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Modeling the bidirectional glutamine/
ammonium conversion between cancer
cells and cancer-associated fibroblasts
Peter Hinow1, Gabriella Pinter1, Wei Yan2 and Shizhen Emily Wang2

1 Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI,
USA

2 Department of Pathology, University of California, San Diego, La Jolla, CA, USA

ABSTRACT
Like in an ecosystem, cancer and other cells residing in the tumor microenvironment
engage in various modes of interactions to buffer the negative effects of
environmental changes. One such change is the consumption of common nutrients
(such as glutamine/Gln) and the consequent accumulation of toxic metabolic
byproducts (such as ammonium/NH4). Ammonium is a waste product of cellular
metabolism whose accumulation causes cell stress. In tumors, it is known that it
can be recycled into nutrients by cancer associated fibroblasts (CAFs). Here we
present monoculture and coculture growth of cancer cells and CAFs on different
substrates: glutamine and ammonium. We propose a mathematical model to aid our
understanding. We find that cancer cells are able to survive on ammonium and
recycle it to glutamine for limited periods of time. CAFs are able to even grow on
ammonium. In coculture, the presence of CAFs results in an improved survival
of cancer cells compared to their monoculture when exposed to ammonium.
Interestingly, the ratio between the two cell populations is maintained under various
concentrations of NH4, suggesting the ability of the mixed cell system to survive
temporary metabolic stress and sustain the size and cell composition as a stable
entity.

Subjects Biochemistry, Cell Biology, Mathematical Biology, Oncology
Keywords Cancer-associated fibroblasts, Glutamine/ammonium metabolism,
Mathematical modeling

INTRODUCTION
Recent years have seen an increased appreciation of cancer as an ecological problem
(Nagy, 2005; Kim et al., 2010). This has also led to a large number of sophisticated
mathematical models, see Enderling & Chaplain (2014), Altrock, Liu & Michor (2015),
Kuang, Nagy & Eikenberry (2016) for some contemporary introductions to mathematical
modeling of cancer. Solid tumors are not merely masses of cancer cells, but are populated
by endothelial cells, immune cells and fibroblasts. Cancer-Associated Fibroblasts
(CAFs), also referred to as myofibroblasts, are the major cellular component of tumor
stroma. CAFs may include heterogeneous subpopulations originating from normal
fibroblasts upon activation by cancer-derived stimuli (Mueller & Fusenig, 2004; Kalluri &
Zeisberg, 2006; Kojima et al., 2010), cancer or normal epithelial cells undergoing
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epithelial-to-mesenchymal transition (Petersen et al., 2003; Kalluri & Neilson, 2003), or—
as more recently proposed—bone marrow-derived mesenchymal stem cells (Karnoub
et al., 2007; Quante et al., 2011). See Fig. 1A for a conceptual model.

Various coculture experiments with CAFs have shown that their properties are
markedly different from their counterparts in healthy tissue. For example, fibroblasts from
human prostate cancers are able to promote proliferation and initiate a pathway to
malignancy in epithelial cells from benign prostate hyperplasia (Bhowmick, Neilson &
Moses, 2004). It is well accepted that CAFs promote tumor growth and progression
by releasing growth factors and cytokines, as well as components and modifiers of
extracellular matrix into the tumor milieu (Mueller & Fusenig, 2004; Kalluri & Zeisberg,
2006). A better understanding of the relationship between a tumor and the tumor
microenvironment is needed for novel therapeutic approaches (Kim et al., 2010).

Cancer cells as well as non-cancer cells residing in the same tumor milieu share all
extracellular metabolites including essential nutrients (e.g., glucose and amino acids)
and toxic wastes (e.g., lactic acid and ammonium). As a result of oncogenic signaling,
cancer cells often exhibit increased uptake of key nutrients such as glucose and glutamine
to fuel rapid growth and proliferation. As a solid tumor grows, it often suffers from a lack
of blood supply because of insufficient or immature tumor-associated blood vessels.
Thus many tumor cells experience metabolic stress, including deprivation of nutrients and
accumulation of metabolic wastes. Cancer’s exploitation of nutrients and the generation of
cancer-derived metabolic byproducts also influence stromal cells residing in the tumor
milieu. Recent studies have revealed interesting patterns of metabolic interaction between
cancer and stromal cells (Pavlides et al., 2009; Lisanti, Martinez-Outschoorn & Sotgia,
2013;Martins et al., 2013; Fong et al., 2015; Loo et al., 2015; Zhang et al., 2015; Zhao et al.,
2016). Our group reported that breast cancer cells, through secreting extracellular vesicles,
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Figure 1 (A) A mechanism for reprograming of normal fibroblasts (FBs) into cancer-associated
fibroblasts (CAFs) by cancer cells (CC) through secreted effectors. These include cytokines and
extracellular vesicles. The dashed arrow indicates a potential therapeutic intervention to normalize CAFs
and the tumor microenvironment. The normal fibroblasts would no longer aid the cancer cells in their
survival in adverse metabolic conditions. See also Fig. 11. (B) A conceptual model for the bidirectional
Gln/NHþ

4 metabolism of both cancer cells and CAFs in monoculture. Both cell types are able to convert
waste into nutrient, however the cancer cells decline in number when they have to do that. The combined
populations show an improved temporary survival of cancer cells compared to the cancer cell mono-
culture. Full-size DOI: 10.7717/peerj.10648/fig-11
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educate CAFs to convert cancer-produced lactic acid and ammonium into pyruvate and
glutamine, respectively, which are subsequently used to fuel cancer cells while detoxifying
the metabolic environment of tumor by removing metabolic wastes (Yan et al., 2018).
Certain cancer cells can also partially recycle ammonium into central amino acid
metabolism (Spinelli et al., 2017). However, because cancer cells and CAFs may exhibit
different survival and proliferation capabilities under varying levels of glutamine and
ammonium, it is of significance to compare the growth of tumor mass (total cell number)
in the presence or absence of CAFs to understand the exact contribution of CAFs.

The goal of this article is to construct and parametrize a mathematical model for the
symbiotic and synergistic interactions between a population of cancer cells and a
population of stromal fibroblasts. The model is complemented by in vitro experimental
observations in which either cell type is grown by itself (monoculture) and in which
the two cell types are seeded in a 1:1 mixture (coculture). We strive to keep the
mathematical complexity at a minimum, but to allow enough flexibility to expand the
model in future work. As an example of the nutrient-waste dynamics and metabolic
interaction between cancer cells and CAFs, we chose to model the recently reported ability
of cancer cells and cancer-reprogrammed CAFs to convert ammonium (NHþ

4 ), an end
product and toxic waste generated by glutamine catabolism, back to glutamine (Gln)
to nourish the tumor environment. The mathematical model is formulated in terms of
ordinary differential equations. It allows to focus on the specific forms of the interaction
and competition terms.

The conceptual model is described in Fig. 1B. Spinelli et al. (2017) reported recently that
cancer cells are able to convert NHþ

4 to Gln. However, this comes at a price, namely
the decline of the population size in our experimental model system of cultured breast
cancer cells (MDA-MB-231). We first create a mathematical model for a single cell type,
either CAFs or cancer cells. The model contains the same terms, but results in different
parameter values for the two monoculture scenarios. Later we merge the two models
for the coculture scenario to investigate the behavior of the two cell types when they
co-reside in the same metabolic environment. As it will turn out, the cell population data
will require an extension of the simple merged coculture model. We introduce an extra
“stress factor” that results in increased cell death after 48 h.

METHODS
Cells
The MDA-MB-231 human breast cancer cell line was obtained from American Type
Culture Collection (Manassas, VA, USA) and maintained in the recommended medium.
Patient-derived primary fibroblasts CAF265922 (denoted as CAF in the following)
were isolated from a triple-negative breast tumor and maintained in Iscove’s Modified
Dulbecco’s Medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
20% fetal bovine serum as previously described (Tsuyada et al., 2012). All cell culture
experiments used dialyzed fetal bovine serum (10,000 MW cutoff) to minimize the
influence of serum-derived small molecules including amino acids and salts. Cells were
tested to be free of mycoplasma contamination and authenticated by using the short
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tandem repeat profiling method. Purity of CAFs was ensured by fluorescence activated
cell sorting using PDGFRβ as a marker. CAFs in culture were frequently checked to
confirm they were negative for EpCAM or CD31 and positive for PDGFRβ and
Vimentin. For all experiments and before cell seeding, CAFs were pretreated for 24 h
with extracellular vesicles (EVs) collected from MDA-MB-231 cells at 2 mg of EVs
(equivalent to those collected from 5 × 106 producer cells) per 2 × 105 recipient cells as
described in Yan et al. (2018) to simulate education by cancer-secreted EVs.

Measurement of cell number
For single cell type culture, MDA-MB-231 cells or CAFs were seeded at 8 × 104 (time 0 h)
per well on 6-well plates in Dulbecco’s Modified Eagle’s Medium (DMEM) without
glucose, glutamine, and sodium pyruvate (Corning, Corning, NY, USA) that was
supplemented with 3 g/L glucose, 10% fetal bovine serum and indicated levels of glutamine
(0, 1, 2 or 4 mM) and ammonium chloride (NH4Cl; 0, 5, 10 or 25 mM). At indicated
time points (24, 48 and 72 h), cells were stained with trypan blue (to label dead cells), and
live cell numbers were determined using a TC20 automated cell counter (Bio-Rad
Laboratories, Hercules, CA, USA). For coculture, MDA-MB-231 cells labeled with PKH67
green fluorescent cell linker (Sigma-Aldrich, St. Louis, MO, USA) and CAFs labeled
with PKH26 red fluorescent cell linker (Sigma-Aldrich, St. Louis, MO, USA) were mixed at
1:1 ratio, and a total of 8 × 104 mixed cells were seeded. At indicated time points, numbers
of each cell type were determined based on the different fluorescent labels.

Measurement of glutamine and ammonium
Cells were seeded and cultured as described above. At indicated time points
(including time 0), the conditioned medium was collected, cleared by centrifugation,
and subjected to measurements of glutamine and ammonium concentrations using a
glutamine colorimetric assay kit (BioVision, Milpitas, CA, USA) and an EnzyChromTM

ammonia/ammonium assay kit (BioAssay Systems, Hayward, CA, USA), respectively.
All experiments were done in triplicates and the averages were chosen for fitting the model
parameters.

Model implementation
Numerical simulations of the ordinary differential equations were carried out using
the function NDSolve of Mathematica (Wolfram Research, Champaign, IL, USA).
The parameters were determined by fitting the model output to the experimental data
using the function fminsearch of Matlab (MathWorks, Natick, MA, USA). The quadratic
objective function is

FðuÞ ¼
X
k

juðtk; uÞ � wðtkÞj2; (1)

where u(·;θ) denotes the full solution of the parameter-dependent ordinary differential
equations and w are the experimental data. The sum includes all available data points for
one cell type, whether treated with NHþ

4 or Gln. The minimization procedure uses the
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Nelder-Mead algorithm (Lagarias et al., 1998). Bootstrapping is used to re-sample the data
set to create simulated data sets. For each such data set optimal parameters are found
so that inferences could be drawn about specific parameters, in particular, the 95%
confidence intervals could be calculated (Givens & Hoeting, 2013). The data is assumed
to follow the model d = dψ + ε, where ε = (εCAF,εCC) and eCAF�Nð0; r2CAFÞ and
eCC�Nð0; r2CCÞ are independent. Using the identified parameter set ĉ; the sample
variances are estimated and used to generate random error terms to create simulated data
sets. A total of 300 such data sets were utilized in the calculation of the 95% confidence
interval for each parameter.

RESULTS
CAFs grown alone
In the first monoculture scenario, the CAFs are grown with either Gln or NHþ

4 supplied
at various concentrations, see Figs. 2 and 3. If the CAFs are presented with Gln, they
convert it nearly entirely to NHþ

4 , see the blue curves in Figs. 3A, 3C and 3E. This can be
explained by the efficient glutaminolysis in the cells, generating NHþ

4 and glutamate.
The latter can be further metabolized to a-ketoglutarate to enter the citric acid cycle
for energy production. On the other hand, if CAFs are supplied with NHþ

4 they convert
it to Gln, although not entirely, see the red curves in Figs. 2A, 2C and 2E. To make
this possible, we introduce to the model a second source of chemical energy, which could
be other metabolites, including amino acids such as glutamate, as well as glucose-derived
a-ketoglutarate. The cells draw from this energy source to carry out the conversion of
NHþ

4 to Gln, but also when they are supplied Gln. Note that R will be decreasing, as it is not
replenished during the 72 h of observation in our experimental protocol. The CAFs can
grow on both Gln and the other source and grow in the presence of NHþ

4 when this other
source of energy exists.

Let A(t), W(t), R(t) and X(t) denote the concentration of Gln, the concentration of
NHþ

4 , the chemical energy and the number of live CAFs at time t. Then we have

dA
dt

¼ �k1AX þ c2k2WRX; (2a)

dW
dt

¼ c1k1AX � k2WRx þ hX; (2b)

dR
dt

¼ �k2WRX � k3RX; (2c)

dX
dt

¼ r1
A

K1 þ A
þ r2

R
K2 þ R

� d1W � d2

� �
X: (2d)

In this model, k1 in Eqs. (2a) and (2b) denotes the rate of conversion of Gln to NHþ
4 .

The constant c1 is a dimensionless number that accounts for how much NHþ
4 is actually

produced from Gln, whereas h includes the production of NHþ
4 from other possible
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sources. Similarly, k2 denotes the rate of conversion of NHþ
4 to Gln, while c2 is a

dimensionless number that accounts for how much Gln is actually produced from
NHþ

4 . Both processes are proportional to the number of cells present, X. The conversion
of NHþ

4 also requires the alternative energy source R to be present, which gets depleted
as a result. The alternative energy is consumed by the cells at a rate k3 in Eq. (2c),
independent of the NHþ

4 to Gln conversion process. Equation (2d) describes the evolution
of the cell number. The cells can grow on either source in a way that saturates at high
concentrations. Specifically, r1 is the maximal growth rate on Gln, and K1 is the
concentration of Gln at which half the maximal rate is achieved. The constants r2 and K2

have the same meaning with respect to the alternative energy source R. The CAFs are
able to grow when NHþ

4 is supplied and the concentration of Gln is very low initially.
That is why we allow the CAFs to grow on the alternative source. Finally, in Eq. (2d), d1 is
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Figure 2 (A, C and E) The concentrations of NHþ
4 and Gln when the CAFs are supplied with NHþ

4 ;
(B, D and F) the number of live CAFs. Here and in all following figures, solid lines represent the model
simulations and dots represent the experimental data. Full-size DOI: 10.7717/peerj.10648/fig-2
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the death rate for cells exposed to NHþ
4 , whereas d2 is the natural (or “background”) death

rate.
It is likely that R represents the combined effect of multiple factors, such as additional

amino acids and metabolites from external and internal sources to provide nitrogen and
carbon needed for biosynthesis. We have decided that R which is not accessed in the
experiments is present initially at a concentration of 20 mM in all scenarios for the
current model. This is for convenience and so that it matches the order of magnitude of
all the other concentrations (Gln is supplied at 1, 2 and 4 mM and NHþ

4 is supplied at
5, 10 and 25 mM, respectively). Note that if R is not replenished, it will tend to zero in the
long run. Furthermore, all Gln will be converted to NHþ

4 and since it is toxic, eventually the
cells will die out. This is, however, not observed before 3 days, the duration of our
experiments.

The results of the experiments and simulations for the CAFs are shown in Figs. 2
(when NHþ

4 is supplied) and 3 (when Gln is supplied), respectively. We observe that in all
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Figure 3 (A, C and E) The concentrations of NHþ
4 and Gln when the CAFs are supplied with Gln;

(B, D and F) the number of live CAFs. Full-size DOI: 10.7717/peerj.10648/fig-3
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cases the number of CAFs increases, except when NHþ
4 is delivered at its highest

concentration. The 12 parameters are determined by fitting the model output to the
experimental data. The numerical values of the parameters for the CAFs together with
their 95% confidence intervals are given in Table 1.

Cancer cells grown alone
The model for the cancer cell monoculture is the same as Eqs. (2a)–(2d), with one
exception. Since the cancer cells have an increased need for glutamine, they are assumed to
be more sensitive to depletion of glutamine and cannot grow on the alternative energy
source. Hence we set r2 = 0 from the beginning. The numerical values of the parameters
for cancer cells are given in Table 2 and the results of the experiments and simulations are
shown in Figs. 4 and 5.

Table 1 The fitted numerical values and 95% confidence intervals of the parameters of the model (2a)–(2d) for the CAFs.

Parameter Value and unit 95% CI Role

k1 4.13 × 10−7 (cell × h)−1 [4.03 × 10−7–4.21 × 10−7] conversion rate of Gln to NHþ
4

c1 0.9 [0.85–0.92] efficacy of NHþ
4 production

k2 4.5 × 10−8 (cell × mM × h)−1 [4.06 × 10−8–4.89 × 10−8] conversion rate of NHþ
4 to Gln

c2 0.28 [0.28–0.29] efficacy of Gln production

h 1.6 × 10−8 mM × (cell × h)−1 [1.33 × 10−8–1.89 × 10−8] natural production rate of NHþ
4

k3 2.1 × 10−7 (cell × h)−1 [1.83 × 10−7–2.3 × 10−7] consumption rate of alternative energy

r1 2.5 × 10−2 h−1 [2.39 × 10−2–2.60 × 10−2] maximal growth rate on Gln

K1 0.63 mM [0.53–0.72] half-maximal Gln concentration

r2 3.45 × 10−6 h−1 [3.05 × 10−6–3.84 × 10−6] maximal growth rate on alternative energy

K2 7.3 mM [6.1–8.5] half-maximal alternative energy concentration

d1 1.3 × 10−3 (mM × h)−1 [1.27 × 10−3–1.34 × 10−3] NHþ
4 induced cell death rate

d2 7 × 10−5 h−1 [6.33 × 10−5–7.67 × 10−5] background cell death rate

Table 2 The fitted numerical values and 95% confidence intervals of the parameters in the model (2a)–(2d) for the cancer cells.

Parameter Value and unit 95% CI Role

k1 7.5 × 10−8 (cell × h)−1 [7.21 × 10−8–7.89 × 10−8] conversion rate of Gln to NHþ
4

c1 1.9 [1.67–2.18] efficacy of NHþ
4 production

k2 2.4 × 10−8 (cell × mM × h)−1 [2.35 × 10−8–2.41 × 10−8] conversion rate of NHþ
4 to Gln

c2 0.15 [0.14–0.16] efficacy of Gln production

h 5.3 × 10−7 mM × (cell × h)−1 [5.1 × 10−7–5.6 × 10−7] natural production rate of NHþ
4

k3 2.6 × 10−10 (cell × h)−1 [1.92 × 10−10–3.37 × 10−10] consumption rate of alternative energy

r1 5.6 × 10−2 h−1 [5.4 × 10−2–5.8 × 10−2] maximal growth rate on Gln

K1 1.97 mM [1.93–2.00] half-maximal Gln concentration

d1 1.7 × 10−3 (mM × h)−1 [1.6 × 10−3–1.75 × 10−3] NHþ
4 -induced cell death rate

d2 1.1 × 10−2 h−1 [9.4 × 10−3–1.3 × 10−2] background cell death rate
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The relative widths of the 95% confidence intervals for all parameters can be used
for a sensitivity analysis, as shown in Fig. 6, where all parameters have been normalized
to 1. A narrow confidence interval indicates that a parameter is not allowed to vary
substantially from its optimal (fitted) value without a considerable increase of the cost
function from Eq. (1). On the other hand, a wide confidence interval indicates that the
precise value of a parameter is less crucial. While there is not a clearly discernible pattern
for both cell types, we see that r1, the growth rate of the cells on Gln is highly sensitive for
both. The same holds for d1, the NH

þ
4 -induced cell death rate.

The coculture scenario
For the coculture model we denote the number of CAFs by X(t) and the number of cancer
cells by Y(t). For all equations of the model we use the corresponding terms from
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Figure 4 (A, C and E) The concentrations of NHþ
4 and Gln when the cancer cells are supplied with

NHþ
4 ; (B, D and F) the number of live cancer cells. Full-size DOI: 10.7717/peerj.10648/fig-4
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for the cancer cells (B). A narrow interval is taken as a sign for a highly sensitive parameter.
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Eqs. (2a)–(2d) for the CAFs, respectively its version for the cancer cells. Then we have the
merged coculture model

dA
dt

¼ �kCAF1 AX þ cCAF2 kCAF2 WRx � kCC1 AY þ cCC2 kCC2 WRY; (3a)

dW
dt

¼ cCAF1 kCAF1 AX � kCAF2 WRx þ cCC1 kCC1 AY � kCC2 WRY þ hCAFX þ hCCY ; (3b)

dR
dt

¼ �kCAF2 WRX � kCC2 WRY � kCAF3 RX � kCC3 RY ; (3c)

dX
dt

¼ rCAF1
A

KCAF
1 þ A

þ rCAF2
R

KCAF
2 þ R

� dCAF1 W � dCAF2

� �
X; (3d)

dY
dt

¼ rCC1
A

KCC
1 þ A

� dCC1 W � dCC2

� �
Y : (3e)

Here we have four experimental scenarios, three with with different concentrations of
NHþ

4 (5, 10 and 25 mM, respectively) and one with 4 mM Gln supplied. We use the
parameter values from Tables 1 and 2, with only two changes that are given in Table 3.
The growth rates of both cell types are allowed to change since in the coculture the it is
assumed that the two cell types may affect each other. The results are depicted in Figs. 7–9.
We have a good agreement between model predictions and experimental data, except
that there is a stronger decline in the total cell number after 48 h. This could be due to
depletion of other nutrients such as glucose at that time. In the simulations, the CAFs and
cancer cells recover and begin to grow on the newly created Gln. In both experiments
and simulations, the ratio between live cancer cells and CAFs remains roughly at 1:1
throughout, except at the highest concentration of NHþ

4 . Our goal is to keep the number of
parameter changes relative to the two monoculture scenarios small, as well as the factor by
which the parameter is being changed.

The coculture with a stress factor
As we can see in Fig. 7, the merged coculture model (3a)–(3e) performs reasonably
well, except for the total cell population at the 72 h data point. In order to remedy this,
we introduce a crowding effect or a “stress factor” that is produced by both the CAFs and

Table 3 The numerical values of the parameters in the coculture model (3a)–(3e). The third column is
the change over their values in Tables 1 and 2, respectively.

Parameter Value and unit Ratio 95% CI

rCAF1 5 × 10−3 h−1 10−1 [4.6 × 10−3–5.4 × 10−3]

rCC1 6 × 10−2 h−2 1.08 [5.95 × 10−2–6.03 × 10−2]
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Figure 7 (A, C and E) The concentrations of NHþ
4 and Gln in the coculture scenario; (B, D and F) the

number of live CAFs and cancer cells. This simulation uses the “merged” coculture model (3a)–(3e)
with two adjusted parameters from Table 3. Full-size DOI: 10.7717/peerj.10648/fig-7
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Figure 8 The percentage of live cancer cells in the coculture when treated with (A) 5, (B) 10, and (C) 25 mM NHþ
4 , respectively.

Full-size DOI: 10.7717/peerj.10648/fig-8
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cancer cells and that kills both cell types in a nonlinear fashion. Thus we add an equation
for the stress factor (denoted by L),

dL
dt

¼ gXY ; Lð0Þ ¼ 0; (4f)

where g is the rate at which the stress factor is produced by the cells. To Eqs. (3d) and (3e)
we add another loss term, quadratic in L,

dX
dt

¼ . . . �mL2
� �

X; (4d)

dY
dt

¼ . . . �mL2
� �

Y : (4e)

where m is the rate at which the dimensionless stress factor kills the cells (for simplicity,
it is the same for both cell types). The stress factor has an increasingly harmful effect
at higher elevations. This is necessary to achieve the concave shape of the cell population
curve. The additional parameters are given in Table 4 and the simulation results in Fig. 10.
However, we have reverted the values of rCAF1 and rCC1 to their original values from the
monoculture scenarios.

DISCUSSION
Cellular metabolism is the process of conversion of chemical compounds from the
extracellular environment into storable chemical energy and building blocks for cellular
structure (Berndt & Holzhütter, 2011). Metabolism is essential for life, and it is well-known
that it is altered in many diseases, including cancer (Markert & Vazques, 2015; Shamsi,
Saghafian & Sanati-Nezhad, 2018). The precise way in which the cells’s metabolism is
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Figure 9 The behavior of the coculture under Gln supply. Shown are the concentrations of Gln and NHþ
4 (A), the total number of live cells (B),

and the percentage of cancer cells (C). Full-size DOI: 10.7717/peerj.10648/fig-9

Table 4 The numerical values of the additional parameters in the coculture model with the stress
factor (3a)–(3c), (4d)–(4f).

Parameter Value and unit

g 7 × 10−7 h−1 cell−2

m 10−11 h−1
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altered often remains insufficiently understood, as well as the implications of the altered
metabolism for new cell growth and proliferation patterns. A better understanding of
cancer cell metabolism may result in new approaches and targets for treatment of the
disease (Enderling & Chaplain, 2014; Yang et al., 2016; Roy & Finley, 2017).

In this article we have performed an experimental-theoretical study of cancer cells,
cancer associated fibroblasts and a coculture of both. With some exceptions to which we
return below, the simple merged model fits the data rather well. We recall at this point that
each data set used to fit a set of parameters consists of all concentrations and live cell
numbers for a certain cell type under all treatment scenarios with Gln and NHþ

4 . Recent
evidence has pointed out that otherwise “healthy” cells in malignant neoplasms also
show altered behavior. Cancer cells often exhibit increased rates to metabolize key
nutrients such as glucose and Gln to support macromolecular synthesis. Cellular uptake of
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Figure 10 (A, C and E) The concentrations of NHþ
4 and Gln in the coculture scenario; (B, D and F)

the number of live CAFs and cancer cells. This simulation uses the coculture model with stress factor,
(3a)–(3c), (4d)–(4f). The new parameters are listed in Table 4.

Full-size DOI: 10.7717/peerj.10648/fig-10
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Gln is frequently targeted by oncogenic signals (Wise et al., 2008; Dang, 2012; Son et al.,
2013).

Toxic NHþ
4 produced from glutaminolysis is drained by blood vessels and subsequently

eliminated via the urea cycle. In addition, cancer cells metabolically remove NHþ
4 , which

has just begun to be understood. While some cancer cells are able to convert NHþ
4

back into amino acids (Spinelli et al., 2017), active involvement of other cell populations
plays a critical role. In the breast, normal and cancerous epithelial cells from the
luminal lineage express higher levels of GLUL in comparison to basal-lineage cells.
This confers a glutamine independence to luminal cells (Kung, Marks & Chi, 2011).
The ability of CAFs to recycle metabolic wastes, as we modeled herein, may represent
a relatively general mechanism in solid tumors (Yan et al., 2018). This is particularly
important for cancer cells carrying mutations in genes related to NHþ

4 conversion.
By engaging CAFs in the tumor microenvironment, which are more tolerant of higher
NHþ

4 concentrations, cancer cells can avoid the high price of cell loss associated with
concerting NHþ

4 by themselves. As reflected by our experimental and mathematical model,
the ecosystem comprised of cancer cells and CAFs can maintain itself during short periods
of Gln deprivation and NHþ

4 accumulation by keeping the ratio between the two
populations roughly stable. This provides a buffering capacity over hostile metabolic
conditions, allowing for sustained tumor growth.

Our mathematical model has produced numerical values for key parameters of our
experimental cell lines in Tables 1–4. While a direct comparison is not possible (Collins
et al., 1998) show a similar growth behavior of various breast cancer cell lines when
supplied with Gln (Fig. 1 in that article). For example, doubling times were found between
20 and 75 h. This is similar to what we observe in our Fig. 5B. These authors also report a
rate of Gln disappearance of ∼30 nM per mg cell protein and hour, but this does not
translate well into our setting. The authors of Wang et al. (2018), Fig. 1E in that article,
report a depletion of glutamine in medium from 2 mM to 0 over 3 days by a population of
MCF-7 cells that grows from 103 to 104 during that time. Unfortunately, this is not
translated into a parameter value. We anticipate that in the future more and more
experimental cell lines will be characterized in a similar fashion, and that eventually a
curated database of growth, death and interaction rates will be created, similarly to
collections of authenticated cell cultures like ECACC (2020). More available information
will be helpful in the process of selecting an experimental cell line in future cancer research
(Holliday & Speirs, 2011), in particular as mathematical models become more and
more prevalent.

Our mathematical model performs best in the explanation of the monoculture
scenarios, while the experimental data from the coculture scenario show a qualitatively
different behavior that the mere merger of the monoculture models is not able to explain
well. In particular, the total cell number rises initially, and then decreases considerably
after 48 h, see Figs. 7B, 7D and 7F. Throughout, the 50/50 composition of the population
is essentially maintained, although initially the fraction of cancer cells rises slightly.
We propose in an extended model that there is a stress factor produced by the CAFs and
cancer cells that increasingly kills both cell types. Future research will have to elucidate the
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precise reasons for the sharp decline of cell numbers after 48 h, and how a similar
population would behave in vivo. It is very likely that since we did not replenish the
medium during the cell culturing period due to the need to measure time-dependent
consumption and production of glutamine and ammonium, there was a sharp decline in
other critical nutrients after 48 h (e.g., glucose and other essential amino acids), which may
contribute to the increasing cell death in the coculture scenario.

In addition to explaining the experimental scenarios shown here, our mathematical
model can also be used to simulate further possible situations. One such scenario is a
“renormalization” treatment of the CAFs by which they return to their normal behavior as
fibroblasts. Assuming that the normal fibroblasts do not convert NHþ

4 to Gln amounts
to setting the constant kCAF2 in Eqs. (3a) and (3b) to zero. The result of such a simulation is
shown in Fig. 11. There, only the cancer cancer cells convert NHþ

4 to Gln, and the total
population decreases faster than when the CAFs convert NHþ

4 to Gln as well. Other
possible scenarios are different ratios of CAFs to cancer cells at time of seeding, different
initial amounts of available resources and replenishment of resources at later times.
For example, we carried out simulations when one of the two populations dominates
initially. This shifts the behavior of the entire population towards that of the monoculture
of the dominating population (simulations not shown). It is also possible to replenish
the secondary energy source R and thereby to extend the life span of the population
(simulations not shown). One feature of our ordinary differential equation model is that it
assumes a “well-mixed” environment. A more advanced version of the model would
consist of partial differential equations, where the variables also depend on space.
In that case one could model the diffusion of the chemical compounds and different initial
localizations of the cell types in the coculture. Naturally, this brings with it the need for
more parametrization and additional challenges in the numerical simulation.

CONCLUSION
In future studies, the model presented herein can be amended to include additional cell
types found in the tumor microenvironment, such as vascular endothelial cells and
immune cells, to understand their role in tumor metabolism and growth and to predict
tumor response to therapies such as cytotoxic chemotherapy, metabolic therapy, and
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Figure 11 A comparison of the simulated concentrations of Gln and NHþ
4 (A) and the total number

of live cells (B) of the coculture model (3a)–(3e), for regular CAFs (dashed lines) and for
“normalized” fibroblasts (solid lines), where we have set kCAF 2 = 0. Only the treatment scenario
with 5 mM NHþ

4 is shown. Full-size DOI: 10.7717/peerj.10648/fig-11
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immune therapy. One can include a potential interplay between different phenotypes in
cancer cells when exposed to therapy (Craig et al., 2019). It would also be interesting to
determine the dose effects of various non-cancer cells on both the rate and persistence
of tumor growth, and to incorporate not only metabolic interactions but also intercellular
crosstalk through growth factors and cytokines, to improve our understanding of the
dynamic and highly heterogeneous tumor growth environment. These insights would
provide key information towards novel therapeutic strategies targeting the tumor
ecosystem as an entity.
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