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We study a tight-binding model on the honeycomb lattice of chiral d-wave superconductivity that
breaks time-reversal symmetry. Because of its nontrivial sublattice structure, we show that it is possible to
construct a gauge-invariant time-reversal-odd bilinear of the pairing potential. The existence of this bilinear
reflects the sublattice polarization of the pairing state. We show that it generates persistent loop current
correlations around each lattice site and opens a topological mass gap at the Dirac points, resembling
Haldane’s model of the anomalous quantum Hall effect. In addition to the usual chiral d-wave edge states,
there also exist electronlike edge resonances due to the topological mass gap. We show that the presence
of loop-current correlations directly leads to a nonzero intrinsic ac Hall conductivity, which produces
the polar Kerr effect without an external magnetic field. Similar results also hold for the nearest-neighbor
chiral p-wave pairing. We briefly discuss the relevance of our results to superconductivity in twisted
bilayer graphene.

DOI: 10.1103/PhysRevX.9.031025 Subject Areas: Superconductivity

I. INTRODUCTION

Chiral superconductors, which possess order parameters
that break time-reversal symmetry, are currently the subject
of much attention due to their nontrivial topological
properties [1,2]. The best-known example of a chiral
pairing state is the A phase of superfluid 3He [3]. Here
Cooper pairs have the orbital angular momentum quantum
numbers L ¼ 1 and Lz ¼ �1, and the pairing potential has
ðpx � ipyÞ-wave symmetry. A direct solid-state analogue of
this phase has long been believed to be realized in Sr2RuO4,
but this has been challenged by recent experiments [4].
Chiral superconductivity can also be obtained for pairing
with higher-order orbital angular momentum. For example,
the low-temperature superconducting phase of UPt3 may
realize a chiral f-wave state [5,6], while chiral d-wave
superconducting states have been proposed for URu2Si2

[7], SrPtAs [8], and twisted bilayer graphene (TBLG) [9].
Many other materials have been predicted to show chiral
superconductivity, such as water-intercalated sodium cobal-
tate NaxCoO2 · yH2O [10], the half-Heusler compound
YPtBi [11], and transition-metal dichalcogenides [12–14].
The breaking of time-reversal symmetry in a chiral

superconductor can be revealed by a number of exper-
imental techniques, e.g., muon spin rotation or Josephson
interferometry [2]. In the past dozen years, measurements
of the polar Kerr effect have emerged as a key experimental
probe [15]. It gives evidence for an anomalous ac Hall
conductivity at zero external magnetic field, which is a
signature of broken time-reversal symmetry. A number of
superconductors have been shown to display a nonzero
Kerr signal below their critical temperatures, specifically,
Sr2RuO4 [16], UPt3 [17], URu2Si2 [18], PrOs4Sb12 [19],
and Bi=Ni bilayers [20]. Although these observations
give clear evidence for broken time-reversal symmetry,
there is ongoing debate over the mechanism underlying
the polar Kerr effect in chiral superconductors. An extrinsic
Kerr effect may originate from impurity scattering
[21–23], whereas an intrinsic Kerr effect is possible for
clean multiband superconductors [24–31]. The latter
mechanism requires that the pairing potential depends on
electronic degrees of freedom beyond the usual spin index,
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e.g., orbital or sublattice indices. However, it remains
unclear what general model-independent conditions these
additional electronic degrees of freedom have to satisfy in
order to produce a Kerr effect. Here we develop a general
condition for this and then apply it to a minimal model of a
chiral d-wave superconductor in order to clarify the under-
lying physics.
Such a minimal theoretical model of a chiral super-

conductor is provided by the extended Hubbard model on
the honeycomb lattice [32,33]. Various theoretical tech-
niques [34–49] applied to this system generally agree on
the existence of a spin-singlet chiral d-wave state at a doping
level close to the van Hove singularity. Closer to half filling,
however, different methods have yielded singlet and triplet
pairings [37,44,47–51], pair-density-wave Kekule order
[52,53], or an unconventional coexistence with antiferro-
magnetism [54–56]. The purpose of our paper is not to
further interrogate the phase diagram, but rather to examine
the properties of the chiral d-wave state in the case where the
nearest-neighbor pairing dominates. Such intersublattice
pairing would satisfy the multiband requirement [25] for
the anomalous Hall conductivity. Thus, chiral d-wave
pairing on the honeycomb lattice provides a minimal model
of the intrinsic Kerr effect, in contrast to the more compli-
cated multiband models of Sr2RuO4 [24–28] and UPt3
[29–31]. The recent discovery of superconductivity in
twisted bilayer graphene [9], which has been proposed to
realize a chiral d-wave state [57–62], makes this study
timely. We discuss the relationship between our model and
these proposals in more detail near the end of the paper.
Using this minimal model as an example, we show how to

construct a gauge-invariant time-reversal-odd term by taking
the product of the pairing potential and its Hermitian
conjugate. The existence of such a bilinear is a prerequisite
for the experimental detection of time-reversal symmetry-
breaking superconductivity in a clean and homogeneous
system. In the honeycomb model, the bilinear arises from the
varying participation of the two sublattices in the pairing
across the Brillouin zone and describes spontaneous break-
ing of the discrete Z2 time-reversal symmetry. The presence
of this term results in the opening of a topological mass gap
at the Dirac points and the emergence of persistent loop
current correlations, in a striking analogy to Haldane’s model
of the anomalous Hall insulator [63]. Furthermore, we show
that the loop current correlations imply a nonzero anomalous
Hall conductivity, hence connecting the polar Kerr effect in
superconductors with the time-reversal-odd bilinear (TROB)
product of the pairing potentials.
The paper is organized as follows. We start in Sec. II

by introducing the model of spin-singlet chiral d-wave
pairing on the honeycomb lattice. In Sec. III we define a
gauge-invariant bilinear product of the superconducting
pairing potentials that breaks time-reversal symmetry. As a
consequence of the existence of this bilinear, we demon-
strate the opening of the mass gap at the Dirac point in

Sec. IV and the existence of loop currents in Sec. V. The
anomalous ac Hall conductivity is calculated in Sec. VI.
A phenomenological description of the loop currents is
outlined in Sec. VII. The relationship of our work to
proposals of chiral d-wave superconductivity in TBLG is
discussed in Sec. VIII. We conclude in Sec. IX with a brief
discussion of the broader implications of our work. In
Appendix A we present similar results for a spin-triplet
chiral p-wave state on the honeycomb lattice. In
Appendix B we show how the bilinear discussed in
Sec. II applies to a broader class of Hamiltonians. More
general expressions for the loop-current order and the Hall
conductivity in the case of inequivalent sublattices are
given in Appendix C. The high-frequency small-gap limit
of the ac Hall conductivity is derived in Appendix D.

II. MICROSCOPIC MODEL

The Bogoliubov–de Gennes (BdG) Hamiltonian of
superconducting pairing on the honeycomb lattice is

H ¼
X
k

Ψ†
k

�
H0ðkÞ ΔðkÞ
Δ†ðkÞ −HT

0 ð−kÞ

�
Ψk; ð1Þ

whereΨk ¼ ðak;↑; bk;↑; a†−k;↓; b†−k;↓ÞT , and the operator ak;σ
(bk;σ) annihilates an electron with momentum k ¼ ðkx; kyÞ
and spin σ on the A (B) sublattices. In Eq. (1), H0ðkÞ and
ΔðkÞ are 2 × 2 matrices in the sublattice space, and the
absence of spin-orbit coupling allows the spin variables to
be factored out.
Using the Pauli matrices sλ to encode the sublattice degree

of freedom, we write the normal-state Hamiltonian as

H0ðkÞ ¼ ϵxksx þ ϵyksy þ δssz − μs0; ð2Þ

ϵxk ¼ −t
X3
j¼1

cosðk · RjÞ; ϵyk ¼ t
X3
j¼1

sinðk · RjÞ: ð3Þ

Here μ is the chemical potential, t is the nearest-neighbor
hopping amplitude, and the Rj are the vectors of length a
connecting an A site to its neighboringB sites; see Fig. 1. For
generality, we also include the Semenoff term [64] as a
staggered potential δs. This makes the A and B sites
inequivalent, hence breaking inversion symmetry and low-
ering the point group from D6h to D3h.
We consider chiral spin-singlet superconducting pairing

on the nearest-neighbor bonds along the directions Rj

shown in Fig. 1. This gives the pairing term

Δ�ðkÞ ¼ Δ
X3
j¼1

e∓iϕj

�
0 eik·Rj

e−ik·Rj 0

�
: ð4Þ

The magnitude Δ of the pairing potential is the same for
each bond j, but the phase is ϕj ¼ ðj − 1Þ2π=3, and the
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two choices of sign in Eq. (4) define degenerate pairing
potentials with opposite chiralities. A similar chiral spin-
triplet pairing is discussed in Appendix A.
The two pairing potentials in Eq. (4) can be written in

terms of the Pauli matrices sλ:

ΔþðkÞ ¼ Δx
ksx þ Δy

ksy; ð5Þ

Δ−ðkÞ ¼ ðΔx
kÞ�sx þ ðΔy

kÞ�sy; ð6Þ

where

Δx
k ¼ Δ

X3
j¼1

e−iϕj cosðk · RjÞ; ð7Þ

Δy
k ¼ −Δ

X3
j¼1

e−iϕj sinðk · RjÞ: ð8Þ

The pairing potentials in Eq. (4) can also be expressed in
terms of basis states of the irreducible representation E2g:

Δ�ðkÞ ¼ Δx2−y2ðkÞ � iΔxyðkÞ; ð9Þ

where

Δx2−y2ðkÞ ¼Δ
��

cosðkxaÞ− cos

�
1

2
kxa

�
cos

� ffiffiffi
3

p

2
kya

��
sx

−
�
sinðkxaÞþ sin

�
1

2
kxa

�
cos

� ffiffiffi
3

p

2
kya

��
sy

�
;

ΔxyðkÞ ¼
ffiffiffi
3

p
Δ
�
− sin

�
1

2
kxa

�
sin

� ffiffiffi
3

p

2
kya

�
sx

þ cos

�
1

2
kxa

�
sin

� ffiffiffi
3

p

2
kya

�
sy

�
;

and a is the distance between neighboring sites. When
projected onto the states near the Fermi surface, the basis
states Δx2−y2ðkÞ andΔxyðkÞ have the forms of dx2−y2 and dxy
waves, soΔ�ðkÞ can be regarded as a chiral ðdx2−y2 � idxyÞ-
wave pairing state. The matrices sx and sy are multiplied by
the functions that are even and odd with respect to k → −k.
This ensures that the pairing potentials are even under
inversion, e.g., I†Δx2−y2ðkÞI ¼ Δx2−y2ð−kÞ, as the inver-
sion operator I ¼ sx swaps the sublattice index. A similar
sublattice gap structure has been proposed for the chiral
f-wave pairing state in UPt3 [29,65].

III. TIME-REVERSAL-ODD BILINEAR

A central goal of our work is to understand how broken
time-reversal symmetry in the particle-particle supercon-
ducting channel can lead to observable effects in the
particle-hole channel, e.g., the anomalous Hall conductivity
and the polar Kerr effect. For such effects, it is not sufficient
to consider the pairing potential ΔðkÞ alone, since it is not
gauge invariant. Rather, these observables must depend on
a time-reversal symmetry-breaking bilinear combination of
ΔðkÞ and Δ†ðkÞ.
In order to define the time-reversal operation, let us

label the second-quantized electron operators ψc;σðkÞ
by the sublattice index c and the spin index σ ¼ �. The
time-reversal operation involves the substitution ψc;σðkÞ →
σψc;−σð−kÞ and complex conjugation of the matrix ele-
ments in the BdG Hamiltonian [66]. Then the off-diagonal
term in Eq. (1) transforms as follows:

ψ†
c;↓ðkÞΔcdðkÞψ†

d;↑ð−kÞ → −ψ†
c;↑ð−kÞΔ�

cdðkÞψ†
d;↓ðkÞ

¼ ψ†
c;↓ðkÞΔ�

dcðkÞψ†
d;↑ð−kÞ; ð10Þ

where summation over repeated indices is implied. Note
that, to obtain the second line, we anticommuted the
fermion operators and then swapped the sublattice indices.
Thus we obtain a BdG Hamiltonian of the same form with

ΔðkÞ → Δ†ðkÞ ð11Þ

upon time reversal.
The simplest bilinear product of the pairing potential

with its Hermitian conjugate is ΔðkÞΔ†ðkÞ [67]. The time-
reversal-odd part of this bilinear product, obtained as
the difference between ΔðkÞΔ†ðkÞ and its time-reversed
counterpart, is a commutator:

TROB ¼ ΔðkÞΔ†ðkÞ − Δ†ðkÞΔðkÞ ¼ ½ΔðkÞ;Δ†ðkÞ�: ð12Þ

Because of its gauge invariance and odd time-reversal
behavior, a nonzero TROB permits broken time-reversal
symmetry in the particle-particle channel to manifest in the
particle-hole channel. In Appendix B, we show that the

A B

Δ1

Δ3Δ2

FIG. 1. Schematic diagram of the chiral d-wave pairing on the
honeycomb lattice. The two sublattices are denoted by the black
(A) and white (B) circles. The nearest-neighbor vectors Rj¼1;2;3

are shown as the black arrows, whereas c1 and c2 denote the
primitive lattice vectors. The pairing potentials on the three
nearest-neighbor bonds are fΔ1;Δ2;Δ3g ¼ Δf1; e2πi=3; e4πi=3g.
The time-reversed pairing is obtained by complex conjugation.
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expression for the TROB in Eq. (12) applies to more
general Hamiltonians, which may include spin-orbit cou-
pling and more electronic degrees of freedom, or break
inversion symmetry. In the second-quantized formalism,
the TROB matrix from Eq. (12) appears in the time-
reversal-odd part of the commutator of the pairing terms,

½ĤΔ; Ĥ
†
Δ� − Θ½ĤΔ; Ĥ

†
Δ�Θ−1

¼
X
k;σ

ψ†
c;σðkÞ½ΔðkÞ;Δ†ðkÞ�cdψd;σðkÞ; ð13Þ

where Θ is the time-reversal operation, and

ĤΔ ¼
X
k

ψ†
c;↓ðkÞΔcdðkÞψ†

d;↑ð−kÞ: ð14Þ

We immediately see that the TROB in Eq. (12) always
vanishes for a single-band spin-singlet superconductor
where ΔðkÞ is just a complex function. This implies that
any probe of time-reversal symmetry breaking, e.g., the
Hall conductivity or polar Kerr effect, must vanish if such a
system is clean, so that the momentum k is a good quantum
number. Hence, the experimental detection of time-reversal
symmetry breaking in single-band superconductors must
rely upon inhomogeneities not conserving k, e.g., scattering
off impurities [22].
However, for a clean multiband system, where the

pairing potential can be expressed as a matrix in the band
indices, it is possible for the commutator in Eq. (12) to take
on nonzero values. This is the case for the honeycomb
lattice model of Sec. II, for which we obtain

TROB ¼ ½Δ�ðkÞ;Δ†
�ðkÞ� ¼ �2i½Δk ∧ Δ�

k�sz
¼ �4szjΔj2

X
j<j0

sinðϕj − ϕj0 Þ sin½k · ðRj − Rj0 Þ�

¼ �4
ffiffiffi
3

p
jΔj2 sin

� ffiffiffi
3

p

2
kya

��
cos

�
3

2
kxa

�

− cos

� ffiffiffi
3

p

2
kya

��
sz; ð15Þ

where the wedge product ½a ∧ b� ¼ axby − aybx is used for
the two-component vector Δk ¼ ðΔx

k;Δ
y
kÞ from Eqs. (7)

and (8). In the second line, the sum is taken over the pairs of
nearest-neighbor bonds in Fig. 1. The nonzero TROB in
Eq. (15) implies the existence of a time-reversal symmetry-
breaking sublattice polarization of the pairing state, which
we define as

Ξ�ðkÞ ¼ TrfΔ†
�ðkÞszΔ�ðkÞg

¼ �4
ffiffiffi
3

p
jΔj2 sin

� ffiffiffi
3

p

2
kya

��
cos

�
3

2
kxa

�

− cos

� ffiffiffi
3

p

2
kya

��
: ð16Þ

The sublattice polarization Ξ�ðkÞ is crucially important
for the physical effects discussed in the rest of the paper.
It quantifies the relative participation in the pairing of
electrons on the A and B sites. Pairing at theM point of the
Brillouin zone involves both sublattices equally, and so
Ξ�ðkMÞ ¼ 0. In contrast, pairing at the K (K0) point
involves exclusively the B (A) sublattice for the Δþ
potential, and so ΞþðkKÞ ¼ −ΞþðkK0 Þ ¼ 9jΔj2; the sub-
lattice polarization is reversed for Δ− [56]. This can be
considered as a generalization to nonspin internal degrees
of freedom of the spin polarization of a single-band
nonunitary triplet state.[68] It has recently been pointed
out that such a polarization generically arises in multiband
time-reversal symmetry-breaking superconductors, where
it can have dramatic effects on the low-energy nodal
structure [69]. Although the effect of the polarization on
the electronic structure is confined to high energies in our
fully gapped pairing state, we see below that it plays a key
role in generating the Hall conductivity.
Further insight into the implications of a nonzero TROB

is provided by the concept of the superconducting fitness,
which has recently emerged as a way to characterize the
pairing state in multiband materials [70,71]. For our
system, where the normal-state Hamiltonian H0ðkÞ is
time-reversal invariant, a superconducting state is said to
have perfect fitness when

½H0ðkÞ;ΔðkÞ� ¼ 0; ð17Þ

i.e., the normal-state Hamiltonian H0ðkÞ commutes with
the pairing potential ΔðkÞ. Then these two matrices can be
simultaneously diagonalized in the normal-state band basis,
and so there is no interband pairing in the case of perfect
fitness. In this basis, a multiband BdG Hamiltonian with
even-parity spin-singlet pairing reduces to a collection of
decoupled single-band terms, so the TROB must therefore
vanish. We conclude that the lack of perfect fitness, i.e., a
violation of Eq. (17) and the presence of interband pairing,
is a necessary (but not sufficient) condition for a non-
vanishing TROB. The presence of interband pairing has
been previously noted as crucial for the existence of the
polar Kerr effect in clean chiral superconductors [24,25].
The chiral d-wave pairing potential in our model does

violate the superconducting fitness condition:

½H0ðkÞ;Δ�ðkÞ� ¼ 2i½ϵk ∧ Δð�Þ
k �sz ≠ 0; ð18Þ

where ϵk ¼ ðϵxk; ϵykÞ, complex conjugation in the right-hand
side applies only for the negative chirality, and we set
the Semenoff term to zero for simplicity (i.e., δs ¼ 0). The
violation of the fitness condition is due to the nontrivial
phases ϕj along the nearest-neighbor bonds, making the
complex vector Δk in Eqs. (7) and (8) not parallel to the
real vector ϵk in Eq. (3). Although the presence of both
intraband and interband pairing in the chiral d-wave state is
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energetically disadvantageous due to mismatch of the
energies of different bands [72], it can emerge in a
mean-field BCS theory due to the short range of real-space
interaction between electrons. Indeed, the pairing potential
Eq. (4) naturally arises from a mean-field decoupling
of the nearest-neighbor exchange interactions in a t−J
model [46].
It is instructive to compare our results to a chiral d-wave

state with purely intrasublattice (i.e., next-nearest-
neighbor) pairing, as proposed in Ref. [39]. For this state,
the pairing potential,

Δ̃�ðkÞ ¼ Δ̃
�
cosð

ffiffiffi
3

p
kyaÞ − cos

�
3

2
kxa

�
cos

� ffiffiffi
3

p

2
kya

�

� i
ffiffiffi
3

p
sin

�
3

2
kxa

�
sin

� ffiffiffi
3

p

2
kya

��
s0; ð19Þ

is proportional to the unit matrix in sublattice space. As such,
this potential commutes with the normal-state Hamiltonian
and so has perfect fitness. Thus, despite the fact that Δ̃�ðkÞ
breaks time-reversal symmetry and has a nonzero phase
winding around the Fermi surface, this state does not display
an intrinsic polar Kerr effect because TROB ¼ 0.
The pairing potential Δ�ðkÞ and the TROB describe

spontaneous breaking of the continuous U(1) gauge sym-
metry and the discrete Z2 time-reversal symmetry, respec-
tively. In the mean-field BCS theory, both symmetries are
broken simultaneously. In a more general framework,
however, these two symmetries may be broken at separate
phase transitions taking place at different temperatures.
For example, the TROB operator may acquire a nonzero

expectation value at a higher temperature by selecting
positive or negative chirality (which can be detected
experimentally by observing the polar Kerr effect), while
the expectation value of the pairing potential is still zero
due to phase fluctuations; i.e., we would simultaneously
have hTROBi ≠ 0 and hΔi ¼ 0. The superconducting
properties, such as supercurrent and Meissner effect, would
emerge at a lower temperature, where the expectation value
hΔi acquires a nonzero value. This scenario is discussed in
more detail in Sec. VII.
The above considerations are not limited to spin-singlet

even-parity superconductivity. In Appendix A, we show
that an odd-parity spin-triplet chiral p-wave pairing has a
similar TROB and sublattice polarization.

IV. TOPOLOGICAL MASS GAP

Let us set the Semenoff term in Eq. (2) to zero first:
δs ¼ 0. In this case, there is no gap at the Dirac points
K and K0 in the normal state. However, the energy
spectrum of the BdG Hamiltonian in Eq. (1) shows an
unexpected gap opening at the Dirac points near E ¼
�μ ¼ �0.5t in Fig. 2(a), far away from the usual
superconducting gap at the Fermi level E ¼ 0. Note
that the momentum q ¼ k − kK is measured relative to
the K point in Fig. 2.
To gain insight into the nature of this unexpected gap,

we derive an effective Hamiltonian for the states near the
Dirac points, perturbatively including the superconducting
pairing in the limit Δ ≪ jμj. Our starting point is the formal
expression for the electronlike component of the Green’s
function:

(a)

E
 / 

t

qxa

1

2

3

4
-0.8
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-0.2
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 0.4
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-0.4 -0.2  0  0.2  0.4
(b) (c)

E
 / 

t

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

E
 / 

t

-0.8

-0.6
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 0.4

 0.6
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 1

qxa
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0.1

ρe ρe

0.2

0.3

0.4

0
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0.4

qxa
-0.4 -0.2  0  0.2  0.4

FIG. 2. (a) The eigenvalues of the BdG Hamiltonian in Eq. (1) (solid blue lines) and the effective gapped Dirac model in Eq. (21)
(dashed red lines) versus the deviation from the K point, kK ¼ ð0; 4π=3 ffiffiffi

3
p

aÞ. (b) Energy spectrum obtained by exact diagonalization
for a slab of 1200 layers in the y direction and armchair edge. The eigenvalues are shaded according to the integrated electronlike
weight in the first 40 layers of the slab. A dispersing edge resonance is clearly visible within the gap at the Dirac point near E ≈ 0.5t.
Two dispersing Andreev edge states are also present inside the superconducting gap near E ¼ 0. (c) Same as in (b), but with the
inclusion of a Semenoff term δs ¼ 0.065t, which renders the gap at the Dirac point topologically trivial. In all plots, we set
Δ ¼ 0.0866t and μ ¼ −0.5t.

LOOP CURRENTS AND ANOMALOUS HALL EFFECT FROM … PHYS. REV. X 9, 031025 (2019)

031025-5



ℏG−1ðk;ωÞ ¼ ℏω −H0ðkÞ − ΔðkÞ½ℏωþHT
0 ð−kÞ�−1Δ†ðkÞ:

ð20Þ

To find the energy spectrum in the vicinity of the Dirac
points, we replace ω → −μ in the last term of Eq. (20) and
obtain an effective Hamiltonian:

HeffðkÞ ≈H0ðkÞ þ δH: ð21Þ

Near the K point, we can expand the first term to linear
order in the relative momentum q ¼ k − kK ,

H0ðqÞ ¼
 

−μ 3
2
tað−qy − iqxÞ

3
2
tað−qy þ iqxÞ −μ

!
; ð22Þ

with the correction due to superconductivity,

δHðkKÞ ¼ −
Δ�ðkKÞΔ†

�ðkKÞ
2μ

¼ −
9jΔj2
4μ

ðs0 ∓ szÞ: ð23Þ

Near the K0 point, the expansion of the unperturbed
Hamiltonian is identical except for the reversed sign in
front of qy, and the correction is

δHðkK0 Þ ¼ −
Δ�ðkK0 ÞΔ†

�ðkK0 Þ
2μ

¼ −
9jΔj2
4μ

ðs0 � szÞ: ð24Þ

Note that Eqs. (23) and (24) can be obtained from the
last term in Eq. (20) only in the vicinity of the Dirac
points, where H0 in Eq. (22) is proportional to the unit
matrix in the limit of vanishing q. Equation (21) can be
interpreted as an effective normal-state Hamiltonian with
the second-order perturbative correction due to supercon-
ducting pairing.
The perturbative correction given by Eqs. (23) and (24)

is proportional to the matrix product ΔðkÞΔ†ðkÞ. Its time-
reversal-even part, proportional to the unit matrix s0, shifts
the energy of the Dirac point. In contrast, the time-reversal-
odd part (i.e., the TROB), proportional to sz, opens a mass
gap. This demonstrates the appearance of time-reversal
symmetry breaking in the particle-hole channel due to the
nonzero TROB. The gapped energy dispersion derived via
this perturbative argument, shown by the dashed red curve
in Fig. 2(a), is in excellent agreement with the dispersion of
the full model near to the Dirac point.
The mass gaps at the K and K0 points introduced by

the superconductivity [Eqs. (23) and (24)] have opposite
signs. This suggests a topologically nontrivial state, as in
Haldane’s model of the quantum anomalous Hall state on
the honeycomb lattice [63]. The topological nature of
the mass gap is confirmed by calculation of the Chern
numbers for the different bands and observation of chiral
edge states within the energy gaps via the bulk-boundary
correspondence. With the opening of the mass gap, the four

eigenstates of the BdG Hamiltonian in Eq. (1) are every-
where nondegenerate, so a Chern number να can be defined
for each band α ¼ 1, 2, 3, 4, as labeled in Fig. 2(a). As
shown in Fig. 3, each band has a nonzero Chern number for
δs ¼ 0, i.e., in the absence of the Semenoff term. The sum
of the Chern numbers of the occupied bands 3 and 4 below
the chemical potential is −2, consistent with the chiral
d-wave superconductivity. Correspondingly, the two topo-
logically protected chiral edge states within the super-
conducting gap are clearly visible near E ¼ 0 in the energy
spectrum weighted by the integrated probability density of
the electronlike wave function components near the sur-
face, as shown in Fig. 2(b) for the armchair edge. The
nonzero Chern numbers of the outer bands 1 and 4, which
are separated by the mass gap from the inner bands 2 and 3,
imply that the mass gap is topological. Thus, we would
expect to find a single chiral edge state within each mass
gap. However, due to the spectrum doubling in the super-
conducting state, the holelike states generally overlap with
the energy range of the mass gap and can hybridize with
the edge state. Nevertheless, the edge state persists as a
predominantly electronlike edge resonance inside the mass
gap between bands 1 and 2 in Fig. 2(b).
A combination of a nonzero Semenoff term δs ≠ 0

in Eq. (2) and the superconducting corrections in
Eqs. (23) and (24) produces different magnitudes of the
mass gaps at the two Dirac points K and K0. At a critical
value δc ¼ 1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9jΔj2 þ μ2

p
− jμjÞ, the gap at one of the

Dirac points passes through zero and changes sign.
Correspondingly, as shown in Fig. 3, there is an abrupt
change in the Chern numbers of all BdG bands at this
topological phase transition. For jδsj > δc, the Chern
number of the outer bands 1 and 4 vanishes, although
the sum of the Chern numbers of the occupied bands 3 and
4 remains −2. This is consistent with the mass gaps at K
and K0 having the same sign, which is topologically trivial.

ν a

δs /t

2

4

1

3
-3

-2

-1

 0

 1

 2

 3

 0  0.015  0.03  0.045  0.06

FIG. 3. Variation of the Chern numbers να of the four BdG
bands labeled as in Fig. 2(a) versus the Semenoff term δs. The
shaded region δs < δc corresponds to the topologically nontrivial
state. The lines are a guide for the eye. Other parameters are the
same as in Fig. 2.
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Accordingly, we do not observe any edge resonance within
the gap, as shown in Fig. 2(c).
Repeating the calculations for a zigzag edge, we also find

evidence for Haldane states. However, they are mixed with
the standard flatband edge states that exist at the zigzag
edges of a hexagonal lattice, making their interpretation
more complicated.

V. LOOP CURRENTS

It was argued in the previous section that the energy
gaps observed at the Dirac points are similar to the energy
gaps in Haldane’s model of the quantum anomalous
Hall insulator [63]. They arise in Haldane’s model due
to the presence of a time-reversal symmetry-breaking next-
nearest-neighbor hopping term, resulting in loop currents
around each lattice site shown by the arrows in Fig. 4.
In second quantization, the time-reversal-odd part of this
hopping term is proportional to the dimensionless operator
χlc, which is defined as

χlc ¼ i
X
r;σ

ða†r;σarþc1;σ þ a†rþc1;σarþc2;σ þ a†rþc2;σar;σ

þ b†r;σbr−c1;σ þ b†r−c1;σbr−c2;σ þ b†r−c2;σbr;σ − H:c:Þ

¼
X
k

4 sin
� ffiffiffi

3
p

2
kya
��

cos
�
3

2
kxa
�
− cos

� ffiffiffi
3

p

2
kya
��

×Ψ†
kτ0 ⊗ szΨk: ð25Þ

Here c1 and c2 are the primitive lattice vectors (see Fig. 1),
the operator ar;σ (br;σ) destroys a spin-σ electron on the
A (B) site of the unit cell corresponding to the lattice vector
r, and τ0 is the unit matrix in Nambu space. The sign
convention in Eq. (25) matches the convention for the link
directions in Fig. 4. From the momentum-space represen-
tation of the loop-current operator Eq. (25), we see that
adding a term �ð ffiffiffi

3
p

=2ÞðΔ2=μÞχlc to the normal-state
Hamiltonian H0 yields the effective model Eq. (21) close
to the Dirac points. This demonstrates the equivalence
between the microscopic loop-current picture and the
topological mass gap of the continuum theory.
In Haldane’s model, the operator in Eq. (25) has a

nonzero expectation value hχlci ≠ 0, resulting in the loop

currents shown in Fig. 4. In our model, the operator χlc
appears in the commutator Eq. (13) with the TROB given
by Eq. (15). The commutator of the pairing terms on the
adjacent nearest-neighboring links generates electron trans-
fer between the next-nearest neighboring sites with a
complex amplitude carrying the phase difference of pairing
potentials shown in Fig. 1. The analogy between our
system and Haldane’s model suggests that χlc also has a
nonzero expectation value in the chiral d-wave state, which
is readily verified to be

hχlci
N

¼−
1

N

X
k

sin

� ffiffiffi
3

p

2
kya

��
cos

�
3

2
kxa

�
−cos

� ffiffiffi
3

p

2
kya

��

×
1

β

X
νm

8μΞ�ðkÞ
ðℏ2ν2mþE2

k;1Þðℏ2ν2mþE2
k;2Þ

: ð26Þ

Here Ek;α¼1;2 > 0 are the quasiparticle dispersions corre-
sponding to the upper two bands shown in Fig. 2(a)
(explicit expressions are given in Ref. [44]), β ¼ 1=kBT
is the inverse temperature, νm are the fermionic Matsubara
frequencies, andN is the number of unit cells. The presence
in Eq. (26) of the sublattice polarization Ξ�ðkÞ from
Eq. (16) (equivalent to the TROB) is essential for obtaining
a nonzero expectation value of χlc. Since Ξ�ðkÞ has the
same momentum dependence as the term in front of the
fraction in Eq. (26), the summand has the same sign
everywhere in the Brillouin zone, and thus the expectation
value hχlci is nonzero. The essential importance of the
TROB in ensuring hχlci ≠ 0 is consistent with the role of
the TROB in generating the energy gaps at the Dirac points.
As such, the inclusion of the Semenoff term does not alter
the conditions for a nonzero expectation value of hχlci, but
Eq. (26) is replaced by a more complicated expression
given in Appendix C. We note that hχlci ≠ 0 was calculated
in Ref. [51] for the closely related nearest-neighbor chiral
p-wave state introduced in Appendix A. In contrast, hχlci is
zero for the intrasublattice chiral d-wave state described by
Eq. (19), where the TROB vanishes.
However, unlike in Haldane’s model, a nonzero expect-

ation value of χlc in our system only implies the presence
of loop current correlations. Since the normal-state
Hamiltonian Eq. (2) does not contain next-nearest-neighbor
hopping, there are no current operators between next-
nearest sites in our model. We can remedy this by
introducing a next-nearest-neighbor hopping term with a
small real amplitude t0:

Ht0 ¼ t0
X

⟪m;n⟫;σ

ða†rm;σarn;σ þ b†rm;σbrn;σÞ: ð27Þ

The corresponding current operators between the next-
nearest-neighbor sites m and n belonging to the sublattice
c ¼ A, B are hence obtained from Eq. (27) as

A, r+c1

A, r+c2

A, r

B, r–c2

B, r–c1

B, r

FIG. 4. Loop currents between the three nearest neighbors of
the A and B sites in the unit cell at r.
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Icmn ¼
iet0

ℏ
½ψ†

c;σðrmÞψc;σðrnÞ − ψ†
c;σðrnÞψc;σðrmÞ�; ð28Þ

where ψc;σðrÞ is the annihilation operator for spin-σ
electrons on sublattice c of unit cell r. Adding the current
operators in Eq. (28) with the signs corresponding to Fig. 4,
we introduce the total current operator Itot as

Itot ¼
et0

ℏ
χlc: ð29Þ

Then the expectation value I of the microscopic current on
one link is obtained as

I ¼ hItoti
6N

¼ et0

6ℏ
hχlci
N

; ð30Þ

where we divide by 6 because there are six currents of
equal magnitude in a unit cell. The current I is very small,
because it is proportional to the small hopping amplitude t0

and hχlci=N ∼ μΔ2=t3 ≪ 1 from Eq. (26).
Another physical consequence of hχlci ≠ 0 is the exist-

ence of a nonzero anomalous Hall conductivity in the
absence of an external magnetic field, which is calculated
in the next section. Unlike the current I in Eq. (30), the Hall
conductivity does not require t0 ≠ 0, so we set t0 ¼ 0 in the
rest of the paper to simplify calculations.

VI. HALL CONDUCTIVITY

The existence of loop-current correlations in Eq. (26) for
the chiral d-wave state naturally suggests the presence of an
intrinsic Hall conductivity. Indeed, the nontrivial sublattice
structure of the BdG Hamiltonian Eq. (1) is consistent with
the conditions outlined in Ref. [25] for the existence of an
intrinsic Hall effect.
As shown by the Feynman diagrams in Fig. 5, the Hall

conductivity can be obtained as the difference

σHðωÞ ¼
i

2ℏω
lim

iωn→ωþi0þ
½πxyðiωnÞ − πyxðiωnÞ�; ð31Þ

of the current-current correlation functions,

πabðiωnÞ ¼ −
1

S

Z
ℏβ

0

dτeiωnτhTτJaðτÞJbð0Þi; ð32Þ

where ωn is a bosonic Matsubara frequency and S is the
total area of the crystal. Here Ja is the a component of the
current operator,

J ¼ e
X
k

Ψ†
kVkΨk; ð33Þ

where Vk is the velocity vertex in Nambu notation,

Vk ¼ τ0 ⊗
�

0 vk
v�k 0

�
; ð34Þ

and the velocity components are obtained from Eq. (3):

vk ¼
1

ℏ
∂
∂k ðϵ

x
k − iϵykÞ ¼ −

it
ℏ

X
j

Rjeik·Rj : ð35Þ

A straightforward evaluation of the Feynman diagrams in
Fig. 5 (for the vanishing Semenoff term δs ¼ 0) yields the
Hall conductivity:

σHðωÞ ¼ lim
iωn→ωþi0þ

1

β

X
νm

Z
d2k
ð2πÞ2

e2ℏ3μi½v�k ∧ vk�Ξ�ðkÞðiωn þ 2iνmÞ2
ðℏ2ν2m þ E2

k;1Þðℏ2ν2m þ E2
k;2Þðℏ2½ωn þ νm�2 þ E2

k;1Þðℏ2½ωn þ νm�2 þ E2
k;2Þ

: ð36Þ

The sign of σHðωÞ correlates with the sign of the
chemical potential μ, and the Hall conductivity vanishes
at μ ¼ 0 (at the Dirac point) due to particle-hole symmetry.
The real and imaginary parts of the Hall conductivity
calculated from Eq. (36) are shown in Fig. 6. This
expression is consistent with Eq. (24) of Ref. [29] for
the Hall conductivity in UPt3 in the limiting case where

spin-orbit coupling and intrasublattice hopping terms are
neglected. As the point groups of UPt3 and the honeycomb
lattice are both D6h, such terms are also allowed in our
model, but we neglect them for simplicity.
Equation (36) shows some similarity to a general

formula [73] for the intrinsic ac Hall conductivity in terms
of the Berry curvature for a nonsuperconducting two-band
system, which includes Haldane’s model. However, that

FIG. 5. Feynman diagrams for the intrinsic Hall conductivity.
The double lines are the matrix superconducting Green’s func-
tions in Nambu notation. The vertices Vx and Vy are the x and y
components of the velocity operator in Eq. (34). The Matsubara
frequencies iωn and iνm are the external bosonic and internal
fermionic frequencies, respectively.
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formula is not directly applicable to our superconducting
case, because the effective two-band model derived in
Sec. IV is only suitable near to the Dirac points.
From the numerator of Eq. (36), it is clear that the

anomalous Hall conductivity σHðωÞ is nonzero only when
the sublattice polarization Ξ�ðkÞ in Eq. (16) has common
irreducible representations with the product of velocities
½vk ∧ v�k�. Indeed, we find from Eq. (35) that

½vk ∧ v�k� ¼
2it2a2

ℏ2

X
j<j0

sinðφj0 − φjÞ sin½k · ðRj − Rj0 Þ�;

ð37Þ

where φj are the geometric angles between the vectors Rj

and the x axis, which, in our model, are the same as the
phases ϕj in Eq. (4). Thus, Eq. (37) has the same momentum
dependence as the TROB in Eq. (15) and Ξ�ðkÞ in Eq. (16).
The full result Eq. (36) is rather complicated, but it

simplifies in the high-frequency limit ℏω ≫ t. This regime
is experimentally relevant, as the polar Kerr effect mea-
surements detailed in Ref. [15] are performed at infrared
frequency ℏω ¼ 0.8 eV, which is typically large compared
to the hopping integrals in a strongly correlated material.
As shown in Ref. [74], the Hall conductivity in this limit is
given by

σHðωÞ ≈
i

Sℏω2
h½Jx; Jy�i: ð38Þ

Taking into account Eq. (37), we find that the commutator
of the x and y components of the current operator appearing
in this expression is directly proportional to the loop-
current operator in Eq. (25):

½Jx; Jy� ¼ e2
X
k

½vk ∧ v�k�Ψ†
kτ0 ⊗ szΨk ¼

ffiffiffi
3

p
ie2t2a2

2ℏ2
χlc:

ð39Þ

We hence find that the high-frequency Hall conductivity is
proportional to the expectation value of the loop-current
operator:

σHðωÞ ≈ −
ffiffiffi
3

p
e2t2a2

2Sℏ3ω2
hχlci

¼ 2e2

ℏω2

1

β

X
νm

Z
d2k
ð2πÞ2

μi½v�k ∧ vk�Ξ�ðkÞ
ðℏ2ν2m þ E2

k;1Þðℏ2ν2m þ E2
k;2Þ

:

ð40Þ

Equations (38)–(40) establish a direct connection between
the Hall conductivity and the loop currents discussed in
Sec. IV. As shown in Fig. 6, the agreement between
Eqs. (36) and (40) is very good for ℏω≳ 4t. An alternative
derivation is presented in Appendix D in the limit of small
Δ, where the Green’s functions appearing in Fig. 5 can be
expanded to the second order in the pairing potential. This
approach yields Eq. (D3) similar to Eq. (40), but with the
BdG energies Ek replaced by the normal-state energies ϵk.
The high-frequency Hall conductivity in Eq. (40) is real,

but the polar Kerr effect is primarily sensitive to the
imaginary part of the Hall conductivity when the refraction
index is predominantly real [15]. Although it is not possible
to directly associate the imaginary part of the Hall con-
ductivity at a given frequency to the loop currents in the
superconductor, an indirect connection is provided by the
sum rule [75]:

Z∞
−∞

ωImfσHðωÞgdω ¼ −
iπ
ℏS

h½Jx; Jy�i ¼
π
ffiffiffi
3

p
e2t2a2

2Sℏ3
hχlci:

Again, the right-hand side of this equation is proportional to
the expectation value of the loop-current operator, and we
hence conclude that the existence of the loop-current
correlations results in a nonzero imaginary Hall conductivity.
It should be noted that, in contrast to nonsuperconduc-

tors, the dc Hall conductivity in superconductors is not
directly related to the Chern number, as discussed in
Appendixes A and B of Ref. [22]. Thus, the topological
phase diagram shown in Fig. 3 in terms of the Semenoff
term δs is not particularly relevant for the calculation of
the Hall conductivity. A generalization of Eq. (36) to a
nonzero Semenoff term in Appendix C shows that the ac
Hall conductivity σHðωÞ is nonzero for any value of δs.
Moreover, in the high-frequency limit, Eqs. (38) and (39)
are still valid for δs ≠ 0, so the Hall conductivity remains
proportional to the expectation value of the loop-current

σ  
(e

2 /− h)

−hω/t

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8

σ 
(e

2 /− h)

−hω/t

-0.008

-0.006

-0.004

-0.002

 0

 2  4  6  8

FIG. 6. Real (solid red line) and imaginary (dashed blue line)
parts of the Hall conductivity calculated using Eq. (36). The high-
frequency approximation from Eq. (40) (black dotted line) agrees
very well with the exact result for ℏω≳ 4t. The inset compares
the approximate and exact results in more detail. We use the same
parameters as in Fig. 2(a) and set the temperature kBT ¼ 0.05t.
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operator, which is mainly sensitive to the pairing potential
and only weakly dependent upon the Semenoff term.

VII. PHENOMENOLOGICAL TREATMENT

In Eq. (26) we obtained a nonzero expectation value of
the loop-current operator from a microscopic theory of the
chiral d-wave state at the level of the single-particle Green’s
functions. The appropriate interactions would, however,
lead to true long-range loop-current order. The interplay of
this order with the superconductivity could then be under-
stood within the framework of a phenomenological Landau
expansion of the free-energy density:

f − f0 ¼ αðjη1j2 þ jη2j2Þ þ β1ðjη1j2 þ jη2j2Þ2
þ β2ðη�1η2 − η1η

�
2Þ2

þ iγδlcðη�1η2 − η1η
�
2Þ þ κδ2lc; ð41Þ

where f0 is the normal-state free-energy density. The first
two lines describe the superconductivity, where η1 and η2
are the order parameters corresponding to the two states in
the E2g irreducible representation. The term with β2 > 0

stabilizes the time-reversal symmetry-breaking configura-
tion ðη1; η2Þ ∝ ð1;�iÞ studied in this paper. The coupling
to the loop-current order parameter δlc ∝ hχlci is given
by γ, and κ > 0 implies that this order is subdominant.
Minimization of f with respect to δlc shows that the
loop-current order becomes induced in the time-reversal-
breaking superconducting state.
As already mentioned in Sec. III, a more intriguing

possibility could be that the loop-current order preempts
the superconductivity. Regarding η1 and η2 as dynamic
fields, the expectation value of the time-reversal symmetry-
breaking bilinear η�1η2 − η1η

�
2 ∝ δlc may become nonzero at

a higher temperature than hη1i and hη2i. That is, correla-
tions in the fluctuating superconducting order may break
the discrete Z2 time-reversal symmetry before the continu-
ous U(1) gauge symmetry is broken (which is rigorously
permitted only at zero temperature in two dimensions).
Similar scenarios were discussed for multiband super-
conductors in Ref. [76] and for pair-density-wave order
in the underdoped cuprates in Ref. [77].

VIII. RELEVANCE TO SUPERCONDUCTIVITY
IN TWISTED BILAYER GRAPHENE

It has been proposed theoretically [57–62] that the
superconducting state observed in TBLG [9] realizes chiral
d-wave pairing. Given that our analysis concerns hypo-
thetical superconductivity in monolayer graphene, it is
worthwhile to survey theories of TBLG briefly and explore
possible links to our work. Although most proposals
include more electronic degrees of freedom than our model,
in many cases they show a qualitative resemblance,

implying that the physics discussed in our paper may be
applicable.
Some of the earliest proposals, such as Refs. [57,58],

assume SU(4) symmetry of a single-particle Hamiltonian,
for which the physics we discuss does not apply. However,
SU(4) symmetry-breaking terms may change this conclu-
sion and are currently under consideration.
Phenomenological models with orbital or sublattice

degrees of freedom have been considered in Ref. [78]
and in Ref. [59], respectively. Because of the presence of
these additional electronic degrees of freedom, the pairing
potential may have a nonzero TROB, thus resulting in
similar physics to that discussed here. The model of
Ref. [59], based upon a three-site sublattice to simulate
the AA and AB regions of the moiré pattern of TBLG,
resembles our model most closely and, indeed, reduces to it
in the limit t0 ¼ Δ0

j ¼ 0, where the triangular lattice of the
AA regions is neglected.
Several papers [79–82] proposed a low-energy description

of the normal-state electronic structure based on an emergent
honeycomb lattice with two additional electronic orbital
degrees of freedom at each lattice site. Reference [60]
considers such a model with px and py orbitals on a
honeycomb lattice with local electronic interactions and
finds that a d-wave chiral pairing state emerges. The Letter
argues that the mechanism is similar to that for chiral d-wave
pairing in single-layer graphene at quarter doping, for which
our model applies.
Adopting an alternative approach, Refs. [61,62] numeri-

cally analyze how a nearest-neighbor chiral d-wave state in
each of the two graphene layers is modified by the moiré
structure in TBLG. Interestingly, these papers find intra-
unit-cell supercurrent loops. Since the intralayer pairing
state is identical to ours, we suggest that these currents
may be related to the loop current correlations found in
our work.
Although a theoretical description of the superconduct-

ing state in TBLG remains unsettled, the presence of
multiple electronic degrees of freedom indicates that a
chiral d-wave state is likely to have a nonvanishing TROB.
Consequently, much of the physics discussed in our paper
may be applicable. An experimental measurement of the
polar Kerr effect in TBLG would be particularly useful to
verify whether the superconducting pairing breaks time-
reversal symmetry.

IX. CONCLUSIONS

In this paper we have examined the appearance of the
polar Kerr effect in a minimal model of time-reversal
symmetry-breaking chiral d-wave superconductivity on
the honeycomb lattice. We have demonstrated that the
existence of a gauge-invariant time-reversal-odd bilinear
constructed from the pairing potential is an essential
requirement for the polar Kerr effect. In the context of
the honeycomb lattice, the TROB reflects the sublattice
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polarization of the pairing. The key physical manifestation
of the TROB is the appearance of an emergent non-
superconducting order in conjunction with the supercon-
ductivity, which we identify as loop currents similar to
those in Haldane’s model of a quantum anomalous Hall
insulator [63]. This is directly evidenced in the energy
spectrum, where we observe the opening of a topological
gap with opposite signs at the Dirac points K and K0. The
Kubo formula calculation of the intrinsic ac Hall conduc-
tivity in the absence of an external magnetic field shows
that it is directly proportional to the expectation value of the
loop-current operator. Thus we establish an explicit relation
connecting the emergent loop-current correlations and both
the real and imaginary parts of the Hall conductivity.
The model considered here is another example of a time-

reversal symmetry-breaking superconducting state with an
intrinsic Hall conductivity, and generalizes these analyses
to an even-parity pairing state. The first example is
Sr2RuO4, where different pairing in the Ru dxz and dyz
orbitals implies a polarization in the dxz-dyz orbital space
[24–28]. More recently, a theoretical treatment of the
Kerr effect in UPt3 has identified the time-reversal-odd
sublattice dependence of the pairing potential permitted by
the nonsymmorphic symmetry as an essential ingredient
[29,65]. The similarity of these models to the simpler case
considered in our paper suggests the intriguing possibility
that the Hall conductivities in these systems can also be
understood in terms of loop-current correlations induced by
a TROB. Although we have considered only two internal
degrees of freedom here, loop currents can also arise in
materials with more complicated unit cells [83], including
TBLG. The observation of the polar Kerr effect in many
unconventional superconductors therefore suggests that
pairing states supporting nonzero TROBs may be realized
in a broad range of materials. It would therefore be
interesting to explore the possibility of a model-indepen-
dent description of the ac anomalous Hall effect, perhaps in
terms of a field theory for the superconducting and TROB
order parameters, of which the Ginzburg-Landau model is
the static limit. Another important direction for future work
is to include the contribution to the ac anomalous Hall
effect from impurity scattering. Since the materials in
which the polar Kerr effect is observed are in the clean
limit, we expect this contribution to be small. However, as
the impurity-scattering mechanism has been studied only
for single-band systems, detailed calculation is needed to
compare it with the intrinsic mechanism considered here.
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APPENDIX A: CHIRAL p-WAVE STATE

Other chiral pairing states on the honeycomb lattice also
display a polarization in their sublattice degrees of freedom
due to a nonzero TROB. For example, chiral p-wave triplet
superconductivity with nearest-neighbor pairing has been
considered by several authors [47,49,51,56]. Here we
examine the case where the vector d of the triplet pairing
is oriented along the z axis, which is also the spin
quantization axis. In this representation, the triplet pairing
takes place between the opposite spins and is described by
the BdG Hamiltonian in Eq. (1) with the pairing potential

Δp
�ðkÞ ¼ Δ

X3
j¼1

e�iϕj

�
0 eik·Rj

−e−ik·Rj 0

�
: ðA1Þ

Note that one of the off-diagonal terms has opposite
sign compared with Eq. (4) for the pairing potential of
the chiral d-wave state, but the phases along each bond
ϕj ¼ ðj − 1Þ2π=3 are the same. As shown in Fig. 7, the
phase of the pairing on each bond winds by 2π as one
moves around a hexagonal plaquette, in contrast to the
chiral d-wave state where the phase winds by 4π.
The pairing potential in Eq. (A1) can be decomposed

into basis states of the irreducible representation E1u:

Δp
�ðkÞ ¼ Δp

x ðkÞ � iΔp
y ðkÞ; ðA2Þ

where

(a)
1

1

(b)
1

–1

FIG. 7. Phases of the nearest-neighbor pairing potentials on the
bonds of a hexagonal plaquette for the (a) chiral d-wave state and
(b) the chiral p-wave state. In the former the phase winds by 4π
around the plaquette, whereas in the latter it winds by 2π, and the
direction of winding is indicated by the curved arrow. In the spin-
triplet p-wave state, the straight arrow points to the location of the
spin-↓ electron in the Cooper pair for the given phase. Placing the
spin-↓ electron at the other end of the arrow gives an overall sign
change of the pairing potential.
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Δp
x ðkÞ ¼ iΔ

��
cosðkxaÞ − cos

�
1

2
kxa

�
cos

� ffiffiffi
3

p

2
kya

��
sy

þ
�
sinðkxaÞ þ sin

�
1

2
kxa

�
cos

� ffiffiffi
3

p

2
kya

��
sx

�
;

Δp
y ðkÞ ¼ i

ffiffiffi
3

p
Δ
�
sin

�
1

2
kxa

�
sin

� ffiffiffi
3

p

2
kya

�
sy

þ cos

�
1

2
kxa

�
sin

� ffiffiffi
3

p

2
kya

�
sx

�
:

Projected onto the states at the Fermi surface, the basis
functions Δp

x ðkÞ and Δp
y ðkÞ appear as px-wave and py-

wave triplet states, respectively. Like the basis functions for
E2g discussed in Sec, II, these states contain the matrices sx
and sy, but here with odd- and even-parity coefficients,
respectively. This ensures that the pairing potentials are odd
under inversion; i.e., I†Δp

x ðkÞI ¼ −Δp
x ð−kÞ.

The E1u basis functions can be obtained from the basis
functions for E2g by multiplying them with sz. This follows
from the direct product rules for the point group D6h,
since sz belongs to the irreducible representation B1u and
E1u ¼ B1u × E2g. Thus, the TROB of the chiral p-wave
state is the same as for the chiral d-wave case in Eq. (15):

TROB ¼∓4
ffiffiffi
3

p
jΔj2 sin

� ffiffiffi
3

p

2
kya

�

×

�
cos

�
3

2
kxa

�
− cos

� ffiffiffi
3

p

2
kya

��
sz:

The physics arising from the existence of the TROB in the
chiral p-wave state is thus essentially the same as for the
chiral d-wave state discussed in the main part of the paper.
We finally note that, in the presence of a Semenoff term,

the reduced symmetry of the lattice due to lack of inversion
implies that both the p-wave and d-wave pairing potentials
are basis states of the same irreducible representation E0 of
the point group D3h. As such, a chiral state can generally
involve a mixture of the two [54,56].

APPENDIX B: TIME-REVERSAL-ODD BILINEAR
IN MORE GENERAL MODELS

Here we show that Eq. (12) for the TROB applies quite
generally, including Hamiltonians with spin-orbit coupling
and more electronic degrees of freedom, and without
inversion symmetry.
The pairing term in Eq. (1) couples opposite spins, but a

more general BdG Hamiltonian can be written in terms of a
2m-component operator ck encodingm orbital or sublattice
degrees of freedom (assumed to be time-reversal invariant)
and both spin orientations:

H ¼ 1

2

X
k

Ψ†
kHkΨk: ðB1Þ

Here Ψk ¼ ðck; c†−kÞT is a Nambu spinor, and T denotes
transposition. We use Δ̂ðkÞ with a “hat” to denote pairing
potential in this basis:

Hk ¼
�
H0ðkÞ Δ̂ðkÞ
Δ̂†ðkÞ −HT

0 ð−kÞ

�
: ðB2Þ

The pairing potential obeys Δ̂TðkÞ ¼ −Δ̂ð−kÞ due to the
fermion exchange symmetry [84].
The time-reversal operation is implemented as Θ ¼ KU,

whereK is complex conjugation, and the unitary part [85] is

U ¼ iσy ⊗ s0 ¼
�

0 1

−1 0

�
⊗ s0: ðB3Þ

Here σy is the spin Pauli matrix, and s0 is an m-dimensional
identity matrix operating on the m orbital or sublattice
electronic degrees of freedom. The matrix U is real and
satisfies U2 ¼ −1 and U† ¼ UT ¼ U−1 ¼ −U. Because it
is real, the creation and annihilation operators transform
upon time reversal in the same way, as discussed in Sec. III:

ck → ΘckΘ−1 ¼ Uc−k;

c†k → Θc†kΘ
−1 ¼ Uc†−k;

Ψk → ΘΨkΘ−1 ¼ ½τ0 ⊗ U�Ψ−k;

where τ0 is a 2 × 2 identity matrix in the Nambu space. The
matrix elements in Eq. (B2) become complex conjugated
upon time reversal:Hk → ΘHkΘ−1 ¼ H�

k. Combining these
transformations, we obtain the time reversal of the BdG
Hamiltonian Eq. (B1):

H →
1

2

X
k

ΘΨ†
kΘ

−1ΘHkΘ−1ΘΨkΘ−1

¼ 1

2

X
k

Ψ†
−k½τ0 ⊗ UT �H�

k½τ0 ⊗ U�Ψ−k:

Changing k → −k in the sum, we arrive to a BdG
Hamiltonian of the same form as in Eq. (B1) but with the
transformed matrix elements in Eq. (B2):

Hk → ½τ0 ⊗ UT �H�
−k½τ0 ⊗ U�: ðB4Þ

The time-reversal rule in Eq. (B4) is similar to that for a
nonsuperconducting Hamiltonian [66], because U is real.
According to Eq. (B4), the pairing potential transforms as

Δ̂ðkÞ → UTΔ̂�ð−kÞU ¼ −UTΔ̂†ðkÞU; ðB5Þ

where we used the fermion exchange relation. It is conven-
ient to define ΔðkÞ without the “hat” as

BRYDON, ABERGEL, AGTERBERG, and YAKOVENKO PHYS. REV. X 9, 031025 (2019)

031025-12



ΔðkÞ ¼ Δ̂ðkÞU; ðB6Þ

which corresponds more closely to the pairing potential
introduced in Sec. II. Combining Eq. (B5) with Eq. (B6) and
using U2 ¼ −1, we reproduce Eq. (11):

ΔðkÞ → Δ†ðkÞ: ðB7Þ

Finally, we obtain the TROB as the difference between
Δ̂ðkÞΔ̂†ðkÞ and its time-reversed counterpart:

TROB ¼ Δ̂ðkÞΔ̂†ðkÞ − ΘΔ̂ðkÞΘ−1ΘΔ̂†ðkÞΘ−1

¼ Δ̂ðkÞΔ̂†ðkÞ −UTΔ̂†ðkÞΔ̂ðkÞU
¼ ΔðkÞΔ†ðkÞ − Δ†ðkÞΔðkÞ; ðB8Þ

where we used Eqs. (B5) and (B6). Equation (B8) repro-
duces Eq. (12) for the TROB, which is the result we wanted
to show in general form.
As discussed in Sec. III, the superconducting fitness

restricts opportunities for a nonzero TROB. The general
condition for superconducting fitness [70,71] is

H0ðkÞΔ̂ðkÞ ¼ Δ̂ðkÞH�
0ð−kÞ: ðB9Þ

If the normal-state Hamiltonian H0ðkÞ is invariant under
time reversal in Eq. (B4), then, using Eq. (B6), Eq. (B9)
reduces to the commutator in Eq. (17):

½H0ðkÞ;ΔðkÞ� ¼ 0: ðB10Þ

Below we illustrate these general relations by simple
examples. For a single-band superconductor, where the
only internal degree of freedom is spin, the pairing potential
can be written in terms of the spin Pauli matrices:

ΔðkÞ ¼ ΔðsÞ
k þ ΔðtÞ

k ðdk · σÞ: ðB11Þ

Here ΔðsÞ
k and ΔðtÞ

k represent singlet and triplet pairing, and
dk is a unit vector. Evaluation of Eq. (B8) for this pairing
potential gives

TROB ¼ 2ijΔðtÞ
k j2ðdk × d�kÞ · σ: ðB12Þ

Clearly, TROB ≠ 0 only when the vector d�k is not
parallel to dk. The pairing with dk × d�k ≠ 0 is known in
the literature [68] as nonunitary pairing, because the
product ΔðkÞΔ†ðkÞ is not proportional to the unit matrix.
Obviously, TROB in Eq. (B8) vanishes for a unitary
pairing, so nonunitarity is a necessary, but generally not
sufficient condition for TROB ≠ 0.
A similar construction can be obtained for spin-singlet

pairing in a two-band model, where the pairing potential is
expanded in the Pauli matrices sλ for sublattice space:

ΔðkÞ ¼ Δð0Þ
k s0 þ Δk · s: ðB13Þ

The honeycomb lattice model described in Sec. II is a
special case where Δð0Þ ¼ 0 and the vector Δk has only two
components. An evaluation of Eq. (B8) for Eq. (B13) gives
a formula similar to Eq. (B12):

TROB ¼ ½ΔðkÞ;Δ†ðkÞ� ¼ 2iðΔk × Δ�
kÞ · s: ðB14Þ

For TROB ≠ 0, the pairing vector Δk must be not parallel
to its complex conjugate.
To evaluate the fitness condition for this model, we take

the normal-state Hamiltonian to be spin independent and
write it as

H0ðkÞ ¼ hð0Þk s0 þ hk · s; ðB15Þ

where hð0Þk and hk are necessarily real, because H0 is
Hermitian. Then the fitness condition Eq. (B10) is

½H0ðkÞ;ΔðkÞ� ¼ 2i½hk × Δk� · s: ðB16Þ

Perfect fitness is achieved when the pairing vector Δk is
parallel to the real vector hk, which makes TROB vanish
in Eq. (B14), so perfect fitness is incompatible with
TROB ≠ 0.

APPENDIX C: EFFECT OF SEMENOFF TERM

For simplicity, the main text gives Eq. (26) for the loop-
current operator expectation value and Eq. (36) for the Hall
conductivity only in the absence of the Semenoff term, i.e.,
for δs ¼ 0. Here we present the general expressions for
δs ≠ 0, which may be useful for applications to transition -
metal dichalcogenides [12–14], where the A and B sites are
strongly inequivalent.
In the presence of the Semenoff term, the expectation

value of the loop-current operator is given by

hχlci
N

¼−
1

N

X
k

sin
� ffiffiffi

3
p

2
kya
��

cos
�
3

2
kxa
�
−cos

� ffiffiffi
3

p

2
kya
��

×
1

β

X
νm

8μ½4δsiℏνmþTrfΔ†ðkÞszΔðkÞg�
ℏ4ν4mþc2ℏ2ν2mþc1iℏνmþc0

; ðC1Þ

where the coefficients of the quartic polynomial in the
fermionic frequency νm in the denominator are

c2 ¼ 2ðδ2s þ ϵ2x þ ϵ2y þ μ2Þ þ TrfΔ†ðkÞΔðkÞg;
c1 ¼ −2δsTrfΔ†ðkÞszΔðkÞg;

c0 ¼ (δ2s þ ϵ2x þ ϵ2y − μ2 −
1

2
TrfΔ†ðkÞΔðkÞgÞ2

−
1

4
jTrfΔ†ðkÞszΔðkÞgj2 þ jTrfH0ðkÞΔðkÞgj2:
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The numerator in Eq. (C1) is no longer directly propor-
tional to the sublattice polarization TrfΔ†ðkÞszΔðkÞg,
but now also contains a term proportional to the
Semenoff term δs. Nevertheless, the contribution from
this additional term, which is also proportional to
fermionic frequency νm, is only nonzero if the coefficient
c1 of the linear term in the denominator is also nonzero.

As this is only the case if the pairing potential has a
time-reversal symmetry-breaking sublattice polarization,
the key role of the nonzero TROB in producing the
loop-current correlations is robust to the presence of the
Semenoff term.
The Hall conductivity in the presence of the Semenoff

term is given by

σHðωÞ ¼ lim
iωn→ωþi0þ

1

β

X
νm

Z
d2k
ð2πÞ2 ie

2μℏ2½vk ∧ v�k�ðiωn þ 2iνmÞ

×
½4δs(δ2s þ ϵ2x þ ϵ2y − μ2 − 1

2
TrfΔ†ðkÞΔðkÞg − iℏ2νm½iνm þ iωn�) − ℏðiωn þ 2iνmÞTrfΔ†ðkÞszΔðkÞg�

ðℏ4ν4m þ c2ℏ2ν2m þ c1iℏνm þ c0Þðℏ4½ωn þ νm�4 þ c2ℏ2½ωn þ νm�2 þ c1ℏ½iωn þ iνm� þ c0Þ
: ðC2Þ

Similarly to Eq. (C1), a nonzero Semenoff term again
results in a new term proportional to δs in the numerator.
The coefficient of δs in the numerator of Eq. (C2) has the
full symmetry of the lattice, whereas the prefactor ½vk ∧ v�k�
belongs to the irreducible representation A0

2 of the point
group D3h. The contribution from this new term will thus
be vanishing, unless the denominator also contains a term
in the irreducible representation A0

2. Such a term is present
only if the linear coefficient c1 of the polynomials in the
denominator is nonzero, which requires a sublattice polari-
zation of the pairing. Thus, the nonzero Hall conductivity
remains a signature of a finite TROB in the presence of the
Semenoff term.

APPENDIX D: HIGH-FREQUENCY SMALL-Δ
LIMIT OF THE HALL CONDUCTIVITY

The high-frequency limit of the Hall conductivity
was derived in Ref. [74] from the general form of the

current-current correlation function. Here we present
an alternative derivation based upon approximation of
the Green’s functions in the Feynman diagrams shown
in Fig. 5. Specifically, in the high-frequency limit
jωj≫ jΔj, the Hall conductivity Eq. (36) should only
weakly depend upon the modification of the energy
spectrum in the superconducting state. We thus expect
that a perturbative expansion in the pairing Hamiltonian
will quickly converge. To achieve this, we first note that the
full Green’s function G is related to the Green’s function of
the normal system G0 by Dyson’s equation:

G ¼ G0 þ G0HΔG; ðD1Þ

where HΔ is the pairing part of the BdG Hamiltonian
Eq. (1). Expanding this to second order in HΔ, we
approximate G by

FIG. 8. Diagrammatic derivation of the high-frequency small-Δ limit. The current-current correlator πxyðiωnÞ is expanded in powers
of the pairing HamiltonianHΔ, which is treated as a perturbation. The leading-order contribution in the high-frequency limit comes from
the first two terms on the right-hand side, as shown in the second line. Note the redefinition of the internal frequency iν̃m ¼ iνm þ iωn in
the second term. After the Green’s functions containing the external frequency are factored out, the result is expressed in terms of the
expectation value of the loop-current operator χlc. The double line represents the full Green’s function G, and the single line denotes the
Green’s function G0 of the normal system.
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G ≈G0 þ G0HΔG0 þ G0HΔG0HΔG0 þOðjΔj3Þ: ðD2Þ

Note that the normal part of the Green’s function in
Eq. (D2) reproduces Eq. (20). Using the approximate
Eq. (D2) to replace the full Green’s function in the
current-current correlator πxyðiωnÞ, we obtain the expan-
sion shown in Fig. 8. Performing the analytic continuation
iωn → ωþ i0þ, the first diagram on the right-hand side is
∼1=ω in the high-frequency limit, as the external frequency
passes through a single normal-state Green’s function.
The next diagram is also ∼1=ω, since a redefinition of
the internal frequency (see second line) also allows the
external frequency iωn to pass through a single normal-
state Green’s function. In contrast, the external frequency
in the third diagram must necessarily pass through two
Green’s functions, and this diagram can be shown to be at
least ∼1=ω2 in the high-frequency limit.
Keeping only the first two diagrams, therefore, we

approximate πxyðiωnÞ as shown in the second line of
Fig. 8. We observe that, in performing the Matsubara
summation over the internal frequency, the residue of the
poles of the Green’s function containing the external
frequency will be at least ∼1=ω3, whereas the residue of
the poles of the other Green’s functions will be ∼1=ω.
Since the ∼1=ω contribution only arises from the unit
matrix (i.e., τ0 ⊗ s0) component of the Green’s function
containing the external frequency, we make the approxi-
mation G0ðk; iνm � iωnÞ ≈ ð�iωnÞ−1τ0 ⊗ s0 and, hence,
factor the external frequency out of the Matsubara sum.
This yields the diagram involving the commutator of the
velocity vertices and the second-order Green’s function
correction G0HΔG0HΔG0. This product is proportional
to the expectation value of the dimensionless loop-current
operator Eq. (26) expanded to lowest order in the pairing
potential. Evaluating this diagram, we obtain the Hall
conductivity:

πxyðiωnÞ≈
e2

ℏiωn

1

Sβ

X
k;νm

TrfðVx
kV

y
k −Vy

kV
x
kÞG0HΔG0HΔG0g

¼ e2

ℏiωn

1

β

X
νm

Z
d2k
ð2πÞ2

μ½v�k ∧ vk�Ξ�ðkÞ
ðℏ2ν2m þ ϵ2k;1Þðℏ2ν2m þ ϵ2k;2Þ

;

where ϵk;1ð2Þ ¼þð−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵxkÞ2þðϵykÞ2

q
−μ are the dispersions

in the normal state. A similar analysis yields πyxðiωnÞ ¼
−πxyðiωnÞ. We hence obtain the Hall conductivity:

σHðωÞ ¼
2e2

ℏω2

1

β

X
νm

Z
d2k
ð2πÞ2

iμ½v�k ∧ vk�Ξ�ðkÞ
ðℏ2ν2m þ ϵ2k;1Þðℏ2ν2m þ ϵ2k;2Þ

:

We recognize this as the lowest-order term in the expansion
of Eq. (40) in powers of the gap magnitude.
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