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Abstract 17 

 18 

The baseflow of the Wolf River (drainage area of 1,200 km2) in northeastern Wisconsin (USA) has 19 

declined by over 30% during the last thirty years, whereas climatic, land cover, and soil characteristics of 20 

the basin have remained unchanged. Because groundwater basins do not always coincide with surface 21 

water basins, estimating groundwater discharge to streams using variables only pertinent to the surface 22 

water basin can be ineffective. The purpose of this study is to explain the decline in the baseflow of the 23 

Wolf River by developing a multiple regression model. To take into account variables pertaining to the 24 

groundwater basin, withdrawal rates from high capacity wells both inside the Wolf River basin and in two 25 

adjacent basins were included in the regression model. The other explanatory variables include annual 26 

precipitation and growing degree days. Groundwater discharge to the river was calculated using 27 

streamflow records with the computer program Groundwater Toolbox from the United States Geological 28 

Survey. Without the high capacity wells data, the model only explained 29.6% of the variability in the 29 

groundwater discharge. When the high capacity wells data within the Wolf River basin were included, r2 30 

improved to be 0.512. With the high capacity wells data in adjacent basins, r2 improved to be 0.700. The 31 

study suggests that human activity taking place outside of the basin has had an effect on the baseflow, and 32 

should be taken into account when examining baseflow changes.   33 

 34 

Keywords: baseflow, groundwater, regression model, high capacity wells 35 

  36 
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1. Introduction 37 

 38 

Configurations of the groundwater table generally mimic the local surface topography, and 39 

groundwater divides generally coincide with local surface water divides. However, regional patterns of 40 

the groundwater table do not always coincide with surface water divides (Eberts and George 2000; 41 

Feinstein et al. 2004). This is particularly true in unconfined groundwater systems flowing through 42 

unconsolidated material (Winter et al. 2003). Furthermore, groundwater divides can move over time in 43 

response to external stresses that affect recharge and discharge of groundwater, such as climate change 44 

and overpumping from irrigated agriculture.  45 

In northern Wisconsin (USA), shallow glacial aquifers are strongly connected to the surface 46 

water. Therefore high capacity wells used to irrigate agricultural land could significantly impact 47 

groundwater storage and associated interaction of surface and groundwater systems (Sophocleous 2002; 48 

Wahl and Tororelli 1997). In the state of Wisconsin, a high capacity well is defined as 49 

One or more wells, drill holes or mine shafts on a property that have a combined approved pump 50 

capacity of 70 or more gallons (1 gallon = 3.78541 liter) per minute. A property is defined as contiguous 51 

or adjacent land having the same owner.” (WDNR, 2016). 52 

High capacity wells affect the environment in previously glaciated areas of the United States, 53 

such as northern Wisconsin, differently from the western United States (Kraft et al. 2012). Irrigating crops 54 

was once almost exclusively practiced in the arid western portion of the United States, but the use of 55 

irrigation has accelerated in the last 30 years in the humid eastern half of the United States (Kraft et al. 56 

2012).  In northern Wisconsin irrigation is not required for crop production but is used in addition to 57 

rainfall to supplement when soil moisture is at a minimum. This supplement allows farmers to grow high-58 

water demand crops and increase productivity. Farmers are able to produce these crops in coarse soils that 59 

have minimal moisture holding capacity (Kraft et al. 2012); coarse soils have a high porosity, which 60 
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makes the soil an effective flow path for groundwater to be connected to the surface water (Todd and 61 

Mays 2005). Since groundwater discharge makes up a majority of the streamflow in areas where the 62 

aquifer flows through highly permeable sand and gravel deposits (Barlow and Leake 2012), it is of great 63 

importance to be able to predict changes to baseflow in the stream. 64 

The relationship between high capacity wells and baseflow decline has been well documented. 65 

Weeks et al. (1965) and Weeks and Stangland (1971) explored the relationship between high capacity 66 

wells and baseflow in Wisconsin. Wahl and Tororelli (1997) analyzed baseflow trends in the Oklahoma 67 

panhandle in relation to the decline of groundwater levels caused by high capacity wells. Barlow and 68 

Leake (2012) reported that the reduction of groundwater discharge to streams resulted from the pumping 69 

of high capacity wells. Ambient groundwater that normally would have discharged as baseflow to surface 70 

water can be diverted away from discharge points by the gradients created by high capacity wells. The 71 

gradients are a result of the decline in groundwater surrounding the pumping wells (Sophocleous 2002). 72 

The studies above suggest that the decline of baseflow can be better understood when taking into account 73 

the withdrawal rate of high capacity wells. In the studies cited above, the wells were all located within the 74 

boundaries of the same surface water basin. However, because groundwater divides do not always 75 

coincide with the surface water divides, high capacity wells can be located in the same groundwater basin 76 

but outside the surface water basin boundary. Therefore wells outside, but adjacent to the basin boundary 77 

can possibly affect the baseflow of the basin. 78 

Regression models have been developed to estimate recharge to the groundwater using the 79 

characteristics of the surface water basin such as climate, geomorphology, and land cover (Scanlon et al. 80 

2002). Several different regression methods have been developed to estimate recharge at the basin level. 81 

Santhi et al. (2008) used variables such as relief, precipitation, potential evapotranspiration, and soil 82 

permeability to construct regression equations explaining the variability of baseflow across the United 83 

States. Lorenz and Delin (2007) developed an alternative regression model to predict recharge using 84 

growing degree days, precipitation, and specific yield across the state of Minnesota (USA). Cherkauer 85 

and Ansari (2005) estimated recharge-precipitation ratios from soil conductivity, hill slope, depth to the 86 
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water table, length of flow to the main channel, and percent of natural land cover at several catchments in 87 

southeastern Wisconsin. These studies suggest that the climate variables of both temperature (potential 88 

evapotranspiration and growing degree days) and precipitation are strongly related to the rate of recharge 89 

to the groundwater system, and thus influence baseflow rate of the river. 90 

This study aims to determine the variability of annual baseflow using a regression model that 91 

takes into account the withdrawal rate of high capacity wells outside of the basin. It focuses on the Wolf 92 

River basin in northeastern Wisconsin where mean annual streamflow has declined over the last three 93 

decades, and hypothesizes that the decline is largely due to the high capacity wells located outside of the 94 

basin. The study has three main components. First, the groundwater divide is identified for the Wolf River 95 

basin. Second, the baseflow is determined for the Wolf River from the observed streamflow data. Third, a 96 

regression model is built to predict baseflow using both climatic and anthropogenic variables. The results 97 

of the study can be useful for estimating future changes in baseflow as a result of either the approval of 98 

additional well permits or the abandonment of existing high capacity wells. 99 

 100 

2. Study Area 101 

 102 

The study area is the Wolf River basin (drainage area of 1,200 km2) located in Langlade County 103 

in northeast Wisconsin (Fig. 1). The surface geologic formation consists of glacial unconsolidated sand 104 

and gravel overlying Precambrian bedrock (Mickelson 1987). These deposits range in thickness from less 105 

than 6 m in the northeastern and western parts of Langlade County to over 150 m in the central part of the 106 

county. The geologic material is very coarse textured and contains a large percent of sand- and gravel-107 

sized particles (Batton 1987; Mickelson 1987). The glacial melt formed an area of outwash called the 108 

Antigo Flats, where irrigated agriculture is used to produce potatoes.  109 

 110 

<Fig. 1 about here> 111 
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 112 

Elevations vary in the Wolf River basin from approximately between 330 and 575 m above sea 113 

level. The two other adjacent basins, the Springbrook Creek and the Upper Eau Clair River basins, vary 114 

less, with elevations ranging from 435 to 575 m above sea level. The gauging station for the Wolf River 115 

(US Geological Survey site number 04074950) is located at latitude 45°11'24" and longitude 88°44'00", 116 

approximately in the center of the Wolf River basin (green star in Fig. 1). There are a few more gauging 117 

stations outside of the basins with intermittent data.  118 

The Wolf River basin has eight high capacity wells upstream of the gauging station. The total 119 

recorded withdrawal from these wells was 0.22×106 m3 in 2013. On the other hand, densely populated 120 

high capacity wells, primarily used to irrigate the agricultural land, are located in the Springbrook Creek 121 

and the Upper Eau Clair River basins. The 166 high capacity wells in these two basins withdrew a 122 

recorded 8.24×106 m3 in 2013. 123 

3. Materials and Methods  124 

3.1. Identification of the Groundwater Divide 125 

 126 

To get a better understanding of the groundwater flow system, a groundwater table elevation map 127 

was drawn to determine whether the groundwater divide coincides with the surface water basin divides. 128 

The groundwater table map was constructed from a GIS layer compiled by the Wisconsin Department of 129 

Natural Resources (DNR), containing static depth data of groundwater wells drilled in the state (Smail, 130 

Robert A. Email correspondence, 6 January 2015). The well data was sorted to contain only 111-screened 131 

wells, which had been drilled in Langlade County since 2012. Screened wells were chosen because they 132 

are more likely to only extend into the unconfined aquifer and not into the bedrock aquifer below. The 133 

digital elevation model (DEM) dataset was obtained from the U.S. Geological Survey (USGS). The 134 
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elevation of the groundwater table was identified by subtracting the static depth of 111-screened wells 135 

from the DEM dataset. The 111-point data of the groundwater table was then used to create a contour 136 

map of the groundwater table.  137 

 138 

3.2. Baseflow Determination 139 

 140 

Annual mean baseflow was calculated from the streamflow data, collected during 1983-2013 at 141 

the Langlade gauging station in the Wolf River, using the USGS computer program, Groundwater 142 

Toolbox (http://water.usgs.gov/ogw/gwtoolbox/, last accessed on 9 March 2016). The gauge has been 143 

continuously recording daily stream flow since March 1966 to September 1979, and October 1980 to the 144 

present (http://waterdata.usgs.gov/usa/nwis/uv?04074950, last accessed on 12 March 2016). 145 

 The Groundwater Toolbox program includes six hydrograph-separation methods, the Base-Flow 146 

Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and 147 

PART methods, and one recession-curve displacement method, the RORA method, for baseflow 148 

separation (Barlow et al. 2015). Each method uses a slightly different calculation to identify the baseflow 149 

component of streamflow. The hydrograph-separation methods are based on formalized algorithms and 150 

not on mathematical solutions. The baseflow hydrographs are created by connecting the turning points 151 

(low points) in the hydrograph. The recession-curve displacement method is based on a mathematical 152 

solution. A recession index is specified for the basin based on the time required for groundwater to 153 

discharge to the surface water. It is estimated using a semilogarithmic plot of streamflow as a function of 154 

time. The index is then used to calculate the solution for the conditions related to the instantaneous rise in 155 

height of the water table over the basin, and the volume of water that drains from groundwater storage 156 

after each precipitation event (Barlow et al. 2015).  157 

 158 
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3.3. Regression Model 159 

 160 

Lorenz and Delin (2007) and Santhi et al. (2007) used climatic and physiographical variables as 161 

explanatory variables for the regression models. In this study, precipitation and growing degree days 162 

(GDD) were selected to represent climatic variables. The GDD was selected because GDD is a primary 163 

factor in estimating evapotranspiration (Lorenz and Delin 2007) and is more easily available than 164 

evapotranspiration data. The Wolf River basin is 95% forested, and the soil characteristics and 165 

topography did not change during the study period. Therefore, these variables were not used in the 166 

regression model. The withdrawal rates from high capacity wells were used in the regression model 167 

because of the relationship between withdrawal rate and baseflow decline (Weeks et al. 1965; Weeks and 168 

Stangland 1971). The withdrawal rate of low capacity wells was not used in the model. Low capacity 169 

wells are used in residential applications where on site wastewater treatment is also present; therefore 170 

what is pumped is put back into the ground. In summary, this study premised on Equation (1):  171 

Baseflow = f (precipitation, GDD, groundwater withdrawal)                                         (1) 172 

Data sources and processing for each of the variables are described in the following subsections. 173 

 174 

3.3.1. Precipitation 175 

 176 

The precipitation data was ordered from the National Centers for Environmental Information for 177 

the counties of Langlade, Oneida, and Forest (https://www.ncei.noaa.gov/, last accessed on 11 March 178 

2016). It was determined that the Rhinelander Water Works weather station (Table 1), to the northwest of 179 

the study area and upstream of the gauging station, had the most complete data set for precipitation (Fig. 180 

1b). Two other weather stations (Rhinelander WJFW TV12 and Rhinelander 4 NE station) were used to 181 



9 
 

fill in missing data as needed. Annual total precipitation varied from 45.1 cm to 109.7 cm (Fig. 2a), with 182 

the mean of 80.8 cm. The linear trend over the study period indicates an increase of 7.5%. 183 

 184 

3.3.2. Growing Degree Days (GDD) 185 

 186 

The GDD was used as the temperature variable in lieu of evapotranspiration (ET). The GDD is a 187 

measure of the mean temperature above the base temperature for each day (Equation (2)). 188 

GDD =     Tm – Tb for Tm > Tb,  189 

                 Tb  otherwise      (2) 190 

 191 

where Tm is the daily mean temperature (°C) and Tb is the base temperature (10°C). Annual GDD data 192 

(annual sum of daily GDD) was obtained for Rhinelander at the Rhinelander Water Works from the 193 

Midwestern Regional Climate Center (http://www.wrcc.dri.edu/cgi-bin/cliMONtg50.pl?wi7113, last 194 

accessed on 12 March 2016). The weather station was chosen due to its complete data record and to be 195 

consistent with the precipitation data. Annual GDDs ranged from the minimum of 800.5°C in 1984 to the 196 

maximum of 1,366.1°C in 2005, and the mean was 1,064.7°C. During the study period GDD presented an 197 

increasing linear trend of 3.9% (Fig. 2b).  198 

 199 

<Fig. 2 about here> 200 

 201 

3.3.3. Groundwater Withdrawal 202 

 203 



10 
 

High capacity well data for Langlade County was acquired from the DNR (Smail, Robert A. 204 

email correspondence 6 January 2015). The well data has the reported annual pumping rates for each high 205 

capacity well for the years 2011, 2012, and 2013, along with the date the wells were permitted. Wisconsin 206 

has only required annual pumping reports since 2011, so an average of the three reporting years was used 207 

as the annual pumping rate for each well. The wells were divided into two groups. The first group 208 

included eight wells within the Wolf River drainage basin (Fig. 1a). The eight wells combined had an 209 

average pumping rate of 0.285×106 m3/year in 2013. The second group of 166 wells was within the two 210 

adjacent basins (Upper Eau Claire River and Springbrook Creek basins). They had a combined average 211 

pumping rate of 8.02×106 m3/year in 2013. 212 

 213 

4. Results 214 

4.1. Groundwater Divide 215 

 216 

Fig. 3 portrays the elevation of the groundwater table delineated for the study area. Fig. 3a shows 217 

that the groundwater moves in general from the northwest corner of the county where the head is 218 

approximately 510 m to the southeast with the head below 370 m. The estimated regional gradient for 219 

groundwater is 0.3%. The contour lines change direction along the boundary between Upper Eau Clair 220 

and Springbrook, suggesting a groundwater divide between them. The contour lines for 420-440 m and 221 

below are almost straight, suggesting the same groundwater basin.  222 

Fig. 3b and Fig. 3c compare the surface topography and the groundwater table elevation along the 223 

cross-sections A-A’ and B-B’ respectively shown in Fig. 3a. They indicate that the groundwater divide 224 

extends beyond the boundaries of the surface water basin of the Wolf River. The cross-sections also 225 

demonstrate that wells in the Springbrook creek basin and the eastern portion of the Upper Eau Claire 226 

basin are in the same groundwater basin as in the Wolf River.  227 

 228 

A 

A 

A 
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<Fig. 3 about here> 229 

 230 

4.2. Baseflow Separation 231 

 232 

All seven hydrograph-analysis methods described in section 3.2 were used to separate baseflow 233 

from the observed streamflow data, and the resulting outputs were compared (Fig. 4 and Table 2). All 234 

seven methods compare favorably with each other, revealing a declining trend (~30%) over the study 235 

period (1983-2013). Particularly low flow years of 1989, 1998, and 2009 were also very low precipitation 236 

years, with 1989 being the lowest precipitation year of the study (Fig. 2a). The GDD for the same years 237 

do not appear to be correlated to the low flow, with two years (1989 and 2009) having lower that average 238 

GDD, and 1998 having higher than average GDD (Fig. 2b).  239 

 240 

<Fig. 4 about here> 241 

 242 

For most years the BFIM method, a hydrograph-separation method, produced the lowest rate and 243 

the RORA method, a recession-curve displacement method, produced the highest rate. On average, the 244 

BFIM produced and the RORA produced rates were different by 19.1%, and the difference varied 245 

between 2.5% and 28.9% over the years. This study investigates the interannual variability of the 246 

baseflow, and the graph shows that although each method is slightly different, the variability is consistent 247 

between the methods (Fig. 4). The results from the RORA method were chosen for use in the regression 248 

model for this study because of its more realistic assumption of the recharge process. The RORA program 249 

creates estimates of net recharge. Net recharge is recharge minus leakage to deeper aquifers and losses 250 

caused by groundwater evapotranspiration (Rutledge 2000). It assumes that groundwater discharge to 251 
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streams is an episodic response to storms, unlike the hydrograph-separation methods which assume a 252 

continuous process (Rutledge 2007). Batton (1987) reported the rise in groundwater elevation after 253 

precipitation events in Langlade County; therefore the RORA method is the more reasonable method for 254 

this study area. The RORA method is appropriate for basins between 2.5 km2 and 1,300 km2 (Rutledge 255 

2000 and 2007), and the Wolf River basin sized at 1,200 km2 fits within this range. 256 

 257 

4.3. Regression Model 258 

 259 

Ordinary least squares (OLS) regression was run three times using different sets of explanatory 260 

variables for the years 1983-2013 (n = 31, Table 3). The first run used the climatic variables of annual 261 

GDD and annual total precipitation (cm), and the resulting r2 was 0.296. In the second run, the annual 262 

withdrawal rates (106 m3) from the wells located in the Wolf River basin alone were added to the existing 263 

variables and the resulting r2 improved to be 0.512. The large improvement in the r2 score indicates that 264 

the withdrawal rate is significantly affecting the baseflow. Finally, the third run of OLS adds the 265 

withdrawal rate of the wells in the two adjacent basins to the withdrawal variable. The addition of the 266 

withdrawal rate from the high capacity wells in these two basins brings the r2 up to 0.700. The model now 267 

explains 70% of the variability in the baseflow of the Wolf River.  268 

Each of the OLS models indicates that all of the explanatory variables are significant to the model 269 

(p < 0.01 except for one), and that there is no redundancy in the variables indicated by the small (~1) 270 

variance inflation factor (VIF) values (Table 4). The p-value is 0.054 for GDD in Model 1, suggesting the 271 

GDD is marginally significant in this model. In the models, precipitation has positive coefficient whereas 272 

both GDD and withdrawal rates have negative coefficients. Table 4 also shows the standardized 273 

coefficients (β), whose absolute values indicate the sensitivity of the model to the explanatory variable. In 274 

Model 2, precipitation has the highest absolute value by a small margin over both GDD and withdrawal 275 
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rates. In Model 3, the withdrawal rate has the highest absolute value by a greater margin over either GDD 276 

or precipitation; therefore the withdrawal rate from the three basins has the most influence on the 277 

baseflow rate. 278 

 Fig. 5 portrays the correlation between the residuals and the explanatory variables, and between 279 

the residuals and the estimated baseflow from Model 3. All the graphs show no correlation between the 280 

residuals and the variables. Residuals appear to be somewhat larger with lower withdrawal rates than with 281 

higher rates, suggesting better explanatory power of withdrawal rates when they were high.  282 

 283 

<Fig. 5 about here> 284 

 285 

Fig. 6 portrays the correlation between the observed baseflow from the RORA method and the 286 

baseflow estimated by Model 3, along with the 45-degree (1:1) line and the regression line between the 287 

observed and estimated baseflow. As mentioned before, the baseflow tends to be smaller in more recent 288 

decades, and residuals have a decreasing trend as well. Residuals (horizontal distance of each case from 289 

the 1:1 line in the scatterplot) during 1983-1992 were between −6.78 and 6.04, but the maximum and 290 

minimum are vastly different from the rest. The residuals were between −5.33 and 6.62 during 1993-291 

2002, and then between −3.65 and 4.73 during 2003-2013. Standardized residuals have a smaller range 292 

during 2003-2013 than previous decades (not shown), suggesting better predictability in more recent 293 

decades. All the residuals are within 22.4% of the observed baseflow, and standardized residuals are 294 

within ± 2. The regression line has a slope of 0.7, suggesting that Model 3 generally underestimates in 295 

high baseflow years and overestimates in low baseflow years. In Fig. 6, all cases with observed 296 

baseflow >35 are located on the right-hand side of the 1:1 line whereas most cases with observed 297 

baseflow <25 are located on the left-hand side of the 1:1 line. A couple of very unusual years were found 298 

that could not be explained by the climate variables. Large positive residuals were found in 1993 which 299 
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was cold and wet, and in 1991 which was warm and dry. Large negative residuals were found in 1999 300 

when it was warm with average precipitation, and in 1990 which had an average temperature but higher 301 

than average precipitation.  302 

 303 

<Fig. 6 about here> 304 

 305 

5. Discussion 306 

 307 

In this study, a regression model was developed to explain the variability of the annual baseflow 308 

of the Wolf River in Langlade County in northeast Wisconsin. This was done by first determining 309 

whether the groundwater basin divides extended beyond the divides of the surface water basin. Secondly 310 

the baseflow was estimated for 30 years (1983-2013) using the USGS Groundwater Toolbox. The final 311 

step was to use ordinary least squares to develop the regression model. 312 

The study highlights that human activity, i.e. groundwater withdrawal from high capacity wells 313 

outside but adjacent to the surface water basin, is affecting the baseflow rate of the Wolf River. Most 314 

importantly, high capacity wells outside the boundaries of the surface water basin can have an effect on 315 

the baseflow rate. For example, the regression model #2 was only able to explain approximately 50% of 316 

the variation in baseflow when the withdrawal rate of only the wells within the boundaries of the surface 317 

water basin were used in the model. When the withdrawal rate of the wells from the adjacent basins were 318 

added to the withdrawal variable, the model’s ability to predict variations in baseflow rate jumped up to 319 

70% (Model #3). These findings are in agreement with previous studies (e.g. Lorenz and Delin 2007; 320 

Santhi et al. 2007) that climate variables such as precipitation and temperature affect baseflow rates. The 321 
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study is also in agreement with Wahl and Tortorelli (1997), Barlow and Leake (2012), Sophocleous 322 

(2002), Weeks et al. (1965), and Weeks and Stangland (1971) in a sense that high capacity wells play a 323 

significant role in baseflow decline.  324 

The water table map along with the cross section graphs (Fig. 3) are in agreement with Winter et 325 

al. (2003) who found that groundwater basins can extend beyond surface water divides, and that the 326 

groundwater divides do not always coincide with the surface water divides (Eberts and George 2000; 327 

Feinstein et al. 2004). In particular the cross section shows that the high capacity wells located in the 328 

Springbrook Creek basin and the eastern portion of the Upper Eau Claire river basin are within the same 329 

groundwater basin as the Wolf River.  330 

This study created a model using baseflow data from just one basin, and it is anticipated that 331 

future studies of other basins with declining baseflows could corroborate these findings. It is also 332 

anticipated that the model prediction will improve as more actual withdrawal data becomes available. 333 

Although an average of the three recording years worked as a substitute for actual values, rates vary from 334 

year to year. This annual variation in withdrawal rate may be able to explain some of the larger residuals. 335 

There is also a lack of historical streamflow data in the adjacent basins. The gauges to the north at Swamp 336 

Creek (USGS site numbers 04074548 and 04074538) have intermittent data and have not recorded since 337 

2009. The gauge to the southeast at the Red River (USGS 04077630) has only been recording since 1992. 338 

The next closest gauging station (USGS 05397500 Eau Claire River at Kelly, WI) is southwest of the 339 

basins (southwest corner of Fig. 1). This gauging station is directly downstream from the wells and has 340 

had a decline of approximately 27% over the study period suggesting high capacity wells maybe affecting 341 

other adjacent basins, and further analysis of stream baseflow near clusters of high capacity wells is 342 

warranted. 343 

 344 
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6. Conclusions 345 

 346 

This study examined the annual baseflow of the Wolf River basin in northeastern Wisconsin 347 

using groundwater table maps and regression models taking high capacity wells into account. The study 348 

found that in the area surrounding the Wolf River basin, the groundwater basin extends beyond the 349 

boundaries of the surface water basin and the baseflow of the Wolf River has been declining over the last 350 

three decades. It was also found that high capacity wells outside the surface water basin, but within the 351 

groundwater basin have a significant effect on the baseflow of the stream within the surface water basin. 352 

The regression model’s explanatory power improved statistically significantly when the withdrawal data 353 

from adjacent basins were included. 354 

Water resources managers need to look beyond surface water divides when determining if 355 

additional high capacity well permits will adversely affect surface water resources. Previous studies as 356 

well as the present study have shown that groundwater divides do not always coincide with surface water 357 

divides. Groundwater divides can also move due to changing climate conditions or anthropogenic stresses 358 

such as overpumping. This study developed a regression model that shows strong effects of the increasing 359 

withdrawal rates of high capacity wells outside the surface water basin on the baseflow within the basin. 360 

Further research including more basins is expected to corroborate the conclusion that high capacity wells 361 

in close proximity to surface water divides can have an adverse effect on the baseflow of surface waters. 362 

 363 
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Table 1 Weather stations selected for the study. 437 

Station Name Station ID Lat/Long Data Obtained 

Rhinelander Water 
Works, WI US 

477113 45.599oN / 89.451oW Precipitation, growing degree 
days (GDD) 

Rhinelander WJFM 
TV12, WI US 

477118 45.622oN / 89.410oW Precipitation 

Rhinelander 4 NE, WI 
US 

477115 45.653oN / 89.307oW Precipitation 

 438 
  439 
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 440 
Table 2 Summary statistics of annual baseflow (cm) during 1983-2013 from seven different baseflow 441 
separation methods in USGS Groundwater Toolbox. 442 
 443 

 HYSP_F HYSP_L HYSP_S BFIS BFIM PART RORA 
Max 36.27 34.01 36.30 32.03 32.03 37.77 40.16 
Min. 17.73 16.84 17.60 16.87 16.81 18.44 20.65 
SD 5.31 4.78 5.26 4.49 4.43 5.45 5.99 
Mean 25.98 24.14 26.01 23.69 23.57 27.00 29.29 

 444 
  445 
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 446 
Table 3 Variables entered in each regression model and resulting r2  447 

Model Explanatory variables R2 Adjusted R2  
1 Precipitation 

GDD 
0.2955 0.2452 

2 Precipitation 
GDD 
Withdrawal rate of Wolf River basin wells 

0.512057 0.457842 

3 Precipitation 
GDD 
Withdrawal rate of Wolf River basin wells and 
Adjacent basin wells 

0.699835 0.666483 

 448 

  449 
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Table 4 Regression coefficients of each model 450 

 451 
Model Variable Coefficient 

(b) 
Std. Coefficient 
(β) 

Probability VIF 

1 Intercept 28.187545 N/A 0.003641 N/A 

Precipitation   0.186694  0.4406977 0.009649 1.000000 

GDD  -0.013359 -0.3184034 0.054467 1.000000 

2 Intercept 63.511812 N/A 0.000029 N/A 

Precipitation   0.210917  0.4978769 0.001035 1.015096 

GDD  -0.016976 -0.4046123 0.006347 1.034322 

Withdrawal -139.101093 -0.4767418 0.001801 1.049399 

3 Intercept 46.227724 N/A 0.000000 N/A 

Precipitation   0.208533  0.4922494 0.000076 1.006572 

GDD  -0.015002 -0.3575633 0.002194 1.003793 

Withdrawal  -3.016398 -0.6391799 0.000002 1.010361 

 452 

 453 
  454 
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List of Figures  455 

 456 

Fig. 1 (a) Boundaries of the Wolf River basin, Upper Eau Claire River basin, and Springbrook Creek 457 

basin. The watershed boundaries were obtained from the Wisconsin Department of Natural Resources; (b) 458 



24 
 

The Wisconsin state map includes the approximate location of the weather stations (red circles) and the 459 

Wolf River  460 

 461 
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462 

Fig. 2 (a) Total annual precipitation (cm); (b) annual GDD above 10oC 463 
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 464 

465 

 466 

Fig. 3 (a) Elevation of groundwater table interpolated from static well depths and surface elevations; (b) 467 

Elevation profile of the land surface and aquifer for the transect A-A’; and (c) Same for transect B-B’  468 
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 469 

 470 

Fig. 4 Annual baseflow (cm) from seven different baseflow separation methods in the USGS 471 

Groundwater Toolbox  472 
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474 

 475 

Fig. 5 GDD above 10oC, withdrawal rate (106 m3), regression-estimated annual baseflow (cm), and 476 

annual precipitation (cm) versus the residuals from the regression model #3 477 
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 478 

Fig. 6 Observed and estimated annual baseflow (cm) during 1983-2013, grouped by decade. The straight 479 

is the regression line between the observed and estimate baseflow, and the dashed line is the 45-degree 480 

(1:1) line.  481 
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