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Validating Geospatial Regression Models With Bootstrapping

Abstract
Spatial statistical models have been used extensively in many geospatial and environmental studies over
several decades. While being very important, the issues of testing and validation in spatial statistical models
are rarely investigated carefully in spatial environmental studies. Often strict theoretical asymptotic
assumptions used in those models are left unexplored or unanswered in many studies. This study is to explore
if bootstrapping is capable of providing more realistic statistical inference for spatial regression models while
dealing with several common issues with spatial data, such as spatial dependence and unknown
heteroscedasticity. With experiments on both simulated and real-world datasets, the study showed that
bootstrapping can reveal the differences between empirical (bootstrap) distributions and those based on
theoretical asymptotic assumptions in a forthright and sound fashion, allowing a spatial regression model to
be validated effectively. Such validation arguably is very important to geospatial and environmental studies,
especially those with small sample sizes. Hence, bootstrapping should be used widely as a second line of
evidence for statistical inference in spatial environmental studies.
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1. INTRODUCTION 

 

Since its introduction in the field of spatial econometrics in the early 1980’s (Anselin 

1988; Anselin and Bera 1998), spatial statistical analysis has found its way into many 

geospatial and environmental studies. Despite this long period of usage, whether spatial 

statistical model outputs, such as regression coefficients, which require various 

theoretical asymptotic assumptions, truly represent reality has often been left unexplored 

or unanswered in many studies. Inherited from conventional statistics, the asymptotic or 

large theory of test statistics for spatial model specification has been the subject of many 

studies (e.g., Cliff and Ord 1973; Sen,1976; King 1981; Anselin and Rey 1991; Anselin 

and Florax 1995; Anselin et al. 1996; Anselin and Kelejian,1997; Kelejian and Prucha 

1999; Pinkse 2004). However, many spatial statistical analyses have small samples, 

which arguably do not satisfy those theoretical asymptotic requirements. One empirical 

approach to achieve robust estimation and testing in spatial statistical models is to utilize 

bootstrapping, which relies on resampling from observed data to approximate the 

probability distribution of the test statistics. Initially introduced by Efron (1979, 1982) 

for independent data, bootstrapping has been extended to deal with dependent data, 

especially time series data, by several authors (MacKinnon 2002; Davison et al. 2003; 

Horowitz 2003). For bootstrapping with spatially dependent data, earlier theoretical 

work has been done by Cliff and Ord (1973), Cressie (1980), and more recently Kelejian 

(2008). In general, bootstrapping has been proven to be a sound and effective alternative 

parameter estimate in cases where samples are finite and/or distributional assumptions 

for error terms cannot be verified. In environmental research, bootstrapping has been 

used to handle measurement errors in a number of studies (e.g., Madsen et al. 2008; 

Roberts and Martin 2008: Lopiano et al. 2011; Szpiro et al. 2011; Bergen et al. 2013; 

Szpiro and Paciorek 2013). However, the use of bootstrapping to explore the conformity 

between theoretical asymptotic assumptions in spatial statistical analyses and reality has 

rarely been seen in geospatial and environmental studies literature, at least from our 

review.  

In this context, we explore in this paper the usefulness of bootstrapping in 

statistical testing and estimation in geospatial and environmental studies by applying the 

bootstrap to a spatial linear regression model on simulated datasets and a spatial dataset, 

which has been used in a number of studies. Our purpose is to illustrate that, by 

comparing the empirical bootstrap distributions of the estimates in spatial regression 

with those under theoretical asymptotic assumptions, an analyst would gain more 

confidence in the statistical inferences from the model and/or have more insights on 

potential issues that might influence the model’s results (spatial heteroscedasticity, 

heterogeneity in spatial relationship, etc.). The next section of data and methodology 

explains the dataset, spatial lag and error models, and the bootstrap methods. We then 

discuss the results from bootstrap simulations in the discussion section. 

 

 

2. METHODS 

 

2.1 Data 

 

We utilized two simulated datasets and a real-world dataset, which has been used in a 

number of prior studies.  
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2.1.1. Simulated Dataset  

 

We developed in this study two simulation scenarios (the two simulated datasets). For 

scenario 1, we first created a spatially-autocorrelated variable x1 on a regular 22x22 

lattice in the form of: 

 

x1= *W*x1 +       (1)   

 

where  is a spatial autoregression parameter (specifically, =0.2128; see Appendix for 

detail), W is a spatial weight matrix (specifically, rook contiguity weights), and  is a 

vector of a iid normal random variable (specifically, N(0, 1)). Next we created another 

variable, x2, which was correlated to x1 at a predefined level (e.g., the Pearson correlation 

coefficient between x1 and x2 in scenario 1 was set at 0.9). For scenario 2, we used the 

same simulated dataset of scenario 1 then created an outlier by changing one single point 

(x1, x2) in the dataset (e.g., from (0.6196, 0.1906) to (-7.0000, 0.1906)). Our intention 

was to make the error term  in the spatial lag and error regressions of x1 on x2 in scenario 

2 no longer normally distributed. Figure 1 shows the layouts of x1 and x2 on 2222 

lattices. 

 

 
Figure 1. Layouts of x1 and x2 of the two simulated datasets in scenarios 1 & 2. 
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Figure 2. Map of the study area and layouts of the four variables in the New York Leukemia 

dataset used in the study.   
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2.1.2 Real-world Dataset 

 

We utilized a dataset previously examined by Waller et al. (1992) to study the 

relationship between trichloroethylene (TCE, a suspected carcinogen) waste sites and 

leukemia in upstate New York between 1978 and 1982. The variables used in this 

analysis are listed in Table 1. Note that the dataset has been used in various 

epidemiological studies for different purposes (e.g., Waller and Turnbull 1993; Kulldorff 

and Nagarwalla 1995; Waller,1996; Gangnon and Clayton 1998; Ghosh et al. 1999; 

Rogerson 1999; Waller and Gotway 2004). Ahrens et al. (2001) augmented the dataset 

with demographic covariates from the 1980 census to shed more light on the relation 

between TCE waste sites and elevated leukemia rates. However, because we wanted to 

explore the usefulness of bootstrapping in a spatial study, we utilized a simple model 

with one dependent variable (Z, the transformed proportion of leukemia cases per tract) 

and three covariates (PCTOWNHOME, PCTAGE65P, and PEXPOSURE), essentially 

the same model presented in Waller and Gotway (2004). In other words, we did not 

intend to contribute to the understanding of the relationship between TCE and other 

covariates with leukemia rates. Figure 2 shows the study area and spatial layouts of these 

four variables. The histograms of the four variables as seen in Figure 3 were apparently 

skewed to differing extents and towards different directions. Accordingly, all four 

variables did not pass the Shapiro-Wilk normality test (p-values < 0.0001). Nevertheless, 

these four variables were used “as it is” (without any transformation) in the several linear 

regression analyses mentioned earlier. Utilizing this dataset in our analysis, we wanted 

to explore how untested and unsupported theoretical asymptotic assumptions in spatial 

regression analyses might influence a model’s results. 

 
Table 1. Variables in the New York Leukemia dataset. 

Variables Descriptions Used in regression 

models 

Pop8 population size (1980 U.S. Census)  

Tractcas number of leukemia cases 1978-1982  

Propcas proportion of cases per tract (Tractcas/Pop8)  

PCTOWNHOME percentage of people in each tract owning their 

own home 

covariate 

PCTAGE65P percentage of people in each tract aged 65 or 

more 

covariate 

Z transformed proportions dependent variable 

Avgdist average distance between centroid and TCE 

sites. 

 

PEXPOSURE exposure potential: the inverse distance 

between each census tract centroid and the 

nearest TCE site, IDIST, transformed via 

log(100*IDIST) 

covariate 
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Figure 3. Histograms of the four variables in the New York Leukemia dataset used in the study. 

 

2.2 Spatial Lag and Spatial Error Models 

 

With respect to regression models which include adjustments for spatial autocorrelation, 

a spatial lag model (also known as mixed regressive spatial autoregressive model (de 

Smith, 2015)) conceptualizes spatial dependence as an additional regressor in the form 

of a spatially lagged dependent variable (Wy) (Anselin 1988). It can be formally 

expressed as: 

 

y = ρWy + Xβ + u, u= ε   (2)   

 

where ρ (rho) is a spatial autoregressive coefficient, W is a spatial weight matrix, X is a 

matrix of exogenous variables, u is a vector of error terms, and ε ~ N(0, 𝜎2). The usage 

of spatial lag model is considered proper when the focus is on determining the existence 

and strength of spatial interaction. Note that the spatial lag term Wy is correlated with 

the covariates even though they are independent and identically distributed (iid). This 

aspect can be seen from the reduced form of (2): 

 

y = (I − ρW)-1 Xβ + (I – ρW)-1 ε     (3) 

 

as well as the reduced form of the conditional expectation of y: 

 

E[y|X] = (I − ρW)−1Xβ = Xβ + ρWXβ + ρ2W2Xβ + ...  (4) 
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In contrast to the spatial lag model, a spatial error model places spatial dependence in 

the regression disturbance term (the nuisance dependence) (Anselin 1988). A spatial 

error model is formally expressed as: 

 

y = Xβ + u, u=𝜆Wu + ε    (5) 

 

where 𝜆 (lambda) is the coefficient of the spatially-correlated errors. A spatial error 

model is appropriate when the focus is on dealing with the potentially bias-introducing 

influence of spatial autocorrelation due to the usage of spatial data. In this study, we 

applied both a spatial lag model and a spatial error model with the same set of covariates 

and dependent variable (see Table 1). 

Regarding estimators, first outlined by Ord (1975), the maximum likelihood (ML) 

estimator is arguably the most common estimator used for spatial lag and error models 

(details on ML estimation in spatial lag and error models can be seen in Anselin 1988). 

The optimality properties of ML estimators (consistency, asymptotic efficiency, 

asymptotic normality) are established under a relatively strict classical framework, 

defined by Rao (1973). However, models with spatial dependence often do not fit such 

framework (Anselin, 2003). As a result, special attention needs to be given to the 

discrepancy between theoretical assumptions and real conditions, for example, on the 

restrictions on the variance and higher moments of the model variables, or the constraints 

on the range of dependence embraced in the spatial weight matrix (Kelejian and Prucha 

1999; Anselin 2003) for more detail on these topics). 

 

2.3 Bootstrap estimation in spatial regression models 

 

Introduced by Efron (1979, 1982), bootstrapping is a robust estimator for alternative 

parameter estimates, measures of bias and variance, constructing confidence intervals 

(CIs), etc., by sampling with replacement from the original observations (e.g., Efron and 

Tibshirani 1993; Davison and Hinkley 1997; Chernick and LaBudde 2011). 

Bootstrapping has also been implemented in regression analyses (Freedman 1981; 

Bickel and Freedman 1982; Freedman and Peters 1984; Moulton and Zeger 1991). 

Bootstrapping in regression analysis can be carried out with two different approaches, 

one with residuals and the other with observation points. In the residual approach, the 

resampling is based on a set of regression residuals that is often obtained from a first-

step estimation. Next, a bootstrap replication is constructed by randomly sampling with 

replacement from the first-step estimates to construct a pseudo dataset, and then 

combining it with the first-step estimates. Then, estimates of regression coefficients are 

derived by the same model and method as with the initial observed dataset in the first 

step. Repeating the process many times, the bootstrap estimates of regression 

coefficients create empirical distributions which in turn are used to derive different 

statistics (mean, CIs, etc.) for the regression coefficients. With the observation points 

approach, bootstrap replications are created by randomly sampling with replacement 

from the initial observed dataset, with empirical distributions of regression coefficients 

being formed in a similar fashion in the residual approach (see Freedman (1981), 

Freedman and Peters (1984), and Chernick and LaBudde (2011) for more details of 

bootstrapping in regression).  

In spatial regression models, it is important to make sure that the random 

resampling retains the intrinsic spatial relationship of the dataset. In that context, Anselin 
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(1990) warned that a random sampling with just vectors [yi, (Wy)i, xi] for bootstrap 

replication for a spatial lag model would not be sound (due to the endogeneity of the 

spatial lag term Wy). The same is true for a random sampling with bootstrapping just 

vectors [yi, xi] for a spatial error model because the intrinsic spatial relationship in the 

error term (u=𝜆Wu + ε) might not be preserved properly.  On the other hand, the residual 

approach is a sound alternative when the residuals from the first-step estimation can be 

randomly sampled to create pseudo error terms and consequently a pseudo-vector of 

dependent variables for both spatial lag and spatial error models as follows: 

Initial model: 

 

y = ρWy + Xβ + u     (6) 

 

Residuals e from first-step estimation of (6): 

 

e = y – rWy – Xb      (7) 

 

and pseudo vector of dependent variable: 

 

yr = (I − rW)-1 Xb + (I – rW)-1 er
*    (8) 

 

where r and b are consistent estimates for ρ and β, respectively, from first-step 

estimation; X are the fixed (exogenous) variables. Specifically, first-step estimates of r 

and b (rr and br) can be obtained by regressing yr on Wyr and (fixed) X. As the error 

terms er (from first-step estimation) are assumed to be independent, the intrinsic spatial 

relationship of the dataset is preserved. Because the normality assumption of the error 

term was not met, we used non-parametric bootstrapping instead (i.e., re-sampling the 

empirical distribution rather than from a specified model; see, for example, Davison and 

Hinkley (1997) and Chernick (2008), for more information on parametric and non-

parametric bootstrap methods). Furthermore, to deal with heteroscedasticity in the error 

terms, we utilized the wild bootstrap method in which er
* = er 𝜈  with 𝜈 a random variable 

with mean 0 and variance 1 (Wu 1986). There are different choices of 𝑣 mentioned in 

the literature (Liu 1988; Mammem 1993; Davidson and Flachaire 2008). We adopt the 

binary form of 𝜈 as follows:  

 

𝜈𝑖 = {
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

1

2

−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  
1

2

    (9) 

 

In term of estimator, we utilized the ML method for bootstrapping with the 

residual for both spatial lag and error models. In this study we ran bootstrap resampling 

19,999 times for each model on the real-world dataset (9,999 times for the simulated 

datasets). For the sake of simplicity, without loss of generality, we used only two 

methods, the percentile method and the BCa method (bias-corrected bootstrap interval 

with the incorporation of an acceleration constant, to construct the 95% confidence 

intervals (CIs) for the regression coefficients of each model. While the bootstrap 

percentile method simply uses the distribution of bootstrap estimates to directly 
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construct the bootstrap confidence intervals, the BCa method makes correction for bias 

and skewness in the distribution of bootstrap estimates (Hall 1988). Details on these two 

bootstrap confidence interval methods as well as others (e.g., studentized, test-inversion, 

bias-corrected, etc.) can be found in various textbooks or review papers on bootstrap 

methods, such as DiCiccio and Efron (1996), Davison and Hinkley (1997), Carpenter 

and Bithell (2000), and Chernick (2008). Operationally, we ran first-step estimations of 

all regression models and their corresponding bootstrap analyses in R (R codes used in 

this study are available from the corresponding author on reasonable request). To 

measure the discrepancies between theoretical asymptotic distributions and those from 

empirical bootstrapping simulations, we calculated the overlap between confidence 

intervals from the initial models and those from bootstrap estimates as follows: 

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝐶𝐼1−𝐶𝐼2
=

min(𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠)−max (𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠)

max(𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠)−min (𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠)
  (10) 

 

We also calculated the overlap between bootstrap sampling distributions (i.e., 

histograms) and corresponding theoretical asymptotic distributions by a method 

described in Swain and Ballard (1991). 

 

 

3. RESULTS & DISCUSSION 

 

3.1 Simulated Datasets  

 

Results of first-step estimates and their corresponding bootstrap estimates of the spatial 

lag and error model for scenarios 1 and 2 are shown in Table 2. Figure 4 shows the 

layouts of residuals of x1 regressed on x2, and residual histograms resulted from the initial 

spatial lag and error models. In scenario 1, the error term   in the spatial lag and spatial 

error regressions of x1 on x2 was iid and normally distributed (e.g., Shapiro-Wilk 

normality test’s p-values = 0.9501 and 0.8468, respectively). Consequently, the 

bootstrapping results of both spatial lag and error models matched well with the 

corresponding estimates from the initial models. For example, the overlaps between 

bootstrap CIs and theoretical asymptotic CIs for all regression parameters were higher 

than 95% (except for the percentile CI of lambda in the spatial error model). A similar 

pattern was also observed between histograms of the bootstrap estimates and the 

corresponding scaled normal curves of initial models’ coefficient estimates (e.g., 

histogram overlaps > 94%). In scenario 2, with the presence of an outlier in the error 

term (Figure 3), such a high compatibility between initial models’ asymptotic estimates 

and bootstrap estimates were not really observed. The discrepancies were seen in both 

CIs and histograms between asymptotic and bootstrap estimates of rho and lambda, as 

well as in X2’s coefficient estimates for the spatial lag and spatial error models, 

respectively (Table 2 and Figure 5). Hence, the bootstrap experiment on simulated 

datasets in this study shows that, compared to the initial models accompanied by various 

theoretical asymptotic assumptions which are often unsatisfied but untested/treated 

properly, bootstrapping can reveal more realistic inferential information for spatial 

regression models with small sample sizes and/or with other common spatial data issues 

(e.g., outlier in the error term). 

Various studies have shown that theoretically and practically bootstrapping is able 

to handle various difficulties in regression modeling (e.g., unknown or non-Gaussian 
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error distribution, heteroscedasticity of variances, nonlinearity in the model parameters, 

and bias due to transformation) and provide a rational way to get the estimates of 

regression parameters (e.g., Freedman 1981; Duan 1983; Carroll and Ruppert 1988; 

Mammen 1993; Davison and Hinkley 1997; Chernick 2008; Chernick and LaBudde 

2011). However, these strengths of bootstrapping in regression modeling have not been 

realized and/or applied widely in spatial regression modeling. In that context, the 

experiment in this study with two simulated datasets in two spatial (lag and error) 

regression models is only one example to illustrate the ability of bootstrapping in 

handling non-Gaussian error distribution in a spatial regression setting. On the other 

hand, bootstrapping has been observed to be inconsistent in some situations, such as 

distributions with infinite second moments (Davison and Hinkley 1997; Chernick 2008). 

While there are remedies for those situations (e.g., Chernick and LaBudde 2011), these 

topics have not been explored in detail in spatial regression modeling and certainly 

deserve more study in the future to fully understand the ability of bootstrapping (e.g., 

strengths/weaknesses, limitations) for different situations in spatial regression modeling. 

 

3.2 Real-world Dataset 

 

Table 3 displays results of first-step estimations (i.e., initial models) of the spatial lag 

and error models and their corresponding bootstrap estimates. Figure 6 shows 

histograms of bootstrap estimates of regression coefficients of the two models and the 

corresponding scaled normal curves of first-step model’s coefficient estimates. First of 

all, while the first-step estimations of the two models were different from one to another 

to some extent, those discrepancies are small and understandable due to the difference 

in the nature of the two models (spatial lag versus spatial error). Nevertheless, the results 

were very consistent between the spatial lag and error models in terms of which variables 

were statistically significant and what their significance levels were (e.g., PCTAGE65P 

significant at 0.0001-level and PCTOWNHOME at 0.05-level in the two models).  

Overall, the empirical bootstrap CIs confirmed the statistical inference 

(significance/insignificance) of the estimations of PEXPOSURE, PCTAGE65P, and 

PCTOWNHOME, as well as those of lambda and rho, in the initial spatial lag and error 

models. However, CIs of the initial estimates, which are based on asymptotic 

assumptions, were different to empirical bootstrap CIs to different extents (e.g., varied 

from one variable to another and from one model to the other). The largest overlap 

between theoretical and empirical CIs in the spatial lag model belonged to PEXPOSURE 

followed by PCTOWNHOME and PCTAGE65P. On the other hand, PCTOWNHOME 

had the largest overlap between theoretical and empirical CIs in the spatial error model, 

followed by PEXPOSURE and PCTAGE65P. Note that PCTAGE65P had the smallest 

overlaps between theoretical and empirical CIs in both spatial lag and error models.  
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Figure 4. Layouts of residuals of x1 regressed on x2, and residual histograms resulted from the 

initial spatial lag and error models in scenarios 1 & 2 
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Table 2. First-step estimations (i.e., initial models) their corresponding bootstrap estimates on simulated datasets 

Models Scenarios Coefficients 
First-step estimates (i.e., initial models) Bootstrap estimates (n=9,999) CI overlap 

I-Pe/I-BCa*(%) 

Histogram 

overlaps  

(%) Mean Stdev p-values 95% CI initial Mean 95% CI percentile 95% CI BCa 

Spatial 

lag 

Scenario 1 

Slope 8.9594 0.3459 0.7855 
(8.2814, 

9.6373) 
8.9368 

(8.2390, 

9.5980) 

(8.2710, 

9.6320) 

94.2/ 

98.9 
96.3 

Intercept 0.0093 0.0341 <2e-16 
(-0.0575, 

0.0760) 
0.0093 

(-0.0568, 

0.0742) 

(-0.0564, 

0.0744) 

98.1/ 

98.0 
96.3 

Rho 0.1021 0.0076 0.0000 
(0.0872, 

0.1169) 
0.1026 

(0.0877, 

0.1172) 

(0.0864, 

0.1160) 

97.3/ 

94.4 
96.0 

Scenario 2 

Slope 8.7678 0.3820 <2e-16 
(8.0192, 

9.5165) 
8.8236 

(7.8470, 

9.7730) 

(7.7730, 

9.6870) 

77.7/ 

78.2 
78.0 

Intercept 0.0000 0.0385 0.9999 
(-0.0754, 

0.0754) 
0.0013 

(-0.0731, 

0.0790) 

(-0.0745, 

0.0776) 

96.2/ 

98.0 
95.9 

Rho 0.1032 0.0083 0.0000 
(0.0868, 

0.1195) 
0.1013 

(0.0809, 

0.1210) 

(0.0839, 

0.1235) 

81.5/ 

82.6 
83.2 

Spatial 

error 

Scenario 1 

Slope 9.5528 0.3493 <2e-16 
(8.8681, 

10.2375) 
9.5488 

(8.8570, 

10.2200) 

(8.8690, 

10.2290) 

97.9/ 

99.3 
95.3 

Intercept 0.0174 0.0868 0.8410 
(-0.1528, 

0.1876) 
0.0172 

(-0.1488, 

0.1798) 

(-0.1488, 

0.1800) 

96.5/ 

96.6 
94.3 

Lambda 0.1501 0.0122 0.0000 
(0.1262, 

0.1740) 
0.1485 

(0.1223, 

0.1718) 

(0.1247, 

0.1737) 

88.2/ 

96.3 
93.9 

Scenario 2 

Slope 9.7053 0.3832 <2e-16 
(8.9543, 

10.4562) 
9.7076 

(8.8030, 

10.6020) 

(8.7990, 

10.5990) 

83.5/ 

83.4 
85.3 

Intercept 0.0012 0.0845 0.9883 
(-0.1643, 

0.1668) 
-0.0009 

(-0.1645, 

0.1597) 

(-0.1623, 

0.1610) 

97.8/ 

97.6 
95.8 

Lambda 0.1311 0.0132 0.0000 
(0.1051, 

0.1570) 
0.1302 

(0.0978, 

0.1592) 

(0.0984, 

0.1595) 

84.5/ 

84.9 
91.0 

*% overlap between CIs, I-Pe: between initial model’s 95% CI and bootstrap percentile 95% CI; I-BCa: between initial model’s 95% CI and bootstrap BCa 

95% CI.  
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Figure 5. (a) Histograms of bootstrap estimates of spatial lag model’s coefficients and 

corresponding scaled normal curves of first-step model’s coefficient estimates, and CIs (black: 

initial model’s CIs, red or green: percentile CIs, blue: BCa CIs), in scenarios 1 & 2. 
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Figure 5. (b) Histograms of bootstrap estimates of spatial error model’s coefficients and 

corresponding scaled normal curves of first-step model’s coefficient estimates, and CIs (black: 

initial model’s CIs, red or green: percentile CIs, blue: BCa CIs), in scenarios 1 & 2. 

 

Similar to the observations on CIs, there were discrepancies between the 

empirical bootstrap distributions of the regression coefficients and the corresponding 

scaled normal curves which were based on theoretical asymptotic assumptions. 

Comparing with their corresponding scaled normal curves, the empirical bootstrap 

distributions (of the coefficient) of PCTAGE65P were wider and flatter in both spatial 
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lag and error models. Furthermore, these empirical distributions of PCTAGE65P also 

failed the Shapiro-Wilk normality tests (e.g., p-values were <0.0001). For the spatial 

error model, while the empirical distributions of PEXPOSURE and PCTOWNHOME 

were different from their corresponding scaled normal curves, they still passed the 

Shapiro-Wilk normality tests (e.g., p-values were 0.9241 and 0.1469, respectively). For 

the spatial lag model, the empirical distribution of PEXPOSURE passed the Shapiro-

Wilk normality tests (p-value=0.1699), but those of PCTOWNHOME did not (p-

value=0.0009). Note that discrepancies in CIs and distributions between empirical 

bootstrap results and those based on theoretical asymptotic assumptions (i.e., first-step 

estimates/initial models) were also observed in rho in the spatial lag model and in 

lambda of the spatial error model. 

Arguably, with higher levels of conformity between empirical bootstrap 

simulations and the initial models’ estimates of PEXPOSURE and PCTOWNHOME, 

one would have more confidence in the statistical inferences for these two variables. In 

contrast, substantial discrepancies between bootstrap outcomes and the estimates of 

PCTAGE65P from the initial models would cause a researcher to be more cautious in 

using the initial models’ estimates of this variable. Note that there is a wide array of 

potential causes for discrepancies between empirical bootstrap results and estimates 

based on theoretical asymptotic assumptions, such as small sample size, spatial 

heteroscedasticity, spatial edge effect, heterogeneous spatial relationship, to name a 

few. While a bootstrap analysis like those in this study might not be able to identify a 

definite cause of those discrepancies, it can reveal the reality-versus-theory differences 

in a forthright and sound fashion, allowing a spatial regression model to be validated 

effectively. Such validation arguably is very important for geospatial and 

environmental studies, especially those with small sample sizes. 

 

 

4. CONCLUSIONS 

 

The purpose of the study was to show the ability of bootstrapping in revealing the 

difference between theory and reality, an important aspect but often ignored in spatial 

regression analyses.  It is not uncommon that some theoretical assumptions used in 

spatial regression models are unsatisfied to some extent but the results of a regression 

model are still reasonable. However, proper test(s) should be carried out to validate the 

model. In that context, the bootstrap approach as illustrated in this paper is a suitable 

and sound tool for such purpose/test. This study also showed that bootstrapping can 

provide an alternative to empirically derive statistical inference for spatial regression 

models while effectively dealing with several common issues with spatial data, such as 

spatial dependence and unknown heteroscedasticity. Hence, bootstrapping should be 

used as a tool to validate estimates in spatial regression models. In other words, it can 

be a second line of evidence for statistical inference in geospatial and environmental 

studies, especially for those with small sample sizes.  
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Table 3. First-step estimations of spatial lag and error models and their corresponding bootstrap estimates on the New York Leukemia dataset  

 Models  Coefficients 
First-step estimates (i.e., initial models) Bootstrap estimates (n=19,999) CI overlap 

I-Pe/I-BCa* 

(%) 

Histogram 

overlaps 

(%) Mean Stdev p-values 95% CI initial Mean 95% CI percentile 95% CI BCa 

Spatial 

lag 

  

PEXPOSURE 0.0442 0.0344 0.1990 
(-0.0232, 

0.1116) 
0.0383 

(-0.0037, 

0.1328) 

(-0.0331, 

0.0966) 

73.9/ 

82.8 
80.6 

PCTAGE65P 3.6317 0.5989 0.0000 
(2.4578, 

4.8056) 
3.6432 

(2.1600, 

5.4900) 

(1.8740, 

5.1540) 

70.5/ 

71.6 
73.5 

PCTOWNHOME -0.4062 0.1688 0.0161 
(-0.7370, 

-0.0754) 
-0.4591 

(-0.7852, 

-0.1379) 

(-0.6920, 

-0.0604) 

84.4/ 

91.1 
89.0 

Intercept -0.5022 0.1557 0.0013 
(-0.8074, 

-0.1969) 
-0.4679 

(-0.8237, 

-0.2102) 

(-0.8157, 

-0.2042) 

95.3/ 

97.5 
96.5 

Rho 0.2348 0.0800 0.0033 
(0.0780, 

0.3916) 
0.2201 

(0.0032, 

0.3720) 

(0.0614, 

0.4102) 

75.7/ 

89.9 
85.7 

Spatial 

error 

  

PEXPOSURE 0.0597 0.0426 0.1613 
(-0.0238, 

0.1431) 
0.0583 

(-0.0201, 

0.1259) 

(-0.0067, 

0.1392) 

87.5/ 

87.4 
91.2 

PCTAGE65P 3.8140 0.6249 0.0000 
(2.5892, 

5.0388) 
3.8260 

(2.1680, 

5.5660) 

(2.1550, 

5.5430) 

72.1/ 

72.3 
76.6 

PCTOWNHOME -0.4379 0.1898 0.0210 
(-0.8098, 

-0.0659) 
-0.4503 

(-0.8378, 

-0.1465) 

(-0.7341, 

-0.0450) 

85.9/ 

87.4 
87.9 

Intercept -0.5876 0.1755 0.0008 
(-0.9316, 

-0.2435) 
-0.5798 

(-0.8770, 

-0.2314) 

(-0.9463, 

-0.2990) 

90.5/ 

90.0 
90.5 

Lambda 0.2236 0.0860 0.0173 
(0.0440, 

0.4031) 
0.1737 

(-0.0698, 

0.3688) 

(0.0572, 

0.4581) 

68.7/ 

83.5 
74.0 

*% overlap between CIs, I-Pe: between initial model’s 95% CI and bootstrap percentile 95% CI; I-BCa: between initial model’s 95% CI and bootstrap BCa 

95% CI.  
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Figure 6. (a) Histograms of bootstrap estimates of spatial lag model’s coefficients and 

corresponding scaled normal curves of first-step model’s coefficient estimates, and CIs (black: 

initial model’s CIs, red or green: percentile CIs, blue: BCa CIs), for the real-world dataset. 
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Figure 6. (b) Histograms of bootstrap estimates of spatial error model’s coefficients and 

corresponding scaled normal curves of first-step model’s coefficient estimates, and CIs (black: 

initial model’s CIs, red or green: percentile CIs, blue: BCa CIs), for the real-world dataset. 
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APPENDIX 

 

x1 in the simulated datasets was created with the following R codes: 

 

=0.2128 was resulted from a specific setting of μ (mu) at 40 and the random 

component with a normal distribution N(0,1).  
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