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1. Introduction
Zeolites are some of the most common authigenic silicate minerals in terrestrial sedimentary deposits (Hay, 1966; 
Hay & Sheppard, 2001). Zeolite occurrences in sedimentary environments on Earth can be categorized into six 
groups based on their geologic and hydrologic settings; (a) saline-alkaline lakes (e.g., Lake Tecopa, Califor-
nia; Sheppard & Gude, 1968), (b) soils and land surfaces (e.g., Lake Bogoria basin, Kenya; Renaut, 1993), (c) 
deep sea sediments (e.g., North-West Pacific; Lee, 1988), (d) open hydrologic systems (e.g., the White River 
sequence, Wyoming, USA; Lander & Hay, 1993), (e) hydrothermal alteration (e.g., Yucca Mountain, Nevada, 
USA; Sheppard et al., 1988), and (f) burial diagenesis (e.g., Mogami district, Yamagata, Japan; Iijima, 1988). 
Overall, zeolites are most abundant in volcaniclastic deposits since volcanic glass is a major zeolite precursor 
(Hay & Sheppard,  2001). Whether zeolites form and are preserved depends on the thermodynamic equilib-
rium of fluid-mineral reactions caused by water chemistry (Chipera & Apps, 2001), and kinetically controlled 
non-equilibrium growth and dissolution reactions (Dibble & Tiller, 1981). Therefore, the presence and nature of 
zeolites is a good probe to reconstruct the geological and hydrological history of zeolite-bearing environments on 
Earth (e.g., Chipera & Apps, 2001; McHenry et al., 2020).

Zeolites are also postulated as components of the martian regolith (e.g., Basu et al., 1998; Berkley & Drake, 1981; 
Bish et al., 2003; Cannon et al., 2015; Dickinson & Rosen, 2003; Ming & Gooding, 1988; Tokano & Bish, 2005). 

Abstract The evolution of the climate and hydrochemistry of Mars is still a mystery but it must have 
been at least occasionally warm and wet to have formed the ancient fluvial and lacustrine landforms observed 
today. Terrestrial examples and geochemical modeling under proposed early Mars conditions show that zeolite 
minerals are likely to have formed under alkaline (pH > 8) conditions with low water/rock ratio and surface 
temperatures below 150°C. The identification and spatial association of zeolites on the surface of Mars could 
thus be used to reconstruct the paleoclimate, paleohydrochemistry, and geological evolution of some locations 
on Mars. Previous studies identified the zeolite analcime and discuss the difficulties of identifying other zeolite 
species on the surface of Mars using orbital spectroscopy. We used published global mineralogical, geological, 
geomorphological, hydrological, physical, and elemental abundance maps and the locations of hydrous minerals 
detected and mapped using orbital data to create a map that delineates favorable areas to look for zeolites 
on Mars. We used the data-driven fuzzy-based Weights-of-Evidence method to identify and map favorable 
areas for zeolites on the surface of Mars up to ±40° latitude toward the poles. The final map shows that the 
eastern and western Arabia deposits, some sites in the Medusae Fossae formation, and some areas within and 
near Valles Marineris, Mawrth Vallis, highlands north of Hellas, and the Terra Cimmeria and Terra Sirenum 
regions would be favorable areas to look for zeolites using targeted orbital spectral analysis or future in situ 
observations.

Plain Language Summary Our knowledge of early Mars environmental conditions is limited. Field 
examples from the Earth and computer models that simulate how zeolites form under early martian conditions 
showed that they prefer water-limited, high pH conditions and surface temperatures below 150°C. Therefore, 
if zeolite minerals are present in certain locations on the surface of Mars, based on their presence, we can infer 
the geological and environmental history of that location. We used a computer model to identify where zeolite 
minerals can be present on Mars, based on existing maps and data sets of martian surface features, properties, 
and compositions. Using that model, we identified several areas of Mars that would have been favorable for 
zeolites, which could be targeted for future more detailed studies.
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Geochemical modeling shows that zeolites on early Mars are likely to have formed under alkaline (pH > 8) 
conditions with low water/rock ratios and surface temperatures below 150°C (e.g., Kodikara, McHenry, & 
Grundl, 2023; Semprich et al., 2019; Zolotov & Mironenko, 2016). Since the hydrochemistry and climate of early 
Mars remain a mystery, identifying and mapping zeolites on the surface of Mars can be used to reconstruct not 
only the paleoclimate and paleohydrochemistry, but also the geological evolution of Mars. Ehlmann et al. (2009) 
detected analcime in craters near Antoniadi basin, west of Nili Fossae, using Compact Reconnaissance Imag-
ing Spectrometer for Mars (CRISM) orbital data. Carter et al. (2013) conducted a large-scale investigation of 
hydrous minerals on Mars using CRISM and OMEGA (Observatoire pour la Mineralogie, l’Eau, la Glace et 
l’Activite) orbital imaging spectrometer data. They categorized zeolites and sulfates into one class due to the 
difficulty of distinguishing them using orbital data, though they typically form in very different environments. 
However, based on the shape of the 1.9 μm absorption band, they infer that more than 80% of minerals assigned 
to that class are likely zeolites. Sun and Milliken (2015) conducted a survey to identify hydrous minerals in 633 
crater central peaks using CRISM data and only identified zeolites in 4.5% of them. These studies along with 
the laboratory (e.g., Kodikara et al., 2022) and earth analog orbital remote sensing (e.g., Kodikara, McHenry, 
van der, & Meer, 2023) studies emphasized the difficulty of identifying non-analcime zeolites using Visible-near 
Infrared—Shortwave Infrared (VNIR-SWIR) spectral data. Zeolites have also not yet been reported from in situ 
observations on Mars or in martian meteorites.

Therefore, the identification and delineation of prospective areas for zeolites on the surface of Mars could serve 
as a guide for further searches for zeolites using detailed orbital spectral image analysis and future in situ obser-
vations. Predictive modeling for mineral exploration, a widely used statistical and probabilistic reasoning method 
in geosciences, can be used in this case (Bonham-Carter et al., 1989; Pan & Harris, 2000). Predictive modeling 
for mineral exploration follows specific steps and starts by defining a conceptual model for the exploration target. 
To define a conceptual model for exploration targets for the mineral type of interest (zeolite in this case) requires 
knowledge of the possible geological and geochemical formation processes of the target mineral. This knowledge 
allows exploration criteria to be defined, followed by the selection of suitable geoscience spatial data sets to be 
used, the extraction and enhancement of prospective features in each data set, selecting mapping method(s) for 
each prospective feature, selecting method(s) for creating predictive map(s) from each prospective feature, and 
then integrating the predictive maps to create a predictive model and/or to map the prospective areas for the 
target mineral (zeolites) (Bonham-Carter et al., 1989; Carranza, 2011). The preferred predictive model for this 
study should (a) accommodate the multiclass and continuous geodata, and (b) be sufficiently robust to handle 
the “information fuzziness” inherent to remote observational data (Porwal et al., 2003; Zimmermann, 1991). The 
combination of the Weights-of-Evidence (WEM) method and fuzzy set theory can fulfill both criteria flexibly 
and consistently.

The WEM method is commonly applied for mineral exploration, landslide susceptibility analysis, and hazard 
modeling (e.g., Bonham-Carter, 1994; Bonham-Carter et al., 1989; Neuhäuser & Terhorst, 2007). It has also been 
used for habitat quality assessments (e.g., Romero-Calcerrada & Luque, 2006), and even mapping the potential 
habitat of underground mushrooms (Yang et al., 2012). To map the potential mineral deposits, the model uses 
the location of known mineral occurrences to identify the favorable geological and environmental factors that 
can help map the potential distribution of the desired mineral (Bonham-Carter et al., 1989). Fuzzy set theory 
is also used for predictive mineral potential mapping since it provides a mathematical framework for combin-
ing and analyzing quantitative and qualitative data independent of their characteristics or source (X. Luo & 
Dimitrakopoulos, 2003; Moon, 1998; Porwal et al., 2003). Cheng and Agterberg (1999) proposed a hybrid fuzzy 
WEM, in which subjective or objective definitions of a fuzzy membership function of evidence can be supple-
mented by a more objective WEM-calculated definition of conditional probabilities. Due to our limited knowl-
edge of the formation conditions (geological, mineralogical, physical, and hydrological) of zeolites on Mars, a 
data-driven (empirical) approach was used. Data-driven methods typically assume that a sufficient number of 
known zeolite occurrences within the study area have been well studied and documented (Porwal et al., 2003). 
Since there are no well-studied and documented zeolite detections on Mars, this study first models the favorable 
areas for hydrous minerals and based on that model identifies the favorable areas for zeolites using other infor-
mation and assumptions.

The conceptual model developed in this study requires: (a) the suitable geologic and hydrologic environments 
for the formation of hydrous minerals, which are commonly formed under lacustrine, hydrothermal, diagenesis/
metamorphic, or pedogenic processes, and (b) the presence of volcanic ash (tuff) as a starting material for the 
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formation of zeolites. Therefore, as a first step, this study creates a predictive model (map) for the potential areas 
for hydrous minerals on Mars, and then based on the available information and models of distribution of pyro-
clastic ash deposits of Mars, creates a predictive model (map) for the most likely areas for zeolites on the surface 
of Mars.

2. Data Sets
Data sets for this study were selected based on the spatial association of zeolites with other chemical, mineralog-
ical, geological, and geomorphological factors observed in the Earth's zeolite bearing environments.

2.1. Hydrous Mineral Map

Zeolite minerals are mostly associated with other hydrous minerals and therefore the presence of certain hydrous 
minerals can be used not only to predict the presence of zeolite, but also the zeolite alteration pattern (e.g., 
Kodikara & McHenry, 2021). Carter et al. (2013) conducted a global survey of martian hydrous minerals using 
CRISM and OMEGA hyperspectral data and sorted their hydrous detections into nine classes of spectra: (a) Fe/
Mg - phyllosilicates, (b) chlorites, (c) Al-smectites/micas, (d) Al-rich kaolins, (e) opaline silica, (f) zeolites/
sulfates, (g) serpentines/carbonates, (h) prehnite, and (i) epidote. The database of detected hydrous mineral 
locations by Carter et al. (2013) was downloaded from https://www.cosmos.esa.int/web/psa/mars-maps.

2.2. Geology

The geologic maps provide unique information on the spatial and temporal sequences of geological processes on 
the surface of the planet. Formation and presence of zeolites in a certain location is based on the geologic and 
hydrologic processes that occurred in that location during a certain period. Therefore, geology maps will be a 
great help to find the suitable areas to form and find zeolites. Tanaka, Robbins, et al. (2014) and Tanaka, Skinner, 
et al. (2014) applied photogeologic mapping techniques to map 44 geologic units and 13 linear feature types, cate-
gorizing units on the surface based on the timing of major episodes and the types of materials involved (Tanaka, 
Robbins, et al., 2014; Tanaka, Skinner, et al., 2014). The geology map, created by Tanaka, Robbins, et al. (2014) 
and Tanaka, Skinner, et al. (2014) was downloaded from https://pubs.usgs.gov/sim/3292/.

2.3. Elemental Abundances

The water-equivalent hydrogen calculated from neutron data is used to predict the presence and distribution of 
zeolites and other hydrous minerals on Mars (e.g., Fialips et al., 2005; Mitrofanov et al., 2022). Ojha et al. (2021) 
used the K and Th enriched regions on Mars, calculated from the Gamma Ray Spectrometer (GRS) on the 
2001 Mars Odyssey Mission (Boynton et al., 2004), to find potential hydrothermal systems on Mars. Hydrother-
mal systems are one of the main zeolite forming environments on the Earth (Hay & Sheppard, 2001), and also 
proposed for Mars (e.g., Ehlmann et al., 2009). Poulet et al. (2007) mapped H, Si, Cl, K, and Th concentrations 
measured by the GRS for ± ∼ 45° latitudes assuming that all elements are homogeneous in the top few tens of 
centimeters of surface materials. For this study, two map products by Poulet et al. (2007), 2° × 2° and 5° × 5° 
binned point data, were downloaded from https://grspds.lpl.arizona.edu.

2.4. Mineralogy

Mineral association is used as one of the key ways to find a target mineral in mineral exploration. The presence 
of certain minerals (e.g., K-feldspar), as well as the absence of certain minerals (e.g., olivine), can be used as 
an evidential factor to predict the presence (or absence) of zeolite in that location. Bandfield (2002) produced a 
global mineral distribution map using data from the Thermal Emission Spectrometer (TES) on the Mars Global 
Surveyor (MGS) spacecraft (Christensen et al., 1992). The global mineral concentration maps include (a) sheet 
silicates and high-Si glass, (b) sulfate, (c) plagioclase, (d) hematite, (e) carbonate, (f) K-feldspar, (g) basaltic 
glass, (h) quartz, (i) High-Ca pyroxene, (j) low-Ca pyroxene, (k) olivine, and (l) amphibole. Mineral concen-
trations were calculated based on signal strength relative to the mineral endmembers used in the linear spectral 
deconvolution method.
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Poulet et al. (2007) produced maps of the global distribution of martian surface material based on the data from 
one martian year of OMEGA observations. Global maps of hydrated minerals, mafic minerals, and ferric phases 
were derived using spectral parameters. Ody et  al.  (2012) produced maps detailing the global distribution of 
these mineral species using the entire OMEGA data set acquired from January 2004 to August 2010, when the 
1–2.5 μm channel cooler failed. Since the 1–2.5 μm regions are important to discriminate most martian mineral-
ogy, these global maps can be considered the final outcome of OMEGA observations (Ody et al., 2012).

The global mineral abundance maps derived both from TES by Bandfield (2002) and from OMEGA by Ody 
et al. (2012) were downloaded from https://www.cosmos.esa.int/web/psa/mars-maps.

2.5. Albedo

Observations of the surface albedo of Mars show significant changes over time, likely due to global dust storms 
that redistribute dust (Pleskot & Miner, 1981; Putzig & Mellon, 2007). High-Si glass, a common precursor of 
zeolites, shows its highest concentrations in northern low albedo regions, while the high albedo regions are 
interpreted as covered by anhydrous ferric oxides (Bandfield, 2002). The albedo map is also used to compare and 
interpret the other spectral parameters (e.g., Poulet et al., 2007). A NIR (Near Infrared) 1 μm albedo (lambertian 
albedo) map produced by Ody et al. (2012) using the I/F/cos(i) value at 1.08 μm (where i = solar incident angle) 
of OMEGA data from January 2004 to August 2010 was used for this study. The TES bolometric albedo global 
map with 8 pixels per degree (ppd, 7.5 km) spatial resolution (Christensen et al., 2001) was also used.

2.6. Thermal Inertia

The thermal inertia of a certain location on Mars is typically consistent with properties including the abundance 
of rocks, particle size, extent of bedrock exposure, degree of induration, and how these properties are combined 
within the field of view (Mellon et al., 2000). The spatial variation of thermal inertia can reflect the physical 
characteristics and the processes that formed/modified the martian surface. Though there is no direct relation 
between the presence/formation of zeolites and thermal inertia, based on our current knowledge, it will be inter-
esting to find if there is any statistical correlation between them for further studies. Putzig and Mellon (2007) 
have produced nighttime and daytime seasonal maps of apparent thermal inertia using 3 years of TES data at 20 
ppd (3 km). They have cropped each of the 36 seasonal maps latitudinally and used the median values to create 
daytime and nighttime thermal inertia maps. These two maps were downloaded from https://www.mars.asu.edu/
data/.

2.7. Dust Cover

Ruff (2004) shows spectral evidence for zeolites in the dust on Mars using TES data, though it is uncertain (e.g., 
Bandfield et al., 2003). However, the spatial distribution of dust cover is also important for remote sensing studies 
since it may mask the spectral signatures of the surface materials. Ruff and Christensen (2002) introduced a dust 
cover index (DCI) defined by the average emissivity value in the wavelength region from 1,350 to 1,400 cm −1. 
They have produced a DCI map using nadir-pointing, daytime TES spectral data with brightness temperature 
>260 K. The TES were binned at 8 ppd (7.5 km pixel resolution), with any gaps filled using linear interpolation. 
This DCI map was downloaded from http://www.mars.asu.edu/∼ruff/DCI/dci.html.

The dust index map derived from TES by Bandfield (2002) using the linear spectral deconvolution method was 
also used. The dust index maps show a remarkable spatial coherence with albedo and thermal inertia maps at 
many scales. Dust free surfaces have very low albedo. However, thermal inertia is not well-suited for this due to 
its complex behavior for mixtures of dust and coarse particles (Ruff & Christensen, 2002).

2.8. Elevation and Slope

Elevation information of planetary surfaces is used to derive the morphology of the surface to analyze landscape 
forms, processes, patterns, and evolution (Schumm, 1991). This morphological information is also important for 
locating low-lying places where water might accumulate at local (e.g., basins) and global (e.g., northern lowland 
area) scales, and other places where zeolites are commonly formed, such as canyons, crater central peaks, etc. 

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002945 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.cosmos.esa.int/web/psa/mars-maps
https://www.mars.asu.edu/data/
https://www.mars.asu.edu/data/
http://www.mars.asu.edu/%7Eruff/DCI/dci.html


Earth and Space Science

KODIKARA AND MCHENRY

10.1029/2023EA002945

5 of 23

The elevation and slope maps were derived from the 463 m/pixel resolution of digital elevation data (DEM) from 
Mars Orbiter Laser Altimeter (MOLA) on MGS (Smith et al., 2001). The MOLA DEM data was downloaded 
from https://astrogeology.usgs.gov.

2.9. Valley Networks

Zeolite deposits on the Earth can be classified into two main groups, those formed in open hydrologic systems 
or closed hydrologic systems. Zeolite deposits in open hydrologic systems on the Earth are often several hundred 
meters thick and can be traced laterally for tens of kilometers, and typically form due to flowing or percolating 
groundwater through valley networks (Sheppard & Hay, 2001). Several global valley network maps on Mars have 
been produced both manually from Viking data (Carr & Chuang, 1997), MOLA and Thermal Emission Imaging 
System (THEMIS) data (Hynek et al., 2010), and THEMIS, Context Camera (CTX), and MOLA data (Alemanno 
et al., 2018), and automated mapping using MOLA data (W. Luo & Stepinski, 2009). The global valley network 
map produced by Alemanno et al. (2018) was used in this study. Mapping classes include (a) valley networks, 
(b) longitudinal valleys, (c) valleys on volcanoes, (d) valleys adjacent to canyons, (e) single valleys and valley 
segments, and (f) small outflow channels. The global geologic map of Mars, created by Tanaka, Robbins, 
et al.  (2014) and Tanaka, Skinner, et al.  (2014), included three classes of valleys, (a) single valley, (b) small 
outflow valley, and (c) trough fluvial valley. These segment maps were used in this study.

2.10. Open and Closed Basins

Zeolite deposits are mostly found in present and paleo saline, alkaline lakes on the Earth. Several geochemical 
modeling studies show a high possibility of forming zeolites in ancient lakes on Mars (e.g., Kodikara, McHenry, 
& Grundl, 2023; Zolotov & Mironenko, 2016). Possible paleolake basins observed on Mars have been cataloged 
and categorized into two main groups based on their morphological features: (a) Closed-basin lakes with an inlet 
valley and no outlet valley, and (b) Open-basin lakes having inlet valleys and outlet valleys (Cabrol & Grin, 1999; 
Fassett & Head, 2008; Goudge et al., 2012, 2015, 2016). For this study, the open and closed-basin lakes catalog 
compiled by Goudge et al.  (2016) was used. The database consists of the locations of 205 closed-basin lakes 
(Goudge et al., 2015) and 220 open-basin lakes (Fassett & Head, 2008; Goudge et al., 2012). However, this data-
base does not contain potential paleolakes without inlet valleys (like Columbus crater; Wray et al., 2011), possibly 
fed by groundwater (e.g., Boatwright & Head, 2021, 2022; Hargitai et al., 2018; Wray et al., 2011). This type of 
paleolake may have also been common on early Mars.

2.11. Pyroclastic Deposits

Basaltic or silicic glass from volcanic ash, tephra, pyroclastic flows, or detrital grains from lava flows are the 
major precursor material of zeolite (Hay, 1966). Explosive volcanic eruptions were likely frequent during the 
Noachian and Hesperian periods (Wilson & Head, 2007). This study uses a map of deposits identified in the liter-
ature as potentially pyroclastic that are larger than 10 5 km 2 (Broz et al., 2020; Kerber et al., 2012; Tanaka, 2000). 
The mapped deposits include Arabia deposits, Electris deposits, Medusae Fossae Formation (MFF), Dorsa 
Argentea Formation, Hellas deposits, Argyre deposits, Tyrrhena Patera deposits, and Isidis deposits.

Kerber et al. (2013) simulated ancient martian explosive eruptions (assuming a range of higher atmospheric pres-
sures: 50 mbar, 0.5 bar, 1 bar, and 2 bar) using a planetary global circulation model developed by the Laboratoire 
de Meteorologie Dynamique (LMD). Most martian explosive volcanic centers date to the Hesperian, which likely 
had higher atmospheric pressure than at present (e.g., Ramirez, 2017). The particle size used for their simulation 
was 35 μm in radius representing small, far-field ash. For this study, a combined ash distribution pattern map 
created by Kerber et al. (2013) from all major martian volcanic centers, assuming each erupted 1.4 × 10 6 km 3 of 
ash during their lifetimes under 1 bar of pressure, was selected.

3. Methods
3.1. Preparation of Factor Maps

All the factor maps discussed above were imported into ILWIS (ILWIS, 2005) via GDAL (GDAL/ORG contrib-
utors, 2020) and ISIS3 (Adoram-Kershner et al., 2020). All analysis was done using ILWIS (running on Linux 
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Pop-OS), followed by re-projecting to a common coordinate system (Plate Carree projection system), and resam-
pling into 200 m/pixel resolution using the nearest neighbor method.

Total hydrous mineral locations detected by Carter et al. (2013) are shown in Figure 1. The abundance of those 
hydrous mineral detections along with the latitudes are shown in the density plot in Figure 1. This shows that more 
than 90% of the total detections (1,735/1,855) are in the area between latitudes 40°N and 40°S. Since the impor-
tance of the map classes/area are calculated based on the locations of hydrous mineral detections, the limited 
detections in the area beyond 40°N and 40°S latitudes will be less important. Therefore, to reduce  the  computa-
tional power, time, and memory space, sub maps were created from all the factor maps covering the area between 
latitudes 40°N and 40°S for the rest of the work.

All the continuous data raster maps (e.g., elevation, dust cover index, elemental abundance, etc.) were reclassified 
into 10 classes after careful examination of the histograms of the pixel values and based on the discussions in the 
corresponding literature. The discontinuous data raster maps (categorical maps, e.g., geology map) were imported 
as is. The 10 buffer regions (A: 0–200 m, B: 200–400 m, C: 400–600 m, D: 600–800 m, E: 800–1,000 m, F: 
1,000–2,500 m, G: 2,500–5,000 m, H: 5,000–10,000 m, I: 10,000–100,000 m, and J: >100,000 m) were created 
from the segment maps and then rasterized. Based on the spatial association of buffer regions with the hydrous 
mineral detections, three buffer maps were selected. The boundaries of all the possible closed and open-basin 
lakes were manually digitized with the help of MOLA DEM. Two binary maps were created from the ash deposits 
map (ash deposit = 1, other area = 0) and open and closed paleolake basin map (open/closed basins = 1, other 
area = 0).

The total hydrous mineral detections within the sub map area (1,735 points) were divided into two classes (train 
and test) using the stratified random sampling method. The H2O weight percentages at each point location were 
extracted from the H2O GRS map for the stratified random sampling method assuming that hydrous mineral 
abundances at each point location can be represented by the GRS H2O map. Data partitioning was done using 
“caret” package in R. The train point map contains ∼80% (1,391 points) of the total points, while the test point 
map contains the rest of the data points (∼20%, 344 points). The factor maps used in this study are listed in 
Table 1, and each factor map is referred to using the MapID throughout the rest of the text.

3.2. Weights-of-Evidence (WEM)

The WEM was originally developed in the field of quantitative medical diagnosis and later used in the predic-
tion of mineral deposits by Bonham-Carter et  al.  (1989). This empirical approach can calculate the relative 

Figure 1. Map of hydrous mineral detections on Mars. Each point represents the location of a hydrous mineral detection by Compact Reconnaissance Imaging 
Spectrometer for Mars and/or OMEGA. Background is a grayscale hillshade map created from Mars Orbiter Laser Altimeter DEM. Point density plot shows on the left 
side of the map.
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Number Platform Product MapID References

RASTER

1 OMEGA NIR albedo om_albdo Ody et al. (2012)

2 Fe 3+ om_fe530

3 nphsFe 3+ om_nnphs

4 Pyroxene om_pyrox

5 Olivine Spectral Parameter1 om_osp1m

6 Olivine Spectral Parameter2 om_osp2m

7 Olivine Spectral Parameter2 om_osp2m

8 TES Albedo ts_albdo

9 Amphibole ts_amphi Bandfield (2002)

10 Carbonate ts_carbo

11 High Calcium Pyroxene ts_hcpmp

12 Low Calcium Pyroxene ts_lcpmp

13 Hematite ts_hemat

14 K-feldspar ts_kfeld

15 Olivine ts_olvne

16 Plagioclase ts_plgcl

17 Quartz ts_quatz

18 Sulfate ts_sulft

19 Dust ts_dustm

20 Dust Cover Index (DCI) ts_dcimp Ruff and Christensen (2002)

21 Thermal Inertia-Day ts_tiday Putzig and Mellon (2007)

22 Thermal Inertia-Night ts_tingt

23 GRS H2O gr_h2omp Boynton et al. (2007)

24 Si gr_simap

25 K gr_kmaps

26 Cl gr_clmap

27 Fe gr_femap

28 Th gr_thmap

29 VIKING Global Mosaic 232 m v2 vk_color USGS Astrogeology

30 MGS MOLA DEM mg_mldem Smith et al. (2001)

31 Hilshade map from MOLA mg_hilsd

32 Slope map from MOLA mg_slope

VECTOR

33 Geology Map of Mars 2014 tn_geolo Tanaka, Robbins, et al. (2014) and 
Tanaka, Skinner, et al. (2014)

34 Hydrous mineral map ct_hydst Carter et al. (2013)

35 Open-closed basins tg_basin Goudge et al. (2016)

36 Valley Network ga_vlnet Alemanno et al. (2018)

37 Long Valley ga_logvl Alemanno et al. (2018)

38 Trough Fluvial tn_trflu Tanaka, Robbins, et al. (2014) and 
Tanaka, Skinner, et al. (2014)

39 Pyroclastic ash distribution lk_pyash Kerber et al. (2013)

40 Pyroclastic deposits pb_pydep Broz et al. (2020)

Table 1 
Factor Maps Used in This Study
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importance of individual evidence maps using statistical methods (Bayes-
ian relation) assuming that all variables are conditionally independent of 
mineral occurrences (Pan & Harris, 2000). For simplicity, the integration of 
two explanatory binary maps by WEM will be discussed. The two explana-
tory indicator maps, the pyroclastic ash deposits map and closed basins map, 
are denoted by A and C, respectively. The single target indicator variable, in 
this case the location map of detected hydrous minerals, is indicated by H. 
These maps are regarded as random variables that are either present or absent 
(binary) in a unit cell. The possible relations between C, A, and H are shown 
in Figure 2 Venn diagram. 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐶𝐶  , and 𝐴𝐴 𝐻𝐻  represent the absence status of A, C, 
and H, respectively.

The prior probability P{H} is the probability of the occurrence of hydrous 
minerals in the entire study area, which can be calculated using the ratio of 
detected hydrous mineral pixels (or area), H to the total number of pixels in 
the study area (or total area), T.

𝑝𝑝(𝐻𝐻) =
𝐻𝐻

𝑇𝑇
 (1)

The relations between A, C, and H can be expressed by eight probabilities 
based on the assumption of conditional independence (CI) between A and C 
with respect to H.

𝑝𝑝(𝐴𝐴𝐴𝐴𝐴𝐴), 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
, 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
, 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
, 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
, 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
, 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
, 𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐴𝐴

)
 

These eight probabilities are mutually related by

𝑝𝑝(𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑝𝑝(𝐴𝐴|𝐴𝐴)𝑝𝑝(𝐴𝐴|𝐴𝐴)𝑝𝑝(𝐴𝐴) (2)

𝑝𝑝

(
𝐴𝐴𝐴𝐴𝐻𝐻

)
= 𝑝𝑝

(
𝐴𝐴|𝐻𝐻

)
𝑝𝑝

(
𝐴𝐴|𝐻𝐻

)
𝑝𝑝

(
𝐻𝐻

)
 (3)

Based on the above relations, four conditional probabilities (posterior probabilities) can be calculated. As an 
example,

𝑝𝑝
(𝐴𝐴)

(𝐻𝐻)

=

𝑝𝑝(𝐴𝐴) × 𝑝𝑝(𝐻𝐻∕𝐴𝐴)

𝑝𝑝(𝐻𝐻)

 (4)

where H is the occurrence of hydrous minerals, A is the pyroclastic deposits map, and p(H/A) is the conditional 
probability of having hydrous minerals in the area where pyroclastic deposits are present.

Four weights, 𝐴𝐴 𝐴𝐴
+

𝐴𝐴
 , 𝐴𝐴 𝐴𝐴

−

𝐴𝐴
 , 𝐴𝐴 𝐴𝐴

+

𝐶𝐶
 , and 𝐴𝐴 𝐴𝐴

−

𝐶𝐶
, can be calculated for each evidence class and these weights are dependent 

on the spatial relationship between the potential occurrence of hydrous minerals and the selected evidence map.

𝑊𝑊
+

𝐴𝐴
= 𝑙𝑙𝑙𝑙

{
𝑝𝑝(𝐴𝐴|𝐻𝐻)∕𝑝𝑝

(
𝐴𝐴|𝐻𝐻

)}
,𝑊𝑊

−

𝐴𝐴
= 𝑙𝑙𝑙𝑙

{
𝑝𝑝

(
𝐴𝐴|𝐻𝐻

)
∕𝑝𝑝

(
𝐴𝐴|𝐻𝐻

)}
 (5)

𝑊𝑊
+

𝐶𝐶
= 𝑙𝑙𝑙𝑙

{
𝑝𝑝(𝐶𝐶|𝐻𝐻)∕𝑝𝑝

(
𝐶𝐶|𝐻𝐻

)}
,𝑊𝑊

−

𝐶𝐶
= 𝑙𝑙𝑙𝑙

{
𝑝𝑝

(
𝐶𝐶|𝐻𝐻

)
∕𝑝𝑝

(
𝐶𝐶|𝐻𝐻

)}
 (6)

W + in each evidential map indicates the importance of the presence of the factor class for the occurrence of 
hydrous minerals. Positive W + values for a factor class indicate its favorability for the occurrence of hydrous 
minerals, while negative W + values denote unfavorability. W − is used to evaluate the importance of the absence of 
a factor class for the occurrence of hydrous minerals. If W − is positive, it indicates that the absence of the factor 
class makes the area more favorable for the occurrence of hydrous minerals. If W − is negative, the absence of the 
factor class is unfavorable. Zero weights do not show a correlation between the factor class and hydrous mineral 
occurrences.

The contrast (C = W + − W −) represents the strength of association between the explanatory map (e.g., pyroclastic 
deposit map, A) and the target map (e.g., detected hydrous mineral location map, H). Large contrast values imply 

Figure 2. Venn diagram for the relations between binary patterns.
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strong association between two factors while small contrast values indi-
cate the opposite. The studentized contrast (Cstd, also called the normal ized 
contrast) is defined as the ratio of C to its standard deviation (S(C)) and is 
used as an indicator of confidence.

𝐶𝐶std =

𝐶𝐶
√
𝑆𝑆2

(𝑊𝑊 +

) + 𝑆𝑆2

(𝑊𝑊 −

)

 (7)

where, S 2(W +) and S 2(W −) are the variances of W + and W −, respectively.

The hydrous mineral training points (1,391 points) were used to calculate 
the weight values (W +, W −), C, and Cstd for each class in each map. Based on 
the weights and Cstd, the study proceeded with the 30 selected factor maps 
(Table 2). These maps are spatially highly correlated (positively and nega-
tively) with the hydrous mineral detections.

3.3. Fuzzy Set Theory

Most tools used for formal reasoning, modeling, and computing are determin-
istic, precise, and crisp. They are yes-or-no types rather than greater-or-less 

types. As an example, zeolite is present (or not) in a closed basin of Mars, instead of greater possibility/less possi-
bility (can be/cannot be) present. In classical set theory, an element either belongs to a set or not, the same as in 
optimization, and a solution is therefore either feasible or not. Fuzzy set theory, coined by Zadeh (1965), involves 
capturing, exemplifying, and working with linguistic notions-objects for which boundaries are unclear. While the 
Boolean set theory (Boole, 1951) defines a membership value of either 1 or 0 (true or false), the fuzzy set theory 
defines the degree of membership in a set, represented by values between 0 and 1.

Typically, a fuzzy model consists of the following feed forward modules, (a) a fuzzifier (encoder: converts input 
categorical or numerical data into fuzzy values), (b) an inference engine (processor: the mind of the fuzzy model, 
simulates the human decision-making process), and (c) a defuzzifier (decoder: converts a synthesized fuzzy set 
back to a crisp set using a mathematical function or a subjectively or objectively defined threshold fuzzy value).

3.3.1. Fuzzifier: Fuzzification of Predictor Maps

The value of the membership function can be calculated using two methods; (a) calculate the membership func-
tion using a membership function curve, or (b) assign membership values for each class artificially based on 
expert knowledge of the system concerned. In this study both methods were adopted. For the factor maps of 
valley network (ga_vlnet), ash thickness (lk_pyash), and map of open/closed basins (tg_basin), fuzzy member-
ship values were added manually, while the fuzzy membership values for the rest of the maps were calculated 
using membership function curves.

In this study, four membership functions were modeled, and results were compared to select the best method. 
The methods include membership function calculation using positive weight (W +), contrast (C), and studentized 
contrast (Cstd) of each map unit calculated using the WEM method.

3.3.1.1. Method 1 (Zimmermann, 1991)

Logistic membership function, μA(x),

𝜇𝜇𝐴𝐴(𝑥𝑥) =
1

1 + 𝑒𝑒
−𝑎𝑎(𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝−𝑏𝑏)

 (8)

where, wpij is the positive weight of the jth class of the ith evidential map (fuzzy set), b is a specified fuzzy score 
at cross-over point for the function, and a is a specified slope of the function at cross-over point. Slope values, 
a, used for each factor map are shown in Table 2. The value of the cross-over point, b, is assigned as 0.5. The 
logistic membership function transforms the class weights into fuzzy membership values that range from 0 to 1.

3.3.1.2. Method 2 (Cheng & Agterberg, 1999)

Fuzzy membership values were calculated using the contrast values in each evidential map,

Map 1–10 a Map 11–20 a Map 21–30 a

fzm_gr_femap 1 fzm_ts_kfeld 1 fzm_gr_h2omp 3

fzm_gr_kmaps 1 fzm_ts_olvne 1 fzm_om_fe530 4

fzm_om_osp1m 1 fzm_ts_plgcl 1 fzm_om_nnphs 4

fzm_om_osp2m 1 fzm_ts_sulft 1 fzm_tn_geomp 5

fzm_om_osp3m 1 fzm_gr_simap 2 fzm_gr_clmap 5

fzm_om_pyrox 1 fzm_gr_thmap 2 fzm_mg_mldem 5

fzm_ts_amphi 1 fzm_ts_carbo 2 fzm_om_albdo 5

fzm_ts_hcpmp 1 fzm_ts_quatz 2 fzm_ts_albdo 5

fzm_ts_lcpmp 1 fzm_ts_tiday 2 fzm_ts_dcimp 5

fzm_ts_hemat 1 fzm_ts_tingt 2 fzm_ts_dustm 5

Table 2 
Slope “a” Values Used in Logistic Membership Functions (Equations 8 
and 11)
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𝜇𝜇𝐴𝐴(𝑥𝑥) =
𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶

min

𝐶𝐶
max

− 𝐶𝐶
min

 (9)

where, Cmax and Cmin are the maximum contrast (Cmax = max(W + − W −)), 
and the minimum contrast of the ith fuzzy set, respectively. Cij is the contrast 
value of the jth class in the ith evidential map.

3.3.1.3. Method 3 (Porwal et al., 2003)

Porwal et al. (2003) defined the piece-wise linear membership function as the 
fuzzifier in their model based on the contrast value. The membership value, 
μA(xij) is calculated using

𝜇𝜇𝐴𝐴(𝑥𝑥) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.01 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚&𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 0

0.5 −
𝑖𝑖𝑖𝑖𝑖𝑖

2×𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚

𝑖𝑖𝑖𝑖 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 0

0.5 +
𝑖𝑖𝑖𝑖𝑖𝑖

2×𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥

𝑖𝑖𝑖𝑖 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥

 (10)

where, Cij is the contrast value of the jth class of ith evidential map, and Cmin 
and Cmax are the minimum and maximum contrast values of the ith map.

3.3.1.4. Method 4 (This Study)

This study employs a Logistic membership function, μA(x),

𝜇𝜇𝐴𝐴(𝑥𝑥) =
1

1 + 𝑒𝑒
−𝑎𝑎((𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝×𝐹𝐹)−𝑏𝑏)

 (11)

where wpij is the positive weight of the jth class of ith evidential map. b is a specified fuzzy score at the cross-over 
point for the function, a is a specified slope of the function at the cross-over point. Multiplication factor F was 
calculated using studentized contrast (Cstd) of each class in each evidential map.

𝐹𝐹 =

⎧
⎪
⎨
⎪
⎩

0.1 𝐶𝐶std < 1.5

1.0 𝐶𝐶std ≥ 1.5

 (12)

The fuzzy membership values must show not only the relative importance of each map, but also the relative 
importance of each class (map units) in each map. Therefore, different slope values “a” were chosen for each map 
based on the importance of each map and their classes (map units) (Table 2). The fuzzy membership function 
maps are named using the respective MapID followed by prefix fzm_.

The fuzzy membership values of the different map units in the geologic map calculated using the above four 
methods are shown in Figure 3. This shows that the method developed in this study (Method 4) performs the best 
and was therefore chosen as the fuzzy membership calculation method for this study (Table S1 in Supporting 
Information S1).

Figure 4 plots the fuzzy membership values against the geological map units in (relative) chronological order. 
It shows that high fuzzy membership values were received for the Noachian age terrains, where most hydrous 
mineral detections were found (Carter et  al.,  2013; Ehlmann & Edwards,  2014). Hesperian and Noachian 
highland undivided and Hesperian transition terrains (Htu and Ht) show high Fuzzy membership values after 
high values seen in Early and Middle Noachian highland massifs (mHnm and eNhm). The peak observed at 
the Late Noachian to Early-Hesperian transition has been proposed as an epoch of intense surface flow (Irwin 
et al., 2005). Carter et al. (2013) observed fewer hydrous mineral exposures in Hesperian aged terrain, and a 
negligible number of hydrous mineral exposures in Amazonian-aged terrains. Figure 4 also shows a peak for 
Amazonian and Hesperian impact (AHi). This might be due to the delivery of preexisting clay-rich material 
from underneath more recent terrains to the surface by impact excavation (Barnhart & Nimmo, 2011). It is 
also important to note that the number of hydrous mineral occurrences corresponding to a geologic unit does 

Figure 3. Calculation of fuzzy membership functions using different methods. 
The geology map (tn_geomp) was used as the example in this figure. The 
Weight W + x-axis refers to Method 1 (Zimmermann, 1991) and Method 4 
developed in this study, while the Contrast C x-axis refers to Method 2 (Cheng 
& Agterberg, 1999) and Method 3 (Porwal et al., 2003).
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not necessarily reflect the time of their formation. Those hydrous mineral detections can be younger (e.g., 
weathering) or older (e.g., transported from other places and deposited) than the outcrop (geologic unit) in 
which they are present (Carter et  al.,  2013). The pattern of fuzzy membership values with respect to the 
age of Martian surface units is consistent with previous reconstructions of hydrous mineral occurrences over 
time (e.g., Ehlmann & Edwards, 2014), favoring the occurrence of zeolites in terrains formed during wetter 
intervals.

Fuzzy membership function values were manually added to the factor maps of valley network (ga_vlnet) and ash 
thickness (lk_pyash) (Table 3). These membership values were chosen arbitrarily based on subjective judgment 

about the relative importance of each class (map unit) in each factor map. As 
an example, based on the examples from the Earth, closer to a valley network 
will have higher probabilities to form zeolites and other hydrous minerals 
than away from the valley networks. Also, greater ash thickness will have 
higher probabilities to form/present zeolite minerals.

Figure  5 shows the entire fuzzification process using MOLA DEM as an 
example. It shows the original MOLA DEM (a), classified MOLA DEM (b) 
and after assigning the calculated fuzzy membership values for each eleva-
tion class (c).

3.3.2. Inference Engine

The mind of a fuzzy model, the inference engine, uses the individual fuzzy 
sets conveyed by the fuzzifier while filtering out the informational noise to 
create a synthesized fuzzy set. A fuzzy inference engine consists of multiple 
serial or parallel networks that use fuzzy operators to sequentially combine 
fuzzy sets (Porwal et al., 2003). The most basic fuzzy operators are fuzzy OR, 
fuzzy AND, fuzzy algebraic products, fuzzy algebraic sum (FAS), and fuzzy 
Gamma (γ) operator (Bonham-Carter, 1994).

Figure 4. Calculated fuzzy membership values as a function of time (geological units). eNh, Early Noachian highland; eNhm, Early Noachian highland massif; mNh, 
Middle Noachian highland; mNhm, Middle Noachian highland massif; Nve, Noachian volcanic edifice; Nhe, Noachian highland edifice; Nhu, Noachian highland 
undivided; lNH, Late Noachian highland; lNv, Late Noachian volcanic; HNb, Hesperian and Noachian basin; ANa, Amazonian and Noachian apron; HNt, Hesperian 
and Noachian transition; HNhu, Hesperian and Noachian highland undivided; Htu, Hesperian transition undivided; Ht, Hesperian transition; eHh, Early Hesperian 
highland; eHb, Early Hesperian basin; eHv, Early Hesperian volcanic; eHt, Early Hesperian transition; Hve, Hesperian volcanic edifice; Hto, Hesperian transition 
outflow; lHv, Late Hesperian volcanic; lHb, Late Hesperian basin; lHl, Late Hesperian lowland; lHvf, Late Hesperian volcanic field; lHt, Lte Hesperian transition; 
AHtu, Amazonian and Hesperian transition undivided; AHv, Amazonian and Hesperian volcanic; AHi, Amazonian and Hesperian impact; eAb, Early Amazonian 
basin; mAl, Middle Amazonian lowland; Aa, Amazonian apron; Av, Amazonian volcanic; Ave, Amazonian volcanic edifice; lAa, Late Amazonian apron; lAv, Late 
Amazonian volcanic; lAvf, Late Amazonian volcanic field.

ga_vlnet distance class fzm_ga_vlnet
lk_pyash thickness 

class
fzm_lk_

pyash

0–200 m 1.0 0.00–6.25 m 0.1

200–400 m 0.9 6.25–12.50 m 0.2

400–600 m 0.8 12.50–25.00 m 0.4

600–800 m 0.7 25.00–50.00 m 0.5

800–1,000 m 0.6 50.00–100.00 m 0.6

1,000–2,500 m 0.5 100.00–200.00 m 0.7

2,500–5,000 m 0.4 200.00–400.00 m 0.8

5,000–10,000 m 0.3 400.00–800.00 m 1.0

10,000–100,000 m 0.2

>100,000 m 0.1

Table 3 
Fuzzy Membership Values (fzm) in Map Classes of Maps of Valley Networks 
(ga_vlnet) and Ash Thickness Map (lk_pyash)
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3.3.2.1. Fuzzy OR

Fuzzy OR is similar to a Boolean OR (logical union), and the output membership values are controlled by the 
maximum values from any of the input maps, for any location. The fuzzy OR is defined as,

𝜇𝜇𝑋𝑋 = MAX(𝜇𝜇𝐴𝐴, 𝜇𝜇𝐵𝐵, 𝜇𝜇𝐶𝐶 , . . . ) (13)

where, μAm,μB,μC,… are membership values at a particular location (x, y) on map A, map B, map C, …, respec-
tively. Using this operator, the combined membership value at a specific location is represented by the most 
suitable evidence maps. As an example, several attempts were made to derive the abundance of olivine using 
OMEGA and TES data, mostly due to the effect of mixing with other minerals, dust, or the effect of grain size 
(e.g., Brown et al., 2020). This study selected four olivine maps as factor maps and used a fuzzy OR operator to 
integrate those maps to extract the most suitable locations for olivine.

e.g.,max _olivine = MAX(MAX(fzm_om_osp1m, fzm_om_osp2, fzm_om_osp3), zm_ts_olvne) (14)

3.3.2.2. Fuzzy AND

Fuzzy AND is similar to a Boolean AND (logical intersection) operation on classical set values of (0,1). It is 
defined as

𝜇𝜇𝑋𝑋 = MIN(𝜇𝜇𝐴𝐴, 𝜇𝜇𝐵𝐵, 𝜇𝜇𝐶𝐶 , . . . ) (15)

The effect of Fuzzy AND is to make it so the output map is controlled by the smallest fuzzy membership value at 
each location (Bonham-Carter, 1994). This rule is suitable for the places where two or more pieces of evidence 

Figure 5. Fuzzification process showing (a) the original Mars Orbiter Laser Altimeter (MOLA) DEM, (b) classified MOLA DEM, and (c) a map after assigning the 
fuzzy membership values for each elevation class.
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must be present together for the hypothesis to be true. In this study, as an 
example, selecting the minimum albedo fuzzy membership value in each 
corresponding pixel in albedo fuzzy membership maps derived from both 
OMEGA and TES data will increase the confidence of the final albedo fuzzy 
membership map.

e.g.,min _om_ts_albdo = MIN(fzm_om_albdo, fzm_ts_albdo) (16)

Finally, six maps were created combining the above fuzzy membership maps 
(Map combinations listed in Table 4).

e.g.,min _physical = MIN(min _dust_nnphs,min _om_ts_albdo,min _ti_day_ngt) (17)

All maps created using fuzzy operators are listed in Table S2 of Supporting 
Information S1.

3.3.2.3. Fuzzy Algebraic Product (FAP)

The combined membership function is defined as

𝜇𝜇𝑋𝑋 =

𝑛𝑛∏

𝑖𝑖=1

𝜇𝜇𝑖𝑖 (18)

where μi is the fuzzy membership function for the ith map and i = 1, 2, 3, …., n maps are to be combined. The 
combined fuzzy membership values tend to be very small with this operator, due to the effect of multiplying 
several numbers less than 1. The output is always smaller than, or equal to, the smallest contributing membership 
value (Bonham-Carter, 1994).

3.3.2.4. Fuzzy Algebraic Sum (FAS)

Fuzzy algebraic sum is complementary to the fuzzy algebraic product and defined as

𝜇𝜇𝑋𝑋 = 1 −

𝑛𝑛∏

𝑖𝑖=1

(1 − 𝜇𝜇𝑖𝑖) (19)

The result is always larger than or equal to the largest contributing fuzzy membership value. The pieces of 
evidence that both favor a hypothesis reinforce one another and the combined evidence is more supportive than 
either piece of evidence taken individually (Bonham-Carter, 1994).

From these six map combinations created using fuzzy OR and AND operators, 12 maps were generated calcu-
lating fuzzy algebraic product (FAP) and FAS. The resulting fuzzy algebraic products (FAP) and algebraic sum 
(FAS) maps for the sixth map combination (FAP_6 and FAS_6 in Table 4) are shown in Figure 6.

3.3.2.5. Gamma (γ) Operation

Gamma operation is defined in terms of FAP and the FAS by

𝜇𝜇𝑋𝑋 = (Fuzzy algebraic sum)

𝛾𝛾
∗ (Fuzzy algebraic product)1−𝛾𝛾 (20)

where γ is a parameter chosen in the range of 0–1 (Zimmermann & Zysno, 1980). When γ is 0, the combination 
equals the FAP, and when the γ is 1, the combination equals the FAS. A wise selection of γ creates output values 
that ensure a flexible compromise between the “increasing” effects of the FAS and the “decreasing” effects of 
the FAP.

Twenty-five (25) maps were calculated using different map combinations listed in Table 4 with different gamma 
values (Table S3 in Supporting Information  S1). In other words, 25 inference network models were created. 
After visual and statistical analysis of all 25 maps, map combinations 2 (Fz_02) and 6 (Fz_06) in Table 4 were 
selected for further analysis. Figure 7 shows the favorability coverage and the test and train accuracy of each map 
combination with respect to the gamma values. Favorability coverage was calculated based on the area with fuzzy 
membership values (pixel values) higher than 0.5 compared to the total map area. This shows that the percentage 
of (favorability) coverage and test and train accuracy of both map combinations increases with the increase of 

Map 
combination

FAP_1 
FAS_1

FAP_2 
FAS_2

FAP_3 
FAS_3

FAP_4 
FAS_4

FAP_5 
FAS_5

FAP_6 
FAS_6

min_physical x x x

max_physical x x x

min_elements x

max_elements x x

min_minerals x x x

max_minerals x x x

fzm_geology x x x x x x

Note. FAP, fuzzy algebraic product; FAS, fuzzy algebraic sum.

Table 4 
Input Map Combinations Used to Create Twelve Map Combinations
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gamma values. The best predictive model in this case would be the model with the highest train and test accuracy 
and with the lowest spatial coverage. A test and train accuracy (success rate) higher than 80% was defined as the 
selection criterion and based on that a 0.84 gamma value was selected. However, both map combinations (F2 and 
F6) scored more than 80% accuracy, though the F6 shows higher spatial coverage than F2. Four favorability map 
classes were created from each map (Fz_02_0.84 and Fz_06_0.84, the last number after the second underscore 
indicates the gamma value used to create the map) based on the favorability index (pixel values). Classes include 
Unfavorable (pixel value 0–0.25), Less favorable (pixel value 0.25–0.50), Favorable (pixel value 0.50–0.75), and 
Most favorable (pixel value 0.75–1.00). This step is called defuzzification. Results were validated using train and 
test data sets. Table 5 shows the results of the accuracy assessment. The values are in percentages representing 
the number of data points in each class with respect to the total number of points in the data set. This shows that 
Fz_06_0.84 shows the highest test and train accuracy for the most favorable class. Therefore, map F_06_0.84 was 
selected as the final map to select the highest potential areas for hydrous minerals (Figure 8) and to identify the 
potential locations for zeolites in the next step.

As discussed in the introduction, the greatest abundances of zeolites on Earth 
are found in volcaniclastic deposits. Therefore, it is hypothesized that zeolites 
are most likely to be found in places where pyroclastic deposits were subjected 
to aqueous alteration. The possible aqueous alteration areas were mapped 
using hydrous mineral detections in previous steps. Ash distribution patterns 
on Mars modeled by Kerber et al. (2013) were used to identify the most favora-
ble areas for zeolites on early Mars. Ash thickness in their model is propor-
tional to the possibility that zeolites could form, because higher thickness can 
reflect a large amount of ash in the area or a high possibility of finding ash 
in the area according to the model. The map of possible pyroclastic deposits 
larger than 10 5 km 2 is also used in this study to achieve more robust results. 
The ash thickness map modeled by Kerber et al. (2013) and potential pyroclas-
tic deposits (black outlines) are shown in Figure 9. Ash thickness in the map 
is represented by the fuzzy membership values. Assigned fuzzy membership 
values positively increase with the modeled ash thickness (Table 3).

Figure 10 shows the workflow of the three-stage inference engine used to 
create the final map. At the first stage, all the fuzzified evidential maps which 

Figure 7. Percent accuracy and spatial coverage in each map combination (F2 
and F6) against different gamma values.

Figure 6. Fuzzy algebraic product (FAP) and fuzzy algebraic sum maps of map combination 6 (FAP_6 and FAS_6) listed in Table 4.
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were created using the membership functions defined by the WEM were combined using fuzzy operators to 
produce three intermediate fuzzy evidential maps (max_physical, max_mineral, tn_geolo). These maps were later 
combined using the fuzzy gamma (γ) operator to create the synthesized fuzzy favorability map for the hydrous 
minerals (fav_hydrous). In the third step, the hydrous mineral favorability fuzzy membership map was combined 
with ash thickness (lk_pyash) and pyroclastic deposits (pb_pydep) to generate a favorability map for zeolites.

4. Results and Discussion
The potential zeolite bearing terrain map calculated using the data-driven fuzzy WEM method is shown in 
Figure 11. This shows that the eastern and western Arabia deposits and some sites of MFF show the highest 
probability for finding zeolites within the previously mapped potential pyroclastic deposits. Areas of interest 
outside the mapped pyroclastic deposits include certain areas of Valles Marineris, Mawrth Vallis, highlands 
north of Hellas, and the Terra Cimmeria and Terra Sirenum regions. Since there is no ground truth yet to validate 
the resultant potential zeolite bearing map, we will instead consider detections of zeolite using orbital spectros-
copy and the geological and hydrological settings favorable for the formation of zeolites in the area based on 
the literature. Favorable geological and hydrological settings for the formation of zeolites include tuff (volcanic 

Class Fz_02_0.84_trn Fz_02_0.84_tst Fz_06_0.84_trn Fz_06_0.84_tst

Unfavorable 0.1 0 0.3 0

Less favorable 18.9 16.5 13.1 10.4

Favorable 75.5 78.5 54.6 57.3

Most favorable 5.5 5.0 32.0 32.3

Note. This shows the number of hydrous mineral detections in each class as a percentage with respect to the total number 
of data points. The train data set is indicated by letters “_trn” after the fuzzy map Fz_02_0.84 or Fz_06_0.84, while the test 
data set indicated by letters “_tst.”

Table 5 
Test and Train Accuracy (Success Rate) of Each Map Combination

Figure 8. (a) Favorability map for hydrous minerals (Map Fz_06_0.84). The areas are ranked based on their fuzzy membership values. Fuzzy membership ranges 
from 0 to 1 (less favorable to highly favorable). (b) Favorability class map derived from map (a) showing the potential area for the hydrous minerals on Mars up to 40° 
latitude.

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002945 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

KODIKARA AND MCHENRY

10.1029/2023EA002945

16 of 23

Figure 9. The map shows the thickness of possible ash deposits modeled by Kerber et al. (2013) and pyroclastic ash deposits (black outline) compiled by Broz 
et al. (2020). The open and closed basins compiled by Goudge et al. (2016) are also shown (black filled areas). Values in the legend are fuzzy membership values 
corresponding to the thickness of the modeled ash deposits.

Figure 10. The fuzzy inference engine used to create the final map.

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002945 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

KODIKARA AND MCHENRY

10.1029/2023EA002945

17 of 23

ash deposits), water, and the presence of key hydrous minerals implying near-surface temperature alteration, 
low-grade metamorphic alteration, or hydrothermal alteration (e.g., Brown et al., 2010).

4.1. Potential Zeolite Bearing Terrains

4.1.1. Arabia Terra

Arabia Terra is a cratered Noachian highland area and is probably composed of a mixture of impact breccias and 
volcanic, aeolian, and fluvial deposits (Davis et al., 2019; Tanaka, 2000). The zeolite mineral analcime was first 
detected in the west of Nili Fossae in craters near the Antoniadi basin and in the eastern portion of the Arabia 
Terra by Ehlmann et al. (2009) using CRISM data. Ash dispersion modeling (e.g., Kerber et al., 2012, 2013) 
suggests that extensive ash deposits should be common in the Arabia Terra. Fassett and Head (2007) observed 
that hundreds of meters of material was deposited on the surface of the northeast Arabia Terra, likely as airfall. 
The fluvial systems in the region are interpreted to have been formed by precipitation and runoff during the 
mid-Noachian and early-Hesperian (Davis et al., 2016, 2019). Whelley et al. (2021) also identified the presence, 
thickness, and distribution of altered volcanic ash layers in Arabia Terra using orbital spectral data. They identi-
fied the inter-layered sequence of volcanic ash units containing hydroxy sulfates, Fe/Mg-smectites, Al-smectites, 
aluminosilicates, and hydrated silica.

4.1.2. Medusae Fossae Formation

The MFF in southern Elysium and northern Memnonia and Amazonis Planitia and Aeolis Planitia (Kerber & 
Head, 2010) is characterized by large accumulations of friable, fine-grained deposits most likely composed of 
volcanic ash, ignimbrites, or aeolian dust (Kerber & Head, 2010; Mandt et al., 2008). Both the Tharsis Montes 
and Elysium Montes could be the source of pyroclastic deposits. Modified and inverted fluvial channels indicate 
that there was some fluvial activity during the formation or modification of the MFF (Kerber & Head, 2010).

4.1.3. Valles Marineris

Viviano-Beck et  al.  (2017) compositionally mapped the Valles Marineris wall units and identified zeolites 
along with chlorite and carbonate on the north and south walls of eastern Coprates Chasma. They were spatially 
associated with olivine-rich dikes, suggesting hydrothermal alteration from primary igneous phases to zeolite 
(Viviano-Beck et al., 2017). The coexistence of zeolites and carbonates implies that the fluids were alkaline. A 
wide variety of hydrated mineral assemblages is also identified in a depression close to Noctis Labyrinthus, at 
the western end of Valles Marineris, where Figure 11 shows high probability of finding zeolites (e.g., Thollot 
et al., 2012). Mitrofanov et al. (2022) recently observed unusually high hydrogen abundances at Candor Chaos 
in the central area of Valles Marineris using the FREND (Fine Resolution Epithermal Neutron Detector) neutron 
telescope onboard ExoMars Trace Gas Orbiter. Based on these results, they concluded that the high (40.3%) mean 
derived Water Equivalent Hydrogen value at the Candor Chaos could be related to locally large abundances of 
highly hydrated minerals or water ice permafrost.

4.1.4. Mawrth Vallis

Mawrth Vallis sits at the boundary between the northern lowlands and the southern highlands (Bishop et al., 2013) 
and hosts the largest outcrop of Al/Si-rich clays on Mars (Bishop & Rampe, 2016). The Al/Si-rich clay unit 

Figure 11. Potential zeolite-bearing terrains calculated using the data driven fuzzy Weights-of-Evidence method. Value range indicates the possibility of finding zeolite 
based on the calculations. 1 = highest possibility, 0 = Lowest possibility. Background is a hillshade from Mars Orbiter Laser Altimeter DEM.
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mainly consists of montmorillonite, opal, kaolinite/halloysite, aluminosilicates, and zeolite (Bishop et al., 2013). 
Bishop and Rampe  (2016) have identified the poorly crystalline aluminosilicates as allophane and imogolite 
using CRISM and TES data. They suggested that the ash from one or many of the super volcanoes identified in 
northern Arabia Terra could be the source of allophane + imogolite unit at Mawrth Vallis. Loizeau et al. (2012) 
estimated the age and duration of aqueous activity in the Mawrth Vallis region using crater counting. Michalski 
et al. (2013) developed multiple working hypotheses as to how the compositional stratigraphy at Mawrth Vallis 
region formed and their favored hypothesis for the observed compositional stratigraphy was that volcanogenic 
acidic aerosols and snow or ice and small volumes of water chemically altered tephra deposits.

4.1.5. North Hellas Highlands

The model also shows a high favorability for zeolites in the North Hellas highland region. Terby crater in the 
North Hellas highlands hosts the thickest lake sediments yet observed on Mars (Ansan et al., 2011). Hargitai 
et al. (2018) mapped potential paleolakes to the northeast of Hellas Basin in the Navua-Hadriacus-Ausonia region, 
identifying 34 potentially paleolake-hosting depressions. These lakes may have formed in the Hesperian during a 
volcanically active period (Hargitai et al., 2018). Zhao et al. (2020) identified 64 paleolakes with diameters larger 
than 4 km. They observed lacustrine deposits, volcanic ash, aeolian sand deposits, exposures of bedrock, and 
impact breccia/melts in the area. Previous studies of the northwestern Hellas region showed high concentrations 
of aqueous minerals including carbonates, chlorides, sulfates, and phyllosilicates (Carter et al., 2013; Ehlmann & 
Edwards, 2014; Osterloo et al., 2010; Wray et al., 2016; Zhao et al., 2020).

4.1.6. Terra Cimmeria/Terra Sirenum Region

The Terra Cimmeria/Terra Sirenum region has light-toned knobs that contain phyllosilicates possibly formed by 
aqueous alteration of the fine-grained (potentially ashfall) Electris Deposit described by Grant and Schultz (1990). 
The clays in these deposits likely formed in a network of local lakes (Wendt et  al.,  2013). The mineralogical, 
morphological, and stratigraphical study of Terra Cimmeria/Terra Sirenum region by Wendt et al.  (2013) shows 
the long-lasting,  complex aqueous history involving localized lakes, valley networks, and multiple stages of mineral 
alteration.

4.2. Limitations and Uncertainties

The original data sets used to create factor maps have a very wide range of resolution from 18 m/pixel (CRISM 
target) to 300 km/pixel (GRS), due to the type of remote sensing techniques applied and the type of data acquired. 
This is one of the main limitations while working with different sources of data for global statistical studies since 
high resolution data will be averaged to a middle resolution while low resolution data will be replicated. As an 
example, the diversity in surface expression revealed by high resolution images such as CRISM, THEMIS and 
OMEGA are not detectable in the GRS low resolution images. However, CRISM, THEMIS, and OMEGA record 
the information on a few millimeters or the surface, while the GRS records information from the top few tens 
of centimeters of the surface. Therefore, it is important to keep the low-resolution data set in this case since it 
records different types of information that cannot be derived from the high-resolution data set. The elemental 
maps derived from the GRS give the opportunity to map the homogeneous elemental provinces on the surface of 
Mars (e.g., Gasnault et al., 2010; Karunatillake et al., 2009; Taylor et al., 2010). These elemental provinces show 
statistically significant similar elemental abundances representing chemically similar materials on the surface, 
which may be important for finding zeolites (e.g., Fialips et al., 2005). One of the main advantages of WEM is 
it only keeps the highly spatially correlated factor maps during the process of calculation. As an example, if the 
evidential map (locations of hydrous minerals) shows high spatial correlation to a certain GRS derived elemental 
province map, it will keep that factor map for further calculation. In this study, none of the GRS maps achieved 
the higher spatial correlation (positive or negative, Equations 5–7) with the evidential map and therefore did not 
contribute to the calculation of final map (Figure 10).

Missing data or misinterpreted patterns are two major sources of uncertainty in mapping mineral favorability. 
This is more critical in poorly explored areas where fewer data are available than in well-explored areas. Most 
areas on Mars are poorly explored. The fuzzy WEM adopted here provides a framework for calibrating fuzzy 
membership functions to replace missing data for posterior probability calculations (Cheng & Agterberg, 1999). 
Since the WEM is objective, it also avoids the subjective choice of weighting factors. The objective methods 
are more important in poorly explored areas where little knowledge is available. One of the main disadvan-
tages of the WEM is that it is only applicable in regions where the response variable is fairly well known. If 

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002945 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

KODIKARA AND MCHENRY

10.1029/2023EA002945

19 of 23

the response variable is poorly known for a certain region, the results must be interpreted with caution. The 
response variable used in this study is the location of hydrous minerals. Carter et al. (2013) discussed several 
biases and limitations for hydrous mineral detections, which can directly influence the probabilistic model 
applied here.

1.  Carter et al. (2013) demonstrated that the detection capabilities of hydrous minerals on Mars using orbital 
data are limited by the pixel resolution of the instrument. Areas with hydrous minerals larger than the smallest 
ground resolution cell (∼20 m in CRISM) can be detected. In addition, orbital spectral data from both CRISM 
and OMEGA exhibit instrumental artifacts that can affect the identification of minerals (false positives and 
false negatives). Also, observational biases such as surface dust cover, ice, photometric effects, residuals in 
the atmospheric correction, and spectral mixing with non-hydrated minerals could affect the hydrous mineral 
detections from orbital data.

2.  98% of the martian surface has not yet been observed using high resolution CRISM images. Though the 
multi-spectral CRISM observations cover almost the entire planet, hydrous mineral detection from multispec-
tral CRISM data is mostly discarded by Carter et al. (2013) due to their low spectral resolution.

3.  Some regions have been studied more than others, resulting in more hydrous mineral detection than in the 
less studied areas.

4.  Small hydrous mineral exposures are covered by fewer pixels and on average have spectra with lower S/N 
ratios, making them harder to identify.

In addition to the limitations of the response variable (hydrous mineral detection), two other types of uncer-
tainties and errors can be mainly identified; (a) errors and uncertainties associated with the original data or 
introduced during the pre-processing and processing of vector/raster data and (b) errors and uncertainties 
introduced during the information representation and digital fusion of the factor maps (Moon, 1998). Since 
the global maps used in this study were of different resolutions, coordinate systems, and different file formats, 
errors and uncertainties can be introduced during the resampling process, reclassification process, projection 
and transformation, and data handling. These errors and uncertainties can transmit through the entire process 
and into the final results. Some of the errors and uncertainties are introduced during the information representa-
tion and digital fusion, and the methods used to eliminate some of these errors and uncertainties are briefly 
discussed below.

This study did not test the CI among the evidential maps, though some evidential maps seem to have a condi-
tional dependence (e.g., Albedo, Thermal inertia, dust cover index). Conditional dependence can create problems 
when combining maps using fuzzy algebraic product, FAS, and γ operator. However, before applying these three 
operators, all the similar maps were synthesized using fuzzy OR and fuzzy AND operators to eliminate the effect 
of CI. Therefore, it is not necessary that conditionally dependent maps are rejected in the predictive mineral 
mapping process using fuzzy logic, if an appropriate inference network is used (Porwal et al., 2003). However, if 
extremely high or low noise values are associated with some pixels in evidential maps, it will propagate through 
the fuzzy OR and fuzzy AND operators to the final synthesized fuzzy favorability map (Knox-Robinson, 2000). 
These noise effects (no data pixels and saturated pixels) were observed in most of the used image products. 
If FAS and fuzzy algebraic product (FAP) operators were used individually, these noises could be amplified 
because of the increasing and decreasing tendencies of these two operators, respectively. The fuzzy γ operators 
balanced these tendencies of the FAS and FAP operators by using appropriate values of γ (Knox-Robinson, 2000; 
Porwal et al., 2003). One of the main advantages of fuzzy models is their capability to control the propagation 
of extreme-value noise to the output. Future studies will include the selection of the best sites (pixels) that have 
the highest favorability index for zeolites (and for which orbital spectral data are available), followed by detailed 
study to confirm the presence of zeolites and reconstruct their formation scenarios. In addition, the map of highly 
favorable areas for zeolites can also be used as a guide to search for other hydrated minerals that are formed, 
weathered, or altered from volcanic ash.

5. Conclusions
In this study, the data-driven fuzzy based WEM was applied to produce a hydrous mineral favorability map and 
a zeolite mineral favorability map of the surface of Mars up to 40° latitudes toward both poles. The results of this 
work lead to the following main conclusions:

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002945 by U

niversity O
f W

isconsin, W
iley O

nline L
ibrary on [02/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

KODIKARA AND MCHENRY

10.1029/2023EA002945

20 of 23

1.  The methods applied in this study dealt well with qualitative, quantitative, multi-resolution, multi-source 
data/information for Mars, acquired from orbital data, which may be imprecise and incomplete due to the 
limitations of spatial resolution, spatial coverage, surface dust, instrumental biases, and other intrinsic biases.

2.  The WEM method provided a simple statistical method for predicting mineral potential based on limited 
known occurrences.

3.  The most important and sensitive processes in fuzzy modeling were the definition of fuzzy membership 
values of multiclass evidential maps and the selection of fuzzy set operators and an appropriate inference 
network for combining the evidential maps.

4.  The favorability map for hydrous minerals obtained by a well-tuned fuzzy inference engine indicates a strong 
correlation (success rate) between the areas of high favorability of hydrous minerals and known hydrous 
mineral detections.

5.  Favorability for zeolites was derived from the favorability of hydrous mineral map and the pyroclastic deposits 
(modeled and confirmed) map and agrees with previous studies conducted in those favorable areas, support-
ing the validity of the conceptual model used and its accuracy.

6.  The favorable areas for zeolites identified in this method include the eastern and western Arabia deposits and 
some sites in the MFF within previously mapped potential pyroclastic deposits. Favorable areas for zeolites 
outside the mapped pyroclastic deposits include certain areas of Valles Marineris, Mawrth Vallis, highlands 
north of Hellas, and the Terra Cimmeria, and Terra Sirenum regions.

Data Availability Statement
Data is available through Alemanno et al. (2018), Bandfield (2002), Boynton et al. (2004), Broz et al. (2020), 
Carter et al. (2013), Goudge et al. (2016), Kerber et al. (2013), Ody et al. (2012), Poulet et al. (2007), Putzig and 
Mellon (2007), Ruff and Christensen (2002), Smith et al. (2001), Tanaka, Robbins, et al. (2014), and Tanaka, 
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