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Abstract: 

Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic 

response commonly rely on regionalization techniques, where knowledge pertaining to gauged 

watersheds is transferred to ungauged watersheds.  Hydrologic response indices have 

frequently been employed in contemporary regionalization research related to predictions in 

ungauged basins. In this study, we developed regionalization models using multiple linear 

regression and regression tree analysis to derive relationships between hydrologic response 

and watershed physical characteristics for 163 watersheds in the Great Lakes basin.  These 

models provide an empirical means for simulating runoff in ungauged basins at a monthly time 

step without implementation of a rainfall-runoff model.  For the dependent variable in these 

regression models, we used monthly runoff ratio as the indicator of hydrologic response and 

defined it at two temporal scales: (1) treating all monthly runoff ratios as individual 

observations and (2) using the mean of these monthly runoff ratios for each watershed as a 

representative observation.  Application of the models to 62 validation watersheds throughout 

the Great Lakes basin indicated that model simulations were far more sensitive to the temporal 

characterization of hydrologic response than to the type of regression technique employed, and 

that models conditioned on individual monthly runoff ratios (rather than long term mean 

values) performed better.  This finding is important in light of the increased usage of hydrologic 

response indices in recent regionalization studies. Models using individual observations for the 

dependent variable generally simulated monthly runoff with reasonable skill in the validation 

watersheds (median Nash-Sutcliffe efficiency = 0.53, median R2 = 0.66, median absolute value 

of deviation of runoff volume = 13%).  These results suggest the viability of empirical 
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approaches to simulate runoff in ungauged basins.  This finding is significant given the many 

regions of the world with sparse gaging networks and limited resources for gathering the field 

data required to calibrate rainfall-runoff models.   

 

Keywords: runoff; regionalization; prediction in ungauged basins; hydrologic response; 

regression model; Great Lakes basin 

 

 

 

1. Introduction 

1. 1 Predictions in ungauged basins 

 

Addressing water quantity and quality issues is possible in gauged basins using rainfall-runoff 

models calibrated to streamflow observations.  The need to address these issues over spatial 

domains with limited or nonexistent stream gage observation networks motivated the 

International Association of Hydrological Sciences Prediction in Ungauged Basins (PUB) 

Initiative (Sivapalan et al., 2003, Hrachowitz et al., 2013).  While PUB research is typically 

conducted at local or regional scales, the challenges of understanding hydrological processes in 

data sparse locations are global.  In fact, the least developed gaging networks are generally 

found in those regions most susceptible to hydrologic impacts from expanding populations and 

changes in land use and climate (Sivapalan et al., 2003). 
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Traditional approaches to the PUB problem involve determining an appropriate parameter set 

for a rainfall-runoff model structure for application in the ungauged basin.  Without the aid of 

streamflow observations for estimating these parameters, PUB research commonly employs 

regionalization techniques to establish relationships between gauged and ungauged 

watersheds (Vogel, 2006; Wagener et al., 2004).  A variety of regionalization approaches have 

been developed for estimating parameter sets at ungauged sites.  For example, a parameter set 

may be inferred for an ungauged watershed based on its spatial proximity or physical similarity 

to gauged watersheds (McIntyre et al., 2005; Nijssen, 2001; Parajka et al., 2005; Reichl et al., 

2009).  Alternatively, parameter sets may be estimated at the ungauged site based on statistical 

relationships between calibrated parameters and watershed physical characteristics (Abdulla 

and Lettenmaier, 1997; Post, 2009; Post and Jakeman, 1999; Sefton and Howarth, 1998; 

Seibert, 1999).  Frequently, these regionalization approaches are explored in tandem 

(Kokkonen et al., 2003; Merz and Blöschl, 2004; Samuel et al., 2011). 

 

Regionalization techniques tied to rainfall-runoff model structures have been met with a variety 

of practical and theoretical challenges.  For example, the suitability of a regionalization 

approach is both location specific (Bao et al., 2012; Beven, 2000; Oudin et al., 2008; Wagener 

and Wheater, 2006) and rainfall-runoff model specific (Bárdossy, 2007; Bevin, 2006; Kay et al., 

2006).  In response to the uncertainties introduced in model-dependent regionalization 

approaches, recent studies developed regionalization schemes that are model-independent 

(that is, they can be applied to any rainfall-runoff model).  Wagener and Montanari (2011) 

review emerging methods wherein model-independent measures of hydrologic response in 
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gauged watersheds (rather than direct streamflow observations) are employed to establish a 

regionalization scheme. A wealth of indices has been derived to implicitly quantify these 

processes (Olden and Poff, 2003).  Examples include watershed input-output relationships (e.g. 

runoff ratio), hydrograph analytics (e.g. rising limb density) and metrics characterizing the 

magnitude, frequency, duration and timing of flow events (e.g. baseflow index and flood 

frequency). 

 

Yadav et al. (2007) presented a rainfall-runoff model-independent approach to making 

predictions in ungauged basins based on empirical relationships between watershed physical 

characteristics and a variety of hydrologic response indices.  Three response indices (runoff 

ratio, high pulse count and the slope of the flow duration curve) were shown to be useful for 

constraining ensemble predictions at ungauged sites.  Shamir et al. (2005) developed two 

hydrograph-based response indices (rising and declining limb density) to improve the 

identification of optimal parameters for a process-based rainfall-runoff model; a case study 

employing this method indicated improved model reliability and predictive skill.  Sawicz et al. 

(2011) developed a classification scheme for watersheds in the eastern U.S. that incorporated 

six hydrologic response indices observed to vary along a climate gradient: runoff ratio, baseflow 

index, snow day ratio, slope of the flow duration curve, streamflow elasticity, and the rising 

limb density. 

 

Relationships between hydrologic response indices and watershed physical characteristics are 

typically used to provide ancillary information for rainfall-runoff modeling.  For example, 
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Bulygina et al. (2009) used this information to constrain the range of allowable values for model 

parameters.  Alternatively, this information can be used to develop an ensemble of predictions 

based on the likelihoods of candidate models (McIntyre et al., 2005; Reichl et al., 2009).  Finally, 

some hydrologic response indices (e.g. runoff ratio) can be applied directly to simulate runoff in 

ungauged watersheds, as is demonstrated in this study.  This approach is rainfall-runoff model-

independent in the sense that a process-based model is not implemented. 

 

Hydrologic response indices have traditionally been developed to describe a watershed’s typical 

behavior over a given period of time.  For example, runoff ratio, also referred to as runoff yield, 

is a dimensionless index obtained by dividing total basin runoff by total basin precipitation over 

an equivalent time period.  Yadav et al. (2007) defined runoff ratio as average annual runoff 

divided by average annual precipitation.  Berger and Entekhabi (2001) and Sawicz et al. (2011) 

defined it more generally as the ratio of long-term runoff to long-term precipitation.  Similarly, 

nearly all of the 171 response indices reviewed by Olden and Poff (2003) are derived as long-

term mean values, representing the average watershed behavior over a given time period.  

Moreover, despite the fact that hydrologic response can exhibit substantial seasonal variability 

(see Section 4), runoff ratio has typically been defined at an annual time step.  As a result, 

contemporary research utilizing hydrologic response indices has addressed the spatial, but not 

temporal, variability in watershed behavior.  

 

This research gap is addressed by developing and regionalizing two different temporal 

characterizations of runoff ratio at a monthly time step, addressing the research question of 
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how both interannual and seasonal temporal variability in hydrologic response affects 

predictions in ungauged basins.  Specifically, the objectives of this study are to: 

 

• Develop regression-based regionalization models between watershed physical 

characteristics and monthly runoff ratio as an index of hydrologic response; 

• Use the models to simulate streamflow in ungauged basins at a monthly time scale without 

implementation of a rainfall-runoff model; 

• Illustrate the effects of defining hydrologic response at different temporal scales (long-term 

average versus short-term indices) in terms of model skill and applicability to water 

resource management objectives; 

• Assess the potential for regression tree models for hydrologic modeling alongside a 

commonly used multiple linear regression model. 

 

1.2 Hydrologic modeling in the Great Lakes basin 

 

We address our  research objectives in the Great Lakes basin. The Great Lakes basin (Figure 1) 

drains over half a million square kilometers of land in the United States and Canada featuring 

varied land cover, climate, subsurface characteristics and human activity.  Figure 1 shows 

dominant land cover type throughout the basin by U.S. Geological Survey (USGS) 12-digit 

hydrologic unit code (HUC12) delineations (USGS, 2012).  The basin is home to over 30 million 

residents, many of whom live in highly urbanized areas adjacent to the lakes.  Temperature and 

precipitation variability is a function of both latitudinal and lake effects (Choi et al., 2012; 
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Norton and Bolsenga, 1993).  Significantly different subsurface properties exist throughout the 

basin as a result of the geologic formation of the Great Lakes.  At the scale of the Great Lakes 

basin, this variability results in a wide range of potential hydrologic response among 

watersheds, both gauged and ungauged. 

 

Figure 1. 

 

Predictions in ungauged portions of the Great Lakes basin are essential for research and 

management objectives related to the effects of land use/land cover change on near-shore 

ecosystems (Wolter et al., 2006); nonpoint source pollution loadings (He and DeMarchi, 2010); 

net water supply availability for irrigation, hydropower, and human consumption (Changnon, 
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1987; He, 1997), and lake level forecasting to support the needs of transportation and 

recreation industries (Gronewold et al., 2011; Lee et al., 1997). In recent years, the need to 

reduce uncertainty in each of the components of the Great Lakes basin water budget has 

become increasingly clear due to dramatic changes in water level dynamics (Gronewold and 

Stow, 2014) . Complete spatial coverage of runoff estimates throughout the Great Lakes basin is 

critical for preparing reliable water level forecasts and for understanding the mechanisms 

involved in fluctuating water levels.  A number of recent workshops and regional studies have 

resulted in recommendations to improve basin-wide runoff estimates (Coon et al., 2011; Fry et 

al., 2013; Gronewold and Fortin, 2012; Gronewold et al., 2011). 

 

As a study area, the Great Lakes basin poses unique challenges for making predictions in 

ungauged watersheds.  For example, there is a clear siting bias in the U.S. stream gage network, 

with coastal areas primarily ungauged and inland areas predominantly gauged (see Figure 2).  

Moreover, due to its large size and transnational data coordination efforts, many models have 

been applied within the Great Lakes basin to individual tributaries or portions of the basin 

within national boundaries, but few estimates of runoff to the entire system exist (Coon et al., 

2011). 
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Figure 2. 



11 
 

Basinwide products include the conceptual Large Basin Runoff Model (LBRM) developed by the 

National Oceanic and Atmospheric Administration’s Great Lakes Environmental Research 

Laboratory (NOAA-GLERL; Croley and Hartmann, 1986) and the physically-based Modeling 

Environment Community Surface Hydrological (MESH) model developed by Environment 

Canada (Pietroniro et al., 2007).  LBRM and MESH are rainfall-runoff models and therefore 

subject to the complications and limitations discussed above. 

 

An alternate regionalization approach involving a simple area ratio method (ARM) has been an 

important component of Great Lakes regional hydrologic research for several decades (Croley 

and Hartmann, 1986; Fry et al., 2013).  As implemented by NOAA-GLERL, the ARM identifies the 

most downstream gage(s) for each of 121 subbasins spanning the Great Lakes basin and 

extrapolates streamflow from gauged to ungauged regions based on the ratio of gauged to 

total subbasin drainage area.  Advantages of the ARM include the high temporal resolution of 

the data (daily streamflow observations) as well as computational and conceptual simplicity.  

The primary disadvantage of the area ratio approach lies in its assumption of spatial 

homogeneity among the watershed physical characteristics influencing hydrologic response.  

Both the ARM and the models developed in this study involve regionalization of hydrologic 

response (streamflow and runoff ratio, respectively), resulting in empirical rather than 

conceptual or physically based rainfall-runoff models. 

 

2. Data and methods 
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2.1 Watershed physical characteristics 

 

The regionalization models developed in this study take into account the spatial heterogeneity 

of watershed physical characteristics not explicitly accounted for by the area ratio method.  

Watershed physical characteristics were obtained from the Geospatial Attributes of Gages for 

Evaluating Streamflow (GAGES-II) dataset (USGS, 2011). The geospatial data contained in 

GAGES-II include several hundred variables related to climate (long term average monthly or 

annual), soils, land cover, topography, geomorphology, and anthropogenic modifications for 

450 gauged watersheds within the Great Lakes basin.  Criteria for inclusion in the GAGES-II 

dataset were gages with at least 20 complete years of daily discharge record since 1950, or 

currently active gages as of water year (WY) 2009. 

 

In GAGES-II, land cover variables are derived from the 2006 National Land Cover Dataset (NLCD) 

and soils variables from the State Soil Geographic (STATSGO) database.  A wide range of 

variables describing watershed geomorphology, hydrology and topography are derived from 

national hydrography and Digital Elevation Model datasets. 

 

Climate variables within the GAGES-II dataset are derived from PRISM Climate Group datasets.  

Percent snow is defined as the ratio of annual snow water equivalent to annual precipitation, 

thus serving as proxy to seasonal snowpack accumulation and ablation processes.  The 

precipitation seasonality index ranges from zero to one, with higher values indicating higher 

seasonality of precipitation. 
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Additional derivations and sources of variables in Table 1 are documented in detail by USGS 

(2011).  The two exceptions are (1) a monthly wetness index computed as the ratio between 

monthly precipitation and potential evapotranspiration and (2) the Standardized Precipitation-

Evapotranspiration Index (SPEI) developed by Vicente-Serrano (2010).  Both the wetness index 

and SPEI were calculated in R using the SPEI package.  The wetness index and SPEI both 

characterize water balance surplus-deficit conditions by month.  SPEI additionally considers 

surplus-deficit conditions from prior months in its derivation.  The variables percent snow, 

precipitation seasonality index, wetness index, and SPEI are included as attempts to address 

seasonal water balance dynamics obscured by binning precipitation and runoff by month. 

 

Table 1 lists all watershed physical characteristics from GAGES-II considered for inclusion in the 

regionalization models.  To develop the models, 12 variables (highlighted in grey in Table 1) 

were retained based on: 

 

• Variable significance at the p < 0.05 level over most of the year based on a preliminary 

assessment by fitting monthly linear regression models; 

• An attempt to achieve minimal redundancy among variables (colinearity), informed by 

assessing Pearson correlation coefficients (results not shown); 

• Representation of climate, soils, land cover, topography and geomorphology variables; 

• Availability of data with complete spatial coverage over the U.S. portion of the Great Lakes 

basin. 
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2.2 Monthly runoff ratio (MRR) 

 

Daily USGS streamflow observations and NOAA precipitation data for each watershed were 

obtained from NOAA-GLERL.  Daily areal precipitation for each watershed was estimated by 

kriging point observations from the precipitation gaging network in the GLERL 

Hydrometeorological Database (see Hunter and Croley (1993) for details on the gage network 

used).   Daily streamflow and precipitation data were aggregated by month for computing 

monthly runoff ratio. 

   

Monthly runoff ratio (monthly runoff divided by monthly precipitation) was calculated for the 

163 Great Lakes basin watersheds in the GAGES-II dataset with continuous flow records for 

water years (WY) 1981-2010.  As the dependent variable in our regression models, we 

calculated monthly runoff ratio at two temporal scales: (1) treating all monthly runoff ratios as 

individual observations (MRRi) and (2) using the mean of these monthly runoff ratios for each 

watershed as a representative observation (MRRm).  Table 2 summarizes the distinctions 

between the two temporal characterizations of runoff ratio, including potential management 

applications and perceived limitations of each.  The last row in the table recalls the fact that 

long-term averages of hydrologic response have dominated contemporary PUB-related 

research. Runoff ratios were log transformed prior to developing the regression relationships in 

order to linearize the input for the regression models, as well as prevent the possibility of 

negative runoff simulations by the models. 
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2.3 Model development and validation 

 

Two regionalization models, multiple linear regression and regression tree, were developed and 

implemented in the R software package (R Development Core Team, 2011) to relate MRRi (or 

MRRm) with watershed physical characteristics.  The multiple linear regression model was of the 

form 

 

       (Equation 1) 

 

where the response variable, y, was monthly runoff ratio and the explanatory variables, x, were 

the n = 12 watershed physical characteristics highlighted in Table 1.  Regression coefficients are 

denoted by the β terms, while ε is an error term, or residual, representing the difference 

between modeled and actual runoff ratio values. 

 

Regression tree models have previously been used in regionalization studies.  For example, 

regression trees have been used to extrapolate water quality data from monitored to 

unmonitored streams (Robertson and Saad, 2003), group catchments for predict low flow 

(Laaha and Blöschl, 2006), classify catchments according to flow regimes (Snelder et al, 2009), 

and identify drivers of hydrological response within a region (Ali et al., 2010).  Regression tree 

routines in package rpart (Therneau and Atkinson, 2011) are based largely on the 

Classification and Regression Tree methodology of Breiman et al. (1984).   Trees in rpart are 

0 1 1 2 2 ... n ny x x xb b b b e= + + + + +
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grown so as to maximize differences in watershed characteristics at each branching in a simple 

analysis of variance.  The resulting trees are then pruned to minimize the risk of misclassifying 

an observation while avoiding excessive model complexity or overfitting. 

 

For our models, pruning was based on a threshold of 0.01 for the reduction in error from a 

leave-one-out cross-validation.  For our experimental design, we considered it important for a 

single threshold to be used consistently for all models.  The threshold of 0.01 was based on trial 

and error and multiple thresholds were tested and considered.  Thresholds less than 0.01 

generally led to insignificant model improvements at the cost of increased model complexity.  

Based on tests using thresholds greater than 0.01, we judged that the improvement in model 

skill warranted the outcome of slightly more complex models. 

 

The outputs from the regression tree analyses in rpart are monthly decision trees, with 

binary splits based on values of watershed physical characteristics, and terminal nodes grouping 

the 163 gauged watersheds into clusters (ideally) exhibiting similar hydrologic response.  From 

the PUB perspective, rpart can then assign cluster membership to an ungauged watershed 

based on its physical characteristics.  As a decision tree technique, there is no general equation 

to describe the regression tree process. 

 

The four models (multiple linear regression and regression tree, conditioned by both MRRi and 

MRRm) are then used to simulate monthly runoff at 62 validation gauges (Figure 4).  Validation 

gauges included all USGS gauges for which continuous discharge observations were available 
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for WY 2001 to 2010, but not WY 1981 to 2010, so there would be no overlap with the 163 

gauges used for model development. Data for the validation watersheds were also obtained 

from the GAGES-II dataset.  None of the validation watersheds were among the 163 watersheds 

used to develop the models. 

 

The Nash-Sutcliffe coefficient of efficiency (NSE) (Nash and Sutcliffe, 1970), the coefficient of 

determination (R2), mean absolute error (MAE), and deviation of runoff volumes (Dv) were 

computed to compare monthly simulated runoff (P) versus monthly observed runoff (O) in 

validation watersheds for all months i during WY 2001-2010 (n = 120).  NSE (Equation 2) and R2 

(Equation 3) are goodness-of-fit statistics; MAE (Equation 4) quantifies error in units of mm of 

runoff; and Dv (Equation 5) assesses model bias in terms of total cumulative runoff. 

  (Equation 2) 

  (Equation 3) 

  (Equation 4) 

  (Equation 5) 
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For the NSE and R2 statistics, values of one indicate a perfect model fit, where simulated runoff 

is equal to observed runoff.  For Dv, a value of zero implies no model bias, where cumulative 

simulated and observed runoff (here, for WY 2001-2010) are equal.  MAE quantifies the 

difference between observed and simulated values in actual units, in this case millimeters of 

runoff.  Values closer to zero indicate a better model fit.  The performance ratings for NSE and 

Dv suggested by Moriasi et al. (2007), shown in Table 3, were used to evaluate model skill.  

Since R2 is highly sensitive to outliers, Moriasi et al. (2007) do not provide performance ratings 

for this statistic, but consider a value greater than 0.50 to generally be acceptable. 

 

We evaluate the effect of spatial aggregation by evaluating the goodness of fit statistics for the 

sum of discharge simulations at all 62 gages compared with the sum of discharge observations 

at those gages. Additionally, we investigate the influence of elapsed time on model skill by 

evaluating goodness of fit statistics over elapsed time, similar to methods described by Valipour 

et al. (2013). 

 

3. Results 

 

Figures 2 and 3 illustrate the spatial and temporal variability of monthly runoff ratio in the U.S. 

portion of the Great Lakes basin.  Figure 2 depicts 30-year mean monthly runoff ratios (MRRm) 

for April and October for the 163 gauged watersheds used to develop the regionalization 

models.  Watersheds are shown as point symbols graduated by drainage area, with the largest 

of any nested watersheds shown as polygons.  Note the different ranges for MRRm, symbolized 
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by quartiles, between April and October, which are typically high and low flow periods, 

respectively. 

 

Spatial trends include very high April runoff ratios in northern Michigan and western New York.  

Both regions frequently receive large amounts of snow throughout the winter due to lake effect 

processes, resulting in April runoff volumes that are much greater than April precipitation 

volumes due to melting of the snowpack.  In contrast, very low October runoff ratios are 

observed throughout the predominantly agricultural regions of eastern Michigan and northern 

Ohio, where most incoming precipitation is subsumed by plants and soils. 

 

Beyond these few instances, however, there is limited potential for generalizing hydrologic 

response solely by geographic regions.  Throughout most of the Great Lakes basin, widely 

differing runoff ratios exist between spatially proximal watersheds, for example in northern 

Wisconsin and northern Michigan where MRRm ranged from 0.25 to 1.95.  This area is shown in 

the inset in Figure 2a.  Climatic factors are largely constant at this spatial scale and the 

differences in dominant land cover shown in Figure 1 do not appear to correspond to the 

observed differences in runoff ratio.  Additionally, there is no apparent relationship between 

these differences in hydrologic response and the soils characteristics used in our regression 

models.  However, these characteristics are average values aggregated by watershed, and soil 

characteristics vary considerably over space in this area due to the glacial history of the region.  

In addition, there are 60 major dams (per the GAGES-II dataset) along the rivers in these 

watersheds, and these flow impediments may influence streamflow observations binned at a 
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monthly time step. Our analysis did not identify the influence of dams on the success of the 

models; future work should investigate the sensitivity of both the models to the presence of 

dams by developing the models in unaffected watersheds separately.  

   

Figure 3 presents the full range of seasonal and interannual variability in observed MRRi (left 

panel) and MRRm (right panel).  Substantial seasonal variability is evident in Figure 3, with 

higher magnitudes and larger ranges for runoff ratio during winter and early spring compared 

to summer months.  In Figure 3, values greater than one indicate monthly watershed surpluses.  

Surpluses are common during winter and early spring months throughout the basin due to 

snowpack accumulation and ablation processes as well as minimal evapotranspiration and high 

soil water content at this time of year.  On the other hand, surpluses are rare during summer 

and autumn months due to high levels of evapotranspiration and low soil water content. 
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Figure 3. 

 

The different distributions of MRRi and MRRm indicate the degree of interannual variability in 

hydrologic response among watersheds spanning the Great Lakes basin.  While the median 

values for both temporal characterizations are similar, the interquartile ranges are very 

different, particularly during winter and spring months.  As a result, for management objectives 

related to the magnitude and timing of high flow events (e.g. potential floods) in ungauged 

areas, regionalization schemes based on long-term or annual averages may not be suitable. 
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The 62 validation watersheds are shown in Figure 4, symbolized according to the deviation of 

runoff volumes (Dv) for WY 2001-2010.  Cumulative runoff was over-predicted in watersheds 

with a positive Dv and under-predicted in watersheds with a negative Dv.  The distributions of Dv 

statistics are shown as boxplots.  Runoff was generally over-predicted (median Dv ~ 10%) with 

the MRRm temporal characterization and under-predicted (median Dv ~ -5%) with the MRRi 

temporal characterization. 

 

Figure 4. 

 

 In some regions, runoff is over- or under-predicted regardless of the model used, such as in 

western New York and central Michigan.  In these cases, there appears to be a relationship 
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between watershed drainage area and model bias, where larger watersheds typically over-

predict cumulative runoff and smaller watersheds under-predict cumulative runoff.  As shown 

in Table 1, drainage area rarely exhibited a significant linear relationship with runoff ratio.  

Using the nonlinear, regression tree approach, total drainage area only appeared as a factor in 

one of the monthly decision trees conditioned on MRRi and three of the monthly decision trees 

conditioned on MRRm.  These results, combined with the observations in Figure 4, suggest that 

neither of the regression approaches used in this study fully incorporated the influence of total 

drainage area on streamflow discharge. 

 

In other regions, however, the bias depends on the model used, such as in northern Wisconsin 

and southern Michigan.  While the multiple linear regression model included all 12 variables 

highlighted in Table 1, the regression tree models only included variables deemed important at 

the scale of the entire Great Lakes basin.  Consequently, variables important at more local 

scales may not have been included in the regression tree models.  For example, the percent of 

precipitation falling as snow and the percent of agricultural land distinguish northern Wisconsin 

(higher latitude, largely forested) from southern Michigan (lower latitude, largely agricultural).  

While these watershed physical characteristics have implications for hydrologic response 

throughout the year, the percent snow variable appeared as a factor in only four of the monthly 

decision trees conditioned on MRRi and three of the monthly decision trees conditioned on 

MRRm, while the percent agricultural land variable appeared as a factor in only six of the 

monthly decision trees conditioned on MRRi and seven of the monthly decision trees 

conditioned on MRRm.  These results attest to the challenges of regionalizing hydrologic 
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response over large spatial domains containing substantially different watershed physical 

characteristics at smaller scales of analysis.   

 

The NSE, R2 and MAE statistics are given as boxplots in Figure 5.  Multiple linear regression 

using mean runoff ratios performed poorly, while both regression approaches using MRRi 

performed fairly well. The multiple linear regression and regression tree models using the MRRi 

configuration resulted in median NSE values of 0.52 (range -0.45 to 0.79) and 0.54 (range -0.63 

to 0-.79). These values compare relatively well with models that were evaluated for gauges in 

as part of the Great Lakes Runoff Intercomparison Project, for which non-assimilative models 

(i.e. those that did not incorporate discharge observations into simulations) resulted in median 

NSE values as good as 0.53 for 17 gauges the Lake Michigan basin (Fry et al., 2014).  Multiple 

linear regression using MRRi resulted in the smallest interquartile range for both goodness-of-fit 

statistics, and was the only model with no NSE values less than zero (that is, higher variance in 

the model’s residuals than in the observed data).  The lowest mean absolute errors (in mm of 

runoff) were produced using the MRRi temporal characterization of hydrologic response. 
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Figure 5. 

 

Based on these metrics, model skill was higher for the MRRi models than for the MRRm models, 

suggesting that the regression models were improved by incorporating the interannual 

variability of hydrologic response over using long term average hydrologic response.  

Additionally, Figure 5 shows that model simulations were far more sensitive to the temporal 

characterization of runoff ratio than to the type of regression technique used to develop the 

relationships.   

 

Hydrographs of model-simulated versus observed runoff are shown in Figure 6 for five 

contrasting validation watersheds spanning the Great Lakes basin.  Summary descriptions of 

these watersheds are given in Table 4 and their locations shown in the upper left panel of 

Figure 4.  In Figure 6, blue lines show observed runoff, while black and red lines show runoff 

simulated with the MRRi and MRRm temporal characterizations, respectively.  Solid lines display 
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simulations from the multiple linear regression approach, while dotted lines display simulations 

from the regression tree approach. 

 

Figure 6. 

 

Comparing the top two hydrographs in Figure 6, the Montreal River exhibits an annual cycle 

that is consistent from year to year while the Sandusky River hydrograph appears more erratic, 

with a less apparent annual cycle.  Some basic relationships can be inferred between 

streamflow regimes and watershed physical characteristics, specifically the percent 

precipitation falling as snow and land cover type.  In the Montreal River watershed, the 

consistent annual cycle (i.e. strong peaks in the spring and low flow in the summer and fall) is 
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attributable to (a) colder winters with solid precipitation that does not immediately appear as 

runoff but instead results in very high flow in the spring months, and (b) lack of impervious 

surfaces and agricultural areas that would increase high flows and reduce low flows in times 

with liquid precipitation and reduce the amount of infiltration of melting snow during spring 

months.  On the other hand, hydrograph peaks are observed throughout the year in the 

Sandusky River watershed.  In the Sandusky River watershed, warmer average annual 

temperatures translate to less snowpack storage potential, and runoff peaks occur following 

precipitation events during the winter.  In summer, hydrograph peaks for the Sandusky River 

can be attributed to fast runoff from agricultural and developed land cover. 

 

Model bias varies considerably among the five watersheds in Figure 6.  For all models, there is a 

recurring bias in late winter and early spring with runoff consistently under-predicted for 

Montreal River and over-predicted for Irondequoit Creek.  For Sandusky River, numerous high 

runoff events in both winter and summer are under-predicted by all models.  For Mill Creek and 

Saginaw River, the models conditioned on mean runoff ratio (MRRm), particularly the linear 

model, greatly over-predicted monthly runoff, even in months not experiencing relatively high 

flows. 

 

To evaluate model skill under different hydrological conditions, we evaluated the coefficient of 

determination (R2) at each validation gauge for months that generally have high flows (March, 

April, and May) and for months with generally low flows (July, August, and September). 

Interestingly, the two regression models performed differently under different flow regimes. 
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Both multiple linear regression models resulted in better R2 values during months with low 

flows than during months with high flows for the majority of validation gauges. The median 

improvement in R2 values for low flow periods over high flow periods was 0.11 (range -0.31 to 

0.53) and 0.22 (-0.53 to 0.62) for the MRRi and MRRm configurations of the multiple linear 

regression models, respectively. On the other hand, performance was slightly worse for low 

flow periods than for high flow periods for the regression tree models. The median 

improvement in R2 values for high flow periods over low flow periods was 0.07 (range -0.29 to 

0.56) and 0.02 (-0.27 to 0.57) for the MRRi and MRRm configurations of the regression tree 

models, respectively. 

 

The goodness of fit statistics for spatially aggregated discharge simulations (i.e. the sum of 

simulated volumetric discharge over the 62 validation gauges compared with the sum of 

observed volumetric discharge over the 62 gauges) are shown in Table 5. For spatially 

aggregated simulations, the models conditioned on individual month-year combinations (MRRi) 

result in the best goodness of fit statistics. This relative difference in skill among models was 

consistent over elapsed time, as shown in Figure 7. Figure 7 also provides an indication of 

variations in skill over elapsed time.  For all models, the goodness of fit metrics stabilize after 

simulations of about 20 months, with the exception of the linear regression model conditioned 

to MRRm, whose skill appears to gradually decrease following an initial improvement. 
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Figure 7. 

 

4. Discussion 
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Numerous water resource research and management objectives require knowledge of 

hydrological processes occurring in ungauged watersheds.  Making predictions in ungauged 

basins through regionalization addresses theoretical and practical means of (1) transferring 

knowledge of hydrological processes over space from gauged to ungauged watersheds; (2) 

determining similarities and differences among watersheds, including attempts to establish 

watershed classification systems; and (3) understanding and accounting for the temporal 

variability exhibited by hydrologic systems.  A great deal of research has been directed towards 

the first two items.  However, regionalization approaches involving hydrologic response indices 

have rarely accounted for the temporal variability of watershed behavior.  This study showed 

that different temporal characterizations of hydrologic response can result in substantially 

different model-predicted runoff.  Further advances in regionalization research involving 

hydrologic response indices require the consideration of their temporal as well as spatial 

variability. 

 

In this research, four regionalization models (multiple linear regression and regression tree, 

conditioned on both MRRi and MRRm) were developed to simulate runoff at a monthly time 

step based on watershed physical characteristics.  Results from applications to validation 

watersheds indicate that model simulations were far more sensitive to the temporal 

characterization of runoff ratio than to the type of regression technique used to develop the 

relationships.  Specifically, the two regionalization schemes based on MRRi performed 

comparably well alongside contemporary studies using response indices in conjunction with a 

rainfall-runoff model (e.g. Bulygina et al., 2009; Yadav et al., 2007).  Moreover, simulations 
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based on the MRRi index were generally acceptable based on the performance ratings of 

Moriasi et al. (2007). 

 

However, mean monthly runoff ratio (MRRm) does not appear to provide enough information 

about watershed behavior to be useful for making predictions in ungauged basins.  This 

conclusion mirrors the opinion expressed by Olden and Poff (2003) that a single index of 

hydrologic response is insufficient for characterizing the seasonal and interannual variability of 

hydrologic systems.  While MRRm accounts for seasonal variations in hydrologic response (the 

monthly time step), the MRRi characterization additionally accounts for interannual variability 

(the inclusion of all observations over a range of years).  This additional level of temporal 

characterization likely explains the superior performance of MRRi models compared to MRRm 

models. 

 

Compared to the contrasts exhibited by the temporal characterizations of runoff ratio, there 

were no substantial differences found between the multiple linear regression and regression 

tree techniques used to develop the models.  In other words, simulations were not sensitive to 

the watershed classification technique employed to determine hydrologic similarity.  These 

results reflect the contemporary challenges described by Wagener and Montanari (2011) of 

determining hydrologic similarity among watersheds.   

 

In this research, simulations of runoff in ungauged basins were based solely on empirical 

relationships between a watershed’s physical characteristics and observed hydrologic response.  
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This approach is distinct from the more commonly used regionalization approaches that rely on 

conceptual or process-based rainfall-runoff models to simulate runoff, for example the LBRM 

and MESH in the Great Lakes basin (see Section 1.2).  Whereas rainfall-runoff models attempt 

to model specific hydrological processes occurring in a watershed, the method presented in this 

study modeled the watershed as a system, without explicitly modeling constituent routing, 

storage and loss processes. 

 

An important result of this study is that monthly runoff can be simulated with reasonable skill 

without recourse to a rainfall-runoff model.  This finding is particularly important considering 

the many regions of the world with sparse stream gauge networks and limited resources for 

gathering the large amounts of field data required to calibrate a rainfall-runoff model.  In such 

cases, the approach used in this study may be viable for understanding and simulating 

watershed behavior, particularly over large spatial domains.  Additionally, we found that when 

aggregated over space and time, three of the four model configurations resulted in good 

goodness of fit statistics after about 20 months of elapsed time, with the exception being the 

multiple linear regression model conditioned on long term average monthly runoff ratios. 

 

The method used in this study is similar to the area ratio method (ARM; see section 1.2) in its 

empirical approach for simulating runoff in ungauged watersheds.  The primary advantage of 

the ARM is its utilization of all available streamflow observations at a daily time step.  The 

advantage of the method used in this study is its ability to account for spatial heterogeneity 

between gauged and ungauged watersheds.  Comparisons between these two approaches 
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would provide an opportunity to assess the significance of this spatial heterogeneity, while an 

integration of these two approaches could be developed as an improved alternative to rainfall-

runoff models. 

 

Table 2 lists some common hydrology research and management objectives in relation to the 

perceived appropriateness of temporal scale.  The following discussion considers a few of these 

with examples from the Great Lakes basin.   

 

Monthly forecasts of lake levels are important for transportation, water supply, near-shore 

habitats, and recreation (Section 1.2).  In the Great Lakes basin, forecasts provided by the 

Advanced Hydrologic Prediction System (Gronewold et al., 2011) require monthly runoff 

predictions from all ungauged portions of the basin.  Although land surface runoff is a key 

component of the lakes' water budget (and therefore water levels), estimation of the direct 

impact on lake levels resulting from different methods of estimating runoff is outside the scope 

of this paper, because net basin supply requires knowledge of overlake precipitation, overlake 

evapotranspiration, and discharge to/from connecting waterways (Gronewold et al., 2011). 

 

The results of this study contribute important insights for understanding and simulating the 

land surface runoff component of the regional water budget.  Specifically, regionalization 

schemes based on different temporal characterizations of hydrologic response resulted in 

substantially different monthly runoff simulations.  The MRRi characterization maintains the full 

variability of observations and provides a realistic range of potential outcomes that may be 
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critical for transportation or near-shore habitat functions.  On the other hand, management 

decisions for recreation or municipal water supply may be less sensitive to the prediction of 

unusually high or low lake levels, and may be better informed by predictions based on long 

term averages.  Management decisions related to contaminant loadings, sediment transport 

and irrigation availability require consideration of the tradeoffs presented by these modeling 

alternatives.    

 

Predictions in ungauged basins are also important for generating synthetic runoff time series 

for use in calibrating rainfall-runoff models.  For example, runoff predictions for the entire 

Great Lakes basin using an area ratio method were used to calibrate the Large Basin Runoff 

Model (LBRM; Section 1.2) (Croley and Hartmann, 1986).  In fact, this approach of conditioning 

rainfall-runoff models in ungauged basins on regionalized hydrologic response indices is an 

emerging method for predictions in ungauged basins (Wagener and Montanari, 2011).  As an 

alternative to the simple area ratio method, the models developed in this study could be used 

to generate historical monthly runoff for re-calibration of LBRM or other rainfall-runoff models.  

Further work is required to determine which temporal characterization of hydrologic response 

provides a more robust basis for rainfall-runoff model calibration. 

 

Hydrologic response indices are commonly used to generate ancillary information that can be 

applied to watershed classification schemes (e.g. Sawicz et al., 2001) or to constrain prior 

parameter spaces of rainfall-runoff models (e.g. Bulygina et al., 2009; Yadav et al., 2007).  This 

study indicates this ancillary information will be substantially different for different temporal 



35 
 

characterizations of runoff ratio.  The studies reviewed here have focused on long-term 

characterizations of hydrologic response.  These studies have provided important insights for 

PUB research, and additional insights may be expected from the inclusion of multiple temporal 

characterizations of any response index. 

 

In light of the previous discussion and this study’s results, the multiple linear regression and 

regression tree models conditioned on MRRi observations appear promising for application to 

the entire Great Lakes basin.  Important next steps for this research include applying these 

models to the entire Lake Michigan basin (which is entirely within the U.S.) followed by 

application to the entire Great Lakes basin as data for the Canadian portion of the basin 

become available.  This agenda provides the opportunity for inter-comparisons, including cross-

validation at gauged locations, with (1) the area ratio method, to assess model sensitivity to 

spatial heterogeneity of watershed physical characteristics and (2) process-based rainfall-runoff 

models such as LBRM and MESH, to assess the viability of predicting runoff in ungauged basins 

directly from regionalized hydrologic response indices. 

  

5. Conclusion 

 

Hydrologic response indices have frequently been employed in contemporary research related 

to predictions in ungauged basins.  In this study, we developed regression models relating a 

hydrologic response index (monthly runoff ratio) to a twelve watershed physical characteristics 

for 163 watersheds in the Great Lakes basin.  For the dependent variable in these regression 
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models, we used monthly runoff ratio as the indicator of hydrologic response and defined it at 

two temporal scales: (1) treating all monthly runoff ratios as individual observations and (2) 

using the mean of these monthly runoff ratios for each watershed as a representative 

observation.  Results from this study contribute important insights for contemporary research 

involving hydrologic predictions in ungauged watersheds. 

 

Application of our models to 62 validation watersheds throughout the Great Lakes basin 

indicated that monthly runoff can be simulated with reasonable skill using empirical 

relationships between runoff ratio and watershed physical characteristics.  These results 

suggest the viability of empirical approaches to simulating runoff in ungauged basins.  This 

finding is significant given the many regions of the world with sparse gaging networks and 

limited resources for gathering the field data required to calibrate rainfall-runoff models.  

Results from this study also indicated that model simulations were far more sensitive to the 

temporal characterization of hydrologic response than to the type of regression technique 

employed.  This result is particularly important given the numerous applications of hydrologic 

response indices in contemporary research for making predictions in ungauged watersheds.  

These predictions are essential for water resource management in the Great Lakes basin and 

worldwide. 
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