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Abstract: Land use/land cover (LULC) and climate changes could affect water quantity and quality 

and thus hydrologic ecosystem services (ES). However, studies of these impacts on hydrologic ES 

are limited by the current methods and techniques. We attempted to find out how the LULC and 

climate changes impact hydrologic ES at different temporal scales so that decision-makers can easily 

understand hydrologic ES variations for guiding management plans. In this study, we analyzed the 

impacts of LULC and climate changes on hydrologic ES in the Milwaukee River basin, USA with a 

conceptual modeling framework for hydrologic ES. The model framework was applied to a series 

of climate and urban expansion scenarios. Two hydrologic responses (streamflow and sediment) 

and three hydrologic ES (water provision index (WPI), flood regulation index (FRI), and sediment 

regulation index (SRI)) were calculated. Major findings include: (1) Climate change has much larger 

impacts than LULC at the monthly scale. For example, the impacts of climate change on streamflow 

were −6 to 9 m3/s whereas those of LULC change were −0.4 to 0.2 m3/s. Also, WPI (ranging from 0 

to 1) changed between −0.16 and 0.07 with climate change but between −0.02 and −0.001 with LULC 

changes. (2) Compared to changes at the annual scale, the results show much larger variabilities as 

monthly time-series and mean monthly numbers. These findings suggest that the climate change 

weighs more than the realistic LULC change in term of impacts on hydrologic ES and those impacts 

can be identified with results at the monthly temporal scale. This approach with the framework and 

scenarios can better support management planning for decision-makers with detailed results and 

temporal precision.  

Keywords: LULC change; climate change; hydrologic ecosystem services; conceptual framework 

 

1. Introduction 

Ecosystem services (ES) are defined as benefits that human beings obtain from earth’s ecosystem 

functions [1]. With their significance in terms of provision, regulation, supporting, and cultural 

services, conservation and improvement of ecosystems have been the crucial challenge to the 

sustainability of ecosystems, and research programs have been applied at different levels [2–3]. The 

evaluation methods of ES are still under development, although studies of ES have been conducted 

over the decades [4]. Further development of ES models that are able to simulate ES with the 

integration of ecology, economics, and geography for use in planning and conservation is vital [5]. 

Because hydrologic ES are affected by complex interactions of many environmental factors, robust 

understanding and skills for prediction and assessment are required [6]. 

Land use/land cover (LULC) and climate changes are the two main factors affecting the spatial 

and temporal heterogeneity of ES [7–9]. LULC changes have major impacts on ecosystems and the 

services they provide to people [3], resulting in varying amounts and spatial distributions of ES [10]. 

https://www.mdpi.com/2225-1154/7/4/59
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Urban expansion with an increased population is one of the dominant LULC changes that would 

influence the supply and demand of numerous ES [11]. Another major factor that affects the 

distribution and functioning of ES is climate change [12]. Based on the current climate projections, if 

mean annual water volume remains at the same level under climate change, the increased seasonal 

variations of water volume and frequency of extreme hydrological events (e.g., floods, droughts) will 

have substantial effects on hydrological ES [13–15]. Climate change already affected species 

distribution, range, and interaction, and was projected to become a more significant threat in the 

coming decades [16]. Climate change was expected to increasingly impact the provision and value of 

ES around the world [17]. Impacts on natural ES, such as water scarcity, flood, and species habitat 

disappearance, would come about in unpredictable ways and levels [18]. 

Although the effects of climate change on ecosystem functions have received significant 

recognition [1], impacts of climate change on ES have not been well studied [19]. When considering 

hydrologic ES, climate change that shifts the amount and timing of water movement through the 

landscape and alters the transport dynamics of nutrients and sediments need to be carefully 

considered [7]. Numerous impact studies of LULC change on ES have been conducted [20–23], while 

studies of climate-change impacts on ES are limited [24]. Furthermore, few studies have investigated 

hydrologic ES under impacts of both LULC and climate changes, and they have mostly focused on 

coastal protection services for flooding and erosion at a monthly scale [25], and water supply, nutrient 

retention, and sediment retention at an annual scale [7,26]. But the evaluation of hydrologic ES, such 

as runoff, flooding, and erosion control under climate change at fine temporal scales has been rarely 

conducted. As mentioned in Pan and Choi [27], hydrologic ES were temporally sensitive, and these 

fine temporal changes should be captured to reflect the complex hierarchical organization of 

ecosystem processes and heterogeneity across time. Thus, an approach or tool that can assess the 

impacts of LULC and climate changes on hydrologic ES at fine temporal scales is greatly needed for 

informing stakeholders and decision-makers. 

Currently, hydrologic models and ES model are the most popular tools for hydrologic ES, but 

both are deficient when modeling LULC and climate-change impacts on hydrologic ES at fine 

temporal scales. Most hydrologic models do not include functions that convert hydrologic results to 

ES for decision-makers [6]. On the other hand, modeling by ES models is limited and under 

development, since the temporal scale in ES modeling is still an issue that has not been fully 

considered [6]. A comprehensive, temporally explicit framework that couples hydrologic and ES 

modeling would effectively accelerate the ES modeling processes. Studies have been conducted with 

a few different types of hydrologic and ES models for hydrologic ES [28–32]. Cline et al. [24] combined 

a hydrologic model with an ES model to evaluate the spatial and temporal patterns of fish density in 

the resident fish populations. Wlotzka et al. [28] coupled hydrologic and ES models and assessed the 

C and N cycling for crop growth. Fan et al. [29] used Soil and Water Assessment Tools and a 

conservation model to spatially analyze the relationships among different hydrologic ES under 

climate change. Nevertheless, these coupled modeling studies either did not focus on hydrologic ES 

or have fine temporal resolutions. 

To overcome the weaknesses of previous impact studies of hydrologic ES as described above, a 

conceptual modeling framework [27] was applied in the Milwaukee River Basin to simulate three 

hydrologic ES indices under LULC and climate changes in this study. The framework includes a data-

development function, a modeling function with hydrologic and ES models, and a results-analysis 

function. This framework can capture the fine temporal changes in some hydrologic ES (e.g., water 

provision, floods) and thus benefit relevant management plans and policies accordingly. 

Based on above-mentioned challenges, two research questions are addressed: 

• How does LULC change impact hydrologic ES compared to climate change? 

• What are the changes of the hydrologic ES results at both annual and monthly scales? 

Detailed methods, results, and discussions are covered in the following sections. In Section 2, 

the study area and scenarios design together with the framework are introduced. Results are 

presented in Section 3 and the discussion of each hydrologic and ES variable in different scenarios is 

provided in Section 4. Finally, conclusions are given in Section 5. 
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2. Materials and Methods  

2.1. Study Site 

The Milwaukee River basin (Figure 1) was selected as the study area. The Milwaukee 

metropolitan area in the southeast region of the basin contains 90 percent of the population and is 

highly urbanized. The LULC of the northern part is primarily agricultural. The topography of the 

basin consists of rolling moraine over bedrock [33]. The basin slopes downward from northwest 

(inland) to southeast (lakeshore). Three major rivers exist in the basin, namely Milwaukee, 

Menomonee, and Kinnickinnic. They merge in downtown Milwaukee and empty into Lake 

Michigan. 

The climate type of the study area is humid continental climate (Köppen climate classification 

Dfa), which includes four distinct seasons with wide variations in temperature and precipitation. The 

mean temperature ranges from January was −7.3 °C to July 21.8 °C during 1971–2000 [34]. Average 

annual precipitation was about 862 mm, with wet summers and dry winters [35]. Mean annual 

streamflow measured at the main gauge (USGS 04087000) is approximately 219 mm during 1915–

2008, with high in spring and low in late summer/early autumn [34]. 

 

Figure 1. The Milwaukee River basin boundary and elevation, along with subbasins delineated for 

hydrologic modeling, US Geological Survey (USGS) streamflow measurement sites, and stream 

network. 

2.2. Impact Scenarios 

2.2.1. Scenarios Design 

The same four scenarios (baseline, LULC change, climate change, and combined change) as in 

[34] were used (Table 1). For the baseline scenario, both LULC and climate forcing data come from 

the historical periods (National Land Cover Database (NLCD) 2001 and 1961–2000 climate data). For 

the LULC-change scenario, the LULC information was updated according to the 2050 LULC map 

(cellular automata (CA) 2050), and the climate data is the same as the baseline scenario. For the 

climate-change scenario, future climate data (downscaled 2046–2065) was used as input, and the 

LULC data is the same as the baseline scenario. For the combined-change scenario, both the LULC 

map and climate data were updated to a future period.  

With the four scenarios, (1) the baseline scenario was used to evaluate historical ES; (2) the 

LULC-change impacts were evaluated by comparing the baseline scenario with the LULC-change 

scenario to show how LULC change impairs the future ecosystem services; (3) the climate-change 
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impacts were evaluated by comparing the baseline and climate-change scenarios to reveal the 

projected effects on the studied hydrologic ES; (4) the combined scenario showed joint effects.  

Table 1. Hydrologic and ecosystem services (ES) modeling setup consisting of different climate and 

land use/landcover (LULC) scenarios [34]. 

Modeling scenarios Acronym Climate data LULC data 

Baseline Baseline Downscaled 1961–2000 NLCD 2001 

LULC change only LULC Downscaled 1961–2000 CA 2050 

Climate change only Climate Downscaled 2046–2065 NLCD 2001 

LULC and climate combined changes Combined Downscaled 2046–2065 CA 2050 

2.2.2. LULC Scenario 

The NLCD 2001 with a resolution of 30 m × 30 m derived from satellite imageries from the Multi-

Resolution Land Characteristics Consortium [36] was used as the baseline LULC map. It was clipped 

for the study area, and the LULC classes have been aggregated for simplicity, as shown in Figure 2a. 

The future LULC map (referred to as CA 2050 hereafter) was developed with two CA models for 

modeling residential and commercial expansion respectively [37]. The probability of a cell being 

converted to urban class (Ui) with the CA models is described as follows: 

Ui = f (Pi, Ni, Ci, Ri), (1) 

where Pi is the global probability of conversion to urban LULC based on spatial-environmental and 

socio-economic influence, Ni is the neighborhood effect, Ci is the constraint factor for some areas that 

should be excluded (e.g., water, mountain), and Ri represents the random factor. Residential and 

commercial LULC information in 1990, 2000 and 2010 was employed for the CA model building, 

calibration and validation respectively, and a kappa index value (95.13%) was acquired in the 

assessment of the modeling performance. 

LULC information and maps are presented in Table 2 and Figure 2. As shown in Table 2, the 

Developed class was projected to increase by 8.25% by 2050 whereas Planted/Cultivated, the other 

major LULC class was projected to decrease by 4.06%. The forest, shrubland, and other vegetation 

classes also were projected to decrease in different percentages. The two major LULC 

classes⎯Developed and Planted/Cultivated⎯with the most absolute changes in CA 2050 are 

depicted in Figure 2b. It can be clearly observed that expansion is projected around the current urban 

area, especially in the northern part of the study area where Planted/Cultivated class occupies the 

most. 

 

Table 2. LULC statistics and projected changes by 2050. 

LULC classes Current (km2) Current (%) 2050 (km2) 2050 (%) Change (%) 

Water 21.21 0.96 20.94 0.94 −1.27 

Developed 714.28 32.18 773.18 34.83 8.25 

Barren 1.83 0.08 1.85 0.08 1.09 

Forest 240.47 10.83 224.48 10.11 −6.65 

Shrubland 15 0.68 14.02 0.63 −6.53 

Herbaceous 15.87 0.71 15 0.68 −5.48 

Planted/Cultivated 949.56 42.77 911.03 41.04 −4.06 

Wetlands 261.71 11.79 259.45 11.69 −0.86 
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Figure 2. LULC of 2001 (a) and Developed and Planted/Cultivated classes of 2050 (b) for the 

Milwaukee River basin. 

2.2.3. Climate Scenario 

The climate data in this study were derived from the dataset created by the Wisconsin Initiative 

on Climate Change Impacts [38]. The dataset is a result of statistical downscaling of several global 

climate models (GCMs), and we chose the one derived from the Canadian Center for Climate 

Modelling and Analysis’ Third Generation Coupled Global Climate Model (Acronym: 

cccma_cgcm3_1). This dataset has an approximately 10-km grid resolution and includes two periods: 

Historical (1961–2000) and future (2046–2065). The A1B greenhouse gas emissions scenario was 

selected as its CO2 concentration increase lies in the middle of the six Special Report on Emissions 

Scenarios (A1B, A1FI, A1T, A2, B1, and B2) [39]. 

Detailed climate data are presented in Table 3 and Figure 3. The data of selected GCM are very 

similar to the measured historical data (Table 3). The historical data has a slightly higher temperature 

(7.95 °C to 7.8 °C) and a similar standard deviation (0.8 °C and 0.9 °C). The precipitation data of 

historical and cccma_cgcm3_1 also are very closed (816mm and 814mm) and the standard deviation 

is a bit off (114mm and 146mm). The future climate data were projected to increase in temperature 

by 3.6 °C and an increase in precipitation by 54mm. Figure 3 depicts the average monthly changes in 

precipitation and temperature. Compared to baseline, the future climate scenario was projected to 

increase in precipitation for spring and winter while decreased in summer. The temperature 

generally was projected to increase with different amounts except for August. 

Table 3. Average annual temperature (°C) and precipitation (mm) for 1961–2000 and 2046–2065 from 

the historical data and downscaled global climate models (GCM). Standard deviations across the 

years are in parenthesis. 

 1961–2000 2046–2065 

 Temperature Precipitation Temperature Precipitation 

Historical 7.95 (0.8) 816 (114) N/A N/A 

cccma_cgcm3_1 7.8 (0.9) 814 (146) 11.4 (0.9) 868 (151) 

Change N/A N/A 3.6 54 
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Figure 3. Distribution of average monthly changes in temperature and precipitation between 1961–

2000 and 2046–2065 by the GCM. 

2.3.  Conceptual Modeling Framework 

2.3.1. The Framework Workflow 

 

Figure 4. Workflow of the modeling framework [27]. 

The workflow of the conceptual framework created by Pan and Choi [27] is portrayed in Figure 

4. The framework consists of three functions: Data development, modeling, and results analysis. The 

data-development function generates input data for hydrologic modeling and ES modeling with 

spatial and temporal processing of preliminary raster and vector data. The modeling function which 

includes both hydrologic and ES modeling, first conducts hydrologic modeling with calibration, 

validation, and projection, and then transports the hydrologic results to ES modeling to simulate 

hydrologic ES with ES parameters. The results-analysis function processes the hydrologic and ES 

results at different temporal scales in different scenarios.  

2.3.2. Hydrologic model 

The Hydrologic Simulation Program-Fortran (HSPF) [40] was applied in this study to simulate 

streamflow. It is a comprehensive, physically based, semi-distributed hydrologic model that has been 

applied to study hydrologic variables in different impact scenarios in several previous studies [41–

45].  
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The whole basin was first divided into subbasins based on stream network and then each 

subbasin was separated into three basic components, namely pervious land segments (PERLND), 

impervious land segments (IMPLND) and stream channel/reservoir (RCHRES) based on subbasin 

delineation, LULC classes, weather stations, and the ratio of perviousness and imperviousness for 

each LULC class [46]. 

The hydrologic processes of the model are based on the water-balance equation (Equation 2). 

𝑆𝑀𝐶𝑡 = 𝑆𝑀𝐶𝑡−1 + ∑ (𝑃𝑡 − 𝑅𝑡 − 𝐸𝑇𝑡 − 𝐺𝑡)
𝑇

𝑡=1
, (2) 

where SMC is the soil moisture content, t is time in days, T is the total days, P is the daily 

amounts of precipitation, R is the runoff, ET is the actual evapotranspiration, and G is the deep 

groundwater (percolation). All of the units are in mm. 

Data products used in HSPF for this study are listed in Table 4. 

Table 4. Summary of datasets used for hydrologic modeling. 

Data sets 
Spatial 

Resolution 
Source 

Digital elevation data 30 m US Geological Survey (USGS) [47] 

Land cover map 30 m  NLCD [48] 

Climate data 10 km 
Wisconsin Initiative on Climate Change 

Impacts [38] 

Streamflow and sediments 

yield data 
N/A USGS [49] 

 

The model parameters were calibrated and validated against the measured streamflow data in 

the previous study [34]. The comparison with the measured streamflow was conducted in terms of 

relative error (RE) and the Nash-Sutcliffe Efficiency (NSE). Sediment measurements have very 

limited availability, thus available daily measurements were averaged to monthly ones for 

comparison with simulations. 

2.3.3. ES Model and Methods 

Three modified quantitative methods [50] were employed with the capability of modeling at fine 

temporal scales. The input data for both hydrologic and ES modeling are at daily scale and the results 

are presented as daily and monthly, respectively.  

• Water provision ES 

The water provision ES was calculated as the index of water provisioning (WPI) (Equation 3).  

 WPIt =  
MFt/MFEF

MFt/MFEF + qnet/nt

 (3) 

where WPI is water provision index, MF is the mean flow (m3/s), MFEF is the long-term environmental 

flow requirement (m3/s), qne is the number of times the flow is less than environmental flow 

requirements in the time step, and n is the total number of units in the time step.  

The WPI ranges from 0 to 1 where 0 indicates that provision of water quantity is not met at all, 

and 1 indicates that provision of water quantity is met for the entire time frame. Base on Tennant [51], 

30% of the average flow for each month was used as MFEF to sustain good aquatic ecosystem 

functioning. The qne value was calculated on a daily basis. 

• Flood regulation ES 

The flood regulation ES was calculated as the flood regulation index (FRI) which incorporates 

three flood characteristics: Quantity, duration, and frequency of the flooding [52] as in Equation 4. 
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FRI =
1

exp[w1 ∙ (DF/DFLT) + w2 ∙ (QF/QFLT) + w3 ∙ (FE/FELT)
, (4) 

where DF is the duration of flood events (days), QF is the average magnitude of flooding events 

(m3/s), FE is the number of flood events per month or year, w1, w2, and w3 are user designed weights 

for each component of flooding (the sum of the weights is 1), and the LT subscript represents long-

term (historical) data.  

The FRI ranges from 0 to 1 with 0 representing maximum regulation needed and 1 representing 

no regulation needed. With this adopted method, the FRI will be calculated for each month with daily 

data to highlight seasonal changes in flood events and their effects. Long-term observed streamflow 

data from the study area were used to determine the flood flow (calculated as the 90th percentile of 

the flow), which then was used to calculate the long-term values for the average duration of flood 

events, the average magnitude of flood events, and the average number of flood events per year. 

• Sediment retention ES 

The sediment retention ES was calculated as the sediment regulation index (SRI), which is 

defined in Equation 5: 

𝑆𝑅𝐼 = exp (1 − (
𝑆

𝑆𝑚𝑎𝑥

)), (5) 

where S is the monthly or annual erosion rate (T/ha) and Smax is the monthly or annual maximum 

allowable (or natural) rate of sediment (T/ha).  

The range of the SRI is 0 to constant e. When the S equals to or is less than Smax, the SRI equals to 

or is greater than 1, meaning no regulation is needed. If the S is greater than Smax, the SRI is less than 

1, indicating that sediment regulation is needed. The SRI is close to 0 when S is much larger than Smax. 

The Smax was determined to be 1.34 T/ha/year as the area-weighted US Department of Agriculture ‘T’ 

factor for tolerable soil loss [53]. It then was converted to monthly data, weighted by flow data.  

3. Results 

3.1. Hydrologic Modeling Under Impacts 

An RE of 2.13% and an NSE of 0.71 were acquired by comparing simulated streamflow to 

observed data at the USGS site (04087000) for calibration. For the validation period, they are 4.87% 

and 0.54, respectively. The calibration and validation results of streamflow overall show good 

performance of the HSPF model. The simulated and observed sediment were compared at monthly 

and annual scales without calibration, since daily measurements were not available. The REs are 

3.26% and 9.57%, respectively, which indicates overestimation at both scales. 

The streamflow results simulated by HSPF in different scenarios are presented in Figure 5 and 

Table 5. According to Table 5 with averaged results of the entire simulation periods, streamflow 

decreases in the LULC scenario, increases in the climate scenario, and decreases in the combined 

scenario. In addition, according to Figure 3 and Figure 5a, the streamflow changes are primarily 

affected by precipitation changes as they show the same changing patterns in most months except 

August and November while temperature played a very insignificant role through the year. For 

instance, from December to May, the temperature increased which could lead to increased 

evaporation and decreased streamflow, however, streamflow increased with the increased 

precipitation instead. The combined scenario results are mostly the sum of the LULC and climate 

scenarios results except July and October. More detailed results can be found in Choi et al. [34]. 

The sediment results simulated by HSPF in different scenarios are shown in Figure 5b and Table 

5. The annual average results of simulated sediment follow the pattern of streamflow as streamflow 

volume is the most important factor for sediment yield. As depicted in Figure 5b, the changes in 

monthly sediment results show a different pattern from streamflow, especially in March (opposite) 

and August (no change in the climate and combined scenarios). Also, the sediment in the combined 
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scenario not simply equals to the sum up of the results of the LULC and climate scenarios. These 

differences in monthly patterns between streamflow and sediment are possibly due to other factors 

that are related to sediment yield, such as soil, topography, and vegetation cover. 

Table 5. Summary of results for hydrologic modeling. 

Modeling Scenarios Streamflow (m3/s) Sediment (thousand tons) 

Baseline 19.87 20.40 

LULC 19.64 19.04 

Climate 20.00 20.54 

Combined 19.78 19.56 

 

 

(a) 

 

(b) 

Figure 5. Changes in monthly streamflow (a) and sediment (b) resulting from three future scenarios. 

3.2. Ecosystem Services Modeling Under Impacts 

The modeling results of the three ES indices in the four scenarios were summarized and 

analyzed at different temporal scales. 

The annual average results of the three ES indices in the four scenarios are presented in Table 6. 

The three ES indices increase slightly in the LULC scenario compared to those in the baseline scenario, 

which means the changes in the LULC scenario have positive effects on the results. The changes in 

the climate scenario decrease the WPI and the SRI but increase the FRI slightly. The changes in the 

combined scenario result in the decrease in the WPI and the slight increases in the FRI and the SRI. 

In sum, these results indicate that the effects of the three future scenarios on the annual ES results are 

so small that they are almost negligible. 

The monthly ES results were converted to monthly average to examine the seasonal variability 

in the four scenarios. According to Figure 6, LULC change generally has slightly negative effects on 

the three indices whereas the climate and combined scenarios have large-negative impacts on some 

months and small-positive impacts on some other months. For the WPI in Figure 6a and 6d, changes 

in the climate and combined scenarios lead to the decreases from October to April (cold and dry 

seasons) and the increases from May to September, except for August (warm and humid seasons). 

For the FRI in Figure 6b and 6e, most of the increases happened from July to October (warm and 

humid) and most of the decreases happened in November, December, February and April (cold and 

dry). The decreases in the SRI (Figure 6c and 6f) exist in February, August, September, November, 

and December, and the increases exist in March, May, June. The changes in the monthly WPI, FRI, 

and SRI range from 0.004 to 0.15, 0.004 to 0.19, and 0.00016 to 0.16, respectively, which include some 

nonnegligible values compared to the annual average results. Furthermore, the climate and combined 

scenarios also affect the seasonal patterns of all the three indices. For instance, the WPI in the baseline 

and LULC scenarios increase from Jan to Feb while that in the climate and combined scenarios 

decrease. Similar examples can also be found in the FRI and the SRI results. The climate scenario 

leads to much larger changes in all  the three indices than the LULC scenario at the monthly scale. 
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The monthly ES results in the four scenarios were further analyzed using boxplots in Figure 7. 

Figure 7a shows that compared to the baseline scenario, the climate and combined scenarios generate 

larger inter-month variations of the WPI than the LULC scenario while the medians of the four 

scenarios are similar. Comparing to the baseline scenario, the climate and combined scenarios also 

result in larger inter-month variations in the FRI than the LULC scenario whereas the medians are 

very close (Figure 7b). Figure 7c depicts the smaller inter-month variations and medians of the SRI in 

the climate and combined scenarios than those in the LULC and baseline scenarios. 

Table 6. Summary of results for ES modeling. 

Modeling Scenarios WPI FRI SRI 

Baseline 0.89 0.39 1.57 

LULC 0.91 0.41 1.61 

Climate 0.87 0.40 1.56 

Combined 0.86 0.40 1.58 

 

 

(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 
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Figure 6. Monthly averages of ES in the four scenarios (a: WPI, b: FRI, c: SRI) and the changes between 

the three future scenarios and the baseline scenario (d: WPI, e: FRI, f: SRI). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Distribution of the monthly results of three ES indices in the four scenarios (a: WPI; b: FRI; 

c: SRI). 

4. Discussion 

Based on Choi et al. [34], the impacts of LULC change on hydrologic simulations are negligible, 

due to the moderate LULC change and the offsetting effects among different LULC classes. Since 

only one future LULC scenario was considered in this study and the future LULC map (CA 2050) 

developed for this study is close to realistic urban development without any assumption of 

management plans, the impacts of the LULC change on the hydrologic variables and ES are very 

limited. Moreover, the impacts caused by urban expansion (increased by 60 km2) may also be offset 

by the reduction of planted/cultivated class, as shown in Table 2 (decreases by 40 km2). Such 

hydrologic simulation results lead to negligible hydrologic ES results. Gao et al. [54] reported that 

hydrologic ES decreased by 3.8% in water yield and increased by 16.3% in soil exports under 

agricultural expansion scenario while increased by 4.2% in water yield and decreased by 16.3% in 

soil exports under soil conservation scenarios. Hoyer and Chang [7] found out water yield is not 

sensitive to urban expansion scenarios as no difference found between results in different LULC-

change scenarios while nutrient loading and sediment export are very sensitive to urban-expansion 

scenarios as changes ranged from –17% to 44% in sediment retention. Bai et al. [55] also stated that 

agricultural expansion resulted in the lowest water yield and the highest one was generated by 

forestry expansion. According to Logsdon and Chaubey [49], the extreme urban scenario had very 

limited impacts on hydrologic ES compared to the extreme agricultural scenario. 
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Climate change, unlike LULC change, has quite large impacts on hydrologic simulations [31] 

and ES. Fan et al. [29] found the climate scenario results in much more water yield than LULC scenario 

as future climate scenario created consistently increased water yield while LULC increased and then 

decreased water yield. Hoyer and Chang [7] stated that water yield is very sensitive to different 

climate-change scenarios compared to LULC scenarios (climate change results –6% to 15% water 

yield while no changes find among LULC scenarios). Samal et al. [30] demonstrated that climate 

change has a greater influence on future aquatic ES than changes in LULC. Results from this study 

also indicated that the climate-change impacts on hydrologic ES are much larger than the LULC-

change impacts. The impacts under climate change at monthly scale show that streamflow, sediment, 

WPI, FRI, and SRI have the changes from −6 to 9 m3/s, −2.5 to 4 thousand tons, −0.16 to 0.07, −0.19 to 

0.1, and −0.58 to 0.15, compared to those under LULC-change impacts with the changes from −0.4 to 

0.2 m3/s, −0.5 to 0.001 thousand tons, −0.02 to −0.001, −0.025 to 0.01, and −0.03 to 0, respectively. 

In term of climate-change impacts on streamflow, the annual precipitation increased about 6.6%, 

while the annual streamflow only increased 0.47% which is because even though the precipitation is 

the main source of streamflow, there are other factors influence the streamflow, such as soil moisture 

capacity, ground water level, and LULC classes etc. and therefore the streamflow did not increase or 

decrease with similar percentages as the precipitation. According to Choi et al. [34], when the 

precipitation decreased or increased with large amounts in some other GCMs which surpassed the 

capacity of the landscape system, the increases or decreases in streamflow are substantial. 

Furthermore, compared to the limited changes in the climate scenario at annual scale (0.13 m3/s, 0.14 

thousand tons, −0.02, 0.01, and −0.01), the results at monthly scale show the large increased inter-

monthly variation (4.73 m3/s, 1.20 thousand tons, 0.07, 0.06, and 0.17) and the changes in each month 

(−6.02 to 8.70 m3/s, −2.59 to 4.00 thousand tons, −0.16 to 0.07, −0.19 to 0.10, and −0.58 to 0.16) for 

streamflow, sediment, WPI, FRI, and SRI, respectively. 

The WPI and streamflow showed a different changing pattern in monthly results. Since the most 

important input that affects streamflow volume is precipitation, with the projected increase in  

precipitation of 54 mm (Table 3), the streamflow volume increased (Table 5). However, as shown in 

Table 6 and Figure 6d, the WPI in the climate scenario decreased. In the calculation method of WPI, 

the qne/n (Equation 3), which is the monthly percentage that the water provision is not met the long-

term requirement, were calculated and plotted (Figure 8). Compared Figure 8 to Figure 6d, it can be 

found out that the larger the monthly qne/n changes are, the larger the changes in the monthly WPI. 

Besides, as the results depicted in Figure 9, the climate scenario results in larger variation than the 

LULC and baseline scenarios. Such evidence demonstrates that the climate scenario actually results 

in more days that were not met long-term water provision requirement although streamflow volume 

in general increased, which leads to a decrease in the WPI. This finding demonstrates that compared 

to streamflow volume, decision-makers should pay more attention to the increased low flow events 

that could severely impact water provision. 

The FRI was found to be insensitive to any impact scenarios in annual results, however, it 

showed large changes in some months in the monthly analysis especially in the climate scenario. The 

three inputs of the FRI calculation (Equation 4) were analyzed, and the results are presented in Figure 

10 and Table 7. Based on Figure 10, the duration, magnitude, and frequency of flood in the climate 

scenario all increased significantly at February, April, May, November, and December when the 

precipitation is high and decreased significantly at June and July when the temperature is high. Such 

results correspond to the increases and decreases of the FRI in the climate scenario in different 

months, which demonstrates that even though the impacts are negligible at an annual scale, it can 

still be identified at a finer scale (e.g., monthly scale). Table 7 reveals that the LULC scenario reduced 

the duration and magnitude of the flood while the climate scenario increases all three of them. Flood 

frequency increased in all of the future scenarios compare to the baseline scenario. Findings from 

Table 7 could inform decision-makers that LULC change could mitigate climate-change impacts and 

they need to pay attention to the increased frequency of flood events. 

The climate scenario results in large changes in the monthly SRI compared to annual results that 

are negligible. Comparing the changes in monthly averages of streamflow (Figure 5a) with that of the 
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SRI (Figure 6f), it can be observed that not all the monthly results of the SRI followed the pattern of 

streamflow changes in the climate scenario, especially in April, May, July, August, and September, 

that the SRI has the same changing direction as the streamflow (more streamflow results in more 

sediment and then low SRI). Such findings indicate that the highest sediment regulation demand did 

not come with the largest precipitation, but it also was associated with temporal soil erodibility 

variation [56]. Such findings could remind decision-makers of the delay of sediment yield and soil 

erosion after the extreme events. 

 

 

Figure 8. Monthly averages of changes in percentage that the long-term water provision requirement 

is not met. 

 

Figure 9. Distribution of the number of days that long-term water provision requirement is not met 

in the four scenarios based on the monthly results. 
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Figure 10. Changes in monthly averages of inputs for the FRI calculation between baseline and three 

future scenarios (a. flood duration; b. flood magnitude; c. flood frequency). 

Table 7. Summary of inputs for the FRI calculation. 

Modeling Scenarios Flood duration (days) Flood magnitude (m3/s) Flood frequency 

Baseline 2.64 201.71 7.46 

LULC 2.46 187.05 7.97 

Climate 2.82 203.07 8.68 

Combined 2.70 198.12 9.05 

5. Conclusions 

In this paper, with a conceptual modeling framework for hydrologic ES and the design of the 

scenario study, new insights were found regarding hydrologic ES under LULC and climate-change 

impacts in the urbanizing study area. Our study includes LULC and climate-change scenarios, and 

compares their impacts at both annual and monthly scales; and the latter are limited in hydrologic 

ES literature. The findings of this study could offer decision-makers and stakeholders more insights 

for land management plans. 

The key findings of this study are that climate change has much larger impacts on hydrologic 

ES than LULC change, and also the results at the monthly scale show large increased inter-monthly 

variation and changes in each month compared to those at the annual scale. LULC-change impacts 

are small, due to the modest urban-expansion projection and the offsetting from the reduction of 

planted/cultivated LULC class. Streamflow, sediment, WPI, FRI, and SRI under climate-change 

impacts have the changes from −6 to 9 m3/s, −2.5 to 4 thousand tons, −0.16 to 0.07, −0.19 to 0.1, and 

−0.58 to 0.15, compared to those under LULC-change impacts with the changes from −0.4 to 0.2 m3/s, 

−0.5 to 0.001 thousand tons, −0.02 to −0.001, −0.025 to 0.01, and −0.03 to 0, respectively. In addition, 

compared to the limited changes of the results under climate change at annual scale (0.13 m3/s, 0.14 

thousand tons, −0.02, 0.01, and −0.01), the results at monthly scale show the large increased inter-

monthly variation (4.73 m3/s, 1.20 thousand tons, 0.07, 0.06, and 0.17) and changes in each month 

(−6.02 to 8.70 m3/s, −2.59 to 4.00 thousand tons, −0.16 to 0.07, −0.19 to 0.10, and −0.58 to 0.16). New 

insight was found that water provision does not correspond to streamflow volume, but is much 

sensitive to the low flow that does not meet the long-term requirement. Flood control is very sensitive 

to temporal scales with significant changes in monthly results but negligible changes in annual 

results, due to the sensitivity of the three input: Flood duration, flood magnitude and flood frequency. 

Sediment regulation results are more complicated, since they are not only affected by streamflow but 

seasonal erodibility, vegetation etc. In summary, climate change in this study has larger impacts on 

hydrologic ES than LULC change while LULC change could mitigate climate change with a reduction 

of plantation and cultivation. Such findings could provide decision-makers detailed and novel 

insights for management and conservation planning. 

This study establishes a standard workflow for hydrologic ES modeling under LULC and 

climate-change impacts supported by national data products. Due to the timeframe limit and data 

availability, this study only utilized one LULC-change scenario and one climate model with one 
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emission scenario. Such design has the limitation that the uncertainty from GCM projection cannot 

be eliminated, since comparison could not be made among the results of other GCMs, which could 

reduce the reliability of the results. Future studies could focus on adopting multiple LULC-change 

scenarios, other GCMs, and different emission scenarios for the analyses of tradeoffs and 

uncertainties. In addition, with more scenarios involved, the sensitivity of different temporal scales 

could also be further demonstrated. Finally, the modeling framework is still at the conceptual stage 

which includes all the necessary functions but not a user-friendly interface that could further assist 

stakeholders and the general public for understanding the processes and results. Such an interface 

could be built on a GIS platform, as a separate interface, or as a web-based interface depending on 

the workload and requirement from the stakeholders. 
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