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Sensitivity of Urban Water Consumption to Weather and Climate
Variability at Multiple Temporal Scales: The Case of Portland, Oregon

Abstract
The sensitivity of municipal water consumption to climate and weather variability is investigated for Portland’s
water provider service area between 1960 and 2013. The relationship between detrended seasonal urban water
use (the difference between total water use and base use) and weather and climate variables (precipitation,
maximum temperature) is examined at daily, monthly, and seasonal scales using stepwise multiple regression
and autoregressive integrated moving average (ARIMA) models. At a seasonal and a monthly timescales,
interannual variation in maximum temperature is the most important predictor of seasonal water
consumption per capita, explaining up to 48% of the variation in seasonal monthly water consumption in June
and July. At a daily scale, one-day lagged seasonal water demand and maximum temperature are the variables
that are significant in all the daily models. Together with day of the week and precipitation, these variables
explained up to 87 % of the variation in seasonal daily water consumption in summer. ARIMA models that
take into account temporal autocorrelation explain between 70 and 81% of daily seasonal water consumption
in summer months. This study provides useful climate information to urban water resource managers for
seasonal water consumption forecasting at multiple temporal scales. Our results demonstrate the sensitivity of
seasonal urban water consumption to climate variables as the scale of analysis changes. Urban water managers
can use such information to establish proactive seasonal water resource management plans under increasing
pressure from potential climate change, as understanding of the climatic sensitivity of seasonal water
consumption is necessary for responding to changes.
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 1. INTRODUCTION 

 

Municipal water use has progressively become a greater concern to urban water resource 

managers as concern over climate variability and change is growing and urban areas have 

expanded in many parts of the world during the 20
th
 and early 21

st
 centuries. The recent 

Intergovernmental Panel on Climate Change (IPCC) report also projected an increase in 

temperature and spatial and temporal variability of precipitation, which may increase 

water demand but reduce seasonal water supply (Cineros et al. 2014). Although many 

North American cities have recently implemented conservation measures and 

consequently seen reductions in water consumption per capita (Gleick 2003), growing 

municipalities located in arid or semi-arid regions or areas prone to drought are 

increasingly apprehensive about the sustainability of their water resources (Gleick 2009; 

Gober 2013; Kenney et al. 2008; Morehouse et al. 2002; Shvarster et al. 1993). Even for 

cities located in relatively humid temperate climates, such as the Pacific Northwest of 

North America, potential seasonal changes in runoff due to climate change are posing 

another stress in the sustainability of water resources (Chang and Jung 2010; Chang et al. 

2013; Graves and Chang 2007; VanRheenen et al. 2003). Now, with more attention being 

paid to how climate change could affect water availability at the local and regional scale 

(Ellis et al. 2007), there has been a rising focus on the impact of climate on residential 

water consumption (Parker and Wilby 2013) (see Table 1).  

Water use research has long established consumption’s positive relationship with 

temperature and inverse relationship with precipitation (House-Peters and Chang 2011a), 

but few previous studies have examined how the temporal scale of analysis affects these 

relations. However, some studies have found that the relation between seasonal 

consumption and climate can be complex. “Seasonal” water use refers to the mostly 

outdoor summer water use that is dependent on climate and, together with the 

climatically-insensitive base use, makes up the total water use. Maidment and Miaou 

(1986) found that daily base use is sensitive to days of the week and that daily seasonal 

use exhibits a relation to certain climate thresholds, meaning that there are particular 

daily maximum temperatures at which water use exhibits a step change.  Below these 

thresholds, however, water use and temperature may exhibit linear relations. They 

divided water use into base use, defined as primarily indoor use independent of the 

influence of climate, and seasonal use, which is climate dependant.  Seasonal use is 

calculated by subtracting the base use, often estimated by using the average water use for 

the lowest-use month, from the total use (Gato 2007a). 

Seasonal water use has not been investigated at multiple temporal scales for a single 

location. Most previous studies have focused on either daily seasonal use (e.g., Maidment 

and Miaou 1986; Praskievicz and Chang 2009; Wong et al. 2010) or monthly seasonal 

use only (e.g., Martínez-Espiñeira 2002; Polebitski et al. 2010). Water consumption 

research is typically constrained by a lack of detailed long-term data to draw from. Many 

previous studies typically used only a few years of data (Bárdossy et al. 2009; Ghiassi et 

al. 2008; Zhou et al. 2002), not fully taking into account interannual climate variability. 

This limits the utility of developed models for forecasting future water demand. However, 

this study acquired a rich dataset of 54 years of daily water data to analyze, which is not 

available for many locations.  
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Table 1. Previous studies modeling municipal water use. 

Study/Region 

 

Dependent 

variable 

Independent 

variables 

Model(s) 

 

Results 

 

Maidment and 

Miaou (1986) 

 

Florida, 

Pennyslvania, 

Texas (humid) 

 

 

 

 

Daily 

seasonal use 

 

 

 

 

 

 

 

 

Tmax, prcp, price, 

income 

 

 

 

 

 

 

 

 

A physics-type 

Transfer function 

 

 

 

 

 

 

 

 

Model explains up to 

99% of variance;  

Response to rainfall 

depended on 

frequency and 

magnitude 

A non-linear 

response of water use 

to temperature 

changes 

Billings and 

Agthe (1998) 

 

Arizona (arid) 

 

Monthly total 

household 

water 

demand 

Tmean, prcp, water 

price, block rate 

subsidy, per capita 

income 

 

State-space, 

multiple 

regression 

 

 

Model error ranged 

from 7.4-14.8% for 

multiple regression 

and 3.6-13.1% for 

state-space 

Morehouse et 

al. (2002) 

 

Arizona (arid) 

 

Winter 

supply 

reliability 

 

 

Precipitation, 

drought severity 

 

 

 

Water budgets 

 

 

 

 

Existing institutions 

could safeguard 

supply for a drought 

of five years' length, 

but not ten years 

Martínez-

Espiñeira 

(2002) 

Spain (semi-

arid) 

Average 

monthly 

water 

consumption  

Temperature, 

population density,  

household size, 

water &sewer bill, 

income, marginal 

price,  population, 

prcp,  

percentage of 

housing as main 

residence dweling 

tourism index, 

Nordin-difference. 

Instrumental 

variable models 

Significant difference 

in  

summer-only 

elasticities and  

major impact of 

climatic  

variables on monthly  

consumption. 

Campbell et al. 

(2004) 

 

Arizona (arid) 

 

 

 

 

 

 

 

 

Monthly total 

household 

water 

demand 

 

 

 

 

 

 

 

 

Price, rules, 

engineering devices, 

education, 

conservation 

programs, ET, 

precipitation 

age/ethicity/income/

education/ethic/ 

household size,  

#baths, house value 

and age, landscape 

irrigation 

Multiple 

regression 

 

 

 

 

 

 

 

 

 

 

Appropriate 

regulation and 

pricing can be 

effective in managing 

water demand 

 

 

 

 

 

 

 

Gutzler and 

Nims (2005) 

 

New Mexico 

(arid) 

Daily 

summer 

residential 

demand 

 

Tmax, prcp 

 

 

 

 

Multiple 

regression 

 

 

 

Over 60% of variance 

in water demand is 

explained by climate 

variables 
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Balling and 

Gober (2007) 

 

Arizona (arid) 

 

 

Per capita 

daily total 

residential 

demand 

 

 

Tmean, prcp, mean 

PDSI 

 

 

 

 

Multiple 

regression, 

principal 

components 

analysis 

 

Correlations between 

water use and 

temp, ,rainfall, and 

drought index are 

0.55, -0.69, and  

-0.52, respectively 

Gato et al. 

(2007a,b) 

 

Australia 

(semiarid) 

Daily total 

water 

demand 

 

 

Tmax, prcp, day of 

the week 

 

 

 

Time series 

analysis 

 

 

 

Model explains up to 

83% of variance 

 

 

 

Guhathakurta 

and Gober 

(2007) 

 

Arizona (arid) 

 

 

 

 

 

 

Mean June 

total 

household 

water use 

 

 

 

 

 

 

 

Tmin, daily temp 

range, household 

income and size, lot 

size, house age, 

swimming pool 

evaporative coolers, 

vegetation index, 

percent owner-

occupied homes, 

water source, land 

value 

Multiple 

regression 

 

 

 

 

 

 

 

 

 

1°F increase in 

temperature results in 

290-gallon increase 

in water use per 

household 

 

 

 

 

 

 

Ruth et al. 

(2007) 

 

New Zealand 

(humid) 

 

Daily total 

per capita 

water 

demand 

 

 

Day of the week, 

Tmax, prcp, # dry 

days, wind speed, 

conservation 

 

 

Multiple 

regression 

 

 

 

 

Projected climate 

change and 

population growth 

scenarios result in 30-

40% probability of 

water shortages 

Ghiasse et al. 

(2008) 

 

Southern 

California 

(semi-arid) 

Monthly, 

weekly, 

daily, hourly 

water 

demand 

 

Past 1, 2, 3 days of 

water use 

 

 

 

 

Artificial Neural 

Network 

 

 

 

 

Up to 99% of 

accuracy 

 

 

 

 

Kenney et al. 

(2008) 

 

Colorado 

(semiarid) 

 

 

 

 

 

 

 

 

Residential 

total water 

demand per 

billing period 

 

 

 

 

 

 

 

 

 

Price, restrictions, 

length of billing 

period, outdoor and 

indoor rebates, 

water smart readers, 

irrigation, holidays, 

Tmax, prcp, 

household income 

and size, 

homeowner age, % 

homes owner-

occupied, age of 

home, # bedrooms 

Fixed effects, 

instrumental 

variables 

 

 

 

 

 

 

 

 

 

 

Water use increases 

2% for every 1°F rise 

in temperature and 

decreases by 4% for 

every inch of rain 

 

 

 

 

 

 

 

 

Praskievicz and 

Chang (2009) 

 

Seoul, Korea 

(humid) 

Residential 

seasonal 

water use 

 

 

Tmax  

Wind speed 

 

 

 

Multiple 

regression 

ARIMA 

 

 

Tmax and wind speed 

explain between 39 

and 61% of the 

variations 

in seasonal water use 
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Chang et al. 

(2010) 

 

Portland, humid 

temperate 

Annual water 

use 

 

 

 

Building size, 

building age, 

income 

 

 

OLS regression; 

Piecewise 

regression; spatial 

regression  

 

Size is positively 

related; age is 

negatively associated; 

income threshold 

identified 

Polebitski and 

Palmer (2010) 

 

Seattle, humid 

temperate 

 

 

 

 

 

 

 

 

 

Monthly 

water use 

 

 

 

 

 

 

 

 

 

 

 

 

Density, building 

area, lot size, 

household size, 

income, price, 

Tmax, prcp, policy 

 

 

 

 

 

 

 

 

 

Regression (fixed 

effects and 

random effects) 

 

 

 

 

 

 

 

 

 

 

 

For July and August, 

a 10% increase in 

maximum average 

monthly temperature 

results in a 10% 

increase in water 

consumption;  

a 10% increase in 

cumulative monthly 

precipitation in early 

summer months 

results in a 2.5% 

decrease in 

total water usage 

Wong et al. 

(2010) 

 

 

 

 

Hong Kong 

(humid-

temperate) 

Daily water 

consumption 

 

 

 

 

 

 

 

Trend, seasonality, 

climate regression, 

day-of-the week, 

holiday effect, 

autoregression 

 

 

 

 

Statistical model 

composed of 

base, seasonal, 

calendrical water 

use 

 

 

 

 

Explains up to 83% 

variance with six 

factors: trend (8%), 

seasonality (27%), 

climate regression 

(2%), day-of-the 

week (17%), holiday 

effect (17%), 

autoregression (12%) 

Breyer et al. 

(2012) 

 

Portland, OR 

and Phoenix, 

AZ 

Temperature 

sensitivity of 

monthly 

water 

consumption 

 

Housing density, 

impervious Surface, 

low vegetation, tree 

canopy 

 

 

OLS regression 

Spatial regression 

 

 

 

 

Temperature 

sensitive water use is 

positively related to 

low vegetation and 

negatively related to 

impervious surfaces 

Adamowski et 

al. (2012) 

 

Montreal, 

Canada (humid) 

 

 

Daily 

summer 

water 

demand 

 

 

 

1, 2, 3 previous 

day’s water use and 

Tmax 

 

 

 

 

Multiple linear 

regression, 

nonlinear 

regression, 

autoregressive 

integrated moving 

average, ANN 

Wavelet transformed 

neural network 

performed better than 

other models, 

explaining up to 90% 

of variation in daily 

water demand 

Bakker et al. 

(2014) 

 

6 Netherlands 

cities(temperate

-humid) 

 

 

Total daily 

water 

demand 

 

 

 

 

 

Daily average 

temperature, prcp, 

day of the week 

 

 

 

 

 

Adaptive heuristic 

model 

Transfer/-noisy 

model,  

Multiple linear 

regression 

 

 

Including weather 

variables explain up 

to 11% of variations 

in water demand 

 

 

 

 

Tmax = maximum temperature; Tmin = minimum temperature; Prcp = precipitation 
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To draw meaningful inferences on water consumption as it relates to weather and 

climate variability, multi-scale analysis is needed. Multi-scale temporal analyses allow us 

to project short-term and long-term water demand based on the fluctuations of climate 

variables, namely temperature and precipitation. Water resource managers need not only 

seasonal climate but also daily weather information as they relate to water supply and 

demand, and may need to identify the most important variables for short-term operational 

(i.e. daily, weekly) and mid- to long-term tactical or strategic (i.e. monthly, seasonal, 

yearly) planning (Adamowski 2008; Admowski et al. 2013; Aly and Wanakule 2004; 

Rufenacht and Gubentif 1997; Steinemann 2006).  

As shown in Table 1, most previous studies used diverse methods ranging from 

regression-based analysis to artificial neural network. While some of these sophisticated 

methods may provide accurate water demand forecasting, they are mathematically 

complex and require fine scale weather data (e.g., sub-daily). Additionally, some of these 

studies heavily rely on detailed socioeconomic characteristics of customers (e.g., 

household income, size of house, etc.) to derive the parameters of water demand model 

coefficients.  Moreover, since water use can fluctuate day by day, using the raw water use 

data may not be suitable for identifying the determinants of water use at a finer temporal 

scale. We attempt to overcome these methodological issues by using readily available 

weather data and using the residuals of water use derived from the locally weighted 

scatterplot smoothing (LOWESS) model in constructing regression-based models (see the 

method section).  

Here we examined the relation between urban seasonal water consumption and 

climate variables at daily, monthly, and summer (June to September) scales using 54 

years of historical data from Portland, Oregon (OR), USA. This study is a unique 

investigation concerning the sensitivity of urban seasonal water consumption to climate 

variables as the temporal scale of analysis changes. We also generated autoregressive 

integrated moving average (ARIMA) models and compared their results to traditional 

multiple regression because previous studies show that daily water consumption is highly 

associated with previous day’s water consumption (Praskievicz and Chang 2009).   

Urban water managers often require short-term demand forecasting as well as 

seasonal demand forecasting (Ghiassi et al. 2008) for establishing proactive plans under 

increasing pressure from climate change. Knowing which climatic variables are most 

deterministic at different scales is necessary for short- and long-term planning (Miller and 

Yates 2006; Ruth et al. 2007). While this is a case study in a temperate climate, our work 

adds to a growing body of literature on the relationship between climate variables and 

seasonal water demand, mostly currently focused on dry or semi-arid climates. Results of 

our study will provide a basis for future comparison of how the climate-modulated 

consumption varies (or is similar) across different climatic regimes, in terms of whether 

water use is more sensitive to temperature or precipitation or other variables. 

 

  

2. WATER USE IN PORTLAND 
 

Portland is supplied by water from reservoirs in the Bull Run Watershed. The 262 km
2 

watershed is located 48 km east of downtown Portland. Mean annual precipitation is 

5
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approximately 330 cm, with rain providing 90-95 % of the water in the watershed. Mean 

annual streamflow measured at the mouth of the basin (USGS #14140000) between 1960 

and 2013 is 16.05 m
3
/sec, with the lowest flow occurring in August (0.69 m

3
/sec) (USGS 

2014). Water from the Bull Run Watershed has flowed into Portland water taps since 

1895. The Portland Water Bureau provides water resources to approximately 860,000 

Oregonians in 19 of the region’s 24 water providers. In FY 2011-2012, the Bureau served 

approximately 60% of its retail demand to both single family and multi-family residential 

customers. On average these single family residential houses have smaller lots with older 

buildings (Portland Water Bureau 2013). 

As shown in Figure 1, water use per capita declined since the late 1980s as a result of 

various conservation programs adopted by water providers in the region. These 

conservation and education programs include developing wise watering schedules using 

local weather information and planting water-efficient native plants (Regional Water 

Providers Consortium 2014). However, a considerable part of reduction in consumption 

is due to the new building code change in 1992, which required use of water efficient 

fixtures. In addition, smaller lot sizes in the new developments along with increase in 

multifamily dwellings have reduced the amount of water required for lawn irrigation and 

landscaping (Breyer and Chang 2014). Although these conservation efforts have 

contributed to the efficient use of water in the metro area, growing municipalities are 

currently facing challenges obtaining scarce water resources in summer when multiple 

water users compete (Larson et al. 2013).  According to a forecast by Metro (2009), 

population in the Portland-Beaverton-Vancouver areas is projected to increase from 1.9 

million in 2000 to 5.6 million in 2060, based on the region’s average annual growth rate 

of 1.8 % between 1980 and 2000. A recent study showed that most new urban 

development in the Portland metro area is likely to occur in the urban-rural fringe area 

(Hoyer and Chang 2014).  

 

 
Figure 1. Annual per capita total water consumption (L day 

-1
 per capita), Portland, 1960-2013 
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Like most urban areas, Portland’s water consumption exhibits seasonal patterns (see 

Figure 2). During the wet, cooler period (November to April), monthly average water 

consumption is fairly constant and low with the lowest consumption occurring in 

February. During the dry warm period (May to October), monthly average water 

consumption is high. The average monthly water consumption of July, the peak month, is 

approximately 2/3 (66 %) higher than that of February. The water consumption during 

the summer months (from June to September) is nearly 41 % of annual water 

consumption. Palmer and Hahn (2002) projected that by 2040, Portland’s water demand 

will increase by 8 % during the summer season, while the region’s rivers will be 

experiencing historically low flows in summer. Climate-induced water consumption is 

projected to increase by 8 % in summer based on average monthly changes in 

precipitation and temperature. The Palmer and Hahn (2002) study, however, was 

conducted solely with monthly data and did not examine any temporal scale effects.   

 

 
Figure 2. Distribution of monthly water consumption (L day

-1
 per capita) and average maximum 

temperature (°C), Portland, 1960-2013 

 

 

3. DATA AND METHODS 
 

3.1 DATASETS 

 

Data used in this study were obtained from various sources. Water consumption and 

annual population data for the Portland metropolitan area between 1960 and 2013 were 

provided by the Portland Water Bureau. Daily precipitation and daily maximum 

temperature data were obtained from the National Weather Service station located at the 
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Portland airport (station number #356751). The water consumption values were 

normalized by population to obtain (1) average daily summer (June through September) 

consumption per capita (liters (L) day
-1 

person
-1

) for each summer season and (2) average 

daily summer consumption per capita for individual summer months. Weather data – 

daily maximum temperature (
o
C) and daily precipitation (mm) – were used for daily 

analysis. For monthly and seasonal analysis, also done only for the summer season, 

average maximum temperature and total precipitation were calculated for each individual 

summer month and season.  

In order to separate the base use, the climatically-insensitive, mostly indoor water use 

that occurs year-round at a fairly constant rate, from climatically-sensitive mostly outdoor 

summer use, we determined the month with the lowest average daily water use in each 

water year, and subtracted that amount from the average daily use in each summer month.  

This difference is the seasonal use for each month, which we averaged accordingly to 

estimate seasonal use at the monthly and summer scales. 

 

3.2 STATISTICAL ANALYSIS   

 

Before any inferential statistical analysis, all the datasets (daily, monthly, summer) were 

evaluated for normality using the Kolmogorov-Smirnov one-sample test. We used the 

Pearson’s parametric correlation coefficient and the Spearman’s rho non-parametric 

correlation coefficient to estimate the association between seasonal per capita water 

consumption and each of the climate variables at the summer and monthly scale.  

We developed three sets of ordinary least square (OLS) multiple regression models 

for each summer month (June through September), one for the summer season, one for 

monthly, and one for daily consumption.  For the daily, monthly, and summer models, we 

first generated Locally Weighted Scatterplot Smoothing (LOWESS) models (Cleaveland 

1979), with year of record as independent variable, to non-linearly detrend separate time-

series of seasonal water use (shown in Figure 1), precipitation and temperature data 

(Maidment and Parzen 1984; Balling and Gober 2007). After detrending, we checked the 

time-series using with scatterplots and determined, based on non-significant correlation 

coefficients, that the distribution of each variable was random and that the association 

between the seasonal water use and maximum temperature residuals is approximately 

linear (Figure 3). The dependent variable in our final regression models was the 

LOWESS residual of monthly average per capita seasonal use (Umon). The independent 

variables were the LOWESS residuals from the 1960-2013 mean monthly temperature (t) 

and LOWESS residuals of total monthly precipitation (p). The monthly models take the 

form: 

 

Umon = b1 t + b2 p + a                                                         (1) 

 

where a, b1, and b2 are regression coefficients, and the remaining variables are as defined 

above.  
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Figure 3. LOWESS residuals of maximum temperature and per capita seasonal water use for 

monthly data (a) June; (b) July; (c) August; (d) September 

 

For the second set of regression models, those modeling daily use, we used only the 

last ten years of data (1999 to 2009), because this represents a sufficiently large sample 

size (at least 300 samples for each month) with relatively homogeneous climatic and 

socioeconomic conditions.  The dependent variable was again the residual use (Uday), 

calculated from the LOWESS models.  The independent variables included in the daily 

models were maximum temperature LOWESS residuals (t), total daily precipitation 

LOWESS residuals (p), and the previous day’s seasonal water use LOWESS residuals 

(d1) (see Figure 4). Use of this lagged variable allowed us to take into account the 

temporal autocorrelation of the consumption time series, as recommended by previous 

studies (Aly and Wanakule 2004; Gato et al. 2007a, b; Maidment and Parzen 1984; Zhou 

et al. 2000) and based on strong correlation coefficients between current day and previous 

day’s demand. The final variable included in the daily models was a binary dummy 

variable (w) with 0 representing weekdays and 1 representing weekend days, thus 

allowing us to take into account within week variations in the intensity of water use, 

(a) (b) 

(c) (d) 
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because Maidment and Miaou (1986) and Wong et al. (2010) found that such within 

week variations are significant for both base and seasonal use.  The daily models take the 

form: 

 

Uday = b1 t + b2 p + b3 d1 + b4 w + a                                             (2) 

 

where the variables are as defined above, and only statistically significant variables based 

on stepwise-regression method are included in the final models.   

 

 

 
 
Figure 4. LOWESS residuals of maximum temperature and per capita seasonal water use for daily 

data (a) June; (b) July; (c) August; (d) September 

 

In addition to ordinary least square regression (OLS) models, we also estimated an 

ARIMA model for daily seasonal water use in each summer month for the dependent 

variable, selecting with the Akaike information criterion. This allowed us to compare 

traditional multiple regression analysis with the time series analysis method of ARIMA, 

for data with significant temporal autocorrelation in the dependent variable.  In the 

(a) (b) 

(c) (d) 
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ARIMA models, we used the raw rather than the detrended data, because it is 

inappropriate to apply ARIMA to detrended data.  We used the freely available software 

R (R core team 2013). The program contains algorithms for selecting the best-fit ARIMA 

model for a time series using the Akaike information criterion. ARIMA models are 

characterized by the subscript (p,q) in which p represents the autoregressive coefficient 

and q represents the size of the moving average window.  The general form of our 

ARIMA models is: 

 

Yt = θp(B)Zt + Yt-1 + X                                                            (3) 

 

where Yt = per capita seasonal water use at time t; Zt = parameters of the autoregressive 

part of the model at time t; B = lag operator; θp(B)Zt = the series of the autoregressive 

component of order p of the time series Zt; Yt-1 = per capita seasonal water use at time t-1; 

and X = the set of all independent variables.   

The coefficient of determination (r
2
) was used to statistically estimate how much of 

the consumption was explained by the climate variables. All of the regression models 

satisfied an F-test for overall significance at the 5 % level.  

 

 

4. RESULTS AND DISCUSSION 
 

4.1 SUMMER SEASONAL AND MONTHLY ANALYSIS, 1960-2013 

 

The correlation between temperature and water consumption is consistently higher than 

that between precipitation and water consumption.  Temperature and water consumption 

shows slightly stronger correlation in June (r = 0.66) and August (r = 0.55) than in July (r 

= 0.44) and September (r = 0.50). The association between precipitation and water 

consumption is stronger in June (r = -0.41) and July (-0.43) than in August (-0.30) and 

September (-0.06). The relationship between water consumption and climate variables 

shows weaker correlation in summer than in individual months.  

Our results are similar to other studies that found significant relations between water 

consumption and climate variables (namely negative relation with precipitation and 

positive relation with temperature) in arid-climates (Balling and Gober 2007). Balling 

and Gober, however, found the strongest correlations between water use and total annual 

precipitation (r = -0.69) in Phoenix, AZ. It appears that limited water supply is a major 

factor in determining water consumption in Phoenix, while evaporative demand in 

summer, driven by high temperatures and little precipitation, has more influence than 

precipitation on water consumption in Portland, OR. This finding is similar to the results 

of Maidment and Miaou (1986), who found that municipal water use in Pennsylvania was 

more sensitive to temperature than precipitation, compared to the hotter climates of Texas 

and Florida. 

Table 2 shows the monthly model parameters for June, July, August, and September.  

For all individual months except for July, monthly temperature LOWESS residual is the 

only significant variable included in all regression models. The importance of this 

variable is highest at the beginning of the summer, as indicated by larger standardized 
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regression coefficients in June and July. As shown in the slope of regression coefficients 

in the regression models, the influence of monthly maximum temperature residuals on 

monthly water consumption is highest in June. In other words, 1
o
C increases in 

temperature residuals in June temperature would lead to an increase of 20.7 L day
-1

 per 

capita water consumption. While it is not as important as temperature, precipitation is 

also a significant predictor of monthly demand residuals in June, July, and August with 

the highest influence on August water consumption. In September, temperature is the 

only significant variable. At the summer seasonal scale, both temperature and 

precipitation are significant; however, together they only explain approximately a third of 

the variation in water consumption characteristics during the study period (r
2
 = 0.33).  

Our results are somewhat comparable to the findings of a previous study that examined 

the influence of monthly climate on summer months’ water use in Seattle, Washington 

(Polebitski & Palmer 2010). Like our study, they identified temperature elasticities were 

higher in July than in September. With the same 10% increases in maximum average 

monthly temperature, July water consumption increased 10%, while September water 

consumption only increased 4%.  

 
Table 2. Coefficients of stepwise linear regression models for LOWESS residuals of seasonal 

water consumption per capita during the summer months and summer season between 1960 and 

2013. Models are derived from LOWESS residuals of average maximum temperature (Tmax) and 

total precipitation. Only significant independent variables are included in the regression model; 

non-significant variable contain no values in the table. 

 June July August September Summer 

Tmax 20.7(35.2)** 23.7(36.5)** 20.8(31.5)** 14(32.2)** 21.1(53.3)** 

Precipitation  -1.2(1.5)**  -5.1(-3.5)**  -5.5(-5.3)**   -1(-1.8)* 

R² 0.48 0.48 0.43 0.39 0.33 

Numbers in parenthesis are t values. ** Significant at the 0.05 level, * significant at the 0.10 level.  

 

Our monthly scale analysis suggests that other hydroclimatic variables such as 

evpotranspiration or soil moisture - might explain additional variations in monthly water 

use since precipitation and maximum temperature only explain less than half of the 

variation in water use. The lower R
2
 values in August and September clearly suggest that, 

as summer progresses, soils get dry and evaporative demand increases. Typically, one 

can hypothesize higher water demand as summer progresses since residents are likely to 

irrigate lawns more as the grass turns into yellow. However, in our study, the opposite 

case is observed since August and September show lower temperature elasticities. While 

this at first glance may be surprising, considering that an increasing number of Portland 

residents let their lawns turn into brown or converted their lawn grasses to water efficient 

native plants or simple gravel gardens that do not require any irrigation (Breyer and 

Chang 2014), they may have effectively reduced water demand. Breyer et al. (2012) 

found that census block groups that have a higher proportion of low vegetation (e.g., 

lawn grasses) used more water in summer, while the opposite is observed for census 

block groups that have a higher proportion of impervious surfaces.  

Our findings illustrates that other non-climate factors should be considered in 

estimating urban water demand. These non-climate factors can be used as a room for 

possible climate adaptation. As reported in a previous study (Breyer and Chang 2014), 
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significant water reductions since the late 1980s are attributed to the densification of 

lands or continuous water conservation efforts. These efforts have also reduced the 

temperature sensitivity, the response of summer water consumption to temperature 

variability. Yet, since some suburban residents still have higher temperature sensitivity 

than inner city residents, suburban residents can be targeted for further conservation 

efforts. The lowest R
2
 in the seasonal analysis indicates that other non-climatic factors 

become even more important for seasonal water demand.  

 

4.2 DAILY DATA ANALYSIS USING MULTIPLE REGRESSION AND ARIMA MODELING  

 

Table 3 shows the daily model parameters for June, July, August, September, and 

summer. The highest model fit was found for summer (R
2
 = 0.87), followed by June, 

July, August, and September. As shown in t-test statistical values, the most important 

determinants of seasonal water use at a daily timescale is one-day lagged use, followed 

by temperature anomaly, precipitation anomaly, and the day of the week. All variables 

are significant in the daily models.  All variables have a positive relation with seasonal 

water use except precipitation (p) and day of the week (w) for the daily models, meaning 

wetter days and weekends are likely to have lower seasonal water use.  

 
Table 3. Stepwise linear regression models for daily seasonal water consumption per capita (Uday) 

during the summer months and summer season between 1999 and 2009. Models are based on 

LOWESS-filtered time series of maximum temperature (Tmax), total current day precipitation 

(Prcp), and the previous one day’s use (Uday1); and the day of the week (w).   

 June July August September Summer 

Tmax   6.1(14.3)**  6.2(14.9)** 4.6(12.0)** 4.5(11.3)** 4.3(20.0)** 

Prcp -1.3(-2.6)** -3.9(-3.4)** -3.8(-5.7)** -0.8(-2.1)** -1.5(-5.1)** 

Uday1   0.7(30.6)**   0.7(31.7)** 0.7(31.0)** 0.6(23.5)** 0.8(100.4)** 

W -16.7(4.4)** -17.2(4.8)** -12.2(3.7)** -15.5(4.3)** -14.2(7.2)** 

R
2
 0.81 0.8 0.77 0.7 0.87 

Numbers in parenthesis are t values. 

** Significant at the 0.05 level, * significant at the 0.1 level. 

 

Summer rainfall can cause an immediate drop in seasonal water use followed by a 

gradual increase until, after a period of time, there is no further effect of that particular 

summer rainy period on seasonal water use (Maidment and Miaou 1985). The negative 

relation of the day of the week dummy variable with daily seasonal water use indicates 

that more climate-sensitive water is used on weekdays than weekends, probably because 

of closed businesses on weekends. Commercial, industrial, and other nonresidential water 

consumption comprise of more than 40% of total water consumption in the Portland 

Water Bureau service area in the 2000s (PWB 2013). Since a considerable portion of 

water is consumed is by these nonresidential sectors, especially office buildings are 

closed on weekends, lower water consumption occurs on weekends. Our findings confirm 

the findings of earlier studies by Maidment and Miaou (1986) and Shvarster et al (1993) 

who reached the same conclusion for seasonal use in representative cities across 

continental USA. Similarly, Adamowski (2008) identified that peak demand from the 

previous day, maximum temperature, and the five-day rainfall occurrence were the most 
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predictive variables for summer total peak water demand in humid temperate climate in 

Ottawa, Canada. In a follow-up study, Adamowski et al. (2013) found that summer urban 

water demand in three Canadian cities are only sensitive to daily temperature when mean 

daily temperature are higher than 10 to 12 °C, while also identifying a weekly cycle in 

urban water demand. Wong et al. (2010) also reported negative coefficients for weekend 

days but positive effects for weekdays when examining day-of-the-week effect in Hong 

Kong.  

Table 4 compares the model fit of the OLS and ARIMA models that take into account 

temporal autocorrelation in seasonal water use for each month. The ARIMA models were 

based on the raw daily seasonal water use time series. All models use a one-day moving 

window except June, which uses a two-day window. This suggests that the memory in the 

seasonal water use time series is quite short.  In the June model, the OLS and ARIMA fits 

are approximately the same. In the other months, the ARIMA model significantly 

improves the model fit, particularly toward the end of the summer. Other studies found 

similar higher predictability in ARIMA models over OLS models in water consumption, 

as time-series memory is more pronounced than the weather dependence in summer 

water use (Aly and Wanakule 2004).  Our results suggest, although a significant amount 

of the variance in Portland’s seasonal water use at various timescales is explained by 

temperature and precipitation variables, at the daily timescale, memory in the water use 

time series is more significant than climatic variation. 

 
                              Table 4. Comparison of OLS and ARIMA model fit. 

Month OLS R² ARIMA Model ARIMA R² 

June 0.81 (2,2) 0.81 

July 0.80 (2,1) 0.84 

August 0.77 (2,1) 0.86 

September 0.70 (2,1) 0.80 

Summer 0.87 (2,1) 0.90 

 

In the ARIMA model, numbers in parenthesis represent the autoregressive coefficient and the size 

of the moving average window, respectively.   

 

 

5. SUMMARY AND CONCLUSIONS 

 

Statistical analysis of seasonal water consumption per capita for 1960-2013 shows that 

determining which climate and weather factors are the most influential to consumption 

per capita is greatly dependent on the scale of temporal aggregation. We found that the 

influence of maximum temperature is stronger than that of precipitation on water 

consumption at the monthly scale. Changes in climate from previous year’s summer 

months and season show significant associations with water consumption. The relation 

between weather and climate variables and seasonal water consumption is stronger at the 

beginning of the summer months than the later summer months. This suggests that non-

climatic variables could be significant, or that other hydroclimatic variables such as 
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relative humidity and evaporative demand could be also potential factors that affect the 

variations in water consumption during later summer months. Additionally, as soil 

moisture depends on both precipitation and evaporation, it is important to include soil-

water content as part of water demand modeling, particularly outdoor water use such as 

lawn irrigation and recreational activities. Changes in lawn irrigation behavior thus can 

also be an important factor that might influence irrigation water demand (Halper et al. 

2012), although such data were not available for our study area. Our monthly analysis 

suggests that other landscape management factors than climate variables may explain the 

remaining variations in monthly water demand. This implies that, from a policy 

perspective, society has a window of opportunity to adapt to future climate change by 

manipulating existing landscapes (Gober et al. 2013). A few examples of such adaptation 

plans include the densification of existing urban areas (House-Peters and Chang 2011b) 

and planting water efficient species (Middel et al. 2011).  

At a daily scale, one-day lagged seasonal water use (the previous day’s water use) and 

temperature LOWESS residuals are the variables that are significant in all the daily 

seasonal use models.  These variables explained 81% and 80 % of daily seasonal water 

consumption in June and July, respectively. Our findings suggest that seasonal daily 

water consumption has a memory effect (affected by previous day’s water usage).  If 

confidence in summer weather forecasts is improved, consumers could use such 

information for water use planning several days in advance rather than using water 

insensitive to weather variations. Growing conservation efforts, such as smart lawn 

watering programs based on soil conditions and plant needs (Regional Water Providers 

Consortium 2008), appear to have contributed to weather-sensitive water use. In other 

words, instead of constantly using an automatic timer for lawn irrigation, residents can 

modify water consumption in response to weather variations.  

This study is unique in that it examined the role of climate variables with multiple 

timescales on seasonal water consumption. The regression coefficients derived from 

multiple regression models can be used to estimate potential water consumption rate due 

to changes in total precipitation and maximum temperature, although at the daily scale 

memory in the water use time series is more significant. This multi-scale analysis of 

urban water consumption illustrates different relationships between urban water 

consumption and climate variables depending on the scale of analysis.  It demonstrates 

that for long-term (monthly, seasonal) planning, maximum temperature and precipitation 

forecasts can be of use to water managers, but in the short-term (daily), memory in the 

water use time series is likely to be more significant. Urban water resource managers can 

use such information for establishing proactive water resource management strategies 

under increasing pressure from potential climate variability and change, because 

understanding of which variables are significant is a necessary prerequisite for planning. 
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