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Abstract

Drug delivery to the brain is challenging due to the presence of the blood-brain barrier. Math-

ematical modeling and simulation are essential tools for the deeper understanding of trans-

port processes in the blood, across the blood-brain barrier and within the tissue. Here we

present a mathematical model for drug delivery through capillary networks with increasingly

complex topologies with the goal to understand the scaling behavior of model predictions

on a coarse-to-fine sequence of grids. We apply our model to the delivery of L-Dopa, the pri-

mary drug used in the therapy of Parkinson’s Disease. Our model replicates observed blood

flow rates and ratios between plasma and tissue concentrations. We propose an optimal

network grain size for the simulation of tissue volumes of 1 cm3 that allows to make reliable

predictions with reasonable computational costs.

Introduction

Many diseases and conditions of the brain, such as Alzheimer’s Disease, Parkinson’s Disease

(PD) and brain cancers are treated with pharmaceutical drugs. In fact, this is often the only

option as the conditions are either not amenable to surgery or surgery is prohibited in this dif-

ficult terrain. A limitation to the drug treatment approach is the blood-brain barrier (BBB)

that makes it highly difficult for the drug to reach its site of intended action. In its normal state

the BBB protects the brain from infections and toxins. Its neurovascular unit consists of the

capillary endothelial cells, astrocytes, pericytes and neurons. Because of the presence of tight

junctions and efflux transporters, this structure is far less permeable than non-brain capillaries

[1], although it has transmembrane carriers for the uptake of selected molecules, e.g. glucose

and small molecule drugs [2]. A path to overcome these challenges to drug delivery is targeted

drug delivery using nanocarriers that are loaded with drug and made to release their cargo

where desired by a trigger [3–5]. Mathematical modeling and computational simulation are

essential tools to further our understanding of transport phenomena in biology and biomedi-

cal engineering in general [6]. In the particular area of drug delivery, among the various topics

that have been addressed are the optimization of properties of drug carrier particles [7] and

the effects of physical triggers such as ultrasound [8] or elevated local temperature [9–11].
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Recent work [8] proposed a compartmental mathematical model for liposomes that encap-

sulate a drug and release their cargo by a focused transcranial ultrasound signal. The model

includes the release of the cargo from the liposomes as a function of the sound pressure, inter-

actions of the free drug with plasma proteins [12], passive as well as nonlinear active transport

mechanisms across the BBB [13] and the drug metabolism in the brain tissue [14]. The model

also accounts for the temporary opening of the BBB in response to focused ultrasound [15].

However, for sake of simplicity, the model in [8] considered only a single blood vessel. Sample

simulations were performed for the dopamine precursor L-Dopa and the anticancer drug

doxorubicine. L-Dopa (levodopa, L-3,4-dihydroxyphenylalanine) is an amino acid of 200 Da

molecular weight that crosses the BBB with the help of the LAT1 transporter [16] whereas its

metabolite dopamine does not cross the BBB. L-Dopa has been used to treat motor dysfunc-

tions associated with PD for over 40 years [17]. However, it is known that long-term L-Dopa

therapy may lead to “wearing-off” symptoms such as dyskinesia and motor fluctuations.

L-Dopa is currently under investigation as a candidate for targeted delivery with the goal of

improving PD therapy [18]. The BBB itself has been shown to remain intact and L-Dopa trans-

port unaffected in animal PD models [19, 20].

In this paper, we extend our previous model to a network of capillaries, however, we sim-

plify the problem by assuming that the drug is already present in the blood. The network is

modeled by a directed graph where each edge represents an individual capillary. The capillaries

are characterized by their lengths and radii, and the flows through the network are determined

by Kirchhoff’s Law and the Hagen-Poiseuille Equation. Similar models have been used to

study the delivery and tissue transport of oxygen in the brain [21–23]. Our goal is to develop a

model for drug delivery that can be adapted to specific target regions, allows to vary parame-

ters, and offers predictions for future experimental work. The emphasis at this stage is not to

reproduce the extremely complex topologies and geometries of brain capillary networks in

humans or model mammals. Rather, we propose a “zero series” model that is portable for use

by others. A primary goal is to keep the amount of computational complexity and the hard-

ware requirements at a manageable level for simulations of brain tissue volumes of 1 cm3 and

more. Though there are no principal difficulties to simulate, say, 107—109 ordinary differential

equations on parallel computers, we feel that it is more valuable at present to understand the

scaling behavior based on computations on selected networks with� 103 nodes. Modern

imaging technology has made it possible to scan cortical portions of human brains [24–26]

and to create accurate computational representations of the underlying vessel networks. How-

ever, it has to be noted that these scans were made in brains from anatomical collections and

not in live patients. Furthermore, the sites at which some neurological disorders such as PD

manifest are located at the geometric center of the human head, some 80-100 mm below the

surface. It will be a remarkable event when in the future a living patient’s vascular network can

be scanned at a depth [27] and then a computational version can be used for the simulation of

a procedure.

This paper is structured as follows. We begin by describing the ordinary differential equa-

tion model for drug delivery, the construction of the capillary networks and some theoretical

requirements in the definition of scaling laws. Then we present a sequence of increasingly

complex networks on which we implement the differential equation model. The idea is to find

a relation between predictions of the model for scenarios of different computational complex-

ity. An integral part of this work is the simulation software which is well-documented and

written in the OpenSource language python. Finally, we discuss the results of the paper in light

of experimental observations of partition coefficients for L-Dopa.

Drug absorption in cerebral capillary networks
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Materials and methods

The model for drug delivery on a capillary network

The process of drug delivery to the brain and transport across the BBB is described schemati-

cally in Fig 1. Here we consider only active transport across the BBB and ignore passive (Fick-

ian) transport due to concentration differences. For sake of simplicity we also ignore binding

of drug to blood plasma proteins. We create the differential equation model for a network of

capillaries making the following assumptions. The construction of the underlying network is

described in detail further below.

1. The capillary network has a constant topology and geometry during simulation times of

interest, say, 1 day. We will work with a cubic lattice for simplicity.

2. The blood flow in the capillaries is described by a Newtonian fluid, however, the blood vis-

cosity depends on the diameter of the capillaries (see Eq (3) below).

3. There is a constant concentration of drug in the blood entering the network.

4. Each capillary serves its own volume of brain tissue, these are mutually disjoint.

5. The drug is assumed to mix instantaneously in the tissue region associated with each

capillary.

For capillary i = 1, 2,. . .,m, let vi be the concentration of drug. The concentration of drug

in the brain tissue served by this capillary is denoted by wi. Let fi denote the reciprocal of the

transit time of the blood through vessel i which is obtained from the volumetric flow rate,

see Eq (2) below. In the following we describe the terms in each of the differential equations

of the model. Let B denote the ratio of brain tissue volume to capillary volume for a given

capillary. The transport occurs at a maximal rate k1� 0 and K> 0 is the drug concentration

at which the transport occurs at half the maximal rate. Finally, k2� 0 denotes the rate of

clearance or metabolism of the drug from the brain. The differential equations for the

Fig 1. A simplified model for active drug transport within the capillaries, across the BBB and subsequent

metabolism. The drug is represented by purple circles.

https://doi.org/10.1371/journal.pone.0200266.g001
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capillary i are

dvi
dt

¼ � fiviðtÞ|fflfflfflffl{zfflfflfflffl}
loss to flow

�
k1viðtÞ

K þ viðtÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
transport

þfi

P
j2Pi

VjvjðtÞ
P

j2Pi
Vj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
inflow from upstream vessels

;

B
dwi

dt
¼

k1viðtÞ
K þ viðtÞ|fflfflfflfflffl{zfflfflfflfflffl}

transport

� k2wiðtÞ|fflfflfflfflffl{zfflfflfflfflffl}
drug metabolism

and clearance

:

ð1Þ

Here P i denotes the set of all parent vessels of vessel i, i.e. the vessels feeding directly into

vessel i. The volumes of the parent vessels Vj are needed at a confluence point to ensure con-

servation of mass. Vessels emanating from an entrance point are supplied with a constant

drug concentration v0 > 0. Given a fixed target set T , we define the combined amount of

drug in the corresponding brain region by

WðtÞ ¼ B
X

i2T

ViwiðtÞ:

We represent the capillary network as a graph where the edges stand for capillaries and the

vertices are their intersections. The graph is a considerable simplification of actual vasculature

since tortuous vessels are approximated by a single straight cylinder with a uniform radius, to

avoid additional complications due to vessel anastomoses and tortuosity [28]. This approach

also allows us to approximate blood flow by laminar flow through a fixed tube. Recall from Eq

(1) that we need to know the transit time across each vessel, f � 1
i . To this end, we assign to each

capillary in the network a radius and length and then determine the inverse of the transition

time which is the volumetric flow rate Q divided by the vessel volume V,

f ¼
Q
V
: ð2Þ

We use an iterative method similar to that in [29], which has been adapted for our purposes.

For the purpose of simplicity, in this paper we work with cubic lattices that represent a tis-

sue volume of 1 cm3. We designate a set of entrance and exit nodes in two opposing surfaces.

We then assign a radius to each vessel from a suitable Γ-distribution. More details will be pro-

vided below. The flows through the network are determined with the help of Kirchhoff’s Cur-

rent Law and the Hagen-Poiseuille Equation in analogy to Kirchhoff’s Current Law and Ohm’s

Law for electrical circuits [30], respectively. Kirchhoff’s Current Law states that at any junction

of edges the signed sum of flow rates is zero. For a capillary, the Hagen-Poiseuille Equation

relates the length L, radius r, volumetric flow rate Q, and the pressure drop across the capillary

by

DP ¼
8mLQ
pr4

:

Given a fixed pressure difference between the entrance node and the exit node of the network,

we obtain a linear system of equations for the pressure at each internal node. From these pres-

sures we obtain the volumetric flow rates and ultimately the transit times through every vessel.

Due to the Fåhræus-Lindqvist effect, we implement a simplified dependence of the blood vis-

cosity on the vessel diameter d,

m ¼ 220 expð� 1:3dÞ þ 3:2 � 2:44 expð� 0:06d0:645Þ; ðcPÞ ð3Þ

at constant hematocrit 45%, see Equation (4) in [31].

Drug absorption in cerebral capillary networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0200266 July 10, 2018 4 / 14

https://doi.org/10.1371/journal.pone.0200266


Comparisons of simulations from different networks

As stated in the Introduction, our goal is to understand the scaling of the model predictions

depending on the network size. Lauwers et al. [25] reported numbers of 104 vessel segments

per mm3 of human brain which was largely independent of the region from which the sample

was taken. This value is corroborated by the earlier results [32, 33] in mammals which have

similar vascular topology. Extrapolating this information to the desired model tissue volume

of 1 cm3 means the simulation must solve systems of 107 or more ordinary differential equa-

tions. Solving systems of this size is outside the scope of the desired computational scale for

this paper. Thus, we reduce the number of vessels present in the model while maintaining

anatomically accurate values for the remaining morphological properties. Another quantity

reported in [25] that varied only little is the volume fraction of the vessels, namely 0.5–2%,

with smaller values in the deeper white matter regions. Thus in order to make simulations on

different networks comparable, we enforce the constraint that the total vessel volume is the

same.

The second quantity to ensure comparability of different networks is the total flow rate

through the tissue volume. Physiologically, on the one hand the supply of oxygen, glucose and

the removal of metabolic waste need to be maintained continuously. On the other hand, the

heart creates a pressure difference in a certain range to drive this process. In actual simulations

of a sequence of networks we strive to have the volumetric flow rate Q approach some fixed

value near the expected volumetric flow rate for 1 cm3 of brain tissue. The pressure difference

and the parameter ranges for the transport of L-Dopa across the BBB are listed in Table 1. The

transport and metabolism parameters for L-Dopa were derived from sources in the literature

in [8] and we use them here again.

Sequences of lattice graphs

We now turn to successive refinements of a cubic lattice graph which is depicted schematically

in Fig 2. Each edge in the graph will be a straight vessel for the model described by Eq (1). We

denote by Gn the graph that is obtained by subdividing the unit cube [0, 1]3 into n3 sub-cubes

with side lengths n−1. It is easy to verify that this graph has (n + 1)3 vertices and 3n(n + 1)2

edges, see Fig 3. In order to obtain approximately 107 edges in 1 cm3, we find that n = 149. We

designate half the nodes in the surface x = 0 as the entrance nodes and half the nodes in the

surface x = 1 as the exit nodes, see Fig 3. We assume that the pressure difference between the

entrance and the exit nodes is constant and we ignore the pulsatile nature of the blood flow.

In order to assign a radius to each edge in the network, we fix a target tissue to vascular vol-

ume ratio of B = 30. For each network the radii are chosen from a Γ-distribution whose expec-

tation r satisfies

3ðnþ 1Þ
2
pr2 ¼

1

30
:

Table 1. Parameter ranges governing the overall blood flow, the plasma concentration and the active transport of

L-Dopa. The precise values used in each simulation are listed in the figure captions.

constant range references

ΔP 20–100 mm Hg [23]

v0 1–10 μM [34]

k1 0.3–1.1 μM s−1 [35–37]

K 30–100 μM [36, 37]

k2 3.25 � 10−2 s−1 [14]

https://doi.org/10.1371/journal.pone.0200266.t001

Drug absorption in cerebral capillary networks
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Fig 2. A schematic depiction of the lattice refinement process. The coarse blue network G1 is replaced by the finer

red network G2. Both networks fill out the same computational volume. The arrows indicate the direction of the flow

through the network.

https://doi.org/10.1371/journal.pone.0200266.g002

Fig 3. The lattice graph G6 with indicated vessel radii. The overall blood flow direction is from left to right.

https://doi.org/10.1371/journal.pone.0200266.g003

Drug absorption in cerebral capillary networks
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For the Γ-distribution function with shape α and rate β,

Pa;bðxÞ ¼
b

a

GðaÞ
xa� 1e� bx;

this implies that

r ¼
a

b
¼

1

ðnþ 1Þ
ffiffiffiffiffiffiffiffi
90p
p : ð4Þ

Here we have one degree of freedom and we fix α = 5 in order to match approximately the

skewness of the distributions that were reported in Figure 5 in [24] and Figure 2A in [25]. The

resulting radius distributions are drawn for selected n in Fig 4. For n = 149 we also have r = 3.9

μm, matching the value reported by [25]. Once radii have been assigned initially at random,

we enforce the constraint that those vessels further from a source or sink node will have

smaller radius than those closer to a source or sink node.

Results

The steady-state solutions of the ordinary differential equations were found with a Newton-

Krylov method using the SciPy library for scientific computing in python [38]. All code for the

numerical simulations is available on GitHub [39].

In Fig 5 we present the total flow rate through several networks, given different pressure dif-

ferences between entrance and exit nodes. We see that for small values of the average radius r
the extrapolated flow rate is approximately Q = 0.1–0.5 mL min−1. This is in line with the value

0.6 mL min−1 reported by [40] in the thalamus region. In fact, the actual flow rates may be

even larger, as the blood viscosity reaches a minimum value in tubes of� 10μm diameter. For

the following computations we fix ΔP = 100 mm Hg, k1 = 0.3 μM s−1 and K = 101 μM.

In Fig 6 we plot the total concentration of drug in the tissue at steady state against the the

total exchange area A of the blood vessels. The total exchange area A for the lattice graph Gn

is obtained by using the average radius from Eq (4) for every one of the 3n(n + 1)2 vessels of

length n−1. We observe a leveling off at higher exchange areas, which leads us to fit this data set

Fig 4. The radius distributions for the subdivision levels n = 5, 15 and 149 (from right to left). Note the logarithmic

scale on the horizontal axis; the area under each curve is 1.

https://doi.org/10.1371/journal.pone.0200266.g004

Drug absorption in cerebral capillary networks
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to the empirical formula

WðAÞ ¼
cA

d þ A
; ð5Þ

where we use a variance weighted curve fit. As the target exchange area for our model predic-

tions we use W� = W(120 cm2). Note that the last simulated values are already within 88% of

the extrapolated value W�. In this sense, the relatively small grid size n = 18 is already useful to

Fig 5. The total flow rates through several lattice graphs as a function of their average vessel radius. The dashed

lines are the extrapolation from the actually computed flow rates. The legend indicates the pressure drop ΔP.

https://doi.org/10.1371/journal.pone.0200266.g005

Fig 6. The total drug concentration at steady state as a function of the exchange area with the best fit to Eq (5).

The drug concentration in the incoming blood is v0 = 5 μM and v0 = 10 μM, respectively. The dashed vertical indicates

the extrapolated value for the estimated exchange area of 120 cm2.

https://doi.org/10.1371/journal.pone.0200266.g006

Drug absorption in cerebral capillary networks
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make predictions. To give the context, the construction of the network for the last grid size

n = 18 took one hour on a personal laptop. The steady-state computations on the same grid

took 10-15 minutes.

We observe a linear relationship between the extrapolated steady state tissue concentration

W� and the incoming drug concentration v0, see Fig 7. The steady state increases monotoni-

cally with the maximal transport rate k1, and decreases monotonically with the concentration

at half-maximal rate of the nonlinear transporter. K. An increase in the metabolism or clear-

ance rate k2 leads to a decrease in the steady-state concentration in the tissue.

As the blood permeates the vessel network, the drug concentration decreases, and so does

the local concentration in the tissue. In Fig 8 we plot the total concentration of drug in the

slices orthogonal to the x-direction. Taking the viewpoint from Fig 6 that the change beyond

n = 18 is small, we propose that the last profile is close to the terminal profile. Of course, we

have made the rather strong assumptions of a predominant flow direction and isolated lateral

surfaces.

Discussion

Experimental methods for probing transport across the BBB exist [41], one of the most

prominent being the surgical implantation of microdialysis catheters. Using this method,

[42, 43] reported that L-Dopa blood concentrations of 2 μM translate into L-Dopa concen-

trations of approximately 0.2–0.4 μM in the cerebrospinal fluid respectively in the putamen

and globus pallidum interna (GPi) in patients with PD. This partition coefficient of 10–20%

is in good qualitative agreement with our simulations. Note that Table 5 in [37] lists 8 values

for the half-maximal transport concentration K of the LAT1 transporter ranging from 28.2

to 101.6 μM with a mean of 60 μM. These values were obtained from experiments in Xenopus

Fig 7. The extrapolated total drug concentration at an exchange area of 120 cm2 as a function of the incoming

drug concentration v0.

https://doi.org/10.1371/journal.pone.0200266.g007

Drug absorption in cerebral capillary networks
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laevis oocytes, mouse and rat cerebral epithelial cells and human intestinal epithelial cells.

For the moment we will have to be content with qualitative model predictions and wider

explorations of the parameter space. It is likely that for significantly smaller values of K
diminishing returns set in at higher blood concentrations, that is, the brain concentration

is a concave function of the blood concentration. It should be clarified that the whole-body

pharmacokinetics of L-Dopa from stomach to brain are quite complicated and that there is

a lot of variation among different patients. In addition, L-Dopa and many other drugs are

administered together with auxiliary drugs whose purpose is, for example, to inhibit path-

ways of premature degradation [17, 42].

Several aspects of our network model deserve to be discussed. We are working with a

strongly simplified network topology across all scales. Apart from simplifying the process of

network construction, this also ensures greater comparability of the computational results. In

future work we need to address the known changes from “tree-like” to “network-like” topology

and back as the blood passes through arterioles, capillaries and venules [44]. Further, we need

to allow for curved vessels [23]. The sample volume considered in this paper is significantly

larger than in previously published models. Recent works have studied the influence of net-

work topology and microvasculature morphology on computational predictions of oxygen

distribution in brain tissue [45]. They concluded that the volume of modeled tissue does not

affect the predicted oxygen extraction fraction and cerebral metabolic rate of oxygen.

A second difficulty, again associated with the graph depicted in Fig 3 is the presence of dis-

tinct entrance and exit points and isolated surfaces for the blood flow. Such a simplification

may be defensible for the blood supply to an entire organ like the lung or the liver. A small tis-

sue volume of a few cm3 within the human brain whose volume is approximately 1100 cm3

may have a less well-defined boundary and distributed entrance and exit points, see Fig 9.

The high sensitivity of brain tissue to discontinuities in oxygen supply makes anastomoses of

Fig 8. The drug concentration in the tissue as a function of the distance along the x-axis. The legend indicates the

networks on which the steady states were found. The incoming drug concentration is v0 = 5 μM.

https://doi.org/10.1371/journal.pone.0200266.g008

Drug absorption in cerebral capillary networks
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arteries a desirable feature [46, 47]. This raises the question how to define the pressure drop

across such a region of interest and the total blood flow through it. This ambiguity affects

both the computational simulation and the comparison to values for flow and pressure drop

reported in the literature [23, 40]. We have been content with extrapolating a reasonable value

for the flow through the network at a target mean radius r = 3–5 μm at the upper end of the

pressure interval, 100 mm Hg.

As the major transport organ of the body, blood is a natural pathway to deliver drugs to

organs. In this paper we have addressed the issue of modeling the blood flow through a region

intermediate in size between a few mm3 and the entire brain with the goal of understanding

the issue of drug delivery to that region. There are computational models for the perfusion of

other organs for example the liver [48] which are characterized by their own specific vascular

architecture (in that case, the hepatic portal vein). Other recent works have used the mathe-

matical technique of homogenization which leads to a limiting partial differential equation

[49]. However, the nonlinear active transport of some drugs across the BBB poses a severe

obstacle to this approach. While in the present work the drug is carried by the blood, in future

works we will include carrier particles such as liposomes that release their cargo upon a physi-

cal trigger [5, 10]. Since the ultrasound or heat signals are choosable controls of the delivery

process, the time-dependent simulations will play a more prominent role than the steady state

calculations in this paper. This may also result in local drug concentrations that are temporar-

ily much higher than the toxic systemic concentrations. These concentrations may approach

saturation of the transporters, increasing the non-linear effects on the model. In future work a

coupled spatial PDE model will be necessary to account for transport and diffusion of the drug

after the delivery by the vessel network [50].
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