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level of exhaustion. Since the fatigue from walking is not limited in location, as the case in 

localized muscle fatigue that has been described by (Chaffin, 1973), it is difficult to simulate the 

effects in the laboratory without actually having the subject walk until tired.  

6.1.6.1 Role of specific muscle groups in amputee gait 

Previous studies investigated which muscles – in both legs – experience the highest work load in 

trans-tibial amputees (Isakov, Burger, Krajnik, Gregoric, & Marincek, 2001; Isakov et al., 2000; 

Moirenfeld, Ayalon, Ben-Sira, & Isakov, 2000; Renström, Grimby, Morelli, & Palmertz, 1983; 

Schmalz et al., 2001; Winter & Sienko, 1988; R. J. Zmitrewicz et al., 2007). In summary, it seem 

to be mostly the hip flexor and extensor muscles of the thigh that carry the workload of walking 

with a trans-tibial prosthesis. Their contribution is even more pronounced for the biarticular 

muscles that also affect the knee joint. 

While it is undeniable that muscles contribute differently to the gait pattern in amputees 

than in able-bodied subjects, it remains unclear to what extent muscle fatigue influences the 

outcome with respect to gait symmetry. (Moirenfeld et al., 2000) discussed the implied safety 

and overall performance deficits, and it seems logical to assume that walking symmetry is 

affected in a similar sense. A literature search does not bring up any publications on this 

assumed interrelation.   

One option for assessing muscle fatigue is the derivation from EMG readings. Respective 

algorithms have been proposed and refined for many decades (Cifrek, Medved, Tonkovic, & 

Ostojic, 2009; Lindström, Kadefors, & Petersén, 1977; Merletti, Lo Conte, & Orizio, 1991). 

Another way of measuring actual fatigue would be by means of self-assessment questionnaires. 

(Berge et al., 2005) in their prosthesis walking study utilized a quite complex questionnaire, the 

Multidimensional Fatigue Inventory (Smets, Garssen, Bonke, & De Haes, 1995), to that end, 
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Figure 37: Effect of handrail selection on selected gait parameters during up stairs walking 

9.2.5 Discussion 

Only two of the subjects elected not to use a handrail for normal speeds, and two others used 

both handrails. Of those who used one handrail, four preferred the one on the side opposite of 

the prosthesis, and two preferred the same sided handrail. Stability measures did not show big 

differences between subjects who preferred the handrail on the same side of the prosthesis and 

those who preferred the opposite side handrail. 

Given the fact, that the majority of subjects used the respective right handrail, it can be 

suspected that the preferred hand seems to be more important than the preferred leg. In 

absolute measures, preference of the opposite handrail seemed to decrease the stair climbing 

velocity, especially down stairs, and it clearly increased the measured knee and ankle flexion 
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moments during up stairs climbing. Step-by-step variability within the selected kinetics 

parameters does not seem significantly influenced by the use of handrail(s); however, this 

finding may be attributed to the fact that subjects were free to decide which handrail to use. We 

suspect that other factors, such as prosthetic socket fit or the componentry design determine 

the level of stair walking stability in amputees. 

Acknowledgements 

This work is supported by an UWM Chancellors Award. We would also like to thank Doug 

Briggs, PhD, Caitlin Moore, and Stacy van Dyke for their help. 

References 

[1] T. Andriacchi, G. Andersson, R. Fermier, D. Stern, and J. Galante, "A study of lower-limb 
mechanics during stair-climbing," J Bone Joint Surg Am, vol. 62, pp. 749-57, 1980. 

[2] A. Stacoff, C. Diezi, G. Luder, E. Stüssi, and I. Kramers-de Quervain, "Ground reaction forces 
on stairs: effects of stair inclination and age," Gait Posture, vol. 21, pp. 24-38, 2005. 

[3] S. Ristanis, G. Giakas, C. Papageorgiou, T. Moraiti, N. Stergiou, and A. Georgoulis, "The effects 
of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending 
stairs," Knee Surg Sports Traumatol Arthrosc, vol. 11, pp. 360-5, 2003. 

[4] C. Powers, L. Boyd, L. Torburn, and J. Perry, "Stair ambulation in persons with transtibial 
amputation: an analysis of the Seattle LightFoot," J Rehabil Res Dev, vol. 34, pp. 9-18, 1997. 

[5] T. Schmalz, S. Blumentritt, and B. Marx, "Biomechanical analysis of stair ambulation in lower 
limb amputees," Gait Posture, vol. 25, pp. 267-78, 2007. 

[6] M. Alimusaj, L. Fradet, F. Braatz, H. Gerner, and S. Wolf, "Kinematics and kinetics with an 
adaptive ankle foot system during stair ambulation of transtibial amputees," Gait Posture, vol. 
30, pp. 356-63, 2009 



207 
 

 

9.3 Evaluation of an Integrated Sensor System for Assessment of Prosthesis 

Ankle Alignment in Lower Extremity Amputees 

Goeran Fiedler, Dipl. Ing (FH), CPO-D, Brooke A. Slavens, PhD, and Roger Smith, PhD 

Rehabilitation Research Design and Disability (R2D2) Center, Department of Occupational Science 

and Technology, University of Wisconsin-Milwaukee, Milwaukee, WI 

(Presented at Gait and Clinical Movement Analysis Society (GCMAS) Conference. 2012. Grand 

Rapids, MI) 

9.3.1 Introduction 

Prosthesis integrated sensors allow the continuous measurement of forces and moments 

directly within the weight bearing structure of the locomotor system. This possibility is unique 

for amputee subjects, as comparable measurements in normal subjects would always 

necessitate the use of an external gait analysis system, or the surgical implantation of respective 

sensor units [1, 2]. Intended applications of prosthesis integrated sensors include the 

assessment of amputee gait in clinical and non-clinical environments, and efficient optimization 

and outcome assessment of prosthetic fittings without the need for conventional gait analysis 

[3]. These applications are based on the assumption that the integrated sensor delivers valid 

information. Beyond that, it remains to be determined whether three-dimensional force and 

moment data in the prosthetic leg is sufficient to accomplish those objectives. This study 

presents preliminary evaluation of the iPecs integrated sensor for quantitative assessment of 

prosthesis alignment. 

9.3.2 Clinical significance 

Optimal prosthesis fitting and alignment is a prerequisite to efficient and symmetrical amputee 

gait. In the clinic, the respective assessment is usually based on visual observation and feedback 

that the patient voices [4, 5]. A more objective and reliable method would be based on 
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conventional gait analysis that, indeed, is commonly used as a research tool. However, 

relevance is lacking to everyday clinical practice, due to the significant time, space, and effort 

that the operation of such systems require. The emergence of easy to use, quantitative tools for 

objective assessment of amputee gait has the potential for improving prosthesis fit and 

alignment. 

9.3.3 Methods 

A total of 10 trans-tibial amputees were recruited for participation in this IRB-approved study. 

Subjects who were pain free and able to walk comfortably for at least 30 minutes were included 

in the sample. Amputees whose residual limb length prevented the accommodation of the 

sensor unit in the prosthesis had to be excluded. Participants’ prostheses were modified to 

install the sensor unit (iPecs, CPI, Fraser, MI). Subjects then performed walking trials with 

different ankle alignment settings, each deviating 2 degrees 

from their normal position in the sagittal plane. Between 

walking trials, subjects were asked to stand normally, with 

feet placed on adjacent force plates (AMTI, Watertown, 

MA). Ankle and knee moments were computed from Motion 

Analysis Data (Motion Analysis, Santa Rosa, CA), as well as 

from the iPecs data. Intermethod reliability of moment 

averages and maxima was estimated for each intervention 

using a 2 x 3 ANOVA. 

 

 

Figure 35: Prosthesis with iPecs 
sensor below the socket 
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9.3.4 Demonstration 

Figure 38 shows the experimental setup with the integrated sensor mounted in the prosthesis 

and the subject wearing markers for the motion analysis. Figure 39 illustrates the differences in 

vertical force and ankle torsion moments during walking trials, as measured with both methods 

for one representative subject. 

 

 

9.3.5 Summary 

Our study investigated whether the forces and moments within trans-tibial prostheses can be 

accurately measured using integrated sensors. Changes in the alignment of the prosthetic ankle 

joint should be reliably represented in the respective changes of the joint moment(s) regardless 

of the measurement method. If differences in alignment can be successfully detected using the 

iPecs, integrated sensors may be used alternatively to conventional gait analysis. For the static 

optimization of the ankle flexion, which is of relevance for the safety and efficiency of amputee 

gait, this seems to be the case. Typical limitations of this tool, such as delivering information 

only on one leg, and without any kinematic data, are not of concern for this application, but 

should be considered in more extensive observations that include locomotion. This evaluation 

serves as the foundation for further investigation of improving prosthetic alignment and overall 

assessment through the use of integrated sensors. 

Figure 39: Superposition of force and moment data of two consecutive steps obtained by integrated sensors 
(orange) and by force plates (black dotted).  
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9.4 Integrated Sensor Systems for Assessment of Rehabilitation in Lower 

Extremity Amputees  

By Goeran Fiedler, Dipl. Ing (FH), CPO-D and Brooke A. Slavens, PhD 

(Presented at isQoLT 2011, Toronto) 

9.4.1 Abstract 

The emergence of internal sensor systems for prosthetic gait assessment brings new perspective 

in the field of amputee rehabilitation outcomes measurement. Existing methods for determining 

the quality of prosthetic fit are limited. New technology using integrated sensor systems, such as 

the “iPecs”, may provide useful quantitative metrics for clinical and rehabilitation assessment of 

lower extremity amputees.  These systems may prove essential for mobile monitoring and 

biomechanical evaluation. 

9.4.2 Background 

Amputations of the lower extremity are comparably widespread. Trans-tibial amputation alone 

has an annual incidence rate of roughly 13 in 100,000 Americans [1]. The main causes for such 

amputations are vascular conditions, such as those resulting from diabetes. With the expected 

higher prevalence rate of diabetes in the future, it is projected that the number of persons living 

with an amputation will double by the year 2050 [2]. Artificial limbs that replace the lost 

structure below the knee are necessary to enable standing and ambulation without crutches, 

and to facilitate the prevention of secondary ailments. Since socket fit and static alignment of 

prostheses are customized to the individual user, standardized quality measures are difficult to 

define and often result in high variability within the end products of prosthetist’s efforts.  

The tools that have been used to assess the quality of prosthetic fit and performance 

capabilities include questionnaires, pedometers, accelerometers, and motion analysis. While 

each of these methods has a unique scope, all have some shortcomings with respect to 
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subjectivity and reliability of long-term evaluation of outcomes. A new generation of integrated 

sensor units promises to provide precise and extensive mobile data that may be very useful in 

quantifying the relevant factors for amputees. 

9.4.3 State of the Art 

 Prosthetics and Orthotics (P&O) is traditionally a trade that depends widely on the 

practitioner’s personal professional experience. While much of the manual labor that goes into 

building and fitting a prosthesis has been replaced by standardized solutions over the last 

decades, the crucial task of optimizing socket shape and static alignment of the prosthesis 

remains a domain of the prosthetist’s expertise and keen eye.  

Accordingly, the consistent quality of prosthetic fittings can be questioned [3], especially in 

regions where skilled labor is scarce. In low income countries, for instance, as estimated by the 

World Health Organization (WHO), approximately 20,000 orthopedic technicians was needed in 

2010, whereas only 300 technicians graduate annually from training centers [4]. Efficient 

methods to consistently achieve a proper alignment of the prosthesis are required to increase 

the quantity and quality of prosthetic provisions. 

The consequent application of evidence based practice principles in the field has been 

hampered by the inevitably narrow bandwidth of research, leading to a lack of basic science. 

According to Geil et al. (2009), research in P&O relies on basic research from other disciplines if 

it relies on basic research at all. While this phenomenon is partly due to the relative youth of 

sophisticated P&O research, the applied nature of the field also lends itself to applied research [5]. 

One aspect is also the availability of dedicated tools for static alignment. Replacing some 

traditional analogous measuring devices with modern computer aided scanners and laser plumb 

lines has contributed to a reduction of the error variance [6], without however addressing the 
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basic problem of obtaining objective information on the quality of fit during the rectification and 

optimization process. Promising methods to standardize prosthetic alignment algorithms based 

on accurate data collection have been proposed [7], but have not gained widespread popularity. 

Similarly, the usefulness of motion analysis for the optimization of prosthetic gait pattern is 

evident, yet in everyday practice almost irrelevant due to the extensive equipment and time 

demands that cannot usually be accommodated (figure 1). Recently, the adaptation of 

miniaturized sensors for P&O purposes has changed this situation. Ayyappa et al. [8] states that 

current technology provides onboard gait laboratories as components of the prosthesis, which 

may allow practitioners to more intimately meet the needs of their patients.  

9.4.4 The Future of integrated Gait Analysis 

The option of integrating a sensor unit directly into the weight bearing structure is unique to the 

field of prosthetics, as any sensor that a non-amputated subject would be equipped with can 

merely be attached to the surface of the body, and is thus susceptible to various measurement 

errors. The onset of commercially available computer controlled prosthesis knee joints in the 

1990s brought about the first miniaturized sensors that were required in order to deliver the 

input for the respective swing phase control or stance phase safety. The Otto Bock C-Leg 

features a set of strain gages inside the modular shin tube adapter and uses the obtained 

moment information during the ground contact phase to determine the actual segment of the 

gait cycle. 

Based on essentially the same technology, various modular components have been 

introduced by different manufacturers. Initially, these devices were intended to be temporarily 

mounted into the prosthesis, and deliver gait data to help optimize the alignment. 

Considerations on weight and cost of these early generation sensor units did not suggest their 

permanence in the prosthesis. 
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The prospect of measuring online gait data independent of a gait laboratory is not without 

inherent difficulties. Apart from the question on validity of the data collection [9], it is most of 

all important to decide what exactly should be measured, and how this information can be 

useful for clinical purposes. The iPecs (Intelligent Prosthetic Endoskeletal Component System) by 

College Park Industries [10], for instance, is capable of measuring forces and moments in six 

degrees of freedom (figures 2, 3), most of which the practitioner may be challenged to use.  

First studies that utilized this tool [11] restrained themselves to longitudinal comparisons of 

selected output values measured in different situations of prosthesis use. Arguably, these 

findings require additional information on how the parameters in question relate to practically 

relevant factors. Values which are correlated to desirable outcomes should be identified, as else 

the data remains useless in practice.  

There exists a need for a reliable, objective assessment method to serve as the gold 

standard to compare outcomes from the iPecs or other integrated sensor systems. Conventional 

gait analysis may be suggested as the standard for comparison of data with these systems. This 

approach offers the possibility to identify significant parameters characteristic of amputee gait. 

Once these factors are known, integrated sensor systems may be used to assess prosthetic gait 

in various environments which utilizes its mobile capabilities.  

9.4.5 Discussion 

Current force and moment sensor technology and their application in prosthetics offers unique 

insight to prosthetic gait by allowing the collection of objective data over extended periods of 

time, independent of the laboratory environment. Caution is recommended when interpreting 

the raw data without a well-defined reference, in order to avoid merely having shifted the 

guessing to a more technical and costly level. 
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Provided that the available technology is capable of identifying clinical deviations in gait 

patterns, it can be projected that the hardware will be subsequently optimized to become 

lighter, less bulky, and more affordable. It is conceivable in the future that every prosthesis will 

be equipped with such a mobile gait lab, improving prosthetic fit and rehabilitation assessment 

of lower extremity amputees. 

 

References 

[1] T. Dillingham, et al., "Limb amputation & limb deficiency: epidemiology & recent trends in 
the United States," Southern Medical Journal, vol. 95, pp. 875-83, 2002. 

[2] K. Ziegler-Graham, et al., "Estimating the prevalence of limb loss in United States: 2005 to 
2050," Archives of Physical Medicine and Rehabilitation, vol. 89, pp. 422-9, 2008. 

[3] M. D. Geil, "Variability among Practitioners in Dynamic Observational Alignment of a 
Transfemoral Prosthesis," Journal of Prosthetics and Orthotics, vol. 14, pp. 159-164, 2002. 

[4] J. Pearlman, et al., "Lower-limb prostheses & wheelchairs in low-income countries," IEEE 
Engineering in Medicine and Biology Magazine, vol. 27, pp. 12-22, 2008. 

[5] M. D. Geil, "Assessing the state of clinically applicable research for evidence based practice 
in posthetics and orthotics," Journal of Rehabilitation Research and Development, vol. 46, 
pp. 305-314, 2009. 

[6] M. D. Geil, "Consistency & accuracy of measurement of lower-limb amputee 
anthropometrics," Journal of Rehabilitation Research and Development, vol. 42, pp. 131-40, 
2005. 

[7] S. Blumentritt, "A new biomechanical method for determination of static prosthetic 
alignment " Prosthetics and Orthotics International, vol. 21, pp. 107-113,1997. 

[8] E. Ayyappa, et al., "Infusing Cutting Edge Technology Into Everyday O&P Clinical Care," 
Journal of Prosthetics and Orthotics, vol. 22, pp. 2-10, 2010. 

[9] S. LeGare, "Clinical Reliability of a Device for Measuring Forces & Moments in Ampute 
Gait,“ MSPO Research Presentation., Atlanta, GA, 2009. 

[10] M. G. Leydet, et al., "Prosthetic Sensing System & Methods," US patent, Publication No. 
20070255424, 2007. 



216 
 

 

[11] G. Papaioannou et al., "Transtibial Prosthetic Kinetics During Prolonged Strenuous Activities 
of Daily Living Measures by Internal Gait Analysis Instrumentation," presented at 37th 
Annual Meeting of the American Academy of Orthotists and Prosthetists, Orlando, FL, 2011. 

Acknowledgements 

This work is supported by the UWM College of Health Sciences, Department of Occupational 

Science and Technology, and the Rehabilitation Research Design and Disability (R2D2) Center. We 

would also like to thank Doug Briggs, PhD and Roger Smith, PhD for their help with this work. 

 



217 
 

 

9.5 Leg Laterality in Bilateral Trans-Tibial Amputees,  A Case Study using 

Prosthesis-Integrated Sensors  

Goeran Fiedler1, Brooke Slavens1, Doug Briggs1, Frank Fedel2, Roger Smith1  

1University of Wisconsin Milwaukee, 2 Eastern Michigan University  

(Presented at the Annual Conference of the Rehabilitation Engineering And Assistive Technology 

Society of North America (RESNA). 2012. Baltimore, MD) 

9.5.1 Abstract 

Bilateral leg amputation is obviously a severe detriment of physical integrity. However, at least 

in the case of bilateral trans-tibial amputation, rehabilitation efforts are often promising, and 

many patients succeed in learning to use prostheses. Due to the relatively small population size, 

literature on gait biomechanics for these patients is scarce, and prosthetic fitting practice is 

based on tradition and empiric rules of thumb. One question that is frequently encountered 

during fitting is whether there is a disparity in leg strength and controllability, and if so, which 

one of the legs is the favored one. This may have implications for the selection and adjustment 

of prosthetic parts, as well as for the prescription of physical therapy, and possibly 

recommended assistive devices. Prosthesis-integrated sensors suggest themselves as efficient 

assessment tools, as they can be installed in both legs, and thus allow continuous and un-

obstructive data collection during various activities (Fiedler & Slavens, 2011). Simple pair-wise 

comparison of parameters between legs can then help answer the research question.  

9.5.2 Introduction  

Among the many millions of people world-wide who live with limb loss, the fraction of bilateral 

trans-tibial amputees is considerable, and includes an estimated 11,400 individuals in the US 

alone (Su, Gard, Lipschutz, & Kuiken, 2007). Many of the main causes of amputation, such as 

cardiovascular disease, trauma, and congenital defects are usually not limited to a single limb or 

side. The rehabilitation of these patients can be challenging due to having to replace several 
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limbs by prostheses. However, in many cases an efficient verticalization can be achieved, 

enabling the amputee to walk with little or even entirely without crutch support. The success 

rate in using prostheses for bilateral trans-tibial amputees has been reported to be as high as 

60-90% (De Fretes, Boonstra, & Vos, 1994). Their gait has been found to be characterized by 

lower speeds, cadences, ankle moments and knee moments, compared to able bodied controls, 

which might be attributed to a deficit in available prosthetic componentry (Su, Gard, Lipschutz, 

& Kuiken, 2007).  

One issue in the prosthetic fitting process is the decision about socket technology and 

functional part selection in cases where the residual limbs display different capabilities in terms 

of weight bearing, and prosthesis control. This is usually assumed when there is a large gap in 

limb length, and/or additional impairments such as large scars, muscular deficits or joint 

ailments affecting one side more than the other. Consequently, optimal selection and 

adjustment of the prosthetic foot components may be different for both legs. Prosthetic feet 

characteristics can generally be described as a continuum between stiffness and flexibility. 

While the former allows energy storage and return in the interest of a dynamic and efficient gait 

pattern, the latter secures stable ground contact, accommodation of uneven surfaces, and 

reduction of ankle moments, which is conducive to the stance stability and thus the (perceived) 

safety of the amputee (Su, Gard, Lipschutz, & Kuiken, 2010).  

Knowledge on the preferred leg of bilateral trans-tibial amputees can inform the 

prescription of prosthetic feet and other functional parts such as torsion adapters or shock 

absorbers. Beyond that, it becomes possible to customize a physical therapy regimen that 

considers the respective different capabilities of both legs, so as to include strengthening and 

balance, and to practice individualized strategies for stair walking and other demanding tasks of 

everyday life.  



219 
 

 

9.5.3 Methods  

IRB approval for this study was granted. Persons from 18 to 80 years of age with bilateral trans-

tibial amputations who use prostheses built in modular technique, and were able to walk at 

least 30 minutes per day pain-free and without assistive devices were recruited for this study. 

Patients whose prostheses did not provide enough space between socket and foot module to fit 

the mobile measuring unit could not participate in this study. An initial screening was conducted 

to assure eligibility. Two male subjects (A: 61 years, 5’7”, 185 lbs, and B: 32 years, 5’8”, 178 lbs) 

participated in this study. Informed consent was obtained prior to the data collection.  

In preparation of the data collection, the existing prostheses of the subject were modified 

by replacing the tube adapters above the foot modules with the iPecs integral sensor units 

(College Park Industries, Fraser, MI), and tube adapter in respectively shorter or longer lengths 

while maintaining the overall static alignment of the prostheses. In the gait lab, the subjects 

donned the modified prostheses in the usual fashion. In addition to measuring anthropometric 

data, such as limb dimensions, subject height and body mass, the Amputee Activity Score sheet 

was completed based on the subject’s self-report (Day, 1981).  

Continuous iPecs measurements were conducted while subjects performed the following 

tasks in subsequent order:  

- Walked in their preferred speed along the hallway (level surface, concrete floor),  

- Walked down the stairs to the 1st floor (15 steps, concrete),  

- Walked across a parking lot outside of the building (slightly uneven, asphalt and concrete 

sidewalk),  

- Walked up a different set of stairs (13 steps), and  

- While secured with a safety harness, walked through a 10 ft long sand box filled with gravel.  
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Gait analysis parameters such as step stance duration, knee-, and ankle moment, axial shin 

compression force, all delivered by the iPecs device were normalized to body weight and 

averaged over the trials of each task group (baseline gait inside the lab, stair gait, gait outdoors). 

A bilateral comparison was conducted by means of MANOVA, using the statistical package IBM 

SPSS 20. For every task, the mean difference of the parameters was calculated based on the 

available sample of steps.  

9.5.4 Results  

Both participants were comparably active prosthesis users with several years of experience. 

Subject A has been a bilateral amputee for 17 years and scored 15 on the Amputee Activity 

Score. Both of his residual limbs had about the same dimensions with a length of 16.5 cm. 

Subject B lost his legs 4 years prior, and had an Amputee Activity Score of 21. His residual limbs 

measured 16.5 cm (right) and 15 cm (left) in length. Both participants were fitted with patellar 

tendon bearing sockets with silicon liners and energy storing carbon feet.  

 
Figure 40: Average values in peak vertical force (Fz), stance phase duration, Ankle flexion moment, Knee flexion 
moment, and stride duration for 17 steps of walking on level ground for Subject A. All values are normalized to lbs 
body weight.  
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Participant A preferred a slower walking speed, and used a cane with his right hand. His 

time on the 210 m long circuit path (including the stairs) was 5:55 minutes, equaling an average 

velocity of about 0.59 m/s. Participant B walked without assistive devices and averaged a lap 

time of 3:53 minutes (0.90 m/s). Both participants climbed up stairs employing an alternating 

pattern and using handrails. For the task of walking down stairs, Subject A preferred to step 

forward always with his right foot before placing the left foot on the respective same stair step, 

whereas Subject B displayed an alternating foot placement.  

As a result, 13 steps of down stair walking have been recorded for both legs of Subject A 

(not counting the respective first and last steps), and seven, respectively six steps for the two 

legs of Subject B. Walking up the stairs, both subjects had five or six valid steps of each leg. Level 

ground walking involved 17 steps (A) and 15 steps (B), while outdoor walking was evaluated 

over 27 steps (A) and 31 steps (B) respectively. No useable data could be collected for Subject A 

walking on the gravel path, and only 4 steps were evaluated for Subject B performing this task.  

Figure 40 illustrates the bilateral differences between legs during level ground walking in 

Subject A. All comparisons are summarized in tables 26 and 27.  

Table 26: Bilateral comparison of step parameters during different walking activities. Listed are the 
absolute values for Subject A. * marks significant bilateral differences at the .05 level. 
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Table 27: Bilateral comparison of step parameters during different walking activities. Listed are the absolute values 
for Subject B. * marks significant bilateral differences at the .05 level. 

 

9.5.5 Discussion  

The bilateral differences of walking parameters can be interpreted as an indicator of gait 

symmetry. According to the data we collected, bilateral amputee walking seems to be 

characterized by a considerable asymmetry in gait parameters. The parameters that display 

those asymmetries appear to be individually different. Subject A had very symmetrical weight 

distribution (judged by the peak vertical forces) during level walking, but significant bilateral 

differences in stance phase duration, knee moment and ankle moment. When walking on less 

smooth ground outdoors, the vertical forces became less balanced, but differences in knee 

moment and stance phase duration diminished. The only consistent pattern over all four 

walking tasks was that the ankle moment in the right foot was greater than in the left foot. The 

bilateral differences in Subject B were overall more consistent. Most notably was the knee 

moment that in all situations was higher in the right leg than in the left. The subject reported 

that he often depends more on his left leg, which seems to be confirmed by the peak forces that 

are mostly higher for this side. The fact that greater moments were measured in the right knee 

might be related to this residual limb being longer than the left one.  
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Our chosen data evaluation method based on discrete variables has been used in previous 

studies (Chow, Holmes, Lee, & Sin, 2006), but has its limitations in that it cannot entirely 

describe the kinetics parameters of the step cycle. Judged by the data plots, the measured 

differences may appear even greater when assessed more elaborately. In this context, however, 

it could be discussed what level of difference is indeed of clinical significance. Does the 

discrepancy of 10 Nm in ankle moment warrant a change of the used prosthetic foot 

component, or is such a small aberration an individual peculiarity that does not call for an 

intervention? A more extensive study, both in sample size, and assessment period, may be 

required to answer this question.  
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10 Appendix F: Informed Consent form 

UNIVERSITY OF WISCONSIN – MILWAUKEE 

CONSENT TO PARTICIPATE IN RESEARCH 

THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE YEAR PERIOD 

 

1. General Information 

Study title: Biomechanical Assessment of Gait in Lower-Extremity-Amputees 

Person in Charge of Study (Principal Investigator):  

• The principal investigator for this study is Brooke Slavens, PhD. 

• Dr. Slavens is an assistant professor at the College of Health Sciences at UWMilwaukee 

• Goeran Fiedler is the student-PI for this study. He is a PhD student at the College of 

Health Sciences. 

 

2. Study Description 

You are being asked to participate in a research study.  Your participation is completely 

voluntary.  You do not have to participate if you do not want to. 

 

Study description: 

The purpose of this study is to investigate the symmetry of gait; that is how the motion patterns 

of your left and right leg differ when walking with prosthesis. 

• This study is being done to find out how the gait pattern is linked to the setting of the 

prosthesis. This information can help improve the quality of prosthetic fittings. 

• Specific goals of the study are to investigate how gait symmetry changes on different 

surfaces, with different prosthetic alignments, and at different levels of muscle fatigue. Also, we 

will temporarily install a small sensor unit in your prosthesis, and see whether this can be used 

to measure your gait symmetry. 

• The study is being done at the UWM University Research and Services Building, 115 East 

Reindl Way, Milwaukee, WI 53212. 

• Up to 20 subjects will participate in this study. 

• All data collection will take a maximum of five hours per subject, and will be done on the 

same day. In order to assure that your prosthesis can be modified as planned, a short (10 

minute) technical check-up will be conducted prior to the appointment. 

 

3. Study Procedures 

What will I be asked to do if I participate in the study? 

If you agree to participate you will be asked to  
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• Come to the UWM University Research and Services Building, 115 East Reindl Way, 

Milwaukee, WI 53212. 

• Doff your prosthesis, so that we can install a small sensor unit. Depending on technical 

circumstances this may take up to one hour to do. 

• In the meantime, complete a short standardized interview on your activity level (the 

Amputee Activity Score). 

• Don the prosthesis again and have reflective markers placed on your skin and garment. 

Those are required for the motion capturing. Also we will place sensors that measure your 

muscle activity on the skin of your thighs. It is possible that we will need to shave off some hair 

where the sensors are to be placed. We will take measurements of your foot size, height and 

body weight. You will put on a safety harness that will be required towards the end of the 

testing. Overall, those preparations will be concluded within 30 minutes. 

• Following this, perform a number of walking trials in the gait lab. This is used to 

synchronize the readings from the sensor unit with the data from the motion analysis system 

and will take 5 minutes at most. 

• Next, walk along the hallway outside the lab and down a flight of stairs, and return the 

same way, walk through a box of gravel while being secured by the safety harness. This delivers 

measurement data that we can compare with the data from the gait lab. Depending on your 

preferred walking speed, this will require between 5 and 10 minutes. 

• Take a break while we make slight adjustments to the static alignment of your 

prosthesis. Those include a total of 6 different interventions, such as lowering the forefoot, or 

increasing the outward rotation. With each of the 6 different settings you will be asked to walk a 

few minutes. Again, this gives us data that we can use for comparison purposes, and will take 

about one half hour overall. 

• Eventually, walk on a looped path along the hallway, down the stairs, out the backdoor, 

across the parking lot, through the front door, up the stairs and back to the laboratory. You will 

be accompanied at all times by members of the research team. This exercise will cause a certain 

degree of overall exertion, which we will assess according to your feedback. Depending on your 

fitness level, this walking exercise will take anywhere from 10 minutes to 60 minutes.  

• With your harness connected to a safety rope, perform another set of walking trials in 

the lab. The data will allow us to determine the effect of fatigue on your walking pattern. This 

last test will take no longer than 5 minutes.  

• Doff your prosthesis and have the sensor removed and the original state restored. 

Depending on technical conditions, this will require up to 30 minutes. 

You can take a break at any point in time. Much of the estimated time between the test 

procedures, will be needed for technical preparations, and can be used to rest. In fact, the 

actual performance time will sum up to less than 2 hours total. Your gait will be recorded by a 

multi-camera motion capture system. However, those cameras only record the reflective 

markers, so that your face will not be recognizable. We may ask for permission to take some 

photos for documentation purposes. If published, it will be masked in a way to make you 
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unidentifiable. If you do not want to have your picture taken, you can still participate in the 

study.  

 

4. Risks and Minimizing Risks 

What risks will I face by participating in this study? 

• Foreseeable risks and discomforts include skin irritation from the markers and EMG 

sensors. Those are attached by means of adhesive tape, which is somewhat likely to cause pain 

at removal. In the case that we need to shave off some hair, this might cause some 

inconvenience too. Risks, such as pressure pain and falls, are related to walking with prosthesis, 

especially on stairs and uneven ground, but their likelihood won’t increase by the temporary 

modifications. The fatiguing workout on the exercise machine can cause muscle weakness and 

overall exhaustion. We will use a visual analogue scale to monitor your pain level. If you 

experience uncommon pain or discomfort, the data collection can be interrupted or 

discontinued at any point in time. 

• During the tests with a modified prosthesis, two members of the research staff will 

accompany you at all times for assistance. To reduce the falling risk on the gravel path and after 

the fatigue protocol you will be using the safety harness for the remaining trials. In the case that 

you are injured because of this study, the cost of medical care for your injuries will be billed to 

you or to your insurance company. Insurance companies may not pay for medical care to treat 

injuries you receive while participating in this study. If you think that you have suffered a 

research-related injury, let the study PI know right away. By signing this form, you do not give up 

your right to seek compensation for injuries you receive while participating in this study. 

 

5. Benefits 

Will I receive any benefit from my participation in this study? 

•  There are no benefits to you other than to further research. 

 

6. Study Costs and Compensation 

Will I be charged anything for participating in this study? 

• You will be responsible for your transportation to and from the USR facilities. Parking at 

the USR facilities is free. We will not charge you anything for taking part in this research study. 

Are subjects paid or given anything for being in the study? 

• Upon conclusion of the tests you will receive a cash compensation of US$ 100.-  

 

7. Confidentiality 

What happens to the information collected? 

All information collected about you during the course of this study will be kept confidential to 

the extent permitted by law. We may decide to present what we find to others, or publish our 

results in scientific journals or at scientific conferences. Information that identifies you 
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personally will not be released without your written permission. Only the PI and personnel 

directly related to data collection and evaluation for this study will have access to the 

information.  However, the Institutional Review Board at UW-Milwaukee or appropriate federal 

agencies like the Office for Human Research Protections may review this study’s records. 

• Your information will be recorded and stored under an anonymous identifier, which 

prevents linking your data to your personal information without the paper records.  

• Your personal information and the key to the identifier will be stored in a locked cabinet 

that only authorized staff has access to. 

• The data collected for this study will be stored in a locked cabinet at the laboratory for 

10 years for future use. 

 

8. Alternatives 

Are there alternatives to participating in the study? 

• There are no known alternatives available to you other than not taking part in this 

study. 

 

9. Voluntary Participation and Withdrawal 

What happens if I decide not to be in this study? 

Your participation in this study is entirely voluntary. You may choose not to take part in this 

study.  If you decide to take part, you can change your mind later and withdraw from the study. 

You are free to not answer any questions or withdraw at any time. Your decision will not change 

any present or future relationships with the University of Wisconsin Milwaukee. 

• In the case that you withdraw or are withdrawn early, we will use the information 

collected to that point. 

 

10. Questions 

Who do I contact for questions about this study? 

For more information about the study or the study procedures or treatments, or to withdraw 

from the study, contact: 

Goeran Fiedler (Student PI) 

Department of Occupational Science & Technology 

University of Wisconsin-Milwaukee 

PO Box 413 

Enderis Hall 135G 

Milwaukee, WI 53201-0413 

Phone: (414) 229-6803 / Fax: (414) 229-6843 

 

Who do I contact for questions about my rights or complaints towards my treatment as a 

research subject? 



228 
 

 

The Institutional Review Board may ask your name, but all complaints are kept in confidence. 

Institutional Review Board 

Human Research Protection Program 

Department of University Safety and Assurances 

University of Wisconsin – Milwaukee 

P.O. Box 413 

Milwaukee, WI 53201 

(414) 229-3173 

 

11. Signatures 

Research Subject’s Consent to Participate in Research: 

To voluntarily agree to take part in this study, you must sign on the line below.  If you choose to 

take part in this study, you may withdraw at any time.  You are not giving up any of your legal 

rights by signing this form.  Your signature below indicates that you have read or had read to 

you this entire consent form, including the risks and benefits, and have had all of your questions 

answered, and that you are 18 years of age or older. 

 

_________________________________________________  

Printed Name of Subject/ Legally Authorized Representative  

 

_________________________________________________    

Signature of Subject/Legally Authorized Representative Date 

 

Research Subject’s Consent to Audio/Video/Photo Recording: 

It is okay to photograph me while I am in this study and use my photographed data in the 

research. 

 

Please initial:  ____Yes    ____No 

Principal Investigator (or Designee) 

I have given this research subject information on the study that is accurate and sufficient for the 

subject to fully understand the nature, risks and benefits of the study. 

 

__________________________________            ___________________________________  

Printed Name of Person Obtaining Consent Study Role 

 

____________________________________________________    

Signature of Person Obtaining Consent Date 
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