s
cell surface. The parallel expansion of Ank-domain pro-
teins in C. grayi and A. glomerata might mediate recipro-
cal boundary interactions. Finally, the putative ATPases of
archaeal origin and the Desiccation-Related-Proteins of
bacterial origin might be involved in the lichen alga’s re-
sistance to desiccation and elevated temperatures. Further
description of these expanded families and elaboration of
the hypotheses on their possible symbiotic significance
can be found in Additional file 7.

Specific survey of mycobiont and photobiont signal
transduction components
This analysis confirms the suggestion from the data in
Additional file 3 that signal transduction protein families
are expanded in C. grayi and A. glomerata (Genome
sizes and gene organization section). For C. grayi, these
include PTH11-type receptors [147] and components of
MAPK pathways described in Additional file 8, together
with coculture expression data collected to identify sig-
nal transduction candidates potentially involved in early
fungus-alga interactions (Additional files 6 and 8). The
analysis also revealed an expanded set of five divergent
Gα subunit paralogs in C. grayi (Fig. 13). The Astero-
chloris expansions (Additional file 8) involve a more di-
verse set of families than Cladonia’s.

Specific survey of mycobiont and photobiont transcription
factor (TF) families
Overall results are displayed in Fig. 14, and specific fam-
ilies are listed in Additional file 9. With regard to overall
TF family gain or loss, neither Cladonia nor Asterochloris
stand out within their respective phylogenies. With regard
to family expansion and contraction, Asterochloris also
conforms to the general algal phylogeny trend of
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expansions outnumbering contractions. In contrast, Cla-
donia appears to have experienced more expansions of TF
families than not lichenized fungi. One Cladonia expan-
sion involves a group of proteins characterized by PCI do-
mains [148] (Additional file 9). PCI-domain proteins are
involved in many diverse processes, and we could not find
specific roles for these TFs. With regard to families with
known functions, both Cladonia and Asterochloris have
expanded TFs involved in chromatin remodeling (SWI/
SNF [149] in Cladonia, SWI/SNF_Baf60 [150] and Sir2
[151] in Asterochloris) and stress responses (SGT [152]
and CSD [153] in Cladonia, WRKY [154] in Astero-
chloris). Asterochloris has also contracted the SET family
and the CCHC zinc finger family. The contracted SET

family comprises protein lysine methyltransferases, in-
volved in methylation of histones and other proteins
[155]. We hypothesize that selection on both symbionts’
ability to shuttle reversibly between free-living and symbi-
otic states [31] and interact in the thallus in different ways
across time and space [10] produced the needed genomic
plasticity through the parallel expansion of
chromatin-remodeling functions. In contrast, the signifi-
cant SET family contraction seems odd, given the multifa-
ceted effects of protein lysine methylation [156]. We
suggest that the stresses placed on lichens by re-
peated, rapid and large oscillations in their exposure
to light, temperature and hydration might have led to
the expansion of stress-related TFs in both symbionts.

A

B

C

Fig. 11 Polyketide Synthase (PKS) and Non-Ribosomal Peptide Synthetase (NRPS) genes in C. grayi. The three protein categories in a, b, c are
named on the right. CLAGR_009784 is a PKS-NRPS hybrid. The only PKS whose likely downstream product (grayanic acid) is known is CLAGR_002732 [34].
The length of the horizontal lines is proportional to gene length (vertical gray lines delimit 3-Kb segments). Graphic symbols for protein domains are
indicated at top. Genes with a suz_1 prefix were reannotated manually. See Additional file 7 for further details
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These environmental stresses appear to affect the evo-
lution of many lichen adaptations [44, 157–160] as
discussed in Slow-evolving proteins and anti-stress
strategies in the mycobiont section for the fungus
(where several converge on maintaining the resilience
of the proteome) and in Additional file 7 for the alga.

Specific survey of photobiont proteins involved in nitrate
and CO2 assimilation
We compared A. glomerata to related algae for possible
adaptations involving nitrogen and carbon assimilation

proteins that did not surface in the protein family
screens. The top of Fig. 15 displays the types and
organization of nitrate assimilation genes linked to a
phylogenetic tree for Chlorophytes. A. glomerata has a
reduced set of nitrate assimilation genes compared to
other green algal genomes in this figure. The nitrate as-
similation cluster (HANT-AC) [161] present in most
microalgae [162] is reduced to nitrite reductase (NIR)
and the NRT3 transporter in A. glomerata, and the total
number of NNP transporters is reduced in Coccomyxa
subellipsoidea C-169 and A. glomerata. A. glomerata has

Fig. 12 Protein family tree of archaeal ATPases. The phylogram was constucted using FastTree [144] on a MAFFT [145] amino acid alignment of 91
putative archaeal ATPases from prokaryotes and eukaryotes. Branches with bootstrap values ≥0.77 are thickened. Bar indicates amino acid
substitutions/site. To the ATPases present in the published Galdieria phylogeny [146], we added all the proteins above Methanocaldococcus_j__MJ0632
in this figure. The eukaryotic taxa shown represent most of those currently known to harbor putative archaea-derived ATPases. ATPases from Galdieria
(Gs) are marked red, from green algae and plants green, from fungi brown. All branches in black are prokaryotic, except for the amoeba Dictyostelium
at the base. Branch labels include the taxon name or symbol and a protein identifier. The Asterochloris (Aster) proteins are indicated by their gene
names in the JGI database [68]. The phylogeny suggests several independent HGT events, but it cannot exclude a very ancient HGT from Archaea to a
common eukaryotic ancestor followed by losses in most eukaryotes. Asterochloris, Galdieria, and Selaginella have the largest families of archaeal
ATPases (with 26, 12, and 7 members, respectively). See also Additional file 7
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lost the clustered nitrate reductase (NAR), but it retains
a nitrate reductase paralog (NAR-P) also found in C.
subellipsoidea. Nitrate cannot be taken up directly by
the lichenized alga enclosed in fungal tissue but has to
be first metabolized into other compounds by the
mycobiont [123]. These compounds may include
amino acids, excreted by the fungus and presumably
taken up by the alga [124], and ammonium (see Inferences
from differential transcription about nutritional fluxes at
the symbiotic interface section). Congruent with these
findings, A. glomerata isolated from C. grayi can grow on
nitrate only after a period of adaptation to axenic culture
(Armaleo, unpublished). Day 21 gene expression in mono-
and coculture is graphed on the bottom of Fig. 15. Inter-
estingly, nitrate assimilation genes in A. glomerata are

turned down about 50% in coculture relative to monocul-
ture, which may contribute to the regulation of growth ex-
perienced by the alga when it lichenizes with the fungus
[163]. We hypothesize that, while A. glomerata is capable
of autonomous nitrate assimilation utilizing nitrate trans-
porters and NAR-P when free-living, suppression of these
mechanisms during symbiosis has relaxed selection on their
strict maintenance, resulting in the loss of a full HANT-AC
and a reduction in the number of nitrate transporters. The
extreme reduction of the nitrate assimilation toolkit in A.
glomerata relative to other non-symbiotic chlorophytes
could be viewed as a parallel to the transportome contrac-
tion in C. grayi (Mycobiont contracted families section and
Additional file 7), each contraction resulting from the almost
exclusive nutritional reliance of each partner on the other.

Fig. 13 A unique set of Gα subunits is present in Cladonia. The protein phylogeny (PhyML, 100 bootstraps) of the eight C. grayi Gα subunits
clusters into three major MAG A, MAG B, and MAG C clades (highlighted). The unique MAG C paralogs are shown on the bottom. The green
branches correspond to nodes with bootstrap support ≥67%. The C. grayi proteins are labeled brown. Bar indicates amino acid substitutions/site.
See also Additional file 8
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As algal photosynthesis is central to the lichen symbi-
osis, we surveyed the carbonic anhydrases (CAs) of
Asterochloris, enzymes that catalyze the interconversion
between CO2 and HCO3

−. This adds to previous exten-
sive work published on CAs in lichen algae [165, 166].
Delivery of CO2 to the enclosed lichen photobionts is
extremely variable, depending on the specific anatomy
and physiology of its mycobiont-photobiont combination
[167] and on rapid changes in temperature and in the sup-
ply of nutrients, water, and light [168]. When lichen thalli
become fully saturated with water, the diffusion of CO2 to
the algae is further limited by the swollen hyphal tissue
surrounding them. This reduces photosynthetic rates
[169, 170] even if the hydrophobicity of the lichen interior
maintains air-filled spaces for rapid CO2 diffusion [10].
Our data, detailed in Additional file 10, suggest that Aster-
ochloris parallels Chlamydomonas and Chlorella in having
one α CA functioning in the pyrenoid but differs in having

expanded a specific subclass of cytoplasmic β CAs, whose
potential relationship to the symbiosis needs exploring.

Search for symbiosis-specific genes III: proteins with
anomalous rates of evolution
We hypothesize that, after a burst of adaptive selection at
the origin of Lecanoromycetes 300–350 million years ago
[171–174], proteins that acquired fundamental symbiotic
roles would have since stabilized under purifying selection
and evolved at slower rates, as suggested for a polyketide
synthase specific for a secondary metabolite unique to C.
grayi [34]. Conversely, faster evolving proteins are likely to
represent more recent changes. We compared amino acid
substitution rates of C. grayi and A. glomerata proteins to
those of eleven free-living ascomycetes and six unicellular
chlorophytes respectively using three methods (Methods).
We focus on the proteins whose rates were “slow” or “fast”
relative to nonlichen species by at least two methods to

Fig. 14 Evolution of transcription factor/regulator families in fungi (left) and algae (right). All the species used and numerical data are listed in
Additional file 9. The C. grayi and A. glomerata abbreviations are bolded. Area of symbols is proportional to the change observed. Green
circles: number of families gained, red circles: number of families lost. Green triangles: number of expanded families, red triangles:
number of contracted families
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reduce false positives. This yielded 38 slow- and 11
fast-evolving candidates in the fungus and 3 slow- and 7
fast-evolving candidates in the alga (Slow-evolving proteins
and anti-stress strategies in the mycobiont and Fast-evolving
proteins sections).

Slow-evolving proteins and anti-stress strategies in the
mycobiont
Additional file 11 (Excel sheet “Fungus slow-evolvers”)
lists a total of 72 proteins that score in multiple ways
(highlighted in orange) for potential symbiotic signifi-
cance. The first 38 were identified as slow-evolving by at
least two of the rate methods. Of the 38, 22 are universal
eukaryotic components of the protein translation, trans-
location and sorting machinery (Additional file 11). This
machinery maintains proteostasis, the dynamic equilib-
rium of the proteome, through a complex network

guiding protein folding and functionality from synthesis
to modification, to sorting, and to degradation [175–
177]. Studies with several eukaryotic systems, including
yeast, show that downturns in protein translation and
translocation are essential to protect cells from dehydra-
tion, heat, and hyperosmotic stresses [178–184]. In yeast
for instance, many temperature-sensitive mutations
impairing a variety of ribosome assembly steps also dra-
matically increase desiccation tolerance [185], highlight-
ing how slowdowns in ribosomal assembly may reduce
protein misfolding and aggregation during desiccation.
However, lichens must withstand daily cycles of dehy-
dration, rehydration, thermal and UV radiation stress so
extreme that they would kill most other organisms
[157, 186]. Therefore, we hypothesize that such ex-
ceptional circumstances in early lichen evolution se-
lected for “upgraded” fungal components of the

Fig. 15 Nitrate assimilation gene clustering in Chlorophytes. In the upper part of the figure, the algal phylogeny (left) and the corresponding taxa
(right) bracket the gene clusters and unclustered paralogs in each taxon. Gene and cluster lengths are to scale; color codes and acronyms are
listed below the 5 kb bar. Phylogeny and clusters were obtained as described in Methods. The lower part of the figure displays as vertical bars the
expression levels of the nitrate assimilation genes in the alga grown alone or with the fungus. The full names of the taxa listed from top to bottom are:
Micromonas pusilla CCMP1545; Micromonas RCC299; Ostreococcus tauri; Ostreococcus lucimarinus; Ostreococcus sp. RCC809; Chlamydomonas reinhardtii;
Volvox carteri; Chlorella variabilis NC64A; Coccomyxa subellipsoidea C-169; Asterochloris glomerata. All the corresponding genome data are at [164]
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ribosomal biogenesis, mRNA processing, and protein traf-
ficking networks, which were already part of the normal
Environmental Stress Response (ESR) [184]. The upgrades
were then stabilized under purifying selection and inte-
grated with other defenses [157] involving, for instance, an-
tioxidants [159, 187] and synthesis of photoprotective
anthraquinones [188] that lichens share with non-extremo-
philes. There is some correlative support in the literature
for the centrality of ribosomal function in the lichen re-
sponse to stress. In the lichen Lobaria pulmonaria [37] as
much as 35% of the expressed fungal proteome is involved
in ribosomal and protein turnover functions. In the lichen
Cladonia rangiferina [39] global transcriptional responses
to desiccation and rehydration also suggest involvement of
the protein translation machinery. In the cultured lichen
fungus Endocarpon pusillum, ribosomal protein genes are
highly induced during PEG-induced dehydration stress
[159]. We speculate that the unusually high number of nu-
clear rDNA introns (Additional file 12) present in lichen
fungi [189, 190] could be another possible adaptation to
control the rate of ribosomal assembly for stress (e.g. desic-
cation) protection. A major consequence may be the
well-known slow growth phenotype of lichens and lichen
mycobionts. Other double-scoring slow evolving proteins
of interest are listed and discussed in Additional file 11.
These include a putative osmosensing calcium channel and
two homogeneous groups of proteins: 18 membrane trans-
porters and 7 aldehyde dehydrogenases (ALDHs).

Fast-evolving proteins
Additional file 11 includes a description of 11 putative
fast-evolving mycobiont proteins involved in signal
transduction, membrane trafficking and stress protec-
tion, as well as slow- and fast- evolving proteins in the
photobiont.

Conclusions
Symbiotically relevant genes affect stress resistance,
nutritional, signaling, and structural interactions
Our analysis identified several proteins expected to influ-
ence the symbionts’ environmental stress resistance. They
include slow evolving mycobiont proteins (Slow-evolving
proteins and anti-stress strategies in the mycobiont section,
Additional file 11) enriched for universal eukaryotic com-
ponents of the protein translation, translocation and sorting
machinery which manages the proteome under normal as
well as stress conditions like dehydration and heat [178–
182]. Also, some of the faster evolving C. grayi proteins,
probably under adaptive selection, appear to be involved in
protection from stress (Additional file 11). In A. glomerata,
the likely horizontally transferred archaeal ATPases and
Desiccation-Related Proteins may contribute to its
heat and desiccation resistance (Photobiont expanded
families section, Additional file 7). Transcription

factor family expansion includes proteins involved in
chromatin remodeling and stress responses in both
symbionts (Specific survey of mycobiont and photo-
biont transcription factor (TF) families section).
We also identified proteins governing several symbiot-

ically relevant nutrient interactions. The fungus in cocul-
ture induced two transporters potentially central in the
carbon and nitrogen exchange at the symbiotic interface:
one an importer for ribitol, the carbon source provided
by trebouxoid algae to their fungal partners [115] (Infer-
ences from differential transcription about nutritional fluxes
at the symbiotic interface section and Additional file 6), the
other a possible ammonium exporter (Inferences from dif-
ferential transcription about nutritional fluxes at the symbi-
otic interface section), pointing at NH4

+ as a major
nitrogen source provided by the mycobiont to the photo-
biont. Reliance of each partner on the other as a restricted
nutrient source is also reflected by the contraction of the
sugar transportome in C. grayi (Mycobiont contracted fam-
ilies section) and by the reduced nitrate assimilation poten-
tial in A. glomerata (Specific survey of photobiont proteins
involved in nitrate and CO2 assimilation section). Un-
known is the significance for symbiotic carbon fixation of
the expansion of a specific A. glomerata subclass of cyto-
plasmic carbonic anhydrases, enzymes that catalyze the
interconversion between CO2 and HCO3

− (Specific survey
of photobiont proteins involved in nitrate and CO2 assimi-
lation section and Additional file 10).
Gene families whose characteristics suggest involve-

ment in other symbiotically relevant interactions com-
prise: signal transduction proteins, expanded in both
symbionts, which include a unique new set of five MAG
C paralogs in the mycobiont (Specific survey of myco-
biont and photobiont signal transduction components
section and Additional file 8); ankyrin domain protein
families (Mycobiont expanded families and Photobiont
expanded families sections), also expanded in both part-
ners, perhaps involved in increased protein-protein in-
teractions at the boundaries between them; algal glycosyl
transferase families, whose expansion could be necessary
to adapt extracellular surfaces to the varied contacts in
which the photobiont engages (Photobiont expanded
families sections, and Additional file 7); the expanded
set of mycobiont polyketide synthases producing com-
pounds for a mostly undiscovered array of biochemical
functions (Mycobiont expanded families section); HET
incompatibility protein families in C. grayi, some pos-
sibly involved in the competition among fungal geno-
types to secure the appropriate alga (Mycobiont
expanded families section). Also the induction in cocul-
ture of secreted proteins in the fungus and less promin-
ently in the alga (Extended analysis of transcription
induced in coculture section) suggests their involvement
in a variety of unexplored symbiotic functions.
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The evolution of lichenization involved changes in many
conserved genes scattered throughout the symbionts’
genomes
Most of the symbiotically relevant genes suggested here
have homologs in non-lichen fungi and algae, and we as-
sume that they are variants modified by symbiosis. This
indicates that lichens evolved mainly through the accu-
mulation of scattered regulatory and structural changes
in available genes rather than through sudden key innova-
tions. This in turn suggests that, to establish a basic and
reversible nutritional dependency at very early evolution-
ary stages, the free-living ancestors of myco- and photo-
bionts might have required at first only a few or even no
changes. A model of such basic interactions was devel-
oped experimentally using the fungus S. cerevisiae and the
alga C. reinhardtii [191]. Selection towards increasing sta-
bility and environmental adaptability would have then
transformed such precarious mutualistic/antagonistic and
reversible states into lichens over evolutionary time. This
scenario suggests that there were multiple pathways for
fungi, algae and cyanobacteria to evolve into lichens,
which is consistent with the emerging consensus that
ascolichens could have had a few independent evolution-
ary origins [171, 192]. It is also compatible with the fact
that lichens display a wide array of structures with differ-
ent levels of complexity, from leprose and crustose to fru-
ticose and foliose, and with the overall staggering variety
of interactions throughout the biosphere between fungi
and photosynthetic organisms [193, 194].

Sexual reproduction, symbiont autonomy and
equivalence
While the advantages accrued by lichens through sex-
ual reproduction of their mycobionts are fairly clear
[91, 92, 97, 195–197] and consistent with the behav-
ior of a mutualistic exhabitant [100], the advantages
of sex for the algal inhabitant were previously expected to
be limited [100], mostly based on the assumption that the
lichen alga is asexual and that it dies when its lichen thal-
lus dies [198]. As indicated in Heterothallism probably
evolved from homothallism in Cladonia; genetic evidence
for sex in Asterochloris section, however, there is strong
evidence that sex in trebouxoid algae does occur and that
free photobiont populations exist on the substrates near li-
chen thalli [27, 29, 199–201], so that sexually produced
variation and algal adaptations to lichenization are likely
to be incorporated and selected for in lichenized popula-
tions. W.B. Sanders proposed in 2005 [29] that the transi-
ent free-living state is necessary for completion of the
algal sexual cycle, which is consistent with the fact that
the rare direct observations of algal sexual stages have al-
ways involved aposymbiotic cells (Heterothallism probably
evolved from homothallism in Cladonia; genetic evidence
for sex in Asterochloris section). Encounters of

germinating mycobiont spores and free-living photobionts
[199] could produce lichens with new combinations of
both genomes, expanding and fine-tuning a lichen’s adap-
tation to different ecological niches. Photobiont contribu-
tions to lichen adaptability are in fact highlighted by
several studies. For a given lichen, the correlation of algal
genotypic variation with habitat appears stronger than
that of the fungal genotype [103, 202–205]. Other ana-
lyses indicate that both fungal and algal genotypes
substantially influence a lichen’s ecological adaptability
[206, 207], and that multiple algal genotypes can co-
exist within single thalli [208–210] and move horizon-
tally among fungal genotypes [207, 208, 211–214]
even when the predominant means of photobiont
transmission is vertical through vegetative propagules
[201, 208]. We propose therefore that, over hundreds
of millions of years of tight coexistence, genomic and
functional autonomy in each partner were maintained
by the benefits of periodically detaching each partner
from the symbiosis for sex and for partner switching,
which increased the overall adaptability of the liche-
nized symbionts. Beyond sex, the list of phycobiont
investments in the symbiosis is long. It includes the adap-
tations suggested in Photobiont expanded families, Specific
survey of mycobiont and photobiont signal transduction
components, Specific survey of mycobiont and photobiont
transcription factor (TF) families, Specific survey of photo-
biont proteins involved in nitrate and CO2 assimilation sec-
tions, the intrinsic resilience of the free-living lichen alga to
desiccation [44, 160], the increased resistance to PSII
photoinhibition in the symbiotic vs. free-living alga [215],
and correlated structural and physiological adaptations:
algal morphology changes significantly between lichenized
and free-living states ([216] and references therein) and,
when the lichen is hydrated, about 50% of the fixed carbon
can be converted to lichen biomass [217] with an energy
conversion efficiency comparable to that with which
chloroplast photosynthesis translates into plant biomass
[218]. Ribosomal DNA introns occur in lichenized treboux-
oid algae [219–221], including the Group IB intron in the
LSU gene of A. glomerata [221]. We speculate, as for the
mycobiont rDNA introns (Slow-evolving proteins and
anti-stress strategies in the mycobiont section), that these
photobiont rDNA introns may be involved in mediating
desiccation tolerance. The evolutionary introduction of A.
glomerata or Trebouxiales to lichenization is not yet known
but, based on the only published broad Chlorophyta chro-
nogram [222] (which does not include Trebouxiales), the
timing could be compatible with that estimated for lichen
fungi [173, 174]. It is therefore possible that the Astero-
chloris/Trebouxia lineage has been adapted to symbiosis for
hundreds of millions of years. Metaphorically, the lichen
alga is not the “second sex” [223]: it deserves a full seat at
the symbiotic table.
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Methods
Where appropriate, methodological information is in-
cluded in figure and table legends.

Biological isolates
The sequenced mycobiont is the C. grayi single-spore
isolate Cgr/DA2myc/ss [34] (Culture Bank accession #
CBS 132746; GenBank ITS accession # KC592272)
[224]. The sequenced photobiont is the Asterochloris
strain Cgr/DA1pho, isolated from C. grayi soredia as de-
scribed [64]. The species was identified by ITS1 sequen-
cing and 100% identity to Asterochloris glomerata [48].
Natural C. grayi podetia used for EST generation were
harvested, and chemotype was confirmed by Thin Layer
Chromatography as described [34].

Genomic DNA extraction
The C. grayi mycobiont was grown for ~ 9 weeks in
50-ml cultures of HMY (MY according to Hamada
[225]: 10 g/L malt extract; 4 g/L yeast extract; 4 g/L su-
crose) in 125-ml flasks shaking at room temperature,
with periodic medium changes and grinding to im-
prove growth. Typically, after 3 weeks of growth, a
50-ml mycelial culture was first ground and then ex-
panded as follows. A Polytron homogenizer (Kinema-
tica GmbH, model PT 10/35) fitted with an autoclaved
standard 10-mm diameter probe (Brinkmann gener-
ator PTA 10S) was set up in a laminar flow hood with
the probe at a 45o angle. The 50-ml culture was then
sterilely ground in the tilted flask for 5 s at
half-maximal setting. Using wide bore pipets, four
10-ml aliquots from the ground culture were trans-
ferred to four 125-ml flasks, each with 40 ml of fresh
HMY. After every grinding, absence of contamination
in each flask was tested by spreading 1 ml of the
ground and diluted culture onto an HMY test plate
and periodically monitoring growth by microscopy.
Mycelia were harvested from the liquid cultures by fil-
tration through nylon mesh, rinsed on the filter with
sterile TE, lyophilized, weighed, and stored at -80o C.
DNA was extracted from 850 mg mycelia (dry weight).
The sample was thoroughly ground in a mortar with
liquid nitrogen; the powder was transferred to a 50-ml
polypropylene tube and resuspended in 18 ml (~ 20/1,
v/w) of lysis buffer (40 mM TrisHCl pH 8; 20 mM Na
Acetate; 1 mM EDTA; 1% w/v SDS) plus freshly added
RNAse to 0.1 mg/ml. The suspension was repeatedly
mixed with a pipet while being kept at 65o C for 5
min. A 5 M NaCl solution (6 ml) was mixed in, and
the suspension was centrifuged at 3 K rpm for 5 min
on a tabletop centrifuge to pellet cell debris, polysac-
charides and some proteins. The supernatant was ex-
tracted with an equal volume of a 1:1
phenol:chloroform mix saturated with 100-mM Tris

HCl at pH 8. The aqueous phase was brought to 65o

C, and 0.11 volumes of CTAB solution (10% CTAB;
0.7 M NaCl) were mixed in. The mixture was extracted
with an equal volume of chloroform. An equal volume
of room-temperature isopropanol was mixed into the
aqueous phase, and the solution was aliquoted into six
12-ml polypropylene tubes and centrifuged at 5o C for
15 min at 6 K rpm. After completely removing the su-
pernatants, the procedure was repeated from the lysis
buffer step in a concentrated and simplified fashion. Each
pellet was first left undisturbed at 65o C for 3–5min in
150 μl of lysis buffer plus RNAse to facilitate resuspension.
The six pellets were then thoroughly resuspended by pip-
etting, suspensions were pooled into one of the six tubes,
and 1/3 volume (300 μl) of 5M NaCl was mixed into the
pool. The solution was aliquoted into two 1.5-ml micro-
fuge tubes, undissolved residue was removed by benchtop
centrifugation for 5min at 15 K rpm, and the supernatants
were extracted once with chloroform. Two volumes of
ice-cold 100% ethanol were added to the aqueous phases,
and the precipitated DNA was pelleted by benchtop cen-
trifugation at room temperature. The pellets were rinsed
with 70% ethanol, air-dried in a laminar flow hood for 30
min and left undisturbed to rehydrate on ice in TE buffer
overnight. They were then resuspended by gentle pipet-
ting, and the solutions were pooled. The total yield was
127 μg of high molecular weight DNA, verified by Qubit
quantitation and gel electrophoresis.
Asterochloris glomerata was incubated on AMY plates

(MY according to Ahmadjian [226]: 20 g/L malt extract;
2 g/L yeast extract) for 4 weeks at room temperature
under constant light (photon flux = 40 μmol m− 2 s− 1).
Algae were harvested from one plate, transferred to
sterile deionized water in a microfuge tube, pelleted,
lyophilized, weighed and stored at -80o C. DNA was
extracted from 83mg algae (dry weight) as described
[64], with one modification: after the final resuspen-
sion of the DNA in TE, the volume of TE was in-
creased to 1 ml, the sample was transferred to a 12-ml
Falcon tube, and the DNA was re-precipitated by add-
ing 330 μl of 5M NaCl followed by 2.7 ml of cold
100% EtOH. The solution was mixed by inversion and
centrifuged at 6 K rpm for 10 min at 5o C. The pellet
was rinsed with 70% EtOH, air-dried in a laminar flow
hood for 30 min and left undisturbed to rehydrate on
ice in TE buffer overnight. It was then resuspended by
gentle pipetting. The total yield was 110 μg of high
molecular weight DNA, verified by Qubit quantitation
and gel electrophoresis.

Genomic DNA sequencing, assembly, annotation and data
storage
For the mycobiont, 50,883,772 Illumina single-end reads
(36 b, 52 x coverage) were pre-assembled with Velvet
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[227]. Contigs larger than 500 b were subsequently frag-
mented into 159,239 sub-sequences, 300 b long and with
100 b overlaps. These sub-sequences were assembled with
Newbler (Roche) together with 1,486,692 single-end 454
reads (14 x coverage) and a random sub-library of 45,000
paired-end 454 reads. The resulting mycobiont 34.6Mb
draft assembly contained 414 scaffolds >2Kb, with an N50
of 243,412. For the photobiont, 3,020,503 single-end 454
reads and 2,159,218 paired-end 454 reads (24.8 x total
coverage) were assembled with Newbler (Roche), resulting
in a 56Mb draft assembly with 151 scaffolds and an N50
of 784,872. Completeness of draft assemblies was assessed
by screening for the presence of 248 core eukaryotic genes
with CEGMA (Core Eukaryotic Genes Mapping Ap-
proach) [228], a now discontinued pipeline to annotate
highly conserved Core Eukaryotic Genes (CEGs). In the
mycobiont assembly, 234 (94.35%) CEGs were fully recov-
ered, and scores increased to 241 (97.18%) if partial hits
were considered as well. In the photobiont assembly, 216
complete (87.10%) and 235 partial (94.6%) CEGs were re-
covered. Gene model annotation was performed with
MAKER2 [229]. For the mycobiont, assembled C. grayi
mRNA-seq reads (see next section) were used as EST evi-
dence, and the gene prediction tool SNAP [230] was
trained through MAKER2 with C. grayi protein annota-
tions from the earlier JGI genome release [231] and the
248 eukaryotic core protein sequences of CEGMA. Anno-
tations were additionally complemented by Genemark-ES
[232] trained on the assembled C. grayi genome, and gen-
erated models were passed to MAKER2. For the photo-
biont, assembled A. glomerata mRNA-seq reads (see next
section) and Coccomyxa sp. C-169 ESTs [233] were used
as EST evidence, and SNAP was trained through
MAKER2 with A. glomerata protein annotations from the
earlier JGI genome release [234]. Annotations were add-
itionally complemented by Genemark-ES trained on the
assembled A. glomerata genome, and generated models
were passed to MAKER2. In the mycobiont, 11,398 gene
models were predicted, including 115 isoforms, and
10,075 gene models were predicted in the photobiont. The
annotated and searchable genome assemblies are at [67]
for the mycobiont and at [68] for the photobiont.

RNA extraction and EST generation from whole lichen
thalli
Total RNA for EST generation was extracted from
freshly harvested C. grayi podetia treated with RNAlater
(ThermoFisher) to prevent RNA degradation. Dirt was
removed with tweezers, and podetia were left to dry at
room temperature and moisture for 2 h and weighed
(200 mg). RNAlater permeates dry better than moist tis-
sue, and RNA quality is not significantly affected by this
brief period of “natural” drying, as lichens are exposed
to drying in nature. RNAlater was added (2 ml/100 mg

podetia) and the suspension was vortexed until all air
pockets were removed, indicating an even permeation of
the solvent into the tissues. Podetia were kept in RNAla-
ter at room temperature for about 1 h with occasional
mixing. Excess RNAlater was removed by centrifugation,
followed by gentle blotting of the podetia with filter
paper. Podetia were lyophilized overnight and stored at
-80o C. Podetia were thoroughly ground in liquid nitro-
gen with a mortar, and RNA was extracted with the
RNAqueous Total RNA Isolation Kit (Life Technologies)
according to the manufacturer’s protocol with two modi-
fications. For the first, the initial buffer volume in which
the ground powder was resuspended was increased to 5
ml Lysis Buffer mixed with 680 μl of Plant Isolation Aid
for 200 mg of air-dried podetia. For the second, a
DNAse-treatment step was inserted as follows. After
loading the lysate onto the cartridge and centrifuging to
remove residual Lysis Buffer-Plant Isolation Aid solu-
tion, 500 μl of Wash 2/3 solution were centrifuged
through the cartridge. The cartridge was then centri-
fuged again without added liquid to remove all traces of
Wash 2/3. After moving the cartridge to a new collec-
tion tube, the matrix was wetted by adding 60 μl of
DNAse solution (52 μl RNase-free water, 6 μl 10xDNase
buffer Promega M198A, 2 μl RQ1 RNase-free DNase
Promega M610A). Under these conditions, nucleic acids
detach from but remain within the matrix. After incu-
bating the cartridge with DNase at 37o C for 15 min,
300 μl of a 1:1 mix of Lysis Buffer: 64% ethanol were
added to allow the RNA to bind again to the matrix.
The cartridge was kept at room temperature for 5 min,
and the liquid was removed by centrifugation. The man-
ufacturer’s protocol was resumed by adding 700 μl of
Wash 1. The final yield was 27 μg of purified RNA. Agi-
lent microchip electrophoresis showed a RIN = 9. The
RNA was used to prepare a 454 cDNA library of
740,680 reads averaging around 500 bases in length. Of
the reads, 76.2% mapped onto the mycobiont genome
and 12.1% onto the photobiont genome. The residual
unmapped reads are from other eukaryotic or prokary-
otic inhabitants of natural C. grayi thalli. Reads were as-
sembled into ESTs using Newbler (Roche), Velvet [227]
and Trinity [235], and mapped to the assembled sym-
biont genomes to aid in the annotation (see preceding
section).

RNA extraction and sequencing for analysis of differential
expression in coculture
To analyze differential gene expression during symbiont
coculture in vitro, RNA was isolated from mycobiont
and photobiont grown on filters in agar plates. The cul-
turing details are as described [33]. Briefly, mycobiont
and photobiont were routinely propagated as described
for the DNA extractions. To set up filter cultures,
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separate fungal and algal cultures were harvested and fil-
tered first through gauze and then through 74 μm nylon
to obtain uniform suspensions either of small mycelial
fragments or of algal cells. Cell density of the separated
suspensions was measured by OD, and fixed amounts
(dry weight equivalents: 2.9 mg mycobiont and/or 1.3 mg
photobiont) were uniformly delivered by suction onto
0.22 μm pore-size nitrocellulose filters (Millipore,
GSWP04700) to obtain cultures of either fungus alone,
alga alone, or the two together. The seeded filters were
placed on 1.5% agarose (Sigma-Aldrich A9539) plates
(one filter per plate) with “99:1” medium [33] and incu-
bated for 21 days at room temperature under a constant
photon flux of 40 μmol m− 2 s− 1 (Fig. 6). The main meth-
odological difference relative to Joneson et al. (2011)
[33] was the addition of RNAlater at harvest. Each filter
was peeled off the agarose surface and placed over three
stacked Whatman 9-cm filter paper disks in the lid of a
10-cm plastic Petri dish. To exchange residual growth
medium for RNAlater, 2 × 1ml of RNAlater were evenly
pipetted over the entire surface of the nitrocellulose fil-
ter culture. After the RNAlater was absorbed by the
Whatman filters, the nitrocellulose filter was placed (cul-
ture facing up) into the empty bottom half of the Petri
dish, and 1ml RNAlater was uniformly pipetted over it.
While submerged in the RNAlater layer, the culture was
scraped off the nitrocellulose with a sterile blade, pooled
to the edge in RNAlater by tilting the dish, and the sus-
pension was pipetted into a microfuge tube. Addition of
1 ml RNAlater, scraping and pooling were repeated once
more, and the two suspensions were kept in two tubes
for 1 h at room temperature. To obtain a single pellet
from the two tubes corresponding to one filter, the two
suspensions were centrifuged sequentially in the same
tube, the RNAlater was discarded, and the pellet was ly-
ophilized and stored at -80o C. Each frozen pellet was
ground with a fitting pestle in its microcentrifuge tube
cooled in liquid nitrogen [31]. The ground powder de-
rived from one filter culture was resuspended in 500 μl
of Lysis Buffer-Plant Isolation Aid combination (RNAqu-
eous Total RNA Isolation Kit, Life Technologies), and
RNA was extracted according to the manufacturer’s in-
structions except for the insertion of a DNAse treatment
step as described in the preceding section. For each
growth condition, the extracts from two replicate cul-
tures were combined. RNA yields per combined cultures
were 3 μg, 7 μg and 16 μg respectively from fungus alone,
alga alone, and coculture. Agilent microchip electro-
phoresis showed RINs near 9. The RNA was used to
produce cDNA libraries totaling 156 million RNAseq
reads. Reads were aligned using Bowtie [236]. Gene ex-
pression was calculated using BowStrap [237] with the
annotated gene models from the mycobiont and photo-
biont genomes at JGI. Gene expression is defined as

re-sampled Reads Per Kilobase of gene sequence per Mil-
lion aligned sequences (RPKM). For the GO term-centered
analysis, differential expression was represented as the ratio
between the base 2 logs of each gene’s coculture and mono-
culture RPKMs on day 21. Genes with log fold changes >
0.6 (for upregulation) and < 0.6 (for downregulation) were
analyzed. Statistical significance (p < 0.05) was based on
hypergeometric distribution enrichment of genes or path-
ways relative to their representation in the whole genome.
For the more extensive analysis (Extended analysis of tran-
scription induced in coculture section), the ratio between
each gene’s coculture and monoculture RPKMs on day 21
(referred to here as Co/Mo) was taken directly to represent
differential expression, and only ratios > 2 for the myco-
biont or > 1.3 for the photobiont were considered induced.
To combine the induced genes/proteins (795 in the myco-
biont and 471 in the photobiont) into functionally re-
lated protein subgroups, we collected information
from GO terms, PFAM domains, and literature
searches (Additional file 6). Statistical significance (p <
0.05) for the coculture induction of each resulting sub-
group (Fig. 8) was based on that subgroup’s hypergeo-
metric distribution enrichment within all induced proteins
relative to the representation, in the whole genome, of
genes encoding proteins similar to those in that subgroup.
Such proteins were identified (e-value <1e− 5) by using the
subgroup as query in a BLASTP genome search.

Predictions of multigene families, PKSs, and secreted
proteins
Protein sequences for multigene family analysis were re-
trieved from the Joint Genome Institute Portal [164] and
the Broad Institute Portal [238]. As references for Clado-
nia grayi, the following fungal taxa were used: Stagonos-
pora nodorum (Phaeosphaeria nodorum) (16,597
models), Botrytis cinerea (Botryotinia fuckeliana) (16,389
models), Sclerotinia sclerotiorum (14,522 models), Neu-
rospora crassa (9907 models), Aspergillus nidulans
(10,753 models), Aspergillus fumigatus (9887 models),
Aspergillus oryzae (12,017 models), Tuber melanosporum
(7496 models), Fusarium graminearum (13,826 models),
Pyrenophora tritici-repentis (12,169 models) and Chaeto-
mium globosum (11,103 models). As references for
Asterochloris glomerata, the following algal taxa were
used: Coccomyxa sp. C169 (9629 models), Chlorella sp.
NC64A (9791 models), Chlamydomonas reinhardtii 169
(17,113 models), Ostreococcus tauri (7725 models), Vol-
vox carteri (14,542 models), and Micromonas sp.
CCMP1545 (10,545 models). Orthogroups of mutual
best BLAST hits present in the symbiont genomes and
all reference species (2455 in C. grayi, 1454 in A. glomer-
ata) were further analyzed. Protein groups were aligned
with MAFFT [145] using Tuber melanosporum or Volvox
carteri as outgroups, and alignments were subsequently
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trimmed with GBLOCKS [239, 240] (A. glomerata) and
Guidance [241] (C. grayi). Proteins were queried in an
all-against-all BLASTP analysis, and protein families were
subsequently predicted with MCL [135] with inflation pa-
rameters set to 3.0. In the fungal data set, 5051 protein
families were identified that were phylogenetically relevant
(containing at least two species and 10 sequences), of
which 4528 were found in C. grayi. In the algal data set,
3545 phylogenetically relevant gene families were identi-
fied. C. grayi PKSs and NRPSs were predicted using anti-
SMASH v3.0 [242], followed by manual curation. Secreted
proteins in C. grayi and A. glomerata were predicted as in-
dicated in the legend of Fig. 9.

Analysis of gene family expansions and contractions
For the broad analysis encompassing all C. grayi and A.
glomerata genes, multigene families predicted as de-
scribed in the previous section were analyzed for evolu-
tionary changes in protein family size using CAFE [136].
The program uses a random birth and death model of
gene gain and loss across a user-specified tree structure.
The distribution of family sizes generated under the ran-
dom model provides a basis for assessing the signifi-
cance of the observed family size differences among taxa
(p-value < 0.001). CAFE estimates for each branch in the
tree whether a protein family has not changed, has ex-
panded or has contracted. For the analysis of C. grayi
family expansion and contraction centered on the trans-
portome, predicted proteins containing at least three
transmembrane domains were extracted from the same
fungal genomes used in the broad analysis and listed in
the previous section. These predicted proteins were clas-
sified according to the Transport Classification database
[138] using the TransportTP on-line tool [137, 243]. For
several families, classifications were checked manually
with predicted fungal transporter proteins retrieved from
TCDB, TransportDB [244], and the Saccharomyces Gen-
ome Database [245] used as queries in BLASTP and
TBLASTX searches against the 12 fungal genomes.
Lineage-specific gene gains and losses were estimated
using CAFE [136].
For the analysis centered on signal transduction com-

ponents, predicted proteins were identified based on
PFAM domains among the taxa indicated above. To
identify family expansions and contractions, protocols
similar to those indicated above were used. For the ana-
lysis centered on putative DNA-binding transcription
factors (TFs), the proteomes of the fungal and algal taxa
indicated in Additional file 9 were searched using the
hmmscan module of HMMER version 3.0 [246] against
a comprehensive DNA-binding domain database assem-
bled from three compilations [247–249] to which corre-
sponding PFAM domain designations were assigned. GA
(gathering bitscore) thresholds for each domain were

retrieved from PFAM 25.0, and each hit on a protein ex-
ceeding the appropriate GA threshold was recorded.
Matches where alignments covered less than 80% of the
corresponding PFAM profile HMM were discarded. Pu-
tative transcription factors were classified into families
based on domain structure as described by Lang et al.
[249] and rules were extended by incorporating
fungal-specific terms. A random birth and death model
[250] was used to investigate expansions, contractions,
gains, losses and ancestral states of TF families across
algal and fungal phylogenies [4, 251] (Fig. 14). The best
model was selected from a series of models with increas-
ing complexity by using likelihood ratio tests to drop pa-
rameters that did not further improve the likelihood of a
model. After rate parameter optimization, posterior
probability of ancestral gene content of each node and
the evolutionary change for each family along the
branches of the tree were estimated.

Analysis of nitrate assimilation genes in chlorophytes
Homologs of nitrate assimilation-related (HANT) genes
(C. reinhardtii: nitrate reductase, AAF17595.1; nitrite re-
ductase, XP_001696787.1; NRT2, XP_001696788.1; for-
mate/nitrite transporter, XP_001696698.1; M. pusilla:
nitrite reductase, XP_003057941.1; molybdopterin syn-
thase, XP_003057940.1) were determined by BLASTP of
algal genome best protein models (Asterochloris glomer-
ata Cgr/DA1pho v1.0, Chlamydomonas reinhardtii v4.0,
Chlorella sp. NC64A v1.0, Coccomyxa sp. C-169 v2.0,
Micromonas pusilla CCMP1545 v 2.0, Micromonas com-
moda NOUM17 (RCC 299) v 2.0, Volvox carteri nagar-
iensis v 1.0, Ostreococcus sp. RCC809 v 2.0, Ostreococcus
lucimarinus v 2.0, Ostreococcus tauri RCC4221 v3.0).
Retained hits had at least 45% similarity with and cov-
ered between 50 and 150% of the length of the query.
Homologs of the query genes were considered part of a
nitrate assimilation cluster (HANT-AC) if separated by
no more than 6 intervening gene models from another
gene in the query [252]. Intervening and flanking se-
quence up to 10 kb of HANT-ACs were examined for
unannotated nitrate assimilation-related genes by
BLASTX against the NCBI non-redundant protein data-
base; NRT3 was determined by the presence of NAR2
PFAM domain. Orthology and paralogy of nitrate as-
similation genes were determined by examination of
phylogenetic trees generated as follows: protein se-
quences were aligned with MAFFT v.7.2.2.1 [145] using
default parameters, and poorly aligned regions were re-
moved with trimAl v.1.4 using the “automated1” algo-
rithm [253]. The best model of protein evolution (JTT,
WAG, LG) was inferred by AICc using ProtTest v.3.4
[254], and maximum likelihood analysis was performed
with RAxML v.8.1.20 [255]. Nitrite reductase phylogeny
was estimated using the combined sequences from both
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BLAST searches and was reduced to models containing a
PLN02431 protein domain. Expected but missing gene
homologs were considered absent by TBLASTN of the re-
spective genome assemblies. Algal species phylogeny was
estimated by analysis of RPB2 using the methods above.

A. glomerata meiosis gene identification and phylogenetic
analysis; flagellar proteins
We sought A. glomerata orthologs of multiple meiosis-
specific genes proposed as a “meiosis detection toolkit”
for identifying genomic evidence for sexual reproduction
([256, 257] and references therein) and select paralogs:
Msh4; Msh5; Asy1/Hop1; Ahp2/Hop2; Mnd1; Dmc1
(paralog Rad51—DNA repair in meiosis and mitosis);
Syn1/Rec8 (paralogs Syn2, Syn3, Syn4—cohesins not spe-
cific to meiosis [258]); Spo11–1, Spo11–2 [259] (paralog
Spo11–3—no reported meiotic phenotype; affects overall
plant size, hormone responses, and endoreduplication
[260]). We also sought orthologs of two additional
meiosis-specific genes: Pch2 [261] and Mer3 [262, 263].
Arabidopsis thaliana orthologs of these 16 genes were
used as TBLASTN [105] queries against the version 2
assembly of the A. glomerata genome and additional
publicly available green algal genomes (Ostreococcus sp.
RCC809, Ostreococcus lucimarinus CCE9901, Micromo-
nas pusilla CCMP1545, Chlamydomonas reinhardtii
CC-503 cw92 mt+, Volvox carteri f. nagariensis Eve
(HK10 derivative), Chlorella variabilis NC64A, Cocco-
myxa subellipsoidea C-169; JGI, 2013). If initial A. thali-
ana queries failed, subsequently identified green algal
orthologs were used for additional queries. All genome
hits were compared to the NCBI non-redundant protein
database by BLASTX and, for putative orthologs of the
16 genes listed above, manually annotated with a pre-
dicted protein sequence based on A. thaliana and revi-
sions following amino acid multiple sequence alignment
comparisons (MUSCLE v3.6 [264], the MEGA5.05 inter-
face of MUSCLE [265]). Phylogenetic analyses (not
shown) were done to test for orthology (e.g., distinguish-
ing meiotic Spo11–1 or Spo11–2 from non-meiotic
Spo11–3) and green algal origin (i.e., confirming that the
putative A. glomerata orthologs fall into a clade with
plants and green algae rather than fungal orthologs)
using maximum likelihood (green algae and plants) or
NJ (green algae, plants, select additional fungi) methods.
This analysis identified 12 A. glomerata genes specific
for meiosis and/or mitosis and one, Spo11–3, for endor-
eduplication (Additional file 5).
The 314 candidate flagella proteins in A. glomerata

(Additional file 5) were identified by searching for pu-
tative orthologs among sequenced motile and
non-motile chlorophytes using the reciprocal best
BLASTP hit criterion (e-value<1e− 5). The queried
Chlorophytes included C. reinhardtii; Volvox carteri;

Coccomyxa subellipsoidea C-169; Chlorella variabilis
NC64A; O. tauri; O. lucimarinus; Micromonas pusilla
CCMP1545; Micromonas sp. RC299. The queried da-
tabases included the Chlamydomonas CiliaCut protein
set [49], the Chlamydomonas flagella proteome [266,
267] and protein families ubiquitous in motile chloro-
phytes but absent in non-motile chlorophytes (Fig. 5).
The latter proteins were referred to as Chlorophyte
CiliaCut in reference to work by Merchant et al. [49],
and contain candidate flagella proteins. A majority
(69/95 = 68%) of the 95 Asterochloris proteins in the
Chlorophyte CiliaCut are orthologs to proteins of the
Chlamydomonas CiliaCut or Chlamydomonas flagella
proteome.

Tests of relative evolutionary rates
Three methods were used to assess evolutionary rates in
C. grayi and A. glomerata relative to the 11 fungal and 6
algal taxa and alignments described in the multigene
family prediction methods. The first protocol used
HyPhy [268] to determine substitution rates for each in-
dividual conserved orthogroup from aligned mutual best
BLAST hit orthologs present in all taxa (2455 in the
ascomycetes and 1454 in the chlorophytes). Rates of
C. grayi and A. glomerata genes were considered re-
duced or accelerated if predictions matched in at least
90% of all analyzed triplets and rates were below the
significance threshold (p-value <= 0.05), while only
nonsignificant values were scored in remaining trip-
lets. In the second protocol, HyPhy was applied to
the multigene families predicted through MCL [135].
To detect anomalous evolutionary rates, the third
protocol used likelihood ratios applied to the same
orthogroups used in the other protocols. Since it is
applied here for the first time, the third protocol is
detailed in Additional file 13.
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