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Effects of climate, basin characteristics and high-capacity wells on 

baseflow in the state of Wisconsin, United States 

Susan Borchardt, Woonsup Choi, Jinmu Choi 

 

This is an Accepted Manuscript of an article published by Wiley in the Journal of 
American Water Resources Association on 06/Feb/202, available online: 
https://doi.org/10.1111/1752-1688.12986  
 

Research Impact Statement: Understanding the factors that affect groundwater-surface water 

interactions will lead to policy decisions that will both protect stream habitats and provide for the 

needs of the agriculture industry. 

 

ABSTRACT: When it comes to water resources management, it is critical to understand the 

factors that affect baseflow processes. Declines in baseflow due to increased use of the 

groundwater from unconfined aquifers is well documented, but that is not the case for confined 

aquifers. Furthermore, since the groundwater basin size and shape can be different than the 

surface water basin, the use of the surface basin to determine well withdrawal rates can affect 

baseflow and be problematic. This study used the variables determined to be related to baseflow 

variability (precipitation, temperature, drainage class, available storage, land use, and slope) and 

the withdrawal rates of wells located within the study basins to create regression models for the 

state of Wisconsin, United States. We find that: (1) precipitation and temperature variable are 

significant in explaining the temporal variability of baseflow whereas land cover variables are 

important when the temporal variability is not considered; (2) evaporation and soil drainage are 

important in basins over unconfined aquifers whereas precipitation the most significant over 

confined aquifers; (3) whether to use surface water or groundwater divides to delineate basins 

matters in particular conditions, and (4) groundwater withdrawal rates do not significantly affect 

baseflow when using statistical analysis. Therefore, analyzing baseflow should be supplemented 

by a process-based model for the effects of groundwater withdrawals.  

 

(KEYWORDS: baseflow; aquifer; high-capacity wells; groundwater; regression model.) 
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INTRODUCTION 
 
Understanding the factors that affect baseflow processes is critical to protecting both water quality 

and supply (Price 2011). Baseflow is important to streams because of its cooler temperature and 

better quality than stormflow, and its ability to maintain streamflow during dry periods. Baseflow 

decreases and stream temperature increases will lead to decreases in aquatic biodiversity (Brown 

and Krygier 1970). Because baseflow is groundwater that discharges to surface water, groundwater 

that normally would have discharged as baseflow to surface water can be diverted away from 

discharge points by the gradients created by high-capacity wells (Sophocleous 2002). High-

capacity wells, used to irrigate agriculture, can significantly impact groundwater storage and the 

associated interaction of surface to groundwater systems (Sophocleous 2002, Wahl and Tororelli 

1997). Several studies documented baseflow declines in the state of Wisconsin, United States due 

to the increased use of groundwater for agricultural irrigation from unconfined aquifers that are 

well connected to surface waters (e.g., Kraft et al. 2012, Weeks and Stangland 1971, Weeks et al. 

1965 Wahl and Tororelli 1997, Barlow and Leake 2012, Fienen et al. 2018). Groundwater pumping 

affects surface waters (rivers, lakes, streams, and wetlands) by reducing baseflow that feeds into 

them. Extreme groundwater pumping has also been shown to extract surface water out of the 

stream bed and into the aquifer (Barlow and Leake 2012, Zipper et al. 2019, Li et al. 2020). 

 

Baseflow can vary both spatially and temporally due not only to groundwater pumping but also to 

climate, topography, and human activities (Ayers et al. 2021, Price 2011, Santhi et al. 2008). 

Climate factors such as precipitation and temperature influence baseflow by controlling the 

availability of water (Ayers et al. 2021, Price 2011). Topographic factors then influence if the 

available water will infiltrate the land surface and recharge surface water over time or will flow 
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across the surface and add to streamflow as surface runoff (Ayers et al. 2019, Zhang and Schilling 

2006). In addition, land use also affects how and when available water reaches surface waters. 

Increases in urbanization will lead to increased stormflows and decreased baseflows as a result of 

increases in impervious surfaces, whereas increases in agricultural land use have produced mixed 

baseflow responses depending on management practices (Price 2011). 

  

Baseflow increases have also been documented in basins in Wisconsin where the primary land use 

is agriculture (Gebert et al. 2007), but the mechanism and conditions of such increases are unclear. 

Two potential explanations are the increased use of soil conservation practices in southwestern 

Wisconsin (Potter 1991) and increased irrigation from confined aquifers that are not connected to 

the surface waters. Since the irrigation of agricultural land increases the soil moisture storage and 

increases in soil moisture storage have been found to be linked to increases in baseflow (Shaw et 

al. 2013, Price 2011), withdrawals from the confined aquifer may be related to baseflow increases. 

There are few if any studies on the effects of the withdrawal of groundwater on baseflow from 

confined aquifers that are disconnected from surface waters (Borchardt 2019). The lack of such 

understanding puts environmentalists and agricultural growers across the state at odds with each 

other on how best to preserve the state’s freshwater resources. A better understanding of the factors 

that affect the groundwater-surface water system will help balance both the needs of the 

agricultural industry and conservation efforts in Wisconsin and elsewhere.  

  

It is crucial to understand how both climate change and anthropogenic impacts affect the 

relationship between physical basin properties, such as soil texture and land use, and baseflow 

(Price 2011), but few studies address both climate and anthropogenic impacts. Currently, 
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numerical models (e.g., MODFLOW) can simulate the impacts of multiple variables on baseflow, 

but they are site specific and require significant effort, time, and knowledge for calibration and 

validation (Li et al. 2020). Some studies examined how either anthropogenic (e.g., Borchardt 2019; 

Sophocleous 2002, Wahl and Tororelli 1997) or climate factors (e.g., Borchardt et al. 2016) affect 

baseflow. Some other studies have used analytical depletion functions to quite accurately predict 

which streams in a given basin would be affected by the groundwater withdrawal of an individual 

well (e.g., Zipper et al. 2019, Li et al. 2020), but climate factors were not considered. Ayers et al. 

(2021) combined the effects of climate factors, physical basin properties, and land-use factors to 

find the main drivers in baseflow variability using regression analysis, but the groundwater 

withdrawal variable was not included. In Wisconsin, annual precipitation and temperature have 

been trending upward over the last several decades (WICCI, 2011). Increases in precipitation will 

increase the water available for infiltration to the aquifer, whereas increases in temperature will 

decrease available water via increased evaporation. In consideration of the limitations in previous 

studies and climatic trends in Wisconsin, we find it necessary to study how these climate factors, 

along with the physical basin characteristics, affect baseflow in areas where there is extensive use 

of high-capacity wells. 

 

The effects that land use, irrigation, and/or climate change have on baseflow could be amplified 

or mitigated by the subsurface topography (Dubé et al. 1995). The subsurface topography can have 

a strong influence on groundwater flow and baseflow (Price 2011). Price (2011) describes 

subsurface topography as the relief of the first confining layer, more specifically it is the subsurface 

strata that prompts the horizontal movement of groundwater. The groundwater basin size and 

shape can be different than the surface water basin and they can vary over time as well. During 
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high moisture conditions, when the water table is high, the soil moisture surface is likely to follow 

that of the surface topography (Hutchinson and Moore 2000). On the other hand, when conditions 

are dry, and the water table is low, the soil moisture surface is likely to follow the topography of 

the confining layer (Price 2011). Fienen et al. (2018) also note that wells outside the surface basin 

can impact the baseflow by changing the local flow field. These changes in the water table 

elevation and groundwater flow will shift the peaks that define the basin area. Therefore, whether 

to use surface basins or groundwater basins as units of analysis may produce different results 

(Borchardt 2018). The discrepancy between surface water and groundwater divides makes a large 

difference in annual baseflow values (Gebert et al. 2007). The dynamic nature of the groundwater 

basin boundaries makes it difficult to determine which wells are potentially affecting baseflow at 

a given stream gauge. Several studies including Freer et al. (1997) and Hutchinson and Moore 

(2000) found that the topography of the confining layer (subsurface topography) and the properties 

of the soil overlaying the confining layer are better predictors of the water table than surface 

topography. On the other hand, Li et al. (2018) found several surface topographic variables that 

contribute to streamflow variability, but the effects were not consistent. Therefore, it is necessary 

to consider both surface and subsurface topography when examining the effect of high-capacity 

wells. 

 

The aim of this study is to investigate how climate variables and human activities affect baseflow 

across Wisconsin. This study builds on a previous one (Borchardt 2019) that examined baseflow 

trends and related factors in Wisconsin, and utilizes a range of regression models to answer the 

following research questions: (1) How are the temporal and spatial variabilities of baseflow 

affected by climate and basin physical characteristics? (2) How are baseflow trends related to 
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withdrawal rates of high-capacity wells and aquifer types? and (3) To what extent does the 

variability of groundwater basin boundaries influence baseflow? The study intends to sort out 

factors that could affect baseflow differently by time and space. 

 

MATERIALS AND METHODS 
 
Overview 
 
In this study, we used precipitation, temperature, drainage class, available storage, land cover, 

slope, and the recorded well withdrawal rates to predict baseflow variability across basins. The 

variables were found to be related to baseflow in previous studies (Borchardt 2019, Santhi et al. 

2008, Lorenz and Delin 2007). Thirty US Geological Survey (USGS) streamflow monitoring sites 

were selected for the analysis, and each site had continuous daily streamflow during the study 

period (2011-2017). The years 2011-2017 were chosen for their availability of wells withdrawal 

data. Annual baseflow was derived from the streamflow data, and regression analysis was used to 

determine which variables affected baseflow variability during the study years. The list of the 

USGS sites and associated variables can be found in Appendix A. 

 
Baseflow  
 
Annual baseflow was calculated from streamflow data collected for the years 2011-2017 at the 30 

USGS sites using the USGS computer program Groundwater Toolbox (GWTB) 

(http://water.usgs.gov/ogw/gwtoolbox/, last accessed on 15 September 2018). GWTB contains six 

hydrograph-separation methods to calculate groundwater discharge, and one recession-curve 

displacement method (RORA) to estimate groundwater recharge (Barlow et al. 2015). The RORA 

method was chosen for this study to represent baseflow. The RORA recharge estimates have been 

found to be slightly greater than those estimated using the hydrograph-separation methods due to 
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some loss of groundwater by riparian evapotranspiration versus discharge as baseflow to the 

stream (Barlow et al. 2015). These losses however are relatively small. The RORA program 

estimates net recharge. Net recharge is recharge minus leakage to deeper aquifers and losses caused 

by groundwater evapotranspiration (Rutledge 2000). It is assumed that groundwater discharged to 

streams is an episodic response to storms, unlike the hydrograph-separation methods which assume 

a continuous process (Rutledge 2007). The RORA method is a recession-curve displacement 

method based on a mathematical solution. A recession index (K) is specified for each basin based 

on the time required for groundwater to discharge to the surface water. K is estimated using a 

semilogarithmic plot of streamflow as a function of time. The index is then used to calculate the 

solution for the conditions related to the instantaneous rise in height of the water table over the 

basin, and the volume of water that drains from groundwater storage after each precipitation event 

(Barlow et al. 2015). 

 
Explanatory variables for baseflow 
 
Basin types. Basins with daily recorded streamflow during the study period (2011-2017) were 

filtered to include only unregulated streams with minimal wastewater discharge measurements. 

The selected basins were then delineated for both the surface contributing runoff to the stream and 

the area of groundwater contributing baseflow to the stream at the gauging station because 

groundwater basins do not always coincide with surface water basin boundaries (Borchardt et al. 

2016). The gauging stations were used as pour points to delineate only the groundwater area that 

contributes water to each gauging station. The delineation of the groundwater basins followed the 

same process as the delineation of the surface water basins except that an interpolated groundwater 

elevation was used in lieu of the Digital Elevation Model (DEM) as described in Borchardt (2018). 
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The interpolated groundwater elevation was determined by subtracting from the DEM the “depth 

to groundwater” data obtained from well drilling reports. 

 

Since groundwater basin divides generally follow surface topography in wet years and subsurface 

topography in dry years, we delineated the groundwater basin only for the dry years between 2011 

and 2017. Data retrieved from the Wisconsin State Climatology Office website 

(http://www.aos.wisc.edu/~sco/clim-history/state/graphics/WI-precip-annual.gif) reveals that 

only 2012 was a dry year, and the drought of 2012 caused low groundwater levels from late 2011 

until spring of 2013 (Han et al. 2018). Therefore, the static water level of wells drilled during this 

time period were used to create the groundwater DEM used to delineate the groundwater basin for 

2012. We used the surface basin for the years 2011 and 2013-2017 since groundwater basins 

generally follow the size and shape of the surface water basins in wet years (Hutchinson and Moore 

2000). 

 

Climate variables. Growing Degree Days (GDD) was used as the temperature variable because it 

is a better measure of temperature during the growing season when irrigation is in use, and it 

eliminates the negative temperature recordings from the annual sum. The GDD is a measure of the 

mean temperature above the base temperature for each day (Equation 1). 

 

𝐺𝐷𝐷 = 𝑇! − 𝑇"	for	𝑇! > 𝑇"	

                                                             															𝑇"	otherwise   Equation 1 

 

where  Tm = daily mean temperature (°C) 
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Tb  = base temperature (set at 10°C).  

 

Annual GDD data (annual sum of daily GDD) was obtained for the weather station that was closest 

to each delineated basin from the Midwestern Regional Climate Center (Cli-MATE 2018). 

Because temperate data does not vary significantly over relatively short distances, the use of the 

nearest weather station is appropriate.  

 

The precipitation data was obtained from the National Centers for Environmental Information for 

the state of Wisconsin (NCEI n.d.). Because weather stations are not necessarily located in the 

study basins and precipitation can vary across relatively short distances, precipitation data was 

interpolated using the kriging method. The weather stations with the most complete data set were 

selected (Appendix B). The data from the weather station closest to each selected weather station 

was used to replace any missing data. The data from NCEI contains precipitation totals for each 

month and a yearly total. Months with missing data for 1-9 days were indicated with an “X”, and 

months with >9 days of missing data were left blank. For months containing missing data, if the 

monthly data from the adjacent weather station is greater than the data from the original station, 

the greater value was used in place of the missing data for that month at the original station. Sixty-

eight stations were selected in Wisconsin, approximately one station per county. Two stations in 

Minnesota and one in Michigan were also selected to mitigate edge effects following the 

interpolation process. The yearly totals from 2011 through 2017 were recorded on a spreadsheet 

for each station along with each station’s latitude and longitudinal co-ordinates. Using ArcGIS 

10.4 from ESRI, the data from the spreadsheet was mapped. The interpolation tool kriging in 

ArcGIS was used to create a raster layer with a 2-km resolution. Kriging weights the surrounding 



 

10 
 

measured values to estimate a value in an unmeasured location using a formula within the ArcGIS 

program. The weights are based on both the distance between the measured points and the 

prediction location and on the overall spatial arrangement of the measured points (ESRI 2016). 

The mean annual precipitation (in mm) for each study year in each basin was then calculated in 

ArcGIS and is denoted by Precip hereafter.  

 
Basin physical characteristics. We used both available water storage (denoted by AS_150) and 

soil drainage class (denoted by DrainClass) to characterize the soil, and both were downloaded 

from the Soil Survey Geographic Database, part of the United States Department of Agriculture. 

The use of both is further explained in Borchardt (2019). However, we modified the use of the 

DrainClass from percent of well-drained soil to the mean value for the basin. Each drainage class 

was classified numerically 1–7, with 1 representing excessively drained and 7 representing very 

poorly drained, and the mean was calculated for each delineated basin. Both the AS_150 and 

DrainClass map layers were downloaded from ESRI (19 April 2019 and 5 June 2019, respectively). 

The topographical characteristics of the basin were represented by the average percent slope. 

 

The landcover was downloaded from the Multi-Resolution Land Characteristics Consortium for 

years 2011, 2013, and 2016. The data for 2011 was used for study years 2011-2012, 2013 for 2013-

2014, and 2016 for study years 2015-2017. The layers were created from the National Land Cover 

Database at a resolution of 30m and contain 16 classes of landcover. The layer was reclassified to 

reduce the number of classes to eight (water, developed, barren, forested, shrubland, herbaceous, 

agriculture, and wetland). The data was then clipped to the area of each delineated basin. The 

percentage of the three most prominent land covers (forested, agricultural, and urban) were 
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calculated for each time in each basin, and it is denoted by PerFor, PerAg, and PerUrban, 

respectively.  

 

Annual groundwater withdrawal rate. High-capacity well data for the state of Wisconsin was 

acquired from the Wisconsin Department of Natural Resources (WDNR) through email 

correspondence (Smail 2018) (see Figure 1 for the location). The state of Wisconsin has required 

owners of high-capacity wells to report annual groundwater withdrawal only since 2011, therefore 

actual reported values for years 2011–2017 were used in the regression analysis. It should be noted 

that the reporting of the annual withdrawal rate is on the honor system and is subject to some 

inconsistencies. 

 

The extent to which a well affects the baseflow of a stream is in part related to the distance of the 

well from the stream. But when there are numerous wells within a single basin, it becomes difficult 

to determine this distance. Furthermore, wells can divert groundwater (by bending the groundwater 

flow path) from a tributary to the main stem of the stream (Fienen et al. 2018). To simplify the 

distance calculation, we measured the distance from the weighted mean center of all the wells 

within the basin to the stream gauge located at the basin outlet. Therefore, with the premise that 

wells closer to a stream have more effect on the baseflow to the stream than wells farther away, 

we used a modified annual withdrawal rate (MAWR) for the withdrawal variable.  

 

The annual withdrawal rate is reported in gallons and was converted to m3×10-5 for this analysis. 

Then we modified the annual withdrawal rate by multiplying by the relative distance of the wells 

from the basin outlet to account for the different effects of well locations to baseflow measured at 
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the outlet.  The MAWR was determined by combining the total annual rate of withdrawal from all 

the high-capacity wells within each basin and the relative distance of the weighted mean of those 

wells from the basin outlet. The first step was to determine which wells were in each basin, and 

the second was to determine the withdrawal rate from each, then the weighted mean center of the 

wells within the basins was determined using the withdrawal rate as the weight. This moved the 

mean center closer to the well with the highest withdrawal rate for any given year. Then the 

distance (dij) between basin i’s weighted mean center for year j and the individual basin outlet was 

calculated in meters. The relative distance (RDij) between the weighted mean center for basin i in 

year j and the basin outlet is then calculated, and subsequently, the MAWR was calculated 

according to Equation 2. 

 

MAWRij = 
!"#$%
	#'$%

          Equation 2 

 

where AWRij denotes annual withdrawal rate, and RDij = 
($%
∑($%

. ∑dij is the sum of distance for all 

the basins in all the study years. The MAWR is denoted by WxDd, and its unit is m3×10-5. 

 

Aquifer types. Because groundwater withdrawals from unconfined and confined aquifers can 

have different effects on baseflow, we determined the aquifer type for each well. We examined 

two data sources, well construction reports and a geological map, to determine the aquifer type. 

Well construction reports are filed with the WDNR after the completion of a well installation, 

and they record both the well depth and the depth of the confining layer. By comparing the two 

depth records, we could determine which wells are drawing from the confined aquifer and which 



 

13 
 

are drawing from the unconfined aquifer. Well construction report data compiled by the 

Wisconsin Geological & Natural History Survey was received from the University of Wisconsin-

Extension via email correspondence (Mavel 2018). Well construction reports are only available 

for a small portion of the wells within each basin. It is a common practice for well drillers to drill 

to the depth on a par with other wells in the general area with a reliable water source. Therefore, 

it is assumed that if all the wells with a construction report are pumping from the same aquifer, 

then the wells without a construction report are also withdrawing from that same aquifer in each 

basin. Well locations were also compared to a map layer titled “Aquifers of Alluvial and Glacial 

Origin”. The aquifer types layer was delineated by the USGS from data in The Ground Water 

Atlas of The United States and was downloaded from ArcGIS online (AGOL 2002) (Figure 1). 

Per the aquifer map layer, 26 of the 30 basins were located over only one aquifer type. After 

comparing these two data sources, we determined if each basin’s wells were drawing 

groundwater mainly from the confined or the unconfined aquifer. The determination was 

primarily based on the data derived from the aquifer map layer with the construction reports 

acting as a verification. 

 
 

[Insert Figure 1] 
 
Regression Analysis 
 
We employed the panel data analysis (PDA) to build regression models. PDA is a statistical 

method used to analyze data simultaneously varying over time and space (or sector). The 

dependent variable Y (annual baseflow in cm) for the basin i at time t is modeled using 

explanatory variables Xk as follows:  
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Yit = β0 + β1X1it + β2X2it +…βkXkit + uit      Equation 3 

where ß0 is the constant term and u is the error term. It should be noted that some explanatory 

variables can be time-invariant. 

 

PDA can be divided into four main categories: independently pooled panels, between estimation 

models, fixed effect models, and random effect models (Min and Choi, 2019). The pooled 

regression model is a method of applying to the ordinary least squared model incorporating 

different observations from different periods of time, ignoring temporal changes and the objects’ 

difference in the panel data. Between estimation models use the variables averaged over time, 

using only cross-sectional information, and removing time variation in the data. Fixed effect 

models, also called within estimation models, replace time-invariant explanatory variables with a 

time-invariant term αi representing different intercepts by object (Equation 4): 

 

Yit = β0 + β1X1it + β2X2it + …βkXkit + αi + uit       Equation 4 

where all the explanatory variables are time-variant. They examine the variability within each 

object. Random effect models assume that αi in the model follow a probability model, 

independent of explanatory variables. In other words, αi is very small or all factors are controlled 

for, which is a better assumption than that in fixed effect models. 

 

We used the plm package of R (Croissant & Millo, 2008) using the between estimation and 

random effect models to focus on time-invariant and time-variant variables, respectively. We ran 

PDA for different combinations of aquifer types and basin types. It was first run on the entire 

data set, and then on the divided sets. The analysis was run two times for each aquifer type. The 
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first run included variables from within the surface basin. The second run used the same 

variables but from within the groundwater basin (Table 1). We inserted all the explanatory 

variables, and the plm package automatically eliminated insignificant variables. 

 

[Insert Table 1] 
 

RESULTS AND DISCUSSION 
 
Descriptive statistics of the variables 
 
The descriptive statistics for the annual baseflow estimated using the RORA method is presented 

in Table 2. The mean is 26.7 cm, and the distribution is quite symmetrical between the first and 

third quartiles. The data stretches further to the maximum than to the minimum. We also present 

the descriptive statistics of baseflow predicted by Model 1 (random effect) for comparison. There 

are some discrepancies, but the magnitude of each statistic is generally comparable. The biggest 

discrepancy is found in the maximum. The predicted maximum is smaller than the observed by 

about 5.7 cm.  

 

[Insert Table 2] 
 
The distribution of each explanatory variable is presented in Figure 2. Most of the variables have 

quite symmetrical distributions. Notable exceptions are PerAg, PerUrban, and WxDd. Most of the 

basins have less than 40% agricultural land cover with the median of about 10%. PerUrban has a 

more skewed distribution than PerAg, with the median of about 5% and the maximum close to 

100%. Highly urbanized basins are concentrated in the southeastern corner of the state. WxDd 

varied extremely widely, thus is shown as logarithm. The log WxDd has a quite symmetrical 

distribution with a few extreme outliers below zero. 
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[Insert Figure 2] 
 
Model 1 

[Insert Table 3] 
 
 
The result for Model 1 where all the basins were considered is presented in Table 3. PerFor was 

found to be the only significant variable when we used the between estimator. When the time-

variant variables were averaged over time, only PerFor was left to explain the variability of 

baseflow across basins. PerFor varied widely across the state, from 0.29% to 67.40% with the 

median of 29.48%, and basins with more forest cover tended to have more baseflow. The 

catchment 04025500 has the largest observed baseflow and the highest PerFor. R2 is higher than 

with the random effect model even though there is only one explanatory variable that is statistically 

significant. It is likely because PerFor kept its large variability whereas other variables’ 

variabilities were reduced in the model. In addition, PerFor is correlated with other variables 

regarding basin characteristics and land cover. Therefore, it makes sense that all the other ones 

were left out. 

 

In the random effect model, both time-invariant (DrainClass) and time-variant (Precip and 

GDD_10) variables significantly explained the variability of baseflow (Table 3). Precip had a 

positive coefficient whereas DrainClass and GDD_10 had negative. Lower numbers in DrainClass 

indicate better drainage of the soil, thus the result indicates that baseflow increases with better 

drained soils. The negative coefficient of GDD_10 suggests the effect of higher evaporation with 

higher temperatures on baseflow. Model 1 suggests that precipitation and temperature variabilities 

play larger roles than basin characteristics in baseflow variability when time is considered. 
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Models 2 and 3 

When only the basins over unconfined aquifers were considered (Model 2), Precip, DrainClass, 

and GDD_10 were found to be significant with the random effect model whereas none with the 

between estimator model (Table 4). The significant variables with the random effect are the same 

as in Model 1, suggesting both climate and drainage characteristics matter for baseflow. The 

magnitude of the DrainClass coefficient and the GDD_10 coefficient approximately doubled 

respectively compared to Model 1, suggesting stronger influences of evaporation and soil drainage 

on baseflow over unconfined aquifers than over confined ones. Because the surface water is more 

strongly connected to unconfined aquifers than to confined ones, evaporation and soil drainage 

have stronger effects on baseflow over unconfined aquifers. The non-significance of the between 

estimation model suggests that the interannual variability of baseflow is so large whereas the inter-

basin variability is not so large. The large interannual variability was eliminated by the between 

estimator whereas the inter-basin variability was not large enough to be explained by any 

explanatory variables. 

 

[Insert Table 4] 
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When the analysis was conducted for the basins over confined aquifers (Model 3), the variability 

of baseflow was explained by PerUrban with the between estimator and Precip and GDD_10 with 

the random effect. PerUrban is negatively correlated with PerFor, therefore the coefficient is 

negative unlike in Model 1. The result is essentially identical to that from Model 1. With the 

random effect model, only Precip and GDD_10 are statistically significant variables. Unlike over 

unconfined aquifers, drainage characteristics were not an important factor, and the Precip 

coefficient is larger. The non-significance of basin characteristics is likely because the aquifer is 

detached from surface water. In summary, for the basins over confined aquifers, baseflow is better 

explained with climate variables only compared to the basins over unconfined ones. 

 

 Models 4 and 5 
 
Model 4 is the same as Model 2 except for that groundwater divides were used to delineate basins 

boundaries. The regression results (Table 5) are almost identical to those from Model 2 with minor 

differences in coefficients. R2 with the random effect model increased marginally from 0.313 to 

0.321. Therefore, whether to use surface water or groundwater divides did not affect baseflow in 

the basins over unconfined aquifers. 

 

[Insert Table 5] 
 
 
Noticeable effects of groundwater divides were found for the basins over confined aquifers (Model 

5) when the between estimator was used. Precip, PerAg, and PerUrban were found to be significant 

variables and R2 was >0.68. The time-averaged annual precipitation is a significant variable only 

in Model 5 with the between estimator. We think it is because the basins are spread across the state 

and the variability of precipitation is larger than for the basins over unconfined aquifers. In this set 



 

19 
 

of basins, agricultural and urban land covers are more prevalent than forest. For example, the 

median of PerAg and PerUrban is 38% and 17% respectively whereas that of PerFor is 10%. The 

negative effect of agricultural and urban land covers on baseflow is not surprising by itself, but 

their significance is due to their prevalence and large variability. 

 

The effects of groundwater divides seem to have disappeared with the random effect model. Precip 

and GDD_10 are significant variables like in Model 3, and their coefficients are similar. R2 is 

slightly lower than Model 3. It indicates again the large interannual variability of baseflow and 

climate variables. 

 

We examined the shape of surface water and groundwater basins in detail (Figure 3). It seems 

groundwater basin boundaries generally follow surface topography over unconfined aquifers. 

There was not much discrepancy between groundwater and surface water basin boundaries at 

higher bedrock elevations, and there was greater discrepancy at lower elevations. The groundwater 

basin areas decreased in size compared to the surface water basin boundaries at lower bedrock 

elevations (Figure 3a). The basin boundary discrepancy over confined aquifers appeared to be 

particularly large in the southeast where the percentage of urban land cover was high. On the other 

hand, the discrepancy is quite small in forest-dominated basins (Figure 3b). This is why land cover 

variables were significant in Model 5 with the between estimator. 

 
 
 
[Insert Figures 3a & 3b] 
 
 
 

 



 

20 
 

The overall area within the basin boundaries varied less in the basins over the unconfined aquifer 

than those over the confined aquifer (Figure 4). Six out of the thirteen basins over the unconfined 

aquifer had a change in area from the groundwater basin to the surface water basin area of less 

than 10%. Only two of the remaining basins had a decrease in size over 10% (04066500, 

04060993), five basins however had an increase in size greater than 10% ranging from 

approximately 18% (05435943) to greater than 95% (04080000) (Figure 4a). Seven out of the 

eighteen basins over the confined aquifer had a change in area from the groundwater basin area to 

the surface water basin area of less than 11%. Six of the remaining basins had groundwater basins 

that were larger in size than their surface water basin, and five had smaller groundwater basins 

than their surface water basin. The percent decrease of all the basins over the confined aquifer 

ranged between over 2400% (04087204) to less than 2% (05414000), and the percent increase in 

size ranged from less than 1% (05399500) to greater than 97% (04087240) (Figure 4b). 

 

[Insert Figures 4a and 4b] 
 
 
Effects of groundwater withdrawal 
 
The groundwater withdrawal was not a significant variable in any model when it was modified 

with the relative distance to basin outlets. The data comes in volume, and because the same amount 

of withdrawal can have different effects on baseflow depending on the basin size, we first 

converted to depth by dividing by area. When we used the withdrawal depth in regression models, 

it was found to be insignificant. We then used the modified annual withdrawal rate (WxDd) for 

the regression models to find it insignificant again. 
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We speculate for reasons for the insignificance. A possible reason is that the distribution of WxDd 

is extremely skewed, like an exponential distribution with a sharp decline. It was very high in 

particular years in particular basins, with little to no correlations with other variables. When we 

examined the correlation between WxDd and observed baseflow each year, the correlation was 

always negative and statistically insignificant. We suspect the effect of groundwater withdrawal 

on baseflow, but the statistical approach we employed failed to demonstrate it. It could also be 

because the relationship between groundwater withdrawal and baseflow is not direct. The effect 

could occur with temporal and/or spatial lags or via another mechanism, and exploring them is 

beyond the scope of this study. 

 

CONCLUSIONS 
 
The study investigated the spatial and interannual variability of baseflow in Wisconsin using the 

panel data analysis method for the period 2011-2017. The findings are summarized as follows: (1) 

precipitation and temperature variable are significant in explaining the temporal variability of 

baseflow whereas land cover variables are important when the temporal variability is not 

considered; (2) the drainage condition is important for baseflow over unconfined aquifers; (3) 

evaporation and soil drainage are important in basins over unconfined aquifers whereas 

precipitation the most significant over confined aquifers; (4) whether to use surface water or 

groundwater divides to delineate basins matters in particular conditions, and (5) groundwater 

withdrawal rates do not significantly affect baseflow when using statistical analysis. Overall, we 

cautiously argue that groundwater basins should be considered when delineating basin boundaries 

for baseflow studies, and statistical analyses show limited too little success in revealing the effect 
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of high-capacity wells on baseflow in Wisconsin at the annual scale. A process-based modeling 

approach would be necessary. 

 

This research yielded knowledge of the role of hydrological stress, both natural and anthropogenic, 

on stream baseflow. The results will be useful for hydrologists and water resources managers 

interested in environmental change impacts and adaptations. Precipitation and temperature were 

significant variables in each of the models representing separate aquifers. Additionally, we expect 

that this research will lead to further research that investigates how the state’s groundwater 

resource can be best used and how to balance that resource between the state’s agricultural needs 

and environmental concerns. 
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APPENDIX A 
List of streamflow monitoring sites and associated basin characteristics. 

ID  Name  Latitude   Longitude   Slope (%)  AS_150 (mm)  DrainClass  PerFor (%)  PerUrban (%)  PerAg (%)  Aquifer  
04025500  BOIS BRULE 

RIVER AT 
BRULE, WI  

46.53778  -91.5953  4.80  17.82  3.09  65.62  3.85  1.42  Unconfined  

04060993  BRULE RIVER 
AT US 

HIGHWAY 2 
NEAR 

FLORENCE, 
WI  

45.96079  -88.316  5.41  19.79  4.02  61.48  4.21  2.33  Unconfined  

04063700  POPPLE RIVER 
NEAR FENCE, 

WI  

45.76357  -88.4632  3.23  19.02  4.55  45.81  1.85  0.55  Unconfined  

04066500  PIKE RIVER AT 
AMBERG, WI  

45.49997  -88.0001  4.06  16.66  3.20  55.13  3.66  2.00  Unconfined  

04067958  PESHTIGO 
RIVER NEAR 
WABENO, WI  

45.38774  -88.3051  4.01  23.23  4.16  54.90  2.67  2.11  Unconfined  

04074950  WOLF RIVER 
AT 

LANGLADE, 
WI  

45.18997  -88.7334  4.63  18.08  4.00  53.76  3.28  3.15  Unconfined  

04077630  RED RIVER AT 
MORGAN 

ROAD NEAR 
MORGAN, WI  

44.89803  -88.8443  4.40  20.41  3.78  43.01  3.58  20.69  Unconfined  

04080000  LITTLE WOLF 
RIVER AT 

44.41248  -88.8654  4.11  21.54  3.87  31.66  4.13  37.09  Unconfined  
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ROYALTON, 
WI  

05357335  BEAR RIVER 
NEAR 

MANITOWISH 
WATERS, WI  

46.04884  -89.9846  2.26  29.51  3.91  27.31  2.29  0.00  Unconfined  

05393500  SPIRIT RIVER 
AT SPIRIT 
FALLS, WI  

45.44913  -89.9793  3.99  19.47  4.73  59.32  2.67  4.81  Unconfined  

05394500  PRAIRIE 
RIVER NEAR 
MERRILL, WI  

45.2358  -89.6498  4.63  20.50  4.35  48.86  2.82  8.96  Unconfined  

05397500  EAU CLAIRE 
RIVER AT 

KELLY, WI  

44.91889  -89.5519  2.76  20.06  4.15  36.97  5.13  30.53  Unconfined  

05435943  BADGER MILL 
CREEK AT 

VERONA, WI  

42.97694  -89.5396  5.71  21.44  3.23  9.02  57.19  34.70  Unconfined  

04024430  NEMADJI 
RIVER NEAR 

SOUTH 
SUPERIOR, WI  

46.63327  -92.0941  4.76  21.62  4.14  51.24  2.50  10.53  Confined  

04027000  BAD RIVER 
NEAR 

ODANAH, WI  

46.48664  -90.6963  5.90  20.57  4.44  67.40  2.59  5.83  Confined  

04087030  MENOMONEE 
RIVER AT 

MENOMONEE 
FALLS, WI  

43.17279  -88.104  2.65  24.64  4.42  8.88  34.90  37.88  Confined  

04087050  LITTLE 
MENOMONEE 

43.20667  -88.0384  2.91  23.30  4.53  7.50  18.13  61.67  Confined  
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RIVER NEAR 
FREISTADT, 

WI  
04087070  LITTLE 

MENOMONEE 
RIVER AT 

MILWAUKEE, 
WI  

43.12362  -88.0437  3.27  21.77  4.45  9.61  41.74  35.75  Confined  

04087088  UNDERWOOD 
CREEK AT 

WAUWATOSA, 
WI  

43.05473  -88.0462  3.85  24.00  4.68  2.34  90.22  1.19  Confined  

04087119  HONEY CREEK 
AT 

WAUWATOSA, 
WI  

43.0439  -88.0029  3.60  22.38  4.57  0.29  98.31  0.54  Confined  

04087204  OAK CREEK 
AT SOUTH 

MILWAUKEE, 
WI  

42.92502  -87.8701  3.27  21.36  4.66  12.32  62.58  10.79  Confined  

04087220  ROOT RIVER 
NEAR 

FRANKLIN, WI  

42.87363  -87.9959  3.49  21.28  4.56  9.22  72.81  7.51  Confined  

04087240  ROOT RIVER 
AT RACINE, 

WI  

42.75141  -87.8237  2.53  22.33  4.57  9.63  30.84  49.19  Confined  

04087257  PIKE RIVER 
NEAR RACINE, 

WI  

42.64696  -87.8606  2.08  24.09  4.26  5.25  35.66  51.78  Confined  
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05362000  JUMP RIVER 
AT SHELDON, 

WI  

45.30803  -90.9565  2.51  25.61  5.19  48.81  2.64  9.15  Confined  

05399500  BIG EAU 
PLEINE RIVER 

AT 
STRATFORD, 

WI  

44.8219  -90.0796  3.40  19.71  4.80  15.54  4.89  71.07  Confined  

05408000  KICKAPOO 
RIVER AT LA 
FARGE, WI  

43.57414  -90.6432  18.53  21.50  3.24  50.09  4.68  43.94  Confined  

05413500  GRANT RIVER 
AT BURTON, 

WI  

42.72027  -90.8193  10.86  23.22  3.08  17.97  5.15  76.45  Confined  

05414000  PLATTE RIVER 
NEAR 

ROCKVILLE, 
WI  

42.7311  -90.6404  11.81  22.72  3.07  18.64  3.81  77.09  Confined  

05427718  YAHARA 
RIVER AT 

WINDSOR, WI  

43.20888  -89.3526  2.94  25.98  3.46  1.80  13.12  81.11  Confined  

Page Break  
 
 
 



   
 

31 
 

 
APPENDIX B 

 

Weather stations locations used to create the interpolated precipitation data. Weather station latitude and longitude 
data obtained from the National Centers for Environmental Information (NCEI n.d.). 
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TABLES 
 
Table 1 Regression Models  
 
Model Aquifer type Basin type Number of basins 
1 Confined and Unconfined Surface 30 
2 Unconfined Surface 13 
3 Confined Surface 17 
4 Unconfined Groundwater 13 
5 Confined Groundwater 17 
 
  



   
 

33 
 

Table 2 Descriptive statistics for observed and Model 1-predicted annual baseflow during 2011-
2017 for the 30 basins selected for the study. 
 
Baseflow Minimum 1st quartile Median Mean 3rd quartile Maximum 
Observed 7.95 19.13 25.77 26.70 32.12 57.66 
Model 1-
Predicted 

6.85 22.27 27.04 26.70 30.36 51.92 
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Table 3 Panel data analysis results for Model 1 using between estimation and random effect 
models. 
  Between estimator Random effect 
Coefficients for significant variables (p < 0.05)  0.221PerFor    0.029Precip 

–4.786DrainClass 
–0.015GDD_10  

R2  0.38272    0.35691 
p-value for F statistic 0.00026842 < 2.22e-16  
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Table 4 Panel data analysis results for Models 2 and 3 using between estimation and random effect 
models. 

    Between estimator Random effect 
Model 2 Coefficients for significant variable (p < 

0.05) 
None   0.028Precip 

–9.236DrainClass 
–0.028GDD_10 

 
R2 

0.10856 0.31343 

p-value for F statistic 0.27161 3.386e-07 
Model 3 Coefficients for significant variables (p < 

0.05) 
–0.088PerUrban   0.035Precip 

–0.007GDD_10 
R2 0.25306 0.43828 
p-value for F statistic 0.039558 2.9667e-15 
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Table 5 Panel data analysis results for Models 4 and 5 using between estimation and random effect 
models.  
   

Between estimator Random effect 
Model 4 Coefficients for significant variables (p < 

0.05) 
None   0.026Precip 

–7.649DrainClass 
–0.026GDD_10 

R2 0.085701 0.3208 
p-value for F statistic 0.33172 2.1399e-07 

Model 5 Coefficients for significant variables (p < 
0.05) 

0.2096Precip 
–0.5272PerAg 
–0.5113PerUrban 

  0.024Precip 
–0.008GDD_10 

R2 0.68695 0.35795 
p-value for F statistic 0.01398 4.5044e-11 
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FIGURE LEGENDS 
 
Figure 1 Location of high-capacity wells and aquifer types delineated by the USGS from data in 
The Ground Water Atlas of The United States. 
 
Figure 2. Box and whisker plots of explanatory variables. 
 
Figure 3. (a) Groundwater and surface water basin boundaries over unconfined aquifers and 
bedrock elevation downloaded from ESRI ArcGIS online, and (b) Groundwater and surface 
water basin boundaries over confined aquifers and land cover data downloaded from the Multi-
Resolution Land Characteristics Consortium for the year 2011. 
 
Figure 4. Areas of groundwater basins and surface water basins in the year 2012 over (a) 
unconfined aquifers and (b) confined aquifers. 
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