
80

Figure 5.3: vinkscape: retrieval of revision 1, 2 and 3 from a version-aware Inkscape
SVG document.

The vinkscape command is executed in the terminal window which in turn loads the

selected version in Inkscape.

5.5 Discussion and Future Work

We have described an approach, version-aware XML documents, in which the version

data is stored within the working document. This introduces the notion that versioning

is part of the document and collaborative editing does not have to revolve around

shared storage or a centralized repository. Our framework can be used to extend a

document type to incorporate versioning. We have shown that this is feasible by

extending Inkscape SVG files.

There are two ways to use the versioning framework. One is by modifying an

application to support the versioning framework. A second is to create external

tools to support an application that is not version-aware by capturing the changes as



81

demonstrated in the Inkscape example.

Currently, our approach do not work with Microsoft Office documents and OpenOf-

fice documents because the applications throw away extension made to document

when read. Although their document formats are open, they are less open in term

being extensible by third party tools the way Inkscape documents can be extended.

We suspect that both OpenOffice and Microsoft Office only use XML for serialization

and use in memory data models that are not flexible to support extension to the

documents while Inkscape use XML as both native document format and in memory

data model. We consider Inkscape and its document format to be truely open.

For future work, we will include features allowing the user to delete versions, delete

branches, and clear the version history. To optimize version retrieval performance,

we plan to use full document snapshots to represent certain versions, instead of using

deltas.



82

Chapter 6

Feature Model Editing and

Debugging

6.1 Introduction

Software product line engineering (SPLE) is a methodology for developing a family of

software products in a particular domain by systematic reuse of shared code in order

to improve product quality, and reduce development time and cost [72, 73]. A feature

is a characteristic, quality or functionality of a product. Thus, it is more natural to

describe a product in terms of its features than in terms of lower-level implementation

and design. A feature model is used to describe a product family in terms of common

and variant features as well as any relationships or constraints among those features.

A feature model should represent all possible products within the product family.

Feature models are used in all phases of SPLE: to define product line scope, to

create requirements and documentation, to drive or guide the process of configuring a

product, and in some cases, to generate product code. Because feature models are

described using a formal language, automated analysis can be performed to determine

the number of possible products or to detect model inconsistency, dead features, or

false optional features [74].

A feature model is inconsistent when multiple constraints in the model are violated

simultaneously in such a way that no product can be represented. When a model

becomes inconsistent, the user must debug the model to find and correct the errors.

Current tools for feature models offer little or no support for debugging. They provide



83

little or no explanation of the causes of inconsistency or of any changes that could be

made to resolve the inconsistency [74]. These tools can tell the user that the model is

inconsistent, but the problem and solution are left to the user to find, which can be

tedious in a large feature model.

It would be easy to blame a problem on the recently added constraint that triggered

the inconsistency, but it may be that the newly added constraint is correct and has

exposed previously unnoticed bugs. Determining this would require the user to trace

all the constraints involved in the problem back to the root feature. In a large feature

model consisting of hundreds or thousands of features, this would be a daunting task.

It would be better to point out to the user the constraints that contribute to the

inconsistency [74] in a meaningful way. Showing exactly those constraints that are

involved in the conflict would allow the user to more easily find the bug and correct

it.

Tool support is critical to the adoption of SPLE. Hence, we propose a visual editor

to better support feature model editing and debugging. The tool detects all errors

that cause a model to be inconsistent and provides hints to the user as to what the

problems are, where they are, and what the possible fixes are. It does all of this

visually within the feature model editor in a non-intrusive manner similar to how

modern IDEs hint errors and solutions without distracting the user. Our approach

impacts anyone using feature models to develop product line software.

6.2 Background

6.2.1 Feature Model

A feature is a product’s characteristic, quality or functionality. There are two types

of features: solitary feature and grouped feature. Solitary feature is a concrete feature

while a group feature represents a concept. Group features consists of or relation and

alternative group feature. Or group feature represents a feature that is a combination

of one or more features. The alternative grouped feature represents a feature that

can be of several variants. Features are organized in a feature model as a tree-like

structure. A feature has a parent feature except for the root feature and zero or

more child features. The relationships between parents and children, called structural



84

constraints, define commonality and variability of the parent feature and ultimately

the variability of the product line. The structural constraints are:

• Mandatory: If the parent is in a product, then the child is also in the product

and vice versa.

• Optional: The child may or may not be in a product regardless of whether the

parent is or is not in the product.

• Alternative: If the parent is in a product, then exactly one of its children is also

in the product.

• Or: If the parent is in a product, then at least one of its children is also in the

product.

When the parent-child constraints are not sufficient, integrity constraints are used

to define constraints between features that are not parent and child. They are:

• Implies: if a implies b, then whenever a is in a product, b must also be in the

product.

• Excludes: if a and b exclude one another, then they can never exist together in

any product.

Figure 6.1 is a simple feature model of a family of cars rendered in our editor. A

Mandatory constraint is denoted by an edge with a filled small circle. For example,

the edge between car and body. An Optional constraint is rendered as an edge with

an empty circle. Alternative and Or constraints are rendered as edges with a hollow

half circle and edges with a filled half circle, respectively. Implies constraints are

rendered as unidirectional dashed edges while Excludes constraints are represented

as bidirectional dashed edges, as shown in Figure 6.2. According to the model in

Figure 6.1, a car must have a body, an automatic or a manual transmission, an engine

which could be electric or gasoline or both and may or may not have cruise control.

Figure 6.2 illustrates how different problems with feature models are shown in the

editor, which currently uses color to highlight different problems. Figure 6.2(a) depicts

an ‘‘inconsistent model’’ because P mandates both A and B but A and B exclude

one another; thus, no product can be derived. Figure 6.2(b) depicts a ‘‘false optional



85

Figure 6.1: A feature model example of a family of cars. Feature highlighted as green
indicate one possible car.

Figure 6.2: Problems and warnings in feature model: (a) an inconsistent model, (b)
B is a false optional feature, (c) the implication of B is redundant, (d) B is a dead
feature.

feature’’ warning, which is given when an implies constraint effectively mandates a

feature that the model labels optional. An ‘‘implies redundancy’’ warning occurs when

an implies constraint is not needed due to other constraints, as shown in Figure 6.2(c).

Finally, Figure 6.2(d) shows a ‘‘dead feature’’, where an optional feature is excluded by

another constraint. Although, the latter three warnings do not create an inconsistent

model, they may imply bad design and thus the user should be warned.

6.2.2 Current Support for Editing and Debugging

Currently, there are less than a dozen feature model editors and they each provide a

different graphical interface. Most editors provide an interface that allows users to

create feature diagrams visually, where features can be organized into a tree-structured

hierarchy. Others provide flat tree editing, which is less useful for visualizing the

feature model but is still superior to textual editing. Most of these tools are able to

tell if a model is inconsistent and some are able to highlight what integrity constraints

are violated [75, 76]. Most editors are able to detect dead features and false optional

features, which are usually easy to spot and possibly correct if an editor simply

highlights the problem features [75]. A more difficult debugging task is correcting an

inconsistent model, for which current tools provide little or no support.



86

Current tools make use of propositional logic, description logic, and ad hoc meth-

ods [77] including XML Schema as a way to validate feature models [78]. To de-

termine if a feature model is consistent or not, it is converted to a propositional

formula [75, 79, 80] or description logic [81, 82] and fed to a SAT solver or a descrip-

tion logic reasoner. If it is not satisfiable, then the model is inconsistent.

In general, the error reporting interfaces of current tools are weak. For example,

when a new constraint is added to FeatureIDE [75] that make the feature model

inconsistent, the editor will highlight the text of the newly added rule. However, the

conflicting constraints are not highlighted and any highlighting of previously-added

inconsistent constraints will be lost. Description logic systems can generate compiler-

like textual error messages, but their error messages are in terms of description logic,

rather than in terms of the feature model diagram that the user has been working

with [82].

6.3 Approach

Our approach uses propositional logic but exploits the idea of minimum unsatisfiable

cores [83] and the algorithm QuickExplain [84] to identify the conflicting relations

and features, and then proposes possible solutions.

We adopt a similar approach to that of the Eclipse plugin dependency management

system [85] for detecting errors in plugin dependencies and providing meaningful

explanations to the user. This system has been shown to be scalable even when faced

with 10000 installable units [85]. The dependency management technology in Eclipse

is also used in Maven3 and the repository manager Nexus [85]. In addition, a feature

model is a relatively easy problem for a SAT solver [79].

6.3.1 Feature Model to CNF Formula

To determine if a feature model is consistent or not, we convert a feature model

to a CNF boolean formula, for which an off the shelf SAT solver can be used to

determine the formula’s satisfiability. To generate the formula, a depth first traversal

is performed. For every feature and its children, CNF clauses are generated to encode

the constraints of the feature, its children, and its integrity constraints. All the clauses



87

are joined together by ∧ boolean operators. The root feature is encoded as a single

literal clause. These are the mappings of features and their constraints to CNF clauses:

• r is root: (r)

• c mandatory child of p : (¬p ∨ c) ∧ (¬c ∨ p)

• c optional child of p: (¬c ∨ P )

• c1, c2, · · · , cn or children of p: (¬p ∨ c1 ∨ c2 ∨ · · · ∨ cn)∧
(¬c1 ∨ p) ∧ (¬c2 ∨ p) ∧ · · · ∧ (¬cn ∨ p)

• c1, c2, · · · , cn alternative children of p:

(c1 ∨ c2 ∨ · · · cn ∨ ¬p) ∧ (¬c1 ∨ ¬c2) ∧ · · · ∧
(¬c1 ∨ ¬cn) ∧ (¬c1 ∨ p) ∧ (¬c2 ∨ ¬c3) ∧ · · · ∧
(¬c2 ∨ ¬cn) ∧ (¬c2 ∨ p) ∧ (¬cn−1 ∨ ¬cn)∧
(¬cn−1 ∨ p) ∧ (¬cn ∨ c)

• a implies b: (¬a ∨ b)

• a excludes b: (¬a ∨ ¬b)

If a SAT solver evaluates the CNF formula to be satisfied, then the model is

consistent, and inconsistent otherwise. Editors that use propositional formulas for

inconsistency checking stop here with their debugging support and leave the user to

identify errors and find solutions. Although, our approach uses propositional formula,

we are interested in finding the clauses that are responsible for the inconsistency and

this is where we are able to provide visual debugging.

6.3.2 Supporting Debugging

Error explanation is key in helping user to understand and fix errors. To support

error explanation, we need to find the minimum number of violated constraints [74]

and the least number of modifications needed to correct the violation [85]. This is a

problem of finding the minimum unsatisfiable cores (MUS) [83], the smallest set of

clauses that makes the formula unsatisfiable, such that a removal of any clause from

the set causes the formula to be satisfiable.



88

The MUS gives us one error that contributes to the inconsistency of a feature

model. But it is not useful to indicate only one error when there are many. Rather,

the user should be able to review all errors in order to plan which ones to fix and in

what order. To detect all the errors in the model, we need to remove one of the clauses

that represents an integrity constraint that caused the conflict without changing the

feature model tree and then find the next MUS to determine the next conflict. We

repeat this until the formula is satisfiable, by which point all errors have been detected.

This entire process is described in Algorithm 3.

input :model: feature model
output : conflicts: conflicts

formula← toCNF(model);
while ¬ isSatisfiable(formula) do

mus← getMUS(formula);
foreach clause ∈ mus do

conflicts← conflicts + clause;
if isExcludesRelation(clause) then

formula← formula− clause;
end

end

end
return conflicts ;

Algorithm 3: Extracting conflicts in a model

Once the editor has collected all the possible errors, the conflict visualization

communicates as much information as possible, telling the user which constraints and

features are involved in the conflict by tracing all conflicting constraints visually to

the root feature. Any constraint in this trace is a solution; the conflict can be removed

by simply removing or changing conflicting constraints. If a user adds a constraint

and causes the model to be inconsistent but the constraint is correct, then there must

have been a bug in the model prior to adding the constraint. An example of a bug is

an optional constraint created as a mandatory constraint. The constraints trace lets

the user visually inspect the constraints involved in the conflict to determine which is

the bug.

Figure 6.3 shows two errors and three warnings in the model within our editor.



89

Figure 6.3: Editor: highlighting errors and warning in the model.

Errors are highlighted in red. One error is A-B-G-F-C-A and another is A-H-J-K-

I-H and both are caused by Excludes constraints but any highlighted constraint is

a possible bug and possible solution. The warnings including Untitled,D, and L.

Untitled is a dead feature because it has no parent and would never be in any product.

D is excluded by F and so D could never be any product. The Implies constraint

between G and L is not needed because L is included in all products.

In the first error, changing any of the Mandatory constraints highlighted to

an Optional constraint would remove the first error. Alternatively, the Excludes

constraint between G and F could be removed. Removing the second error follows

the same idea. Only someone with domain knowledge can decide what action to take,

just as fixing a program bug requires semantic knowledge of the problem.

6.4 Implementation

The visualization of the feature model and constraints is implemented using NetBeans

Visual Library [86]. The Visual Library provides the basic widgets and edges to render

an underlying model. In our case, we customized the node widgets, anchors, anchor

shapes, and edge connections. The underlying models of our data structure are both a

graph and a tree. A graph models the entire feature model including constraints, while

the tree data structure models the parent-child hierarchy of features. We take this

approach because in the future, we want to provide a tree rendering of the model as

an alternative editing mode and in configuration of products. The graph model allows

more flexibility in having every edge labeled. The SAT solver we use is Sat4j [87], an

open source library of SAT solvers which aims to allow Java programmers to access

cross-platform SAT-based solvers. It is used by many projects such as FeatureIDE [75]



90

and in Eclipse’s plugin management system [85].

6.5 Discussion and future work

We have presented a visual feature model editor that hints errors in non-intrusive

way and provides a natural debugging and editing work flow. It uses the concept of

minimal unsatisfiable cores to provide the constraints and features that are involved

in a model’s inconsistency to provide the minimal change needed to fix errors visually.

Other tools only go so far as to report that the feature model is inconsistent. They do

not provide help on how to fix the model and do not report all the errors a model

may have, nor do they help the user spot bugs that are far from the constraints which

have been causing the issue of inconsistency. Better tool support for feature model

editing and debugging will help domain engineers and application engineers create

and use feature model and thus encourage the adoption of feature model and SPLE

as a whole.

We plan to evaluate our prototype in terms of scalability and usability on realistic

feature models, to extend the tool to support cardinality-based feature models editing

and debugging and product configuration, to support evolution of feature models, and

to support collaborative editing. Visual editing of complex boolean constraints other

than implies and excludes constraints is in progress.



91

Chapter 7

Proof of Concept Evaluation

Molhado SPL is a research prototype designed to solve the evolution problem in

software product line. Its versioning model is not tied to a particular type of product

line, which means that, in addition to software product lines, it can support document

product lines as well. This chapter describes the proof of concept evaluation of

Molhado SPL in supporting software and document product line evolution. The

main goal is to show that the system supports the eight cases of change propagation

described in Chapter 3. First, we evaluate the system with a document product

line created using DITA [88] and then we evaluated it with a software product line

called the Graph Product Line [89]. This evaluation does not address issues such as

scalability and usability, which are left for future work. If Molhado SPL can support

the following criteria, we claim that it supports software product line evolution.

• Importing a product line into Molhado SPL,

• Supporting product derivation,

• Supporting independent evolution of products, core assets, and shared assets,

and

• Supporting the eight cases of change propagation described in Chapter 3.

One of the difficulties in evaluating Molhado SPL is the lack of examples of

document or software product lines we can use. We had difficulty in finding any open

source software or document projects that are built using the product line paradigm.

There are projects written in C and C++ that can be compiled for different operating



92

systems or hardware using conditional compilation but they are implemented as single

product projects. For example, the Linux kernel is implemented as one big project but

it contains conditional compilations in the code to allow it be built for for different

hardware. Molhado SPL assumes a different product line structure where the core

assets and the products are separate projects. We are able to find two small examples,

which we use in this evaluation. The first one is a document product line created

using DITA [88]. It comes with the DITA Open Toolkit software [88]. The second

one is a software product line called the Graph Product Line [89]. It has been used by

other researchers to evaluate their techniques of software product line engineering.

7.1 DITA

The Darwin Information Typing Architecture (DITA) [88] is an XML-based, topic

oriented architecture for authoring and publishing in a variety of forms. DITA is

intended to help technical writers create system documentation for different devices

(paper, PC, smartphone) and different purposes (traning, reference, marketing). DITA

allows users to create reusable topics which can then be used to create multiple

deliverables (such as PDF, online help, Web pages, etc) for different purposes and

products as shown in Figure 7.2. DITA content is created as small topic items. DITA

borrows many elements from HTML such title element, body, pagrapgraph, table, and

list elements. Topics are assembled to create different deliverables using specification

files called DITA maps, in which a user specifies the references of the topic files as

shown in Figure 7.1. A DITA map can also specify how topics link together. Each

DITA map is intented to define a different deliverable and maps have different topics

but they typically share many common topics. By default, DITA has three basic topic

types which are a specialization of the generic topic type:

• A task topic is used to describe the steps to perform a task and the expected

results.

• A concept topic is used to describe the necessary concepts and definitions to

understand a task.

• A reference topic contains factual information that is useful for performing a

task.



93

Figure 7.1: Topics are assembled in DITA maps to create different deliverables. There
are two DITA maps sharing topics [3].

Contents of one topic can be reused in anothother topic through the use of conref

attribute. A DITA topic can include non-DITA documents such as images, videos,

words, PDF, and others through the use of references. In addition, DITA also provides

conditional processing that supports filtering and name substitution. DITA can be

extended by the process of specialization to create new topic types and new attributes

specific for an organization, or industry. For example, there is a specilization of DITA

for the seminconductor industry.

One can view a DITA project as a product line (Figure 7.2). The topic files are the

reusable core assets. They are reused to generate different products targeting different

audiences and different hardware readers (ebook, PDA, mobile phone, computers,

and prints). Thus, a DITA project can serve as a good testbed for Molhado SPL to

test software product line configuration management concepts, especially the sharing

of core assets among products and change propagation between the core assets and

products. DITA was attractive to us because the standard is well-described and

because the XML representation is easy to work with.

The DITA sample used in this evaluation came with the DITA Open Toolkit,

which is a open-source tool for transforming DITA documents and maps into multiple

document output formats. It uses Ant scripts to generate the documents. The sample

used in this evaluation contains 15 concept topics, and 7 task topics related to tasks

that often are done in a garage such as changing the oil of a car. It has two DITA

maps for generating documents in different layout and two Ant scripts for generating

PDF outputs. Figure 7.3 shows a PDF generated for the sample.



94

Figure 7.2: DITA topics and maps are used to create multiple deliverables from
common topics [3].

To test Molhado SPL, we added support for DITA projects and their automated

product derivation. The core assets of a DITA product line consist of files representing

concept, task, and reference topics, Ant build script files, and DITA map files. First

we import the sample DITA project that came with the DITA Open Toolkit into

Molhado SPL. This creates the core assets project assets but no products. To derive

a product, a user right-clicks on a DITA map and selects the popup command for

product derivation. Molhado SPL then selects the core assets referenced by the DITA

map for the product. This feature is implemented into Molhado SPL to recognize

DITA map files, and to process the links in maps, and links in files referenced by the

map. This allows Molhado SPL to automatically create a product project, select the

files needed by the DITA map and share them with the product project. The user can

optionally choose an Ant build script from the core assets or write their own. Once

the user has a versioned product project, the user can add product specific content,

modified shared content, and create new Ant scripts. To evaluate product derivation,

we created two products: sequence and hierarchy as shown in Figure 7.3.

To test the different change propagation cases, we made changes to the necessary

topic files and performed change propagation. Once a change propagation is performed,

we checked to see if the result matched our expectation. We did this for each of the



95

Figure 7.3: An output generated from the DITA sample using DITA Open Toolkit.

eight cases of change propagation:

In case 1, the changes in the core assets project is propagated to shared components

in the product. To test this, we made changes to a core asset, ‘‘changingtheoil.xml”

by adding a line of text, and committed the changes. Then we selected a shared

component in the product, ‘‘hierarchy”, that refers to ‘‘changingtheoil.xml” in the

core asset and performed a forward change propagation. Once the changes resulted

from the change propagation were committed, we made sure that the new text was

shown in the shared file ‘‘changingtheoil.xml” in the product ‘‘hierarchy”. Although

case 1 looks like a merge, it is simply an update in the shared component to point to

the core asset version that has the new changes.

In case 2, the shared asset in a product is modified and the asset referred to by

the shared asset is also modified in the core assets project and the changes from the

core asset is merged with shared asset resulting in a three way merge. To test this

case, we modified the asset in the core assets project and the shared asset in a product

independently. We did this by updating a text line in ‘‘changingtheoil.xml” in the core

assets project and adding a text line in the shared asset of ‘‘changingtheoil.xml.” In



96

our evaluation, we did not create changes that would cause conflicts. We committed

those changes. We then selected the shared core asset that has been changed and

performed a forward change propagation and then committed the changes and verified

that the changes the shared core asset have both changes. In this case, Molhado

SPL performed a 3-way merge and the shared component then points to the version

resulted from the merge.

In case 3, the situation is the same as in case 2, but when we performed the

forward change propagation, we ignore the changes made in the shared asset. The

mechanism used in change propagation in this case is identical to case 1 except that

the shared asset has been changed but the changes are irrelevant. The forward change

propagation updated the shared asset to point to the latest version of the referred asset

in the core assets project. We made changes to a shared asset ‘‘shovelingthesnow.xml”

and the asset referred to by this shared asset. We right clicked on the shared asset

and chose ‘‘pull change replace.” The result only showed the changes from the core

assets project.

In case 4, a component from the core assets project is being shared with a product.

To test if this feature works, we selected an asset in the core asset and shared it with

a product by selecting and dragging the component to the product. This case is also

performed when a product is derived in which multiple components are being shared.

When a product is derived, core assets are shared in a product. Without the support

for this case, product derivation would not be supported.

Case 5-8 are identical to case 1 to 4 but in the opposite direction. Thus, we exclude

their discussion. Case 8 is different from case 4 semantically. Case 8 makes a product

specific asset into a core asset. In this case, we create ‘‘document.xml” and right

clicked and selected popup command option, ‘‘Make core asset.” The file was moved

into the core asset project and ‘‘document.xml” in the product became a shared asset

with the shared icon and the shared annotation.

Note that all of these propagation mechanisms were tested during implementation

of Molhado SPL to make sure they do what they are supposed to do. But getting

them to perform correctly using an example further proves that Molhado SPL does

support them. The screen shot of a working session of Molhado SPL with a DITA

project is shown in Figure 7.4.



97

Figure 7.4: Screen shot of a DITA document product line in Molhado SPL.

7.2 The Graph Product Line

The Graph Product Line (GPL) [90] is a family of graph applications created by

Don Batory at the University of Texas. Batory considers it a standard problem for

evaluating product line methodologies. It is small but possesses the formal qualities

of a software product line and thus makes a good test bed for Molhado SPL. Graph

application can be created using GPL with different features and making use of

different search algorithms. A graph is either directed or undirected and its edges

can be weighted or unweighted. A graph application can have at most one search

algorithm which is either breadth-first search or depth-first search. In addition, it can

also have one or more algorithms from the following selections:

• Vertex numbering (Number): assigns a unique number to each vertex in a graph,

based on a graph search algorithm.

• Connected components (Connected): finds the connected components in an



98

undirected graph.

• Strongly connected components (StronglyConnected): finds strongly connected

components in a directed graph.

• Cycle checking (Cycle): determines whether the graph has cycles.

• Minimum spanning tree (MST): finds a minimum spanning tree (MST).

• Single-source shortest path (Shortest): finds the shortest paths from one vertex

to all other vertices.

The GPL can be described using a feature model as shown in Figure 7.5. Because

of lack of space in the figure, we excluded strongly connected components from the

feature model. The feature model describes the possible products that can be created

and the constraints that govern the possible products. The features are arranged in a

tree where the root represents the product and the children represent product features.

In the feature model, a box represents a concrete feature such as ‘‘Directed” or an

abstract feature such as ‘‘Graph Type”. An abstract feature represents a selection

of possible features. Feature with a filled circle on top is required in every product

if all of its ancestors features are also required. Features with an empty circle are

optional. For example, in every graph product, it must have a graph type, which is

either directed or undirected. It may or may include have a search algorithm. If it

includes a search algorithm, it can only include one: either breadth first search or

depth first search. The dashed edges represent constraints. In this feature model, we

only have requires constraints but it is possible to have excludes constraints where

two features cannot exist in the same product. An example of a requires constraint is

the constraint between shortest path feature and directed feature. The selection of

shortest path requires the graph type to be directed so that selecting undirected would

not be legal. Figure 7.6 shows one possible product, in which the selected features are

colored green or (light grey in black and white print out).

The GPL example used for evaluating Molhado SPL was implemented by Michael

Haufe, an undergraduate CS computer science student at UW-Milwaukee. He imple-

mented GPL using just plain Java features as inheritance, Java containers and generics

to implements the GPL. Others implemented it using AspectJ, other modified Java,

and code mixing using XML. The goal of Molhado SPL is to support SPL without



99

Figure 7.5: The feature model of the Graph Product Line.

introducing changes to the programming language. We did not fully implement the

GPL. Instead, we only implemented enough classes to test different type of graphs

and different search algorithms.

To evaluate Molhado SPL, we imported the source code implementing the GPL

into Molhado SPL to manage its evolution. We then created a feature model in

Molhado SPL that describes the possible products. In the feature model, we specified

which files are responsible for the feature. A product is derived when a user selects

the necessary features. Molhado SPL automatically shares the files that are needed

for that product. Once a product is derived, it can undergo independent changes such

as adding new classes or changing shared files. The evaluation for the eight cases is

the same as in the document product line so the discussion is not included. Figure 7.7

shows the GPL with two products and the feature model.



100

Figure 7.6: One possible product instance of the Graph Product Line.

7.3 Summary and Discussion

In this chapter, we described a proof of concept evaluation of Molhado SPL using a

document product line (DITA) and a software product line (GPL). Although Molhado

SPL supports both types of product lines, product derivation had to be implemented

separately for each type of product line. For example, to support automatic product

derivation for DITA document product line, Molhado SPL has to know about DITA

maps and on how to extract references to topics in a map so that the topics can

be shared with a product derived using that map. To support automatic product

derivation for the software product line, we added support for feature models to

Molhado SPL and using the feature model created specifically for that product line

to derive products. A user can still perform product derivation without automatic

product derivation support by creating an empty product and selecting the necessary

core assets from the core assets project and sharing them with the product. Manual

product derivation requires that the user has the knowledge of the product line to

perform the derivation. In contrast with automatic product derivation, the user has

help from the product line system, for example, DITA maps already specify what files



101

Figure 7.7: Screen shot of the Graph Product Line in Molhado SPL.

go into a product and the feature model tells the user what features are allowed and

not allowed. Automatic product derivation helps prevent the user from deriving a

broken product. Once a product is derived, developers can modify or add product

specific changes to shared assets or add product specific assets thus allowing the

product to evolve independent from the core asset project.

We evaluated if Molhado SPL supports product line by importing existing product

lines. Independent evolution of core assets and project assets are demonstrated by

making independent changes to core assets and products and checking-in their changes.

Independent evolution of core assets project and the product projects is supported

at the component and project versioning level because each project has its own

version space. We also evaluated each of the change propagation cases by making

changes and performing change propagation for each of the cases and making sure

that each propagation operation completed correctly. We have demonstrated that

Molhado SPL’s versioning model is flexible by supporting different types of product



102

line. Because Molhado SPL is an early research prototype, we are only interested that

it does what it is supposed to do. Thus, we lack performance, usability and scalability

evaluation which are important and would be good topics for future research.



103

Chapter 8

Conclusion

In this dissertation, a configuration management system called Molhado SPL is

proposed to support the evolution of software product lines. Currently, there are

no software configuration management (SCM) tools that directly support software

product line evolution. Conventional SCM tools are designed to support single product

development. The use of conventional SCM tools forces developers to treat a software

product line as a single software project either by introducing new programming

language constructs or through the use of conditional compilation. Molhado SPL

addresses the evolution problem at the configuration level instead of at the code

level. We studied the type of operations needed to support software product line and

identified eight cases of change propagation. We proposed a versioning model that

handled all of the change propagation cases.

8.1 Approach

Molhado SPL supports independent evolution of core assets and products, the sharing

of code and the tracking relationships of products and shared code, and the eight

cases of change propagation. The Molhado SPL consists of four layers with each layer

providing different type of services. At the heart of Molhado SPL are the versioning

model, component object, shared component object, and project objects that allow for

independent evolution of products and shared artifacts, for sharing, and for supporting

change propagations. Further, they allow product specific changes to shared code

without interfering with the core asset that is shared. Products can also introduce



104

product specific asset that only exist in that product.

The low-level versioning layer provides support for versioning, storage and loading

of data structures. The component and project versioning layer allows for represen-

tation of files and software and document projects. It supports merging and adds

enhancements to the version tree. The product line versioning layer provides the

versioning model to support product lines and the various mechanisms for change

propagation. To support change propagation, we implemented an XML merge al-

gorithm that is shown to be fast and efficient. The algorithm not only merges data

structures within Molhado SPL but also merge XML files as standalone software.

To support software product derivation and modeling of software product lines, we

implemented a feature model editor with debugging support. We also implemented

the version-aware XML framework to support the recording of version history in XML

documents. This serves two purposes. One is that documents can be edited outside of

the repository and can later be brought back into the repository with their change

histories. Another purpose is to support collaborative editing of documents in parallel

without the need for a versioning repository.

We evaluated Molhado SPL with two product lines: a document product line and

a graph software product line. We showed that Molhado SPL supports independent

evolution of products and core assets and all eight change propagation cases. We

did not evaluate Molhado SPL in terms of scalability or usability. This could be

future work. In addition, we may explore the option of using existing configuration

management tools such as Subversion, GIT and Mercurial as the low-level versioning

layer instead of the current Fluid system. These systems have already handled the

scalability issues and have network support.

8.2 Contributions

The contributions made in this dissertation are as follows.

• Molhado SPL is the first prototype to solve the evolution problem at the

configuration management level instead of at the source code and programming

language level. In doing so, we created a versioning model with code sharing

capability, which is unlike any versioning model of conventional SCM systems.



105

We contribute concepts and terminology on change propagation for software

product line.

• The second contribution is a 3-way XML merge algorithm that exploits versioned

data structures and unique ID to increase speed and to reduce memory usage.

• The third contribution is a visual feature model editor with debugging. Many

have attempted to support feature model debugging using different logic rea-

soning but they lack user interface to support debugging. We proposed a user

interface that hints errors in the feature model editor similar to an IDE.

• Our last contribution is the version-aware XML document framework which

embeds versioning history inside XML documents without breaking them or

changing their semantics. In the past, version histories are stored externally

in files or database which means a file and its history can’t be exchange easily

between different users.

8.3 Future Work

There are many areas for possible future work. Molhado SPL is incomplete as it is only

a research prototype to test out ideas. To be completely usable and to support multiple

users, it will need to be implemented as a client-server system. At the moment, it

supports only a single user at a time. It could be implemented using a centralized

server approach like CVS and Subversion, or using a distributed approach, like GIT

and Mercurial. Currently, Molhado SPL does not use snapshots to improve version

retrieval and that could be a feature in the future version. The version-aware XML

document framework needs further evaluation especially with realistic documents such

as Microsoft Office or Open Office documents. Because version-aware XML documents

require every node to have a unique ID, there must be a way to introduce unique

ID into Office documents. Currently, Molhado SPL has not exploited version-aware

XML document as a way to export documents from the versioning system and later

import them back into the versioning system. Supporting an extended feature model

would be a goal for Molhado SPL’s feature editing and debugging. An extended model

replaces the And, Or, and Alternative operations with cardinality-based operations.



106

Bibliography

[1] C. W. Krueger, ‘‘Variation management for software production lines,’’ in SPLC

2: Proceedings of the Second International Conference on Software Product

Lines, (London, UK), pp. 37--48, Springer-Verlag, 2002.

[2] L. Yu and S. Ramaswamy, ‘‘A configuration management model for software

product line,’’ INFOCOMP Journal of Computer Science, vol. 5, no. 4, pp. 1--8,

2006.

[3] ‘‘Dita maturity model,’’ 2012.

[4] V. Sugumaran, S. Park, and K. C. Kang, ‘‘Introduction,’’ Commun. ACM, vol. 49,

no. 12, pp. 28--32, 2006.

[5] M. Staples and D. Hill, ‘‘Experiences adopting software product line development

without a product line architecture,’’ in APSEC ’04: Proceedings of the 11th

Asia-Pacific Software Engineering Conference (APSEC’04), (Washington, DC,

USA), pp. 176--183, IEEE Computer Society, 2004.

[6] T. Morse, ‘‘CVS,’’ Linux Journal, vol. 1996, no. 21es, p. 3, 1996.

[7] S. Deelstra, M. Sinnema, and J. Bosch, ‘‘Product derivation in software product

families: a case study,’’ J. Syst. Softw., vol. 74, no. 2, pp. 173--194, 2005.

[8] A. van Deursen, M. de Jonge, and T. Kuipers, ‘‘Feature-based product line

instantiation using source-level packages,’’ 2002.

[9] R. C. van Ommering, ‘‘Configuration management in component based product

populations,’’ in SCM, pp. 16--23, 2001.



107

[10] R. van Ommering, ‘‘Building product populations with software components,’’

in ICSE ’02: Proceedings of the 24th International Conference on Software

Engineering, (New York, NY, USA), pp. 255--265, ACM Press, 2002.

[11] ‘‘Global software product line and inifinity diversity.’’

[12] L. N. Paul Clements and L. M. Northrop, Software Product Lines: Practices and

Patterns. Addison-Wesley Professional, 3rev ed., 2001.

[13] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering

: Foundations, Principles and Techniques. Springer, September 2005.

[14] C. Krueger, Easing the Transition to Software Mass Customization. Springer,

2002.

[15] R. Conradi and B. Westfechtel, ‘‘Version models for software configuration

management,’’ ACM Comput. Surv., vol. 30, no. 2, pp. 232--282, 1998.

[16] P. H. Feiler, ‘‘Configuration management models in commercial environments,’’

Tech. Rep. CMU/SEI-91-TR-7 ESD-9-TR-7, Carnegie Mellon Software Engineer-

ing Institute, Mar. 1991.

[17] S. Dart, ‘‘Concepts in configuration management systems,’’ in Proceedings of the

third International Software Configuration Management Workshop, ACM Press,

1991.

[18] W. A. Babich, Software configuration management: coordination for team pro-

ductivity. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1986.

[19] ‘‘Cvs-concurrent versions system.’’

[20] ‘‘Subversion.tigris.org.’’ http://subversion.tigris.org/.

[21] M. Rochkind, ‘‘The source code control system,’’ IEEE Transactions on Software

Engineering, vol. 1, no. 4, pp. 364--370, 1975.

[22] M. Staples, ‘‘Change control for product line software engineering,’’ in APSEC

’04: Proceedings of the 11th Asia-Pacific Software Engineering Conference



108

(APSEC’04), (Washington, DC, USA), pp. 572--573, IEEE Computer Society,

2004.

[23] J. van Gurp and C. Prehofer, ‘‘Version management tools as a basis for integrating

product derivation and software product families,’’ in Proceedings of the Workshop

on Variability Management - Working with Variability Mechanisms at SPLC

2006 (P. Clements and D. Muthing, eds.), no. 152.06/E, pp. 48--58, Oct. 2006.

[24] K. Kang, S. Cohen, J. Hess, W. Novak, and A. S. Peterson, ‘‘Feature-oriented

domain analysis (foda) feasibility study,’’ tech. rep., 1990.

[25] H. Spencer and G. Collyer, ‘‘ifdef considered harmful, or portability experience

with c news,’’ 1992.

[26] ‘‘Welcome to NetBeans.’’ http://www.netbeans.org.

[27] W. F. Tichy, ‘‘RCS - A system for version control,’’ Software - Practice and

Experience, vol. 15, no. 7, pp. 637--654, 1985.

[28] ‘‘Mercurial SCM.’’ http://mercurial.selenic.com.

[29] ‘‘Git - fast version control system.’’ http://git-scm.com.

[30] ‘‘Bazaar versioning system.’’ http://bazaar.conical.com.

[31] ‘‘Diffutils homepage.’’

[32] R. L. Fontaine, ‘‘Merging xml files: A new approach providing intelligent merge

of xml data sets,’’ in In Proceedings of XML Europe 2002, 2002.

[33] T. Lindholm, ‘‘A three-way merge for XML documents,’’ in Proceedings of the

4th ACM symposium on Document Engineering, pp. 1--10, ACM Press, 2004.

[34] ‘‘W3C XML.’’ http://www.w3c.org/XML.

[35] J. Boyland, A. Greenhouse, and W. L. Scherlis, ‘‘The Fluid IR: An internal repre-

sentation for a software engineering environment.’’ http://www.fluid.cs.cmu.edu.



109

[36] S. Khanna, K. Kunal, and B. C. Pierce, ‘‘A formal investigation of diff3,’’ in Foun-

dations of Software Technology and Theoretical Computer Science (FSTTCS)

(Arvind and Prasad, eds.), Dec. 2007.

[37] ‘‘Inkscape. draw freely..’’ http://inkscape.org.

[38] ‘‘Glips graffiti editor.’’ http://glipssvgeditor.sourceforge.net/.

[39] ‘‘Netbeans platform.’’

[40] S. Rönnau, C. Pauli, and U. M. Borghoff, ‘‘Merging changes in xml documents

using reliable context fingerprints,’’ in DocEng ’08: Proceeding of the eighth

ACM symposium on Document engineering, (New York, NY, USA), pp. 52--61,

ACM, 2008.

[41] T. Mens, ‘‘A state-of-the-art survey on software merging,’’ Software Engineering,

IEEE Transactions on, vol. 28, pp. 449--462, May 2002.

[42] E. W. Myers, ‘‘An o(nd) difference algorithm and its variations,’’ Algorithmica,

vol. 1, pp. 251--266, 1986.

[43] R. Al-Ekram, A. Adma, and O. Baysal, ‘‘diffX: an algorithm to detect changes

in multi-version XML documents.,’’ in CASCON (J. R. Cordy, A. W. Kark, and

D. A. Stewart, eds.), pp. 1--11, IBM, 2005.

[44] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, ‘‘Change

detection in hierarchically structured information,’’ in SIGMOD ’96: Proceedings

of the 1996 ACM SIGMOD international conference on Management of data,

(New York, NY, USA), pp. 493--504, ACM, 1996.

[45] G. Cobena, S. Abiteboul, and A. Marian, ‘‘Detecting changes in xml documents,’’

Data Engineering, 2002. Proceedings. 18th International Conference on, pp. 41--

52, 2002.

[46] M. Lanham, A. Kang, J. Hammer, A. Helal, and J. Wilson, ‘‘Format-independent

change detection and propoagation in support of mobile computing,’’ in In

Proceedings of the XVII Symposium on Databases (SBBD 2002, pp. 27--41, 2002.



110

[47] Y. Wang, D. DeWitt, and J. Cai, ‘‘X-diff: A fast change detection algorithm for

xml documents,’’ 2003.

[48] T. Lindholm, J. Kangasharju, and S. Tarkoma, ‘‘Fast and simple XML tree

differencing by sequence alignment,’’ in DocEng ’06: Proceedings of the 2006

ACM symposium on Document engineering, (New York, NY, USA), pp. 75--84,

ACM, 2006.

[49] ‘‘Dropbox - online backup, file synch, and sharing made easy.’’

http://www.dropbox.com.

[50] ‘‘Google docs.’’ http://www.google.com/google-d-s/documents.

[51] ‘‘XML security standard.’’ http://www.w3.org/standards/xml/security.

[52] K. Djemal, C. Soule-Dupuy, and N. Valles-Parlangeau, ‘‘Management of docu-

ment multistructurality: Case of document versions,’’ in Research Challenges

in Information Science, 2009. RCIS 2009. Third International Conference on,

pp. 325--332, april 2009.

[53] N. Fousteris, Y. Stavrakas, and M. Gergatsoulis, ‘‘Multidimensional xpath,’’ in

Proceedings of the 10th International Conference on Information Integration

and Web-based Applications & Services, iiWAS ’08, (New York, NY, USA),

pp. 162--169, ACM, 2008.

[54] A. O. Mendelzon, F. Rizzolo, and A. Vaisman, ‘‘Indexing temporal xml docu-

ments,’’ in Proceedings of the Thirtieth international conference on Very large

data bases - Volume 30, VLDB ’04, pp. 216--227, VLDB Endowment, 2004.

[55] F. Zhang, X. Wang, and S. Ma, ‘‘Temporal xml indexing based on suffix tree,’’

in Software Engineering Research, Management and Applications, 2009. SERA

’09. 7th ACIS International Conference on, pp. 140--144, dec. 2009.

[56] Y. Zhang, X. Wang, and Y. Zhang, ‘‘A labeling scheme for temporal xml,’’ in Web

Information Systems and Mining, 2009. WISM 2009. International Conference

on, pp. 277--279, nov. 2009.



111

[57] G. Ozsoyoglu and R. T. Snodgrass, ‘‘Temporal and real-time databases: A

survey,’’ IEEE Trans. on Knowl. and Data Eng., vol. 7, pp. 513--532, August

1995.

[58] R. T. Snodgrass, The TSQL2 Temporal Query Language. Norwell, MA, USA:

Kluwer Academic Publishers, 1995.

[59] R. Al-Ekram, A. Adma, and O. Baysal, ‘‘diffx: an algorithm to detect changes

in multi-version xml documents,’’ in Proceedings of the 2005 conference of the

Centre for Advanced Studies on Collaborative research, CASCON ’05, pp. 1--11,

IBM Press, 2005.

[60] K.-H. Lee, Y.-C. Choy, and S.-B. Cho, ‘‘An efficient algorithm to compute

differences between structured documents,’’ Knowledge and Data Engineering,

IEEE Transactions on, vol. 16, pp. 965--979, aug. 2004.

[61] T. Lindholm, J. Kangasharju, and S. Tarkoma, ‘‘Fast and simple xml tree

differencing by sequence alignment,’’ in Proceedings of the 2006 ACM symposium

on Document engineering, DocEng ’06, (New York, NY, USA), pp. 75--84, ACM,

2006.

[62] A. Marian, ‘‘Detecting changes in xml documents,’’ in Proceedings of the 18th

International Conference on Data Engineering, ICDE ’02, (Washington, DC,

USA), p. 41, IEEE Computer Society, 2002.

[63] S. Rönnau, G. Philipp, and U. M. Borghoff, ‘‘Efficient change control of xml

documents,’’ in Proceedings of the 9th ACM symposium on Document engineering,

DocEng ’09, (New York, NY, USA), pp. 3--12, ACM, 2009.

[64] S. Y. Chien, V. J. Tsotras, and C. Zaniolo, ‘‘Xml document versioning,’’ SIGMOD

Rec., vol. 30, pp. 46--53, September 2001.

[65] S.-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang, ‘‘Storing and querying

multiversion xml documents using durable node numbers,’’ in Web Information

Systems Engineering, 2001. Proceedings of the Second International Conference

on, vol. 1, pp. 232--241, dec. 2001.



112

[66] L. A. Rosado, A. P. Marquez, and M. S. Sanchez, ‘‘A data model for versioned

xml documents using xquery,’’ in Digital Information Management, 2008. ICDIM

2008. Third International Conference on, pp. 931--933, nov. 2008.

[67] Z. Vagena, M. M. Moro, and V. J. Tsotras, ‘‘Supporting branched versions on

xml documents,’’ in Research Issues on Data Engineering: Web Services for e-

Commerce and e-Government Applications, 2004. Proceedings. 14th International

Workshop on, pp. 137--144, march 2004.

[68] R. K. Wong and N. Lam, ‘‘Managing and querying multi-version xml data with

update logging,’’ in Proceedings of the 2002 ACM symposium on Document

engineering, DocEng ’02, (New York, NY, USA), pp. 74--81, ACM, 2002.

[69] J.-Y. Vion-Dury, ‘‘Stand-alone encoding of document history(or one step beyond

XML diff),’’ in Proceedings of Balisage: The Markup Conference 2010, vol. 5,

2010.

[70] ‘‘Java uuid generator (JUG) home page.’’ http://jug.safehaus.org.

[71] C. Thao and E. V. Munson, ‘‘Using versioned tree data structure, change detection

and node identity for three-way xml merging,’’ in Proceedings of the 10th ACM

symposium on Document engineering, DocEng ’10, (New York, NY, USA),

pp. 77--86, ACM, 2010.

[72] P. Clements and L. M. Northrop, Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[73] D. Weiss and R. C. T. Lai, Software Product Line Engineering. Addison-Wesley,

1999.

[74] D. Batory, D. Benavides, and A. Ruiz-Cortes, ‘‘Automated analysis of feature

models: challenges ahead,’’ Commun. ACM, vol. 49, pp. 45--47, December 2006.

[75] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel,

‘‘FeatureIDE: A tool framework for feature-oriented software development,’’ in

Proceedings of ICSE ’09, (Washington, DC, USA), pp. 611--614, IEEE Computer

Society, 2009.



113

[76] D. Beuche, ‘‘Modeling and building software product lines with pure::variants,’’ in

Proceedings of the 15th International Software Product Line Conference, Volume

2, SPLC ’11, (New York, NY, USA), pp. 46--1, ACM, 2011.

[77] D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘‘Automated analysis of feature

models 20 years later: A literature review,’’ Inf. Syst., vol. 35, pp. 615--636,

September 2010.

[78] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger, ‘‘XML-based feature

modelling,’’ in Software Reuse: Methods, Techniques and Tools: 8th International

Conference, ICSR 2004, pp. 5--9, Springer-Verlag, 2004.

[79] M. Mendonca, M. Branco, and D. Cowan, ‘‘S.P.L.O.T.: software product lines

online tools,’’ in Proceedings of the 24th ACM SIGPLAN conference companion

on Object oriented programming systems languages and applications, OOPSLA

’09, (New York, NY, USA), pp. 761--762, ACM, 2009.

[80] M. Antkiewicz and K. Czarnecki, ‘‘FeaturePlugin: feature modeling plug-in for

eclipse,’’ in Proceedings of the 2004 OOPSLA workshop on eclipse technology

eXchange, eclipse ’04, (New York, NY, USA), pp. 67--72, ACM, 2004.

[81] M. Noorian, A. Ensan, E. Bagheri, H. Boley, and Y. Biletskiy, ‘‘Feature model

debugging based on description logic reasoning,’’ in The 17th International

Conference on Distributed Multimedia Systems (DMS 2011), KSI, 2011.

[82] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, ‘‘Verifying feature models

using OWL,’’ Web Semant., vol. 5, pp. 117--129, June 2007.

[83] I. Lynce and J. P. Marques-Silva, ‘‘On computing minimum unsatisfiable cores,’’

in International Symposium on Theory and Applications of Satisfiability Testing,

pp. 305--310, May 2004.

[84] U. Junker, ‘‘QUICKXPLAIN: preferred explanations and relaxations for over-

constrained problems,’’ in Proceedings of AAAI ’04, pp. 167--172, AAAI Press,

2004.

[85] D. Le Berre and P. Rapicault, ‘‘Dependency management for the eclipse ecosystem:

eclipse p2, metadata and resolution,’’ in Proceedings of the 1st international



114

workshop on Open component ecosystems, IWOCE ’09, (New York, NY, USA),

pp. 21--30, ACM, 2009.

[86] ‘‘Netbeans visual library 2.0,’’ 2011.

[87] D. Le Berre and A. Parrain, ‘‘The Sat4j library 2.2, system description,’’ System,

vol. 7, no. June 2009, pp. 59--64, 2010.

[88] ‘‘DITA OASIS Standard.’’ http://dita.xml.org/standard/.

[89] R. E. Lopez-Herrejon and D. S. Batory, ‘‘A standard problem for evaluating

product-line methodologies,’’ in Proceedings of the Third International Confer-

ence on Generative and Component-Based Software Engineering, GCSE ’01,

(London, UK, UK), pp. 10--24, Springer-Verlag, 2001.

[90] C. Liya and H. Zhang, ‘‘Evaluating product line technologies: A graph product

line case study,’’ in Proceedings of the Second Australian Undergraduate Students’

Computing Conference (G. Abraham and B. I. P. Rubinstein, eds.), (Melbourne,

Victoria, Australia), pp. 32--39, Australian Undergraduate Students’ Computing

Conference, December 2004.



115

VITA

Title of Dissertation

A Configuration Management System for Software Product Lines

Full Name

Cheng Thao

Place and Date of Birth

Xiengkhouan, Laos

Colleges and Universities, Years attended and degrees

University of Wisconsin-Milwaukee Engineering, Ph.D., 10

University of Wisconsin-Milwaukee Computer Science, M.S., 4

University of Wisconsin-Green Bay Human Biology, B.S., 5

Publications

1. C. Thao ‘‘Managing Evolution of Software Product Line,” in Proceedings

of the 34th International Conference on Software Engineering (ICSE’12)

(To appear)

2. C. Thao and E. V. Munson. ‘‘Version-Aware XML Documents,” in

Proceedings of the 11th ACM Symposium on Document Engineering (Do-

cEng’11), New York, NY, USA, 2011. ACM.



116

3. C. Thao. ‘‘Managing Evolution of Software Product Line” in Proceedings

of the 34th International Conference on Software Engineering (ICSE 2012)

, IEEE Computer Society Press, 2012 (to appear)

4. C. Thao and E. V. Munson. ‘‘Version-Aware XML Documents,” in

Proceedings of the 11th ACM Symposium on Document Engineering (Do-

cEng’11), New York, NY, USA, 2011. ACM.

5. C. Thao and E. V. Munson. ‘‘Flexible Support for Managing Evolving

Software Product Lines,” in Proceedings of the 2nd International Workshop

on Product Line Approaches in Software Engineering (PLEASE’11), ACM,

New York, NY, USA, 2011, pages 60-64.

6. C. Thao and E. V. Munson. ‘‘Using Versioned Tree Data Structure,

Change Detection and Node Identity for Three-Way XML Merging,” in

Proceedings of the 10th ACM Symposium on Document Engineering, Do-

cEng’10, pages 77-86, New York, NY, USA, 2010. (won best paper award,

acceptance rate 31%)

7. C. Thao, E. V. Munson, and T. Nguyen, ‘‘Software Configuration Man-

agement for Product Line Derivation in Software Product Families,” in

Proceedings of the 15th IEEE Conference on Engineering of Computer

Based Systems (ECBS 2008), Belfast, UK, April 2008, pages 265-276

8. H. Jain, C. Thao, and H. Zhao. ‘‘Enhancing Electronic Medical Record

Retrieval through Semantic Query Expansion,” Journal of Information

Systems and e-Business Management, 2010

9. C. Thao, , H Jain, and H. Zhao (2008). ‘‘Semantic Query Expansion

for Effective EMR Retrieval,” in Proceedings of the Second China Sum-

mer Workshop on Information Management (CSWIM 2008) (pp. 6-11).

Kunming, China (refereed, academic audience, formal paper).

10. K. E. Khan, A. Santos, C. Thao, J. J. Rock, P. G. Nagy, K. C. Ehlers:

‘‘A Presentation System for Just-in-time Learning in Radiology.” J. Digital

Imaging 20(1): 6-16 (2007)

11. M. Wu, P. M. Rhyner, C. Thao, L. Kraniak, . C Cronk, K. Cruise: ‘‘A

Tablet-PC Application for the Individual Family Service Plan (IFSP)”. J.

Medical Systems 31(6): 537-541 (2007)



117

12. C. Thao, and M. Wu , ‘‘A Hand-held Application for Individual Family

Service Plan (IFSP),” in Proceeding of American Medical Informatics

Association Annual Symposium (AMIA), 2006

13. M. Wu, C. Thao, X. Mu, E. V. Munson: ‘‘A fisheye viewer for microarray-

based gene expression data.” BMC Bioinformatics 7: 452 (2006)

14. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao, ‘‘Infrastructures

for Development of Object-Oriented Configuration Management Services”,

in Proceedings of the 27th ACM/IEEE International Conference on Software

Engineering (ICSE 2005)

15. C. Thao and E. V. Munson. ‘‘A Relevance Model for Web Image Search,”

Web Document Analysis II, Proceedings of the Second International Work-

shop on Web Document Analysis, Edinburgh, August 3, 2003. Pattern

Recognition and Image Analysis (PRImA) Group, 2003, page 57-60.

16. C. Kahn, and C. Thao. ‘‘GoldMiner: a radiology image search engine.”

American Journal of Radiology (AJR )2007; 188:1475-1478

17. T. N. Nguyen, E. V. Munson, J. T. Boyland and C. Thao; , ”Multi-

level configuration management with fine-grained logical units,” in 31st

EUROMICRO Conference on Software Engineering and Advanced Appli-

cations, pages 248- 255, Sept. 2005. (Acceptance rate: 45%)

18. T. N. Nguyen, E. V. Munson, and C. Thao. ‘‘Managing the evolution of

Web-based applications with WebSCM,” in Proceedings of the 21st IEEE

International Conference on Software Maintenance, 2005. ICSM’05, pages

577-586, Sept. 2005. (Acceptance rate: 31%)

19. T. N. Nguyen, E. V. Munson, and C. Thao. ‘‘Object-oriented configuration

management technology can improve software architectural traceability, in

Third ACIS International Conference on Software Engineering Research,

Management and Applications, Aug. 11-13, 2005, pages 86-93. (acceptance

rate: 48%)

20. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao, ‘‘Infrastructures

for Development of Object-Oriented Configuration Management Services’’,

in Proceedings of the 27th ACM/IEEE International Conference on Software



118

Engineering (ICSE 2005), May 15-21, 2005, St. Louis, Missouri, USA, IEEE

Computer Society Press, pages 215224, 2005. (Acceptance rate: 12%)

21. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao. ‘‘Structure-

oriented product versioning,” in International Conference on Information

Technology: Coding and Computing, 2005. Vol. 2, pages 455-460, April

2005. (Acceptance rate: 50%)

22. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao. ‘‘Configuration

management for designs of software systems,” in 12th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems,

2005, pages 236-243, April 2005.

23. T. N. Nguyen, C. Thao and E. V. Munson, ‘‘On Product Versioning for

Hypertexts”, in Proceedings of the 12th ACM International Workshop

on Software Configuration Management (SCM-12), a workshop associated

with the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE 2005), September 59, 2005, Lisbon, Portugal, pages

112132, ACM Press, 2005.

24. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao. ‘‘Flexible

Fine-grained Version Control for Software Documents”, in Proceedings

of the 11th IEEE Asia-Pacific Software Engineering Conference (APSEC

2004), November 30 December 3, 2004, Busan, Korea, pp. 212-219, IEEE

Computer Society Press, 2004. (Acceptance rate: 39%)

25. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao, ‘‘Architectural

Software Configuration Management in Molhado”, in Proceedings of the

20th IEEE International Conference on Software Maintenance (ICSM

2004), September 11-17, 2004, Chicago, Illinois, USA, pp. 296-306, IEEE

Computer Society Press, 2004. (Acceptance rate: 28%)

26. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao, ‘‘The Molhado

hypertext versioning system”, in Proceedings of the 15th ACM International

Conference on Hypertext and Hypermedia (Hypertext 2004), August 9-

13, 2004, Santa Cruz, California, USA, pp. 185-195, ACM Press, 2004.

(Acceptance rate: 23%)



119

27. T. N. Nguyen, E. V. Munson, and C. Thao, ‘‘Software Traceability via

Versioned Hypermedia”, in Proceedings of the 16th International Conference

on Software Engineering and Knowledge Engineering (SEKE 2004), June

20-24, 2004, Alberta, Canada, pp. 288-295, Knowledge Systems Institute

Publisher, 2004. (Acceptance rate: 33%)

28. T. N. Nguyen, E. V. Munson, and C. Thao, ‘‘Fine-grained, structured

Configuration Management for Web projects”, Proceedings of the 13th

International World Wide Web Conference (WWW 2004), May 17-25,

2004, New York City, New York, USA, pp. 433-443, ACM Press, 2004.

(Acceptance rate: 13%)

29. T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao, ‘‘Molhado:

Object-Oriented Architectural Software Configuration Management”, For-

mal Research Demonstration at the 20th IEEE International Conference

on Software Maintenance (ICSM 2004), September 11-17, 2004, Chicago,

Illinois, USA, pp. 510, IEEE Computer Society Press , 2004. (Acceptance

rate: 28%)

30. J. Dabrowski, C. Thao, and E. V. Munson. ‘‘Image Search and Infor-

mation Visualization Research at UW-Milwaukees Multimedia Software

Laboratory,” in Proceedings of the 2001 CADIP Symposium, Baltimore,

Maryland, October 2001.

Major Department

Computer Science

Minor

Math


