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Malleable Curie Temperatures of Natural Titanomagnetites:
Occurrences, Modes, and Mechanisms
Mike Jackson1 and Julie Bowles2

1Institute for Rock Magnetism, Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA,
2Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

Abstract Intermediate-composition titanomagnetites have Curie temperatures (Tc) that depend not
only on composition but also on thermal history, with increases of 100°C or more in Tc produced by
moderate-temperature (300–400°C) annealing in the laboratory or in slow natural cooling and comparable
decreases produced by more rapid cooling (“quenching”) from higher temperatures. New samples
spanning a range of titanomagnetite compositions exhibit reversible changes in Tc comparable to those
previously documented for pyroclastic samples from Mt. St. Helens and Novarupta. Additional high- and
low-temperature measurements help to shed light on the nanoscale mechanisms responsible for the
observed changes in Tc. High-T hysteresis measurements exhibit a peak in high-field slope khf(T) at the Curie
temperature, and the peak magnitude decreases as Tc increases with annealing. Sharp changes in low-T
magnetic behavior are also strongly affected by prior annealing or quenching, suggesting that these
treatments affect the intrasite cation distributions. We have examined the effects of oxidation state and
nonstoichiometry on the magnitude of Tc changes produced by quenching/annealing in different
atmospheres. Treatments in air generally cause large changes (ΔTc > 100°). In an inert atmosphere, the
changes are similar in many samples but strongly diminished in others. When the samples are embedded in a
reducing material, ΔTc becomes insignificant. These results strongly suggest that cation vacancies play an
essential role in the cation rearrangements responsible for the observed changes in Tc. Some form of
octahedral-site chemical clustering or short-range ordering appears to be the best way to explain the large
observed changes in Tc.

1. Introduction

Through their natural remanent magnetizations (NRMs) and their physical/chemical characteristics, titano-
magnetites (minerals of the magnetite-ulvöspinel solid solution series, Fe3-xTixO4 (0 ≤ x ≤ 1), here abbreviated
as TM) provide key information on a wide range of natural phenomena. Paleomagnetic, rock-magnetic, and
environmental-magnetic studies of TM-bearing natural materials document the past behavior and evolution
of the geomagnetic field, tectonic plate motions, and geological processes that imprint and overprint NRMs,
as well as varying surficial environmental conditions (e.g., Evans & Heller, 2003; Merrill & McElhinny, 1983).
Despite many years of study, enduring mysteries remain about TM magnetic behavior, including changes
in their fundamental properties resulting from quenching or annealing under different redox conditions, in
the laboratory and in nature (e.g., Bowles et al., 2013; Jackson & Bowles, 2014; Lattard et al., 2006;
Moskowitz, 1987; Stephenson, 1969; Wanamaker & Moskowitz, 1994).

The fundamental mineral magnetism of the titanomagnetites is controlled by superexchange coupling of
iron cations that occupy tetrahedral (A) and octahedral (B) sites within the inverse-spinel crystal-chemical
structure (e.g., Dunlop & Özdemir, 1997; Néel, 1955). In TMs and other spinel ferrites, this coupling produces
a ferrimagnetically ordered state, with a net spontaneous magnetization due to the imbalance of the antipar-
allel moments of the A and B sublattices. The strength of the spontaneous magnetization Ms, as well as its
temperature dependence, is related to the spatial arrangement of magnetic and nonmagnetic cations and
vacancies, and to the geometry of the superexchange links (e.g., Néel, 1955; O’Reilly & Banerjee, 1965). In
end-member magnetite (x = 0) with the ideal inverse-spinel cation arrangement, the A sites contain Fe3+

and the B sites contain equal proportions of Fe2+ and Fe3+; this arrangement is denoted by the structural
formula Fe3+[Fe2+ Fe3+]O4. Titanium is accommodated by the paired substitution Ti4+ + Fe2+ ↔ 2Fe3+, and
it is generally believed to reside entirely in B sites (Wechsler et al., 1984). With the addition of Ti, the
ferrous-ferric cation site distribution necessarily changes, and different models have been proposed to
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account for Ms(x) and other data (e.g., Akimoto, 1954; Néel, 1955; O’Reilly & Banerjee, 1965). For example,
in the Néel model, the substitution involves only B-site cations for x ≤ 0.5 (Fe3+ [Fe2+1 + x Fe

3+
1-2x Ti

4+
x]

O2�
4), preserving as far as possible the inverse ferrous-ferric ordering, whereas the more disordered

Akimoto model consumes A- and B-site ferric ions at the same rate, resulting in mixed valence states
in both sites (Fe3+1-x Fe2+ x [Fe2+ Fe3+1-x Ti4+ x] O

2�
4). These models predict different trends for Curie

temperature Tc(x) as well as for Ms(x) (Moskowitz, 1987; Stephenson, 1972b). Other models (e.g., Kakol,
Sabol, & Honig, 1991; O’Reilly & Banerjee, 1965) lie between these two in their predicted properties.

Other cations, especially Al3+ and Mg2+, are common substitutes in titanomagnetites, generally occurring
preferentially in B sites (e.g., Creer & Stephenson, 1972), and like Ti4+, they cause a decrease in both Ms

and Tc. Furthermore, oxidation commonly produces cation-deficient titanomagnetites by several mechan-
isms, significantly affecting their magnetic properties (Hauptman, 1974; Readman & O’Reilly, 1972;
Stephenson, 1972a). Charge balance dictates the paired substitution 3Fe2+ ↔ 2Fe3++□, that is, ferrous ions
are replaced by vacancies and ferric ions. Vacancies also occur preferentially in the octahedral sites, and their
presence diminishes Ms but increases Tc (e.g., Hauptman, 1974; Lattard et al., 2006; Wanamaker &
Moskowitz, 1994).

In “homogeneous” titanomagnetites, Ti cations and vacancies are located randomly in B sites throughout the
crystal lattice, so there is necessarily some fine-scale heterogeneity, but because of the multiply connected
network of superexchange links, long-range magnetic order predominates and these bulk materials behave
homogeneously (e.g., a given composition has a single Curie temperature). Homogeneous phases over the
entire compositional range 0 ≤ x ≤ 1 are thermodynamically stable at sufficiently high temperature, but below
a solvus, intermediate-composition TMs become unstable or metastable. In this miscibility gap, unmixing of
TM into Ti-rich and Ti-poor cubic-phase intergrowths is thermodynamically favored but limited by
temperature-dependent diffusion rates (e.g., Bowles et al., 2013; Price, 1981, 1982). Rapid cooling allows pre-
servation of homogeneous intermediate-composition TMs in some volcanic extrusives, but slower cooling
generally favors exsolution. The spatial scale and degree of unmixing are variable and at least two mechan-
isms may be involved (e.g., Harrison & Putnis, 1999b). Spinodal decomposition initially produces small
variations in chemical composition, with a wavelength on the order of 10 nm, and the amplitude of the
variations increases as the process continues, resulting in a range of compositions while maintaining the
cubic structure. Nucleation and growth begins with the formation of discrete regions having an equilibrium
(solvus) composition (more Ti-rich or Ti-poor than the bulk composition) at the ambient temperature, and
subsequently proceeds through growth of these nuclei by diffusion. In contrast, oxidation commonly causes
another form of unmixing, oxyexsolution, forming lamellae of a Ti-rich rhombohedral phase (the endmember
being ilmenite) within the Ti-depleted cubic host (Haggerty, 1991).

In our recent work on intermediate titanomagnetites (0.25 < x < 0.4) in young, rapidly cooled
andesitic/dacitic ignimbrites from Mt. St. Helens and Novarupta (Bowles et al., 2013, 2015; Jackson &
Bowles, 2014), we have documented large and reversible changes in TM Curie temperature (ΔTc = 100° or
more) that are produced by (a) protracted annealing at moderate temperature (300° to 400°C), which
increases Tc, or (b) brief exposure to temperatures exceeding about 500° followed by rapid cooling, which
decreases Tc. The exact mechanism underlying these large changes in Tc remains unclear, but the reversibility
indicates that there is no bulk chemical alteration involved. Homogeneous oxidation during annealing could
account for increases in Tc, but the subsequent decrease in Tc on rapid cooling from above 500°C cannot be
due to chemical reduction. Thermomagnetic susceptibility k(T) and Ms(T) curves after annealing generally
show single-phase behavior with no indication of unmixing. The changes in Tc are not accompanied by cor-
responding changes inMs, and this fact appears to rule out significant intersite exchange of ferrous and ferric
ions as the cause (supporting information in Bowles et al., 2013). This has more recently been confirmed in
cation-distribution determinations (Lappe et al., 2015; Jackson et al., 2016) using X-ray circular magnetic
dichroism (XMCD) and Mössbauer spectroscopy.

To help understand the nature of these fundamental property changes, we extend the investigation in this
paper over a broader range of titanomagnetite compositions, ages, and origins. The expanded range of com-
positions will allow us to observe systematic relationships between ΔTc, annealing T, and Tsolvus(x) and to
evaluate the importance of effects like coupling of cation ordering and magnetic ordering (Burton, 1991;
Harrison & Putnis, 1999b).
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2. Materials and Methods

A new set of samples was collected from the Soufrière Hills volcano, Montserrat, in January 2014, for which
the major results will be presented elsewhere; in this paper we focus on a single representative pumice sam-
ple. Additional new samples (Table 1), generously provided by various colleagues, include feeder dikes of the
Columbia River basalts (provided by Basil Tikoff, UW-Madison, and Paul Kelso, Lake Superior State), a trocto-
lite from the Duluth Complex (Sarah Brownlee, Wayne State), gabbro sills from northern Iceland (Andrew
Horst, Oberlin), a basaltic lava from Fogo, Cape Verde (Maxwell Brown, University of Iceland), and pyroclastics
and lavas from Lascar, Chile (Greig Paterson, Chinese Academy of Sciences, Beijing). These samples were soli-
cited by us because of evidence that they exhibit the same sort of thermomagnetic irreversibility that we are
investigating. Thus, we make no claim that they are generally representative of all natural titanomagnetites;
nevertheless, they will allow us to show clearly that the phenomenon is not narrowly restricted to volcanic TM
in young andesitic/dacitic pumices and ashes.

Previously studied pyroclastic samples from Mt. St. Helens and Novarupta were remarkably stable against
chemical alteration during moderate-temperature (300–450°C) annealing in air for periods up to 103 h, and
during thermomagnetic runs up to 600°C in air, which involved durations of <2 h at elevated temperature.
During numerous heating-cooling cycles, the effects of oxyexsolution became gradually apparent by the
increased proportion of susceptibility associated with Tc > 500°C (Bowles et al., 2013; Jackson & Bowles,
2014). In contrast, most of the new intrusive samples were found in preliminary runs to alter rapidly during
heating in air, with the heating segment showing a homogeneous TM Curie temperature, generally less than
400°C, but the cooling segment additionally exhibiting something resembling an end-member magnetite Tc.
For that reason, all specimens used in this study were prepared for a sequence of treatments and measure-
ments in an inert atmosphere, by placing them in quartz tubes, repeatedly evacuating to less than 20 millitorr
and flushing with pure nitrogen, and finally backfilling with nitrogen to a pressure of about 300 torr (roughly
a third of a standard atmosphere) and sealing them shut. Fresh samples of Mt. St. Helens and Novarupta
pumice were also included, to see whether their behavior in an inert atmosphere would differ from that
previously observed in air. One Mt. St. Helens sample was mixed with graphite to produce a reducing
environment during heating. These sealed specimens were subjected to a series of annealing treatments
at temperatures from 325° to 425°C, for times ranging up to approximately 3,500 h, with various magnetic
characterization experiments after each treatment.

Table 1
Sample Properties

Sample ID Lithology
Age/
date Occurrence Provenance Reference

Mean
Tc-cooling

a
Estimated
xUSP

b

10BT33H Basalt Miocene Dike Columbia River Basalt Kelso et al. (2002) 367 0.47
FF02B Rhyolitic Tuff 760 ka Welded tuff Bishop Tuff, Owens River

Gorge, California
Gee et al. (2010) 548 0.05

FG1995–2 Basalt 1995 Flow Fogo Volcano, Cape Verde Brown et al. (2010) 179 0.58
KM039A Andesitic- Dacitic

Pumice
1912 Pyroclastic flow Novarupta Volcano, Katmai,

Alaska
Bowles et al. (2013) 355 0.35

LV17A Andesite 1993 Lithic clast in pyroclastic
deposits

Lascar Volcano, Chile Paterson et al. (2010)
and Paterson et al. (2010)

382 0.31

MSH02 Dacitic Pumice 1980 Pyroclastic flow Mt. St. Helens Volcano,
Washington State

Bowles et al. (2013) 341 0.37

SH14–2 Andesitic Pumice 2009 Pyroclastic flow Soufrière Hills Volcano,
Montserrat

Wadge et al. (2014) 394 0.29

SH-DC-3 Troctolite 1.1 Ga Basal cumulate layered
sequence

Duluth Complex Wirth et al. (2011) 153 0.62

SK06 Gabbro Sill Northern Iceland Horst (2013) 311 0.41
SK11 Gabbro Sill Northern Iceland Horst (2013) 207 0.55
SK19 Gabbro Sill Northern Iceland Horst (2013) 347 0.36
TC05–9 Rhyolitic Tuff Welded tuff Yucca Mountain, Nevada Rosenbaum (1993) 518 0.1

aCurie temperatures from this study. bCalculated from Tc using the relation in Hunt et al. (1995); values calculated using the relations in Lattard et al. (2006) differ
by only a few percent.
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The sealed tubes were of dimensions suitable for measurement in a Kappabridge KLY-2 furnace for k(T) runs
above room temperature, and in a Quantum Design MPMS for variable-frequency in-phase and out-of-phase
k(f,T) measurements below 300 K. Because the tubes were sealed, the conventional method of measuring
temperature in the high-T experiments, by inserting a thermocouple, was not practicable. Therefore,
temperatures were estimated according to the power supplied to the heater, using customized instrument
control software. In a large number of calibration runs, we logged heater power and directly measured tem-
peratures during heating and cooling, and the relationship was very reproducible. There is some uncertainty
in absolute temperatures estimated from furnace power, due to factors including varying sample masses
(thermal inertia) and imprecision in vertical placement of the tubes in the furnace. However, for measuring
the Curie temperature difference between heating and cooling segments of an individual k(T) run
(ΔTc = Tc,heating � Tc,cooling), we found the power-calibrated estimates to provide very good accuracy. The
use of sealed tubes also eliminated errors due to loss of material during transfer between containers for
annealing and for thermomagnetic runs.

Isothermal annealing at five temperatures between 325 and 425°C was carried out in a horizontal tube fur-
nace (Thermolyne 21100) for time intervals ranging from 1 hour to 3,450 h (144 days). Details are provided
in the supporting information of this article. Samples that still exhibited significant thermomagnetic irre-
versibility after annealing at 425° received additional treatments at 450° and 475°C, to place an upper limit
on the temperature range for the phenomenon in these samples. After each annealing treatment a high-T
k(T) data set was measured for each sample, using a heating/cooling rate of about 9°/min and normally
with a maximum temperature of 650°C. During each k(T) run approximately 11 min was spent within
50° of the maximum temperature for the run. In some cases the high-T run was preceded by a low-T
(<300 K) k(f,T) run. Church et al., (2011) have shown that such low-T measurements are sensitive probes
of thermally activated electron hopping and magnetoelastic wall pinning in titanomagnetites. Overall,
36 annealing treatments were applied to each specimen, representing a cumulative time of about 2.5 years
at elevated temperature.

A few additional samples were prepared for high-field hysteresis measurements at elevated temperature.
These were mixed with a high-temperature epoxy (Omega CC) and sealed in repeatedly evacuated quartz
tubes, in a final pure nitrogen atmosphere of 300 torr. They were then annealed, after which they were
removed from their tubes for measurement on a vibrating sample magnetometer (Princeton MicroMag
3900) with a flow-through helium furnace. Measurements followed the saturation initial curve, Msi(H,T), pro-
tocol of Fabian et al. (2013) to determine Ms(T) and high-field slope χhf(T) at narrow temperature intervals
through the magnetic order-disorder transition. As shown by Fabian et al. (2013), for ferrimagnetically
ordered materials χhf(T) reaches a peak at or just above Tc. The mean-field modeling of Fabian et al. (2015)
predicts a quantitative relationship between the area of the χhf(T) peak and the degree of chemical/cation
ordering, specifically in the hematite-ilmenite solid solution; however, they noted that such peaks are a gen-
eral feature of ferrimagnetically ordered materials. For our samples, we have done consecutive runs to
observe the relation of χhf(T) to state of order. The first run, after annealing, has a relatively high degree of
ordering and a correspondingly elevated Tc. Exposure to temperatures above Tc during the first run causes
disordering, so after the relatively rapid cooling, the second run begins in a less ordered state with a corre-
spondingly diminished Tc.

3. Measurement Results
3.1. High-Temperature Susceptibility

After annealing, most of the samples exhibit the same essential thermomagnetic irreversibility previously
found in those from Mt. St. Helens and Novarupta: Tc is higher in the heating segment than in the cooling
segment of the k(T) runs (overview in Figures 1a and 1b, detailed presentation in supporting information
Table S1 and figures). Tc,heating increases systematically with annealing time ta, and in most cases does not
appear to reach a stable value even after 2,000+ hours. In contrast, Tc,cooling is essentially independent of prior
annealing history. Some of the samples contain multiple magnetic phases and have multiple corresponding
Curie temperatures, seen most clearly in the derivative curves dk/dT (Figure 1b).

A near end-member magnetite component (Tc in the range 550–580°C) is visibly present in relatively
small proportions in many of the samples (10BT33, FG1995–2, KM039, MSH002, SK06, SK19), and for
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the most part the Curie temperature of this phase does not change significantly or systematically as a
function of thermal history. This phase is clearly associated with oxyexsolved TM in the Novarupta and
Mt. St. Helens samples (Bowles et al., 2013; Jackson & Bowles, 2014). Other detectable phases are
presumably homogeneous titanomagnetites, and annealing clearly modifies their Curie temperature
distributions. Most of the samples exhibit a well-defined dominant Tc in the heating and cooling
segments, and for this phase Tc,cooling ranges between about 180° (FG1995–2) and 400° (SH14–2),
corresponding to nominal TM compositions in the range 0.58 > x > 0.29, based on empirical
calibrations (Hunt et al., 1995; Lattard et al., 2006). The Fogo sample is rather complex, with additional

Figure 1a. Composite plots of thermomagnetic experiments on eight samples exhibiting similar essential behavior, with some significant variations. Red and blue
curves respectively indicate heating and cooling segments of single-cycle k(T) runs after different annealing times; annealing temperatures are given for each
column. Heating segment Curie temperatures generally increase progressively with increasing annealing times at each temperature, whereas cooling segment
curves are essentially independent of prior thermal history. More detailed plots are provided in the supporting information.

Journal of Geophysical Research: Solid Earth 10.1002/2017JB015193
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Figure 1b. Derivative curves for the single-cycle k(T) runs in Figure 1a; minima are used to quantify Curie temperatures. Note that horizontal scales are optimized to
show detail and may not match those in Figure 1a.
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well-defined Curie temperatures of 60° and 150°C (x ~ 0.7 and x ~ 0.62, respectively). The basaltic and
gabbroic samples (10BT33 and the SK samples) have very broad minima in their cooling segment
derivative curves, perhaps indicating a range of Tc due to compositional heterogeneity or spatially
variable cation ordering.

Figure 2. Low-temperature complex susceptibility for two samples: (left) after disordering by k(T) run to 650°C; (right)
after ordering by annealing at 375°C for 2,639 h. For each sample the upper plots show in-phase susceptibility χ0 (bold
curves) and quadrature susceptibility χ″ (fine) as functions of frequency (1 Hz (red) to 1000 Hz (blue)), and the lower plots
show χ″(f, T) rescaled to show detail, compared with predicted values for a thermal relaxation mechanism.

Journal of Geophysical Research: Solid Earth 10.1002/2017JB015193
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For most of the samples, annealing at temperatures up to 350° or 375°C
results in a homogeneous increase in Tc: after each annealing treatment
a single major Curie temperature is found in the k(T) heating curve, and
Tc increases systematically as a function of annealing time. For higher
annealing temperatures, there are more common indications of hetero-
geneous reordering: two major heating-curve Curie temperatures can
be seen in each heating curve, and while the Tc values remain relatively
constant, the susceptibility drop associated with each of them changes
systematically with annealing time (e.g., 10BT33 at 375°C and above,
FG1995–2 at all temperatures, and LV17A and SH14–2 at 425°C). Such
heterogeneous ordering is well known in the magnesioferrite system
and is thought to involve rapid nucleation of small regions of material
with the equilibrium degree of order, followed by growth of these
ordered regions at the expense of the remaining disordered material
(Harrison & Putnis, 1999a).

In all cases the changes produced by annealing are rapidly erased in the highest-temperature part of the k(T)
run, so that the cooling curves are almost perfectly reproducible, independent of prior annealing treatments.
For a few of the samples some minor cumulative alteration can be seen to have resulted from the repeated
heatings (e.g., the Icelandic SK samples), and one sample (SK11) altered so significantly (supporting informa-
tion) that it was removed from the experiment.

3.2. Low-Temperature Susceptibility

For many but not all of the samples, annealing also resulted in profound changes in k(f, T) at low temperature;
Figure 2 shows examples from Soufrière Hills, where annealing produced very large changes, and from
Novarupta, where low-T changes due to annealing were insignificant, despite substantial changes in Tc.
For both samples, in the low-Tc disordered state following a high-T thermomagnetic run, there is a sharp,
step-like increase in the in-phase susceptibility k0(f, T) at temperatures below about 140 K, accompanied by
a very strong frequency dependence and a relatively large out-of-phase component (Figure 2, left). These fea-
tures are very similar to those seen in relatively low-Ti (x ≤ 0.4) titanomagnetites in a number of previous stu-
dies (e.g., Carter-Stiglitz et al., 2006; Church et al., 2011; Engelmann et al., 2010; Moskowitz et al., 1998;
Radhakrishnamurty & Likhite, 1993). The out-of-phase susceptibility k″(f, T) curves are sharply peaked, and
at temperatures below the peak they match very precisely the values predicted by the theoretical “π/2”
law for thermally activated processes (Egli, 2009; Mullins & Tite, 1973; Néel, 1949; Shcherbakov & Fabian,
2005): k″ = �π/2 dk0/d(ln(f)). Above the peak, k″ declines sharply but does not vanish, greatly exceeding
the expected value for thermal relaxation; here the out-of-phase susceptibility is related primarily to weak-
field hysteresis rather than to thermoviscous behavior (Jackson et al., 1998).

In the high-Tc ordered state following annealing at 375°C for 2,639 h (Figure 2, right), the step increase below
140 K is dramatically suppressed for the Soufrière Hills sample, as are the corresponding frequency depen-
dence and out-of-phase susceptibilities. The relaxation peak in k″ is still present but less than one tenth its
magnitude in the disordered state. There is a strong k″ peak near 260 K due to weak-field hysteresis, almost
independent of frequency and 50–100% larger than k″ at the same T in the disordered state. In contrast, the
Novarupta sample annealed at 375°C for 1,149 h shows essentially no change in low-temperature k(f,T), even
though the annealing caused a ΔTc of 64°. Samples from Mt. St. Helens, Lascar, CRB, and Iceland all exhibited
marked changes in k(f,T) related to annealing, whereas samples from Novarupta and Fogo showed only
subtle changes, despite the large changes in Tc visible in Figures 1a and 1b.

The activation energy Ea and time constant (“attempt time”) τ0 associated with the relaxation peak can be
computed by fitting the k″(f, T) data with an Arrhenius equation of the form τ = τ0exp(Ea/kBT), where kB is
Boltzmann’s constant and τ = 1/(2πf) is the measurement timescale. For each frequency (and its associated
τ), the temperature at which the peak value of k″ occurs can be estimated by interpolating the location where
the derivative dk″/dT = 0. The set of k″(f, T) peaks thus yields a set of (τ, T) pairs which, when plotted on the
Arrhenius diagram of ln(τ) versus 1/T (Figure 3), define a line with slope Ea/kB and intercept ln(τ0). Computed
values are listed in Table 2.

Figure 3. Arrhenius plot for the k″(f,T) peaks in Figure 2.
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Annealing of SH14–2 not only diminishes the magnitude of the k″ peaks
but also significantly decreases the temperatures at which they occur
(range 71–106 K quenched versus 49–65 K after annealing); this is
reflected in the shift of those points toward the right on the Arrhenius
plot. The peaks are not very well defined in that data set, and the linear-
ity in Figure 3 is correspondingly marginal, so the calculated parameters
have relatively large uncertainty. On average the slope (Ea) is about the
same as those for the other three data sets, and the intercept (attempt
time) is significantly lower. An alternative approach to defining (τ, T)
pairs for the Arrhenius fitting is to use the in-phase k0(f, T) data, by deter-
mining either the temperature at which dk0/dT has a maximum for each

frequency (e.g., Carter-Stiglitz et al., 2006), or the temperature at which k0 reaches the approximate midpoint
between pretransition and posttransition values for each frequency (e.g., Church et al., 2011; Özdemir et al.,
2009). For the annealed SH14 sample, this yields better linearity (r2 = 0.9954) and similar Ea (0.13 eV), but a
significantly lower τ0 (10

�14 to 10�16, depending on where the midpoint is chosen).

3.3. High-Temperature High-Field Measurements

The temperature dependence of saturation magnetization is very well defined by the Msi(H,T) curves and, as
predicted by Fabian et al. (2013, 2015), there is also a very clear peak in χhf(T) at or just above Tc (Figure 4). For
the examples shown, Tc for the first run exceeds that for the second run by large amounts, with ΔTc ranging
from 41 to 84°, due to the increased order produced by annealing and the return to a more disordered state
produced by exposure to higher temperatures during the first run. The relative χhf(T) peak areas are system-
atically related to Tc and thus to degree of order: peaks are largest for the most disordered states with the
lowest Curie temperatures, and they become progressively smaller with increasing Tc and increasing order
(Figure 4). After subtraction of a paramagnetic background trend (approximated as linear over this tempera-
ture interval), the calculated peak-area ratios A2/A1 (second run to first run) are respectively 1.5, 2.9, and 3.9
for Mt. St. Helens (MSH) samples 8J, 8M, and 2K (Figure 4).

3.4. Effects of Annealing Atmosphere

In our initial experiments (Bowles et al., 2013; Jackson & Bowles, 2014), the Mt. St. Helens and Novarupta
samples were all annealed in air and showed essentially identical results for thermomagnetic runs in air
and in inert Ar or He atmospheres, suggesting that the observed changes in Tc were not related to changes
in sample stoichiometry. Nevertheless, stoichiometry is shown in our new experimental results to be an
important factor.

Some samples that exhibited large ΔTc after annealing in air showed much smaller changes after annealing
in nitrogen. The Duluth Complex sample (SH-DC-2, Figure 5) and the Novarupta samples were quite sensi-
tive to this change in annealing atmosphere. The Novarupta samples yielded ΔTc values after annealing in
N2 about half as large as those for air anneals at corresponding Ta and ta. Two companion specimens of the
Duluth sample were measured prior to any laboratory annealing, one in air and one in low-pressure N2, in a
multicycle k(T) run (Figure 5, top), which showed two magnetic phases: a near end-member magnetite
(invariant Tc near 570°C) and a titanomagnetite whose Tc changes during the experiment. In each case
the heating-cooling cycles are more or less reversible until peak temperatures reach about 500°C, after
which each successive heating cycle to higher temperatures results in an incremental decrease in Tc for
the titanomagnetite phase. This decrease is larger for the sample in N2 than for that in air, which we attri-
bute to partial oxidation of the TM in the latter sample during the heating-cooling cycles. Initial composi-
tional differences are possible but less likely, as the two specimens were splits of the same crushed
sample. Annealing of SH-DC-2 in air progressively increased the TM Curie temperature again, to around
400°C, and in the cooling curves, this was shifted back to below 300°. For the companion specimen sealed
in N2, the changes produced by annealing are much more subtle, consisting of only a slight shift toward
higher Tc (Figure 5). Further, the significant difference persists in the cooling segment Tc of the TM
(~150°C) with respect to that of the specimen annealed in air (~280°C; Figure 5), again suggesting a much
greater cation deficiency in the air-annealed specimen.

Table 2
Relaxation Characteristics

r2 Ea (eV) τ0 (s)

S14–2 quenched 0.9998 0.13 1.75E-10
S14–2 annealed
(alternative calculation)

0.8898
(0.9954)

0.11
(0.13)

1.98E-13
(2.12e-15)

KM39A-quenched 0.9932 0.11 1.37E-10
KM39A-annealed 0.9950 0.10 6.41E-10
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Figure 4. Ms(T) (left) and χhf(T) (right) determined From Msi(H,T) measurements at spacings of 5 mT and 1°C, for MSH
specimens in different states produced by annealing. Red curves show values for the more ordered state during initial
heating after annealing; blue curves show values for the more disordered state after cooling following the first run. Curie
temperatures, significantly higher in the ordered state, are clearly recognizable by the sharp downward slope in Ms(T)
and by the peak in χhf(T), which is much larger in the disordered state.
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Both in air and in nitrogen the Mt. St. Helens samples showed very large changes in Tc, as in the previous
studies, but in a reducing atmosphere (in the presence of graphite) the behavior gradually underwent a dra-
matic change (Figure 6). The first two heat treatments producedmostly homogeneous increases to very large
values of ΔTc, around 150° for ta > 1,000 h, comparable to previous results, with some indication of hetero-
geneity after the second treatment (3,453 h). The third anneal (453 h) resulted in a distinctly heterogeneous
reordering, with some portion of the TM retaining the lower Tc characteristic of the disordered state. After
that, further anneals produced relatively small changes in Curie temperature (ΔTc < 50°) for most of the tita-
nomagnetite in the sample, along with larger changes restricted to a very small fraction of the total TM
volume. These results appear to indicate that some form of vacancy-mediated cation reordering occurs, even
in a reducing atmosphere, during the 1,007 h anneal and again during the subsequent 3,453 h anneal, but
eventually the vacancies are eliminated. Once that happens, annealing is no longer able to change the cation
arrangements, and for all following treatments at any temperature, Δ Tc is insignificant.

Figure 5. k(T) for companion specimens of the Duluth complex troctolite, annealed and measured in air (left) and in inert
nitrogen (right). Stepwise multicycle heating/cooling runs to increasingly higher temperatures for untreated samples
(top) show a gradual decrease in Tc at temperatures above 450°C. Composite plots of single-cycle runs after annealing at
350°C for varying durations, showing k(T) (middle) and dk/dT (bottom).
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4. Discussion of Results
4.1. Relation of Tc and Cation Ordering to Solvus and Magnetic Ordering

Previous investigations have linked titanomagnetite Curie temperatures to the ferrous-ferric site occu-
pancy distribution (Bowles et al., 2013; Creer & Stephenson, 1972; Lattard et al., 2006; Stephenson,
1972b). In simple spinels containing two cation species, A2+B3+2O4, the “normal” arrangement is
A2+[2B3+]O4 (i.e., the divalent A cations are in the tetrahedral A sites and the trivalent B cations in the octa-
hedral B sites, as in the mineral spinel) and the “inverse” arrangement is B3+[A2+B3+]O4 as in magnetite. In
general, intersite cation ordering in simple two-cation spinels can be described by a distribution or inver-
sion parameter b (0 ≤ b ≤ 1): A2+1-b B3+b [A2+b B3+2-b] O4. In addition to Curie temperatures, the sponta-
neous magnetic moment per formula unit also varies with b: m = mA(2b � 1) + mB(2 � 2b), where mA and
mB are the individual cation moments. An alternative quantification is the order parameter Q = 1 � 3b/2,
convenient for thermodynamic modeling and defined such that Q ranges from �0.5 for inverse ordering
(b = 1), to 0 for random cation distribution (b = ⅔), to 1 for normal ordering (b = 0) (e.g., Harrison & Putnis,
1999b). In magnesioferrite (e.g., Harrison & Putnis, 1999a, 1999b), ordering is generally inverse
(�0.5 ≤ Q ≤ 0), and the Curie temperature is a linear function of Q (and of b), with a maximum value in
the fully inverse ordered state. For titanomagnetites, two distribution parameters and one composition
parameter are required to specify the cation site occupancy (e.g., O’Neill & Navrotsky, 1984), and an order
parameter would involve all of these. Stephenson’s (1972b) model for titanomagnetites is formulated
instead in terms of four cation site-occupancy parameters, and it, too, predicts a higher Curie temperature
for more ordered arrangements: for intermediate compositions Tc is about 30° higher for the strongly
(inverse) ordered cation distribution of Néel (1955) than for the more disordered distribution of Akimoto
(1954). This difference, however, is much smaller than those that we observe. The modeling of Creer
and Stephenson (1972) included Mg2+, Al3+, Mn2+, and Cr3+ in proportions found in a set of natural tita-
nomagnetites (0.39 ≤ x ≤ 0.85), using the Néel (1955) and Akimoto (1954) models as starting points, and
inserting the other cations either randomly or in an ordered way according to estimated site preference
energies. The range of calculated Tc values was fairly small for all samples (<30°), and surprisingly nonsys-
tematic with respect to ordered/disordered distributions. For one sample, the most random arrangement
(Akimoto model plus random insertion of other ions) had a Tc that exceeded that of the most ordered
arrangement (Néel plus ordered insertion) by 13°.

Homogeneous intersite cation reordering is thought to occur in near-equilibrium conditions (i.e., when the
degree of order at the ambient temperature Q(T) is close to the equilibrium degree of order at that
temperature Qeq(T)) (Harrison & Putnis, 1999a). Heterogeneous ordering/disordering occurs in nonequili-
brium conditions, when Q(T) is significantly less/greater than Qeq(T). Although significant intersite
ferrous/ferric cation reordering appears to be ruled out for our titanomagnetites by the invariance of low-T
saturation magnetization and of Mössbauer and XMCD spectra (Fabian et al., 2015), the distinction between
homogeneous and heterogeneous changes remains relevant in describing the shapes of the k(T) curves and

Figure 6. k(T) for a magnetic extract of Mt. St. Helens ash mixed with graphite, sealed in an inert N2 atmosphere, and annealed for varying durations, first at 350°C
(left) and then at 375°C (right). The first anneal (1,007 h at 350°C) resulted in a large homogeneous increase in Tc-heating, and the second (3,453 h) resulted in a
somewhat heterogeneous increase in Tc-heating and a decrease in Tc-cooling which persists for all subsequent cycles. After the third treatment (463 h) no further
significant Tc increases were produced by annealing at any temperature.
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the corresponding distributions of Tc. It is reasonable to suppose that
the observed changes in Tc are attributable to changes in short-range
order of the intrasite cation distribution within the B sublattices.
However, the process appears to differ in a fundamental way from that
described by the thermodynamic model of Harrison and Putnis (1999b),
sincemany of the largest ΔTc values (implying a strongly nonequilibrium
state at the start of annealing) are attained through homogeneous reor-
dering (Figures 1a and 1b).

Our experimental results may be compared with two T(x) functions to
evaluate the importance of possible controls on ΔTc due to anneal-
ing: the solvus temperature and the magnetic ordering temperature
(Figure 7). For the latter, the reference curve Tc = �150x2 �
580x + 578 (Bleil & Petersen, 1982; Lattard et al., 2006) is shown
and is also used to calibrate the x coordinates of the data points,
using the well-defined average value of Tc,cooling for the major phase
in each sample. Published binary solvus curves for pure TMs (without
any additional substitute cations) are based on experimental data
(e.g., Lindsley, 1981) or are calculated from thermodynamic models
(Lilova et al., 2012; Trestman-Matts et al., 1983). The calculated solvus
curves depend upon the cation distribution; Lilova et al. (2012) used
XMCD and Mössbauer data to obtain a distribution very close to that
of Kakol et al. (1991) and incorporated that into thermodynamic cal-
culations to determine the solvus location.

Experimental results are summarized in Figure 7 with one data point for
each sample at each annealing temperature, using filled symbols to indi-
cate homogeneous changes with ΔTc ≥ 20°, half-filled symbols for
apparently heterogeneous changes with ΔTc ≥ 20°, and open symbols

for ΔTc < 20°. In several cases, for samples with multiple magnetic phases, there is some ambiguity in com-
bining heating and cooling Curie temperatures to compute ΔTc. For example, the Icelandic sample SK06 exhi-
bits cooling segment derivative curves with two very broad minima at about 310° and 425°C (Figure 1b),
which we assume to represent different TM compositions. Extended annealing at relatively low temperatures
(up to 375°C) results in heating segment derivative curves having a single sharp minimum, at a temperature
higher than either of the cooling segment minima, exceeding them respectively by approximately 200° and
75° (Figure 1b), each of which is a possible value for ΔTc. For this reason we do not tabulate precise values of
ΔTc but summarize them in this semiquantitative way (Figure 7), and we plot the annealing results only at the
x corresponding to the Tc of the major phase (310°C for SK06).

It is immediately apparent that significant changes in ΔTc occur primarily under subsolvus conditions.
However, the association is imperfect. If we take the most recent solvus of Lilova et al. (2012) as the most
accurate, then many of the lower-x data with large ΔTc actually plot above the solvus. On the other hand,
the solvus calculations are for TMs free of Al, Mg, and other cations that occur in these natural titanomagne-
tites, and the effect of such additional substitution is to raise the solvus (e.g., Bowles et al., 2012), so it is prob-
ably safe to conclude that large increases in Curie temperature occur mainly or exclusively in subsolvus
annealing conditions. This suggests an important role of chemical unmixing on some scale. However, it is also
apparent that whereas the solvus temperature increases rapidly with increasing x in our region of interest, the
upper limit of “effective” annealing temperatures (producing large ΔTc) does not. For the whole range
0.25 < x < 0.6, very large ΔTc values generally occur for annealing temperatures up to about 400° and not
above that (Figure 7). For the Ti-rich end of that range, this is well below the solvus, and one might expect
chemical unmixing to proceed more rapidly at higher T, just below the solvus.

In the temperature range between about 425 and 525°C, the processes involved in decreasing Tc (cation dis-
ordering and/or chemical rehomogenization) begin to take rapid effect, and this appears to be the case for
the full range of compositions in this study. Multicycle k(T) runs commonly show the onset of irreversibility
in this range (e.g., Figure 5, top; see also Bowles et al. (2013)). Figure 8 shows the maximum postannealing

Figure 7. Summary of results of annealing/thermomagnetic experiments on
various titanomagnetite-bearing intrusive and extrusive igneous rock units.
Composition parameter x is the mole fraction of ulvöspinel, determined by
electron microprobe for Mt. St. Helens (MSH) samples and estimated from
cooling leg Curie temperatures for the other units. Solid symbols represent
extended annealing experiments that resulted in a ΔTc of at least 20°; half-
filled symbols indicate significant heterogeneous changes in curie tem-
perature; open symbols are for experiments that produced no significant
change in the thermomagnetic characteristics. All data are for annealing
treatments in low-pressure N2 atmospheres except the bishop, Tiva canyon,
and Duluth complex samples, which were annealed in air. The Novarupta
samples overlap strongly with the Mt. St. Helens samples and are omitted for
clarity. Solvus curves of Lindsley (1981), Trestman-Matts et al. (1983), and
Lilova et al. (2012) shown for comparison; note that solid symbols generally
occur near or below the solvus. Also shown for reference is the Tc(x) curve of
Lattard et al. (2006).
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Tc (excluding that of any near-endmember magnetite) for each sample,
plotted as a function of the corresponding quenched Tc, for all the sam-
ples annealed in low-pressure nitrogen atmospheres. Maximum Curie
temperatures reached by annealing are generally in the 500°–525°C
range, regardless of composition. Exceptions with lower Tc max (the KM
samples, MSH004 and SH-DC-2) all reached Curie temperatures in the
500°–525°C range when annealed in air. Thus, at this upper boundary,
magnetic disordering coincides with chemical and/or cation disorder-
ing, and this explains why the k(T) heating segment derivative curves
(Figure 1b) become so sharp with increasing Tc. Harrison and Putnis
(1999a, 1999b) have argued on both theoretical and experimental
grounds that magnetic ordering and cation ordering are strongly
coupled in both magnetite and magnesioferrite, and potentially in tita-
nomagnetites as well.

4.2. Low-T Relaxation and Pinning Phenomena

For quenched samples, the step-like increase in low-T susceptibilities at
about 50–100 K strongly resembles those previously documented in
synthetic TMs with x ≤ 0.4 (Carter-Stiglitz et al., 2006; Church et al.,
2011; Engelmann et al., 2010; Moskowitz et al., 1998). These susceptibil-
ity steps were associated with isotropic points by Moskowitz et al.
(1998), but Church et al. (2011) pointed out that for some compositions,
the isotropic point is significantly higher than the susceptibility-step

temperature. For the latter they proposed an intrinsic pinning transition, involving enhanced low-T aniso-
tropy within domain walls, produced by a rearrangement of Fe2+ and Fe3+ions inside the walls, enhancing
the tetragonal magnetoelastic distortion associated with tetrahedral-octahedral ferrous-ion interactions.
This hard intrinsic wall pinning also produces very high coercivities and distinctive FORC signatures at low
temperatures (Church et al., 2011). The onset of thermally activated electron hopping on warming through
the pinning transition relieves the distortion associated with the ferrous ions, decreasing the local anisotropy
and wall pinning strength, and resulting in increased susceptibility and diminished coercivity.

When the same samples are run after annealing, the k(f, T) curves often look very different, resembling those
found for higher-Ti compositions (x ≥ 0.5) (Moskowitz et al., 1998). Instead of a step, there is a gradual increase
over the whole temperature range, with greatly diminished frequency dependence and out-of-phase compo-
nents. Annealing thus has a very strong effect on the pinning transition and, by inference, on the short-range
ordering of ferrous and ferric ions. These changes in low-T k(T) behavior, like those in high-T behavior, are
reversible: a sample can be repeatedly disordered by quenching from 600°C, which decreases its Curie
temperature and restores the steplike low-T pinning transition, and then annealed, which increases Tc and
broadens or suppresses the pinning transition.

The hard intrinsic pinning at low temperature may be considered as distinct from but related to disaccommo-
dation, by which thermally activated diffusion of electrons, vacancies, or cations arranges them in a way that
lowers the energy of domain walls and raises the energy required to displace the walls, thus stabilizing or
pinning them (Moskowitz, 1985). Conventional disaccommodation experiments involve measurement of
ac susceptibility at different times following alternating-field demagnetization (e.g.,Walz et al., 2003, 2007).
The demagnetization leaves walls positioned quasi-randomly in local energy-minimum locations, and k is
observed to decrease with time as the local minima are deepened, for example, by diffusion of vacancies
or other defects into the walls. Such measurements as a function of temperature produce the disaccommo-
dation spectrum, or relaxation spectrum. In general in ferrites, low-temperature disaccommodation on
laboratory timescales involves diffusion of electrons; room-T disaccommodation is dominated by vacancy dif-
fusion, and at higher temperatures cation diffusion becomes important (Moskowitz, 1985). Magnetite has dis-
accommodation peaks at about 30 K, 50–60 K, 120 K, and 300 K (Walz et al., 2003, 2007), temperatures where
anomalies are also commonly found in susceptibility (Kosterov, 2003; Moskowitz et al., 1998; Özdemir et al.,
2009) and in magnetic viscosity (Muxworthy & Williams, 2006). In synthetic titanomagnetites (0 ≤ x ≤ 1) Walz
et al. (1997) found significant disaccommodation between 50 and 100 K for compositions TM10, TM20, and

Figure 8. Minimum (quenched) and maximum (annealed) Curie tempera-
tures for the samples sealed in inert atmospheres. We interpret Tc min as a
proxy for TM composition by conventional calibration. Maximum Curie
temperatures reached by annealing are generally in the 500°–525°C range,
regardless of composition.
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TM30, but not for TM50 or more Ti-rich compositions; this corresponds closely to the temperature and the
range of compositions where the susceptibility step transition is observed (Church et al., 2011; Moskowitz
et al., 1998). Interestingly, in single-crystal titanomagnetites Walz et al. (2003, 2007) have documented a nega-
tive disaccommodation peak (indicating susceptibility increasing with time after AF demagnetization) at 65 K
(close to the lowest-frequency k″ peak in our data), which they attribute to stress reduction due to the onset
of electron hopping on warming. Church et al. (2011) interpret and model the phenomenon in terms of
domain wall resonance in the temperature range where anisotropy related to electron hopping reaches a
critical value.

Previous studies of the low-T susceptibility step transition in titanomagnetites have found a range of Ea and
τ0 values broadly similar to those in Table 2, and generally consistent with values expected for electron
hopping (Walz et al., 2003, 2007; Walz & Kronmüller, 1994): Carter-Stiglitz et al. (2006) estimated an Ea of
0.1 eV for synthetic TM16 and TM35 but did not report a value for τ0; Church et al. (2011) found an average
activation energy of 0.13 ± 0.01 eV with an attempt time of 3.7 × 10�11 s, for compositions x = 0.2, 0.35, and
0.4. For pure magnetite, Muxworthy (1999) observed a similar step transition near 50 K and linked it with
electron hopping, citing a change in τ0 from 10�12 s above 50 K to 10�11 s below (Walz & Kronmüller,
1994). Similarly, Özdemir et al. (2009) found a significant frequency-dependent increase in susceptibility
of pure magnetite near 30 K, but the values they calculated were rather different: Ea = 0.035 ± 0.005 eV
and τ0 = 4.0 × 10�9 s. They related this time constant to the atomic reorganization time between thermal
excitations of small domain wall segments. The very short attempt times (10�13 to 10�16 s) calculated for
our sample SH14–2 after annealing correspond to the range given by Walz et al. (2007) for the 65 K disac-
commodation peak, but their calculated range of activation energy (0.18 to 0.23 eV) is significantly higher
than our value for the postannealing k″ peak of SH14–2 (0.11 to 0.13 eV). Other samples that exhibit large
changes in k(f, T) after annealing (e.g., those from Mt. St. Helens) have postannealing relaxation peak activa-
tion energies ranging from 0.08 to 0.15 eV, and a very wide range of τ0 values that are generally sensitive to
the details of how they are determined, due to the log scaling of the vertical axis in the Arrhenius plot.
Overall, it seems fairly clear that the step transition involves the onset of electron hopping on warming
(Church et al., 2011) and that for many samples the process is strongly affected by prior annealing, but many
of the details remain unclear. One may speculate in a general way that annealing increases the vacancy
concentration, or ordering of vacancies and nonmagnetic cations, in such a way that ferrous-ferric electron
hopping is suppressed.

A question that demands to be asked, but that is difficult to answer, is why some samples show changes in
low-temperature behavior and others do not, when all of them exhibit significant changes in high-T behavior
related to annealing history. The Novarupta and Soufrière Hills samples are nearly indistinguishable in their
k(f,T) results after rapid cooling from 650°C. After annealing their low-T k(f,T) curves are dramatically different
from each other (Figure 2), yet their high-T thermomagnetic curves are very similar. This suggests that there
are no significant differences in their compositions or oxidation states, and perhaps that different mechan-
isms or different scales of order/disorder in the arrangement of cations and vacancies are responsible for
changes in the Curie temperature and in the low-T pinning transition.

4.3. χhf(T) Peaks

The mean field modeling of ferrimagetic solid solutions by Fabian et al. (2015), using the exchange-link geo-
metries and constants for homogeneous ferrian ilmenites, predicts a direct relationship between the area of
the χhf(T) peak and the degree of chemical/cation ordering (order parameterQ). In the ferrian ilmenites, order
(0 ≤ Q ≤ 1) is related to confinement of Ti4+ to alternating c planes, and increases in Q cause increases in Ms

but do not significantly affect Tc. (Fabian et al., 2015). In our experiments there are, as predicted, clear peaks in
χhf(T) at Tc, and a significant correlation between the peak areas and the degree of order inferred from Tc.
Interestingly, however, the relationship for our TMs is an inverse one: the more ordered states with higher
Tc exhibit much smaller χhf(T) peaks than the relatively disordered states with lower Tc. Clearly, there are
significant differences between TM spinels and rhombohedral ferrian ilmenites, in crystal structure, cation
ordering, and magnetic ordering, that may account for their different χhf(T) behavior. Ordering in the
hematite-ilmenite series is convergent: the sublattices lose their crystallographic distinction when the cations
are randomly distributed; whereas in spinels the tetrahedral and octahedral sites always remain distinct and
cation ordering is nonconvergent. Detailed mean field modeling for variably substituted and cation-deficient
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TM spinels is far beyond the scope of this paper, but the experimental results are very robust and support the
inference that some form of chemical/cation reordering occurs in the annealing-quenching cycles, albeit a
reordering that does not strongly affect Ms.

There has long been speculation that some form of chemical clustering or short-range order within the B sites
may play a significant role in the magnetic properties of titanomagnetites, based on Mössbauer spectro-
scopy, neutron diffraction, and other data (e.g., Jensen & Shive, 1973; Moskowitz, 1987; Wechsler et al.,
1984). Subsolidus B-site chemical clustering was also observed in the thermodynamic cation distribution
models of Harrison et al. (2013) for the magnesioferrite-qandilite solid solution (MgFe2O4-Mg2TiO4, an analog
of the titanomagnetites), on a scale of several unit cells. They suggested that such short-range clustering of
octahedral cations is an intrinsic part of the cation ordering/disordering process for intermediate composi-
tions in the vicinity of a solvus (Harrison et al., 2013). The length scale of this clustering is small enough for
the material to behave homogeneously in terms of its magnetic ordering; it effectively acts as a nanocompo-
site material, with a single Tc higher than the volume average of the Curie temperatures of the segregated
compositions (Skomski & Sellmyer, 2000).

4.4. Nonstoichiometry

The experiments with differing annealing atmospheres (Figures 5 and 6) make it clear that the largest
changes in Tc occur in cation-deficient titanomagnetites. A distinction is conventionally made between
homogeneous oxidation at elevated temperatures, which allows only low degrees of nonstoichiometry
(e.g., Senderov et al., 1993), and heterogeneous oxidation at lower temperature, in which high degrees of
overall nonstoichiometry can slowly develop, initially by surface oxidation and subsequently by diffusion
along the oxidation gradient within the core-shell particle structure (e.g., O’Reilly, 1984; Özdemir & Dunlop,
2010; van Velzen & Dekkers, 1999). In our samples either or both of these processes may have been active
in nature, and some amount of low-temperature oxidation may have occurred during laboratory annealing,
even in the inert atmosphere.

Several previous studies on high-T (1000°C and above) synthesis and annealing have indicated a relationship
between cation ordering and cation deficiency (controlled by oxygen fugacity) (e.g., Lattard et al., 2006;
Wanamaker & Moskowitz, 1994). A large single crystal of TM60 synthesized by Wanamaker and Moskowitz
(1994) had a small gradient in Ti concentration and a more significant gradient in vacancy concentration,
as a consequence of the method of production. They documented significant differences (up to about 50°)
in Tc across the crystal and demonstrated by high-T annealing (1300°C) in different fO2 that these were
due to differences in nonstoichiometry, with inferred accompanying differences in cation ordering
(Wanamaker & Moskowitz, 1994). This is broadly consistent with our inference that cation deficiency enables
the existence of high-Tc cation distributions.

Lattard et al. (2006) synthesized sets of titanomagnetites with 0< x< 1, and with fO2 at the upper and lower
limits of single-phase TM stability (i.e., a more oxidized set in equilibrium with hematite-ilmenite solid-
solution phases and a more reduced set in equilibrium with wüstite), at temperatures of 1100° and 1300°C.
Under these conditions the more oxidized sets are expected to have the highest possible vacancy concentra-
tions, and the more reduced sets to be free of vacancies (Lattard et al., 2006; Senderov et al., 1993). They
observed a thermomagnetic irreversibility in these samples similar to that in ours, but of smaller magnitude
and in the opposite sense: Tc,heating < Tc,cooling. They attributed this to a relatively low degree of cation order
quenched in following synthesis, and a correspondingly low Tc at the start of the thermomagnetic run. On
heating above a relaxation temperature in the k(T) experiment (less than that during rapid quenching), the
cation distribution was postulated to re-equilibrate to a higher degree of order, which is preserved on cooling
through the closure temperature, and hence, Tc is higher on cooling. The differences in Tc were much larger
(up to 45°) for the samples with higher vacancy concentration (synthesized under higher fO2) than for the
stoichiometric samples, for which ΔTc did not exceed 10°.

MSH samples commonly contain coexisting TM and titanohematites (TH, hematite-ilmenite solid-solution
phases), indicating relatively oxidizing conditions of crystal growth, and resultant cation deficiency. The com-
positions of the cubic and rhombohedral oxide phases allow estimation of the (T, fO2) conditions in which
they were in equilibrium (Ghiorso & Evans, 2008; Lindsley, 1977; Sauerzapf et al., 2008). Melson and
Hopson (1981) determined TM and TH compositions of the 1980 Mt. St. Helens erupted materials by
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electron microprobe and found average compositions of TM30 (x = 0.3) and TH80 (y = 0.8 in Fe2-yTiyO3

(0 ≤ y ≤ 1)). Using the calibration of Lindsley (1977), they estimated pre-eruption temperatures near 1000°C
and fO2 about 1 log unit above the Ni-NiO buffer (Melson & Hopson, 1981). In low-T k(f, T) measurements
we see Néel points in someMSH sites in the range 150–270 K, corresponding to TH compositions in the range
0.85 ≥ y ≥ 0.78 (Engelmann et al., 2010), and for all MSH sites Tc,cooling is in the range 330° to 400°C, corre-
sponding to pure TM compositions in the range 0.4 ≥ x ≥ 0.31 (curve 1 of Lattard et al., 2006, equilibrated with
ilmenite), both of which agree well with the results of Melson and Hopson (1981). Thus, the MSH samples,
which remain the best examples of malleable TM Curie temperatures, may be inferred to have a significant
vacancy concentration, which in turn may be inferred to play a key role in changing Tc by annealing and
quenching. The inference is confirmed by the permanent loss of this transformability due to annealing in a
reducing atmosphere.

5. Summary and Conclusions

Titanomagnetites with a range of compositions, ages, cation substitutions, and vacancy concentrations have
Curie temperatures that are strongly sensitive to thermal history, both in nature and in the laboratory.
Annealing at moderate temperatures (approximately 300° to 425°C) can cause significant increases in Tc,
by 100° or more, and the increases can be reversed by brief exposure to temperatures exceeding 450° to
500°C. These changes are not due to homogeneous oxidation/reduction, exsolution/rehomogenization, or
intersite cation ordering/disordering, but appear to arise from some nanoscale mechanism that is related
to each of these (Bowles et al., 2013; Jackson & Bowles, 2014). Our new experimental results show that these
changes in Tc occur over a wider range of compositions than previously documented, and that redox condi-
tions and cation deficiency play significant roles. Repeatable Tc enhancement appears to be largely restricted
to subsolvus conditions and inert or oxidizing atmospheres. However, the upper bound on annealing tem-
peratures that produce large ΔTc does not appear to follow the solvus closely and seems to be nearly inde-
pendent of TM composition within the range 0.25 ≤ x ≤ 0.6. Likewise, quenching from any temperature above
about 500°C restores Tc to a repeatable base level for each sample, and this closure temperature is almost
independent of composition within the range studied.

Accompanying the changes in Curie temperature are strong changes in low-temperature relaxation phenom-
ena, seen in frequency-dependent complex susceptibility measurements. For samples in the quenched,
low-Tc state, the activation energy and time constant associated with a set of out-of-phase susceptibility
peaks between about 50 and 120 K are around 0.12 eV and 10�10s, respectively, similar to those determined
byWalz et al. (2007) for electron tunneling (0.03 eV and 10�10 s) and electron hopping (0.25 eV and 10�12 s) in
magnetite, and for Ti4+-modified electron hopping (0.18–0.23 eV and 10�13–10�17 s) in TM20. In the
annealed, high-Tc state, the out-of-phase peaks are strongly suppressed for most samples, and shifted to
somewhat lower temperatures, yielding Ea and τ0 of 0.11–0.13 eV and 10�13–10�15 s. Electron hopping
relieves some of the stress associated with Fe2+, decreasing anisotropy and unpinning domain walls and
increasing susceptibility (e.g., Church et al., 2011). In the annealed state this unpinning appears to occur gra-
dually over the whole temperature range from 30 K to room T.

Hysteresis measurements at narrow temperature intervals across the magnetic order-disorder transition
show that as saturation magnetization vanishes, high-field susceptibility reaches a maximum, as predicted
by Fabian et al. (2015) for ferrimagnets in general and for ferrian ilmenites in particular. In the ferrian ilme-
nites, with increasing order parameter Q (increasing segregation of Ti into alternating c plane layers), Tc
changes only minimally, whereas Ms(0) and χhf(Tc) increase significantly. By contrast, in our TM samples,
we suggest that annealing causes an increase in some short-range order parameter q, and that Tc increases
in parallel, whereas Ms(0) changes only minimally and χhf(Tc) decreases.
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