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ABSTRACT

The Class Equation of GL2(Fq)

by

Lindsey Mathewson

The University of Wisconsin-Milwaukee, 2012
Under the Supervision of Professor Willenbring

In this thesis, we discuss the conjugacy classes of the general linear group of 2×2

matrices over a prime field. We find the number of conjugacy classes and the class

equation for GL2(Fq), for general prime q. We then look at some applications of the

class equation, which includes finding the number of orbits when GL2(Fq) acts on

(GL2(Fq))
s by conjugation. Included in this thesis is the Maple Code for generating

the class equation for any prime.

ii



Table of Contents

1 Introduction 1

2 Preliminaries 2

3 Motivation and previous results 5

4 Counting the conjugacy classes of GL2(Fq) 7

5 The class equation for GL2(Fq) 10

6 Applications of the class equation 17

7 Maple code for generating the class equation 29

Bibliography 33

iii



List of Figures

4.1 Partition of a group by conjugacy classes . . . . . . . . . . . . . . . . 7

4.2 Partition of a group by conjugacy classes, each containing a rational

canonical form matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Partition of GL2(F2) by conjugacy classes . . . . . . . . . . . . . . . 9

6.1 Plot for the number of orbits where q = 2 and s ranges from 1 to 40 20

6.2 Plot for the number of orbits where q = 3 and s ranges from 1 to 40 20

6.3 Plot for the number of orbits where q = 5 and s ranges from 1 to 40 21

6.4 Plot for the number of orbits where q = 7 and s ranges from 1 to 40 21

6.5 Plot for the number of orbits where q = 11 and s ranges from 1 to 40 22

6.6 Plot for the number of orbits where q = 13 and s ranges from 1 to 40 22

6.7 Various plots for the number of orbits with fixed q prime between 2

and 101 with s ranging from 1 to 40 . . . . . . . . . . . . . . . . . . . 23

6.8 Plot for the number of orbits where s = 1 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 23

6.9 Plot for the number of orbits where s = 2 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 24

6.10 Plot for the number of orbits where s = 3 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 24

6.11 Plot for the number of orbits where s = 4 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 25

6.12 Plot for the number of orbits where s = 5 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



6.13 Plot for the number of orbits where s = 6 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 26

6.14 Plot for the number of orbits where s = 7 and q ranges over all primes

strictly between 1 and 100 . . . . . . . . . . . . . . . . . . . . . . . . 26

6.15 Various plots for the number of orbits with fixed s ∈ {1, . . . , 40}
where q is prime between 2 and 101 . . . . . . . . . . . . . . . . . . . 27

6.16 Surface where the variables are s and q and the z axis corresponds to

the number of orbits in (GL2(Fq))
s . . . . . . . . . . . . . . . . . . . 27

6.17 Surface where the variables are s and q and the z axis corresponds to

the number of orbits in (GL2(Fq))
s . . . . . . . . . . . . . . . . . . . 28

6.18 Surface where the variables are s and q and the z-axis corresponds to

the number of orbits in (GL2(Fq))
s . . . . . . . . . . . . . . . . . . . 28

v



ACKNOWLEDGMENTS

First I would like to thank my thesis advisor, Dr. Jeb Willenbring, for introducing

me to this problem and for helping me to understand the material needed to prove

the results in this thesis. Also, thank you for encouraging me to learn how to use

Maple in order to see patterns related to this problem. I would also like to thank

my other committee members, Dr. Yi Ming Zou and Dr. Gabriella Pinter, for their

input and suggestions.

Thank you to all of the professors who have taught the classes I have taken in

college and graduate school. The knowledge I have gained from those classes has

been vital in understanding how to think about the problem in this thesis.

Lastly, I would like to thank my friends and family who have always been sup-

portive of me, including my decision to attend graduate school.

vi



1

Chapter 1

Introduction

In this thesis, we discuss the conjugacy classes of the general linear group of 2 × 2

matrices over a prime field. This includes looking at the number of conjugacy classes

as well as the class equation for this group. We use the relationship between the

rational canonical form of a matrix and the matrix conjugates in order to find a

formula for the number of conjugacy classes in GL2(Fq). This is motivated by a

generalized formula for the number of conjugacy classes proved by Feit and Fine in

[5] and referenced in [1] and [10].

We again use the rational canonical forms to look at the sizes of the conjugacy

classes by finding the class equation for the case when n = 2 for any given q prime.

I have also included the Maple code for generating this equation.

Lastly, we address some results that rely on the class equation for GL2(Fq). This

includes finding the number of orbits when GLn(Fq) acts on (GLn(Fq))
s for some

s ∈ Z+. This relies on a generalized result for the number of orbits when a finite

group acts on a direct product of itself, which can be found in [9]. I also include

various plots of data related to the equation for the number of orbits.
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Chapter 2

Preliminaries

We will denote the finite field of q elements by Fq and the general linear group over

a finite field by GLn(Fq). This is the group of n×n invertible matrices with entries

in Fq. Note that we will only deal with the case where q is prime.

Let G be a group, X be a set. Let g ∈ and x ∈ X. A map φ : G×X → X (where

φ(g, x) is denoted by g · x) is a group action of G on X if (i.) g1 · (g2 · x) = (g1g2) · x
for each g1, g2 ∈ G, x ∈ X and (ii.) 1 · x = x for each x ∈ X where 1 denotes the

identity in G. Define the orbit of x to be Orb(x) = {g ·x : g ∈ G} and the stabilizer

of x in G to be Stab(x) = {g ∈ G : g · x = x}. Now consider the map G× G → G

defined by g · x = gxg−1 where g, x ∈ G. In this case, G acts on itself and the map

is called conjugation.

A conjugacy class C(x) for some element x in a group G is C(x) = {gxg−1 : g ∈
G}. It is the collection of all conjugates of x. Note that for x ∈ G, C(x) = Orb(x)

when G acts on itself by conjugation. Matrices that are conjugates are called similar

matrices. In other words, for matrices A, B ∈ GLn(Fq), A is similar to B if there

exists a matrix P ∈ GLn(Fq) such that A = PBP−1. We write that A ∼ B. Since

this is an equivalence relation, A and B are similar if and only if C(A) = C(B) where

C(A) and C(B) are the conjugacy classes of A and B respectively. Note that non-

invertible matrices K and L can also be similar if there exists some Q ∈ GLn(Fq)

such that K = QLQ−1. In this case, GLn(Fq) acts on the set of all matrices with

entries in Fq, which we will denote Mn(Fq).
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One fact that will be useful in this thesis is the Orbit-Stabilizer Theorem. Sup-

pose G is a group and suppose G acts a set X. For x ∈ X, the theorem says that

|G| = |Orb(x)| · |Stab(x)|. This will be proved later in this thesis.

The class equation is the order of the group written as the sum of the cardinalities

of the conjugacy classes. We can do this because conjugacy classes partition a group.

Let G be a finite group and let Z(G) = {g ∈ G : g = xgx−1for all x ∈ G}. Z(G)

is referred to as the center of G. For g ∈ Z(G), g commutes with everything in G,

so the stabilizer of g is the whole group. By the Orbit-Stabilizer Theorem, we get

that the orbit of x (meaning the conjugacy class containing x) has only one element,

namely x. So |Z(G)| is the number of conjugacy classes consisting of one element.

So the class equation is

|G| = |Z(G)|+
∑n

i=1 |C(xi)|

where x1, . . . , xn are representatives of all n distinct conjugacy classes in G where

|C(xi)| > 1 for each i ∈ {1, . . . , n} [4].

Let F be a field. Let f(x) = xk + bk−1x
k−1 + · · · + b1x + b0 ∈ F [x] be a monic

polynomial. The companion matrix of f , denoted Cf , is the k × k matrix with 1 in

every entry on the subdiagonal, the additive inverses of the non-leading coefficients

on the last column in descending order from −b0 to −bk−1, and zero elsewhere. For

this particular f , its companion matrix is

Cf =



0 0 · · · 0 −b0
1 0 −b1
0 1 0

...
...

...
. . . . . . . . .

0
0 · · · 0 1 −bk−1


Let a1, . . . , an be monic polynomials in F [x] such that ai divides ai+1 for each

i ∈ {1, . . . , n− 1}. Let Cai be the companion matrix for ai for each i ∈ {1, . . . , n}.
A matrix is said to be in rational canonical form if it is a matrix with blocks of

companion matrices on the diagonal in descending order (as shown below) and zero

elsewhere.
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R =


Ca1

Ca2
. . .

Can


Each ai is referred to as an invariant factor of R.
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Chapter 3

Motivation and previous results

Over the past 50 years, various results have been proven with regards to the con-

jugacy classes in the general linear group over a finite field (as well as the orbits

when GLn(Fq) acts on Mn(Fq)). This has included various formulas for the number

of conjugacy classes (or orbits).

In [5], Feit and Fine show that

1 +
∑∞

n=1 pn(q)xn =
∏∞

i=1
1−xi

1−qxi

where pn(q) is the number of conjugacy classes in GLn(Fq). This same formula can

be found in [1] and [10].

In [1], Benson, Feit, and Howe use a computer and the above formula to calculate

these coefficients to explicitly find the number of conjugacy classes for a variety of

values of n. Below is a sample of what is included in [1].

p2(q) = q2 − 1

p16(q) = q16 − q7 − q6 − q5 + 2q3 + q2 − q
p32(q) = q32−q15−q14−q13−q12−q11−q10 +q9 +2q8 +4q7 +3q6−4q4−3q3 +q2 +q

After observing this data, one of the facts that they discover is that qn is a good

approximation for the number of conjugacy classes in GLn(Fq).

In [10], Stong finds a similar formula for the number of orbits where GLn(Fq)

acts on in the set of n × n matrices with entries in Fq by conjugation (as opposed

to GLn(Fq) acting on itself). This is
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1 +
∑∞

n=1 rn(q)xn =
∏∞

i=1
1

1−qxi

where rn(q) is the number of orbits when GLn(Fq) acts on Mn(Fq) by conjugation.

In addition to the formula found by Stong, Carlitz and Hodges find a different

formula for the number similar matrices with entries in Fq in [2]. Note that this is

the same as the number of orbits where GLn(Fq) acts on in the set of n×n matrices

with entries in Fq by conjugation. They find that the number of classes of similar

n× n matrices with entries in Fq is∑
S q

k1+···+kn

where S = {(k1, . . . , kn) ∈ (Z+ ∪ {0})n : k1 + 2k2 + · · ·+ nkn = n}.
In [10], Stong also finds asymptotic results for the number of rational canonical

forms in GLn(Fq) and Mn(Fq) as n→∞. Note that this corresponds to the number

of conjugacy classes in GLn(Fq) and the number of orbits when GLn(Fq) acts on

Mn(Fq) by conjugation. For example, as n→∞, there are

r(q, n) = qn + 1
2

(
1

1−q
1
2

+ (−1)n

1+q
1
2

)
q

n
2 +O(q

n
3 )

rational canonical forms in GLn(Fq). Similarly, he finds the number of n×n matrices

with entries in Fq that are in rational canonical form as n→∞.

Note that some of these same topics (rational canonical forms, conjugacy classes,

and partitioning the general linear group) are addressed in [7]. Fulman also discusses

various combinatorial facts about GLn(Fq). This includes finding the number of

unipotent matrices in GLn(Fq).

Beyond these results, there is extensive literature concerning the general linear

group over a finite field, including [6]. Thank you to Dr. Yi Ming Zou for pointing

out this particular paper. These groups are examples of finite groups of Lie type

[3].
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Chapter 4

Counting the conjugacy classes of
GL2(Fq)

Proposition 4.0.1. The number of conjugacy classes in GLn(Fq) is equal to the

number of distinct rational canonical forms in GLn(Fq).

Proof. For any n×n matrix M over a field F , M is similar to a matrix Q in rational

canonical form [4]. Additionally, Q is the unique matrix in rational canonical form

similar to M [4]. Also, two matrices A and B are similar if and only if they have the

same rational canonical form [4]. So, the number of conjugacy classes in GLn(Fq)

is equal to the number of distinct rational canonical forms in GLn(Fq).

This fact is also mentioned in [7] and [10]. Note that GLn(Fq) is finite. In fact,

|GLn(Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) [4]. So GLn(Fq) has finitely

many conjugacy classes that partition the group.

Figure 4.1: Partition of a group by conjugacy classes

List the conjugacy classes as C(x1), C(x2), . . . , C(xm).
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For each conjugacy class C(xi), there is some yi ∈ GLn(Fq) that is in rational

canonical form.

Figure 4.2: Partition of a group by conjugacy classes, each containing a rational
canonical form matrix

Proposition 4.0.2. There are q2 − 1 conjugacy classes in GL2(Fq).

Proof. Consider the possible 2 × 2 invertible rational canonical forms. There are

two possibilities. If R ∈ GL2(Fq) is in rational canonical form, either R = λI for

some λ ∈ Fq \ {0} where I is the identity matrix or R =

(
0 a
1 b

)
where a, b ∈ Fq

and a 6= 0. In the first case, there are q − 1 possibilities for R since Fq \ {0} has

q − 1 elements. For the second case, there are q − 1 choices for a and q choices

for b. So there are q(q − 1) possibilities for R. Adding these two together, we get

(q − 1) + q(q − 1) = q2 − 1 conjugacy classes in GL2(Fq).

Note that this is consistent with the results in [5] and [1].

Example 4.0.3. Consider GL2(F2). |GL2(F2)| = (22 − 1)(22 − 2) = 6.

GL2(F2) =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)}
= {x1, x2, x3, x4, x5, x6}

Note that x−11 = x1, x
−1
2 = x2, x

−1
3 = x6, x

−1
4 = x4, x

−1
5 = x5, and x−16 = x3.

Also, by computing conjugates and using the fact that conjugacy classes partition

a group, it can be shown that there are three conjugacy classes: C(x1) = {x1},
C(x2) = C(x4) = C(x5) = {x2, x4, x5}, and C(x3) = C(x6) = {x3, x6}.

It remains to determine which of the six elements are in rational canonical form.
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Figure 4.3: Partition of GL2(F2) by conjugacy classes

x1 =

(
1 0
0 1

)
=

(
Cp1 0
0 Cp2

)
where p1(x) = p2(x) = x− 1 ∈ F2[x].

x2 =

(
0 1
1 0

)
= Cq where q(x) = x2 − 1 ∈ F2[x].

x3 is not in rational canonical form. If it was, it either (i) is a companion matrix

or (ii) consists of two companion matrix blocks on the diagonal and zero elsewhere.

x3 is neither of these types of matrices. Similarly, neither x4 nor x5 are in rational

canonical form.

x6 =

(
0 1
1 1

)
= Cr where r(x) = x2 − x− 1 ∈ F2[x].

So there are three matrices in GL2(F2) that are in rational canonical form. Addi-

tionally, these matrices are in distinct conjugacy classes. So the number of rational

canonical form matrices is equal to the number of conjugacy classes in GL2(F2).
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Chapter 5

The class equation for GL2(Fq)

To prove the class equation for when n = 2, we first prove a lemma.

Lemma 5.0.4. For any odd prime q, half of the nonzero elements in Fq are perfect

squares.

Proof. Consider q odd prime. Note that for any x ∈ Fq, x
2 ≡ (q−x)2 mod q. This

is because (q − x)2 = (q2 − 2xq + x2) ≡ x2 mod q.

Let φ : Fq \{0} → Fq \{0} be given by φ(x) = x2. Then each element in imφ has

at least two elements that map to it. So there exist at most q−1
2

elements in imφ.

It remains to show that each element in imφ has exactly two elements that map to

it. This will prove that |imφ| = q−1
2

and that half of all nonzero elements in Fq are

perfect squares.

Seeking contradiction, suppose there exist x, y ∈ Fq \ {0} such that x, y ≤ q−1
2

,

x 6= y, and φ(x) = φ(y) mod q. Note that we can assume both x and y are less

than q−1
2

because each element that is greater than q−1
2

has a corresponding element

that is less than or equal to q−1
2

which maps to the same element under φ.

Without loss of generality, assume that y < x. Then x2 − y2 ≡ 0( mod q) since

φ(x) = φ(y). So (x + y)(x − y) ≡ 0( mod q). Since Fq is a field, it contains no

zero-divisors. This implies that either (x + y) or (x − y) is equal to zero. Now

x−y 6= 0 since x, y ≤ q−1
2

and x 6= y. So x+y ≡ 0( mod q). This is a contradiction

because it means either x or y is greater than q−1
2

. So no such x and y exist.
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So for each y ∈ imφ, there exist exactly two elements, call them x and q − x,

such that φ(x) = φ(q − x) = y. Therefore, for any odd prime q, half of all nonzero

elements are perfect squares.

Note that finding which of these q−1
2

elements in Fq are prefect squares is a part

of the theory of quadratic reciprocity.

We need one more fact before proceeding with the proof of the class equation in

the case when n = 2. That is the Orbit-Stabilizer Theorem.

Lemma 5.0.5. Orbit-Stabilizer Theorem

Let G be a group and x ∈ G. Suppose G acts on itself and let Orb(x) be the orbit of

x and Stab(x) the stabilizer of x. Then |G| = |Orb(x)| · |Stab(x)|.

Proof. Note that G acts on Orb(x), Orb(x) = {g · x : g ∈ G}, and Stab(x) = {g ∈
G : g · x = x}. Let S = Stab(x), O = Orb(x) and let φ : G/S → O be given by

gS 7→ g · x for g ∈ G. We must show that φ is a well-defined bijection.

Let g1S, g2S ∈ G/S. Suppose φ(g1S) = φ(g2S). Then g1 · x = g2 · x, implying

that (g−12 g1) · x = x and that g−12 g1 ∈ S. By law of cosets, g1S = g2S, so φ is

injective.

Now let y ∈ Orb(x). Then y = z · x for some z ∈ G. So φ(zS) = z · x = y,

meaning φ is surjective.

Lastly it remains to show that φ is well-defined. Let g1, g2 ∈ G. Suppose

g1S = g2S. Then g−12 g1 ∈ S. So (g−12 g1) · x = x, implying that g1 · x = g2 · x. So φ

is well-defined.

So we get that φ is a bijective map, giving us that |G||S| = |G/S| = |O|.

Lastly note that when the group action is conjugation, the orbit of g is the

conjugacy class of g and the stabilizer of g is the centralizer of g where g is a group

element.
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Theorem 5.0.6. The class equation for GL2(Fq) is

(q2 − 1)(q2 − q) = |GL2(Fq)|

= [1][q − 1]

+ [q2 − q][1
2

(q2 − q)]

+ [q2 − 1][q − 1]

+ [q2 + q][
1

2
(q − 1)(q − 2)]

where each term in the sum is a product of the size of a conjugacy class and the

number of conjugacy classes of that particular size.

This can be listed in table form as well, as found in [8].

Size of Conjugacy Class Number of Conjugacy Classes
1 q − 1

q2 − q 1
2
(q2 − q)

q2 − 1 q − 1
q2 + q 1

2
(q − 1)(q − 2)

Proof. Let q be an odd prime. Recall that each conjugacy class can be represented

by a unique rational canonical form matrix. In the case where G = GL2(Fq), all of

the rational canonical forms in G are of the form(
0 a
1 b

)
or

(
c 0
0 c

)
where a, b, c ∈ Fq and a, c 6= 0.

In the second case, there are q − 1 such matrices in GL2(Fq) and they are all

constant multiples of the identity matrix. So each of these is the only element in its

conjugacy class. I will refer to these rational canonical forms as ”Type 1” rational

canonical forms. (Later I will give similar names to the different subcases of rational

canonical forms in case one).

For the first case, we will find the order of the centralizer of M =

(
0 a
1 b

)
, whose

elements are the matrices that commute with M . We will use this and the Orbit-

Stabilizer Theorem to find the size of the conjugacy class of a given rational canincal
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form and the number of rational canonical forms that have conjugacy classes of that

size.

For a matrix

(
x y
z w

)
∈ GL2(Fq),(
x y
z w

)(
0 a
1 b

)
=

(
0 a
1 b

)(
x y
z w

)
if and only if(

y xa+ yb
w za+ wb

)
=

(
az aw

x+ bz y + bw

)
.

Note that az = y, so z = a−1y. Also, w = a−1(xa+yb) = x+ba−1y by commutativity

of Fq. So any matrix that commutes with M looks like

(
x y

a−1y x+ ba−1y

)
. Note

that since this matrix is in GL2(Fq), its determinant is nonzero. This gives us the

following equation:

x2 + ba−1y − a−1y2 6= 0

In other words,

ax2 + byx− y2 6= 0

Now consider when ax2 + byx − y2 = 0. When this is true, we must eliminate

possible values of x and y. Using the quadratic formula, we obtain

x =
−by±
√

b2y2+4ay2

2a

= −by±y
√
b2+4a

2a

If b2 + 4a is a perfect square, then ax2 + byx− y2 = 0 has a solution, so we must

eliminate that combination of x and y, meaning that that particular matrix is not

in the centralizer of M .

By the previous lemma, for any odd prime q, half of all non-zero elements in Fq

are perfect squares. So for any fixed b, half of all nonzero values for a will make

b2 + 4a a perfect square. This is because q is prime, so 4a generates Fq, meaning

that for a1, a2 ∈ Fq such that a1 6= a2, 4a1 6= 4a2. So with b fixed, we have q−1
2

values of a that give solutions to ax2 + byx− y2 = 0.



14

Now there are three cases to consider when our rational canonical form is of the

form M =

(
0 a
1 b

)
when a, b ∈ Fq and a 6= 0.

(i) b2 + 4a is not a perfect square in Fq

(ii) b2 + 4a = 0 in Fq

(iii) b2 + 4a is a nonzero perfect square in Fq

I will refer to these as ”Type 2,” ”Type 3,” and ”Type 4” rational canonical forms,

respectively.

Consider case (i). Recall that we are considering matrices that look like(
x y

a−1y x+ ba−1y

)
.

Since ax2+byx−y2 = 0 has no solutions for any x, y ∈ Fq when x and y are nonzero,

there are q2−1 such matrices. This quantity is obtained by q choices for each x and

y and subtracting from that the one case where both are equal to zero. So there are

q2 − 1 elements in the centralizer of M . Since the centralizer is the stabilizer under

conjugation, by the Orbit-Stabilizer Theorem, we get that there are

|GL2(Fq)|
q2−1 = (q2−q)(q2−1)

q2−1 = q2 − q

elements in the conjugacy class of M if b2 + 4a is not a perfect square.

Also, since case (i) occurs half of the time with matrices of the form

(
0 a
1 b

)
where a, b ∈ Fq and a 6= 0, there are 1

2
(q − 1)q = 1

2
(q2 − q) such conjugacy classes.

This is the second component of the sum in the class equation.

Now consider case (ii). From b2 + 4a = 0 and the quadratic equation we get that

x = −yb
2a

are the solutions for ax2 + byx− y2 = 0. So y completely determines x. There are

q choices for y, so we must remove q pairs (x, y). This gives us q2− q such matrices

that commute with M =

(
0 a
1 b

)
. So the order of the conjugacy class of M in this

case is

|GL2(Fq)|
q2−q = (q2−q)(q2−1)

q2−q = q2 − 1
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Now we must count the number of conjugacy classes of this size. It suffices to

count the number of matrices in GL2(Fq) that are of the form

(
0 a
1 b

)
where a 6= 0

and b2 + 4a = 0.

If b = 0, then b2 + 4a 6= 0 since a 6= 0 implies that 4a 6= 0 since q is prime.

However, for any nonzero b, b2 has an additive inverse that is nonzero and therefore

there are q − 1 choices for b. a = (−4)−1b2 is determined by b. So there are exactly

q− 1 such rational canonical forms in GL2(Fq). This is the third part in the sum of

the class equation.

Lastly, consider case (iii), when b2 + 4a = g2 for some g ∈ Fq, g 6= 0. Then

x = y(−b±g)
2a

is when ax2 + byx − y2 = 0 has a solution. If y = 0, we have x = y = 0 and must

eliminate one case. If y 6= 0, there are q − 1 choices for y and two choices for ±g
(g is fixed). So we have 2(q − 1) more cases to remove. This gives a total of 2q − 1

cases, making the size of the centralizer of M q2− (2q− 1) = q2− 2q+ 1 = (q− 1)2.

So by the Orbit-Stabilizer Theorem, the size of the conjugacy class in this case will

be

|GL2(Fq)|
(q−1)2 = (q2−q)(q2−1)

(q−1)2 = q(q−1)(q−1)(q+1)
(q−1)2 = q(q + 1) = q2 + q

It remains to count the number of conjugacy classes of order q2 + q. Note that for

GL2(Fq), there are q2 − 1 conjugacy classes. This is the last case, so we can just

sum up the other quantities of conjugacy classes and subtract them from q2 − 1.

This is because we know there can only be four different sizes of conjugacy classes

by exhausting all cases for b2 + 4a. The number of conjugacy classes of order q2 + q

is

(q2 − 1)− [(q − 1) + 1
2
(q2 − q) + (q − 1)]

= 1
2
q2 − 3

2
q + 1 = 1

2
(q2 − 3q + 2)

= 1
2
(q − 1)(q − 2)

This accounts for the fourth and final component in the summation of the class

equation.



16

So far, we have proved the class equation for GL2(Fq) where q is an odd prime.

It lastly remains to show that this equation holds when q = 2. Evaluating at q = 2,

we obtain

|GL2(F2)| = 1 + 2(1) + 3(1) + 6(0) = 1 + 2 + 3

This is in fact the class equation for GL2(F2)
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Chapter 6

Applications of the class equation

With this result and the orbit stabilizer theorem, we now know how many conjugates

and commuting matrices a given matrix in GL2(Fq) has by simply calculating its

rational canonical form.

Corollary 6.0.7. Let M ∈ GL2(Fq) and let R be the rational canonical form of M .

(i) If R = cI for some c ∈ Fq \ {0} then M is its only conjugate and M commutes

with every matrix in GL2(Fq).

(ii) If R =

(
0 a
1 b

)
where a, b ∈ Fq, a 6= 0, and b2 + 4a is not a perfect square in Fq,

then M has q2 − q conjugates and commutes with q2 − 1 elements in GL2(Fq).

(iii) If R =

(
0 a
1 b

)
where a, b ∈ Fq, a 6= 0, and b2 + 4a = 0 in Fq, then M has

q2 − 1 conjugates and commutes with q2 − q elements in GL2(Fq).

(iv) If R =

(
0 a
1 b

)
where a, b ∈ Fq, a 6= 0, and b2 + 4a is a nonzero perfect square

in Fq, then M has q2+q conjugates and commutes with (q−1)2 elements in GL2(Fq).

Remark 6.0.8. Using the class equation for GL2(Fq), we can find what number of

conjugates and commuting matrices an element of GL2(Fq) is most likely to have.

We can also consider what distribution of matrices GL2(Fq) has when q is large

by taking the limit as q → ∞. We can figure out what percentage of the matrices

has a given type of rational canonical form.
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Corollary 6.0.9. As q → ∞, the probability that a matrix has rational canonical

form of the form

(
0 a
1 b

)
where a, b ∈ Fq, a 6= 0, and b2 + 4a is a nonzero perfect

square in Fq is 1
2
. Similarly, as q → ∞, the probability that a matrix has rational

canonical form of the form

(
0 a
1 b

)
where a, b ∈ Fq, a 6= 0, and b2 + 4a is not a

perfect square in Fq is 1
2
.

Proof. For each component in the sum of the class equation, we take the limit of

that number of matrices over the size of the group as q approaches infinity as shown

below.

limq→∞
(1)(q−1)

(q2−1)(q2−q) = 0

limq→∞
(q2−q)( 1

2
(q2−q))

(q2−1)(q2−q) = 1
2

limq→∞
(q2−1)(q−1)
(q2−1)(q2−q) = 0

limq→∞
(q2+q)( 1

2
(q−1)(q−2))

(q2−1)(q2−q) = 1
2

Additionally, we can use the class equation for GL2(Fq) to find the number of

orbits of Gs = G× · · · ×G (s times) for s > 0 where G = GL2(Fq) where G acts on

Gs by conjugation of each component.

Corollary 6.0.10. Let G = GL2(Fq). The number of orbits of Gs where G acts on

Gs by conjugation is

(q2 − 1)s−1(q2 − q)s−1[(q − 1) + 1
2(q2−q)s−2 + q−1

(q2−1)s−1 + (q−1)(q−2)
2(q2+q)s−1 ]

Proof. For a finite group H, let Ĥ be the set of conjugacy classes. For C ∈ Ĥ, let zC

be the size of the centralizer of some h ∈ C. Note that we can do this because the

Orbit-Stabilizer Theorem gives us that for any two elements in the same conjugacy

class, their centralizers will be the same size. So |C| = |H|
zC

by the Orbit-Stabilizer

Theorem. Also, |Hs/H| =
∑

C∈Ĥ z
s−1
C where |Hs/H| is the number of orbits where

H acts on Hs by conjugation of each component [9].

Let G = GL2(Fq). We wish to apply this to the class equation for G to find the

number of orbits ofGs whereG acts onGs by conjugation. Note that zs−1C = ( |G||C|)
s−1.
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So |Gs/G| =
∑

C∈Ĝ( |G||C|)
s−1. By applying the class equation for GL2(Fq), we get that

this is equal to

( |G|
1

)s−1(q− 1) + ( |G|
q2−q )s−1(1

2
(q2 − q)) + ( |G|

q2−1)s−1(q− 1) + ( |G|
q2+q

)s−1(1
2
(q− 1)(q− 2))

= |G|s−1[(q − 1) +
1
2
(q2−q)

(q2−q)r−2 + q−1
(q2−1)s−1 +

1
2
(q−1)(q−2)
(q2+q)s−1 ]

Since G = GL2(Fq), this equals

[(q2 − q)(q2 − 1)]s−1[(q − 1) +
1
2
(q2−q)

(q2−q)s−1 + q−1
(q2−1)s−1 +

1
2
(q−1)(q−2)
(q2+q)s−1 ]

= (q2 − q)s−1(q2 − 1)s−1[(q − 1) + 1
2(q2−q)s−2 + q−1

(q2−1)s−1 + (q−1)(q−2)
2(q2+q)s−1 ]

This is the number of orbits of Gs = G× · · · ×G (s times) where G acts on Gs by

conjugation. In other words, this is the number of conjugacy classes.

Next we give some plots of data obtained from this equation. First we fix q and

plot various values of s and the number of orbits for that particular s. Next we

fix s and plot data from a sample of values of q and the number of orbits for that

particular q.

In the following plots, fq(s) denotes the number of orbits with q fixed. This

means that

fq(s) = (q2 − 1)s−1(q2 − q)s−1[(q − 1) + 1
2(q2−q)s−2 + q−1

(q2−1)s−1 + (q−1)(q−2)
2(q2+q)s−1 ]

where q is a constant. Similarly, fs(q) denotes the number of orbits with s fixed.

This means that

fs(q) = (q2 − 1)s−1(q2 − q)s−1[(q − 1) + 1
2(q2−q)s−2 + q−1

(q2−1)s−1 + (q−1)(q−2)
2(q2+q)s−1 ]

where s is a constant. The following are graphs of fq(s). Following that is a graph of

plots for all fixed primes q between 2 and 101. Next are graphs of fs(q) and one for

all fixed s ∈ {1, . . . , 40}. Lastly, we create the surface for this two-variable equation

and include some images of the surface when s ∈ {1, . . . , 40} and q is prime between

2 and 101.
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Figure 6.1: Plot for the number of orbits where q = 2 and s ranges from 1 to 40

Figure 6.2: Plot for the number of orbits where q = 3 and s ranges from 1 to 40
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Figure 6.3: Plot for the number of orbits where q = 5 and s ranges from 1 to 40

Figure 6.4: Plot for the number of orbits where q = 7 and s ranges from 1 to 40
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Figure 6.5: Plot for the number of orbits where q = 11 and s ranges from 1 to 40

Figure 6.6: Plot for the number of orbits where q = 13 and s ranges from 1 to 40
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Figure 6.7: Various plots for the number of orbits with fixed q prime between 2 and
101 with s ranging from 1 to 40

Figure 6.8: Plot for the number of orbits where s = 1 and q ranges over all primes
strictly between 1 and 100
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Figure 6.9: Plot for the number of orbits where s = 2 and q ranges over all primes
strictly between 1 and 100

Figure 6.10: Plot for the number of orbits where s = 3 and q ranges over all primes
strictly between 1 and 100
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Figure 6.11: Plot for the number of orbits where s = 4 and q ranges over all primes
strictly between 1 and 100

Figure 6.12: Plot for the number of orbits where s = 5 and q ranges over all primes
strictly between 1 and 100
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Figure 6.13: Plot for the number of orbits where s = 6 and q ranges over all primes
strictly between 1 and 100

Figure 6.14: Plot for the number of orbits where s = 7 and q ranges over all primes
strictly between 1 and 100
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Figure 6.15: Various plots for the number of orbits with fixed s ∈ {1, . . . , 40} where
q is prime between 2 and 101

Figure 6.16: Surface where the variables are s and q and the z axis corresponds to
the number of orbits in (GL2(Fq))

s
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Figure 6.17: Surface where the variables are s and q and the z axis corresponds to
the number of orbits in (GL2(Fq))

s

Figure 6.18: Surface where the variables are s and q and the z-axis corresponds to
the number of orbits in (GL2(Fq))

s
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Chapter 7

Maple code for generating the
class equation

The following is the Maple code used to generate the class equation for an input

prime q by generating all rational canonical forms of the group and using these to

create the conjugacy classes. The sample below shows the code for q = 5, but that

is the only line that needs to be altered in order to generate the class equation for

any prime. Note that descriptions follow each section of the program.

> with(LinearAlgebra):

> with(LinearAlgebra[Modular]):

> q := 5:

> n := 2:

L := NULL:

for a from 0 to q-1 do

for b from 0 to q-1 do

L := L, Matrix(n,1,[[a],[b]])

od od:

L := [L]:

This creates a list of all two-dimensional vectors with entries in Fq.
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> S := NULL:

for a from 1 to nops(L) do

for b from 1 to nops(L) do

M := <L[a] | L[b]>:

S := S,M:

od od:

S := [S];

Next the Maple worksheet creates a list of all 2× 2 matrices with entries in Fq.

> nops(S):

G := NULL:

for i from 1 to nops(S) do

M := S[i]:

d := LinearAlgebra[Determinant](M) mod q:

if d=0 then G :=G else G := G,M end if:

end do:

G := [G];

GroupSize := nops(G);

Here we run a loop for testing each matrix in the list S and add it to list G if it

has a nonzero determinant in Fq. This means that G = GL2(Fq).

> R := NULL:

for i from 1 to q-1 do

for j from 0 to q-1 do

M := Matrix(2,2,[[0,i],[1,j]]):

R := R,M:

od od:

for i from 1 to q-1 do
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M := Matrix(2,2,[i,0],[0,i]):

R := R,M:

od:

R := [R];

NumberOfConjugacyClasses := nops(R);

This generates all rational canonical forms in GL2(Fq) and gives as an output,

the number of conjugacy classes.

> P2 := NULL:

for i from 1 to nops(R) do

C := NULL:

P2 := P2,C:

od:

P2 :=[P2]:

Now Maple makes a list of singleton sets, each containing exactly one unique

rational canonical form.

> P := NULL:

for j from 1 to nops(R) do

M := R[j]:

C := P2[j]:

for i from 1 to nops(G) do

N := G[i]:

K := MatrixInverse(N):

K := Mod(q,K,integer[]):

g := N.M.K:

g := Mod(q,g,integer[]):

k :=1:
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while k < nops(C) + 1 do

if Equal(g,C[k]) then k := nops(C) +2

else k := k+1

fi:

od:

if k = nops(C) + 1 then C := [op(C),g]

fi:

od:

P := P,C:

od:

P :=[P]:

for i from 1 to nops(P) do

ConjClass := P[i];

od;

ClassEquation := map(nops,P):

ClassEquation := sort(ClassEquation);

GrpSz := 0:

for i from 1 to nops(P) do

GrpSz := GrpSz + nops(P[i]):

od:

ClassEquationSum := GrpSz;

In this last step, we calculate the inverse of each matrix in G by converting its

entries to elements in Fq with each step. Then we use this to calculate all conjugates

of each rational canonical form matrix and add these to a list, this generating the

conjugacy class. A loop is used to guarantee that repeats are not added to lists. This

portion of the program then gives as an output, a vector of the sizes of conjugacy

classes. This can be interpreted as the class equation.

Example 7.0.11. If we set q := 5 in the above code, we can get the following

output.
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ClassEquation :=

[1, 1, 1, 1, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 24, 24, 24, 24, 30, 30, 30, 30, 30, 30]

ClassEquationSum := 480

Note that there are 24 entries in this vector, corresponding to the 24 conjugacy

classes in GL2(F5). Each entry in the vector represents the size of a conjugacy

class. Also note that the Maple worksheet outputs the size of GL2(F5), which is

(52 − 1)(52 − 5) = (24)(20) = 480.

Example 7.0.12. Similarly, set q := 7. The worksheet outputs

ClassEquation :=

[1, 1, 1, 1, 1, 1, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,

48, 48, 48, 48, 48, 48, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56]

ClassEquationSum := 2016

This vector represents the class equation for GL2(F7).
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