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Figure 6: Normalized ' 2 comparisons of the ten SR methods on classical Symbolic Regression Benchmarks (SRB), Feynman
Symbolic Regression Benchmarks (FSRB), and Penn Machine Learning Benchmarks (PMLB), respectively.

6.2.2 Fitness Analysigure 6 illustrates that TaylorGP, when
compared with the nine baseline algorithms, can obtain more ac-
curate and stable results on the two benchmarks, SRB and FSRB.
However, on the benchmark PMLB, the two algorithms, FFX and
XGBoost, outperform TaylorGP. This is due to PMLB has more fea-
tures (variables) than the other two benchmark sets, Figure 6 shows
that TaylorGP has the best performance (normalized ' 2 score) on
the-low dimensional datasets. In contrast, its performance degrades
as the dataset’s dimension increases. For a high dimension dataset,
TaylorGP can only obtain a low order Taylor polynomial according
to the analysis in Section 3.1.1. However, the low order Taylor poly-
nomial may not approximate the real function that fits the given
high-dimensional dataset. The Taylor features extracted from the
Taylor polynomial may be incorrect or incomplete; therefore the
features cannot help TaylorGP find a correct result.

6.2.3 The accuracy of extracting Taylor featukeshe real func-
tion that fits the dataset in PMLB is unknown, Table 4 lists the
accuracy of extracting each Taylor feature on SRB and FSRB (total
71 benchmarks). TaylorGP can correctly identify the two Taylor
features, monotone and boundary, on all benchmarks, meaning that
the two Taylor features always help Taylor reduce the search space.

However, TaylorGP recognizes the variable separability and
even/odd function with low accuracies (12.5% and 36.7%). For iden-
tifying the variable separability and the odd/even function, Tay-
lorGP requires that the Taylor polynomial can not contain some
order terms, i.e., the coefficients in these order terms must be zero.
However, as the Taylor polynomial approximates the real function
around a point, some inconsistencies exist between the polynomial
and the real function. The coefficients on these terms are slight er-
rors. These slight error coefficients affect the recognition of the vari-
able separability and the odd/even function. For example, for B8¥3,
its Taylor polynomial at the point (0,0) is %,G 31,@ é@ %67, -y
However, according to Equation 3, TaylorGP sets a 4-order Taylor
polynomial and obtains the polynomial "0'015 %G, 0003 %,@
from the given dataset. The polynomial is not an odd function due
to the two coefficients, "0.015" and "0.003". To prevent this from
happening, we set a threshold for these coefficients and omit the
terms whose coeflicients are less than the threshold. However, it
is not easy to get a suitable threshold for the Taylor polynomial
because of the diversity of datasets.

953

Table 4: The accuracy of extracting Taylor features on 71
benchmarks.

Taylor Features ~ Accuracy Correct No Ground Truth No

LowOrderPoly 73.9% 17 23
Separability 12.5% 3 24
Boundary 100.0% 71 71
Odd/even function 36.7% 18 49
Monotone 100.0 % 10 10

Although the two Taylor features (variable separability, odd/even
function) have a low recognition accuracy, they still can help Tay-
lorGP to find the correct symbolic equation, such as running Tay-
lorGP on the two above benchmarks, "C%l "and "™ = %2 Sprinng".
So, TaylorGP can utilize the Taylor features to reduce its search
space and speed up its search.

7 CONCLUSION

This paper proposes a new method called TaylorGP to search the
mathematical expression space using Taylor features. As most of
the Taylor features are obtained by the coefficients in a Taylor
polynomial, the modeling process can be computationally efficient
and straightforward to implement. TaylorGP leverages the two
operators based on Taylor features, individual initialization, and
individual recombination, to evolve the population. Experiments
show that TaylorGP can quickly find the correct result with the
help of the two evolution operators.

However, TaylorGP will degrade when the dataset dimension in-
creases because of the local approximation of the Taylor polynomial.
In a high-dimensional dataset, a low order Taylor polynomial ob-
tained from the dataset only represents the dataset’s local features,
not global features. So, our future work will involve investigating
how to utilize many low-order Taylor polynomials to represent
global features in high-dimensional datasets.
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