








in order to keep the phrasal verbs intact. (3) NP+ VP:(VB
+VP:(Verb +PP:(Prep+NP)), such as “A is associated with
B”. This structure is a combination of the first two. (4) NP
+VP:(Verb +NP + PP:(Prep+NP)), such as “A demon-
strated a patient with previous history”. This is a postposi-
tive structure; the main relation was extracted only by
using the verb, but the Object is considered to be the
combination of NP + PP (in this case, “patient with previous
history”). This is a postpositive structure, and the main
relation is extracted only by using the verb, while the
Object is a combination of NP and PP (in this case, “patient
with previous history”). This is a novel step, as most
previous studies only deal with simple syntactic patterns,
but not the nested ones, which could lose embedded
syntactic relations between words and phrases.

Semantic annotation
After extracting the relationships between the medical im-
aging entities, we annotated each entity in the SRO struc-
ture with its semantic labels. In this paper, “entity” refers to
semantically taggable phrases. We used the Unified Medical
Language System (UMLS) and SRO as our semantic refer-
ence and labeling structure, respectively. The UMLS is a
knowledge source that integrates biomedical concepts from
various controlled vocabularies, classifications, and other
biomedical ontologies [39]. This semantic labeling method
is completely different from previous ones that were based
on a set of manually defined event templates [40].
A UMLS semantic tagger was used to assign a semantic

type to each NP or ADJP (entities). The details of the tag-
ger have been described in [41]. While most previous
methods tagged all nouns/adjectives in an identified noun
phrase [42, 43], we assigned only one tag to each NP/
ADJP by extracting the maximal one. The tag is defined to

be the semantic type of the last UMLS-recognizable entity
in an NP/ADJP. For example, our method assigned the se-
mantic annotation of Observation for the whole phrase
“right breast pain” instead of a list of three separate anno-
tations – Location + Body Part + Observation.

Knowledge model generation
To reveal the sublanguage pattern, we summarized the
semantic types occurring in the corpus and visualized entity
relationships using a co-occurrence-based semantic network.
Co-occurrence incidence is defined as two semantic types,
the Subject and Object, respectively, in one relation. Based
on the induced semantic network, we discovered the net-
work concentrates primarily on the top 40 semantic types,
indicating a strong sublanguage pattern in the radiology case
report corpus. We selected top 40 semantic types because in-
creasing the number of semantic types beyond 40 doesn’t
improve entity coverage significantly (~ 98.1% if selected top
50) but will introduce complexity in the model significantly.
Moreover, semantic types ranking 41 or beyond are typically
not related to medical image domains and could have
semantic type mapping errors.
We selected the top 40 semantic types that have the high-

est contents coverage (98% of overall UMLS-recognizable
entities), which were further regrouped according to both
the UMLS semantic hierarchy and the domain-specific
semantic network (Fig. 2). We also added four conceptually
important semantic types according to expert’s advice
(despite its low frequency in our corpus; marked with “*” in
Table 1). The rationale and results of semantic regrouping
have been discussed in the Discussion section. A Semantic
types are the original semantic labels defined in the UMLS
system; the semantic categories defined in this study are
then generated by regrouping semantic types. Finally, we

Fig. 2 Co-occurrence network of top 40 semantic types (subgraph). The thickness of the edge demonstrates weight (the number of co-occurrence
incidences); a thicker edge means more co-occurrence incidences exist in the relation. The size of the nodes indicates connectivity (the number of
other nodes connected to it). The network graph represents the complexity of the semantic co-occurrence pattern of semantic types in imaging notes
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formulated a knowledge model using nine induced seman-
tic categories and five original semantic types (Table 1).
We examined the top 100 mostly co-occurred relation-

ships based on the weight of a relationship edge (total
co-occurred incidences from the entire corpus) in the se-
mantic network. We chose to include 100 top weighted
relationships (e.g., “Location:Body Part”, “Observation:-
Body Part”) and 13 conceptually important relationships
(e.g., “Substance: Observation”). Addition of 13 conceptu-
ally important relationships involved empirical input but it
is essential to complement previous automatic entity ex-
traction and analysis when generating a knowledge model.
Subsequently, the proposed weight-based selection simpli-
fied the complex network by removing the co-occurred
relationships with no obvious semantic relations, yet still
revealed the structure of the sublanguage pattern.
To label the relationships, we selected 1000 “Subject/Ob-

ject” instances within each of the 113 relationships in the
knowledge model to make sure that all the relationships
were covered. In addition, we made sure of at least five in-
stances for each relationship. In total, we randomly selected
1000 “Subject/Object” instances from a pool of “Subject/
Object” pairs generated from the 23,410 cases. Two
physicians (JZ, Singapore General Hospital, Department of
Internal Medicine; HZ, Greenfield Dental, Milwaukee,
Wisconsin) were asked to assign specific relationship tags
to each “Subject/Object” pair. The relationship tags were
named explicitly based on the conceptual logic indicated by
the “Relationship” (verb or preposition) in each SRO

structure in a medical context; top examples are shown in
Table 2. Later, we evaluated another 894 “Subject/Object”
pairs from 83 randomly selected image reports.

Evaluation design
Knowledge model
The knowledge model was evaluated by using a corpus of
83 randomly selected image reports; including 43 image re-
ports from Radiopaedia.org, 10 imaging case reports from
the Journal of Radiology Case Reports [44], 15 case reports
from the BJR Case Report [45], and 15 case reports from
RadioGraphics [46]. Here we used data from four different
sources in order to test the generalizability of our model,
which was built from a single source. The corpus contained
402 sentence segments, 1718 noun phrases, and 894 “Sub-
ject/Object” pairs. Two independent raters with a clinical
background (JZ and HZ) were asked to assign semantic an-
notations and relationship tags to each “Subject/Object”
pair. Each rater received an instruction manual (see
Additional file 1) that defined the scope and the meaning of
induced semantic categories and the relationships among
them. The manual also included examples to help raters as-
sign semantic categories to identified noun phrases. The
raters annotated the relationships in each SRO structure
based on the manual; if they encountered any relationship
not identified in the manual, they were asked to label the
missed relationship with new category labels. We examined
the raters’ tagging results and the default relationship tags

Table 1 Regrouping of UMLS semantic types to form 14 semantic categories (four conceptually important semantic types are
marked with “*”)

New Semantic Category Included UMLS Semantic Types Type Counts

Abnormality Anatomical Abnormality, Acquired Abnormality, Congenital Abnormality 3

Body Part Body Part Organ or Organ Component, Body Substance, Body System*,
Tissue, Cell, Gene or Genome, Receptor*

7

Classification Classification 1

Functional Concept Functional Concept 1

Location Spatial Concept, Body Location or Region, Body Space or Junction 3

Medical Activity Diagnostic Procedure, Therapeutic or Preventive Procedure, Laboratory Procedure,
Health Care Activity, Research Activity, Activity

6

Medical Device and Object Medical Device, Manufactured Object 2

Observation Finding, Sign or Symptom, Injury or Poisoning, Laboratory or Test Result, Phenomenon or Process 5

Pathology Disease or Syndrome, Neoplastic Process, Mental or Behavioral Dysfunction, Cell or
Molecular Dysfunction, Pathologic Function

5

Physiology Cell Function, Organ or Tissue Function, Organism Function*, Physiologic Function 4

Qualitative Concept Qualitative Concept 1

Quantitative Concept Quantitative Concept 1

Substance Pharmacologic Substance, Substance, Biologically Active Substance, Biomedical or Dental Material* 4

Temporal Concept Temporal Concept 1
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offered by the formalized knowledge model. The relation-
ship coverage is calculated as follows:

Knowledge model relationship coverage

¼ #of raters0 tags covered by the knowledge model
Total Relationship Counts

Machine annotation
For evaluation of machine annotation, currently, there is
no gold standard to semantically model and evaluate
radiology case reports. To generate a reference standard
for evaluation, the 1676 noun phrases (excluding 42
noun phrases not covered by the knowledge model)
were reviewed by two independent raters using the
methods described in the previous section. On the other
hand, the automatic machine annotation of semantic
categories for the 1676 noun phrases was generated by
the pipeline described previously. Later, the consensus
results of the two raters were used as a reference stand-
ard to evaluate the machine annotations of semantic cat-
egories. Precision, recall, and F-score have been defined,
respectively, as follows:

Precision ¼ TP
TPþ FP

;

Recall ¼ TP
TPþ FN

;

F−score ¼ 2 � Precision � Recall
Precisionþ Recall

The agreement was calculated by comparing the
manual annotation of the raters. If the raters select
the same label to annotate relationship, or same se-
mantic category to annotate phrases, the annotation
was considered as agreed. Otherwise, it was consid-
ered a disagreed annotation.

Agreement ¼ Agreed
Agreedþ Disagreed

:

Results
Semantic network analysis
The extracted semantic entities from the results of the
syntactic processing stage included 289,782 noun
phrases (NP) and adjective phrases (ADJP). The results
of using 135 UMLS semantic types for semantic annota-
tion demonstrated that the majority (80.32%) of the radi-
ology cases in the corpus covered by the top 22 (16.3%)
UMLS semantic types (Fig. 3). The resulting semantic
network at this level was consisting of 135 nodes (se-
mantic types) and 3492 distinct co-occurrence pairs,
while 352,356 total co-occurrence incidences (each fall
under 3492 distinct co-occurrence relationships) were
extracted at the entity instance level.
We conducted a network analysis and extracted the top

100 important network relationships based on the weight
(the number of co-occurrence incidences on the edges).
This network indicated a strong sublanguage pattern
among medical image reports, because (1) A small subset
of semantic types was used to (top 40 + 4 expert chosen)
cover a large amount of corpus (98%), and (2) there were
many repeated relationships in the medical imaging re-
ports’ entities. This led us to further generalize the seman-
tic network into a knowledge model.

Semantic type regrouping
To achieve high-quality semantic classification for en-
tities [47] and to simplify the concept-relation represen-
tation [48], the semantic types in the network were
regrouped into 14 semantic categories based on the hier-
archical structure of UMLS [20, 49] and their position in
the semantic network (Table 1). Among the 14 categor-
ies, five common UMLS types were reused without
regrouping, including “Functional Concept”, “Qualitative

Table 2 Ten most frequently co-occurred “Subject/Object” relationships identified from the corpus of 23,410 image reports

Co-occurrence Pair Example Count

Location:Body Part frontal view:of(Situated_at):vertebral body; lower outer quadrant:of(Modifies):right breast 19,625

Observation:Body Part erythema:of(Occurs_in):left breast; mass lesion(Occurs_in):in:left breast 15,219

Pathology:Body Part B-cell lymphoma:of(Occurs_in):breast; fibroadenoma:with(Modifies):tissue 14,904

Medical Activity:Body Part ultrasound: in(Acts_on):left breast; CT scans: of(Acts_on):skull 13,479

Observation:Pathology x-ray findings:as(Indicative_of):pleural effusions; all features:of(Indicative_of):fibroadenoma 13,439

Functional Concept:Pathology outcome:of(Describes):breast cancer; case:of(Related_to): previous DCIS 12,394

Pathology:Pathology Haemangiomas:are(Be): benign vascular tumors; complications:include(Has):vessel thrombosis 12,119

Medical Activity:Pathology drainage:confirmed(Shows):breast abscess; mastectomy:for(Acts_on):breast malignancy 11,924

Medical Activity:Observation Chest x-ray:performed for(Deals_with):chest pain; biopsy:of(Acts_on):small lesion 11,890

Observation:Observation breast lump:with(Shows):occasional pain; features:of(Shows):benign lesion 11,882
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Concept”, “Quantitative Concept”, “Temporal Concept”,
and “Classification”. Regrouping the semantic types led
to nine new semantic categories specific to image re-
ports (Table 1). The top ten most frequent co-occurred
“Subject/Object” relationships based on regrouped se-
mantic types are shown in Table 2. The final knowledge
model has 113 semantic relationships.

Knowledge model
By linking the semantic categories with semantic relation-
ships, we generalized a UMLS-based knowledge model for
representing semantic information in medical image re-
ports. The generated knowledge model is shown in Fig. 4;
the significant relationships in the co-occurrence network
are shown with the dotted lines, while the core semantic
categories that are intrinsically closely related (determined
by domain experts) and are significant in the knowledge
model are presented in the dotted boxes. The significance
of relationships and semantic categories were determined
based on the total number of occurrence in the corpus.
Figure 5 shows the semantic categories and relation-

ships created for two sentences; “Serial IVU films show-
ing widely separated pubic bones with absent symphysis”
and “Complex L-transposition of the great arteries with
cardiac pacemaker”. This image also shows how the cre-
ated categories and relationships contribute to the

generation of sub-sections of the overall knowledge
model. The knowledge model provides a simple yet
expressive view of content in the image reports, which
can be used to facilitate future information retrieval and
knowledge representation of medical image reports.

Coverage evaluation of knowledge model
The initial inter-rater agreement was 92% for semantic
annotation and 95% for relationship tags. After the
raters’ discussion, the agreement reached 100%. The
results showed that the use of 14 knowledge model
semantic categories led into representing the semantics
of 98% of the NP/ADJP, while 113 knowledge model re-
lationships were required for annotation of 97% of the
Subject/Object pair relationships. Additionally, 3% of the
uncovered relationships involved some rare semantic
types outside of the 14 semantic categories, such as
“Biomedical Occupation or Discipline” and “Organism”.

Evaluation of machine annotation
Based on our evaluation, machine annotation achieved
an overall precision of 87%, recall of 79%, and F-score of
0.8299 (detailed evaluation results are listed in Table 3).
Error analysis will be provided in the Discussion section.

Fig. 3 Summary of different semantic types (among 289,782 NP and ADJP, top 22). Majority (80.32%) of the radiology case corpus covered by the
top 22 (16.3%) UMLS semantic types
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Discussion
In the medical domain, there are many complex relation-
ships between entities, such as a clinical observation related
to a certain pathology, or an observed disease co-occur with
its comorbidities; therefore, we need a comprehensive
knowledge model to support structured formalization of
medical knowledge. A knowledge model (also referred to as
an information model), is an important prerequisite for
extracting information. The model has two components:
(1) Semantic annotations that conceptualize entities in the
imaging notes, and (2) relationships that link the discrete

entities to form a logi/cal and integrated model. The advan-
tage of our method, which extracts information based on
the knowledge model, is discussed in the following sections.
We also discuss the advantages of using semantic pattern
mining to generate a knowledge model as follows;

Compared to frame-based method for building
knowledge model
Compared with previous studies that combined syntactic
and semantic analysis and a pre-defined topic frame or
event template to model information in a corpus [50–52],

Fig. 4 Knowledge model. The dotted lines show significant relationships in the co-occurrence network. The dotted box represents core semantic
categories that are intrinsically closely related and are significant in the knowledge model

Fig. 5 Knowledge model example of two sentences: “Serial IVU films showing widely separated pubic bones with absent symphysis” and
“Complex L-transposition of the great arteries with cardiac pacemaker”
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our knowledge model is able to provide a higher coverage
of both semantic categories annotated and semantic rela-
tionships involved. In Friedman’s work [51], NPs were
parsed into entities of problem and modifier (location, ob-
servation). For example, “Status post myocardial infarc-
tion” was framed as [problem, myocardial infarction,
[status, post]]. Modifiers were generated around the core
of the noun phrases “problem, myocardial infarction”.
This approach had a limited scope since it was only able
to distinguish the modifiers into “location” and “observa-
tions”. Here we didn’t compare our result directly with the
Friedman study because 1) Friedman’s study did not re-
port the coverage but only reported precision, recall, spe-
cificity, and sensitivity; 2) even though we also evaluated
machine annotation performance using precision and re-
call, it is difficult to compare our task with previous stud-
ies since their tasks were disease specific and domain
specific; 3) most frame-based templates were manually
drafted, making it less likely to represent the true charac-
teristics of a corpus for a specific domain. Our approach
contributes to a data-driven and content-based perspec-
tive for generating knowledge model. The data-driven and
content-based method is able to produce a knowledge
model with higher coverage and more domain-specific
representation. Thus, our knowledge model was able to
cover 98% of the content in image notes corpus and reveal
97% of the relationships.

Compared to machine learning-based method for
building knowledge model
Several studies have explored the extraction of semantic
relationships between entities using machine learning
methods [53, 54]. Nevertheless, both methods require

knowledge models to guide information extraction. For ex-
ample, when training machine-learning algorithms (e.g.,
conditional random fields, SVM) to extract entities and
their relationships in free-text, we first need to define a tar-
get model (e.g., entity labels, schema) to support machine
annotation and relationship mapping. Previous studies
often used knowledge models that were manually defined
by experts focusing only on a specific domain, such as
mammography and chest radiographic reports [55, 56]. By
using a semantic network, we employed a novel approach
that combines syntactic analysis with data-driven network
analysis to explore semantic relations in a specific corpus.
Compared with prior works that mostly involved syntactic
analysis plus a rule-based or a supervised learning method
to generate topic frames, our approach could potentially
adapt to another corpus with reduced manual efforts.

Compared to ontology-based method for building
knowledge model
RadMiner [57] uses ontologies to represent the relation-
ships between semantic entities. It can semantically analyze
radiology reports using a clinical terminology called Lexicon
of Standardized Radiological Terms (RadLex) [58]; however,
concepts in the ontology model have complex relationships
which are usually not well represented in the ontology it-
self. By a using context-based semantic network, we could
better represent (higher coverage of) relationships between
entities compared with other methods. By using UMLS, we
also developed a knowledge model with a higher coverage
than RadMiner, which uses RadLex.
RadMiner supports structured reporting of image find-

ings and indexing of teaching cases. Despite its high cover-
age of anatomical structures, one study [59] showed that

Table 3 Evaluation of semantic annotation performance

Semantic Categories True Positive (TP) True Negative (TN) False Positive (FP) False Negative (FN) Precision Recall F-Score

Abnormality 16 1660 4 12 80.0% 57.1% 0.6667

Body Part 238 1438 38 26 86.2% 90.2% 0.8815

Classification 12 1664 0 6 100.0% 66.7% 0.8000

Functional Concept 90 1586 14 12 86.5% 88.2% 0.8738

Location 230 1446 54 58 81.0% 79.9% 0.8042

Medical Activity 22 1654 14 26 61.1% 45.8% 0.5238

Medical Device and Object 8 1668 14 0 36.4% 100.0% 0.5333

Observation 168 1508 16 62 91.3% 73.0% 0.8116

Pathology 202 1474 4 50 98.1% 80.2% 0.8821

Physiology 16 1660 4 4 80.0% 80.0% 0.8000

Qualitative Concept 172 1504 22 60 88.7% 74.1% 0.8075

Quantitative Concept 78 1598 4 4 95.1% 95.1% 0.9512

Substance 24 1652 12 24 66.7% 50.0% 0.5714

Temporal Concept 56 1620 2 0 96.6% 100.0% 0.9825

Overall 1332 22,132 202 344 86.8% 79.5% 0.8299
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only 2.32% of phrases in a de-identified radiology report
were exactly mapped to RadLex, while 50.53% of phrases
were only partially mapped; in contrast, 10.40 and 85.95%
of phrases were exactly and partially mapped to UMLS. An-
other study [60] demonstrated the lower coverage of
RadLex for representing clinical language in imaging re-
ports, especially for disease condition and non-radiology
procedures; however, disease condition and non-radiology
procedures comprise a significant percentage of content in
image reports and case reports. Compared with RadMiner,
our work provided a higher level and more comprehensive
knowledge model comprising 14 semantic categories. We
regrouped the most frequent UMLS semantic types into 14
semantic categories to reduce complexity results from the
UMLS hierarchy or radiology language while still achieving
a high coverage of radiology content.

Subject:Relationship:Object structure
One advantage of using the SRO structure is that it can
retain the relationships at the phrase level and reveal only
the closest semantic relation in one sentence, thereby sig-
nificantly reducing the chance for misinterpretation
(“noises”). For example, if we analyze the sentence “There
are foci of intensely increased radiotracer uptake in T9” at
a sentence level, we will generate six co-occurrence rela-
tionships: “There/ foci, There/ intensely increased radio-
tracer uptake, There/T9, foci/T9, foci/ intensely increased
radiotracer uptake, intensely increased radiotracer uptake/
T9”. In contrast, if we analyze the sentence with the SRO
structure, we will generate three relationships: “There:are:-
foci”, “foci:of: intensely increased radiotracer uptake in
T9”, “intensely increased radiotracer uptake:in: T9”. These
three relationships and their corresponding Subject and
Object can be represented concisely.

Content-based semantic type regrouping
We are aware of the complexity of UMLS hierarchical
structure. Some recent studies have focused on reducing
the complexity of radiology report content from an ontol-
ogy perspective [21, 61, 62]. A pilot study [61] investigated
the possibility of using 19 different vocabulary sources in
UMLS to index XML-structured image reports. This study
confirmed the enhancement of indexing precision of radi-
ology reports by choosing the optimal subsets of UMLS
vocabularies. In order to achieve high-quality semantic
classification [47] and simplify concept relation represen-
tation [48], we regrouped the 40 most frequently occur-
ring semantic types in our corpus into 14 major semantic
categories. One of our main contributions in this work
was a new regrouping strategy that incorporated a
method, previously proposed by McCray et al. [20], and
our domain specific adaptation. McCray’s method aggre-
gated UMLS semantic types based on the inherent

structure of UMLS. Our domain specific adaptation was
based on the structure of the semantic network (Fig. 3).

Clinically relevant granularity of noun phrases
Another novelty of our method was that we parsed
maximal NP/ADJPs instead of base NP/ADJPs. Mapping
entities according to base NP/ADJPs would result in
returning a large amount of false positive results due to un-
suitable granularity level. Our method, by keeping noun
phrases intact and examining maximal NP/ADJPs instead
of splitting one long NP/ADJPs into base NP/ADJPs and
modifiers, was able to be regarded as a phrase-level infor-
mation retrieval tool that filled the gap between word-level
information retrieval (most of the prior work) and
sentence-level information retrieval. Our method provided
an efficient tool for tasks that would favor minimal query
input but need a broader scope for information retrieval.

Error analysis
Based on our evaluation results, we concluded that there
would be five major causes for errors with machine
annotation.

(1) Some of the errors were caused by considering the tag
of the last noun as the semantic type for the whole
noun phrase. For example, “absent symphysis pubis”
was considered “Observation” based on the examples in
the annotation manual; however, as “symphysis pubis”
was tagged as “Location”, it was then considered to be a
“Location” concept instead of “Observation”.

(2) Ambiguity in the meaning of words in a medical
imaging context caused incorrect classification for
UMLS semantic types. For example, “defect” was
tagged as “Functional Concept” by the UMLS tagger,
but actually, it is closer to an “Abnormality” in this
context. In fact, the UMLS is known to associate
numerous concepts with questionable semantic types.

(3) Annotation error might also be caused by using a
UMLS tagger trained on a general EHR corpus instead
a more confined domain of medical image reports [41].

(4) UMLS didn’t recognize typological errors and
abbreviations. The low precision in “Medical
Activity” was mostly caused by this type of error.
For example “MRI TOF” was tagged as
“MRI[Medical Activity] TOF[Abnormality]” instead
of “MRI[Medical Activity] TOF[Medical Activity]”,
because UMLS was not able to recognize the
abbreviation of “TOF” as a Medical Activity.

(5) Parsing error contributed to our overall error rate.
Even though Stanford parser assumed to be less
dependent on training corpus [63], it was shown
previously that changing the word frequencies
according to the medical context in the training
corpus would improve parsing performance [64].
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Limitations and future work
One limitation of our work was that the relationships in
the network were manually reviewed and labeled. Since
our work mainly focused on the pipeline for generating
a knowledge model, automatic relationship labeling was
beyond our scope. However, it will be an interesting
work for the future. In the future, we may be able to de-
velop an annotated corpus based on our existing annota-
tion of semantic entities and relationships, and then
build an automated system to annotate relationships in
image reports domain.
Another limitation is that our pipeline is not currently

deployed in any framework (e.g. UIMA). Nor is it pack-
aged into an installable software. However, since we have
listed all the components of this work as a step-by-step
diagram and have mentioned external software or pack-
ages we used in each step, the pipeline can be reproduced.
Other limitations come from our utilizing existing tools

for parsing and annotating corpus. The tools are not
trained on our specific domain, which may result in er-
rors, as mentioned in the “Error Analysis” section. To re-
duce parsing errors, our future work will include
retraining the parser and tailoring to the medical imaging
domain. To solve the problems with incorrect semantic
annotation, we can consider two approaches for future
improvement: (1) Incorporate RadLex and FMA [65],
which provides better semantic type assignment over
Body Part, or incorporate other ontologies that have more
comprehensive terminologies in “Medical Activity” and
“Substance”, two low-performing UMLS semantic cat-
egories. (2) Reexamine and correct semantic types assign-
ment errors based on specific domain context and avoid
issues brought up by ambiguous and ill-defined UMLS se-
mantic types, such as Functional Concept. (3) Future work
to reduce errors caused by abbreviations or medical meta-
phors includes incorporating a list of common abbrevia-
tions/metaphors used in a radiology setting during the
data processing step and adding spell-check modules to
ensure better tagging quality.
At this time we cannot evaluate the precision and recall

for the relationships, because we do not have an automated
machine annotation for the semantic relationships; we can
only automate the semantic annotation for the entities. The
next step in our work is to create a machine annotation
method for semantic relationships between the entities.

Conclusions
We proposed a data-driven approach that used NLP and
semantic network analysis to construct a knowledge
model. We used medical image domain as a use case to
demonstrate our system. The resulting knowledge model
of medical image reports included 14 semantic categories
and 113 semantic relationships. The evaluation using
medical image reports from four different sources showed

that the knowledge model created using a single source,
Radiopaedia.org, was generalizable. The machine-tagging
evaluation of 1676 entities achieved an overall precision of
87%, recall of 79%, and F-score of 82%. The knowledge
model was able to cover 98% of the content in the evalu-
ation corpus and revealed 97% of the relationships. This
indicates that our knowledge model is comprehensive and
covers a majority of concepts and relationships in medical
image reports. Our pipeline to develop knowledge models
demonstrated great potential of facilitating and improving
information retrieval.

Additional file

Additional file 1: Annotation manua. Annotation manual includes
definitions of 14 semantic categories. It was used for evaluation of
knowledge model. (XLSX 22 kb)
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